
RFC 9719
YANG Data Model for Routing in Fat Trees (RIFT)

Abstract
This document defines a YANG data model for the configuration and management of the Routing
in Fat Trees (RIFT) Protocol. The model is based on YANG 1.1, which is defined in RFC 7950 and
conforms to the Network Management Datastore Architecture (NMDA) as described in RFC 8342.

Stream: Internet Engineering Task Force (IETF)
RFC: 9719
Category: Standards Track
Published: April 2025
ISSN: 2070-1721
Authors: Z. Zhang

ZTE Corporation
Y. Wei
ZTE Corporation

S. Ma
Google

X. Liu
Individual

B. Rijsman
Individual

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9719

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Zhang, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9719
https://www.rfc-editor.org/info/rfc9719
https://trustee.ietf.org/license-info

1. Introduction
 introduces the protocol definition of RIFT. This document defines one NMDA-

compatible YANG 1.1 data model for the management of the RIFT protocol.
This model imports and augments the ietf-routing YANG data model defined in .

1.1. Terminology
The following terminology and abbreviations are used in this document and the defined model.

Table of Contents
1. Introduction

1.1. Terminology

1.2. Conventions Used in This Document

1.3. Tree Diagrams

1.4. Prefixes in Data Node Names

2. Design of the Data Model

2.1. Scope of Model

2.2. Specification

2.3. Overview

2.4. RIFT Configuration

2.5. RIFT States

2.6. Notifications

3. RIFT YANG Module

4. Security Considerations

5. IANA Considerations

6. References

6.1. Normative References

6.2. Informative References

Acknowledgments

Authors' Addresses

2

2

3

4

4

4

4

5

5

12

12

12

12

45

47

47

47

48

49

49

[RFC9692]
[RFC8342] [RFC7950]

[RFC8349]

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 2

The content is copied from for reading convenience.

Clos / Fat Tree:
This document uses the terms "Clos" and "Fat Tree" interchangeably where it always refers to
a folded spine-and-leaf topology with possibly multiple Points of Delivery (PoDs) and one or
multiple Top of Fabric (ToF) planes.

RIFT:
Routing in Fat Trees .

LIE:
This is an acronym for a "Link Information Element" exchanged on all the system's links
running RIFT to form ThreeWay adjacencies and carry information used to perform RIFT
Zero Touch Provisioning (ZTP) of levels.

Point of Delivery (PoD):
A self-contained vertical slice or subset of a Clos or Fat Tree network normally containing
only level 0 and level 1 nodes. A node in a PoD communicates with nodes in other PoDs via
the ToF nodes. PoDs are numbered to distinguish them, and PoD value 0 is used to denote
"undefined" or "any" PoD.

ThreeWay Adjacency:
RIFT tries to form a unique adjacency between two nodes over a point-to-point interface and
exchange local configuration and necessary RIFT ZTP information. An adjacency is only
advertised in Node TIEs and used for computations after it achieved ThreeWay state, i.e., both
routers reflected each other in LIEs, including relevant security information. Nevertheless,
LIEs before ThreeWay state is reached may carry RIFT ZTP related information already.

TIEs:
This is an acronym for a "Topology Information Element". TIEs are exchanged between RIFT
nodes to describe parts of a network such as links and address prefixes. A TIE has always a
direction and a type. North TIEs (sometimes abbreviated as N-TIEs) are used when dealing
with TIEs in the northbound representation, and South TIEs (sometimes abbreviated as S-
TIEs) for the southbound equivalent. TIEs have different types, such as node and prefix TIEs.

Top of Fabric (ToF):
The set of nodes that provide inter-PoD communication and have no northbound adjacencies,
i.e., are at the "very top" of the fabric. ToF nodes do not belong to any PoD and are assigned
the default PoD value to indicate the equivalent of "any" PoD.

1.2. Conventions Used in This Document
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

[RFC9692]

[RFC9692]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 3

1.3. Tree Diagrams
Tree diagrams used in this document follow the notation defined in .

1.4. Prefixes in Data Node Names
In this document, names of data nodes, actions, and other data model objects are often used
without a prefix, as long as it is clear from the context in which YANG module each name is
defined. Otherwise, names are prefixed using the standard prefix associated with the
corresponding YANG module as shown in Table 1.

2. Design of the Data Model

2.1. Scope of Model
This model can be used to configure and manage the RIFT protocol. The operational state data
and statistics can be retrieved by this model. The subscription and push mechanism defined in

 and can be implemented by the user to subscribe to notifications on the
data nodes in this model.

The model contains all the basic configuration parameters to operate the protocol. Depending on
the implementation choices, some systems may not allow some of the advanced parameters to
be configurable. The occasionally implemented parameters are modeled as optional features in
this model. This model can be extended, and it has been structured in a way that such
extensions can be conveniently made.

[RFC8340]

Prefix YANG Module Reference

yang ietf-yang-types

inet ietf-inet-types

rt ietf-routing

if ietf-interfaces

rt-types ietf-routing-types

iana-rt-types iana-routing-types

key-chain ietf-key-chain

Table 1

[RFC6991]

[RFC6991]

[RFC8349]

[RFC8343]

[RFC8294]

[RFC8294]

[RFC8177]

[RFC8639] [RFC8641]

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 4

base protocol configuration --

interface configuration --

neighbor status --

database --

statistics --

The RIFT YANG module augments the /routing/control-plane-protocols/ control-plane-protocol
path defined in the ietf-routing module. This model augments the routing module to add RIFT as
a control-plane protocol. It then offers the ability to create a list of instances, which it does by
declaring 'list rift'. Multiple instances of the protocol are supported by the module by giving each
instance a unique name.

2.2. Specification
This model imports and augments ietf-routing YANG model defined in . The container
"rift" is the top-level container in this data model. The container is expected to enable RIFT
protocol functionality.

The YANG data model defined in this document conforms to the Network Management Datastore
Architecture (NMDA) . The operational state data is combined with the associated
configuration data in the same hierarchy .

2.3. Overview
The RIFT YANG module defined in this document has all the common building blocks for the
RIFT protocol.

At a high level, the RIFT YANG model is organized into five elements:

Configuration affecting RIFT protocol-related operations.

Configuration affecting the interface operations.

Information of neighbors.

Information of TIEs.

Statistics of SPF, interface, and neighbor.

[RFC8349]

[RFC8342]
[RFC8407]

module: ietf-rift
 augment /rt:routing/rt:control-plane-protocols
 /rt:control-plane-protocol:
 +--rw rift* [name]
 +--rw name string
 +--rw global
 | +--ro node-level? level
 | +--rw system-id system-id
 | +--rw fabric-id? uint16
 | +--rw pod? uint32
 | +--rw fabric-prefix? inet:ip-prefix
 | +--rw fabric-prefix-advertise? boolean
 | +--rw configured-level? level
 | +--rw overload
 | | +--rw overload? boolean
 | | +--rw (timeout-type)?
 | | +--:(on-startup)
 | | | +--rw on-startup-timeout?
 | | | rt-types:timer-value-seconds16

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 5

 | | +--:(immediate)
 | | +--rw immediate-timeout?
 | | rt-types:timer-value-seconds16
 | +--ro proto-major-ver uint8
 | +--ro proto-minor-ver uint16
 | +--rw node-capabilities
 | | +--rw hierarchy-indications? enumeration
 | | +--rw flood-reduction? boolean
 | +--rw maximum-nonce-delta? uint8
 | | {nonce-delta-adjust}?
 | +--rw nonce-increasing-interval? uint16
 | +--rw adjusted-lifetime?
 | | rt-types:timer-value-seconds16
 | +--rw rx-lie-multicast-addr
 | | +--rw ipv4? inet:ipv4-address
 | | +--rw ipv6? inet:ipv6-address
 | +--rw tx-lie-multicast-addr
 | | +--rw ipv4? inet:ipv4-address
 | | +--rw ipv6? inet:ipv6-address
 | +--rw lie-tx-port? inet:port-number
 | +--rw global-link-capabilities
 | | +--rw bfd-capable? boolean
 | | +--rw v4-forwarding-capable? boolean
 | | +--rw mtu-size? uint32
 | +--rw tide-generation-interval?
 | | rt-types:timer-value-seconds16
 | +--rw tie-security* [security-type] {tie-security}?
 | | +--rw security-type enumeration
 | | +--rw shared? boolean
 | | +--rw (auth-key-chain)?
 | | +--:(auth-key-chain)
 | | | +--rw key-chain? key-chain:key-chain-ref
 | | +--:(auth-key-explicit)
 | | +--rw key? string
 | | +--rw crypto-algorithm? identityref
 | +--rw inner-security-key-id? uint8
 | +--rw algorithm-type? enumeration
 | +--ro hal
 | | +--ro hal-value? level
 | | +--ro system-ids* system-id
 | +--ro miscabled-links* uint32
 | +--rw hop-limit? uint8
 | +--rw maximum-clock-delta? ieee802-1as-timestamp
 +--rw interfaces* [name]
 | +--ro link-id? uint32
 | +--rw name if:interface-ref
 | +--rw cost? uint32
 | +--rw rx-flood-port? inet:port-number
 | +--rw holdtime?
 | | rt-types:timer-value-seconds16
 | +--rw address-families*
 | | iana-rt-types:address-family
 | +--rw advertised-source-addr
 | | +--rw ipv4? inet:ipv4-address-no-zone
 | | +--rw ipv6? inet:ipv6-address-no-zone
 | +--ro link-direction-type? enumeration
 | +--rw broadcast-capable? boolean
 | +--rw allow-horizontal-link? boolean

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 6

 | +--rw security {link-security}?
 | | +--rw security-type? enumeration
 | | +--rw shared? boolean
 | | +--rw (auth-key-chain)?
 | | +--:(auth-key-chain)
 | | | +--rw key-chain? key-chain:key-chain-ref
 | | +--:(auth-key-explicit)
 | | +--rw key? string
 | | +--rw crypto-algorithm? identityref
 | +--rw security-checking? enumeration
 | +--ro was-the-last-lie-accepted? boolean
 | +--ro last-lie-reject-reason? string
 | +--ro advertised-in-lies
 | | +--ro label? uint32
 | | | {label-switching}?
 | | +--ro you-are-flood-repeater? boolean
 | | +--ro not-a-ztp-offer? boolean
 | | +--ro you-are-sending-too-quickly? boolean
 | +--rw link-capabilities
 | | +--rw bfd-capable? boolean
 | | +--rw v4-forwarding-capable? boolean
 | | +--rw mtu-size? uint32
 | +--ro state enumeration
 | +--ro neighbors* [system-id]
 | | +--ro node-level? level
 | | +--ro system-id system-id
 | | +--ro fabric-id? uint16
 | | +--ro pod? uint32
 | | +--ro proto-major-ver? uint8
 | | +--ro proto-minor-ver? uint16
 | | +--ro sent-offer
 | | | +--ro level? level
 | | | +--ro not-a-ztp-offer? boolean
 | | +--ro received-offer
 | | | +--ro level? level
 | | | +--ro not-a-ztp-offer? boolean
 | | | +--ro best? boolean
 | | | +--ro removed-from-consideration? boolean
 | | | +--ro removal-reason? string
 | | +--ro received-source-addr
 | | | +--ro ipv4? inet:ipv4-address-no-zone
 | | | +--ro ipv6? inet:ipv6-address-no-zone
 | | +--ro link-id-pair* [remote-id]
 | | | +--ro local-id? uint32
 | | | +--ro remote-id uint32
 | | | +--ro if-index? uint32
 | | | +--ro if-name? if:interface-ref
 | | | +--ro address-families*
 | | | iana-rt-types:address-family
 | | +--ro cost? uint32
 | | +--ro bandwidth? uint32
 | | +--ro received-link-capabilities
 | | | +--ro bfd-capable? boolean
 | | | +--ro v4-forwarding-capable? boolean
 | | | +--ro mtu-size? uint32
 | | +--ro received-in-lies
 | | | +--ro label? uint32
 | | | | {label-switching}?

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 7

 | | | +--ro you-are-flood-repeater? boolean
 | | | +--ro not-a-ztp-offer? boolean
 | | | +--ro you-are-sending-too-quickly? boolean
 | | +--ro nbr-flood-port? inet:port-number
 | | +--ro tx-flood-port? inet:port-number
 | | +--ro bfd-state? enumeration
 | | +--ro outer-security-key-id? uint8
 | | +--ro local-nonce? uint16
 | | +--ro remote-nonce? uint16
 | | +---x clear-neighbor
 | +---x clear-all-neighbors
 +--ro statistics
 | +--ro global
 | | +--ro total-num-routes-north?
 | | | yang:zero-based-counter32
 | | +--ro total-num-routes-south?
 | | yang:zero-based-counter32
 | +--ro spf-statistics* [spf-direction-type]
 | | +--ro spf-direction-type enumeration
 | | +--ro start-time? yang:date-and-time
 | | +--ro end-time? yang:date-and-time
 | | +--ro triggering-tie
 | | | +--ro tie-direction-type? enumeration
 | | | +--ro originator? system-id
 | | | +--ro tie-type? enumeration
 | | | +--ro tie-number? uint32
 | | | +--ro seq? uint64
 | | | +--ro size? uint32
 | | | +--ro origination-time? ieee802-1as-timestamp
 | | | +--ro origination-lifetime? uint32
 | | | +--ro remaining-lifetime? uint32
 | | +---x clear-spf-statistics
 | +--ro interfaces* [name]
 | | +--ro name if:interface-ref
 | | +--ro intf-states-statistics
 | | | +--ro intf-states-startup-time? uint64
 | | | +--ro num-of-nbrs-3way?
 | | | | yang:zero-based-counter32
 | | | +--ro num-of-nbrs-down?
 | | | | yang:zero-based-counter32
 | | | +--ro nbrs-down-reasons* [system-id]
 | | | | +--ro system-id system-id
 | | | | +--ro last-down-reason? string
 | | | +--ro num-local-level-change?
 | | | | yang:zero-based-counter32
 | | | +--ro number-of-flaps?
 | | | | yang:zero-based-counter32
 | | | +--ro last-state-change? yang:date-and-time
 | | | +--ro last-up? yang:date-and-time
 | | | +--ro last-down? yang:date-and-time
 | | | +--ro intf-lie-states
 | | | +--ro last-lie-sent-time? uint64
 | | | +--ro last-lie-received-time? uint64
 | | | +--ro num-lie-received?
 | | | | yang:zero-based-counter32
 | | | +--ro num-lie-transmitted?
 | | | | yang:zero-based-counter32
 | | | +--ro num-lie-drop-invalid-envelope?

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 8

 | | | | yang:zero-based-counter32
 | | | +--ro num-lie-drop-invalid-nonce?
 | | | | yang:zero-based-counter32
 | | | +--ro num-lie-corrupted?
 | | | yang:zero-based-counter32
 | | +--ro flood-repeater-statistics
 | | | +--ro flood-repeater? system-id
 | | | +--ro num-flood-repeater-changes?
 | | | | yang:zero-based-counter32
 | | | +--ro last-flood-repeater-change-reason? string
 | | +---x clear-intf-statistics
 | +--ro neighbors* [system-id]
 | +--ro system-id system-id
 | +--ro tie-state-statistics
 | | +--ro transmit-queue?
 | | | yang:zero-based-counter32
 | | +--ro last-queued-tie
 | | | +--ro tie-direction-type? enumeration
 | | | +--ro originator? system-id
 | | | +--ro tie-type? enumeration
 | | | +--ro tie-number? uint32
 | | | +--ro seq? uint64
 | | | +--ro size? uint32
 | | | +--ro origination-time?
 | | | | ieee802-1as-timestamp
 | | | +--ro origination-lifetime? uint32
 | | | +--ro remaining-lifetime? uint32
 | | | +--ro reason-queued? string
 | | +--ro num-received-ties?
 | | | yang:zero-based-counter32
 | | +--ro num-transmitted-ties?
 | | | yang:zero-based-counter32
 | | +--ro num-retransmitted-ties?
 | | | yang:zero-based-counter32
 | | +--ro num-flood-reduced-ties?
 | | | yang:zero-based-counter32
 | | +--ro num-received-tides?
 | | | yang:zero-based-counter32
 | | +--ro num-transmitted-tides?
 | | | yang:zero-based-counter32
 | | +--ro num-received-tires?
 | | | yang:zero-based-counter32
 | | +--ro num-transmitted-tires?
 | | | yang:zero-based-counter32
 | | +--ro num-request-locally?
 | | | yang:zero-based-counter32
 | | +--ro num-request-remotely?
 | | | yang:zero-based-counter32
 | | +--ro num-same-older-ties-received?
 | | | yang:zero-based-counter32
 | | +--ro num-seq-mismatch-pkts-received?
 | | | yang:zero-based-counter32
 | | +--ro last-sent-tie
 | | | +--ro tie-direction-type? enumeration
 | | | +--ro originator? system-id
 | | | +--ro tie-type? enumeration
 | | | +--ro tie-number? uint32
 | | | +--ro seq? uint64

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 9

 | | | +--ro size? uint32
 | | | +--ro origination-time?
 | | | | ieee802-1as-timestamp
 | | | +--ro origination-lifetime? uint32
 | | | +--ro remaining-lifetime? uint32
 | | | +--ro last-tie-sent-time? yang:date-and-time
 | | +--ro last-recv-tie
 | | | +--ro tie-direction-type? enumeration
 | | | +--ro originator? system-id
 | | | +--ro tie-type? enumeration
 | | | +--ro tie-number? uint32
 | | | +--ro seq? uint64
 | | | +--ro size? uint32
 | | | +--ro origination-time?
 | | | | ieee802-1as-timestamp
 | | | +--ro origination-lifetime? uint32
 | | | +--ro remaining-lifetime? uint32
 | | | +--ro last-tie-recv-time? yang:date-and-time
 | | +--ro largest-tie
 | | | +--ro largest-tie-sent
 | | | | +--ro tie-direction-type? enumeration
 | | | | +--ro originator? system-id
 | | | | +--ro tie-type? enumeration
 | | | | +--ro tie-number? uint32
 | | | | +--ro seq? uint64
 | | | | +--ro size? uint32
 | | | | +--ro origination-time?
 | | | | | ieee802-1as-timestamp
 | | | | +--ro origination-lifetime? uint32
 | | | | +--ro remaining-lifetime? uint32
 | | | +--ro largest-tide-sent
 | | | | +--ro tie-direction-type? enumeration
 | | | | +--ro originator? system-id
 | | | | +--ro tie-type? enumeration
 | | | | +--ro tie-number? uint32
 | | | | +--ro seq? uint64
 | | | | +--ro size? uint32
 | | | | +--ro origination-time?
 | | | | | ieee802-1as-timestamp
 | | | | +--ro origination-lifetime? uint32
 | | | | +--ro remaining-lifetime? uint32
 | | | +--ro largest-tire-sent
 | | | +--ro tie-direction-type? enumeration
 | | | +--ro originator? system-id
 | | | +--ro tie-type? enumeration
 | | | +--ro tie-number? uint32
 | | | +--ro seq? uint64
 | | | +--ro size? uint32
 | | | +--ro origination-time?
 | | | | ieee802-1as-timestamp
 | | | +--ro origination-lifetime? uint32
 | | | +--ro remaining-lifetime? uint32
 | | +--ro num-tie-dropped
 | | +--ro num-tie-outer-envelope?
 | | | yang:zero-based-counter32
 | | +--ro num-tie-inner-envelope?
 | | | yang:zero-based-counter32
 | | +--ro num-tie-nonce?

