I nt ernet Engi neering Task Force (I ETF) M Barnes

Request for Comments: 6503 Pol ycom
Cat egory: Standards Track C. Boulton
| SSN: 2070- 1721 NS- Technol ogi es

S. Romano

Uni versity of Napol
H. Schul zrinne
Col unbi a University
March 2012

Centralized Conferencing Mani pul ati on Protocol

Abstract

The Centralized Conferencing Mnipulation Protocol (CCWP) allows a
Centralized Conferencing (XCON) systemclient to create, retrieve,
change, and del ete objects that describe a centralized conference.
CCMP is a neans to control basic and advanced conference features
such as conference state and capabilities, participants, relative
roles, and details. CCWP is a stateless, XM-based, client server
protocol that carries, in its request and response nessages,
conference information in the formof XM. docunents and fragnments
conforming to the centralized conferencing data nodel schena.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nay be obtained at
http://ww. rfc-editor.org/info/rfc6503

Barnes, et al. St andards Track [Page 1]

RFC 6503 caweP March 2012

Copyright Notice

Copyright (c) 2012 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1
2.
3.

INEroduCti ON .. e 4
Conventions and Terminol ogyy 5
XCON Conference Control System Architecture 5
3.1. Conference QD] BCES . ..ottt 7
3.2. Conference USers 7
Protocol OVervVi BW 8
4.1. Protocol Operations e 9
4.2, Data ManagemBNntt e 10
4.3. Data Model Conpliance i 11
4. 4. Inplementation Approach i 12
COMP MBS S A0S . ottt it it et e e 13
5.1. CCVMP Request Message TYype 13
5.2. CCMP Response Message Type ... e i 15
5.3. Detailed MeSSagest 17
5.3.1. blueprintsRequest and bl ueprintsResponse 20
5.3.2. confsRequest and confsResponse 22
5.3.3. DblueprintRequest and bl ueprintResponse 24
5.3.4. confRequest and confResponse 26
5.3.5. usersRequest and usersResponse 30
5.3. 6. userRequest and userResponsec...... 32
5.3.7. sidebarsByVal Request and si debar sByVal Response 37
5.3.8. sidebarByVal Request and si debar ByVal Response 39
5.3.9. sidebarsByRef Request and si debar sByRef Response 42
5.3.10. sidebarByRef Request and si debar ByRef Response 44
5.3.11. extendedRequest and extendedResponse 47
5.3.12. optionsRequest and optionsResponse 49
5.4, CCVP Response Codest 53
A Complete Exanple of CCMP in Action 57
6.1. Alice Retrieves the Available Blueprints 58
6.2. Alice CGets Detailed Informati on about a Specific
Bl UEpri Nt e 60

Barnes, et al. St andards Track [Page 2]

RFC 6503 CCWP March 2012
6.3. Alice Creates a New Conference through a C oning
Operati ON ..o 62
6.4. Alice Updates Conference Information 65
6.5. Alice Inserts a List of Users into the Conference bject ..66
6.6. Alice Joins the Conference 68
6.7. Alice Adds a New User to the Conference 70
6.8. Alice Asks for the CCMP Server Capabilities 72
6.9. Alice Makes Use of a CCOMP Server Extension 75
7. Locating a Conference Server 78
8. Managing Notifications i 79
9. HITP Transport e e e 80
10. Security Considerations e, 82
10. 1. Assuring That the Proper Conference Server Has
Been Contacted e 83
10. 2. User Authentication and Authorization 84
10.3. Security and Privacy of ldentity 85
10.4. Mtigating DoS Attacks 86
11, XML SCheMB . .o 87
12. TANA Considerati ONSt e 105
12.1. URN Sub- Nanespace Registration 105
12.2. XML Schema Registration 106
12.3. M ME Media Type Registration for
Tapplication/cenp+xm T oL 106
12.4. DNS Registrati ons 107
12.4.1. Registration of a Conference Server
Application Service Tagviiina... 108
12.4.2. Registration of a Conference Server
Application Protocol Tag for CCMP 108
12.5. CCMP Protocol Registry i 108
12.5.1. COVP Message TYPeS ..ot e e e e 109
12.5.2. CCVP Response Codesuiiiiiinnnnnannns 111
13. ACKNOW edgImBNnt Sot 113
14, References 113
14.1. Normative References i, 113
14. 2. Informative References i, 114
Appendi x A. Evaluation of OQther Protocol Mdels and
Transports Considered for CCMP 116
Al Using SOAP for COMP ... e 117
A 2. A RESTful Approach for COMP 117
Barnes, et al. St andards Track [Page 3]

RFC 6503 caweP March 2012

1

I ntroduction

"A Franework for Centralized Conferencing" [RFC5239] (XCON franewor k)
defines a signaling-agnostic framework, naming conventions, and

| ogical entities required for building advanced conferencing systens.
The XCON framework introduces the conference object as a | ogica
representation of a conference instance, representing the current
state and capabilities of a conference.

The Centralized Conferencing Mnipul ati on Protocol (CCMP) defined in
this docunent allows authenticated and authorized users to create,
mani pul ate, and del ete conference objects. Operations on conferences
i ncl ude addi ng and renovi ng partici pants, changing their roles, as
wel | as adding and renoving nedia streanms and associ ated endpoi nts.

CCWP i npl ements the client-server nodel within the XCON franework,
with the conferencing client and conference server acting as client
and server, respectively. CCW uses HITP [RFC2616] as the protocol
to transfer requests and responses, which contain the domain-specific
XM.- encoded data objects defined in [RFC6501] "Conference Information
Data Model for Centralized Conferencing (XCON)".

Section 2 clarifies the conventions and term nol ogy used in the
docunent. Section 3 provides an overview of the conference contro
functionality of the XCON franework, together with a description of
the main targets CCOWP deals with, nanmely conference objects and
conference users. A general description of the operations associated
wi th protocol messages is given in Section 4 together with

i npl ementation details. Section 5 delves into the details of
specific CCVWP nessages. A conplete, non-normative, exanple of the
operation of CCMP, describing a typical call flow associated with
conference creation and mani pul ation, is provided in Section 6. A
survey of the nethods that can be used to locate a conference server
is provided in Section 7, and Section 8 discusses potentia
approaches to notifications managenent. CCWP transport over HITP is
highlighted in Section 9. Security considerations are presented in
Section 10. Finally, Section 11 provides the XM. schena.

Barnes, et al. St andards Track [Page 4]

RFC 6503 caweP March 2012

2.

Conventi ons and Ter m nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMMENDED', "MAY", and
"OPTIONAL" in this docunment are to be interpreted as described in

[RFC2119] .

In addition to the terms defined in "A Framework for Centralized
Conf erenci ng" [RFC5239], this docunent uses the followi ng ternms and
acronyns:

XCON- aware client: An XCON conferencing systemclient that is able
to i ssue CCWP requests.

First-Party Request: A request issued by the client to manipul ate
its own conferencing data.

Third-Party Request: A request issued by a client to nanipulate the
conference data of another client.

XCON Conference Control System Architecture

CCWP supports the XCON framework. Figure 1 depicts a subset of the
"Conf erencing System Logi cal Deconposition" architecture fromthe
XCON framework docunent. It illustrates the role that CCOMP assunes
within the overall centralized architecture

Barnes, et al. St andards Track [Page 5]

RFC 6503 caweP March 2012

g +
| CONFERENCE OBJECT |
T + |
| CONFERENCE OBJECT | |
I T TYSSS + | |
| CONFERENCE OBJECT | | |
| | |-+
| |-+
oo s oo e e e e e e e e e oo oo - +
N
|
%
B +
| Conference Control |
| Server |
R L LT T +
N
......................... [
| _
| Centralized

| Conf er enci ng
| Mani pul ati on

| Protocol
|
......................... [o

Y

S +

| Conference |

| Control |

| dient |

e +

Figure 1: Conferencing Client Interaction

The Centralized Conferencing Mnipul ati on Protocol (CCMP) allows the
conference control client (conferencing client) to interface with the
conference object nmintained by the conferencing system as depicted
in Figure 1. Note that additional functionality of the conferencing

client and conferencing systemis discussed in the XCON franmework and
rel ated docunents.

Barnes, et al. St andards Track [Page 6]

RFC 6503 caweP March 2012

This section provides details of the identifiers REQJ RED to address
and manage the clients associated with a conferencing system using
CCwP

3.1. Conference bjects

Conference objects feature a sinple dynam c inheritance-and-override
mechani sm Conference objects are linked into a tree known as a
"cloning tree" (see Section 7.1 of [RFC5239]). Each cloning tree
node inherits attributes fromits parent node. The roots of these

i nheritance trees are conference tenpl ates al so known as
"blueprints". Nodes in the inheritance tree can be active
conferences or sinply descriptions that do not currently have any
resources associated with them (i.e., conference reservations). An
object can mark certain of its properties as unalterable, so that
they cannot be overridden. Per the framework, a client may specify a
parent object (a conference or blueprint) fromwhich to inherit

val ues when a conference is created using the conference contro

pr ot ocol

Conference objects are uniquely identified by the XCONURI within the
scope of the conferencing system The XCON-URI is introduced in the
XCON franmewor k and defined in the XCON conmon data nodel

Conf erence objects are conprehensively represented through XM
docunents conpliant with the XM. scherma defined in the XCON data
nmodel [RFC6501]. The root el enent of such documents, called

<conference-info> is of type "conference-type". |t enconpasses
other XM_ el enents describing different conference features and users
as well. Using CCMP, conferencing clients can use these XM

structures to express their preferences in creating or updating a
conference. A conference server can convey conference information
back to the clients using the XM el enents.

3.2. Conference Users

Each conference can have zero or nore users. All conference
participants are users, but some users nmay have only administrative
functions and do not contribute or receive nedia. Users are added
one user at a time to sinplify error reporting. Wen a conference is
cloned froma parent object, users are inherited as well, so that it
is easy to set up a conference that has the sane set of participants
or a conmon administrator. The conference server creates individua
users, assigning thema unique conference user identifier (XCO\W

USERI D). The XCON-USERID as identifier of each conferencing system
client is introduced in the XCON framework and defined in the XCON

Barnes, et al. St andards Track [Page 7]

RFC 6503 caweP March 2012

common data nodel. Each CCWMP request, with an exception pointed out
in Section 5.3.6 representing the case of a user at his first
entrance in the systemas a conference participant, nmust carry the
XCON- USERI D of the requestor in the proper <confUserl D> paraneter.

The XCON-USERID acts as a pointer to the user’'s profile as a
conference actor, e.g., her signaling URI and other XCON protocol
URI's in general, her role (nmoderator, participant, observer, etc.),
her display text, her joining information, and so on. A variety of

el ements defined in the common <conference-info> el ement as specified
in the XCON data nodel are used to describe the users related to a
conference including the <users> elenent, as well as each <user>

el ement included within it. For exanple, it is possible to deternine
how a specific user expects and is allowed to join a conference by

| ooki ng at the <allowed-users-list> in <users> each <target> el enent
involved in such a list represents a user and shows a ' net hod
attribute defining how the user is expected to join the conference,

i.e., "dial-in" for users that are allowed to dial, "dial-out" for
users that the conference focus will be trying to reach (with
"dial-in" being the default node). |If the conference is currently

active, dial-out users are contacted inmediately; otherwi se, they are
contacted at the start of the conference. CCMP, acting as the
conference control protocol, provides a neans to mani pul ate these and
ot her kinds of user-related features.

