

qpdf-7.1.0/make_windows_releases

#!/bin/sh

if [! -d external-libs]; then
 echo "Please extract qpdf-external-libs-bin.zip and try again"
 exit 2
fi

if echo $PATH | grep -q /mingw64; then
 wordsize=64
else
 wordsize=32
fi

set -e
set -x
cwd=`pwd`
PATH=$cwd/libqpdf/build:$PATH

rm -rf install-mingw$wordsize install-msvc$wordsize

./config-mingw
make -j8
make check install
make distclean

./config-msvc
make -j8
make check install
make distclean

set +x

echo ''
echo "Finished builds for $wordsize. If not done already, rerun this"
echo "in a" `expr 96 - $wordsize` "environment."
echo 'Then run "./make_windows_releases-finish".'
echo ''

qpdf-7.1.0/configure.ac

dnl Process this file with autoconf to produce a configure script.
dnl This config.in requires autoconf 2.5 or greater.

AC_PREREQ([2.68])
AC_INIT([qpdf],[7.1.0])

AC_CONFIG_MACRO_DIR([m4])
AC_CONFIG_FILES([autoconf.mk])
AC_CONFIG_FILES([manual/html.xsl manual/print.xsl])
AC_CONFIG_FILES([libqpdf.pc])
AC_CONFIG_FILES([libqpdf.map])
AC_CONFIG_HEADERS([libqpdf/qpdf/qpdf-config.h])

AC_PROG_CC
AC_PROG_CC_C99
AC_PROG_CXX
AC_HEADER_STDC
LT_INIT([win32-dll])

* If any interfaces have been removed or changed, or if any private
member variables or virtual functions have been added to any
class, we are not binary compatible. Increment LT_CURRENT, and set
LT_AGE and LT_REVISION to 0.
#
* Otherwise, if any interfaces have been added since the last public
release, then increment LT_CURRENT and LT_AGE, and set LT_REVISION
to 0.
#
* Otherwise, increment LT_REVISION

LT = libtool
LT_CURRENT=20
LT_AGE=2
LT_REVISION=0
AC_SUBST(LT_CURRENT)
AC_SUBST(LT_REVISION)
AC_SUBST(LT_AGE)
LT_SONAME=$(expr $LT_CURRENT - $LT_AGE)
BEGIN LT_SONAME WORKAROUND
For elf versioned symbols, get the soname version. Unfortunately,
there was a mistake at one point where we had 19 when we should have
had 18, so make this a special case until the next ABI change. At
that point, just remove the code deliminated by the LT_SONAME
WORKAROUND comments.
if test $LT_SONAME = 18; then
 LT_SONAME=19
elif test $LT_SONAME -gt 18; then
 AC_MSG_ERROR(Remove LT_SONAME workaround in configure.ac)
fi
END LT_SONAME WORKAROUND
AC_SUBST(LT_SONAME)

AC_ARG_ENABLE(insecure-random,
 AS_HELP_STRING([--enable-insecure-random],
 [whether to use stdlib's random number generator (default is no)]),
 [if test "$enableval" = "yes"; then
 qpdf_INSECURE_RANDOM=1;
 else
 qpdf_INSECURE_RANDOM=0;
 fi], [qpdf_INSECURE_RANDOM=0])
if test "$qpdf_INSECURE_RANDOM" = "1"; then
 AC_MSG_RESULT(yes)
 AC_DEFINE([USE_INSECURE_RANDOM], [1], [Whether to use insecure random numbers])
else
 AC_MSG_RESULT(no)
fi

AC_ARG_ENABLE(os-secure-random,
 AS_HELP_STRING([--enable-os-secure-random],
 [whether to try to use OS-provided secure random numbers (default is yes)]),
 [if test "$enableval" = "yes"; then
 qpdf_OS_SECURE_RANDOM=1;
 else
 qpdf_OS_SECURE_RANDOM=0;
 fi], [qpdf_OS_SECURE_RANDOM=1])
if test "$qpdf_OS_SECURE_RANDOM" = "1"; then
 AC_MSG_RESULT(yes)
else
 AC_MSG_RESULT(no)
 AC_DEFINE([SKIP_OS_SECURE_RANDOM], [1], [Whether to suppres use of OS-provided secure random numbers])
fi

AX_RANDOM_DEVICE

USE_EXTERNAL_LIBS=0
AC_MSG_CHECKING(for whether to use external libraries distribution)
AC_ARG_ENABLE(external-libs,
 AS_HELP_STRING([--enable-external-libs],
		 [whether to use external libraries distribution]),
 [if test "$enableval" = "yes"; then
 USE_EXTERNAL_LIBS=1;
 else
 USE_EXTERNAL_LIBS=0;
 fi], [BUILD_INTERNAL_LIBS=0])
if test "$BUILD_INTERNAL_LIBS" = "0"; then
 AC_MSG_RESULT(no)
else
 AC_MSG_RESULT(yes)
fi

WINDOWS_WORDSIZE=
AC_SUBST(WINDOWS_WORDSIZE)
AC_ARG_WITH(windows-wordsize,
 AS_HELP_STRING([--with-windows-wordsize={32,64}],
		 [Windows only: whether this is a 32-bit or 64-bit build; required if external-libs are enabled]),
 [WINDOWS_WORDSIZE=$withval],
 [WINDOWS_WORDSIZE=none])
if test "$USE_EXTERNAL_LIBS" = "1"; then
 AC_MSG_CHECKING(for windows wordsize)
 AC_MSG_RESULT($WINDOWS_WORDSIZE)
 if ! test "$WINDOWS_WORDSIZE" = "32" -o "$WINDOWS_WORDSIZE" = "64"; then
 AC_MSG_ERROR(Windows wordsize of 32 or 64 must be specified if external libs are being used.)
 fi
fi

if test "$BUILD_INTERNAL_LIBS" = "0"; then
 AC_CHECK_HEADER(zlib.h,,[MISSING_ZLIB_H=1; MISSING_ANY=1])
 AC_SEARCH_LIBS(deflate,z zlib,,[MISSING_ZLIB=1; MISSING_ANY=1])
 AC_CHECK_HEADER(jpeglib.h,,[MISSING_JPEG_H=1; MISSING_ANY=1])
 AC_SEARCH_LIBS(jpeg_destroy,jpeg,,[MISSING_JPEG=1; MISSING_ANY=1])
fi

if test "x$qpdf_OS_SECURE_RANDOM" = "x1"; then
 OLIBS=$LIBS
 LIBS="$LIBS Advapi32.lib"
 AC_MSG_CHECKING(for Advapi32 library)
 AC_LINK_IFELSE([AC_LANG_PROGRAM(
 [[#pragma comment(lib, "crypt32.lib")
 #include <windows.h>
 #include <wincrypt.h>
 HCRYPTPROV cp;]],
 [CryptAcquireContext(&cp, NULL, NULL, PROV_RSA_FULL, 0);]
)],
 [AC_MSG_RESULT(yes)
 LIBS="$OLIBS -lAdvapi32"],
 [AC_MSG_RESULT(no)
 LIBS=$OLIBS])
fi

QPDF_LARGE_FILE_TEST_PATH=
AC_SUBST(QPDF_LARGE_FILE_TEST_PATH)
AC_ARG_WITH(large-file-test-path,
 AS_HELP_STRING([--with-large-file-test-path=path],
		 [To enable testing of files > 4GB, give the path to a directory with at least 11 GB free. The test suite will write temporary files to this directory. Alternatively, just set the QPDF_LARGE_FILE_TEST_PATH environment variable to the path before running the test suite.]),
 [QPDF_LARGE_FILE_TEST_PATH=$withval],
 [QPDF_LARGE_FILE_TEST_PATH=])

AC_SYS_LARGEFILE
AC_FUNC_FSEEKO
AC_CHECK_FUNCS([fseeko64])
AC_TYPE_UINT16_T
AC_TYPE_UINT32_T

AC_CHECK_FUNCS(random)

Check if LD supports linker scripts, and define conditional
HAVE_LD_VERSION_SCRIPT if so. This functionality is currently
constrained to compilers using GNU ld on ELF systems or systems
which provide an adequate emulation thereof.
AC_ARG_ENABLE([ld-version-script],
 AS_HELP_STRING([--enable-ld-version-script],
 [enable linker version script (default is enabled)]),
 [have_ld_version_script=$enableval], [have_ld_version_script=yes])
if test "$have_ld_version_script" != no; then
 AC_MSG_CHECKING([if LD -Wl,--version-script works])
 save_LDFLAGS="$LDFLAGS"
 LDFLAGS="$LDFLAGS -Wl,--version-script=conftest.map"
 cat > conftest.map <<EOF
VERS_1 {
 global: sym;
};