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 10

 | | yang:zero-based-counter32
 | +---x clear-nbr-statistics
 +--ro database
 +--ro ties*
 [tie-direction-type originator tie-type tie-number]
 +--ro tie-direction-type enumeration
 +--ro originator system-id
 +--ro tie-type enumeration
 +--ro tie-number uint32
 +--ro seq? uint64
 +--ro size? uint32
 +--ro origination-time? ieee802-1as-timestamp
 +--ro origination-lifetime? uint32
 +--ro remaining-lifetime? uint32
 +--ro node
 | +--ro level? level
 | +--ro neighbors* [system-id]
 | | +--ro node-level? level
 | | +--ro system-id system-id
 | | +--ro fabric-id? uint16
 | | +--ro pod? uint32
 | | +--ro link-id-pair* [remote-id]
 | | | +--ro local-id? uint32
 | | | +--ro remote-id uint32
 | | | +--ro if-index? uint32
 | | | +--ro if-name? if:interface-ref
 | | | +--ro address-families*
 | | | iana-rt-types:address-family
 | | +--ro cost? uint32
 | | +--ro bandwidth? uint32
 | | +--ro received-link-capabilities
 | | +--ro bfd-capable? boolean
 | | +--ro v4-forwarding-capable? boolean
 | | +--ro mtu-size? uint32
 | +--ro proto-minor-ver? uint16
 | +--ro flood-reduction? boolean
 | +--ro hierarchy-indications
 | | +--ro hierarchy-indications? enumeration
 | +--ro overload-flag? boolean
 | +--ro name? string
 | +--ro pod? uint32
 | +--ro startup-time? uint64
 | +--ro miscabled-links* uint32
 | +--ro same-plane-tofs* system-id
 | +--ro fabric-id? uint32
 +--ro prefixes
 | +--ro prefixes* [prefix]
 | +--ro prefix inet:ip-prefix
 | +--ro tie-type? enumeration
 | +--ro metric? uint32
 | +--ro tags* uint64
 | +--ro monotonic-clock
 | | +--ro prefix-sequence-type
 | | +--ro timestamp
 | | | ieee802-1as-timestamp
 | | +--ro transaction-id? uint8
 | +--ro loopback? boolean
 | +--ro directly-attached? boolean

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 11

2.4. RIFT Configuration
The RIFT configuration includes node global configuration and interface configuration. Some
features can be used to enhance protocols, such as BFD with flooding reduction
().

2.5. RIFT States
The state data nodes include node, interface, neighbor, and database information.

YANG actions are defined to clear the connection of one specific neighbor on an interface, clear
the connections of all neighbors on an interface, or clear some or all statistics.

2.6. Notifications
Unexpected TIE and neighbor layer errors should be notified.

3. RIFT YANG Module
This module references , , , , , ,

, , and .

 | +--ro from-link? uint32
 | +--ro label? uint32
 +--ro key-value
 +--ro key? binary
 +--ro value? binary

 notifications:
 +---n error-set
 +--ro tie-level-error
 | +--ro rift* [name]
 | +--ro name string
 | +--ro ties* [originator]
 | +--ro tie-direction-type? enumeration
 | +--ro originator system-id
 | +--ro tie-type? enumeration
 | +--ro tie-number? uint32
 | +--ro seq? uint64
 | +--ro size? uint32
 | +--ro origination-time? ieee802-1as-timestamp
 | +--ro origination-lifetime? uint32
 | +--ro remaining-lifetime? uint32
 +--ro neighbor-error
 +--ro rift* [name]
 +--ro name string
 +--ro interfaces* [name]
 +--ro link-id? uint32
 +--ro name if:interface-ref
 +--ro neighbors* [system-id]
 +--ro system-id system-id
 +--ro node-level? level

[RFC5881]
Section 6.3.9 of [RFC9692]

[RFC9692] [RFC5881] [RFC6991] [RFC8177] [RFC8294] [RFC8343]
[RFC8349] [RFC8505] [IEEE8021AS]

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 12

https://rfc-editor.org/rfc/rfc9692#section-6.3.9

<CODE BEGINS> file "ietf-rift@2025-04-04.yang"

module ietf-rift {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-rift";
 prefix rift;

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-routing {
 prefix rt;
 reference
 "RFC 8349: A YANG Data Model for Routing Management
 (NMDA Version)";
 }
 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model for Interface Management";
 }
 import ietf-routing-types {
 prefix rt-types;
 reference
 "RFC 8294: Common YANG Data Types for the Routing Area";
 }
 import iana-routing-types {
 prefix iana-rt-types;
 reference
 "RFC 8294: Common YANG Data Types for the Routing Area";
 }
 import ietf-key-chain {
 prefix key-chain;
 reference
 "RFC 8177: YANG Data Model for Key Chains";
 }

 organization
 "IETF RIFT (Routing In Fat Trees) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/rift/>
 WG List: <mailto:rift@ietf.org>

 Author: Zheng (Sandy) Zhang
 <mailto:zhang.zheng@zte.com.cn>

 Author: Yuehua Wei
 <mailto:wei.yuehua@zte.com.cn>

 Author: Shaowen Ma

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 13

 <mailto:mashaowen@gmail.com>

 Author: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>

 Author: Bruno Rijsman
 <mailto:brunorijsman@gmail.com>";
 description
 "This YANG module defines the generic configuration and
 operational state for the RIFT protocol common to all
 vendor implementations. It is intended that the module
 will be extended by vendors to define vendor-specific
 RIFT configuration parameters and policies --
 for example, route maps or route policies.

 Copyright (c) 2025 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9719
 (https://www.rfc-editor.org/info/rfc9719); see the RFC itself
 for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
 'MAY', and 'OPTIONAL' in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 revision 2025-04-04 {
 description
 "Initial revision.";
 reference
 "RFC 9719: YANG Data Model for Routing in Fat Trees
 (RIFT).";
 }

 /*
 * Features
 */

 feature nonce-delta-adjust {
 description
 "Support weak nonce delta adjusting that is used in
 security.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.";
 }

 feature label-switching {
 description

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 14

 "Support label switching for instance distinguishing.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.8.8";
 }

 feature tie-security {
 description
 "Support security function for the TIE exchange.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.3.";
 }

 feature link-security {
 description
 "Support security function of link.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.";
 }

 typedef system-id {
 type string {
 pattern
 '[0-9A-Fa-f]{4}\.[0-9A-Fa-f]{4}\.[0-9A-Fa-f]{4}\.[0-9A-Fa-f]{4}';
 }
 description
 "This type defines the pattern for RIFT System IDs.
 An example of a System ID is 0021.2FFF.FEB5.6E10.";
 }

 typedef level {
 type uint8 {
 range "0 .. 24";
 }
 default "0";
 description
 "The value of node level.
 Clos and Fat Tree networks are topologically partially
 ordered graphs and 'level' denotes the set of nodes at
 the same height in such a network.
 Nodes at the top level (i.e., ToF) are at the level with
 the highest value and count down to the nodes
 at the bottom level (i.e., leaf) with the lowest value.
 In RIFT, level 0 always indicates that a node is a leaf,
 but does not have to be level 0.
 Level values can be configured manually or automatically
 derived.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.7.";
 }

 typedef ieee802-1as-timestamp {
 type uint64;
 units "seconds";
 description

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 15

 "Timestamp per IEEE802.1AS. It is advertised with prefix
 to achieve mobility.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees. Section 6.8.4.
 IEEE8021AS: Timing and Synchronization for Time-Sensitive
 Applications in Bridged Local Area Networks";
 }

 /*
 * Identity
 */

 identity rift {
 base rt:routing-protocol;
 description
 "Identity for the RIFT routing protocol.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees";
 }

 /*
 * Groupings
 */

 grouping address-families {
 leaf-list address-families {
 type iana-rt-types:address-family;
 description
 "Indication which address families are up on the
 interface.";
 }
 description
 "Containing address families on the interface.";
 }

 grouping hierarchy-indications {
 leaf hierarchy-indications {
 type enumeration {
 enum leaf-only {
 description
 "The node will never leave the
 'bottom of the hierarchy'.
 When this value is set, the 'configured-level'
 is the minimum level value.";
 }
 enum leaf-only-and-leaf-2-leaf-procedures {
 description
 "This means leaf to leaf.
 When this value is set, the 'configured-level'
 is the minimum level value.";
 }
 enum top-of-fabric {
 description
 "The node is 'top of fabric'.
 When this value is set, the 'configured-level'
 is the maximum level value.";
 }
 }

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 16

 description
 "The hierarchy indications of this node.";
 }
 description
 "Flags indicating node configuration in case of ZTP.";
 }

 grouping node-capability {
 leaf proto-minor-ver {
 type uint16;
 description
 "Represents the minor protocol encoding schema
 version of this node.";
 }
 leaf flood-reduction {
 type boolean;
 description
 "If the value is set to 'true', it means that
 this node enables the flood reduction function.";
 }
 container hierarchy-indications {
 config false;
 description
 "The hierarchy-indications of the node.";
 uses hierarchy-indications;
 }
 description
 "The supported capabilities of this node.";
 }

 grouping tie-type {
 leaf tie-type {
 type enumeration {
 enum illegal {
 description
 "The illegal TIE.";
 }
 enum min-tie-type {
 description
 "The minimum TIE.";
 }
 enum node {
 description
 "The node TIE.";
 }
 enum prefix {
 description
 "The prefix TIE.";
 }
 enum positive-disaggregation-prefix {
 description
 "The positive disaggregation prefix TIE.";
 }
 enum negative-disaggregation-prefix {
 description
 "The negative disaggregation prefix TIE.";
 }
 enum pgp-prefix {

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 17

 description
 "The policy guide prefix TIE.";
 }
 enum key-value {
 description
 "The key value TIE.";
 }
 enum external-prefix {
 description
 "The external prefix TIE.";
 }
 enum positive-external-disaggregation-prefix {
 description
 "The positive external disaggregation prefix TIE.";
 }
 enum max-tie-type {
 description
 "The maximum TIE.";
 }
 }
 description
 "The types of TIE.";
 }
 description
 "The types of TIE.";
 }

 grouping prefix-attribute {
 leaf metric {
 type uint32;
 description
 "The metric of this prefix.";
 }
 leaf-list tags {
 type uint64;
 description
 "The tags of this prefix.";
 }
 container monotonic-clock {
 container prefix-sequence-type {
 leaf timestamp {
 type ieee802-1as-timestamp;
 mandatory true;
 description
 "The timestamp per 802.1AS can be advertised
 with the desired prefix North TIEs.";
 }
 leaf transaction-id {
 type uint8;
 description
 "As per RFC 8505, a sequence number called a
 Transaction ID (TID) with a prefix can be
 advertised.";
 reference
 "RFC 8505: Registration Extensions for IPv6 over
 Low-Power Wireless Personal Area Network (6LoWPAN)
 Neighbor Discovery";
 }

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 18

 description
 "The prefix sequence attribute that can be advertised
 for mobility.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.8.4.";
 }
 description
 "The monotonic clock for mobile addresses.";
 }
 leaf loopback {
 type boolean;
 description
 "If the value is set to 'true', it
 indicates if the interface is a node loopback.
 The node's loopback address can be injected into
 Prefix North and Prefix South TIEs for node reachability.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.4.";
 }
 leaf directly-attached {
 type boolean;
 description
 "If the value is set to 'true', it indicates that the
 prefix is directly attached, i.e., should be routed to
 even if the node is in overload.";
 }
 leaf from-link {
 type uint32;
 description
 "In case of locally originated prefixes,
 i.e., interface addresses this can describe which
 link the address belongs to.";
 }
 leaf label {
 type uint32;
 description
 "Per prefix significant label.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees";
 }
 description
 "The attributes of the prefix.";
 }

 grouping security {
 leaf security-type {
 type enumeration {
 enum public {
 description
 "When using Public Key Infrastructure (PKI),
 the public and shared key can be used to verify
 the original packet exchanged with the neighbor.";
 }
 enum private {
 description
 "When using Public Key Infrastructure (PKI),

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 19

 the private key can be used by the Security
 fingerprint originating node to create the signature.";
 }
 }
 description
 "The security type.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.";
 }
 leaf shared {
 type boolean;
 description
 "When using Public Key Infrastructure (PKI),
 if the key is shared.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.";
 }
 choice auth-key-chain {
 description
 "Key chain or explicit key parameter specification.";
 case auth-key-chain {
 leaf key-chain {
 type key-chain:key-chain-ref;
 description
 "key-chain name.";
 reference
 "RFC 8177: YANG Data Model for Key Chains";
 }
 }
 case auth-key-explicit {
 leaf key {
 type string;
 description
 "Authentication key. The length of the key may be
 dependent on the cryptographic algorithm.";
 }
 leaf crypto-algorithm {
 type identityref {
 base key-chain:crypto-algorithm;
 }
 description
 "Cryptographic algorithm associated with key.";
 reference
 "RFC 8177: YANG Data Model for Key Chains";
 }
 }
 }
 description
 "The security parameters.";
 }

 grouping base-node-info {
 leaf node-level {
 type level;
 config false;
 description

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 20

 "The level of this node.";
 }
 leaf system-id {
 type system-id;
 mandatory true;
 description
 "Each node is identified via a system-id that is 64
 bits wide.";
 }
 leaf fabric-id {
 type uint16;
 description
 "The optional id of the fabric.";
 }
 leaf pod {
 type uint32 {
 range "1..max";
 }
 description
 "The identifier of the Point of Delivery (PoD).
 A PoD is the self-contained vertical slice of a
 Clos or Fat Tree network containing normally only leaf
 nodes (level 0) and their immediate northbound
 neighbors. It communicates with nodes
 in other PoDs via the spine. Making this leaf
 unspecified indicates that the PoD is 'undefined'.";
 }
 description
 "The base information of a node.";
 } // base-node-info

 grouping link-capabilities {
 leaf bfd-capable {
 type boolean;
 default "true";
 description
 "If this value is set to 'true', it means that
 BFD function is enabled on the neighbor.";
 reference
 "RFC 5881: Bidirectional Forwarding Detection (BFD)
 for IPv4 and IPv6 (Single Hop)";
 }
 leaf v4-forwarding-capable {
 type boolean;
 default "true";
 description
 "If this value is set to 'true', it means that
 the neighbor supports v4 forwarding.";
 }
 leaf mtu-size {
 type uint32;
 default "1400";
 description
 "MTU of the link.";
 }
 description
 "The features of neighbor.";
 } // link-capabilities

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 21

 grouping addresses {
 leaf ipv4 {
 type inet:ipv4-address-no-zone;
 description
 "IPv4 address to be used.";
 }
 leaf ipv6 {
 type inet:ipv6-address-no-zone;
 description
 "IPv6 address to be used.";
 }
 description
 "IPv4 and/or IPv6 address to be used.";
 }

 grouping lie-elements {
 leaf label {
 if-feature "label-switching";
 type uint32;
 description
 "A locally significant, downstream assigned by
 the neighbor, interface-specific label that may
 be advertised in its LIEs.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.8.8.";
 }
 leaf you-are-flood-repeater {
 type boolean;
 description
 "If the neighbor on this link is flooding repeater.
 When this value is set to 'true', the value can be
 carried in exchanged packet.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.3.9.";
 }
 leaf not-a-ztp-offer {
 type boolean;
 description
 "When this value is set to 'true', the flag can be
 carried in the LIE packet. When the value received
 in the LIE from neighbor, it indicates the level on
 the LIE MUST NOT be used to derive a ZTP level by
 the receiving node.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.7.";
 }
 leaf you-are-sending-too-quickly {
 type boolean;
 description
 "Can be optionally set to indicate to neighbor that
 packet losses are seen on reception based on packet
 numbers or the rate is too high. The receiver SHOULD
 temporarily slow down flooding rates. When this value
 is set to 'true', the flag can be carried in packet.";

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 22

 }
 description
 "The elements set in the LIEs.";
 } // lie-elements

 grouping link-id-pair {
 leaf local-id {
 type uint32;
 description
 "The local-id of link connect to this neighbor.";
 }
 leaf remote-id {
 type uint32;
 description
 "The remote-id to reach this neighbor.";
 }
 leaf if-index {
 type uint32;
 description
 "The local index of this interface.";
 }
 leaf if-name {
 type if:interface-ref;
 description
 "The name of this interface.";
 }
 uses address-families;
 description
 "A pair of local and remote link-id to identify a link
 between two nodes.";
 } // link-id-pair

 grouping neighbor-node {
 list link-id-pair {
 key "remote-id";
 uses link-id-pair;
 description
 "The multiple parallel links to this neighbor.";
 }
 leaf cost {
 type uint32;
 description
 "The cost value advertised by the neighbor.";
 }
 leaf bandwidth {
 type uint32;
 units "bits";
 description
 "Total bandwidth to the neighbor, this will be
 normally sum of the bandwidths of all the
 parallel links.";
 }
 container received-link-capabilities {
 uses link-capabilities;
 description
 "The link capabilities advertised by the neighbor.";
 }
 description