As a consequence of an explicit user registration to a specific XCON
conferencing system conferencing clients are usually provided
(besides the XCON-USERID) with log-in credentials (i.e., username and
password). Such credentials can be used to authenticate the XCO\
aware client issuing CCMP requests. Thus, both usernanme and password
should be carried in a CCWP request as part of the "subject"
paranet er whenever a registered conferencing client wishes to contact
a CCOWP server. CCMP does not nmintain a user’s subscriptions at the
conference server; hence, it does not provide any specific nmechani sm
allowing clients to register their conferencing accounts. The
"subject" paraneter is just used for carrying authentication data
associated with pre-registered clients, with the specific
registration nodality outside the scope of this docunent.

4, Pr ot ocol Overvi ew

CCWP is a client-server, XM.-based protocol for user creation
retrieval, nodification, and del etion of conference objects. CCW is
a stateless protocol, such that inplenmentations can safely handle
transactions i ndependently from each other. CCMP nessages are XM
docunents or XM. docunent fragnents conpliant with the XCON data
nodel representation [RFC6501].

Barnes, et al. St andards Track [Page 8]

RFC 6503 caweP March 2012

Section 4.1 specifies the basic operations that can create, retrieve,
nmodi fy, and delete conference-related information in a centralized
conference. The core set of objects mani pul ated by CCWP incl udes
conference blueprints, the conference object, users, and sidebars.

Each operation in the protocol nodel, as sunmarized in Section 4.1,
is atomic and either succeeds or fails as a whole. The conference
server MJST ensure that the operations are atonic in that the
operation invoked by a specific conferencing client conpletes prior
to another client’s operation on the same conference object. Wile
the details for this data | ocking functionality are out of scope for
the CCWP specification and are inplenentation specific for a
conference server, sone core functionality for ensuring the integrity
of the data is provided by CCMP as described in Section 4.2.

While the XM. docunents that are carried in CCMP need to conply with
the XCON data nodel, there are situations in which the val ues for
mandat ory el enments are unknown by the client. The nechanism for
ensuring conpliance with the data nodel in these cases is described
in Section 4.3.

CCWP is compl etely independent from underlying protocols, which neans
that there can be different ways to carry CCMP nessages from a
conferencing client to a conference server. The specification

descri bes the use of HTTP as a transport solution, including CCW
requests in HTTP POST nessages and CCMP responses in HTTP 200 OK
replies. This inplenentation approach is further described in
Section 4. 4.

4.1. Protocol Operations

The main operations provided by CCVMP belong in four genera
cat egori es:

create: for the creation of a conference object, a conference user
a sidebar, or a blueprint.

retrieve: to get information about the current state of either a
conference object (be it an actual conference, a blueprint, or a
sidebar) or a conference user. A retrieve operation can also be
used to obtain the XCON-URIs of the current conferences (active or
regi stered) handl ed by the conferencing server and/or the
avai |l abl e bl ueprints.

update: to nodify the current features of a specified conference or
conference user.

Barnes, et al. St andards Track [Page 9]

RFC 6503 caweP March 2012

4. 2.

Bar

delete: to renove fromthe systema conference object or a
conference user.

Thus, the main targets of CCMP operations are as foll ows:

o conference objects associated with either active or registered
conf erences,

o conference objects associated with blueprints,

o conference objects associated with sidebars, both enbedded in the
mai n conference (i.e., <entry> elenents in <sidebars-hby-val ue>)
and external to it (i.e., whose XCONURIs are included in the
<entry> el enents of <sidebars-by-ref>),

0 <user> el enents associated with conference users, and

o the list of XCONNURI's related to conferences and bl ueprints
avail abl e at the server, for which only retrieval operations are
al | owed.

Dat a Managenent

The XCON framework defines a nodel whereby the conference server
centralizes and mai ntains the conference information. Since nultiple
clients can nodify the sane conference objects, a conferencing client
m ght not have the latest version of a specific conference object
when it initiates operations. To determ ne whether the client has
the nost up-to-date conference information, CCMP defines a versioning
approach. Each conference object is associated with a version
nunber. Al CCMP response nessages containing a conference docunent
(or a fragment thereof) MJUST contain a <version> paranmeter. Wen a
client sends an update nmessage to the server, which includes

nmodi fications to a conference object, if the nodifications are all
successfully applied, the server MIST return a response, with a

<r esponse-code> of "200", containing the version nunber of the

nodi fied object. Wth this approach, a client working on version "X
of a conference object that receives a response, with a <response-
code> of "200", with a version nunmber that is "X+1" can be certain
that the version it mani pul ated was the nost up to date. However, if
the response contains a version that is at |east "X+2", the client
knows that the object nodified by the server was nore up to date than
the object the client was manipulating. |n order to ensure that the
client always has the | atest version of the nodified object, the
client can send a request to the conference server to retrieve the
conference object. The client can then update the rel evant data

el ements in the conference object prior to invoking a specific
operation. Note that a client subscribed to the XCON event package

nes, et al. St andards Track [Page 10]

RFC 6503 caweP March 2012

[RFC6502] notifications about conference object nodifications, wll
recei ve the nost up-to-date version of that object upon receipt of a
notification.

The "version" paraneter is OPTIONAL for requests, since it is not
needed by the server: as long as the required nodifications can be
applied to the target conference object without conflicts, the server
does not care whether the client has stored an up-to-date view of the
information. |In addition, to ensure the integrity of the data, the
conference server first checks all the paraneters, before nmaking any
changes to the internal representation of the conference object. For
exanple, it would be undesirable to change the <subject> of the
conference, but then detect an invalid URl in one of the <service-

uri s> and abort the renmini ng updates.

4.3. Data Mdel Conpliance

The XCON data nodel [RFC6501] identifies sonme elenents and attributes
as mandatory. Since the XML docunents carried in the body of the
CCWP requests and responses need to be conpliant with the XCON data
nodel , there can be a problemin cases of client-initiated
operations, such as the initial creation of conference objects and
cases whereby a client updates a conference object addi ng new

el enents, such as a new user. In such cases, not all of the

mandat ory data can be known in advance by the client issuing a CCW
request. As an exanple, a client cannot know, at the time it issues
a conference creation request, the XCONURI that the server wll
assign to the yet-to-be-created conference; hence, it is not able to
popul ate the mandatory 'entity’ attribute of the conference docunent
contained in the request with the correct value. To solve this

i ssue, the CCWP client fills all nmandatory data nodel fields, for
which no value is available at the tine the request is constructed,
wi th pl acehol der values in the formof a wildcard string,

AUTO _GENERATE_X (al |l uppercase), with X being a unique numeric index
for each data nodel field for which the value is unknown. This form
of wildcard string is chosen, rather than the use of random uni que
strings (e.g., FOO BAR LA) or non-nuneric values for X, to sinplify
processing at the server. The values of AUTO GENERATE_X are only
uni que within the context of the specific request. The placehol der
AUTO _GENERATE X val ues MJST be within the value part of an attribute
or elenment (e.g., <userinfo
entity="xcon-userid: AUTO GENERATE 1@xanpl e. coni>).

Barnes, et al. St andards Track [Page 11]

RFC 6503 caweP March 2012

When the server receives requests containing values in the form of
AUTO GENERATE X, the server does the follow ng:

(a) GCenerates the proper identifier for each instance of
AUTO GENERATE X in the docunent. |If an instance of
AUTO GENERATE X is not within the value part of the attribute/
el ement, the server MJST send a <response-code> of "400 Bad
Request”. In cases where AUTO GENERATE_X appears only in the
user part of a URI (i.e., in the case of XCON USERI Ds or XCON
URIs), the server needs to ensure that the domain nane is one
that is within the server’s domain of responsibility. |If the
domain nane is not within the server’s domain of responsibility,
then the server MJUST send a <response-code> of "427 Invalid
Domai n Nane". The server MJST replace each instance of a
specific wildcard field (e.g., AUTO GENERATE 1) with the sane
identifier. The identifiers MJST be unique for each instance of
AUTO GENERATE X within the sane XM. docunent received in the
request; for exanple, the value that replaces AUTO GENERATE 1
MUST NOT be the sane as the value that replaces AUTO GENERATE 2
Note that the values that replace the instances of
AUTO_GENERATE_X are not the same across all conference objects;
for exanple, different values can be used to repl ace
AUTO GENERATE 1 in two different docunents.

(b) Sends a response in which all values of AUTO GENERATE X received
in the request have been replaced by the newly created one(s).

Wth this approach, conpatibility with the data nodel requirenents is
mai ntai ned, while allowing for client-initiated mani pul ati on of
conference objects at the server’'s side. Note that the use of this
mechani sm coul d be avoided in cone cases by using nultiple
operations, such as creating a new user and then addi ng the new user
to an existing conference. However, the AUTO GENERATE_X nechani sm
all ows a single operation to be used to effect the sane change on the
conf erence object.

4.4. 1nplenentati on Approach

CCWP is inplenmented using HITP, placing the CCVWP request nessages
into the body of an HTTP POST operation and placing the CCW
responses into the body of the HITP response nessages. A non-
exhaustive summary of the other approaches that were considered and
t he perceived advant ages of the HITP sol ution described in this
document are provided in Appendix A

Most CCMP commands can pend indefinitely, thus increasing the

potential that pending requests can continue to increase when a
server is receiving nore requests than it can process within a

Barnes, et al. St andards Track [Page 12]

RFC 6503 caweP March 2012

specific time period. 1In this case, a server SHOULD return a
<response-code> of "510" to the pending requests. In addition, to
mtigate the situation, clients MUST NOT wait indefinitely for a
response and MJST inplenent a timer such that when it expires, the
client MIUST close the connection. Thirty seconds is RECOMVENDED as
the default value for this tiner. Sixty seconds is considered a
reasonabl e upper range. Note that there nay be cases where a
response nessage is lost and a request has been successful (e.g.
user added to a conference); yet, the client will be unaware and

cl ose the connection. However, as described in Section 4.2, there is
a versioning nmechani smfor the conference objects; thus, there is a
mechani sm for the conference object stored by the client to be
brought up to date.

CCVWP nessages have a M Me-type of "application/ccnmp+xm ™, which
appears inside the Content-Type and Accept header fields of HITP
requests and responses. The XM docunents in the CCOW nmessages MJIST
be encoded in UTF-8. This specification follows the reconmendati ons
and conventions described in [RFC3023], including the nam ng
convention of the type (' +xm’ suffix) and the usage of the ’'charset’
paraneter. The ’'charset’ paranmeter MJST be included with the XM
docunent. Section 9 provides the conplete requirenents for an HITP

i npl enmentation to support CCMP

5. CCWP Messages

CCWP nessages are either requests or responses. The general CCW
request message is defined in Section 5.1. The general CCMP response
message is defined in Section 5.2. The details of the specific
message type that is carried in the CCMP request and response
messages are described in Section 5.3. CCMP response codes are
listed in Section 5.4.