VERS_2 {
 global: sym;
} VERS_1;
EOF
 AC_LINK_IFELSE([AC_LANG_PROGRAM([], [])],
 [have_ld_version_script=yes], [have_ld_version_script=no])
 rm -f conftest.map
 LDFLAGS="$save_LDFLAGS"
 AC_MSG_RESULT($have_ld_version_script)
fi
if test "$have_ld_version_script" = "yes"; then
 HAVE_LD_VERSION_SCRIPT=1
else
 HAVE_LD_VERSION_SCRIPT=0
fi
AC_SUBST(HAVE_LD_VERSION_SCRIPT)

make_okay=0
for make_prog in make gmake; do
 this_make_okay=0
 AC_MSG_CHECKING(for gnu make >= 3.81 ($make_prog))
 if $make_prog --version >/dev/null 2>&1; then
 v=`$make_prog --version | grep 'GNU Make' | sed -e 's/.*Make //'`
 maj=`echo $v | cut -d. -f 1`
 min=`echo $v | cut -d. -f 2`
 if test $maj -gt 3 -o '(' $maj -eq 3 -a $min -ge 81 ')'; then
 this_make_okay=1
 make_okay=1
 fi
 fi
 if test "$this_make_okay" = "1"; then
 AC_MSG_RESULT(yes)
 else
 AC_MSG_RESULT(no)
 fi
done

if test "$make_okay" = "0"; then
 dnl Don't set MISSING_ANY=1 -- maybe user calls make something else
 MISSING_MAKE_381=1
 ISSUE_WARNINGS=1
fi

AC_SUBST(GENDEPS)
GENDEPS=0
AC_MSG_CHECKING(for whether $CC supports -MD -MF x.dep -MP)
oCFLAGS=$CFLAGS
rm -f x.dep
CFLAGS="$CFLAGS -MD -MF x.dep -MP"
AC_COMPILE_IFELSE([AC_LANG_PROGRAM(
 [[#include <stdio.h>]], [[FILE* a = stdout]]
)],
 [qpdf_DEPFLAGS=yes],
 [qpdf_DEPFLAGS=no])
CFLAGS=$oCFLAGS
if test "$qpdf_DEPFLAGS" = "yes"; then
 if ! grep stdio.h x.dep >/dev/null 2>&1; then
 qpdf_DEPFLAGS=no
 fi
fi
rm -f x.dep
if test "$qpdf_DEPFLAGS" = "yes"; then
 AC_MSG_RESULT(yes)
 GENDEPS=1
else
 AC_MSG_RESULT(no)
fi

AC_MSG_CHECKING(which build rules to use)
AC_SUBST(BUILDRULES)
AC_ARG_WITH(buildrules,
 AS_HELP_STRING([--with-buildrules=rules],
		 [which build rules to use; see README.md]),
 [BUILDRULES=$withval],
 [BUILDRULES=libtool])
AC_MSG_RESULT($BUILDRULES)

AC_SUBST(WFLAGS)
AC_SUBST(CXXWFLAGS)
qpdf_USE_EXTRA_WARNINGS=0
if test "$BUILDRULES" = "msvc"; then
 dnl /w14996 makes warning 4996 a level 1 warning. This warning
 dnl reports on functions that Microsoft considers unsafe or
 dnl deprecated. Removing these warnings helps people who want to
 dnl write applications based on qpdf that can be Windows 8
 dnl certified.
 try_flags="-w14996"
else
 try_flags="-Wall"
fi
AC_MSG_CHECKING(for whether $CC supports $try_flags)
oCFLAGS=$CFLAGS
CFLAGS="$CFLAGS $try_flags"
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[int a = 1; int b = a; a = b;]])],
 [qpdf_USE_EXTRA_WARNINGS=1],[qpdf_USE_EXTRA_WARNINGS=0])
CFLAGS=$oCFLAGS
if test "$qpdf_USE_EXTRA_WARNINGS" = "1"; then
 AC_MSG_RESULT(yes)
 WFLAGS="$try_flags"
else
 AC_MSG_RESULT(no)
fi
if test "$BUILDRULES" != "msvc"; then
 qpdf_USE_EXTRA_WARNINGS=0
 try_flags="-Wold-style-cast"
 AC_MSG_CHECKING(for whether $CXX supports $try_flags)
 oCXXFLAGS=$CXXFLAGS
 CXXFLAGS="$CXXFLAGS $try_flags"
 AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[int a = 1; int b = a; a = b;]])],
 [qpdf_USE_EXTRA_WARNINGS=1],[qpdf_USE_EXTRA_WARNINGS=0])
 CXXFLAGS=$oCXXFLAGS
 if test "$qpdf_USE_EXTRA_WARNINGS" = "1"; then
 AC_MSG_RESULT(yes)
 CXXWFLAGS="$try_flags"
 else
 AC_MSG_RESULT(no)
 fi
fi

if test "$BUILDRULES" = "msvc"; then
 try_flags=-FS
 AC_MSG_CHECKING(for whether $CC supports $try_flags)
 oCFLAGS=$CFLAGS
 CFLAGS="$CFLAGS $try_flags"
 AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[int a = 1; int b = a; a = b;]])],
 [qpdf_USE_FS=1],[qpdf_USE_FS=0])
 if test "$qpdf_USE_FS" = "1"; then
 AC_MSG_RESULT(yes)
 CXXFLAGS="$CXXFLAGS $try_flags"
 else
 AC_MSG_RESULT(no)
 CFLAGS=$oCFLAGS
 fi
fi

if test "$BUILDRULES" = "msvc"; then
 try_flags="-WX"
else
 try_flags="-Werror"
fi
AC_MSG_CHECKING(for whether to use $try_flags)
AC_ARG_ENABLE(werror,
 AS_HELP_STRING([--enable-werror],
 [whether to treat warnings as errors (default is no)]),
 [if test "$enableval" = "yes"; then
 qpdf_USE_WERROR=1;
 else
 qpdf_USE_WERROR=0;
 fi], [qpdf_USE_WERROR=0])
if test "$qpdf_USE_WERROR" = "1"; then
 AC_MSG_RESULT(yes)
 WFLAGS="$WFLAGS $try_flags"
else
 AC_MSG_RESULT(no)
fi

AC_SUBST(QPDF_SKIP_TEST_COMPARE_IMAGES)
AC_ARG_ENABLE(test-compare-images,
 AS_HELP_STRING([--enable-test-compare-images],
		 [whether to compare images in test suite; disabled by default, enabling requires ghostscript and tiffcmp to be available]),
 [if test "$enableval" = "no"; then
 QPDF_SKIP_TEST_COMPARE_IMAGES=1
 else
 QPDF_SKIP_TEST_COMPARE_IMAGES=0
 fi],
 [QPDF_SKIP_TEST_COMPARE_IMAGES=1])

AC_SUBST(SHOW_FAILED_TEST_OUTPUT)
AC_ARG_ENABLE(show-failed-test-output,
 AS_HELP_STRING([--enable-show-failed-test-output],
		 [if specified, write failed test output to the console; useful for building on build servers where you can't easily open the test output files]),
 [if test "$enableval" = "no"; then
 SHOW_FAILED_TEST_OUTPUT=0
 else
 SHOW_FAILED_TEST_OUTPUT=1
 fi],
 [SHOW_FAILED_TEST_OUTPUT=0])

AC_ARG_WITH(docbook-xsl,
 AS_HELP_STRING([--with-docbook-xsl=DIR],
		 [location of docbook 4.x xml stylesheets]),
 [DOCBOOK_XSL=$withval],
 [DOCBOOK_XSL=/usr/share/xml/docbook/stylesheet/nwalsh])

DOCBOOK_XHTML=
AC_SUBST(DOCBOOK_XHTML)
AC_MSG_CHECKING(for xml to xhtml docbook stylesheets)
if test -f "$DOCBOOK_XSL/xhtml/docbook.xsl"; then
 DOCBOOK_XHTML="$DOCBOOK_XSL/xhtml/docbook.xsl"
 AC_MSG_RESULT($DOCBOOK_XHTML)
else
 AC_MSG_RESULT(no)
fi
DOCBOOK_FO=
AC_SUBST(DOCBOOK_FO)
AC_MSG_CHECKING(for xml to fo docbook stylesheets)
if test -f "$DOCBOOK_XSL/fo/docbook.xsl"; then
 DOCBOOK_FO="$DOCBOOK_XSL/fo/docbook.xsl"
 AC_MSG_RESULT($DOCBOOK_FO)
else
 AC_MSG_RESULT(no)
fi

DOCBOOKX_DTD=
AC_SUBST(DOCBOOKX_DTD)
AC_ARG_WITH(docbookx-dtd,
 AS_HELP_STRING([--with-docbookx-dtd=FILE],
		 [location of docbook 4.x xml DTD]),
 [DOCBOOKX_DTD=$withval],
 [DOCBOOKX_DTD=/usr/share/xml/docbook/schema/dtd/4/docbookx.dtd])
AC_MSG_CHECKING(for docbook 4.x xml DTD)
if test -f "$DOCBOOKX_DTD"; then
 AC_MSG_RESULT($DOCBOOKX_DTD)
else
 AC_MSG_RESULT(no)
fi