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 23

 "The neighbor information indicated in node TIE.";
 } // neighbor-node

 grouping neighbor {
 leaf proto-major-ver {
 type uint8;
 description
 "Represents protocol encoding schema major version of
 this neighbor.";
 }
 leaf proto-minor-ver {
 type uint16;
 description
 "Represents protocol encoding schema minor version of
 this neighbor.";
 }
 container sent-offer {
 leaf level {
 type level;
 description
 "The level value.";
 }
 leaf not-a-ztp-offer {
 type boolean;
 description
 "If the value is set to 'true', it indicates the
 level on the LIE MUST NOT be used to derive a
 ZTP level by the neighbor.";
 }
 description
 "The level sent to the neighbor in case the neighbor
 needs to be offered.";
 }
 container received-offer {
 leaf level {
 type level;
 description
 "The level value.";
 }
 leaf not-a-ztp-offer {
 type boolean;
 description
 "If the value is set to 'true', it indicates the
 level on the received LIE MUST NOT be used to
 derive a ZTP level.";
 }
 leaf best {
 type boolean;
 description
 "If the value is set to 'true', it means that
 the level is the best level received from all
 the neighbors.";
 }
 leaf removed-from-consideration {
 type boolean;
 description
 "If the value is set to 'true', it means that
 the level value is not considered to be used.";

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 24

 }
 leaf removal-reason {
 when "../removed-from-consideration='true'" {
 description
 "The level value is not considered to be used.";
 }
 type string;
 description
 "The reason why this value is not considered to
 be used.";
 }
 description
 "The level offered to the interface from the neighbor.
 And if the level value is considered to be used.";
 }
 container received-source-addr {
 uses addresses;
 description
 "The source address of LIE and TIE packets from
 the neighbor.";
 } // received-offer
 uses neighbor-node;
 container received-in-lies {
 uses lie-elements;
 description
 "The attributes received from this neighbor.";
 }
 leaf nbr-flood-port {
 type inet:port-number;
 default "915";
 description
 "The UDP port which is used by the neighbor to flood
 TIEs.";
 }
 leaf tx-flood-port {
 type inet:port-number;
 default "915";
 description
 "The UDP port which is used by the node to flood
 TIEs to the neighbor.";
 }
 leaf bfd-state {
 type enumeration {
 enum up {
 description
 "The link is protected by established BFD session.";
 }
 enum down {
 description
 "The link is not protected by established BFD session.";
 }
 }
 description
 "The link is protected by established BFD session or not.";
 }
 leaf outer-security-key-id {
 type uint8;
 description

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 25

 "The received security key id from the neighbor.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.3.";
 }
 description
 "The neighbor information.";
 } // neighbor

 grouping link-direction-type {
 leaf link-direction-type {
 type enumeration {
 enum illegal {
 description
 "Illegal direction.";
 }
 enum south {
 description
 "A link to a node one level down.";
 }
 enum north {
 description
 "A link to a node one level up.";
 }
 enum east-west {
 description
 "A link to a node in the same level.";
 }
 enum max {
 description
 "The max value of direction.";
 }
 }
 config false;
 description
 "The type of link.";
 }
 description
 "The type of link.";
 } // link-direction-type

 grouping tie-direction-type {
 leaf tie-direction-type {
 type enumeration {
 enum illegal {
 description
 "Illegal direction.";
 }
 enum south {
 description
 "The direction to a node one level down.";
 }
 enum north {
 description
 "The direction to a node one level up.";
 }
 enum max {
 description

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 26

 "The max value of direction.";
 }
 }
 config false;
 description
 "The direction type of TIE.";
 }
 description
 "The direction type of TIE.";
 } // tie-direction-type

 grouping spf-direction-type {
 leaf spf-direction-type {
 type enumeration {
 enum n-spf {
 description
 "A reachability calculation that is progressing
 northbound, as example SPF that is using South
 Node TIEs only. Normally it progresses a single
 hop only and installs default routes.";
 }
 enum s-spf {
 description
 "A reachability calculation that is progressing
 southbound, as example SPF that is using North
 Node TIEs only.";
 }
 }
 config false;
 description
 "The direction type of SPF calculation.";
 }
 description
 "The direction type of SPF calculation.";
 } // spf-direction-type

 grouping tie-header {
 uses tie-direction-type;
 leaf originator {
 type system-id;
 description
 "The originator's system-id of this TIE.";
 }
 uses tie-type;
 leaf tie-number {
 type uint32;
 description
 "The number of this TIE.";
 }
 leaf seq {
 type uint64;
 description
 "The sequence number of a TIE.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.3.1.";
 }
 leaf size {

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 27

 type uint32;
 description
 "The size of this TIE.";
 }
 leaf origination-time {
 type ieee802-1as-timestamp;
 description
 "Absolute timestamp when the TIE was generated.
 This can be used on fabrics with synchronized
 clock to prevent lifetime modification attacks.";
 }
 leaf origination-lifetime {
 type uint32;
 units "seconds";
 description
 "Original lifetime when the TIE was generated.
 This can be used on fabrics with synchronized clock
 to prevent lifetime modification attacks.";
 }
 leaf remaining-lifetime {
 type uint32;
 units "seconds";
 description
 "The remaining lifetime of the TIE.";
 }
 description
 "TIEs are exchanged between RIFT nodes to describe parts
 of a network such as links and address prefixes.
 This is the TIE header information.";
 } // tie-header

 /*
 * Data nodes
 */

 augment "/rt:routing/rt:control-plane-protocols"
 + "/rt:control-plane-protocol" {
 when "derived-from-or-self(rt:type, 'rift:rift')" {
 description
 "This augment is only valid when routing protocol
 instance type is 'RIFT'.";
 }
 description
 "RIFT (Routing in Fat Trees) YANG model.";
 list rift {
 key "name";
 leaf name {
 type string;
 description
 "The RIFT instance's name.";
 }
 container global {
 description
 "The global configuration and status of
 this RIFT protocol instance.";
 uses base-node-info;
 leaf fabric-prefix {
 type inet:ip-prefix;

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 28

 description
 "The configured fabric prefix.";
 }
 leaf fabric-prefix-advertise {
 type boolean;
 description
 "Whether the fabric-prefix can be advertised or not.
 If the value is set to 'true', it means that
 the fabric-prefix can be advertised to neighbors.";
 }
 leaf configured-level {
 type level;
 description
 "The configured level value of this node.";
 }
 container overload {
 description
 "If the overload in TIEs can be set
 and the timeout value with according type.";
 leaf overload {
 type boolean;
 description
 "If the value is set to 'true', it means that
 the overload bit in TIEs can be set.";
 }
 choice timeout-type {
 description
 "The value of timeout timer for overloading.
 This makes sense when overload is set to 'TRUE'.";
 case on-startup {
 leaf on-startup-timeout {
 type rt-types:timer-value-seconds16;
 description
 "Node goes into overload until this timer
 expires when starting up.";
 }
 }
 case immediate {
 leaf immediate-timeout {
 type rt-types:timer-value-seconds16;
 description
 "Set overload and remove after the timeout
 expired.";
 }
 }
 }
 }
 leaf proto-major-ver {
 type uint8;
 config false;
 mandatory true;
 description
 "Represents protocol encoding schema major version.";
 }
 leaf proto-minor-ver {
 type uint16;
 config false;
 mandatory true;

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 29

 description
 "Represents protocol encoding schema minor version.";
 }
 container node-capabilities {
 uses hierarchy-indications;
 leaf flood-reduction {
 type boolean;
 description
 "If the node supports flood reduction function.
 If this value is set to 'true', it means that
 the flood reduction function is enabled.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.3.8.";
 }
 description
 "The node's capabilities.";
 }
 leaf maximum-nonce-delta {
 if-feature "nonce-delta-adjust";
 type uint8 {
 range "1..5";
 }
 description
 "The configurable valid nonce delta value used for
 security. It is used as vulnerability window.
 If the nonces in received packet exceeds the range
 indicated by this value, the packet MUST be
 discarded.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.4.";
 }
 leaf nonce-increasing-interval {
 type uint16;
 units "seconds";
 description
 "The configurable nonce increasing interval.";
 }
 leaf adjusted-lifetime {
 type rt-types:timer-value-seconds16;
 units "seconds";
 description
 "The adjusted lifetime may affect the TIE stability.
 Be careful to change this parameter.
 This SHOULD be prohibited less than 2*purge-lifetime.";
 }
 container rx-lie-multicast-addr {
 leaf ipv4 {
 type inet:ipv4-address;
 default "224.0.0.121";
 description
 "The configurable LIE receiving IPv4 multicast
 address.
 Different multicast addresses can be used for
 receiving and sending.";
 }
 leaf ipv6 {

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 30

 type inet:ipv6-address;
 default "ff02::a1f7";
 description
 "The configurable LIE receiving IPv6 multicast
 address.
 Different multicast addresses can be used for
 receiving and sending.";
 }
 description
 "The configurable LIE receiving IPv4/IPv6 multicast
 address.
 Different multicast addresses can be used for
 receiving and sending.";
 }
 container tx-lie-multicast-addr {
 leaf ipv4 {
 type inet:ipv4-address;
 description
 "The configurable LIE sending IPv4 multicast
 address.
 Different multicast addresses can be used for
 receiving and sending.";
 }
 leaf ipv6 {
 type inet:ipv6-address;
 description
 "The configurable LIE sending IPv6 multicast
 address.
 Different multicast addresses can be used for
 receiving and sending.";
 }
 description
 "The configurable LIE sending IPv4/IPv6 multicast
 address.
 Different multicast addresses can be used for
 receiving and sending.";
 }
 leaf lie-tx-port {
 type inet:port-number;
 default "914";
 description
 "The UDP port of LIE packet sending. The default port
 number is 914. The value can be set to other value
 associated with different RIFT instance.";
 }
 container global-link-capabilities {
 uses link-capabilities;
 description
 "The node default link capabilities. It can be
 overwritten by the configuration underneath interface
 and neighbor.";
 }
 leaf tide-generation-interval {
 type rt-types:timer-value-seconds16;
 units "seconds";
 description
 "The TIDE generation interval.";
 }

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 31

 list tie-security {
 if-feature "tie-security";
 key "security-type";
 uses security;
 description
 "The security function used for the TIE exchange.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.3.";
 }
 leaf inner-security-key-id {
 type uint8;
 description
 "The inner security key id for received packet
 checking.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.3.";
 }
 leaf algorithm-type {
 type enumeration {
 enum spf {
 description
 "The algorithm is SPF.";
 }
 enum all-path {
 description
 "The algorithm is all-path.";
 }
 }
 description
 "The possible algorithm types.";
 }
 container hal {
 config false;
 leaf hal-value {
 type level;
 description
 "The highest defined level value seen from all
 valid level offers received.";
 }
 leaf-list system-ids {
 type system-id;
 description
 "The node's system-id of the offered level comes
 from.";
 }
 description
 "The highest defined level and the offered nodes set.";
 }
 leaf-list miscabled-links {
 type uint32;
 config false;
 description
 "List of miscabled links.";
 }
 leaf hop-limit {
 type uint8 {

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 32

 range "1 | 255";
 }
 default "1";
 description
 "The IPv4 TTL or IPv6 HL used for LIE and TIE
 sending/receiving.";
 }
 leaf maximum-clock-delta {
 type ieee802-1as-timestamp;
 description
 "The maximum drift for the timestamp comparing.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.8.4.";
 }
 }
 list interfaces {
 key "name";
 leaf link-id {
 type uint32;
 config false;
 description
 "The local id of this interface.";
 }
 leaf name {
 type if:interface-ref;
 description
 "The interface's name.";
 }
 leaf cost {
 type uint32;
 description
 "The cost from this interface to the neighbor.";
 }
 leaf rx-flood-port {
 type inet:port-number;
 default "915";
 description
 "The UDP port which is used to receive flooded
 TIEs. The default port number is 915. The value
 can be set to other value associated with different
 RIFT instance.";
 }
 leaf holdtime {
 type rt-types:timer-value-seconds16;
 units "seconds";
 default "3";
 description
 "The holding time of LIE.";
 }
 uses address-families;
 container advertised-source-addr {
 uses addresses;
 description
 "The address used in the advertised LIE and TIE
 packets.";
 }
 uses link-direction-type;

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 33

 leaf broadcast-capable {
 type boolean;
 description
 "If LIE can be received by broadcast address.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.2.";
 }
 leaf allow-horizontal-link {
 type boolean;
 description
 "If horizontal link adjacency is allowed.";
 }
 container security {
 if-feature "link-security";
 uses security;
 description
 "The security function used for this interface.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.3.";
 }
 leaf security-checking {
 type enumeration {
 enum no-checking {
 description
 "The security envelope does not be checked.";
 }
 enum permissive {
 description
 "The security envelope checking is permissive.";
 }
 enum loose {
 description
 "The security envelope checking is loose.";
 }
 enum strict {
 description
 "The security envelope checking is strict.";
 }
 }
 description
 "The possible security checking types.
 Only one type can be set at the same time.";
 }
 leaf was-the-last-lie-accepted {
 type boolean;
 config false;
 description
 "If the value is set to 'true', it means that
 the most recently received LIE was accepted.
 If the LIE was rejected, the neighbor error
 notifications should be used to find the reason.";
 }
 leaf last-lie-reject-reason {
 type string;
 config false;
 description

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 34

 "Description for the reject reason of the last LIE.";
 }
 container advertised-in-lies {
 config false;
 uses lie-elements;
 description
 "The attributes advertised in the LIEs from
 this interface.";
 }
 container link-capabilities {
 uses link-capabilities;
 description
 "The interface's link capabilities.";
 }
 leaf state {
 type enumeration {
 enum one-way {
 description
 "The initial state.";
 }
 enum two-way {
 description
 "Valid LIE received but not a ThreeWay LIE.";
 }
 enum three-way {
 description
 "Valid ThreeWay LIE received.";
 }
 enum multiple-neighbors-wait {
 description
 "More than two neighbors found in the same link.";
 }
 }
 config false;
 mandatory true;
 description
 "The states of LIE finite state machine.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.2.1.";
 }
 list neighbors {
 key "system-id";
 config false;
 uses base-node-info;
 uses neighbor;
 leaf local-nonce {
 type uint16;
 description
 "The exchanged local nonce with this neighbor.";
 }
 leaf remote-nonce {
 type uint16;
 description
 "The exchanged remote nonce to this neighbor.";
 }
 action clear-neighbor {
 description

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 35

 "Clears the connection to the neighbor.";
 }
 description
 "The neighbor's information.";
 }
 action clear-all-neighbors {
 description
 "Clears all the connections to the neighbors
 on this interface.";
 }
 description
 "The interface information on this node.";
 } // list interface
 container statistics {
 config false;
 container global {
 leaf total-num-routes-north {
 type yang:zero-based-counter32;
 config false;
 description
 "The total number of north routes.";
 }
 leaf total-num-routes-south {
 type yang:zero-based-counter32;
 config false;
 description
 "The total number of south routes.";
 }
 description
 "The global routes number.";
 }
 list spf-statistics {
 key "spf-direction-type";
 uses spf-direction-type;
 leaf start-time {
 type yang:date-and-time;
 description
 "The last SPF calculation start time.";
 }
 leaf end-time {
 type yang:date-and-time;
 description
 "The last SPF calculation end time.";
 }
 container triggering-tie {
 uses tie-header;
 description
 "The TIE that triggered the SPF.";
 }
 action clear-spf-statistics {
 description
 "Clears the statistics of this type of
 SPF calculation.";
 }
 description
 "The statistics of SPF calculation.";
 }
 list interfaces {

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 36

 key "name";
 leaf name {
 type if:interface-ref;
 description
 "The interface's name.";
 }
 container intf-states-statistics {
 leaf intf-states-startup-time {
 type uint64;
 description
 "The states and statistics record startup time
 of the interface.";
 }
 leaf num-of-nbrs-3way {
 type yang:zero-based-counter32;
 description
 "The number of neighbors which state is in
 ThreeWay.";
 }
 leaf num-of-nbrs-down {
 type yang:zero-based-counter32;
 description
 "The number of neighbors which state
 changed to down.";
 }
 list nbrs-down-reasons {
 key "system-id";
 leaf system-id {
 type system-id;
 description
 "The system-id of neighbor.";
 }
 leaf last-down-reason {
 type string;
 description
 "The last down reason of the neighbor.";
 }
 description
 "The down neighbors and reasons.";
 }
 leaf num-local-level-change {
 type yang:zero-based-counter32;
 description
 "The number of local level changes.";
 }
 leaf number-of-flaps {
 type yang:zero-based-counter32;
 config false;
 description
 "The number of interface state flaps.";
 }
 leaf last-state-change {
 type yang:date-and-time;
 config false;
 description
 "Time duration in the current state.";
 }
 leaf last-up {

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 37

 type yang:date-and-time;
 config false;
 description
 "The last time of up.";
 }
 leaf last-down {
 type yang:date-and-time;
 config false;
 description
 "The last time of down.";
 }
 container intf-lie-states {
 leaf last-lie-sent-time {
 type uint64;
 description
 "The time of the last LIE sent.";
 }
 leaf last-lie-received-time {
 type uint64;
 description
 "The time of the last LIE received.";
 }
 leaf num-lie-received {
 type yang:zero-based-counter32;
 description
 "The number of received LIEs.";
 }
 leaf num-lie-transmitted {
 type yang:zero-based-counter32;
 description
 "The number of transmitted LIEs.";
 }
 leaf num-lie-drop-invalid-envelope {
 type yang:zero-based-counter32;
 description
 "The number of dropped LIEs due to
 invalid outer envelope.";
 }
 leaf num-lie-drop-invalid-nonce {
 type yang:zero-based-counter32;
 description
 "The number of dropped LIEs due to
 invalid nonce.";
 }
 leaf num-lie-corrupted {
 type yang:zero-based-counter32;
 description
 "The number of corrupted LIEs received.";
 }
 description
 "The LIE's statistics of this interface.";
 }
 description
 "The states and statistics of this interface.";
 }
 container flood-repeater-statistics {
 leaf flood-repeater {
 type system-id;