5.1. CCWP Request Message Type
A CCMP request nessage is conprised of the follow ng paraneters:

subject: An OPTIONAL paraneter containing the usernane and password
of the client registered at the conferencing system Each user
who subscribes to the conferencing systemis assunmed to be
equi pped with those credentials and SHOULD encl ose themin each
CCWP request she issues. These fields can be used to control that
the user sending the CCMP request has the authority to performthe
requested operation. The sane fields can al so be used for other
aut hori zati on and aut henticati on procedures.

Barnes, et al. St andards Track [Page 13]

RFC 6503 caweP March 2012

confUserI D: An OPTIONAL paraneter containing the XCON-USERI D of the
client. The XCONUSERID is used to identify any conferencing
client within the context of the conferencing systemand it is
assigned by the conference server for each conferencing client who
interacts with it. The <confUserl D> paraneter is REQURED in the
CCMP request and response nessages with the exception of the case
of a user who has no XCON USERI D and who wants to enter, via CCWVP
a conference whose identifier is knowmn. |In such case, a side
effect of the request is that the user is provided with an
appropriate XCON-USERI D. An exanple of the aforenmenti oned case
will be provided in Section 5.3.6.

confObj I D An OPTI ONAL paraneter containing the XCON-URI of the
target conference object.

operation: An OPTIONAL paraneter refining the type of specialized
request message. The <operation> paraneter is REQURED in al
requests except for the blueprintsRequest and confsRequest
speci al i zed nessages.

conference-password: The paraneter is OPTI ONAL except that it MJIST
be inserted in all requests whose target conference object is
password-protected i.e., contains the <conference-password>
el ement in [RFC6501]). A CCMP <response-code> of "423" MJST be
returned if a conference-password is not included in the request
when requi red.

speci al i zed request nessage: This is a specialization of the generic
request message (e.g., blueprintsRequest), containing paraneters
that are dependent on the specific request sent to the server. A
speci al i zed request nessage MJST be included in the CCVWP request
message. The details for the specialized nmessages and associ at ed
paraneters are provided in Section 5. 3.

Barnes, et al. St andards Track [Page 14]

RFC 6503 caweP March 2012

<l-- Definition of CCMP Request -->
<xs: el ement nane="ccnpRequest" type="ccnp-request-type" />
<I-- Definition of ccnp-request-type-->

<xs: conpl exType nane="ccnp-request-type">
<XS:sequence>
<xs: el ement nane="ccnpRequest"
type="ccnp-request - nessage-type" />
</ xs: sequence>
</ xs: conpl exType>

<l-- Definition of ccnp-request-nessage-type -->

<xs: conpl exType abstract="true"
name="ccnp-request - nessage-type">
<XS:sequence>
<xs: el enent nane="subject" type="subject-type"
nm nCccur s="0" maxCccurs="1" />
<xs:el enment nane="confUser| D' type="xs:string"
m nQccur s="0" maxCccurs="1" />
<xs: el ement nane="conf Obj | D" type="xs:string"
m nCccurs="0" maxQccurs="1" />
<xs: el ement nane="operation" type="operationType"
nm nCccur s="0" maxCccurs="1" />
<xs: el ement nane="conference-password" type="xs:string"
m nQccur s="0" maxCccurs="1" />
<xS:any namespace="##ot her" processContents="|ax"
m nCccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

Figure 2: Structure of CCMP Request Messages
5.2. CCWP Response Message Type
A CCMP response nessage is conprised of the follow ng paraneters
confUserI D: A REQUI RED parameter in CCMP response nessages
contai ning the XCON-USERI D of the conferencing client that issued
the CCWP request nessage.

confoj I D: An OPTI ONAL paraneter containing the XCON-URI of the
target conference object.

Barnes, et al. St andards Track [Page 15]

RFC 6503 caweP March 2012

operation: An OPTIONAL paranmeter for CCMP response nessages. This
paraneter is REQURED in all responses except for the
"bl uepri nt sResponse" and "confsResponse" specialized nessages.

response-code: A REQUI RED paraneter containing the response code
associated with the request. The response code MJUST be chosen
fromthe codes listed in Section 5.4.

response-string: An OPTIONAL reason string associated with the
response. 1|In case of an error, in particular, this string can be
used to provide the client with detailed information about the
error itself.

version: An OPTIONAL paraneter reflecting the current version nunber
of the conference object referred by the confQbjID. This nunber
is contained in the 'version' attribute of the <conference-info>
element related to that conference. This paraneter is REQU RED in
CCWP response nessages and SHOULD NOT be included in CCMP request
nessages.

speci al i zed response nessage: This is specialization of the generic
response nmessage, containing paraneters that are dependent on the
specific request sent to the server (e.g., "blueprintsResponse").
A specialized response nessage SHOULD be included in the CCW
response nessage, except in an error situation where the CCWP
request message did not contain a valid specialized nessage. In
this case, the conference server MJST return a <response-code> of
"400". The details for the specialized nessages and associ at ed
paraneters are provided in Section 5.3.

Barnes, et al. St andards Track [Page 16]

RFC 6503 caweP March 2012

<l-- Definition of CCMP Response -->
<xs: el enent nane="ccnpResponse" type="ccnp-response-type" />
<I-- Definition of ccnp-response-type -->

<xs: conpl exType nanme="ccnp-response-type">
<XS:sequence>
<xs: el ement nane="ccnpResponse"
type="ccnp-response- message-type" />
</ xs: sequence>
</ xs: conpl exType>

<l-- Definition of ccnp-response-nessage-type -->

<xs: conpl exType abstract="true"
name="ccnp-response- nessage-type" >
<XS:sequence>
<xs: el enent nane="confUser| D' type="xs:string"
m nCccurs="1" maxCccurs="1" />
<xs: el enment nane="conf Cbj | D' type="xs:string"
m nQccur s="0" maxCccurs="1" />
<xs: el ement nane="operation” m nCccurs="0"
maxCccurs="1" />
<xs: el enent nane="r esponse- code"
type="response-codeType"
m nCccurs="1" maxCccurs="1" />
<xs: el ement nane="response-string" type="xs:string"
m nOccur s="0" maxQccurs="1" />
<xs: el enent nane="version" type="xs:positivelnteger"
m nCccur s="0" maxCQccurs="1" />
<Xs:any nanespace="##ot her" processContents="1ax"
nm nCccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

Figure 3: Structure of CCMP Response Message
5.3. Detail ed Messages
Based on the request and response nessage structures described in
Sections 5.1 and 5.2, the follow ng sunmari zes the specialized CCW
request and response types described in this docunent:

1. bl uepri nt sRequest/ bl uepri nt sResponse

2. conf sRequest / conf sResponse

Barnes, et al. St andards Track [Page 17]

RFC 6503 caweP March 2012

3. bl uepri nt Request/ bl uepri nt Response
4, conf Request / conf Response

5. user sRequest / user sResponse

6. user Request / user Response

7. si debar sByVal Request / si debar sByVal Response
8. si debar sByRef Request / si debar sByRef Response
9. si debar ByVal Request / si debar ByVal Response
10. sidebar ByRef Request/ si debar ByRef Response
11. extendedRequest/ ext endedResponse

12. optionsRequest/opti onsResponse

These CCMP request/response pairs use the fundanental CCMP operations
as defined in Section 4.1 to mani pul ate the conference data. These
request/response pairs are included in an IANA registry as defined in
Section 12.5. Table 1 sunmarizes the renmai ni ng CCMP operations and
correspondi ng actions that are valid for a specific CCVWP request

type, noting that neither the blueprintsRequest/blueprintsResponse
nor conf sRequest/ conf sResponse require an <operation> paraneter. An
entity MJST support the response nessage for each of the request
messages that is supported. The correspondi ng response nessage MJST
contain the sane <operation> paraneter. Note that sone entries are

| abeled "N A", indicating that the operation is invalid for that
request type. In the case of an "N A*" |abel, the operation MAY be
all owed for specific privileged users or systemadm nistrators but is
not part of the functionality included in this docunent.

Barnes, et al. St andards Track [Page 18]

RFC 6503

e e e e e e e e e e - -
| Operation |
| oo |
| Request Type

Fo e e e e e e e - - -
| blueprints |
| Request |
| |
| oo |
| bl ueprint |
| Request |

| sidebarsByVal
| Request |

| sidebar sByRef
| Request |
|

|
| sidebarByVal R
| equest |

| sidebarByRefR
| equest |
| |

CCWP
____________ e e e e e - -
Retrieve | Create
|
|
____________ .
Get list | N A
of |
bl ueprints
.......... | .
Get | N A*
bl ueprint |
__________ | .
Get list | N A
of confs |
.......... | .
CGet | Create
conference | conference
obj ect | obj ect
__________ | .
Get | N A(**)
<users> |
Get | Add a
specified | <user>to
<user > | a conf
| (***)
Get | N A
<si debar s-
by-val >
__________ | .
Get | N A
<si debar s-
by-ref >
__________ | o,
Get | Create
sidebar- | sidebar-
by- val | by- val
.......... | .
CGet | Create
sidebar- | sidebar-
by-ref | by-ref
____________ e e e e e - -

Change
conf erence
obj ect
Change
<user s>
Change
specified
<user >

Change
si debar -
by- val
Change
si debar -
by-ref

March 2012

Del et e

obj ect

Del ete

specified

<user > |
|

Del ete
si debar- |
by- val |

Del et e
si debar- |
by-r ef |

Tabl e 1: Request Type Operation-Specific Processing

Bar nes, et al.

St andards Track

[Page 19]

RFC 6503 caweP March 2012

(**): These operations are not allowed for a usersRequest nessage,
since the <users> section, which is the target elenent of such a
request, is created and renoved in conjunction with the creation and
del etion, respectively, of the associated conference docunment. Thus,
"update" and "retrieve" are the only semantically correct operations
for such nessage

(***): This operation can involve the creation of an XCONUSERID, if
the sender does not add it in the <confUserl D> paranmeter and/or if
the entity field of the <userlnfo> paraneter is void.

Addi tional paraneters included in the specialized CCVWP request and
response nessages are detailed in the subsequent sections. If a
requi red paranmeter is not included in a request, the conference
server MUST return a <response-code> of "400" per Section 5.4.

5.3.1. blueprintsRequest and bl uepri nt sResponse

A bl ueprintsRequest (Figure 4) nessage is sent to request the list of
XCON- URI s associated with the available blueprints fromthe
conference server. These XCON-URIs can be subsequently used by the
client to access detailed informati on about a specified bl ueprint
with a specific blueprintRequest nmessage per Section 5.3.3.

The <conf User| D> paraneter MJST be included in every

bl uepri nt sRequest/ Response nessage and refl ect the XCON USERI D of the
conferencing client issuing the request. Since a blueprintsRequest
message is not targeted to a specific conference instance and is a
"retrieve-only" request, the <confCbjlD> and <operation> paraneters
MUST NOT be included in the bl ueprintsRequest/Response nessages.