AC_CHECK_PROG(FOP,fop,fop,[])
AC_CHECK_PROG(XSLTPROC,xsltproc,xsltproc,[])
AC_CHECK_PROG(XMLLINT,xmllint,xmllint,[])

AC_ARG_ENABLE(doc-maintenance,
 AS_HELP_STRING([--enable-doc-maintenance],
		 [if set, enables all documentation options]),
 [if test "$enableval" = "yes"; then
 doc_default=1;
 else
 doc_default=0;
 fi],
 [doc_default=0])

BUILD_HTML=0
AC_SUBST(BUILD_HTML)
AC_ARG_ENABLE(html-doc,
 AS_HELP_STRING([--enable-html-doc],
		 [whether to build HTML documents]),
 [if test "$enableval" = "yes"; then
 BUILD_HTML=1;
 else
 BUILD_HTML=0;
 fi],
 [BUILD_HTML=$doc_default])
BUILD_PDF=0
AC_SUBST(BUILD_PDF)
AC_ARG_ENABLE(pdf-doc,
 AS_HELP_STRING([--enable-pdf-doc],
		 [whether to build PDF documents]),
 [if test "$enableval" = "yes"; then
 BUILD_PDF=1;
 else
 BUILD_PDF=0;
 fi],
 [BUILD_PDF=$doc_default])
VALIDATE_DOC=0
AC_SUBST(VALIDATE_DOC)
AC_ARG_ENABLE(validate-doc,
 AS_HELP_STRING([--enable-validate-doc],
		 [whether to validate xml document source]),
 [if test "$enableval" = "yes"; then
 VALIDATE_DOC=1;
 else
 VALIDATE_DOC=0;
 fi],
 [VALIDATE_DOC=$doc_default])

if test "$VALIDATE_DOC" = "1"; then
 if test "$XMLLINT" = ""; then
 MISSING_XMLLINT=1
 MISSING_ANY=1
 fi
fi
if test "$BUILD_HTML" = "1"; then
 if test "$XSLTPROC" = ""; then
 MISSING_XSLTPROC=1
 MISSING_ANY=1
 fi
 if test "$DOCBOOK_XHTML" = ""; then
 MISSING_DOCBOOK_XHTML=1
 MISSING_ANY=1
 fi
fi
if test "$BUILD_PDF" = "1"; then
 if test "$XSLTPROC" = ""; then
 MISSING_XSLTPROC=1
 MISSING_ANY=1
 fi
 if test "$DOCBOOK_FO" = ""; then
 MISSING_DOCBOOK_FO=1
 MISSING_ANY=1
 fi
 if test "$FOP" = ""; then
 MISSING_FOP=1
 MISSING_ANY=1
 fi
fi

if test "$MISSING_ANY" = "1"; then
 ISSUE_WARNINGS=1
fi
if test "$ISSUE_WARNINGS" = "1"; then
 echo ""
 echo ""
fi

if test "$MISSING_MAKE_381" = "1"; then
 AC_MSG_WARN(gnu make >= 3.81 is required)
fi

if test "$MISSING_ZLIB_H" = "1"; then
 AC_MSG_WARN(unable to find required header zlib.h)
fi

if test "$MISSING_ZLIB" = "1"; then
 AC_MSG_WARN(unable to find required library z (or zlib))
fi

if test "$MISSING_JPEG_H" = "1"; then
 AC_MSG_WARN(unable to find required header jpeglib.h)
fi

if test "$MISSING_JPEG" = "1"; then
 AC_MSG_WARN(unable to find required library jpeg)
fi

if test "$MISSING_DOCBOOK_FO" = "1"; then
 AC_MSG_WARN(docbook fo stylesheets are required to build PDF documentation)
fi

if test "$MISSING_DOCBOOK_XHTML" = "1"; then
 AC_MSG_WARN(docbook xhmtl stylesheets are required to build HTML documentation)
fi

if test "$MISSING_FOP" = "1"; then
 AC_MSG_WARN(apache fop is required to build PDF documentation)
fi

if test "$MISSING_XMLLINT" = "1"; then
 AC_MSG_WARN(xmllint is required to validate documentation)
fi

if test "$MISSING_XSLTPROC" = "1"; then
 AC_MSG_WARN(xsltproc is required to build documentation)
fi

if test "$ISSUE_WARNINGS" = "1"; then
 echo ""
 echo ""
fi

if test "$MISSING_ANY" = "1"; then
 AC_MSG_ERROR(some required prerequisites were not found)
fi

Do this last so it doesn't interfere with other tests.
if test "$USE_EXTERNAL_LIBS" = "1"; then
 # Don't actually check for the presence of this -- we document that
 # the user can run this and then edit autoconf.mk if they have too
 # much trouble getting it to work with a different compiler.
 CPPFLAGS="$CPPFLAGS -Iexternal-libs/include"
 LDFLAGS="$LDFLAGS -Lexternal-libs/lib-$BUILDRULES$WINDOWS_WORDSIZE"
 LIBS="$LIBS -lz -ljpeg"
fi

AC_OUTPUT

qpdf-7.1.0/Artistic-2.0

Artistic License 2.0

Copyright (c) 2000-2006, The Perl Foundation.

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

This license establishes the terms under which a given free software
Package may be copied, modified, distributed, and/or
redistributed. The intent is that the Copyright Holder maintains some
artistic control over the development of that Package while still
keeping the Package available as open source and free software.

You are always permitted to make arrangements wholly outside of this
license directly with the Copyright Holder of a given Package. If the
terms of this license do not permit the full use that you propose to
make of the Package, you should contact the Copyright Holder and seek
a different licensing arrangement.

Definitions

 "Copyright Holder" means the individual(s) or organization(s) named
 in the copyright notice for the entire Package.

 "Contributor" means any party that has contributed code or other
 material to the Package, in accordance with the Copyright Holder's
 procedures.

 "You" and "your" means any person who would like to copy,
 distribute, or modify the Package.

 "Package" means the collection of files distributed by the
 Copyright Holder, and derivatives of that collection and/or of
 those files. A given Package may consist of either the Standard
 Version, or a Modified Version.

 "Distribute" means providing a copy of the Package or making it
 accessible to anyone else, or in the case of a company or
 organization, to others outside of your company or organization.

 "Distributor Fee" means any fee that you charge for Distributing
 this Package or providing support for this Package to another
 party. It does not mean licensing fees.

 "Standard Version" refers to the Package if it has not been
 modified, or has been modified only in ways explicitly requested by
 the Copyright Holder.

 "Modified Version" means the Package, if it has been changed, and
 such changes were not explicitly requested by the Copyright Holder.

 "Original License" means this Artistic License as Distributed with
 the Standard Version of the Package, in its current version or as
 it may be modified by The Perl Foundation in the future.

 "Source" form means the source code, documentation source, and
 configuration files for the Package.

 "Compiled" form means the compiled bytecode, object code, binary,
 or any other form resulting from mechanical transformation or
 translation of the Source form.

Permission for Use and Modification Without Distribution

(1) You are permitted to use the Standard Version and create and use
Modified Versions for any purpose without restriction, provided that
you do not Distribute the Modified Version.

Permissions for Redistribution of the Standard Version

(2) You may Distribute verbatim copies of the Source form of the
Standard Version of this Package in any medium without restriction,
either gratis or for a Distributor Fee, provided that you duplicate
all of the original copyright notices and associated disclaimers. At
your discretion, such verbatim copies may or may not include a
Compiled form of the Package.

(3) You may apply any bug fixes, portability changes, and other
modifications made available from the Copyright Holder. The resulting
Package will still be considered the Standard Version, and as such
will be subject to the Original License.

Distribution of Modified Versions of the Package as Source

(4) You may Distribute your Modified Version as Source (either gratis
or for a Distributor Fee, and with or without a Compiled form of the
Modified Version) provided that you clearly document how it differs
from the Standard Version, including, but not limited to, documenting
any non-standard features, executables, or modules, and provided that
you do at least ONE of the following:

 (a) make the Modified Version available to the Copyright Holder of
 the Standard Version, under the Original License, so that the
 Copyright Holder may include your modifications in the Standard
 Version.

 (b) ensure that installation of your Modified Version does not
 prevent the user installing or running the Standard Version. In
 addition, the Modified Version must bear a name that is different
 from the name of the Standard Version.