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 38

 description
 "The system-id of the current flood repeater.
 If this leaf has no value, that means the neighbor
 is not flood repeater.";
 }
 leaf num-flood-repeater-changes {
 type yang:zero-based-counter32;
 description
 "The number of flood repeater changes.";
 }
 leaf last-flood-repeater-change-reason {
 type string;
 description
 "The reason of the last flood repeater change.";
 }
 description
 "The flood repeater statistics.";
 }
 action clear-intf-statistics {
 description
 "Clears the statistics of this interface.";
 }
 description
 "The statistics of interfaces.";
 }
 list neighbors {
 key "system-id";
 leaf system-id {
 type system-id;
 description
 "The system-id of the neighbor.";
 }
 container tie-state-statistics {
 leaf transmit-queue {
 type yang:zero-based-counter32;
 description
 "The length of TIE transmit queue.";
 }
 container last-queued-tie {
 uses tie-header;
 leaf reason-queued {
 type string;
 description
 "The queued reason of the last queued TIE.";
 }
 description
 "The last queued TIE for transmit.";
 }
 leaf num-received-ties {
 type yang:zero-based-counter32;
 description
 "The number of TIEs received.";
 }
 leaf num-transmitted-ties {
 type yang:zero-based-counter32;
 description
 "The number of TIEs transmitted.";
 }

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 39

 leaf num-retransmitted-ties {
 type yang:zero-based-counter32;
 description
 "The number of TIEs retransmitted.";
 }
 leaf num-flood-reduced-ties {
 type yang:zero-based-counter32;
 description
 "The number of TIEs that were flood reduced.";
 }
 leaf num-received-tides {
 type yang:zero-based-counter32;
 description
 "The number of TIDEs received.";
 }
 leaf num-transmitted-tides {
 type yang:zero-based-counter32;
 description
 "The number of TIDEs transmitted.";
 }
 leaf num-received-tires {
 type yang:zero-based-counter32;
 description
 "The number of TIREs received.";
 }
 leaf num-transmitted-tires {
 type yang:zero-based-counter32;
 description
 "The number of TIREs transmitted.";
 }
 leaf num-request-locally {
 type yang:zero-based-counter32;
 description
 "The number of TIEs requested locally.";
 }
 leaf num-request-remotely {
 type yang:zero-based-counter32;
 description
 "The number of TIEs requested by the neighbor.";
 }
 leaf num-same-older-ties-received {
 type yang:zero-based-counter32;
 description
 "The number of times of the same or older TIE
 has been received.";
 }
 leaf num-seq-mismatch-pkts-received {
 type yang:zero-based-counter32;
 description
 "The number of packets with sequence number
 mismatches.";
 }
 container last-sent-tie {
 uses tie-header;
 leaf last-tie-sent-time {
 type yang:date-and-time;
 description
 "The time of the last TIE sent.";

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 40

 }
 description
 "The information of the last sent TIE.";
 }
 container last-recv-tie {
 uses tie-header;
 leaf last-tie-recv-time {
 type yang:date-and-time;
 description
 "The time of the last TIE received.";
 }
 description
 "The information of the last received TIE.";
 }
 container largest-tie {
 container largest-tie-sent {
 uses tie-header;
 description
 "The largest TIE sent.";
 }
 container largest-tide-sent {
 uses tie-header;
 description
 "The largest TIDE sent.";
 }
 container largest-tire-sent {
 uses tie-header;
 description
 "The largest TIRE sent.";
 }
 description
 "The largest sent TIE, TIDE and TIRE.";
 }
 container num-tie-dropped {
 leaf num-tie-outer-envelope {
 type yang:zero-based-counter32;
 description
 "The total number of TIEs dropped due to
 invalid outer envelope.";
 }
 leaf num-tie-inner-envelope {
 type yang:zero-based-counter32;
 description
 "The total number of TIEs dropped due to
 invalid inner envelope.";
 }
 leaf num-tie-nonce {
 type yang:zero-based-counter32;
 description
 "The total number of TIEs dropped due to
 invalid nonce.";
 }
 description
 "The total number of TIEs dropped due to
 security reasons.";
 }
 description
 "The statistics of TIE, TIDE, TIRE

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 41

 exchanging with this neighbor.";
 }
 action clear-nbr-statistics {
 description
 "Clears the statistics of this neighbor.";
 }
 description
 "The statistics of neighbors.";
 }
 description
 "The statistics collection.";
 }
 container database {
 config false;
 list ties {
 key "tie-direction-type originator tie-type tie-number";
 description
 "A list of TIEs (Topology Information Elements).";
 uses tie-header;
 container node {
 leaf level {
 type level;
 config false;
 description
 "The level of this node.";
 }
 list neighbors {
 key "system-id";
 uses base-node-info;
 uses neighbor-node;
 description
 "The node TIE information of a neighbor.";
 }
 uses node-capability;
 leaf overload-flag {
 type boolean;
 description
 "If the value is set to 'true', it means that
 the overload bit in TIEs is set.";
 }
 leaf name {
 type string;
 description
 "The name of this node. It won't be used as the
 key of node, just used for description.";
 }
 leaf pod {
 type uint32;
 description
 "Point of Delivery. The self-contained vertical
 slice of a Clos or Fat Tree network containing
 normally only level 0 and level 1 nodes. It
 communicates with nodes in other PoDs via the
 spine. We number PoDs to distinguish them and
 use PoD #0 to denote 'undefined' PoD.";
 }
 leaf startup-time {
 type uint64;

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 42

 description
 "Startup time of the node.";
 }
 leaf-list miscabled-links {
 type uint32;
 config false;
 description
 "List of miscabled links.";
 }
 leaf-list same-plane-tofs {
 type system-id;
 config false;
 description
 "ToFs in the same plane. Only carried by ToF.
 Multiple Node TIEs can carry disjoint sets of
 ToFs which MUST be joined to form a single
 set.";
 }
 leaf fabric-id {
 type uint32;
 config false;
 description
 "The optional ID of the Fabric configured.";
 }
 description
 "The node element information in this TIE.";
 } // node
 container prefixes {
 description
 "The prefix element information in this TIE.";
 list prefixes {
 key "prefix";
 leaf prefix {
 type inet:ip-prefix;
 description
 "The prefix information.";
 }
 uses tie-type;
 uses prefix-attribute;
 description
 "The prefix set information.";
 }
 }
 container key-value {
 leaf key {
 type binary;
 description
 "The type of key value combination.";
 }
 leaf value {
 type binary;
 description
 "The value of key value combination.";
 }
 description
 "The information used to distinguish a Key/Value
 pair. When the type of kv is set to 'node',
 node-element is making sense. When the type of

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 43

 kv is set to other values except 'node',
 prefix-info is making sense.";
 } // kv-store
 } // ties
 description
 "The TIEs information in database.";
 } // container database
 description
 "RIFT configuration and state data.";
 } //rift
 } //augment

 /*
 * Notifications
 */

 notification error-set {
 description
 "The errors notification of RIFT.";
 container tie-level-error {
 description
 "The TIE errors notification of RIFT.";
 list rift {
 key "name";
 leaf name {
 type string;
 description
 "The RIFT instance's name.";
 }
 list ties {
 key "originator";
 uses tie-header;
 description
 "The level is undefined in the LIEs.";
 }
 description
 "The TIE errors set.";
 }
 }
 container neighbor-error {
 description
 "The neighbor errors notification of RIFT.";
 list rift {
 key "name";
 leaf name {
 type string;
 description
 "The RIFT instance's name.";
 }
 list interfaces {
 key "name";
 leaf link-id {
 type uint32;
 description
 "The local id of this interface.";
 }
 leaf name {
 type if:interface-ref;

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 44

4. Security Considerations
The YANG module specified in this document defines a schema for data that is designed to be
accessed via network management protocols such as NETCONF or RESTCONF

. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-
implement secure transport is Secure Shell (SSH) . The lowest RESTCONF layer is
HTTPS, and the mandatory-to-implement secure transport is TLS .

The Network Configuration Access Control Model provides the means to restrict
access for particular NETCONF or RESTCONF users to a preconfigured subset of all available
NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that are writable/creatable/
deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or
vulnerable in some network environments. Write operations (e.g., edit-config) to these data
nodes without proper protection can have a negative effect on network operations. These are
the subtrees and data nodes and their sensitivity/vulnerability:

/rift

 description
 "The interface's name.";
 }
 list neighbors {
 key "system-id";
 leaf system-id {
 type system-id;
 description
 "Each node is identified via a system-id which is 64
 bits wide.";
 }
 leaf node-level {
 type level;
 description
 "The level of this node.";
 }
 description
 "The level of the neighbor is wrong.";
 }
 description
 "The interfaces with wrong level neighbor.";
 }
 description
 "The RIFT instance.";
 }
 }
 }
}

<CODE ENDS>

[RFC6241]
[RFC8040]

[RFC6242]
[RFC8446]

[RFC8341]

•

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 45

Modifying the configuration may cause all the RIFT neighborships to be rebuilt. For example,
changing the configuration of configured-level or system-id will lead to all the neighbor
connections of this node being rebuilt. The incorrect modification of authentication, except for
the broken neighbor connection, will break the connection permanently. The modification of
interface will cause the neighbor state to change. In general, unauthorized modification of most
RIFT configurations will pose their own set of security risks and the "Security Considerations" in
the respective RFCs referenced should be consulted.

Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable
in some network environments. It is thus important to control read access (e.g., via get, get-
config, or notification) to these data nodes. These are the subtrees and data nodes and their
sensitivity/vulnerability:

/rift
/rift/global/tie-security
/rift/interface
/rift/interface/neighbor
/rift/database

The exposure of the database will expose the detailed topology of the network. Network
operators may consider their topologies to be sensitive confidential data.

For RIFT authentication, configuration is supported via the specification of key chains
or the direct specification of key and authentication algorithm. Hence, authentication
configuration inherits the security considerations of . This includes the considerations
with respect to the local storage and handling of authentication keys.

The actual authentication key data (whether locally specified or part of a key chain) is sensitive
and needs to be kept secret from unauthorized parties. Compromise of the key data would allow
an attacker to forge RIFT packets that would be accepted as authentic, potentially compromising
the entire domain.

Some of the RPC operations in this YANG module may be considered sensitive or vulnerable in
some network environments. It is thus important to control access to these operations. These are
the operations and their sensitivity/vulnerability:

/rift/interface/clear-all-neighbors
/rift/interface/neighbor/clear-neighbor
/rift/statistics/spf-statistics/clear-spf-statistics
/rift/statistics/interface/clear-intf-statistics
/rift/statistics/interface/neighbors/clear-nbr-statistics

Unauthorized access to either of the above action operations can lead to the neighbor
connection rebuilding or clearing of statistics on this device.

•
•
•
•
•

[RFC8177]

[RFC8177]

•
•
•
•
•

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 46

URI:
Registrant Contact:
XML:

Name:
Namespace:
Prefix:
Reference:

[RFC2119]

[RFC5881]

[RFC6020]

[RFC6241]

[RFC6242]

[RFC6991]

5. IANA Considerations
Per this document, IANA has registered a URI in the IETF XML registry . Following the
format in , the following registration has been made:

urn:ietf:params:xml:ns:yang:ietf-rift
The IESG

N/A; the requested URI is an XML namespace.

One new YANG module name has been registered in the YANG Module Names registry
as follows:

ietf-rift
urn:ietf:params:xml:ns:yang:ietf-rift

rift
RFC 9719

6. References

6.1. Normative References

, , ,
, , March 1997,
.

 and ,
, , , June 2010,

.

,
, , , October

2010, .

, , , and ,
, , ,

June 2011, .

, ,
, , June 2011,

.

, , ,
, July 2013, .

[RFC3688]
[RFC3688]

[RFC6020]

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Katz, D. D. Ward "Bidirectional Forwarding Detection (BFD) for IPv4 and
IPv6 (Single Hop)" RFC 5881 DOI 10.17487/RFC5881 <https://
www.rfc-editor.org/info/rfc5881>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)" RFC 6020 DOI 10.17487/RFC6020

<https://www.rfc-editor.org/info/rfc6020>

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.
"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Wasserman, M. "Using the NETCONF Protocol over Secure Shell (SSH)" RFC
6242 DOI 10.17487/RFC6242 <https://www.rfc-editor.org/info/
rfc6242>

Schoenwaelder, J., Ed. "Common YANG Data Types" RFC 6991 DOI 10.17487/
RFC6991 <https://www.rfc-editor.org/info/rfc6991>

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 47

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5881
https://www.rfc-editor.org/info/rfc5881
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc6991

[RFC7950]

[RFC8040]

[RFC8174]

[RFC8177]

[RFC8294]

[RFC8340]

[RFC8341]

[RFC8342]

[RFC8343]

[RFC8349]

[RFC8446]

[RFC8505]

[RFC9692]

, , ,
, August 2016, .

, , and , , ,
, January 2017, .

, ,
, , , May 2017,

.

, , , , and ,
, , , June 2017,

.

, , , , and ,
, , , December 2017,

.

 and , , , ,
, March 2018, .

 and , ,
, , , March 2018,

.

, , , , and ,
, , ,

March 2018, .

, , ,
, March 2018, .

, , and ,
, , , March 2018,

.

, , ,
, August 2018, .

, , , and ,

, , , November
2018, .

, , , , , and
, , , , April

2025, .

6.2. Informative References

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC 7950 DOI
10.17487/RFC7950 <https://www.rfc-editor.org/info/rfc7950>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI
10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Lindem, A., Ed. Qu, Y. Yeung, D. Chen, I. J. Zhang "YANG Data Model for
Key Chains" RFC 8177 DOI 10.17487/RFC8177 <https://www.rfc-
editor.org/info/rfc8177>

Liu, X. Qu, Y. Lindem, A. Hopps, C. L. Berger "Common YANG Data Types
for the Routing Area" RFC 8294 DOI 10.17487/RFC8294 <https://
www.rfc-editor.org/info/rfc8294>

Bjorklund, M. L. Berger, Ed. "YANG Tree Diagrams" BCP 215 RFC 8340 DOI
10.17487/RFC8340 <https://www.rfc-editor.org/info/rfc8340>

Bierman, A. M. Bjorklund "Network Configuration Access Control Model"
STD 91 RFC 8341 DOI 10.17487/RFC8341 <https://www.rfc-
editor.org/info/rfc8341>

Bjorklund, M. Schoenwaelder, J. Shafer, P. Watsen, K. R. Wilton "Network
Management Datastore Architecture (NMDA)" RFC 8342 DOI 10.17487/RFC8342

<https://www.rfc-editor.org/info/rfc8342>

Bjorklund, M. "A YANG Data Model for Interface Management" RFC 8343 DOI
10.17487/RFC8343 <https://www.rfc-editor.org/info/rfc8343>

Lhotka, L. Lindem, A. Y. Qu "A YANG Data Model for Routing Management
(NMDA Version)" RFC 8349 DOI 10.17487/RFC8349 <https://
www.rfc-editor.org/info/rfc8349>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Thubert, P., Ed. Nordmark, E. Chakrabarti, S. C. Perkins "Registration
Extensions for IPv6 over Low-Power Wireless Personal Area Network
(6LoWPAN) Neighbor Discovery" RFC 8505 DOI 10.17487/RFC8505

<https://www.rfc-editor.org/info/rfc8505>

Przygienda, T., Ed. Head, J., Ed. Sharma, A. Thubert, P. Rijsman, B. D.
Afanasiev "RIFT: Routing in Fat Trees" RFC 9692 DOI 10.17487/RFC9692

<https://www.rfc-editor.org/info/rfc9692>

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 48

https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8177
https://www.rfc-editor.org/info/rfc8177
https://www.rfc-editor.org/info/rfc8294
https://www.rfc-editor.org/info/rfc8294
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8343
https://www.rfc-editor.org/info/rfc8349
https://www.rfc-editor.org/info/rfc8349
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8505
https://www.rfc-editor.org/info/rfc9692

[IEEE8021AS]

[RFC3688]

[RFC8407]

[RFC8639]

[RFC8641]

,

, , , March
2011, .

, , , , ,
January 2004, .

,
, , , , October 2018,

.

, , , , and ,
, , ,

September 2019, .

 and ,
, , , September 2019,

.

Acknowledgments
The authors would like to thank , ,
(), and for their review, valuable comments, and
suggestions.