In order to obtain a specific subset of the avail able blueprints, a
client may specify a selection filter providing an appropriate xpath
query in the OPTIONAL "xpathFilter" paraneter of the request. The
information in the blueprints typically represents genera
capabilities and characteristics. For exanple, to select blueprints
havi ng both audi o and video stream support, a possible xpathFilter
val ue coul d be: "/conference-info[conference-description/

avai |l abl e-medi a/ entry/type="audi 0’ and conference-description/

avai |l abl e-nmedi a/entry/type="video']". A conference server SHOULD NOT
provi de any sensitive information (e.g., passwords) in the

bl ueprints.

The associ ated bl uepri nt sResponse nessage SHOULD contain, as shown in

Figure 4, a "blueprintslinfo" paranmeter containing the above nentioned
XCON-URI | st.

Barnes, et al. St andards Track [Page 20]

RFC 6503 caweP March 2012

<l-- bl ueprintsRequest -->
<xs: conpl exType nanme="ccnp- bl uepri nts-request - nessage-type">
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-request - nessage-type">
<XS: sequence>
<xs: el enment ref="blueprintsRequest" />
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<l-- bl ueprintsRequest Type -->
<xs: el ement nane="bl uepri nt sRequest" type="bl uepri nt sRequest Type"/>

<xs: conpl exType name="bl uepri nt sRequest Type" >
<XS: sequence>
<xs: el enent nane="xpathFilter" type="xs:string" m nCccurs="0"/>
<xs:any nanespace="##ot her" processContents="1|ax"
nm nCccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttribute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

<l-- bl ueprintsResponse -->

<xs: conpl exType name="ccnp- bl uepri nts-response- nessage-type">
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-response- nessage-type">
<XS:sequence>
<xs: el enment ref="bl ueprintsResponse" />
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Barnes, et al. St andards Track [Page 21]

RFC 6503 caweP March 2012

<l-- bl ueprintsResponseType -->
<xs: el ement nane="bl uepri nt sResponse" type="Dbl uepri nt sResponseType"/ >

<xs: conpl exType name="bl uepri nt sResponseType" >
<XS:sequence>
<xs: el enent nane="bl uepri nt sl nfo"
type="info:uris-type" nminQccurs="0"/>
<xs:any nanespace="##ot her" processContents="1ax"
m nQccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

Figure 4: Structure of the blueprintsRequest and
bl uepri nt sResponse Messages

5.3.2. confsRequest and confsResponse

A conf sRequest message is used to retrieve, fromthe server, the |ist
of XCON-URI's associated with active and regi stered conferences
currently handl ed by the conferencing system The <conf Userl D>
paraneter MJST be included in every confsRequest/Response nessage and
reflect the XCON-USERI D of the conferencing client issuing the
request. The <confQbj | D> paraneter MJUST NOT be included in the

conf sRequest nessage. The confsRequest nessage is of a retrieve-only
type, since the sole purpose is to collect information avail able at
the conference server. Thus, an <operation> paraneter MJST NOT be
included in a confsRequest nessage. In order to retrieve a specific
subset of the avail able conferences, a client nmay specify a selection
filter providing an appropriate xpath query in the OPTI ONAL

"xpat hFilter" paranmeter of the request. For exanple, to select only
the regi stered conferences, a possible xpathFilter value could be "/
conf erence-i nf o[conf erence-descri ption/conference-state/
active="false]". The associ ated confsResponse nessage SHOULD
contain the list of XCONNURI's in the "confslnfo" paraneter. A user,
upon recei pt of the response nessage, can interact with the avail abl e
conference objects through further CCVMP nessages.

Barnes, et al. St andards Track [Page 22]

RFC 6503 caweP March 2012

<I-- confsRequest -->

<xs: conpl exType name="ccnp- confs-request - nessage-type">
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-request - nessage-type">
<XS:sequence>
<xs: el enent ref="confsRequest" />
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<I-- confsRequest Type -->
<xs: el ement nane="confsRequest" type="confsRequest Type" />

<xs: conpl exType name="conf sRequest Type" >
<XS:sequence>
<xs: el enent nane="xpathFilter" type="xs:string" m nCccurs="0"/>
<Xs:any nanespace="##ot her" processContents="1ax"
nm nCccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

<I-- confsResponse -->

<xs: conpl exType name="ccnp- confs-response- nessage-type">
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-response- nessage-type">
<XS:sequence>
<xs: el enent ref="confsResponse" />
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Barnes, et al. St andards Track [Page 23]

RFC 6503 caweP March 2012

<I-- confsResponseType -->
<xs: el enent nane="confsResponse" type="confsResponseType"/>

<xs: conpl exType name="conf sResponseType" >
<XS:sequence>
<xs: el ement nane="confslnfo" type="info:uris-type"
nm nCccurs="0"/>
<xs:any nanespace="##ot her" processContents="1ax"
m nQccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

Figure 5: Structure of the confsRequest and conf sResponse Messages
5.3.3. blueprintRequest and bl uepri nt Response

Through a bl ueprint Request, a client can nani pul ate the conference
obj ect associated with a specified blueprint. Along with the

<conf User| D> paraneter, the request MJST include the <confObjl D> and
t he <operation> paranmeters. Again, the <confUserl D> paraneter MJIST
be included in every bl ueprint Request/Response nmessage and refl ect
the XCON- USERI D of the conferencing client issuing the request. The
<conf Qbj | D> paraneter MJST contain the XCON-URI of the blueprint,

whi ch ni ght have been previously retrieved through a

bl uepri nt sRequest nessage.

The bl uepri nt Request nessage SHOULD NOT contain an <operation>
paraneter with a value other than "retrieve". An <operation>
paraneter with a value of "create", "update", or "delete" SHOULD NOT
be included in a blueprintRequest nessage except in the case of
privileged users (e.g., the conference server admnistration staff),
who mi ght authenticate thenselves by the mean of the "subject"”
request paraneter.

A bl ueprintRequest/retrieve carrying a <confCbj| D> paraneter whose
value is not associated with one of the available systems

bl ueprints, will generate, on the server’'s side, a bl ueprintResponse
nmessage contai ning a <response-code> of "404". This also holds for
the case in which the nentioned <conf Qbj | D> paraneter value is
related to an existing conference docunent stored at the server, but
associated with an actual conference (be it active or registered) or
with a sidebar rather than a bl ueprint.

Barnes, et al. St andards Track [Page 24]

RFC 6503 caweP March 2012

For a <response-code> of "200" in a "retrieve" operation, the

<bl ueprint| nfo> paranmeter MJST be included in the bl ueprintResponse
nessage. The <bl ueprintlnfo> paraneter contains the conference
docunent associated with the blueprint as identified by the
<conf Qbj | D> paraneter specified in the bl ueprintRequest.

<l-- bl ueprintRequest -->

<xs: conpl exType name="ccnp- bl uepri nt-request - nessage-type">
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-request - nessage-type">
<XS:sequence>
<xs: el enment ref="blueprintRequest" />
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<l-- bl ueprint Request Type -->
<xs: el ement nane="bl uepri nt Request" type="bl ueprint Request Type" />

<xs: conpl exType nane="bl uepri nt Request Type" >
<XS:sequence>
<xs: el enent nane="bl ueprint | nfo"
type="i nf o: conference-type" nmi nCccurs="0"/>
<xs:any nanespace="##ot her" processContents="1ax"
m nQccur s="0" maxCccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

<!'-- blueprintResponse -->

<xs: conpl exType name="ccnp- bl uepri nt-response- nessage-type">
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-response- nessage-type">
<XS:sequence>
<xs: el enent ref="blueprintResponse" />
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Barnes, et al. St andards Track [Page 25]

RFC 6503 caweP March 2012

<l-- bl ueprint ResponseType -->
<xs: el ement nane="bl uepri nt Response" type="bl uepri nt ResponseType"/>

<xs: conpl exType name="bl uepri nt ResponseType" >
<XS:sequence>
<xs: el enent nane="bl ueprintlnfo" type="info:conference-type"
nm nCccurs="0"/>
<xs:any nanespace="##ot her" processContents="1ax"
m nOccur s="0" maxQccur s="unbounded" >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

Figure 6: Structure of the blueprintRequest and
bl uepri nt Response Messages

5.3.4. confRequest and conf Response

Wth a confRequest nessage, CCMP clients can nani pul ate conference
obj ects associated with either active or registered conferences. The
<conf User| D> paraneter MJST be included in every confRequest/Response
message and reflect the XCON-USERI D of the conferencing client

i ssuing the request. confRequest and conf Response nessages MJST al so
i nclude an <operation> paraneter. ConfResponse nmessages MJST return
to the requestor a <response-code> and MAY contain a <response-
string> explaining it. Depending upon the type of operation, a
<conf Oj | D> and <confl nfo> parameter MAY be included in the

conf Request and response. For each type of operation, the text bel ow
descri bes whether the <conf ObjlI D> and <conflnfo> paraneters need to
be included in the confRequest and conf Response nessages.

The creation case deserves care. To create a new conference through
a conf Request nessage, two approaches can be consi dered:

1. Creation through explicit cloning: the <confCbjl| D> paraneter MJST
contain the XCON-URI of the blueprint or of the conference to be
cloned, while the <conflnfo> paranmeter MJST NOT be included in
the confRequest. Note that cloning of an active conference is
only done in the case of a sidebar operation per the XCON
framework and as described in Section 5.3.8.

2. Creation through inplicit cloning (also known as "direct
creation"): the <confQbj| D> paraneter MJUST NOT be included in the
request and the CCWP client can describe the desired conference
to be created using the <conflnfo> paraneter. |f no <conflnfo>
paraneter is provided in the request, the new conference will be
created as a clone of the systemdefault blueprint.

Barnes, et al. St andards Track [Page 26]

RFC 6503 caweP March 2012

In both creation cases, the confResponse, for a successful conpletion
of a "create" operation, contains a <response-code> of "200" and MJST
contain the XCON-URI of the newly created conference in the
<conf Qbj | D> paraneter, in order to allow the conferencing client to
mani pul ate that conference through follow ng CCVWP requests. In
addition, the <conflnfo> paraneter containing the conference docunent
created MAY be included, at the discretion of the conferencing system
i mpl ement ation, along with the REQU RED <versi on> paranet er
initialized at "1", since, at creation tine, the conference object is
at its first version

In the case of a confRequest with an <operation> paraneter of
"retrieve", the <confQbj| D> paraneter representing the XCON-URl of
the target conference MUST be included and the <confl nfo> paraneter
MUST NOT be included in the request. The conference server MJST

i gnore any <confl nfo> paranmeter that is received in a confRequest
"retrieve" operation. |If the confResponse for the retrieve operation
contai ns a <response-code> of "200", the <conflnfo> paraneter MJST be
included in the response. The <conflnfo> paraneter MJST contain the
entire conference docunent describing the target conference object in
its current state. The current state of the retrieved conference

obj ect MJUST al so be reported in the proper "version" response

par anet er .