 (c) allow anyone who receives a copy of the Modified Version to
 make the Source form of the Modified Version available to others
 under

 (i) the Original License or

 (ii) a license that permits the licensee to freely copy, modify
 and redistribute the Modified Version using the same licensing
 terms that apply to the copy that the licensee received, and
 requires that the Source form of the Modified Version, and of
 any works derived from it, be made freely available in that
 license fees are prohibited but Distributor Fees are allowed.
 Distribution of Compiled Forms of the Standard Version or
 Modified Versions without the Source

(5) You may Distribute Compiled forms of the Standard Version without
the Source, provided that you include complete instructions on how to
get the Source of the Standard Version. Such instructions must be
valid at the time of your distribution. If these instructions, at any
time while you are carrying out such distribution, become invalid, you
must provide new instructions on demand or cease further
distribution. If you provide valid instructions or cease distribution
within thirty days after you become aware that the instructions are
invalid, then you do not forfeit any of your rights under this
license.

(6) You may Distribute a Modified Version in Compiled form without the
Source, provided that you comply with Section 4 with respect to the
Source of the Modified Version.

Aggregating or Linking the Package

(7) You may aggregate the Package (either the Standard Version or
Modified Version) with other packages and Distribute the resulting
aggregation provided that you do not charge a licensing fee for the
Package. Distributor Fees are permitted, and licensing fees for other
components in the aggregation are permitted. The terms of this license
apply to the use and Distribution of the Standard or Modified Versions
as included in the aggregation.

(8) You are permitted to link Modified and Standard Versions with
other works, to embed the Package in a larger work of your own, or to
build stand-alone binary or bytecode versions of applications that
include the Package, and Distribute the result without restriction,
provided the result does not expose a direct interface to the Package.

Items That are Not Considered Part of a Modified Version

(9) Works (including, but not limited to, modules and scripts) that
merely extend or make use of the Package, do not, by themselves, cause
the Package to be a Modified Version. In addition, such works are not
considered parts of the Package itself, and are not subject to the
terms of this license.

General Provisions

(10) Any use, modification, and distribution of the Standard or
Modified Versions is governed by this Artistic License. By using,
modifying or distributing the Package, you accept this license. Do not
use, modify, or distribute the Package, if you do not accept this
license.

(11) If your Modified Version has been derived from a Modified Version
made by someone other than you, you are nevertheless required to
ensure that your Modified Version complies with the requirements of
this license.

(12) This license does not grant you the right to use any trademark,
service mark, tradename, or logo of the Copyright Holder.

(13) This license includes the non-exclusive, worldwide,
free-of-charge patent license to make, have made, use, offer to sell,
sell, import and otherwise transfer the Package with respect to any
patent claims licensable by the Copyright Holder that are necessarily
infringed by the Package. If you institute patent litigation
(including a cross-claim or counterclaim) against any party alleging
that the Package constitutes direct or contributory patent
infringement, then this Artistic License to you shall terminate on the
date that such litigation is filed.

(14) Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE COPYRIGHT
HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED TO THE EXTENT
PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO COPYRIGHT
HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING IN ANY WAY OUT OF THE USE
OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

qpdf-7.1.0/zlib-flate/build.mk

TARGETS_zlib-flate = \
	zlib-flate/$(OUTPUT_DIR)/$(call binname,zlib-flate)

$(TARGETS_zlib-flate): $(TARGETS_libqpdf)

INCLUDES_zlib-flate = include

SRCS_zlib-flate = zlib-flate/zlib-flate.cc

OBJS_zlib-flate = $(call src_to_obj,$(SRCS_zlib-flate))

ifeq ($(GENDEPS),1)
-include $(call obj_to_dep,$(OBJS_zlib-flate))
endif

$(OBJS_zlib-flate): zlib-flate/$(OUTPUT_DIR)/%.$(OBJ): zlib-flate/%.cc
	$(call compile,$<,$(INCLUDES_zlib-flate))

zlib-flate/$(OUTPUT_DIR)/$(call binname,zlib-flate): $(OBJS_zlib-flate)
	$(call makebin,$(OBJS_zlib-flate),$@,$(LDFLAGS) $(LDFLAGS_libqpdf),$(LIBS_libqpdf) $(LIBS))

qpdf-7.1.0/zlib-flate/Makefile

include ../make/proxy.mk

qpdf-7.1.0/zlib-flate/qtest/1.uncompressed

Once upon a time there lived three qowws. They didn't like poridge
much, so they had salad for breakfast. Goldilocks, upon breaking and
entering, found this to be distasteful and so she just went away
without eating any. This somewhat short-circuited the story. The
End.

qpdf-7.1.0/zlib-flate/qtest/zf.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

require TestDriver;

my $td = new TestDriver('zlib-flate');

$td->runtest("compress",
	 {$td->COMMAND => "zlib-flate -compress < 1.uncompressed"},
	 {$td->FILE => "1.compressed",
	 $td->EXIT_STATUS => 0});

$td->runtest("uncompress",
	 {$td->COMMAND => "zlib-flate -uncompress < 1.compressed"},
	 {$td->FILE => "1.uncompressed",
	 $td->EXIT_STATUS => 0});

$td->runtest("error",
	 {$td->COMMAND => "zlib-flate -uncompress < 1.uncompressed"},
	 {$td->REGEXP => "flate: inflate: data: .*\n",
	 $td->EXIT_STATUS => 2},
	 $td->NORMALIZE_NEWLINES);

$td->report(3);

qpdf-7.1.0/zlib-flate/qtest/1.compressed

qpdf-7.1.0/zlib-flate/qtest/1.compressed

Once upon a time there lived three qowws. They didn't like poridge
much, so they had salad for breakfast. Goldilocks, upon breaking and
entering, found this to be distasteful and so she just went away
without eating any. This somewhat short-circuited the story. The
End.

qpdf-7.1.0/zlib-flate/zlib-flate.cc

#include <qpdf/Pl_Flate.hh>
#include <qpdf/Pl_StdioFile.hh>
#include <qpdf/QUtil.hh>

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <stdlib.h>
#include <fcntl.h>

static char const* whoami = 0;

void usage()
{
 std::cerr << "Usage: " << whoami << " { -uncompress | -compress }"
	 << std::endl;
 exit(2);
}

int main(int argc, char* argv[])
{
 if ((whoami = strrchr(argv[0], '/')) == NULL)
 {
	whoami = argv[0];
 }
 else
 {
	++whoami;
 }
 // For libtool's sake....
 if (strncmp(whoami, "lt-", 3) == 0)
 {
	whoami += 3;
 }

 if ((argc == 2) && (strcmp(argv[1], "--version") == 0))
 {
	std::cout << whoami << " version 1.0" << std::endl;
	exit(0);
 }

 if (argc != 2)
 {
	usage();
 }

 Pl_Flate::action_e action = Pl_Flate::a_inflate;

 if ((strcmp(argv[1], "-uncompress") == 0))
 {
	// okay
 }
 else if ((strcmp(argv[1], "-compress") == 0))
 {
	action = Pl_Flate::a_deflate;
 }
 else
 {
	usage();
 }

 QUtil::binary_stdout();
 QUtil::binary_stdin();
 Pl_StdioFile* out = new Pl_StdioFile("stdout", stdout);
 Pl_Flate* flate = new Pl_Flate("flate", out, action);

 try
 {
	unsigned char buf[10000];
	bool done = false;
	while (! done)
	{
	 size_t len = fread(buf, 1, sizeof(buf), stdin);
	 if (len <= 0)
	 {
		done = true;
	 }
	 else
	 {
		flate->write(buf, len);
	 }
	}
	flate->finish();
	delete flate;
	delete out;
 }
 catch (std::exception& e)
 {
	std::cerr << e.what() << std::endl;
	exit(2);
 }

 return 0;
}

qpdf-7.1.0/Makefile

This makefile is inspired by abuild (http://www.abuild.org), which
was used during the development of qpdf. The goal here is to have a
non-recursive build with all the proper dependencies so we can start
the build from anywhere and get the right stuff. Each directory has
a build.mk that is included from here and is written from this
directory's perspective. Each directory also has a proxy Makefile
that allows you to start the build from any directory and get
reasonable semantics for the all, check, and clean targets.

Our "build items" are directories. They are listed here such that
no item precedes any item it depends on. Therefore, each item can
safely reference variables set in its predecessors.

For each build item B, you can run make build_B, make check_B, or
make clean_B to build, test, or clean B. Full dependencies are
represented across all the items, so it is possible to start
anywhere. From the top level, the "all", "check", and "clean"
targets build, test, or clean everything.

To run test suites without rebuilding, pass NO_REBUILD=1 to the
build. This can be useful for testing binary interface compatibility
as it enables you to rebuild libraries and rerun tests without
relinking.

Although this is not a GNU package and does not use automake, you
can still run make clean to remove everything that is compiled, make
distclean to remove everything that is generated by the end user,
and make maintainer-clean to remove everything that is generated
including things distributed with the source distribution. You can
pass CLEAN=1 to prevent this Makefile from complaining if
./configure has not been run.

The install target works as usual and obeys --prefix and so forth
passed to ./configure. You can also pass DESTDIR=/dir to make
install to install in a separate location. This is useful for
packagers.