IEEE "IEEE Standard for Local and Metropolitan Area Networks - Timing and
Synchronization for Time-Sensitive Applications in Bridged Local Area
Networks" IEEE Std 802.1AS-2011 DOI 10.1109/IEEESTD.2011.5741898

<https://ieeexplore.ieee.org/document/5741898/>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688
<https://www.rfc-editor.org/info/rfc3688>

Bierman, A. "Guidelines for Authors and Reviewers of Documents Containing
YANG Data Models" BCP 216 RFC 8407 DOI 10.17487/RFC8407
<https://www.rfc-editor.org/info/rfc8407>

Voit, E. Clemm, A. Gonzalez Prieto, A. Nilsen-Nygaard, E. A. Tripathy
"Subscription to YANG Notifications" RFC 8639 DOI 10.17487/RFC8639

<https://www.rfc-editor.org/info/rfc8639>

Clemm, A. E. Voit "Subscription to YANG Notifications for Datastore
Updates" RFC 8641 DOI 10.17487/RFC8641 <https://www.rfc-
editor.org/info/rfc8641>

Tony Przygienda Jordan Head Benchong Xu
mailto:xu.benchong@zte.com.cn Tom Petch

Authors' Addresses
Zheng (Sandy) Zhang
ZTE Corporation

zhang.zheng@zte.com.cnEmail:

Yuehua Wei
ZTE Corporation

wei.yuehua@zte.com.cnEmail:

Shaowen Ma
Google

mashaowen@gmail.comEmail:

Xufeng Liu
Individual

xufeng.liu.ietf@gmail.comEmail:

Bruno Rijsman
Individual

brunorijsman@gmail.comEmail:

RFC 9719 RIFT YANG Data Model April 2025

Zhang, et al. Standards Track Page 49

https://ieeexplore.ieee.org/document/5741898/
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8639
https://www.rfc-editor.org/info/rfc8641
https://www.rfc-editor.org/info/rfc8641
mailto:xu.benchong@zte.com.cn
mailto:zhang.zheng@zte.com.cn
mailto:wei.yuehua@zte.com.cn
mailto:mashaowen@gmail.com
mailto:xufeng.liu.ietf@gmail.com
mailto:brunorijsman@gmail.com

	RFC 9719
	YANG Data Model for Routing in Fat Trees (RIFT)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Conventions Used in This Document
	1.3. Tree Diagrams
	1.4. Prefixes in Data Node Names

	2. Design of the Data Model
	2.1. Scope of Model
	2.2. Specification
	2.3. Overview
	2.4. RIFT Configuration
	2.5. RIFT States
	2.6. Notifications

	3. RIFT YANG Module
	4. Security Considerations
	5. IANA Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Acknowledgments
	Authors' Addresses

 YANG Data Model for Routing in Fat Trees (RIFT)

 ZTE Corporation

 zhang.zheng@zte.com.cn

 ZTE Corporation

 wei.yuehua@zte.com.cn

 Google

 mashaowen@gmail.com

 Individual

 xufeng.liu.ietf@gmail.com

 Individual

 brunorijsman@gmail.com

 RTG
 rift
 RIFT
 YANG

 This document defines a YANG data model for the configuration and
 management of the Routing in Fat Trees (RIFT) Protocol. The model is based on YANG 1.1, which is defined in
 RFC 7950 and conforms to the Network Management Datastore Architecture
 (NMDA) as described in RFC 8342.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Terminology

 . Conventions Used in This Document

 . Tree Diagrams

 . Prefixes in Data Node Names

 . Design of the Data Model

 . Scope of Model

 . Specification

 . Overview

 . RIFT Configuration

 . RIFT States

 . Notifications

 . RIFT YANG Module

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 Acknowledgments

 Authors' Addresses

 Introduction
 introduces the protocol definition of RIFT.
	 This document defines one NMDA-compatible YANG 1.1
 data model for the management of the RIFT protocol.
	 This model imports and augments the ietf-routing YANG data model
	 defined in .

 Terminology
 The following terminology and abbreviations are used in this document and the defined model.
 The content is copied from for reading convenience.

 Clos / Fat Tree:
 This document uses the terms "Clos" and
 "Fat Tree" interchangeably where it always refers to a folded
 spine-and-leaf topology with possibly multiple Points of Delivery
 (PoDs) and one or multiple Top of Fabric (ToF) planes.
 RIFT:
 Routing in Fat Trees .
 LIE:
 This is an acronym for a "Link Information Element"
 exchanged on all the system's links running RIFT to form ThreeWay
 adjacencies and carry information used to perform RIFT Zero Touch
 Provisioning (ZTP) of levels.
 Point of Delivery (PoD):
 A self-contained vertical slice or subset of a Clos or Fat Tree
 network normally containing only level 0 and level 1 nodes. A
 node in a PoD communicates with nodes in other PoDs via the ToF
 nodes. PoDs are numbered to distinguish them, and PoD value 0 is
 used to denote "undefined" or "any" PoD.
 ThreeWay Adjacency:
 RIFT tries to form a unique
 adjacency between two nodes over a point-to-point interface and
 exchange local configuration and necessary RIFT ZTP information. An
 adjacency is only advertised in Node TIEs and used for computations
 after it achieved ThreeWay state, i.e., both routers
 reflected each other in LIEs, including relevant security
 information. Nevertheless, LIEs before ThreeWay state is
 reached may carry RIFT ZTP related information already.
 TIEs:
 This is an acronym for a "Topology Information
 Element". TIEs are exchanged between RIFT nodes to describe parts of
 a network such as links and address prefixes. A TIE has always a
 direction and a type. North TIEs (sometimes abbreviated as N-TIEs) are
 used when dealing with TIEs in the northbound representation, and
 South TIEs (sometimes abbreviated as S-TIEs) for the southbound
 equivalent. TIEs have different types, such as node and prefix
 TIEs.
 Top of Fabric (ToF):
 The set of nodes that provide
 inter-PoD communication and have no northbound adjacencies, i.e., are
 at the "very top" of the fabric. ToF nodes do not belong to any PoD
 and are assigned the default PoD value to indicate the equivalent of
 "any" PoD.

 Conventions Used in This Document

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Tree Diagrams
 Tree diagrams used in this document follow the notation defined in .

 Prefixes in Data Node Names
 In this document, names of data nodes, actions, and other data model
 objects are often used without a prefix, as long as it is clear from
 the context in which YANG module each name is defined. Otherwise,
 names are prefixed using the standard prefix associated with the
 corresponding YANG module as shown in .

 Prefix
 YANG Module
 Reference

 yang
 ietf-yang-types

 inet
 ietf-inet-types

 rt
 ietf-routing

 if
 ietf-interfaces

 rt-types
 ietf-routing-types

 iana-rt-types
 iana-routing-types

 key-chain
 ietf-key-chain

 Design of the Data Model

 Scope of Model
 This model can be used to configure and manage the
 RIFT protocol. The operational state data and statistics
 can be retrieved by this model. The subscription and push
 mechanism defined in
 and can be implemented by
 the user to subscribe to notifications on the data nodes in this
 model.
 The model contains all the basic configuration parameters to
 operate the protocol. Depending on the implementation choices, some
 systems may not allow some of the advanced parameters to be
 configurable. The occasionally implemented parameters are modeled as
 optional features in this model. This model can be extended, and it
 has been structured in a way that such extensions can be conveniently
 made.
 The RIFT YANG module augments the /routing/control-plane-protocols/
 control-plane-protocol path defined in the ietf-routing module. This
 model augments the routing module to add RIFT as a control-plane
 protocol. It then offers the ability to create a list of instances,
 which it does by declaring 'list rift'. Multiple instances of the
 protocol are supported by the module by giving each instance a unique
 name.

 Specification

	 This model imports and augments ietf-routing YANG model
	 defined in .
	 The container "rift" is the top-level container in this data model.
	 The container is expected to enable RIFT protocol functionality.

 The YANG data model defined in this document conforms to the Network
 Management Datastore Architecture (NMDA) .
 The operational state data is combined with the associated configuration
 data in the same hierarchy .

 Overview
 The RIFT YANG module defined in this document has all the common
 building blocks for the RIFT protocol.
 At a high level, the RIFT YANG model is organized into five elements:

 base protocol configuration --
 Configuration
 affecting RIFT protocol-related operations.
 interface configuration --
 Configuration affecting
 the interface operations.
 neighbor status --
 Information of neighbors.
 database --
 Information of TIEs.
 statistics --
 Statistics of SPF, interface, and neighbor.

module: ietf-rift
 augment /rt:routing/rt:control-plane-protocols
 /rt:control-plane-protocol:
 +--rw rift* [name]
 +--rw name string
 +--rw global
 | +--ro node-level? level
 | +--rw system-id system-id
 | +--rw fabric-id? uint16
 | +--rw pod? uint32
 | +--rw fabric-prefix? inet:ip-prefix
 | +--rw fabric-prefix-advertise? boolean
 | +--rw configured-level? level
 | +--rw overload
 | | +--rw overload? boolean
 | | +--rw (timeout-type)?
 | | +--:(on-startup)
 | | | +--rw on-startup-timeout?
 | | | rt-types:timer-value-seconds16
 | | +--:(immediate)
 | | +--rw immediate-timeout?
 | | rt-types:timer-value-seconds16
 | +--ro proto-major-ver uint8
 | +--ro proto-minor-ver uint16
 | +--rw node-capabilities
 | | +--rw hierarchy-indications? enumeration
 | | +--rw flood-reduction? boolean
 | +--rw maximum-nonce-delta? uint8
 | | {nonce-delta-adjust}?
 | +--rw nonce-increasing-interval? uint16
 | +--rw adjusted-lifetime?
 | | rt-types:timer-value-seconds16
 | +--rw rx-lie-multicast-addr
 | | +--rw ipv4? inet:ipv4-address
 | | +--rw ipv6? inet:ipv6-address
 | +--rw tx-lie-multicast-addr
 | | +--rw ipv4? inet:ipv4-address
 | | +--rw ipv6? inet:ipv6-address
 | +--rw lie-tx-port? inet:port-number
 | +--rw global-link-capabilities
 | | +--rw bfd-capable? boolean
 | | +--rw v4-forwarding-capable? boolean
 | | +--rw mtu-size? uint32
 | +--rw tide-generation-interval?
 | | rt-types:timer-value-seconds16
 | +--rw tie-security* [security-type] {tie-security}?
 | | +--rw security-type enumeration
 | | +--rw shared? boolean
 | | +--rw (auth-key-chain)?
 | | +--:(auth-key-chain)
 | | | +--rw key-chain? key-chain:key-chain-ref
 | | +--:(auth-key-explicit)
 | | +--rw key? string
 | | +--rw crypto-algorithm? identityref
 | +--rw inner-security-key-id? uint8
 | +--rw algorithm-type? enumeration
 | +--ro hal
 | | +--ro hal-value? level
 | | +--ro system-ids* system-id
 | +--ro miscabled-links* uint32
 | +--rw hop-limit? uint8
 | +--rw maximum-clock-delta? ieee802-1as-timestamp
 +--rw interfaces* [name]
 | +--ro link-id? uint32
 | +--rw name if:interface-ref
 | +--rw cost? uint32
 | +--rw rx-flood-port? inet:port-number
 | +--rw holdtime?
 | | rt-types:timer-value-seconds16
 | +--rw address-families*
 | | iana-rt-types:address-family
 | +--rw advertised-source-addr
 | | +--rw ipv4? inet:ipv4-address-no-zone
 | | +--rw ipv6? inet:ipv6-address-no-zone
 | +--ro link-direction-type? enumeration
 | +--rw broadcast-capable? boolean
 | +--rw allow-horizontal-link? boolean
 | +--rw security {link-security}?
 | | +--rw security-type? enumeration
 | | +--rw shared? boolean
 | | +--rw (auth-key-chain)?
 | | +--:(auth-key-chain)
 | | | +--rw key-chain? key-chain:key-chain-ref
 | | +--:(auth-key-explicit)
 | | +--rw key? string
 | | +--rw crypto-algorithm? identityref
 | +--rw security-checking? enumeration
 | +--ro was-the-last-lie-accepted? boolean
 | +--ro last-lie-reject-reason? string
 | +--ro advertised-in-lies
 | | +--ro label? uint32
 | | | {label-switching}?
 | | +--ro you-are-flood-repeater? boolean
 | | +--ro not-a-ztp-offer? boolean
 | | +--ro you-are-sending-too-quickly? boolean
 | +--rw link-capabilities
 | | +--rw bfd-capable? boolean
 | | +--rw v4-forwarding-capable? boolean
 | | +--rw mtu-size? uint32
 | +--ro state enumeration
 | +--ro neighbors* [system-id]
 | | +--ro node-level? level
 | | +--ro system-id system-id
 | | +--ro fabric-id? uint16
 | | +--ro pod? uint32
 | | +--ro proto-major-ver? uint8
 | | +--ro proto-minor-ver? uint16
 | | +--ro sent-offer
 | | | +--ro level? level
 | | | +--ro not-a-ztp-offer? boolean
 | | +--ro received-offer
 | | | +--ro level? level
 | | | +--ro not-a-ztp-offer? boolean
 | | | +--ro best? boolean
 | | | +--ro removed-from-consideration? boolean
 | | | +--ro removal-reason? string
 | | +--ro received-source-addr
 | | | +--ro ipv4? inet:ipv4-address-no-zone
 | | | +--ro ipv6? inet:ipv6-address-no-zone
 | | +--ro link-id-pair* [remote-id]
 | | | +--ro local-id? uint32
 | | | +--ro remote-id uint32
 | | | +--ro if-index? uint32
 | | | +--ro if-name? if:interface-ref
 | | | +--ro address-families*
 | | | iana-rt-types:address-family
 | | +--ro cost? uint32
 | | +--ro bandwidth? uint32
 | | +--ro received-link-capabilities
 | | | +--ro bfd-capable? boolean
 | | | +--ro v4-forwarding-capable? boolean
 | | | +--ro mtu-size? uint32
 | | +--ro received-in-lies
 | | | +--ro label? uint32
 | | | | {label-switching}?
 | | | +--ro you-are-flood-repeater? boolean
 | | | +--ro not-a-ztp-offer? boolean
 | | | +--ro you-are-sending-too-quickly? boolean
 | | +--ro nbr-flood-port? inet:port-number
 | | +--ro tx-flood-port? inet:port-number
 | | +--ro bfd-state? enumeration
 | | +--ro outer-security-key-id? uint8
 | | +--ro local-nonce? uint16
 | | +--ro remote-nonce? uint16
 | | +---x clear-neighbor
 | +---x clear-all-neighbors
 +--ro statistics
 | +--ro global
 | | +--ro total-num-routes-north?
 | | | yang:zero-based-counter32
 | | +--ro total-num-routes-south?
 | | yang:zero-based-counter32
 | +--ro spf-statistics* [spf-direction-type]
 | | +--ro spf-direction-type enumeration
 | | +--ro start-time? yang:date-and-time
 | | +--ro end-time? yang:date-and-time
 | | +--ro triggering-tie
 | | | +--ro tie-direction-type? enumeration
 | | | +--ro originator? system-id
 | | | +--ro tie-type? enumeration
 | | | +--ro tie-number? uint32
 | | | +--ro seq? uint64
 | | | +--ro size? uint32
 | | | +--ro origination-time? ieee802-1as-timestamp
 | | | +--ro origination-lifetime? uint32
 | | | +--ro remaining-lifetime? uint32
 | | +---x clear-spf-statistics
 | +--ro interfaces* [name]
 | | +--ro name if:interface-ref
 | | +--ro intf-states-statistics
 | | | +--ro intf-states-startup-time? uint64
 | | | +--ro num-of-nbrs-3way?
 | | | | yang:zero-based-counter32
 | | | +--ro num-of-nbrs-down?
 | | | | yang:zero-based-counter32
 | | | +--ro nbrs-down-reasons* [system-id]
 | | | | +--ro system-id system-id
 | | | | +--ro last-down-reason? string
 | | | +--ro num-local-level-change?
 | | | | yang:zero-based-counter32
 | | | +--ro number-of-flaps?
 | | | | yang:zero-based-counter32
 | | | +--ro last-state-change? yang:date-and-time
 | | | +--ro last-up? yang:date-and-time
 | | | +--ro last-down? yang:date-and-time
 | | | +--ro intf-lie-states
 | | | +--ro last-lie-sent-time? uint64
 | | | +--ro last-lie-received-time? uint64
 | | | +--ro num-lie-received?
 | | | | yang:zero-based-counter32
 | | | +--ro num-lie-transmitted?
 | | | | yang:zero-based-counter32
 | | | +--ro num-lie-drop-invalid-envelope?
 | | | | yang:zero-based-counter32
 | | | +--ro num-lie-drop-invalid-nonce?
 | | | | yang:zero-based-counter32
 | | | +--ro num-lie-corrupted?
 | | | yang:zero-based-counter32
 | | +--ro flood-repeater-statistics
 | | | +--ro flood-repeater? system-id
 | | | +--ro num-flood-repeater-changes?
 | | | | yang:zero-based-counter32
 | | | +--ro last-flood-repeater-change-reason? string
 | | +---x clear-intf-statistics
 | +--ro neighbors* [system-id]
 | +--ro system-id system-id
 | +--ro tie-state-statistics
 | | +--ro transmit-queue?
 | | | yang:zero-based-counter32
 | | +--ro last-queued-tie
 | | | +--ro tie-direction-type? enumeration
 | | | +--ro originator? system-id
 | | | +--ro tie-type? enumeration
 | | | +--ro tie-number? uint32
 | | | +--ro seq? uint64
 | | | +--ro size? uint32
 | | | +--ro origination-time?
 | | | | ieee802-1as-timestamp
 | | | +--ro origination-lifetime? uint32
 | | | +--ro remaining-lifetime? uint32
 | | | +--ro reason-queued? string
 | | +--ro num-received-ties?
 | | | yang:zero-based-counter32
 | | +--ro num-transmitted-ties?
 | | | yang:zero-based-counter32
 | | +--ro num-retransmitted-ties?
 | | | yang:zero-based-counter32
 | | +--ro num-flood-reduced-ties?
 | | | yang:zero-based-counter32
 | | +--ro num-received-tides?
 | | | yang:zero-based-counter32
 | | +--ro num-transmitted-tides?
 | | | yang:zero-based-counter32
 | | +--ro num-received-tires?
 | | | yang:zero-based-counter32
 | | +--ro num-transmitted-tires?
 | | | yang:zero-based-counter32
 | | +--ro num-request-locally?
 | | | yang:zero-based-counter32
 | | +--ro num-request-remotely?
 | | | yang:zero-based-counter32
 | | +--ro num-same-older-ties-received?
 | | | yang:zero-based-counter32
 | | +--ro num-seq-mismatch-pkts-received?
 | | | yang:zero-based-counter32
 | | +--ro last-sent-tie
 | | | +--ro tie-direction-type? enumeration
 | | | +--ro originator? system-id
 | | | +--ro tie-type? enumeration
 | | | +--ro tie-number? uint32
 | | | +--ro seq? uint64
 | | | +--ro size? uint32
 | | | +--ro origination-time?
 | | | | ieee802-1as-timestamp
 | | | +--ro origination-lifetime? uint32
 | | | +--ro remaining-lifetime? uint32
 | | | +--ro last-tie-sent-time? yang:date-and-time
 | | +--ro last-recv-tie
 | | | +--ro tie-direction-type? enumeration
 | | | +--ro originator? system-id
 | | | +--ro tie-type? enumeration
 | | | +--ro tie-number? uint32
 | | | +--ro seq? uint64
 | | | +--ro size? uint32
 | | | +--ro origination-time?
 | | | | ieee802-1as-timestamp
 | | | +--ro origination-lifetime? uint32
 | | | +--ro remaining-lifetime? uint32
 | | | +--ro last-tie-recv-time? yang:date-and-time
 | | +--ro largest-tie
 | | | +--ro largest-tie-sent
 | | | | +--ro tie-direction-type? enumeration
 | | | | +--ro originator? system-id
 | | | | +--ro tie-type? enumeration
 | | | | +--ro tie-number? uint32
 | | | | +--ro seq? uint64
 | | | | +--ro size? uint32
 | | | | +--ro origination-time?
 | | | | | ieee802-1as-timestamp
 | | | | +--ro origination-lifetime? uint32
 | | | | +--ro remaining-lifetime? uint32
 | | | +--ro largest-tide-sent
 | | | | +--ro tie-direction-type? enumeration
 | | | | +--ro originator? system-id
 | | | | +--ro tie-type? enumeration
 | | | | +--ro tie-number? uint32
 | | | | +--ro seq? uint64
 | | | | +--ro size? uint32
 | | | | +--ro origination-time?
 | | | | | ieee802-1as-timestamp
 | | | | +--ro origination-lifetime? uint32
 | | | | +--ro remaining-lifetime? uint32
 | | | +--ro largest-tire-sent
 | | | +--ro tie-direction-type? enumeration
 | | | +--ro originator? system-id
 | | | +--ro tie-type? enumeration
 | | | +--ro tie-number? uint32
 | | | +--ro seq? uint64
 | | | +--ro size? uint32
 | | | +--ro origination-time?
 | | | | ieee802-1as-timestamp
 | | | +--ro origination-lifetime? uint32
 | | | +--ro remaining-lifetime? uint32
 | | +--ro num-tie-dropped
 | | +--ro num-tie-outer-envelope?
 | | | yang:zero-based-counter32
 | | +--ro num-tie-inner-envelope?
 | | | yang:zero-based-counter32
 | | +--ro num-tie-nonce?
 | | yang:zero-based-counter32
 | +---x clear-nbr-statistics
 +--ro database
 +--ro ties*
 [tie-direction-type originator tie-type tie-number]
 +--ro tie-direction-type enumeration
 +--ro originator system-id
 +--ro tie-type enumeration
 +--ro tie-number uint32
 +--ro seq? uint64
 +--ro size? uint32
 +--ro origination-time? ieee802-1as-timestamp
 +--ro origination-lifetime? uint32
 +--ro remaining-lifetime? uint32
 +--ro node
 | +--ro level? level
 | +--ro neighbors* [system-id]
 | | +--ro node-level? level
 | | +--ro system-id system-id
 | | +--ro fabric-id? uint16
 | | +--ro pod? uint32
 | | +--ro link-id-pair* [remote-id]
 | | | +--ro local-id? uint32
 | | | +--ro remote-id uint32
 | | | +--ro if-index? uint32
 | | | +--ro if-name? if:interface-ref
 | | | +--ro address-families*
 | | | iana-rt-types:address-family
 | | +--ro cost? uint32
 | | +--ro bandwidth? uint32
 | | +--ro received-link-capabilities
 | | +--ro bfd-capable? boolean
 | | +--ro v4-forwarding-capable? boolean
 | | +--ro mtu-size? uint32
 | +--ro proto-minor-ver? uint16
 | +--ro flood-reduction? boolean
 | +--ro hierarchy-indications
 | | +--ro hierarchy-indications? enumeration
 | +--ro overload-flag? boolean
 | +--ro name? string
 | +--ro pod? uint32
 | +--ro startup-time? uint64
 | +--ro miscabled-links* uint32
 | +--ro same-plane-tofs* system-id
 | +--ro fabric-id? uint32
 +--ro prefixes
 | +--ro prefixes* [prefix]
 | +--ro prefix inet:ip-prefix
 | +--ro tie-type? enumeration
 | +--ro metric? uint32
 | +--ro tags* uint64
 | +--ro monotonic-clock
 | | +--ro prefix-sequence-type
 | | +--ro timestamp
 | | | ieee802-1as-timestamp
 | | +--ro transaction-id? uint8
 | +--ro loopback? boolean
 | +--ro directly-attached? boolean
 | +--ro from-link? uint32
 | +--ro label? uint32
 +--ro key-value
 +--ro key? binary
 +--ro value? binary