In case of a confRequest with an <operation> paraneter of "update"

t he <conflnfo> and <conf Obj | D> paraneters MJST be included in the
request. The <conflnfo> represents an object of type
"conference-type" containing all the changes to be applied to the
conference whose identifier has the sane value as the <conf Qbj | D>
paraneter. Note that, in such a case, though the <conflnfo>
paraneter indeed has to followthe rules indicated in the XCON data
nmodel , it does not represent the entire updated version of the target
conference, since it conveys just the nodifications to apply to that
conference. For exanple, in order to change the conference title,
the <conflnfo> paraneter will be of the form

<conflnfo entity="xcon: 8977777@xanpl e. cont' >
<conf erence-descripti on>
<di spl ay-text> *** NEW CONFERENCE TI TLE *** </di spl ay-text>
</ conf er ence-descri pti on>
</ conf I nf o>

Figure 7: Updating a Conference hject: Modifying the
Title of a Conference

Simlarly, to remove the title of an existing conference, a

conf Request/update carrying the follow ng <conflnfo> paranmeter woul d
do the job.

Barnes, et al. St andards Track [Page 27]

RFC 6503 caweP March 2012

<conflnfo entity="xcon: 8977777@xanpl e. cont' >
<conf erence-descripti on>
<di spl ay-text/>
</ conf er ence-descri pti on>
</ conf I nf 0>

Fi gure 8: Updating a Conference bject:
Renmoving the Title of a Conference

In the case of a confResponse/update with a <response-code> of "200"
no additional information is REQU RED in the response nessage, which
means the return of a <conflnfo> paraneter is OPTIONAL. A subsequent
conf Request/retrieve transaction mght provide the CCMP client with
the current status of the conference after the nodification, or the
notification protocol mght address that task as well. A <response-
code> of "200" indicates that the conference object has been changed
according to the request by the conference server. The <version>
paraneter MUST be encl osed in the confResponse/update nessage, in
order to let the client understand what is the current conference-
obj ect version, upon the applied nodifications. A <response-code> of
"409" indicates that the changes reflected in the <conflnfo>
paraneter of the request are not feasible. This could be due to
policies, requestor roles, specific privileges, unacceptable val ues,
etc., with the reason specific to a conferencing systemand its
configuration. Together with a <response-code> of "409", the

<versi on> paraneter MJST be attached in the confResponse/update,
allowing the client to later retrieve the current version of the
target conference if the one she attenpted to nodify was not the nost
up to date.

In the case of a confRequest with an <operation> paraneter of

"del ete", the <confObj| D> paraneter representing the XCON-URl of the
target conference MJUST be included while the <conflnfo> paraneter
MUST NOT be included in the request. The conference server MJST

i gnore any <conflnfo> paraneter that is received within such a
request. The conf Response MJUST contain the sane value for the
<conf Qbj | D> paraneter that was included in the confRequest. |If the
conf Response/ del et e operation contains a <response-code> of "200"
the conference indicated in the <confObj| D> paraneter has been
successfully deleted. A confResponse/delete with a <response-code>
of "200" MUST NOT contain the <conflnfo> paraneter. The <version>
paraneter SHOULD NOT be returned in any conf Response/delete. If the
conference server cannot delete the conference referenced by the
<conf Qbj | D> paraneter received in the confRequest because it is the
parent of another conference object that is in use, the conference
server MJST return a <response-code> of "425"

Barnes, et al. St andards Track [Page 28]

RFC 6503 caweP March 2012

A conf Request with an <operation> paranmeter of "retrieve", "update"
or "delete" carrying a <confQbjl D> parameter which is not associated
with one of the conferences (active or registered) that the systemis
holding will generate, on the server’'s side, a confResponse nessage
contai ning a <response-code> of "404". This also holds for the case
in which the nmentioned <confObj I D> paraneter is related to an

exi sting conference object stored at the server, but associated with
a blueprint or with a sidebar rather than an actual conference.

The schema for the confRequest/confResponse pair is shown in
Fi gure 9.

<I-- confRequest -->

<xs: conpl exType name="ccnp- conf -request - nessage-type">
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-request - nessage-type">
<XS:sequence>
<xs: el enent ref="confRequest" />
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<l -- conf Request Type -->
<xs: el enent nane="conf Request" type="confRequest Type" />

<xs: conpl exType name="conf Request Type" >
<XS:sequence>
<xs: el ement nane="conflnfo" type="info:conference-type"
nm nCccurs="0"/>
<xs:any nanespace="##ot her" processContents="1ax"
m nQccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

Barnes, et al. St andards Track [Page 29]

RFC 6503 caweP March 2012

<l -- confResponse -->

<xs: conpl exType name="ccnp- conf-response- nessage-type">
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-response- nessage-type">
<XS:sequence>
<xs: el enent ref="conf Response" />
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<l -- conf ResponseType -->
<xs: el ement nane="conf Response" type="confResponseType" />

<xs: conpl exType name="conf ResponseType" >
<XS:sequence>
<xs: el ement nane="conflnfo" type="info:conference-type"
nm nCccurs="0"/>
<xs:any nanespace="##ot her" processContents="1ax"
m nQccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

Figure 9: Structure of the confRequest and conf Response Messages
5.3.5. usersRequest and usersResponse

The usersRequest nessage allows a client to mani pul ate the <users>
el ement of the conference object represented by the <confhjl D>
paraneter. The <users> elenent contains the |list of <user> elenents
associ ated with conference participants, the list of the users to
whi ch access to the conference is all owed/ deni ed, conference
participation policies, etc. The <confObjl D> paraneter MJIST be

i ncluded in a usersRequest nessage.

A <userslnfo> parameter MAY be included in a usersRequest nessage
dependi ng upon the operation. |f the <userslnfo> paraneter is

i ncluded in the usersRequest message, the paraneter MJST be conpliant
with the <users> field of the XCON data nodel

Two operations are allowed for a usersRequest nessage
1. "retrieve": In this case the request MJST NOT include a

<userslnfo> paraneter, while the successful response MIST contain
the desired <users> elenent in the <userslnfo> paraneter. The

Barnes, et al. St andards Track [Page 30]

RFC 6503 caweP March 2012

conference server MJST ignore a <userslnfo> paraneter if it is
received in a request with an <operation> paraneter of
"retrieve".

2. "update": In this case, the <userslnfo> paraneter MJST contain
the nodifications to be applied to the <users> el enent indicated.
If the <response-code> is "200", then the <userslnfo> paraneter
SHOULD NOT be returned. Any <userslnfo> paraneter that is
returned SHOULD be ignored. A <response-code> of "426" indicates
that the conferencing client is not allowed to make the changes
reflected in the <userslnfo> contained in the usersRequest
message. This could be due to policies, roles, specific
privileges, etc., with the reason being specific to a
conferencing systemand its configuration

Operations of "create" and "delete" are not applicable to a

user sRequest nmessage and MJST NOT be considered by the server, which
means that a <response-code> of "403" MJST be included in the

user sResponse nessage

<l-- usersRequest -->

<xs: conpl exType name="ccnp- users-request - nessage-type">
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-request - nessage-type">
<XS:sequence>
<xs: el enment ref="usersRequest" />
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<l -- usersRequest Type -->
<xs: el ement nane="usersRequest" type="usersRequest Type" />

<xs: conpl exType nanme="user sRequest Type" >
<XS:sequence>
<xs: el ement nane="user sl nfo"
type="info: users-type" m nCccurs="0" />
<xS:any namespace="##ot her" processContents="1|ax"
m nCccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

Barnes, et al. St andards Track [Page 31]

RFC 6503 caweP March 2012

<! -- usersResponse -->

<xs: conpl exType name="ccnp- users-response- nessage-type">
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-response- nessage-type">
<XS:sequence>
<xs: el enent ref="usersResponse" />
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<l -- usersResponseType -->
<xs: el ement nane="user sResponse" type="usersResponseType" />

<xs: conpl exType name="user sResponseType" >
<XS:sequence>
<xs: el enent nane="userslnfo" type="info:users-type"
nm nCccurs="0"/>
<xs:any nanespace="##ot her" processContents="1ax"
m nQccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

Figure 10: Structure of the usersRequest and usersResponse Messages
5.3.6. userRequest and user Response

A user Request nessage is used to nmani pul ate <user> el enents inside a
conference docunent associated with a conference identified by the
<conf Qbj | D> paraneter. Besides retrieving information about a
specific conference user, the nessage is used to request that the
conference server either create, nodify, or delete information about
a user. A userRequest nmessage MJST include the <confCbjI D> and the
<operation> paraneters, and it MAY include a <userlnfo> paraneter
containing the detailed user’s information dependi ng upon the
operation and whet her the <userlnfo> has already been populated for a
specific user. Note that a user may not necessarily be a
conferencing control client (i.e., sonme participants in a conference
are not "XCON aware").

An XCON- USERI D SHOULD be assigned to each and every user subscri bed
to the system In such a way, a user who is not a conference
partici pant can make requests (provided she has successfully passed
aut hori zati on and aut hentication checks), l|like creating a conference
or retrieving conference infornation

Barnes, et al. St andards Track [Page 32]

RFC 6503 caweP March 2012

Conference users can be created in a nunber of different ways. In
each of these cases, the <operation> paraneter MJST be set to
"create" in the userRequest nmessage. Each of the userResponse
nmessages for these cases MJST include the <confObjl D> <confUserlD>,
<operation>, and <response-code> paraneters. In the case of a
<response-code> of "200", the userResponse nessage MAY include the
<user | nf o> paranet er dependi ng upon the manner in which the user was
creat ed:

o A conferencing client with an XCON-USERI D adds itself to the
conference: In this case, the <userlnfo> paranmeter MAY be incl uded
in the userRequest. The <userlnfo> paraneter MJST contain a
<user> el enment (conpliant with the XCON data nodel) and the
"entity’ attribute MIST be set to a value that represents the
XCON- USERI D of the user initiating the request. No additiona
paraneters beyond those previously described are required in the
user Response nessage, in the case of a <response-code> of "200"

o A conferencing client acts on behal f of another user whose XCO\
USERID is known: In this case, the <userlnfo> paraneter MJST be
included in the userRequest. The <userlnfo> paraneter MJST
contain a <user> elenent and the 'entity’ attribute value MIST be
set to the XCON-USERI D of the other user in question. No
addi ti onal paranmeters beyond those previously described are
required in the userResponse nessage, in the case of a <response-
code> of "200".

o A conferencing client who has no XCON-USERI D and who wants to
enter, via CCMP, a conference whose identifier is known: In this
case, a side effect of the request is that the user is provided
with a new XCON-USERI D (created by the server) carried inside the
<conf User| D> paraneter of the response. This is the only case in
whi ch a CCWMP request can be valid though carrying a void
<conf User| D> paraneter. A <userlnfo> paraneter MIST be encl osed
in the request, providing at |east a contact URI of the joining
client, in order to let the focus initiate the signaling phase
needed to add her to the conference. The nmandatory 'entity’
attribute of the <userInfo> paranmeter in the request MJST be
filled with a placeholder value with the user part of the XCON
USERI D contai ni ng a val ue of AUTO GENERATE X as described in
Section 4.3, to conformto the rules contained in the XCON data
nodel XM. scherma. The nessages (user Request and user Response) in
this case should | ook Iike the follow ng:

Barnes, et al. St andards Track [Page 33]

RFC 6503 caweP March 2012

Request fi el ds:

conf User | D=nul | ;
conf Qbj | D=conf XYZ;
oper ati on=cr eat e;
user | nf o=

<userlnfo entity="xcon-userid: AUTO GENERATE_l1@xanpl e. cont' >

<endpoi nt entity="sip: GH L345@xanpl e. com' >

Response fields (in case of success):

conf User | D=user 345;

conf Qbj | D=conf XYZ;

oper ati on=cr eat e;

r esponse- code=200;

userinfo=null; //or the entire userlnfo object

(0]

Fi gure 11: userRequest and user Response in the
Absence of an xcon-userid

A conferencing client is unaware of the XCON-USERI D of a third
user: In this case, the XCON-USERID in the request, <confUserl D>,
is the sender’s and the "entity’ attribute of the attached
<user|nfo> paraneter is filled with the placehol der val ue
"xcon-useri d: AUTO GENERATE 1@xanpl e. con'. The XCON- USERI D f or
the third user MIUST be returned to the client issuing the request
inthe "entity’ attribute of the response <userlnfo> paraneter, if
the <response-code> is "200". This scenario is intended to
support both the case where a brand new conferencing system user
is added to a conference by a third party (i.e., a user who has
not yet been provided with an XCON-USERI D) and the case where the
CCWP client issuing the request does not know the to-be-added
user’s XCON-USERI D (whi ch neans such an identifier could already
exist on the server’s side for that user). 1In this |last case, the
conference server is in charge of avoiding XCONURI duplicates for
the same conferencing client, |ooking at key fields in the
request - provi ded <userl nfo> paraneter, such as the signaling URI

If the joining user is brand new, then the generation of a new
XCON- USERI D i s needed; otherwise, if that user exists already, the
server nust recover the correspondi ng XCON- USERI D.