BUILD_ITEMS := manual libqpdf zlib-flate libtests qpdf examples
OUTPUT_DIR = build
ALL_TARGETS =

.PHONY: default
default: all

CLEAN ?=
ifneq ($(CLEAN),1)
ifeq ($(words $(wildcard autoconf.mk)),0)
DUMMY := $(shell echo 1>&2)
DUMMY := $(shell echo 1>&2 Please run ./configure before running $(MAKE))
DUMMY := $(shell echo 1>&2)
$(error unable to continue with build)
endif

autoconf.mk:

include autoconf.mk

endif

Prevent gnu make from trying to rebuild .dep files
$(foreach B,$(BUILD_ITEMS),$(eval \
 $(B)/$(OUTPUT_DIR)/%.dep: ;))

Prevent gnu make from trying to rebuild .mk files
$(foreach B,$(BUILD_ITEMS),$(eval \
 $(B)/%.mk: ;))
%.mk: ;
make/%.mk: ;

BUILDRULES ?= libtool
include make/rules.mk

DUMMY := $(shell mkdir $(foreach B,$(BUILD_ITEMS),$(B)/$(OUTPUT_DIR)) 2>/dev/null)

include $(foreach B,$(BUILD_ITEMS),$(B)/build.mk)

ALL_TARGETS = $(foreach B,$(BUILD_ITEMS),$(TARGETS_$(B)))

TEST_ITEMS = $(foreach D,\
 $(wildcard $(foreach B,$(BUILD_ITEMS),$(B)/qtest)),\
 $(subst /,,$(dir $(D))))

TEST_TARGETS = $(foreach B,$(TEST_ITEMS),check_$(B))

CLEAN_TARGETS = $(foreach B,$(BUILD_ITEMS),clean_$(B))

For test suites
export QPDF_BIN = $(abspath qpdf/$(OUTPUT_DIR)/qpdf)
export QPDF_SKIP_TEST_COMPARE_IMAGES
export QPDF_LARGE_FILE_TEST_PATH

clean:: $(CLEAN_TARGETS)

.PHONY: $(CLEAN_TARGETS)
$(foreach B,$(BUILD_ITEMS),$(eval \
 clean_$(B): ; \
	$(RM) -r $(B)/$(OUTPUT_DIR)))

AUTOFILES = configure aclocal.m4 libqpdf/qpdf/qpdf-config.h.in
autofiles.zip: $(AUTOFILES)
	$(RM) autofiles.zip
	zip autofiles.zip $(AUTOFILES)

distclean: clean
	$(RM) -r autoconf.mk autom4te.cache config.log config.status libtool
	$(RM) libqpdf/qpdf/qpdf-config.h
	$(RM) manual/html.xsl
	$(RM) manual/print.xsl
	$(RM) doc/*.1
	$(RM) libqpdf.pc libqpdf.map

maintainer-clean: distclean
	$(RM) configure doc/qpdf-manual.* libqpdf/qpdf/qpdf-config.h.in
	$(RM) aclocal.m4
	$(RM) -r install-mingw install-msvc external-libs
	$(RM) autofiles.zip

.PHONY: $(TEST_TARGETS)

NO_REBUILD ?=
ifneq ($(NO_REBUILD),1)
$(foreach B,$(TEST_ITEMS),$(eval \
 check_$(B): $(TARGETS_$(B))))
endif

.PHONY: $(foreach B,$(BUILD_ITEMS),build_$(B))
$(foreach B,$(BUILD_ITEMS),$(eval \
 build_$(B): $(TARGETS_$(B))))

.PHONY: all
all: $(ALL_TARGETS) ;

check: $(TEST_TARGETS)

Install targets are in the make directory in the rules-specific make
fragments.

QTEST=$(abspath qtest/bin/qtest-driver)
$(TEST_TARGETS):
	$(call run_qtest,$(subst check_,,$@))

qpdf-7.1.0/aclocal.m4

generated automatically by aclocal 1.15 -*- Autoconf -*-

Copyright (C) 1996-2014 Free Software Foundation, Inc.

This file is free software; the Free Software Foundation
gives unlimited permission to copy and/or distribute it,
with or without modifications, as long as this notice is preserved.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY, to the extent permitted by law; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

m4_ifndef([AC_CONFIG_MACRO_DIRS], [m4_defun([_AM_CONFIG_MACRO_DIRS], [])m4_defun([AC_CONFIG_MACRO_DIRS], [_AM_CONFIG_MACRO_DIRS($@)])])
m4_include([m4/ax_random_device.m4])
m4_include([m4/libtool.m4])
m4_include([m4/ltoptions.m4])
m4_include([m4/ltsugar.m4])
m4_include([m4/ltversion.m4])
m4_include([m4/lt~obsolete.m4])

qpdf-7.1.0/config-mingw

#!/bin/sh
set -e
set -x
if echo $PATH | grep -q /mingw64; then
 wordsize=64
else
 wordsize=32
fi
./configure --disable-test-compare-images --enable-external-libs --enable-werror --with-windows-wordsize=$wordsize --with-buildrules=mingw ${1+"$@"}

qpdf-7.1.0/README-windows.md

Common Setup
============

You may need to disable antivirus software to run qpdf's test suite. Running Windows Defender on Windows 10 does not interfere with building or running qpdf or its test suite.

To be able to build qpdf and run its test suite, you must have MSYS2 installed. This replaces the old process of having a mixture of msys, mingw-w64, and ActiveState perl. It is now possible to do everything with just MSYS2.

Here's what I did on my system:

* Download msys2 (64-bit) from msys2.org
* Run the installer.
* Run msys2_shell.cmd by allowing the installer to start it.
* From the prompt:
 * Run `pacman -Syuu` and follow the instructions, which may tell you
 to close the window and rerun the command multiple times.
 * `pacman -S make base-devel git zip unzip`
 * `pacman -S mingw-w64-x86_64-toolchain mingw-w64-i686-toolchain`

If you would like to build with Microsoft Visual C++, install a suitable Microsoft Visual Studio edition. In early 2016, 2015 community edition with C++ support is fine. It may crash a few times during installation, but repeating the installation will allow it to finish, and the resulting software is stable.

To build qpdf with Visual Studio, start the msys2 mingw32 or mingw64 shell from a command window started from one of the Visual Studio shell windows. You must use the mingw shell for the same word size (32 or 64 bit) as the Windows compiler since the MSVC build uses objdump from the msys distribution. You must also have it inherit the path. For example:

* Start x64 native tools command prompt from msvc
* `set MSYS2_PATH_TYPE=inherit`
* `C:\msys64\mingw64`

Image comparison tests are disabled by default, but it is possible to run them on Windows. To do so, add `--enable-test-compare-images` from the configure statements given below and install some additional third-party dependencies. These may be provided in an environment such as MSYS or Cygwin or can be downloaded separately for other environments. You may extract or install the following software into separate folders each and add the `bin` folder to your `PATH` environment variable to make executables and DLLs available. If installers are provided, they might do that already by default.

* [LibJpeg](http://gnuwin32.sourceforge.net/packages/jpeg.htm): This archive provides some needed DLLs needed by LibTiff.
* [LibTiff](http://gnuwin32.sourceforge.net/packages/tiff.htm): This archive provides some needed binaries and DLLs if you want to use the image comparison tests. It depends on some DLLs from LibJpeg.
* [GhostScript](http://www.ghostscript.com/download/gsdnld.html): GhostScript is needed for image comparison tests. It's important that the binary is available as `gs`, while its default name is `gswin32[c].exe`. You can either copy one of the original files, use `mklink` to create a hard/softlink, or provide a custom `gs.cmd` wrapper that forwards all arguments to one of the original binaries. Using `mklink` with `gswin32c.exe` is probably the best choice.

External Libraries

In order to build qpdf, you must have a copy of `zlib` and the `jpeg` library. The easy way to get it is to download the external libs from the qpdf download area. There are packages called `external-libs-bin.zip` and `external-libs-src.zip`. If you are building with MSVC 2015 or MINGW with MSYS2, you can just extract the `qpdf-external-libs-bin.zip` zip file into the top-level qpdf source tree. Note that you need the 2017-08-21 version (at least) to build qpdf 7.0 or greater since this includes jpeg. Passing `--enable-external-libs` to `./configure` (which is done automatically if you follow the instructions below) is sufficient to find them.

You can also obtain `zlib` and `jpeg` directly on your own and install them. If you are using mingw, you can just set `CPPFLAGS`, `LDFLAGS`, and `LIBS` when you run ./configure so that it can find the header files and libraries. If you are building with MSVC and you want to do this, it probably won't work because `./configure` doesn't know how to interpret `LDFLAGS` and `LIBS` properly for MSVC (though qpdf's own build system does). In this case, you can probably get away with cheating by passing `--enable-external-libs` to `./configure` and then just editing `CPPFLAGS`, `LDFLAGS`, `LIBS` in the generated autoconf.mk file. Note that you should use UNIX-like syntax (`-I`, `-L`, `-l`) even though this is not what cl takes on the command line. qpdf's build rules will fix it.