 notifications:
 +---n error-set
 +--ro tie-level-error
 | +--ro rift* [name]
 | +--ro name string
 | +--ro ties* [originator]
 | +--ro tie-direction-type? enumeration
 | +--ro originator system-id
 | +--ro tie-type? enumeration
 | +--ro tie-number? uint32
 | +--ro seq? uint64
 | +--ro size? uint32
 | +--ro origination-time? ieee802-1as-timestamp
 | +--ro origination-lifetime? uint32
 | +--ro remaining-lifetime? uint32
 +--ro neighbor-error
 +--ro rift* [name]
 +--ro name string
 +--ro interfaces* [name]
 +--ro link-id? uint32
 +--ro name if:interface-ref
 +--ro neighbors* [system-id]
 +--ro system-id system-id
 +--ro node-level? level

 RIFT Configuration

 The RIFT configuration includes node global configuration and interface configuration.
 Some features can be used to enhance protocols, such as BFD with
	 flooding reduction ().

 RIFT States
 The state data nodes include node, interface, neighbor, and database information.
 YANG actions are defined to clear the connection of one specific neighbor on an interface,
 clear the connections of all neighbors on an interface, or clear some or all statistics.

 Notifications
 Unexpected TIE and neighbor layer errors should be notified.

 RIFT YANG Module
 This module references ,
 , ,
	 , , ,
 , , and
 .

module ietf-rift {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-rift";
 prefix rift;

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-routing {
 prefix rt;
 reference
 "RFC 8349: A YANG Data Model for Routing Management
 (NMDA Version)";
 }
 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model for Interface Management";
 }
 import ietf-routing-types {
 prefix rt-types;
 reference
 "RFC 8294: Common YANG Data Types for the Routing Area";
 }
 import iana-routing-types {
 prefix iana-rt-types;
 reference
 "RFC 8294: Common YANG Data Types for the Routing Area";
 }
 import ietf-key-chain {
 prefix key-chain;
 reference
 "RFC 8177: YANG Data Model for Key Chains";
 }

 organization
 "IETF RIFT (Routing In Fat Trees) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/rift/>
 WG List: <mailto:rift@ietf.org>

 Author: Zheng (Sandy) Zhang
 <mailto:zhang.zheng@zte.com.cn>

 Author: Yuehua Wei
 <mailto:wei.yuehua@zte.com.cn>

 Author: Shaowen Ma
 <mailto:mashaowen@gmail.com>

 Author: Xufeng Liu
 <mailto:xufeng.liu.ietf@gmail.com>

 Author: Bruno Rijsman
 <mailto:brunorijsman@gmail.com>";
 description
 "This YANG module defines the generic configuration and
 operational state for the RIFT protocol common to all
 vendor implementations. It is intended that the module
 will be extended by vendors to define vendor-specific
 RIFT configuration parameters and policies --
 for example, route maps or route policies.

 Copyright (c) 2025 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9719
 (https://www.rfc-editor.org/info/rfc9719); see the RFC itself
 for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
 'MAY', and 'OPTIONAL' in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 revision 2025-04-04 {
 description
 "Initial revision.";
 reference
 "RFC 9719: YANG Data Model for Routing in Fat Trees
 (RIFT).";
 }

 /*
 * Features
 */

 feature nonce-delta-adjust {
 description
 "Support weak nonce delta adjusting that is used in
 security.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.";
 }

 feature label-switching {
 description
 "Support label switching for instance distinguishing.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.8.8";
 }

 feature tie-security {
 description
 "Support security function for the TIE exchange.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.3.";
 }

 feature link-security {
 description
 "Support security function of link.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.";
 }

 typedef system-id {
 type string {
 pattern
 '[0-9A-Fa-f]{4}\.[0-9A-Fa-f]{4}\.[0-9A-Fa-f]{4}\.[0-9A-Fa-f]{4}';
 }
 description
 "This type defines the pattern for RIFT System IDs.
 An example of a System ID is 0021.2FFF.FEB5.6E10.";
 }

 typedef level {
 type uint8 {
 range "0 .. 24";
 }
 default "0";
 description
 "The value of node level.
 Clos and Fat Tree networks are topologically partially
 ordered graphs and 'level' denotes the set of nodes at
 the same height in such a network.
 Nodes at the top level (i.e., ToF) are at the level with
 the highest value and count down to the nodes
 at the bottom level (i.e., leaf) with the lowest value.
 In RIFT, level 0 always indicates that a node is a leaf,
 but does not have to be level 0.
 Level values can be configured manually or automatically
 derived.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.7.";
 }

 typedef ieee802-1as-timestamp {
 type uint64;
 units "seconds";
 description
 "Timestamp per IEEE802.1AS. It is advertised with prefix
 to achieve mobility.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees. Section 6.8.4.
 IEEE8021AS: Timing and Synchronization for Time-Sensitive
 Applications in Bridged Local Area Networks";
 }

 /*
 * Identity
 */

 identity rift {
 base rt:routing-protocol;
 description
 "Identity for the RIFT routing protocol.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees";
 }

 /*
 * Groupings
 */

 grouping address-families {
 leaf-list address-families {
 type iana-rt-types:address-family;
 description
 "Indication which address families are up on the
 interface.";
 }
 description
 "Containing address families on the interface.";
 }

 grouping hierarchy-indications {
 leaf hierarchy-indications {
 type enumeration {
 enum leaf-only {
 description
 "The node will never leave the
 'bottom of the hierarchy'.
 When this value is set, the 'configured-level'
 is the minimum level value.";
 }
 enum leaf-only-and-leaf-2-leaf-procedures {
 description
 "This means leaf to leaf.
 When this value is set, the 'configured-level'
 is the minimum level value.";
 }
 enum top-of-fabric {
 description
 "The node is 'top of fabric'.
 When this value is set, the 'configured-level'
 is the maximum level value.";
 }
 }
 description
 "The hierarchy indications of this node.";
 }
 description
 "Flags indicating node configuration in case of ZTP.";
 }

 grouping node-capability {
 leaf proto-minor-ver {
 type uint16;
 description
 "Represents the minor protocol encoding schema
 version of this node.";
 }
 leaf flood-reduction {
 type boolean;
 description
 "If the value is set to 'true', it means that
 this node enables the flood reduction function.";
 }
 container hierarchy-indications {
 config false;
 description
 "The hierarchy-indications of the node.";
 uses hierarchy-indications;
 }
 description
 "The supported capabilities of this node.";
 }

 grouping tie-type {
 leaf tie-type {
 type enumeration {
 enum illegal {
 description
 "The illegal TIE.";
 }
 enum min-tie-type {
 description
 "The minimum TIE.";
 }
 enum node {
 description
 "The node TIE.";
 }
 enum prefix {
 description
 "The prefix TIE.";
 }
 enum positive-disaggregation-prefix {
 description
 "The positive disaggregation prefix TIE.";
 }
 enum negative-disaggregation-prefix {
 description
 "The negative disaggregation prefix TIE.";
 }
 enum pgp-prefix {
 description
 "The policy guide prefix TIE.";
 }
 enum key-value {
 description
 "The key value TIE.";
 }
 enum external-prefix {
 description
 "The external prefix TIE.";
 }
 enum positive-external-disaggregation-prefix {
 description
 "The positive external disaggregation prefix TIE.";
 }
 enum max-tie-type {
 description
 "The maximum TIE.";
 }
 }
 description
 "The types of TIE.";
 }
 description
 "The types of TIE.";
 }

 grouping prefix-attribute {
 leaf metric {
 type uint32;
 description
 "The metric of this prefix.";
 }
 leaf-list tags {
 type uint64;
 description
 "The tags of this prefix.";
 }
 container monotonic-clock {
 container prefix-sequence-type {
 leaf timestamp {
 type ieee802-1as-timestamp;
 mandatory true;
 description
 "The timestamp per 802.1AS can be advertised
 with the desired prefix North TIEs.";
 }
 leaf transaction-id {
 type uint8;
 description
 "As per RFC 8505, a sequence number called a
 Transaction ID (TID) with a prefix can be
 advertised.";
 reference
 "RFC 8505: Registration Extensions for IPv6 over
 Low-Power Wireless Personal Area Network (6LoWPAN)
 Neighbor Discovery";
 }
 description
 "The prefix sequence attribute that can be advertised
 for mobility.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.8.4.";
 }
 description
 "The monotonic clock for mobile addresses.";
 }
 leaf loopback {
 type boolean;
 description
 "If the value is set to 'true', it
 indicates if the interface is a node loopback.
 The node's loopback address can be injected into
 Prefix North and Prefix South TIEs for node reachability.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.4.";
 }
 leaf directly-attached {
 type boolean;
 description
 "If the value is set to 'true', it indicates that the
 prefix is directly attached, i.e., should be routed to
 even if the node is in overload.";
 }
 leaf from-link {
 type uint32;
 description
 "In case of locally originated prefixes,
 i.e., interface addresses this can describe which
 link the address belongs to.";
 }
 leaf label {
 type uint32;
 description
 "Per prefix significant label.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees";
 }
 description
 "The attributes of the prefix.";
 }

 grouping security {
 leaf security-type {
 type enumeration {
 enum public {
 description
 "When using Public Key Infrastructure (PKI),
 the public and shared key can be used to verify
 the original packet exchanged with the neighbor.";
 }
 enum private {
 description
 "When using Public Key Infrastructure (PKI),
 the private key can be used by the Security
 fingerprint originating node to create the signature.";
 }
 }
 description
 "The security type.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.";
 }
 leaf shared {
 type boolean;
 description
 "When using Public Key Infrastructure (PKI),
 if the key is shared.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.";
 }
 choice auth-key-chain {
 description
 "Key chain or explicit key parameter specification.";
 case auth-key-chain {
 leaf key-chain {
 type key-chain:key-chain-ref;
 description
 "key-chain name.";
 reference
 "RFC 8177: YANG Data Model for Key Chains";
 }
 }
 case auth-key-explicit {
 leaf key {
 type string;
 description
 "Authentication key. The length of the key may be
 dependent on the cryptographic algorithm.";
 }
 leaf crypto-algorithm {
 type identityref {
 base key-chain:crypto-algorithm;
 }
 description
 "Cryptographic algorithm associated with key.";
 reference
 "RFC 8177: YANG Data Model for Key Chains";
 }
 }
 }
 description
 "The security parameters.";
 }

 grouping base-node-info {
 leaf node-level {
 type level;
 config false;
 description
 "The level of this node.";
 }
 leaf system-id {
 type system-id;
 mandatory true;
 description
 "Each node is identified via a system-id that is 64
 bits wide.";
 }
 leaf fabric-id {
 type uint16;
 description
 "The optional id of the fabric.";
 }
 leaf pod {
 type uint32 {
 range "1..max";
 }
 description
 "The identifier of the Point of Delivery (PoD).
 A PoD is the self-contained vertical slice of a
 Clos or Fat Tree network containing normally only leaf
 nodes (level 0) and their immediate northbound
 neighbors. It communicates with nodes
 in other PoDs via the spine. Making this leaf
 unspecified indicates that the PoD is 'undefined'.";
 }
 description
 "The base information of a node.";
 } // base-node-info

 grouping link-capabilities {
 leaf bfd-capable {
 type boolean;
 default "true";
 description
 "If this value is set to 'true', it means that
 BFD function is enabled on the neighbor.";
 reference
 "RFC 5881: Bidirectional Forwarding Detection (BFD)
 for IPv4 and IPv6 (Single Hop)";
 }
 leaf v4-forwarding-capable {
 type boolean;
 default "true";
 description
 "If this value is set to 'true', it means that
 the neighbor supports v4 forwarding.";
 }
 leaf mtu-size {
 type uint32;
 default "1400";
 description
 "MTU of the link.";
 }
 description
 "The features of neighbor.";
 } // link-capabilities

 grouping addresses {
 leaf ipv4 {
 type inet:ipv4-address-no-zone;
 description
 "IPv4 address to be used.";
 }
 leaf ipv6 {
 type inet:ipv6-address-no-zone;
 description
 "IPv6 address to be used.";
 }
 description
 "IPv4 and/or IPv6 address to be used.";
 }

 grouping lie-elements {
 leaf label {
 if-feature "label-switching";
 type uint32;
 description
 "A locally significant, downstream assigned by
 the neighbor, interface-specific label that may
 be advertised in its LIEs.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.8.8.";
 }
 leaf you-are-flood-repeater {
 type boolean;
 description
 "If the neighbor on this link is flooding repeater.
 When this value is set to 'true', the value can be
 carried in exchanged packet.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.3.9.";
 }
 leaf not-a-ztp-offer {
 type boolean;
 description
 "When this value is set to 'true', the flag can be
 carried in the LIE packet. When the value received
 in the LIE from neighbor, it indicates the level on
 the LIE MUST NOT be used to derive a ZTP level by
 the receiving node.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.7.";
 }
 leaf you-are-sending-too-quickly {
 type boolean;
 description
 "Can be optionally set to indicate to neighbor that
 packet losses are seen on reception based on packet
 numbers or the rate is too high. The receiver SHOULD
 temporarily slow down flooding rates. When this value
 is set to 'true', the flag can be carried in packet.";
 }
 description
 "The elements set in the LIEs.";
 } // lie-elements