In the case of a userRequest with an <operation> paraneter of
"retrieve", the <confQbjl D> paraneter representing the XCON-URl of
the target conference MJIST be included. The <confUserl D> containing
the CCWP client’s XCONUSERI D, MJST al so be included in the

Barnes, et al. St andards Track [Page 34]

RFC 6503 caweP March 2012

user Request nessage. |If the client wants to retrieve information
about her profile in the specified conference, no <userlnfo>
paraneter is needed in the retrieve request. On the other hand, if
the client wants to obtain soneone else’s info within the given
conference, she MIST include in the userRequest/retrieve a <userlnfo>
paraneter whose 'entity’ attribute conveys the desired user’s XCON
USERID. |If the userResponse for the retrieve operation contains a
<response-code> of "200", the <userlnfo> parameter MJST be incl uded
in the response.

In case of a userRequest with an <operation> paraneter of "update"
the <conf Qoj I D>, <confUserl D> and <userlnfo> paraneters MJST be
included in the request. The <userlnfo> paraneter is of type "user-
type" and contains all the changes to be applied to a specific <user>
element in the conference object identified by the <confCbjlD>
paraneter in the userRequest nmessage. The user to be nodified is
identified through the "entity’ attribute of the <userlnfo> paraneter
included in the request. 1In the case of a userResponse with a
<response-code> of "200", no additional information is required in

t he user Response nmessage. A <response-code> of "200" indicates that
the referenced <user> el ement has been updated by the conference
server. A <response-code> of "426" indicates that the conferencing
client is not allowed to nake the changes reflected in the <userlnfo>
inthe initial request. This could be due to policies, roles,
specific privileges, etc., with the reason specific to a conferencing
systemand its configuration

In the case of a userRequest with an <operation> paraneter of

"del ete", the <confCbjI D> representing the XCONURI of the target
conference MJUST be included. The <confUserl D> paraneter, containing
the CCWP client’s XCON-USERI D, MJUST be included in the userRequest
message. |If the client wants to exit the specified conference, no
<user| nfo> paraneter is needed in the delete request. On the other
hand, if the client wants to renove another participant fromthe

gi ven conference, she MJST include in the userRequest/delete a
<user| nfo> paraneter whose 'entity’ attribute conveys the XCON USERI D
of that participant. The userResponse MJST contain the same val ue
for the <confCbjlI D> paraneter that was included in the <confQbjl D>
paraneter in the userRequest. The userResponse MJST contain a
<response-code> of "200" if the target <user> el enment has been
successfully deleted. |If the userResponse for the del ete operation
contains a <response-code> of "200", the userResponse MJST NOT
contain the <userlnfo> paraneter.

Barnes, et al. St andards Track [Page 35]

RFC 6503 caweP Mar ch

<l--

<XS:

user Request -->

conpl exType nane="ccnp-user-request - mressage-type">
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-request - nessage-type">
<XS:sequence>
<xs: el enent ref="userRequest" />
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >

</ xs: conpl exType>

<l--

<XS:

<XS.

user Request Type -->
el ement name="user Request" type="user Request Type" />

conpl exType nane="user Request Type" >
<XS:sequence>

<xs: el ement nane="user| nfo"

type="info:user-type" nm nCccurs="0" />
<xs:any nanespace="##ot her" processContents="1ax"
m nQccur s="0" maxQccur s="unbounded"/ >

</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>

</ xs: conpl exType>

<I--

<XS.

user Response -->

conmpl exType nane="ccnp-user-response- nessage-type">
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-response- nessage-type">
<XS:sequence>
<xs: el enment ref="userResponse" />
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >

</ xs: conpl exType>

Bar nes,

2012

et al. St andards Track [Page 36]

RFC 6503 caweP March 2012

<! -- userResponseType -->
<xs: el ement nane="user Response" type="user ResponseType" />

<xs: conpl exType name="user ResponseType" >
<XS:sequence>
<xs: el ement nane="user|nfo" type="info:user-type"
nm nCccurs="0"/>
<xs:any nanespace="##ot her" processContents="1ax"
m nQccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

Figure 12: Structure of the userRequest and user Response Messages
5.3.7. sidebarsByVal Request and si debar sByVal Response

A si debar sByVal Request nessage is used to execute a retrieve-only
operation on the <sidebars-by-val> field of the conference object
represented by the <confhjI D>. The sidebarsByVal Request nessage is
of aretrieve-only type, so an <operation> paraneter MJST NOT be
included in a sidebarsByVal Request nmessage. As with blueprints and
conferences, CCW° allows for the use of xpath filters whenever a

sel ected subset of the sidebars available at the server’s side has to
be retrieved by the client. This applies both to sidebars by

ref erence and sidebars by value. A sidebarsByVal Response nessage
with a <response-code> of "200" MJST contain a <sidebarsByVal | nf o>
paraneter containing the desired <sidebars-by-val> elenent. A

si debar sByVal Response nessage MUST return to the client a <version>
el ement related to the current version of the nmain conference object
(i.e., the one whose identifier is contained in the <confhjID> field
of the request) w th which the sidebars in question are associ at ed.
The <si debarsByVal | nf o> paraneter contains the list of the conference
obj ects associated with the sidebars by value derived fromthe main
conference. The retrieved sidebars can then be updated or del eted
usi ng the sidebarByVal Request nessage, which is described in

Section 5.3.8.

Barnes, et al. St andards Track [Page 37]

RFC 6503 caweP March 2012

<! -- sidebarsByVal Request -->

<xs: conpl exType name="ccnp-si debar sByVal - request - nessage-t ype" >
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-request - nessage-type">
<XS:sequence>
<xs: el enent ref="si debarsByVal Request"/ >
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<!I-- sidebarsByVal Request Type -->

<xs: el enent nane="si debar sByVal Request"
t ype="si debar sByVal Request Type" />

<xs: conpl exType nane="si debar sByVal Request Type" >
<XS:sequence>
<xs: el enent nane="xpathFilter" type="xs:string" mnCccurs="0"/>
<xs:any nanespace="##ot her" processContents="1ax"
m nQccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

<l -- sidebarsByVal Response -->

<xs: conpl exType nane="ccnp-si debar sByVal -r esponse- nessage-type" >
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-response- nessage-type">
<XS:sequence>
<xs: el enment ref="sidebarsByVal Response"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Barnes, et al. St andards Track [Page 38]

RFC 6503 caweP March 2012

<! -- sidebarsByVal ResponseType -->

<xs: el enent nane="si debar sByVal Response"
t ype="si debar sByVal ResponseType" />

<xs: conpl exType nane="si debar sByVal ResponseType" >
<XS:sequence>
<xs: el ement nane="si debar sByVal | nf 0"
type="i nf o: si debar s- by-val -type" mi nCccurs="0"/>
<xS:any namespace="##ot her" processContents="1|ax"
m nOccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

Figure 13: Structure of the sidebarsByVal Request and
si debar sByVal Response Messages

5.3.8. sidebarByVal Request and si debar ByVal Response
A si debar ByVal Request nessage MJST contain the <operation> paraneter
whi ch di stingui shes anong retrieval, creation, nodification, and
deletion of a specific sidebar. The other required paraneters depend
upon the type of operation

In the case of a "create" operation, the <confCbjl| D> paraneter MJST

be included in the sidebyVal Request nessage. In this case, the
<conf Obj | D> paraneter contains the XCONUR of the main conference in
whi ch the sidebar has to be created. |If no "sidebarByVallnfo"

paraneter is included, the sidebar is created by cloning the nain
conference, as envisioned in the XCON framework [RFC5239] foll ow ng
the inplenentation specific cloning rules. OQherwise, sinmlar to the
case of direct creation, the sidebar conference object is built on
the basis of the "sidebarByVal I nfo" paraneter provided by the
requestor. As a consequence of a sidebar-by-val creation, the
conference server MJST update the nmain conference object reflected by
the <conf Qbj I D> paraneter in the sidebarbyVal Request/create nessage

i ntroduci ng the new si debar object as a new <entry> in the proper
section <sidebars-by-val > The newy created sidebar conference

obj ect MAY be included in the sidebarByVal Response in the

<si debar ByVal | nfo> paraneter, if the <response-code> is "200". The
XCON- URI of the newy created sidebar MUST appear in the <confQbjl D>
paraneter of the response. The conference server can notify any
conferencing clients that have subscribed to the conference event
package and that are authorized to receive the notification of the
addition of the sidebar to the conference.

Barnes, et al. St andards Track [Page 39]

RFC 6503 caweP March 2012

In the case of a sidebarByVal Request nessage with an <operation>
paraneter of "retrieve", the URI for the conference object created
for the sidebar (received in response to a create operation or in a
si debar sByVal Response nessage) MJST be included in the <confQbjl D>
paraneter in the request. This retrieve operation is handled by the
conference server in the sane manner as in the case of an <operation>
paraneter of "retrieve" included in a conf Request nessage, as
described in Section 5. 3. 4.

In the case of a sidebarByVal Request nessage with an <operation>
paraneter of "update", the <sidebarByVallnfo> MIST al so be incl uded
in the request. The <confQbj| D> paraneter contained in the request
message identifies the specific sidebar instance to be updated. An
updat e operation on the specific sidebar instance contained in the
<si debar ByVal | nf o> paraneter is handl ed by the conference server in
the sane manner as an update operation on the conference instance as
reflected by the <conflnfo> paraneter included in a confRequest
message as detailed in Section 5.3.4. A sidebarByVal Response nessage
MJUST return to the client a <version> elenent related to the current
version of the sidebar whose identifier is contained in the
<confQbj I D> field of the request.