You can also download `qpdf-external-libs-src.zip` and follow the instructions in the README.txt there for how to build external libs.

Building from version control

If you check out qpdf from version control, you will not have the files that are generated by autoconf. If you are not changing these files, you can grab them from a source distribution or create them from a system that has autoconf. To create them from scratch, run `./autogen.sh` on a system that has autoconf installed. Once you have them, you can run `make CLEAN=1 autofiles.zip`. This will create an autofiles.zip that you can extract on top of a fresh checkout.

Building with MinGW

QPDF is known to build and pass its test suite with MSYS2 using the 32-bit and 64-bit compilers. MSYS2 is required to build as well in order to get make and other related tools. See common setup at the top of this file for installation and configuration of MSYS2. Then, from the suitable 32-bit or 64-bit environment, run

```
./config-mingw
make
```

Note that `./config-mingw` just runs `./configure` with specific arguments, so you can look at it, make adjustments, and manually run configure instead.

Add the absolute path to the `libqpdf/build` directory to your `PATH`. Make sure you can run the qpdf command by typing qpdf/build/qpdf and making sure you get a help message rather than an error loading the DLL or no output at all. Run the test suite by typing

```
make check
```

If all goes well, you should get a passing test suite.

To create an installation directory, run `make install`. This will create `install-mingw/qpdf-VERSION` and populate it. The binary download of qpdf for Windows with mingw is created from this directory.

You can also take a look at `make_windows_releases` for reference. This is how the distributed Windows executables are created.

Building with MSVC 2015

These instructions would likely work with newer versions of MSVC and are known to have worked with versions as old as 2008 Express.

You should first set up your environment to be able to run MSVC from the command line. There is usually a batch file included with MSVC that does this. Make sure that you start a command line environment configured for whichever of 32-bit or 64-bit output that you intend to build for.

From that cmd prompt, you can start your MSYS2 shell with path inheritance as described above.

Configure and build as follows:

```
./config-msvc
make
```

Note that `./config-msvc` just runs `./configure` with specific arguments, so you can look at it, make adjustments, and manually run configure instead.

NOTE: automated dependencies are not generated with the msvc build. If you're planning on making modifications, you should probably work with mingw. If there is a need, I can add dependency information to the msvc build, but since I only use it for generating release versions, I haven't bothered.

Once built, add the full path to the `libqpdf/build` directory to your path and run

```
make check
```

to run the test suite.

If you are building with MSVC and want to debug a crash in MSVC's debugger, first start an instance of Visual C++. Then run qpdf. When the abort/retry/ignore dialog pops up, first attach the process from within visual C++, and then click Retry in qpdf.

A release version of qpdf is built by default. If you want to link against debugging libraries, you will have to change `/MD` to `/MDd` in `make/msvc.mk`. Note that you must redistribute the Microsoft runtime DLLs. Linking with static runtime (`/MT`) won't work; see "Static Runtime" below for details.

Runtime DLLs

Both build methods create executables and DLLs that are dependent on the compiler's runtime DLLs. When you run make install, the installation process will automatically detect the DLLs and copy them into the installation bin directory. Look at the `copy_dlls` script for details on how this is accomplished.

Redistribution of the runtime DLL is unavoidable as of this writing; see "Static Runtime" below for details.

Static Runtime

Building the DLL and executables with static runtime does not work with either Visual C++ .NET 2008 (a.k.a. vc9) using `/MT` or with mingw (at least as of 4.4.0) using `-static-libgcc`. The reason is that, in both cases, there is static data involved with exception handling, and when the runtime is linked in statically, exceptions cannot be thrown across the DLL to EXE boundary. Since qpdf uses exception handling extensively for error handling, we have no choice but to redistribute the C++ runtime DLLs. Maybe this will be addressed in a future version of the compilers. This has not been retested with the toolchain versions used to create qpdf >= 3.0 distributions. This has not been revisited since MSVC 2008, but redistributing runtime DLLs is extremely common and should not be a problem.

qpdf-7.1.0/make_dist

#!/usr/bin/env perl
#
This program creates a source distribution of qpdf. For details,
see README-maintainer.md.
#

require 5.008;
use warnings;
use strict;
use File::Basename;
use Cwd;
use IO::File;

my $whoami = basename($0);

usage() unless @ARGV >= 1;
my $srcdir = shift(@ARGV);
my $run_tests = 1;
if (@ARGV)
{
 if ($ARGV[0] eq '--no-tests')
 {
	$run_tests = 0;
 }
 else
 {
	usage();
 }
}
$srcdir =~ s,/$,,;
usage() unless $srcdir =~ m/^qpdf-(\d+\.\d+(?:\.(a|b|rc)?\d+)?)$/;
my $version = $1;
usage() unless -d $srcdir;

my $pwd = getcwd();
cd($srcdir);

Check versions
my $fh = safe_open("configure.ac");
my $config_version = 'unknown';
while (<$fh>)
{
 if (m/^AC_INIT\(\[qpdf\],\[([^\)]+)\]\)/)
 {
	$config_version = $1;
	last;
 }
}
$fh->close();

$fh = safe_open("libqpdf/QPDF.cc");
my $code_version = 'unknown';
while (<$fh>)
{
 if (m/QPDF::qpdf_version = \"([^\"]+)\"/)
 {
	$code_version = $1;
	last;
 }
}
$fh->close();

$fh = safe_open("manual/qpdf-manual.xml");
my $doc_version = 'unknown';
while (<$fh>)
{
 if (m/swversion "([^\"]+)\"/)
 {
	$doc_version = $1;
	last;
 }
}
$fh->close();

my $version_error = 0;
if ($version ne $config_version)
{
 print "$whoami: configure.ac version = $config_version\n";
 $version_error = 1;
}
if ($version ne $code_version)
{
 print "$whoami: QPDF.cc version = $code_version\n";
 $version_error = 1;
}
if ($version ne $doc_version)
{
 print "$whoami: qpdf-manual.xml version = $doc_version\n";
 $version_error = 1;
}
if ($version_error)
{
 die "$whoami: version numbers are not consistent\n";
}

run("./autogen.sh");
run("./configure --enable-doc-maintenance --enable-werror");
run("make -j8 build_manual");
run("make distclean");
cd($pwd);
run("tar czvf $srcdir.tar.gz-candidate $srcdir");
if ($run_tests)
{
 cd($srcdir);
 run("./configure");
 run("make -j8");
 run("make check");
 cd($pwd);
}
rename "$srcdir.tar.gz-candidate", "$srcdir.tar.gz" or die;

print "
Source distribution created as $srcdir.tar.gz
You can now remove $srcdir.
If this is a release, don't forget to tag the version control system and
make a backup of the release tar file.

";

sub safe_open
{
 my $file = shift;
 my $fh = new IO::File("<$file") or die "$whoami: can't open $file: $!";
 $fh;
}

sub run
{
 my $cmd = shift;
 system($cmd) == 0 or die "$whoami: $cmd failed\n";
}

sub cd
{
 my $dir = shift;
 chdir($dir) or die;
}

sub usage
{
 die "
Usage: $whoami qpdf-version [--no-tests]

qpdf-version must be a directory containing a pristine export of that
version of qpdf from the version control system. Use of --no-tests
can be used for internally testing releases, but do not use it for a
real release.

";
}

qpdf-7.1.0/ltmain.sh

#! /bin/sh
DO NOT EDIT - This file generated from ./build-aux/ltmain.in
by inline-source v2014-01-03.01

libtool (GNU libtool) 2.4.6
Provide generalized library-building support services.
Written by Gordon Matzigkeit <gord@gnu.ai.mit.edu>, 1996

Copyright (C) 1996-2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

GNU Libtool is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
#
As a special exception to the GNU General Public License,
if you distribute this file as part of a program or library that
is built using GNU Libtool, you may include this file under the
same distribution terms that you use for the rest of that program.
#
GNU Libtool is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

PROGRAM=libtool
PACKAGE=libtool
VERSION="2.4.6 Debian-2.4.6-2"
package_revision=2.4.6

Usage.

Run './libtool --help' for help with using this script from the
command line.

User overridable command paths.

After configure completes, it has a better idea of some of the
shell tools we need than the defaults used by the functions shared
with bootstrap, so set those here where they can still be over-
ridden by the user, but otherwise take precedence.

: ${AUTOCONF="autoconf"}
: ${AUTOMAKE="automake"}

Source external libraries.

Much of our low-level functionality needs to be sourced from external
libraries, which are installed to $pkgauxdir.