 grouping link-id-pair {
 leaf local-id {
 type uint32;
 description
 "The local-id of link connect to this neighbor.";
 }
 leaf remote-id {
 type uint32;
 description
 "The remote-id to reach this neighbor.";
 }
 leaf if-index {
 type uint32;
 description
 "The local index of this interface.";
 }
 leaf if-name {
 type if:interface-ref;
 description
 "The name of this interface.";
 }
 uses address-families;
 description
 "A pair of local and remote link-id to identify a link
 between two nodes.";
 } // link-id-pair

 grouping neighbor-node {
 list link-id-pair {
 key "remote-id";
 uses link-id-pair;
 description
 "The multiple parallel links to this neighbor.";
 }
 leaf cost {
 type uint32;
 description
 "The cost value advertised by the neighbor.";
 }
 leaf bandwidth {
 type uint32;
 units "bits";
 description
 "Total bandwidth to the neighbor, this will be
 normally sum of the bandwidths of all the
 parallel links.";
 }
 container received-link-capabilities {
 uses link-capabilities;
 description
 "The link capabilities advertised by the neighbor.";
 }
 description
 "The neighbor information indicated in node TIE.";
 } // neighbor-node

 grouping neighbor {
 leaf proto-major-ver {
 type uint8;
 description
 "Represents protocol encoding schema major version of
 this neighbor.";
 }
 leaf proto-minor-ver {
 type uint16;
 description
 "Represents protocol encoding schema minor version of
 this neighbor.";
 }
 container sent-offer {
 leaf level {
 type level;
 description
 "The level value.";
 }
 leaf not-a-ztp-offer {
 type boolean;
 description
 "If the value is set to 'true', it indicates the
 level on the LIE MUST NOT be used to derive a
 ZTP level by the neighbor.";
 }
 description
 "The level sent to the neighbor in case the neighbor
 needs to be offered.";
 }
 container received-offer {
 leaf level {
 type level;
 description
 "The level value.";
 }
 leaf not-a-ztp-offer {
 type boolean;
 description
 "If the value is set to 'true', it indicates the
 level on the received LIE MUST NOT be used to
 derive a ZTP level.";
 }
 leaf best {
 type boolean;
 description
 "If the value is set to 'true', it means that
 the level is the best level received from all
 the neighbors.";
 }
 leaf removed-from-consideration {
 type boolean;
 description
 "If the value is set to 'true', it means that
 the level value is not considered to be used.";
 }
 leaf removal-reason {
 when "../removed-from-consideration='true'" {
 description
 "The level value is not considered to be used.";
 }
 type string;
 description
 "The reason why this value is not considered to
 be used.";
 }
 description
 "The level offered to the interface from the neighbor.
 And if the level value is considered to be used.";
 }
 container received-source-addr {
 uses addresses;
 description
 "The source address of LIE and TIE packets from
 the neighbor.";
 } // received-offer
 uses neighbor-node;
 container received-in-lies {
 uses lie-elements;
 description
 "The attributes received from this neighbor.";
 }
 leaf nbr-flood-port {
 type inet:port-number;
 default "915";
 description
 "The UDP port which is used by the neighbor to flood
 TIEs.";
 }
 leaf tx-flood-port {
 type inet:port-number;
 default "915";
 description
 "The UDP port which is used by the node to flood
 TIEs to the neighbor.";
 }
 leaf bfd-state {
 type enumeration {
 enum up {
 description
 "The link is protected by established BFD session.";
 }
 enum down {
 description
 "The link is not protected by established BFD session.";
 }
 }
 description
 "The link is protected by established BFD session or not.";
 }
 leaf outer-security-key-id {
 type uint8;
 description
 "The received security key id from the neighbor.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.3.";
 }
 description
 "The neighbor information.";
 } // neighbor

 grouping link-direction-type {
 leaf link-direction-type {
 type enumeration {
 enum illegal {
 description
 "Illegal direction.";
 }
 enum south {
 description
 "A link to a node one level down.";
 }
 enum north {
 description
 "A link to a node one level up.";
 }
 enum east-west {
 description
 "A link to a node in the same level.";
 }
 enum max {
 description
 "The max value of direction.";
 }
 }
 config false;
 description
 "The type of link.";
 }
 description
 "The type of link.";
 } // link-direction-type

 grouping tie-direction-type {
 leaf tie-direction-type {
 type enumeration {
 enum illegal {
 description
 "Illegal direction.";
 }
 enum south {
 description
 "The direction to a node one level down.";
 }
 enum north {
 description
 "The direction to a node one level up.";
 }
 enum max {
 description
 "The max value of direction.";
 }
 }
 config false;
 description
 "The direction type of TIE.";
 }
 description
 "The direction type of TIE.";
 } // tie-direction-type

 grouping spf-direction-type {
 leaf spf-direction-type {
 type enumeration {
 enum n-spf {
 description
 "A reachability calculation that is progressing
 northbound, as example SPF that is using South
 Node TIEs only. Normally it progresses a single
 hop only and installs default routes.";
 }
 enum s-spf {
 description
 "A reachability calculation that is progressing
 southbound, as example SPF that is using North
 Node TIEs only.";
 }
 }
 config false;
 description
 "The direction type of SPF calculation.";
 }
 description
 "The direction type of SPF calculation.";
 } // spf-direction-type

 grouping tie-header {
 uses tie-direction-type;
 leaf originator {
 type system-id;
 description
 "The originator's system-id of this TIE.";
 }
 uses tie-type;
 leaf tie-number {
 type uint32;
 description
 "The number of this TIE.";
 }
 leaf seq {
 type uint64;
 description
 "The sequence number of a TIE.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.3.1.";
 }
 leaf size {
 type uint32;
 description
 "The size of this TIE.";
 }
 leaf origination-time {
 type ieee802-1as-timestamp;
 description
 "Absolute timestamp when the TIE was generated.
 This can be used on fabrics with synchronized
 clock to prevent lifetime modification attacks.";
 }
 leaf origination-lifetime {
 type uint32;
 units "seconds";
 description
 "Original lifetime when the TIE was generated.
 This can be used on fabrics with synchronized clock
 to prevent lifetime modification attacks.";
 }
 leaf remaining-lifetime {
 type uint32;
 units "seconds";
 description
 "The remaining lifetime of the TIE.";
 }
 description
 "TIEs are exchanged between RIFT nodes to describe parts
 of a network such as links and address prefixes.
 This is the TIE header information.";
 } // tie-header

 /*
 * Data nodes
 */

 augment "/rt:routing/rt:control-plane-protocols"
 + "/rt:control-plane-protocol" {
 when "derived-from-or-self(rt:type, 'rift:rift')" {
 description
 "This augment is only valid when routing protocol
 instance type is 'RIFT'.";
 }
 description
 "RIFT (Routing in Fat Trees) YANG model.";
 list rift {
 key "name";
 leaf name {
 type string;
 description
 "The RIFT instance's name.";
 }
 container global {
 description
 "The global configuration and status of
 this RIFT protocol instance.";
 uses base-node-info;
 leaf fabric-prefix {
 type inet:ip-prefix;
 description
 "The configured fabric prefix.";
 }
 leaf fabric-prefix-advertise {
 type boolean;
 description
 "Whether the fabric-prefix can be advertised or not.
 If the value is set to 'true', it means that
 the fabric-prefix can be advertised to neighbors.";
 }
 leaf configured-level {
 type level;
 description
 "The configured level value of this node.";
 }
 container overload {
 description
 "If the overload in TIEs can be set
 and the timeout value with according type.";
 leaf overload {
 type boolean;
 description
 "If the value is set to 'true', it means that
 the overload bit in TIEs can be set.";
 }
 choice timeout-type {
 description
 "The value of timeout timer for overloading.
 This makes sense when overload is set to 'TRUE'.";
 case on-startup {
 leaf on-startup-timeout {
 type rt-types:timer-value-seconds16;
 description
 "Node goes into overload until this timer
 expires when starting up.";
 }
 }
 case immediate {
 leaf immediate-timeout {
 type rt-types:timer-value-seconds16;
 description
 "Set overload and remove after the timeout
 expired.";
 }
 }
 }
 }
 leaf proto-major-ver {
 type uint8;
 config false;
 mandatory true;
 description
 "Represents protocol encoding schema major version.";
 }
 leaf proto-minor-ver {
 type uint16;
 config false;
 mandatory true;
 description
 "Represents protocol encoding schema minor version.";
 }
 container node-capabilities {
 uses hierarchy-indications;
 leaf flood-reduction {
 type boolean;
 description
 "If the node supports flood reduction function.
 If this value is set to 'true', it means that
 the flood reduction function is enabled.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.3.8.";
 }
 description
 "The node's capabilities.";
 }
 leaf maximum-nonce-delta {
 if-feature "nonce-delta-adjust";
 type uint8 {
 range "1..5";
 }
 description
 "The configurable valid nonce delta value used for
 security. It is used as vulnerability window.
 If the nonces in received packet exceeds the range
 indicated by this value, the packet MUST be
 discarded.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.4.";
 }
 leaf nonce-increasing-interval {
 type uint16;
 units "seconds";
 description
 "The configurable nonce increasing interval.";
 }
 leaf adjusted-lifetime {
 type rt-types:timer-value-seconds16;
 units "seconds";
 description
 "The adjusted lifetime may affect the TIE stability.
 Be careful to change this parameter.
 This SHOULD be prohibited less than 2*purge-lifetime.";
 }
 container rx-lie-multicast-addr {
 leaf ipv4 {
 type inet:ipv4-address;
 default "224.0.0.121";
 description
 "The configurable LIE receiving IPv4 multicast
 address.
 Different multicast addresses can be used for
 receiving and sending.";
 }
 leaf ipv6 {
 type inet:ipv6-address;
 default "ff02::a1f7";
 description
 "The configurable LIE receiving IPv6 multicast
 address.
 Different multicast addresses can be used for
 receiving and sending.";
 }
 description
 "The configurable LIE receiving IPv4/IPv6 multicast
 address.
 Different multicast addresses can be used for
 receiving and sending.";
 }
 container tx-lie-multicast-addr {
 leaf ipv4 {
 type inet:ipv4-address;
 description
 "The configurable LIE sending IPv4 multicast
 address.
 Different multicast addresses can be used for
 receiving and sending.";
 }
 leaf ipv6 {
 type inet:ipv6-address;
 description
 "The configurable LIE sending IPv6 multicast
 address.
 Different multicast addresses can be used for
 receiving and sending.";
 }
 description
 "The configurable LIE sending IPv4/IPv6 multicast
 address.
 Different multicast addresses can be used for
 receiving and sending.";
 }
 leaf lie-tx-port {
 type inet:port-number;
 default "914";
 description
 "The UDP port of LIE packet sending. The default port
 number is 914. The value can be set to other value
 associated with different RIFT instance.";
 }
 container global-link-capabilities {
 uses link-capabilities;
 description
 "The node default link capabilities. It can be
 overwritten by the configuration underneath interface
 and neighbor.";
 }
 leaf tide-generation-interval {
 type rt-types:timer-value-seconds16;
 units "seconds";
 description
 "The TIDE generation interval.";
 }
 list tie-security {
 if-feature "tie-security";
 key "security-type";
 uses security;
 description
 "The security function used for the TIE exchange.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.3.";
 }
 leaf inner-security-key-id {
 type uint8;
 description
 "The inner security key id for received packet
 checking.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.3.";
 }
 leaf algorithm-type {
 type enumeration {
 enum spf {
 description
 "The algorithm is SPF.";
 }
 enum all-path {
 description
 "The algorithm is all-path.";
 }
 }
 description
 "The possible algorithm types.";
 }
 container hal {
 config false;
 leaf hal-value {
 type level;
 description
 "The highest defined level value seen from all
 valid level offers received.";
 }
 leaf-list system-ids {
 type system-id;
 description
 "The node's system-id of the offered level comes
 from.";
 }
 description
 "The highest defined level and the offered nodes set.";
 }
 leaf-list miscabled-links {
 type uint32;
 config false;
 description
 "List of miscabled links.";
 }
 leaf hop-limit {
 type uint8 {
 range "1 | 255";
 }
 default "1";
 description
 "The IPv4 TTL or IPv6 HL used for LIE and TIE
 sending/receiving.";
 }
 leaf maximum-clock-delta {
 type ieee802-1as-timestamp;
 description
 "The maximum drift for the timestamp comparing.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.8.4.";
 }
 }
 list interfaces {
 key "name";
 leaf link-id {
 type uint32;
 config false;
 description
 "The local id of this interface.";
 }
 leaf name {
 type if:interface-ref;
 description
 "The interface's name.";
 }
 leaf cost {
 type uint32;
 description
 "The cost from this interface to the neighbor.";
 }
 leaf rx-flood-port {
 type inet:port-number;
 default "915";
 description
 "The UDP port which is used to receive flooded
 TIEs. The default port number is 915. The value
 can be set to other value associated with different
 RIFT instance.";
 }
 leaf holdtime {
 type rt-types:timer-value-seconds16;
 units "seconds";
 default "3";
 description
 "The holding time of LIE.";
 }
 uses address-families;
 container advertised-source-addr {
 uses addresses;
 description
 "The address used in the advertised LIE and TIE
 packets.";
 }
 uses link-direction-type;
 leaf broadcast-capable {
 type boolean;
 description
 "If LIE can be received by broadcast address.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.2.";
 }
 leaf allow-horizontal-link {
 type boolean;
 description
 "If horizontal link adjacency is allowed.";
 }
 container security {
 if-feature "link-security";
 uses security;
 description
 "The security function used for this interface.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.9.3.";
 }
 leaf security-checking {
 type enumeration {
 enum no-checking {
 description
 "The security envelope does not be checked.";
 }
 enum permissive {
 description
 "The security envelope checking is permissive.";
 }
 enum loose {
 description
 "The security envelope checking is loose.";
 }
 enum strict {
 description
 "The security envelope checking is strict.";
 }
 }
 description
 "The possible security checking types.
 Only one type can be set at the same time.";
 }
 leaf was-the-last-lie-accepted {
 type boolean;
 config false;
 description
 "If the value is set to 'true', it means that
 the most recently received LIE was accepted.
 If the LIE was rejected, the neighbor error
 notifications should be used to find the reason.";
 }
 leaf last-lie-reject-reason {
 type string;
 config false;
 description
 "Description for the reject reason of the last LIE.";
 }
 container advertised-in-lies {
 config false;
 uses lie-elements;
 description
 "The attributes advertised in the LIEs from
 this interface.";
 }
 container link-capabilities {
 uses link-capabilities;
 description
 "The interface's link capabilities.";
 }
 leaf state {
 type enumeration {
 enum one-way {
 description
 "The initial state.";
 }
 enum two-way {
 description
 "Valid LIE received but not a ThreeWay LIE.";
 }
 enum three-way {
 description
 "Valid ThreeWay LIE received.";
 }
 enum multiple-neighbors-wait {
 description
 "More than two neighbors found in the same link.";
 }
 }
 config false;
 mandatory true;
 description
 "The states of LIE finite state machine.";
 reference
 "RFC 9692: RIFT: Routing in Fat Trees.
 Section 6.2.1.";
 }
 list neighbors {
 key "system-id";
 config false;
 uses base-node-info;
 uses neighbor;
 leaf local-nonce {
 type uint16;
 description
 "The exchanged local nonce with this neighbor.";
 }
 leaf remote-nonce {
 type uint16;
 description
 "The exchanged remote nonce to this neighbor.";
 }
 action clear-neighbor {
 description
 "Clears the connection to the neighbor.";
 }
 description
 "The neighbor's information.";
 }
 action clear-all-neighbors {
 description
 "Clears all the connections to the neighbors
 on this interface.";
 }
 description
 "The interface information on this node.";
 } // list interface
 container statistics {
 config false;
 container global {
 leaf total-num-routes-north {
 type yang:zero-based-counter32;
 config false;
 description
 "The total number of north routes.";
 }
 leaf total-num-routes-south {
 type yang:zero-based-counter32;
 config false;
 description
 "The total number of south routes.";
 }
 description
 "The global routes number.";
 }
 list spf-statistics {
 key "spf-direction-type";
 uses spf-direction-type;
 leaf start-time {
 type yang:date-and-time;
 description
 "The last SPF calculation start time.";
 }
 leaf end-time {
 type yang:date-and-time;
 description
 "The last SPF calculation end time.";
 }
 container triggering-tie {
 uses tie-header;
 description
 "The TIE that triggered the SPF.";
 }
 action clear-spf-statistics {
 description
 "Clears the statistics of this type of
 SPF calculation.";
 }
 description
 "The statistics of SPF calculation.";
 }
 list interfaces {
 key "name";
 leaf name {
 type if:interface-ref;
 description
 "The interface's name.";
 }
 container intf-states-statistics {
 leaf intf-states-startup-time {
 type uint64;
 description
 "The states and statistics record startup time
 of the interface.";
 }
 leaf num-of-nbrs-3way {
 type yang:zero-based-counter32;
 description
 "The number of neighbors which state is in
 ThreeWay.";
 }
 leaf num-of-nbrs-down {
 type yang:zero-based-counter32;
 description
 "The number of neighbors which state
 changed to down.";
 }
 list nbrs-down-reasons {
 key "system-id";
 leaf system-id {
 type system-id;
 description
 "The system-id of neighbor.";
 }
 leaf last-down-reason {
 type string;
 description
 "The last down reason of the neighbor.";
 }
 description
 "The down neighbors and reasons.";
 }
 leaf num-local-level-change {
 type yang:zero-based-counter32;
 description
 "The number of local level changes.";
 }
 leaf number-of-flaps {
 type yang:zero-based-counter32;
 config false;
 description
 "The number of interface state flaps.";
 }
 leaf last-state-change {
 type yang:date-and-time;
 config false;
 description
 "Time duration in the current state.";
 }
 leaf last-up {
 type yang:date-and-time;
 config false;
 description
 "The last time of up.";
 }
 leaf last-down {
 type yang:date-and-time;
 config false;
 description
 "The last time of down.";
 }
 container intf-lie-states {
 leaf last-lie-sent-time {
 type uint64;
 description
 "The time of the last LIE sent.";
 }
 leaf last-lie-received-time {
 type uint64;
 description
 "The time of the last LIE received.";
 }
 leaf num-lie-received {
 type yang:zero-based-counter32;
 description
 "The number of received LIEs.";
 }
 leaf num-lie-transmitted {
 type yang:zero-based-counter32;
 description
 "The number of transmitted LIEs.";
 }
 leaf num-lie-drop-invalid-envelope {
 type yang:zero-based-counter32;
 description
 "The number of dropped LIEs due to
 invalid outer envelope.";
 }
 leaf num-lie-drop-invalid-nonce {
 type yang:zero-based-counter32;
 description
 "The number of dropped LIEs due to
 invalid nonce.";
 }
 leaf num-lie-corrupted {
 type yang:zero-based-counter32;
 description
 "The number of corrupted LIEs received.";
 }
 description
 "The LIE's statistics of this interface.";
 }
 description
 "The states and statistics of this interface.";
 }
 container flood-repeater-statistics {
 leaf flood-repeater {
 type system-id;
 description
 "The system-id of the current flood repeater.
 If this leaf has no value, that means the neighbor
 is not flood repeater.";
 }
 leaf num-flood-repeater-changes {
 type yang:zero-based-counter32;
 description
 "The number of flood repeater changes.";
 }
 leaf last-flood-repeater-change-reason {
 type string;
 description
 "The reason of the last flood repeater change.";
 }
 description
 "The flood repeater statistics.";
 }
 action clear-intf-statistics {
 description
 "Clears the statistics of this interface.";
 }
 description
 "The statistics of interfaces.";
 }
 list neighbors {
 key "system-id";
 leaf system-id {
 type system-id;
 description
 "The system-id of the neighbor.";
 }
 container tie-state-statistics {
 leaf transmit-queue {
 type yang:zero-based-counter32;
 description
 "The length of TIE transmit queue.";
 }
 container last-queued-tie {
 uses tie-header;
 leaf reason-queued {
 type string;
 description
 "The queued reason of the last queued TIE.";
 }
 description
 "The last queued TIE for transmit.";
 }
 leaf num-received-ties {
 type yang:zero-based-counter32;
 description
 "The number of TIEs received.";
 }
 leaf num-transmitted-ties {
 type yang:zero-based-counter32;
 description
 "The number of TIEs transmitted.";
 }
 leaf num-retransmitted-ties {
 type yang:zero-based-counter32;
 description
 "The number of TIEs retransmitted.";
 }
 leaf num-flood-reduced-ties {
 type yang:zero-based-counter32;
 description
 "The number of TIEs that were flood reduced.";
 }
 leaf num-received-tides {
 type yang:zero-based-counter32;
 description
 "The number of TIDEs received.";
 }
 leaf num-transmitted-tides {
 type yang:zero-based-counter32;
 description
 "The number of TIDEs transmitted.";
 }
 leaf num-received-tires {
 type yang:zero-based-counter32;
 description
 "The number of TIREs received.";
 }
 leaf num-transmitted-tires {
 type yang:zero-based-counter32;
 description
 "The number of TIREs transmitted.";
 }
 leaf num-request-locally {
 type yang:zero-based-counter32;
 description
 "The number of TIEs requested locally.";
 }
 leaf num-request-remotely {
 type yang:zero-based-counter32;
 description
 "The number of TIEs requested by the neighbor.";
 }
 leaf num-same-older-ties-received {
 type yang:zero-based-counter32;
 description
 "The number of times of the same or older TIE
 has been received.";
 }
 leaf num-seq-mismatch-pkts-received {
 type yang:zero-based-counter32;
 description
 "The number of packets with sequence number
 mismatches.";
 }
 container last-sent-tie {
 uses tie-header;
 leaf last-tie-sent-time {
 type yang:date-and-time;
 description
 "The time of the last TIE sent.";
 }
 description
 "The information of the last sent TIE.";
 }
 container last-recv-tie {
 uses tie-header;
 leaf last-tie-recv-time {
 type yang:date-and-time;
 description
 "The time of the last TIE received.";
 }
 description
 "The information of the last received TIE.";
 }
 container largest-tie {
 container largest-tie-sent {
 uses tie-header;
 description
 "The largest TIE sent.";
 }
 container largest-tide-sent {
 uses tie-header;
 description
 "The largest TIDE sent.";
 }
 container largest-tire-sent {
 uses tie-header;
 description
 "The largest TIRE sent.";
 }
 description
 "The largest sent TIE, TIDE and TIRE.";
 }
 container num-tie-dropped {
 leaf num-tie-outer-envelope {
 type yang:zero-based-counter32;
 description
 "The total number of TIEs dropped due to
 invalid outer envelope.";
 }
 leaf num-tie-inner-envelope {
 type yang:zero-based-counter32;
 description
 "The total number of TIEs dropped due to
 invalid inner envelope.";
 }
 leaf num-tie-nonce {
 type yang:zero-based-counter32;
 description
 "The total number of TIEs dropped due to
 invalid nonce.";
 }
 description
 "The total number of TIEs dropped due to
 security reasons.";
 }
 description
 "The statistics of TIE, TIDE, TIRE
 exchanging with this neighbor.";
 }
 action clear-nbr-statistics {
 description
 "Clears the statistics of this neighbor.";
 }
 description
 "The statistics of neighbors.";
 }
 description
 "The statistics collection.";
 }
 container database {
 config false;
 list ties {
 key "tie-direction-type originator tie-type tie-number";
 description
 "A list of TIEs (Topology Information Elements).";
 uses tie-header;
 container node {
 leaf level {
 type level;
 config false;
 description
 "The level of this node.";
 }
 list neighbors {
 key "system-id";
 uses base-node-info;
 uses neighbor-node;
 description
 "The node TIE information of a neighbor.";
 }
 uses node-capability;
 leaf overload-flag {
 type boolean;
 description
 "If the value is set to 'true', it means that
 the overload bit in TIEs is set.";
 }
 leaf name {
 type string;
 description
 "The name of this node. It won't be used as the
 key of node, just used for description.";
 }
 leaf pod {
 type uint32;
 description
 "Point of Delivery. The self-contained vertical
 slice of a Clos or Fat Tree network containing
 normally only level 0 and level 1 nodes. It
 communicates with nodes in other PoDs via the
 spine. We number PoDs to distinguish them and
 use PoD #0 to denote 'undefined' PoD.";
 }
 leaf startup-time {
 type uint64;
 description
 "Startup time of the node.";
 }
 leaf-list miscabled-links {
 type uint32;
 config false;
 description
 "List of miscabled links.";
 }
 leaf-list same-plane-tofs {
 type system-id;
 config false;
 description
 "ToFs in the same plane. Only carried by ToF.
 Multiple Node TIEs can carry disjoint sets of
 ToFs which MUST be joined to form a single
 set.";
 }
 leaf fabric-id {
 type uint32;
 config false;
 description
 "The optional ID of the Fabric configured.";
 }
 description
 "The node element information in this TIE.";
 } // node
 container prefixes {
 description
 "The prefix element information in this TIE.";
 list prefixes {
 key "prefix";
 leaf prefix {
 type inet:ip-prefix;
 description
 "The prefix information.";
 }
 uses tie-type;
 uses prefix-attribute;
 description
 "The prefix set information.";
 }
 }
 container key-value {
 leaf key {
 type binary;
 description
 "The type of key value combination.";
 }
 leaf value {
 type binary;
 description
 "The value of key value combination.";
 }
 description
 "The information used to distinguish a Key/Value
 pair. When the type of kv is set to 'node',
 node-element is making sense. When the type of
 kv is set to other values except 'node',
 prefix-info is making sense.";
 } // kv-store
 } // ties
 description
 "The TIEs information in database.";
 } // container database
 description
 "RIFT configuration and state data.";
 } //rift
 } //augment