I f an <operation> parameter of "delete"” is included in the

si debar ByVal request, the <sidebarByVal |l nfo> paraneter MJST NOT be
included in the request. Any <sidebarByVallnfo> included in the
request MJST be ignored by the conference server. The URl for the
conference object associated with the sidebar MJST be included in the
<conf Qbj | D> paraneter in the request. |If the specific conferencing
user, as reflected by the <confUserl D> paraneter, in the request is
authorized to delete the conference, the conference server del etes
the conference object reflected by the <confCbj | D> paraneter and
updates the data in the conference object fromwhich the sidebar was
cloned. The conference server can notify any conferencing clients
that have subscribed to the conference event package and that are

aut horized to receive the notification of the deletion of the sidebar
fromthe conference

I f a sidebarByVal Request with an <operation> paraneter of "retrieve"
"update", or "delete" carries a <confQbjl|D> paraneter which is not
associ ated with any existing sidebar-by-val, a confResponse nessage
contai ni ng a <response-code> of "404" will be generated on the
server’'s side. This also holds for the case in which the nentioned
<conf Qbj I D> paraneter is related to an existing conference object
stored at the server, but associated with a blueprint or with an
actual conference or with a sidebar-by-ref rather than a sidebar-by-
val .

Barnes, et al. St andards Track [Page 40]

RFC 6503 caweP March 2012

<! -- sidebarByVal Request -->

<xs: conpl exType name="ccnp-si debar ByVal - r equest - nessage-type" >
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-request - nessage-type">
<XS:sequence>
<xs: el enent ref="si debarByVal Request"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<! -- sidebarByVal Request Type -->

<xs: el ement nane="si debar ByVal Request"
t ype="si debar ByVal Request Type" />

<xs: conpl exType nane="si debar ByVal Request Type" >
<XS:sequence>
<xs: el ement nane="si debar ByVal | nf 0"
type="i nf o: conf erence-type" mni nCccurs="0"/>
<xS:any namespace="##ot her" processContents="]ax"
m nOccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

<l -- sidebarByVal Response -->

<xs: conpl exType nanme="ccnp- si debar ByVal - r esponse- nessage-type" >
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-response- nessage-type">
<XSs: sequence>
<xs: el ement ref="sidebarByVal Response"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Barnes, et al. St andards Track [Page 41]

RFC 6503 caweP March 2012

<!l -- sidebarByVal ResponseType -->

<xs: el enent nane="si debar ByVal Response"
t ype="si debar ByVal ResponseType" />

<xs: conpl exType nane="si debar ByVal ResponseType" >
<XS:sequence>
<xs: el enent nane="si debar ByVal | nf 0"
type="i nf o: conference-type" ni nCccurs="0"/>
<xS:any namespace="##ot her" processContents="1|ax"
m nOccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

Figure 14: Structure of the sidebarByVal Request and
si debar ByVal Response Messages

5.3.9. sidebarsByRef Request and si debar sByRef Response

Simlar to the sidebarsByVal Request, a sidebarsByRef Request can be
invoked to retrieve the <sidebars-by-ref> elenent of the conference
object identified by the <confQbj| D> paraneter. The

si debar sByRef Request nessage is of a retrieve-only type, so an
<operation> paranmeter MJUST NOT be included in a sidebarsByRef Request
message. In the case of a <response-code> of "200", the

<si debar sByRef | nf o> paraneter, containing the <sidebars-by-ref>

el ement of the conference object, MJIST be included in the response.
The <sidebars-by-ref> element represents the set of URIs of the

si debars associated with the main conference, whose description (in
the formof a standard XCON conference docunent) is external to the
mai n conference itself. Through the retrieved URIs, it is then
possi bl e to access single sidebars using the sidebarByRef Request
message, described in Section 5.3.10. A sidebarsByRef Response
message MJST carry back to the client a <version> elenent related to
the current version of the nmain conference object (i.e., the one
whose identifier is contained in the <confObjld> field of the
request) w th which the sidebars in question are associ at ed.

Barnes, et al. St andards Track [Page 42]

RFC 6503 caweP March 2012

<!l -- sidebarsByRef Request -->

<xs: conpl exType name="ccnp- si debar sByRef - r equest - nessage-t ype" >
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-request - nessage-type">
<XS:sequence>
<xs: el enent ref="si debar sByRef Request"/ >
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<!l -- sidebar sByRef Request Type -->

<xs: el enent nane="si debar sByRef Request"
t ype="si debar sByRef Request Type" />

<xs: conpl exType nane="si debar sByRef Request Type" >
<XS:sequence>
<xs: el enment nane="xpathFilter"
type="xs:string" mnCccurs="0"/>
<xS:any namespace="##ot her" processContents="]ax"
m nOccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

<l -- sidebarsByRef Response -->

<xs: conpl exType nane="ccnp-si debar sByr ef -r esponse- nessage-type" >
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-response- nessage-type">
<XS:sequence>
<xs: el enment ref="sidebarsByRef Response"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Barnes, et al. St andards Track [Page 43]

RFC 6503 caweP March 2012

<! -- sidebar sByRef ResponseType -->

<xs: el enent nane="si debar sByRef Response"
type="si debar sByRef ResponseType" />

<xs: conpl exType nanme="si debar sByRef ResponseType" >
<XS:sequence>
<xs: el ement nane="si debar sByRef | nf 0"
type="info:uris-type" nminQccurs="0"/>
<xS:any namespace="##ot her" processContents="|ax"
m nOccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

Figure 15: Structure of the sidebarsByRef Request
and si debar sByRef Response Messages

5.3.10. sidebarByRef Request and si debar ByRef Response
A si debar ByVal Response nessage MJST return to the client a <versi on>
elenent related to the current version of the sidebar whose

identifier is contained in the <confObjID> field of the request.

In the case of a create operation, the <confQbjl D> paraneter MJST be

i ncluded in the sidebyRef Request nessage. |In this case, the
<conf Qbj | D> paraneter contains the XCONUR of the main conference in
whi ch the sidebar has to be created. |f no <sidebarByRef I nfo>

paraneter is included, follow ng the XCON framework [RFC5239], the
sidebar is created by cloning the nmain conference, observing the

i mpl enentation-specific cloning rules. Oherwise, sinilar to the
case of direct creation, the sidebar conference object is built on
the basis of the <sidebarByReflnfo> paranmeter provided by the
requestor. |If the creation of the sidebar is successful, the
conference server MJST update the <sidebars-by-ref> elenment in the
conference object fromwhich the sidebar was created (i.e., as
identified by the <confObjID> in the original sidebarByRefRequest),
with the URI of the newly created sidebar. The newly created
conference object MAY be included in the response in the

<si debar ByRef | nf o> parameter with a <response-code> of "200". The
URI for the conference object associated with the newly created

si debar obj ect MJST appear in the <confQbj| D> paraneter of the
response. The conference server can notify any conferencing clients
t hat have subscribed to the conference event package and that are
aut horized to receive the notification of the addition of the sidebar
to the conference.

Barnes, et al. St andards Track [Page 44]

RFC 6503 caweP March 2012

In the case of a sidebar ByRef Request nessage with an <operation>
paraneter of "retrieve", the URI for the conference object created
for the sidebar MJST be included in the <confQbj| D> paraneter in the
request. A retrieve operation on the <sidebarByReflnfo> is handl ed
by the conference server in the same nmanner as a retrieve operation
on the conflInfo included in a confRequest nessage as detailed in
Section 5.3.4.

In the case of a sidebarByRef Request nessage with an <operation>
paraneter of "update", the URI for the conference object created for
the sidebar MJST be included in the <confChjl D> paraneter in the
request. The <si debarByReflnfo> MJST al so be included in the request
in the case of an "update" operation. An update operation on the

<si debar ByRef I nfo> i s handl ed by the conference server in the sane
manner as an update operation on the <conflnfo> included in a

conf Request nessage as detailed in Section 5.3.4. A

si debar ByRef Response nessage MJST carry back to the client a
<version> elenment related to the current version of the sidebar whose
identifier is contained in the <confObjID> field of the request.

I f an <operation> paranmeter of "delete" is included in the

si debar ByRef Request, the <si debar ByRef | nf o> paraneter MJST NOT be
included in the request. Any <sidebarByReflnfo> included in the
request MJST be ignored by the conference server. The URl for the
conference object for the sidebar MJST be included in the <confQbjl D>
paraneter in the request. |If the specific conferencing user as
reflected by the <confUserl D> paranmeter in the request is authorized
to delete the conference, the conference server SHOULD del ete the
conference object reflected by the <confCbjl D> paraneter and SHOULD
update the <sidebars-by-ref> elenent in the conference object from
whi ch the sidebar was originally cloned. The conference server can
notify any conferencing clients that have subscribed to the
conference event package and that are authorized to receive the
notification of the deletion of the sidebar.

If a sidebarByRef Request with an <operation> paraneter of "retrieve"
"update", or "delete" carries a <confCbj|D> paraneter that is not
associ ated with any existing sidebar-by-ref, a confResponse nessage
contai ni ng a <response-code> of "404" will be generated on the
server’s side. This also holds for the case in which the val ue of
the mentioned <conf Qbj I D> paraneter is related to an existing
conference object stored at the server, but associated with a
blueprint or with an actual conference or with a sidebar-by-va
rather than a sidebar-by-ref.

Barnes, et al. St andards Track [Page 45]

RFC 6503 caweP March 2012

<l -- sidebarByRef Request -->

<xs: conpl exType name="ccnp-si debar ByRef - r equest - nessage-type" >
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-request - nessage-type">
<XS:sequence>
<xs: el enent ref="si debar ByRef Request"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<! -- sidebar ByRef Request Type -->

<xs: el ement nane="si debar ByRef Request "
t ype="si debar ByRef Request Type" />

<xs: conpl exType nane="si debar ByRef Request Type" >
<XS:sequence>
<xs: el ement nane="si debar ByRef | nf 0"
type="i nf o: conf erence-type" mni nCccurs="0"/>
<xS:any namespace="##ot her" processContents="]ax"
m nOccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

<l -- sidebarByRef Response -->

<xs: conpl exType nane="ccnp-si debar ByRef - r esponse- nessage-t ype" >
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-response- nessage-type">
<XS:sequence>
<xs: el enment ref="sidebarByRef Response"/ >
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Barnes, et al. St andards Track [Page 46]

RFC 6503 caweP March 2012

<!l -- sidebar ByRef ResponseType -->

<xs: el enent nane="si debar ByRef Response"
type="si debar ByRef ResponseType" />

<xs: conpl exType nane="si debar ByRef ResponseType" >
<XS:sequence>
<xs: el enent nane="si debar ByRef | nf 0"
type="i nf o: conference-type" ni nCccurs="0"/>
<xS:any namespace="##ot her" processContents="|ax"
m nOccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

Figure 16: Structure of the sidebarByRef Request
and si debar ByRef Response Messages

5.3.11. extendedRequest and ext endedResponse

In order to all ow specifying new request and response pairs for
conference control, CCWP defines the extendedRequest and

ext endedResponse nessages. Such nmessages constitute a CCMP skel eton
in which inplenmenters can transport the infornmation needed to realize
conference control nechanisns not explicitly envisioned in the CCW
specification; these nmechanisnms are called, in this context,
"extensions". Each extension is assumed to be characterized by an
appropriate nane that MJST be carried in the extendedRequest/

ext endedResponse pair in the provided <extensi onNane> field.