Set a version string for this script.
scriptversion=2015-01-20.17; # UTC

General shell script boiler plate, and helper functions.
Written by Gary V. Vaughan, 2004

Copyright (C) 2004-2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

As a special exception to the GNU General Public License, if you distribute
this file as part of a program or library that is built using GNU Libtool,
you may include this file under the same distribution terms that you use
for the rest of that program.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNES FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Please report bugs or propose patches to gary@gnu.org.

Usage.

Evaluate this file near the top of your script to gain access to
the functions and variables defined here:
#
. `echo "$0" | ${SED-sed} 's|[^/]*$||'`/build-aux/funclib.sh
#
If you need to override any of the default environment variable
settings, do that before evaluating this file.

Shell normalisation.

Some shells need a little help to be as Bourne compatible as possible.
Before doing anything else, make sure all that help has been provided!

DUALCASE=1; export DUALCASE # for MKS sh
if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then :
 emulate sh
 NULLCMD=:
 # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which
 # is contrary to our usage. Disable this feature.
 alias -g '${1+"$@"}'='"$@"'
 setopt NO_GLOB_SUBST
else
 case `(set -o) 2>/dev/null` in *posix*) set -o posix ;; esac
fi

NLS nuisances: We save the old values in case they are required later.
_G_user_locale=
_G_safe_locale=
for _G_var in LANG LANGUAGE LC_ALL LC_CTYPE LC_COLLATE LC_MESSAGES
do
 eval "if test set = \"\${$_G_var+set}\"; then
 save_$_G_var=\$$_G_var
 $_G_var=C
	 export $_G_var
	 _G_user_locale=\"$_G_var=\\\$save_\$_G_var; \$_G_user_locale\"
	 _G_safe_locale=\"$_G_var=C; \$_G_safe_locale\"
	fi"
done

CDPATH.
(unset CDPATH) >/dev/null 2>&1 && unset CDPATH

Make sure IFS has a sensible default
sp=' '
nl='
'
IFS="$sp	$nl"

There are apparently some retarded systems that use ';' as a PATH separator!
if test "${PATH_SEPARATOR+set}" != set; then
 PATH_SEPARATOR=:
 (PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && {
 (PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 ||
 PATH_SEPARATOR=';'
 }
fi

Locate command utilities.

func_executable_p FILE

Check that FILE is an executable regular file.
func_executable_p ()
{
 test -f "$1" && test -x "$1"
}

func_path_progs PROGS_LIST CHECK_FUNC [PATH]
--
Search for either a program that responds to --version with output
containing "GNU", or else returned by CHECK_FUNC otherwise, by
trying all the directories in PATH with each of the elements of
PROGS_LIST.
#
CHECK_FUNC should accept the path to a candidate program, and
set $func_check_prog_result if it truncates its output less than
$_G_path_prog_max characters.
func_path_progs ()
{
 _G_progs_list=$1
 _G_check_func=$2
 _G_PATH=${3-"$PATH"}

 _G_path_prog_max=0
 _G_path_prog_found=false
 _G_save_IFS=$IFS; IFS=${PATH_SEPARATOR-:}
 for _G_dir in $_G_PATH; do
 IFS=$_G_save_IFS
 test -z "$_G_dir" && _G_dir=.
 for _G_prog_name in $_G_progs_list; do
 for _exeext in '' .EXE; do
 _G_path_prog=$_G_dir/$_G_prog_name$_exeext
 func_executable_p "$_G_path_prog" || continue
 case `"$_G_path_prog" --version 2>&1` in
 GNU) func_path_progs_result=$_G_path_prog _G_path_prog_found=: ;;
 *) $_G_check_func $_G_path_prog
		 func_path_progs_result=$func_check_prog_result
		 ;;
 esac
 $_G_path_prog_found && break 3
 done
 done
 done
 IFS=$_G_save_IFS
 test -z "$func_path_progs_result" && {
 echo "no acceptable sed could be found in \$PATH" >&2
 exit 1
 }
}

We want to be able to use the functions in this file before configure
has figured out where the best binaries are kept, which means we have
to search for them ourselves - except when the results are already set
where we skip the searches.

Unless the user overrides by setting SED, search the path for either GNU
sed, or the sed that truncates its output the least.
test -z "$SED" && {
 _G_sed_script=s/aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb/
 for _G_i in 1 2 3 4 5 6 7; do
 _G_sed_script=$_G_sed_script$nl$_G_sed_script
 done
 echo "$_G_sed_script" 2>/dev/null | sed 99q >conftest.sed
 _G_sed_script=

 func_check_prog_sed ()
 {
 _G_path_prog=$1

 _G_count=0
 printf 0123456789 >conftest.in
 while :
 do
 cat conftest.in conftest.in >conftest.tmp
 mv conftest.tmp conftest.in
 cp conftest.in conftest.nl
 echo '' >> conftest.nl
 "$_G_path_prog" -f conftest.sed <conftest.nl >conftest.out 2>/dev/null || break
 diff conftest.out conftest.nl >/dev/null 2>&1 || break
 _G_count=`expr $_G_count + 1`
 if test "$_G_count" -gt "$_G_path_prog_max"; then
 # Best one so far, save it but keep looking for a better one
 func_check_prog_result=$_G_path_prog
 _G_path_prog_max=$_G_count
 fi
 # 10*(2^10) chars as input seems more than enough
 test 10 -lt "$_G_count" && break
 done
 rm -f conftest.in conftest.tmp conftest.nl conftest.out
 }

 func_path_progs "sed gsed" func_check_prog_sed $PATH:/usr/xpg4/bin
 rm -f conftest.sed
 SED=$func_path_progs_result
}

Unless the user overrides by setting GREP, search the path for either GNU
grep, or the grep that truncates its output the least.
test -z "$GREP" && {
 func_check_prog_grep ()
 {
 _G_path_prog=$1

 _G_count=0
 _G_path_prog_max=0
 printf 0123456789 >conftest.in
 while :
 do
 cat conftest.in conftest.in >conftest.tmp
 mv conftest.tmp conftest.in
 cp conftest.in conftest.nl
 echo 'GREP' >> conftest.nl
 "$_G_path_prog" -e 'GREP$' -e '-(cannot match)-' <conftest.nl >conftest.out 2>/dev/null || break
 diff conftest.out conftest.nl >/dev/null 2>&1 || break
 _G_count=`expr $_G_count + 1`
 if test "$_G_count" -gt "$_G_path_prog_max"; then
 # Best one so far, save it but keep looking for a better one
 func_check_prog_result=$_G_path_prog
 _G_path_prog_max=$_G_count
 fi
 # 10*(2^10) chars as input seems more than enough
 test 10 -lt "$_G_count" && break
 done
 rm -f conftest.in conftest.tmp conftest.nl conftest.out
 }

 func_path_progs "grep ggrep" func_check_prog_grep $PATH:/usr/xpg4/bin
 GREP=$func_path_progs_result
}

User overridable command paths.

All uppercase variable names are used for environment variables. These
variables can be overridden by the user before calling a script that
uses them if a suitable command of that name is not already available
in the command search PATH.

: ${CP="cp -f"}
: ${ECHO="printf %s\n"}
: ${EGREP="$GREP -E"}
: ${FGREP="$GREP -F"}
: ${LN_S="ln -s"}
: ${MAKE="make"}
: ${MKDIR="mkdir"}
: ${MV="mv -f"}
: ${RM="rm -f"}
: ${SHELL="${CONFIG_SHELL-/bin/sh}"}

Useful sed snippets.

sed_dirname='s|/[^/]*$||'
sed_basename='s|^.*/||'

Sed substitution that helps us do robust quoting. It backslashifies
metacharacters that are still active within double-quoted strings.
sed_quote_subst='s|\([`"$\\]\)|\\\1|g'

Same as above, but do not quote variable references.
sed_double_quote_subst='s/\(["`\\]\)/\\\1/g'

Sed substitution that turns a string into a regex matching for the
string literally.
sed_make_literal_regex='s|[].[^$*\/]|\\&|g'

Sed substitution that converts a w32 file name or path
that contains forward slashes, into one that contains
(escaped) backslashes. A very naive implementation.
sed_naive_backslashify='s|*|\\|g;s|/|\\|g;s|\\|\\\\|g'

Re-'\' parameter expansions in output of sed_double_quote_subst that
were '\'-ed in input to the same. If an odd number of '\' preceded a
'$' in input to sed_double_quote_subst, that '$' was protected from
expansion. Since each input '\' is now two '\'s, look for any number
of runs of four '\'s followed by two '\'s and then a '$'. '\' that '$'.
_G_bs='\\'
_G_bs2='\\\\'
_G_bs4='\\\\\\\\'
_G_dollar='\$'
sed_double_backslash="\
 s/$_G_bs4/&\\
/g
 s/^$_G_bs2$_G_dollar/$_G_bs&/
 s/\\([^$_G_bs]\\)$_G_bs2$_G_dollar/\\1$_G_bs2$_G_bs$_G_dollar/g
 s/\n//g"

Global variables.