 /*
 * Notifications
 */

 notification error-set {
 description
 "The errors notification of RIFT.";
 container tie-level-error {
 description
 "The TIE errors notification of RIFT.";
 list rift {
 key "name";
 leaf name {
 type string;
 description
 "The RIFT instance's name.";
 }
 list ties {
 key "originator";
 uses tie-header;
 description
 "The level is undefined in the LIEs.";
 }
 description
 "The TIE errors set.";
 }
 }
 container neighbor-error {
 description
 "The neighbor errors notification of RIFT.";
 list rift {
 key "name";
 leaf name {
 type string;
 description
 "The RIFT instance's name.";
 }
 list interfaces {
 key "name";
 leaf link-id {
 type uint32;
 description
 "The local id of this interface.";
 }
 leaf name {
 type if:interface-ref;
 description
 "The interface's name.";
 }
 list neighbors {
 key "system-id";
 leaf system-id {
 type system-id;
 description
 "Each node is identified via a system-id which is 64
 bits wide.";
 }
 leaf node-level {
 type level;
 description
 "The level of this node.";
 }
 description
 "The level of the neighbor is wrong.";
 }
 description
 "The interfaces with wrong level neighbor.";
 }
 description
 "The RIFT instance.";
 }
 }
 }
}

 Security Considerations
 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such as
 NETCONF or RESTCONF . The lowest NETCONF layer is the
 secure transport layer, and the mandatory-to-implement secure transport
 is Secure Shell (SSH) . The
 lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure
 transport is TLS .
 The Network Configuration Access Control Model provides the means to restrict access for particular
 NETCONF or RESTCONF users to a preconfigured subset of all available
 NETCONF or RESTCONF protocol operations and content.
 There are a number of data nodes defined in this YANG module that are
writable/creatable/deletable (i.e., config true, which is the default). These
data nodes may be considered sensitive or vulnerable in some network
environments. Write operations (e.g., edit-config) to these data nodes
without proper protection can have a negative effect on network operations.
 These are the subtrees and data nodes and their sensitivity/vulnerability:

 /rift

 Modifying the configuration may cause all the RIFT neighborships to
 be rebuilt. For example, changing the configuration of configured-level
 or system-id will lead to all the neighbor connections of this node
 being rebuilt. The incorrect modification of authentication, except for
 the broken neighbor connection, will break the connection permanently.
 The modification of interface will cause the neighbor state to change.
 In general, unauthorized modification of most RIFT configurations will
 pose their own set of security risks and the "Security Considerations"
 in the respective RFCs referenced should be consulted.
 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 /rift

 /rift/global/tie-security

 /rift/interface

 /rift/interface/neighbor

 /rift/database

 The exposure of the database will expose the detailed topology
	of the network. Network operators may consider their topologies
	to be sensitive confidential data.
 For RIFT authentication, configuration is supported via the
 specification of key chains or the direct
 specification of key and authentication algorithm.
 Hence, authentication configuration inherits the security
 considerations of . This includes the
 considerations with respect to the
 local storage and handling of authentication keys.
 The actual authentication key data (whether locally specified
 or part of a key chain) is sensitive and needs to be kept secret
 from unauthorized parties. Compromise of the key data would allow
 an attacker to forge RIFT packets that would be accepted as
 authentic, potentially compromising the entire domain.
 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations.
These are the operations and their sensitivity/vulnerability:

 /rift/interface/clear-all-neighbors

 /rift/interface/neighbor/clear-neighbor

 /rift/statistics/spf-statistics/clear-spf-statistics

 /rift/statistics/interface/clear-intf-statistics

 /rift/statistics/interface/neighbors/clear-nbr-statistics

 Unauthorized access to either of the above action operations can
 lead to the neighbor connection rebuilding or clearing of
 statistics on this device.

 IANA Considerations
 Per this document, IANA has registered a URI in the IETF XML registry
 .
 Following the format in , the following
 registration has been made:

 URI:
 urn:ietf:params:xml:ns:yang:ietf-rift
 Registrant Contact:
 The IESG
 XML:
 N/A; the requested URI is an XML namespace.

 One new YANG module name has been registered in the YANG
 Module Names registry as follows:

 Name:
 ietf-rift
 Namespace:
 urn:ietf:params:xml:ns:yang:ietf-rift
 Prefix:
 rift
 Reference:
 RFC 9719

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Bidirectional Forwarding Detection (BFD) for IPv4 and IPv6 (Single Hop)

 This document describes the use of the Bidirectional Forwarding Detection (BFD) protocol over IPv4 and IPv6 for single IP hops. [STANDARDS-TRACK]

 YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)

 YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. [STANDARDS-TRACK]

 Network Configuration Protocol (NETCONF)

 The Network Configuration Protocol (NETCONF) defined in this document provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages. The NETCONF protocol operations are realized as remote procedure calls (RPCs). This document obsoletes RFC 4741. [STANDARDS-TRACK]

 Using the NETCONF Protocol over Secure Shell (SSH)

 This document describes a method for invoking and running the Network Configuration Protocol (NETCONF) within a Secure Shell (SSH) session as an SSH subsystem. This document obsoletes RFC 4742. [STANDARDS-TRACK]

 Common YANG Data Types

 This document introduces a collection of common data types to be used with the YANG data modeling language. This document obsoletes RFC 6021.

 The YANG 1.1 Data Modeling Language

 YANG is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols. This document describes the syntax and semantics of version 1.1 of the YANG language. YANG version 1.1 is a maintenance release of the YANG language, addressing ambiguities and defects in the original specification. There are a small number of backward incompatibilities from YANG version 1. This document also specifies the YANG mappings to the Network Configuration Protocol (NETCONF).

 RESTCONF Protocol

 This document describes an HTTP-based protocol that provides a programmatic interface for accessing data defined in YANG, using the datastore concepts defined in the Network Configuration Protocol (NETCONF).

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 YANG Data Model for Key Chains

 This document describes the key chain YANG data model. Key chains are commonly used for routing protocol authentication and other applications requiring symmetric keys. A key chain is a list containing one or more elements containing a Key ID, key string, send/accept lifetimes, and the associated authentication or encryption algorithm. By properly overlapping the send and accept lifetimes of multiple key chain elements, key strings and algorithms may be gracefully updated. By representing them in a YANG data model, key distribution can be automated.

 Common YANG Data Types for the Routing Area

 This document defines a collection of common data types using the YANG data modeling language. These derived common types are designed to be imported by other modules defined in the routing area.

 YANG Tree Diagrams

 This document captures the current syntax used in YANG module tree diagrams. The purpose of this document is to provide a single location for this definition. This syntax may be updated from time to time based on the evolution of the YANG language.

 Network Configuration Access Control Model

 The standardization of network configuration interfaces for use with the Network Configuration Protocol (NETCONF) or the RESTCONF protocol requires a structured and secure operating environment that promotes human usability and multi-vendor interoperability. There is a need for standard mechanisms to restrict NETCONF or RESTCONF protocol access for particular users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. This document defines such an access control model.
 This document obsoletes RFC 6536.

 Network Management Datastore Architecture (NMDA)

 Datastores are a fundamental concept binding the data models written in the YANG data modeling language to network management protocols such as the Network Configuration Protocol (NETCONF) and RESTCONF. This document defines an architectural framework for datastores based on the experience gained with the initial simpler model, addressing requirements that were not well supported in the initial model. This document updates RFC 7950.

 A YANG Data Model for Interface Management

 This document defines a YANG data model for the management of network interfaces. It is expected that interface-type-specific data models augment the generic interfaces data model defined in this document. The data model includes definitions for configuration and system state (status information and counters for the collection of statistics).
 The YANG data model in this document conforms to the Network Management Datastore Architecture (NMDA) defined in RFC 8342.
 This document obsoletes RFC 7223.

 A YANG Data Model for Routing Management (NMDA Version)

 This document specifies three YANG modules and one submodule. Together, they form the core routing data model that serves as a framework for configuring and managing a routing subsystem. It is expected that these modules will be augmented by additional YANG modules defining data models for control-plane protocols, route filters, and other functions. The core routing data model provides common building blocks for such extensions -- routes, Routing Information Bases (RIBs), and control-plane protocols.
 The YANG modules in this document conform to the Network Management Datastore Architecture (NMDA). This document obsoletes RFC 8022.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 Registration Extensions for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery

 This specification updates RFC 6775 -- the Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery specification -- to clarify the role of the protocol as a registration technique and simplify the registration operation in 6LoWPAN routers, as well as to provide enhancements to the registration capabilities and mobility detection for different network topologies, including the Routing Registrars performing routing for host routes and/or proxy Neighbor Discovery in a low-power network.

 RIFT: Routing in Fat Trees

 This document defines a specialized, dynamic routing protocol for Clos, fat tree, and variants thereof. These topologies were initially used within crossbar interconnects and consequently router and switch backplanes, but their characteristics make them ideal for constructing IP fabrics as well. The protocol specified by this document is optimized towards the minimization of control plane state to support very large substrates as well as the minimization of configuration and operational complexity to allow for a simplified deployment of said topologies.

 Informative References

 IEEE Standard for Local and Metropolitan Area Networks - Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks

 IEEE

 The IETF XML Registry

 This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.

 Guidelines for Authors and Reviewers of Documents Containing YANG Data Models

 This memo provides guidelines for authors and reviewers of specifications containing YANG modules. Recommendations and procedures are defined, which are intended to increase interoperability and usability of Network Configuration Protocol (NETCONF) and RESTCONF protocol implementations that utilize YANG modules. This document obsoletes RFC 6087.

 Subscription to YANG Notifications

 This document defines a YANG data model and associated mechanisms enabling subscriber-specific subscriptions to a publisher's event streams. Applying these elements allows a subscriber to request and receive a continuous, customized feed of publisher-generated information.

 Subscription to YANG Notifications for Datastore Updates

 This document describes a mechanism that allows subscriber applications to request a continuous and customized stream of updates from a YANG datastore. Providing such visibility into updates enables new capabilities based on the remote mirroring and monitoring of configuration and operational state.

 Acknowledgments
 The authors would like to thank , , (), and
 for their review, valuable comments, and
 suggestions.

 Authors' Addresses

 ZTE Corporation

 zhang.zheng@zte.com.cn

 ZTE Corporation

 wei.yuehua@zte.com.cn

 Google

 mashaowen@gmail.com

 Individual

 xufeng.liu.ietf@gmail.com

 Individual

 brunorijsman@gmail.com