Ext ensi on-specific informati on can be transported in the form of
schena-defi ned XML el enents inside the <any> el enent present in both
ext endedRequest and ext endedResponse.

The conferencing client SHOULD be able to determ ne the extensions
supported by a CCWP server and to recover the XML schema defining the
rel ated specific elenents by neans of an optionsRequest/

opti onsResponse CCMP transaction (see Section 5.3.12).

The meani ng of the common CCMP paraneters inherited by the

ext endedRequest and extendedResponse fromthe basic CCWP request and
response nmessages SHOULD be preserved and exploited appropriately
whi | e defining an extension.

Barnes, et al. St andards Track [Page 47]

RFC 6503 caweP March 2012

<l -- extendedRequest -->

<xs: conpl exType name="ccnp- ext ended-r equest - nressage-type" >
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-request - nessage-type">
<XS:sequence>
<xs: el enent ref="extendedRequest"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<l -- extendedRequest Type -->
<xs: el enent nane="ext endedRequest" type="extendedRequest Type"/>

<xs: conpl exType name="ext endedRequest Type" >
<XS:sequence>
<xs: el ement nane="ext ensi onNane"
type="xs:string" mnCccurs="1"/>
<xs:any nanespace="##ot her" processContents="1ax"
m nQccur s="0"
maxQccur s="unbounded” />

</ xs: sequence>
</ xs: conpl exType>

<l -- extendedResponse -->

<xs: conpl exType name="ccnp- ext ended-r esponse- nessage-type">
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-response- nessage-type">
<XS:sequence>
<xs: el enent ref="extendedResponse"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Barnes, et al. St andards Track [Page 48]

RFC 6503 caweP March 2012

<l -- extendedResponseType -->
<xs: el enent nane="ext endedResponse" type="extendedResponseType"/>

<xs: conpl exType nanme="ext endedResponseType" >
<XS:sequence>
<xs: el ement nane="ext ensi onNane"
type="xs:string"
m nCccurs="1"/>
<xS:any namespace="##ot her"
pr ocessCont ent s="1| ax"
m nCccur s="0" maxQccur s="unbounded" />
</ xs: sequence>
</ xs: conpl exType>

Figure 17: Structure of the extendedRequest and
ext endedResponse Messages

5.3.12. optionsRequest and opti onsResponse

The optionsRequest nessage (Figure 18) retrieves general information
about conference server capabilities. These capabilities include the
standard CCMP nessages (request/response pairs) and potentia

ext ensi on nessages supported by the conference server. As such, it
is a basic CCW nessage, rather than a specialization of the genera
CCWVP request.

The optionsResponse returns, in the appropriate <options> field, a
list of the supported CCMP nessage pairs as defined in this
specification. These nessages are in the formof a list: <standard-
message-list> including each of the supported nessages as reflected
by <standard- nmessage> el enents. The opti onsResponse nessage al so
all ows for an <extended-nmessage-list> which is a list of additional
message types in the form of <extended-nessage-list> elenents that
are currently undefined, to allow for future extensibility. The
following information is provided for both types of nessages:

0 <nane> (REQUI RED): in case of standard nessages, it can be one of
the 10 standard nmessage names defined in this document (i.e.
"bl uepri nt sRequest"”, "confsRequest", etc.). In case of
extensions, this element MJUST carry the sanme val ue of the
<ext ensi on-nane> inserted in the correspondi ng ext endedRequest/
ext endedResponse nessage pair.

0 <operations> (OPTIONAL): this field is a list of <operation>
entries, each representing the Create, Read, Update, Delete (CRUD)
operation supported by the server for the message. |If this
el enent is absent, the client SHOULD assunme the server is able to

Barnes, et al. St andards Track [Page 49]

RFC 6503 caweP March 2012

handl e the entire set of CRUD operations or, in case of standard
nmessages, all the operations envisioned for that nessage in this
docunent .

0 <schema-ref> (OPTIONAL): since all CCWMP nessages can potentially
contain XM. el enments not envisioned in the CCVMP schena (due to the
presence of <any> elenments and attributes), a reference to a
proper schenma definition specifying such new el enents/attributes
can al so be sent back to the clients by neans of such field. |If
this elenent is absent, no new el enents are introduced in the
messages ot her than those explicitly defined in the CCWP
speci fication.

0 <description> (OPTIONAL): human-readabl e i nformati on about the
rel ated nmessage

The only paraneter needed in the optionsRequest is the sender
confUserI D, which is mrrored in the sane paraneter of the
correspondi ng opti onsResponse.

The CCWP server MJST include the <standard-nessage-1ist> containing
at | east one <operation> elenment in the optionsResponse, since a CCW
server is REQURED to be able to handl e both the request and response
nmessages for at | east one of the operations.

<l-- optionsRequest -->

<xs: conpl exType name="ccnp-opti ons-request - nessage-type">
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-request - nessage-type"/ >
</ xs: conpl exCont ent >
</ xs: conpl exType>

<l-- optionsResponse -->

<xs: conpl exType nane="ccnp-opti ons-response- nessage-type">
<xs: conpl exCont ent >
<xs: extensi on base="tns: ccnp-response- nessage-type">
<XS:sequence>
<xs: el enment ref="optionsResponse"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Barnes, et al. St andards Track [Page 50]

RFC 6503 caweP March 2012

<l-- optionsResponseType -->

<xs: el enent nane="opti onsResponse"
type="opti onsResponseType" />

<xs: conpl exType name="opti onsResponseType" >

<XS:sequence>

<xs: el enent nane="options"

type="options-type" m nCccurs="0"/>
<xS:any namespace="##ot her" processContents="|ax"
m nOccur s="0" maxQccur s="unbounded"/ >

</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

<l-- options-type -->

<xs: conpl exType nanme="options-type">
<XS:sequence>
<xs: el enent nane="st andard- nessage-|ist"
t ype="st andar d- nessage-1i st-type"
m nCccurs="1"/ >
<xs: el ement nane="ext ended- nessage-|ist"
t ype="ext ended- nessage-1li st-type"
m nCccurs="0"/>
<Xs:any nanespace="##ot her" processContents="1ax"
nm nCccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

<l -- standard-nessage-list-type -->

<xs: conpl exType nane="st andar d- nessage-1list-type">
<XS: sequence>
<xs: el enent nane="st andar d- nessage"
t ype="st andar d- nessage-t ype"
m nCccurs="1" maxCQccurs="10"/>
<xs:any nanespace="##ot her" processContents="1ax"
m nQccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

Barnes, et al. St andards Track [Page 51]

RFC 6503 caweP March 2012

<l -- standard-nessage-type -->

<xs: conpl exType nane="st andar d- nessage-type">
<XSs: sequence>
<xs: el ement nane="nane"
t ype="st andar d- nessage- nane-t ype"
m nCccurs="1"/>
<xs: el ement nane="operations"
type="operations-type"
m nOccur s="0"/ >
<xs: el ement nane="schena-def"
type="xs:string" mnCccurs="0"/>
<xs: el ement nane="description"
type="xs:string" mnCccurs="0"/>
<xs:any nanespace="##ot her" processContents="1ax"
m nQccur s="0" maxQccur s="unbounded"/ >
</ xs: sequence>
<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

<l -- standard- nessage- nane-type -->

<xs:si npl eType nane="st andar d- nessage- nanme-type">
<xs:restriction base="xs:token">
<xs: enuneration val ue="conf sRequest"/ >
<xs: enuneration val ue="conf Request"/ >
<xs:enuneration val ue="bl uepri nt sRequest"/ >
<xs:enuneration val ue="bl uepri nt Request"/>
<xs:enuneration val ue="usersRequest"/>
<xs: enuneration val ue="user Request"/>
<xs: enuneration val ue="si debar sByVal Request"/ >
<xs: enuneration val ue="si debar ByVal Request "/ >
<xs:enuneration val ue="si debar sByRef Request "/ >
<xs:enuneration val ue="si debar ByRef Request "/ >
</xs:restriction>
</ xs: si npl eType>

Barnes, et al. St andards Track [Page 52]

RFC 6503 caweP March 2012

<l-- operations-type -->
<xs: conpl exType nane="operati ons-type">
<Xs:sequence>
<xs: el ement nane="operation” type="operationType"
m nCccurs="1" maxQccurs="4"/>
</ xs: sequence>

<xs:anyAttri bute nanespace="##any" processContents="1ax"/>
</ xs: conpl exType>

Figure 18: Structure of the optionsRequest and
opti onsResponse Messages

5.4. CCMP Response Codes
Al CCWP response messages MJST include a <response-code>. This
docunent defines an I ANA registry for the CCVWP response codes, as
described in Section 12.5.2. The follow ng sunmari zes the CCWP
response codes:
200 Success:
Successful conpletion of the requested operation
400 Bad Request:
Syntactically mal forned request.
401 Unaut hori zed:
User not allowed to performthe required operation
403 For bi dden:
Operation not allowed (e.g., cancellation of a blueprint).
404 oj ect Not Found:
The target conference object does not exist at the server (The
object in the error nmessage refers to the <confObj| D> paraneter in
the generic request nessage).
409 Conflict:
A generic error associated with all those situations in which a
requested client operation cannot be successfully conpleted by the

server. An exanple of such a situation is when the nodification
of an object cannot be applied due to conflicts arising at the

Barnes, et al. St andards Track [Page 53]

RFC 6503 caweP March 2012

server’'s side, e.g., because the client version of the object is
an obsol ete one and the requested nodifications collide with the
up-to-date state of the object stored at the server. Such code
woul d al so be used if a client attenpts to create an object
(conference or user) with an entity that already exists.

420 User Not Found:

Target user missing at the server (it is related to the XCO\N
USERID in the "entity’ attribute of the <userlnfo> paraneter when
it is included in userRequests).

421 Invalid confUserl D

User does not exist at the server (This code is returned for
requests where the <confUserl D> paraneter is invalid).

422 I nvalid Conference Password:

The password for the target conference object contained in the
request is wong.

423 Conf erence Password Required:

"conf erence-password" mssing in a request to access a password-
protected conference object.

424 Aut hentication Required:
User’'s authentication information is nissing or invalid.

425 For bi dden Del ete Parent:
Cancel operation failed since the target object is a parent of
child objects that depend on it, or because it affects, based on
the "parent-enforceabl e" nmechanism the corresponding elenent in a
child object.

426 For bi dden Change Protected:
Update refused by the server because the target el ement cannot be
nodi fied due to its inplicit dependence on the value of a parent
obj ect ("parent-enforceable" nmechanisn.

427 I nvalid Domai n Nane:

The donain name in an AUTO GENERATE X instance in the conference
object is not within the CCMP server’s donmain of responsibility.

Barnes, et al. St andards Track [Page 54]

RFC 6503 caweP March 2012

500 Server Internal Error

The server cannot conplete the required service due to a system
internal error.

501 Not | npl enented:

Operation defined by the protocol, but not inplenented b