Except for the global variables explicitly listed below, the following
functions in the '^func_' namespace, and the '^require_' namespace
variables initialised in the 'Resource management' section, sourcing
this file will not pollute your global namespace with anything
else. There's no portable way to scope variables in Bourne shell
though, so actually running these functions will sometimes place
results into a variable named after the function, and often use
temporary variables in the '^_G_' namespace. If you are careful to
avoid using those namespaces casually in your sourcing script, things
should continue to work as you expect. And, of course, you can freely
overwrite any of the functions or variables defined here before
calling anything to customize them.

EXIT_SUCCESS=0
EXIT_FAILURE=1
EXIT_MISMATCH=63 # $? = 63 is used to indicate version mismatch to missing.
EXIT_SKIP=77	 # $? = 77 is used to indicate a skipped test to automake.

Allow overriding, eg assuming that you follow the convention of
putting '$debug_cmd' at the start of all your functions, you can get
bash to show function call trace with:
#
debug_cmd='eval echo "${FUNCNAME[0]} $*" >&2' bash your-script-name
debug_cmd=${debug_cmd-":"}
exit_cmd=:

By convention, finish your script with:
#
exit $exit_status
#
so that you can set exit_status to non-zero if you want to indicate
something went wrong during execution without actually bailing out at
the point of failure.
exit_status=$EXIT_SUCCESS

Work around backward compatibility issue on IRIX 6.5. On IRIX 6.4+, sh
is ksh but when the shell is invoked as "sh" and the current value of
the _XPG environment variable is not equal to 1 (one), the special
positional parameter $0, within a function call, is the name of the
function.
progpath=$0

The name of this program.
progname=`$ECHO "$progpath" |$SED "$sed_basename"`

Make sure we have an absolute progpath for reexecution:
case $progpath in
 [\\/]*|[A-Za-z]:*) ;;
 [\\/])
 progdir=`$ECHO "$progpath" |$SED "$sed_dirname"`
 progdir=`cd "$progdir" && pwd`
 progpath=$progdir/$progname
 ;;
 *)
 _G_IFS=$IFS
 IFS=${PATH_SEPARATOR-:}
 for progdir in $PATH; do
 IFS=$_G_IFS
 test -x "$progdir/$progname" && break
 done
 IFS=$_G_IFS
 test -n "$progdir" || progdir=`pwd`
 progpath=$progdir/$progname
 ;;
esac

Standard options.

The following options affect the operation of the functions defined
below, and should be set appropriately depending on run-time para-
meters passed on the command line.

opt_dry_run=false
opt_quiet=false
opt_verbose=false

Categories 'all' and 'none' are always available. Append any others
you will pass as the first argument to func_warning from your own
code.
warning_categories=

By default, display warnings according to 'opt_warning_types'. Set
'warning_func' to ':' to elide all warnings, or func_fatal_error to
treat the next displayed warning as a fatal error.
warning_func=func_warn_and_continue

Set to 'all' to display all warnings, 'none' to suppress all
warnings, or a space delimited list of some subset of
'warning_categories' to display only the listed warnings.
opt_warning_types=all

Resource management.

This section contains definitions for functions that each ensure a
particular resource (a file, or a non-empty configuration variable for
example) is available, and if appropriate to extract default values
from pertinent package files. Call them using their associated
'require_*' variable to ensure that they are executed, at most, once.
#
It's entirely deliberate that calling these functions can set
variables that don't obey the namespace limitations obeyed by the rest
of this file, in order that that they be as useful as possible to
callers.

require_term_colors

Allow display of bold text on terminals that support it.
require_term_colors=func_require_term_colors
func_require_term_colors ()
{
 $debug_cmd

 test -t 1 && {
 # COLORTERM and USE_ANSI_COLORS environment variables take
 # precedence, because most terminfo databases neglect to describe
 # whether color sequences are supported.
 test -n "${COLORTERM+set}" && : ${USE_ANSI_COLORS="1"}

 if test 1 = "$USE_ANSI_COLORS"; then
 # Standard ANSI escape sequences
 tc_reset='�[0m'
 tc_bold='�[1m'; tc_standout='�[7m'
 tc_red='�[31m'; tc_green='�[32m'
 tc_blue='�[34m'; tc_cyan='�[36m'
 else
 # Otherwise trust the terminfo database after all.
 test -n "`tput sgr0 2>/dev/null`" && {
 tc_reset=`tput sgr0`
 test -n "`tput bold 2>/dev/null`" && tc_bold=`tput bold`
 tc_standout=$tc_bold
 test -n "`tput smso 2>/dev/null`" && tc_standout=`tput smso`
 test -n "`tput setaf 1 2>/dev/null`" && tc_red=`tput setaf 1`
 test -n "`tput setaf 2 2>/dev/null`" && tc_green=`tput setaf 2`
 test -n "`tput setaf 4 2>/dev/null`" && tc_blue=`tput setaf 4`
 test -n "`tput setaf 5 2>/dev/null`" && tc_cyan=`tput setaf 5`
 }
 fi
 }

 require_term_colors=:
}

Function library.

This section contains a variety of useful functions to call in your
scripts. Take note of the portable wrappers for features provided by
some modern shells, which will fall back to slower equivalents on
less featureful shells.

func_append VAR VALUE

Append VALUE onto the existing contents of VAR.

 # We should try to minimise forks, especially on Windows where they are
 # unreasonably slow, so skip the feature probes when bash or zsh are
 # being used:
 if test set = "${BASH_VERSION+set}${ZSH_VERSION+set}"; then
 : ${_G_HAVE_ARITH_OP="yes"}
 : ${_G_HAVE_XSI_OPS="yes"}
 # The += operator was introduced in bash 3.1
 case $BASH_VERSION in
 [12].* | 3.0 | 3.0*) ;;
 *)
 : ${_G_HAVE_PLUSEQ_OP="yes"}
 ;;
 esac
 fi

 # _G_HAVE_PLUSEQ_OP
 # Can be empty, in which case the shell is probed, "yes" if += is
 # useable or anything else if it does not work.
 test -z "$_G_HAVE_PLUSEQ_OP" \
 && (eval 'x=a; x+=" b"; test "a b" = "$x"') 2>/dev/null \
 && _G_HAVE_PLUSEQ_OP=yes

if test yes = "$_G_HAVE_PLUSEQ_OP"
then
 # This is an XSI compatible shell, allowing a faster implementation...
 eval 'func_append ()
 {
 $debug_cmd

 eval "$1+=\$2"
 }'
else
 # ...otherwise fall back to using expr, which is often a shell builtin.
 func_append ()
 {
 $debug_cmd

 eval "$1=\$$1\$2"
 }
fi

func_append_quoted VAR VALUE

Quote VALUE and append to the end of shell variable VAR, separated
by a space.
if test yes = "$_G_HAVE_PLUSEQ_OP"; then
 eval 'func_append_quoted ()
 {
 $debug_cmd

 func_quote_for_eval "$2"
 eval "$1+=\\ \$func_quote_for_eval_result"
 }'
else
 func_append_quoted ()
 {
 $debug_cmd

 func_quote_for_eval "$2"
 eval "$1=\$$1\\ \$func_quote_for_eval_result"
 }
fi

func_append_uniq VAR VALUE

Append unique VALUE onto the existing contents of VAR, assuming
entries are delimited by the first character of VALUE. For example:
#
func_append_uniq options " --another-option option-argument"
#
will only append to $options if " --another-option option-argument "
is not already present somewhere in $options already (note spaces at
each end implied by leading space in second argument).
func_append_uniq ()
{
 $debug_cmd

 eval _G_current_value='`$ECHO $'$1'`'
 _G_delim=`expr "$2" : '\(.\)'`

 case $_G_delim$_G_current_value$_G_delim in
 "2_G_delim") ;;
 *) func_append "$@" ;;
 esac
}

func_arith TERM...

Set func_arith_result to the result of evaluating TERMs.
 test -z "$_G_HAVE_ARITH_OP" \
 && (eval 'test 2 = $((1 + 1))') 2>/dev/null \
 && _G_HAVE_ARITH_OP=yes

if test yes = "$_G_HAVE_ARITH_OP"; then
 eval 'func_arith ()
 {
 $debug_cmd

 func_arith_result=$(($*))
 }'
else
 func_arith ()
 {
 $debug_cmd

 func_arith_result=`expr "$@"`
 }
fi

func_basename FILE

Set func_basename_result to FILE with everything up to and including
the last / stripped.
if test yes = "$_G_HAVE_XSI_OPS"; then
 # If this shell supports suffix pattern removal, then use it to avoid
 # forking. Hide the definitions single quotes in case the shell chokes
 # on unsupported syntax...
 _b='func_basename_result=${1##*/}'
 _d='case $1 in
 /) func_dirname_result=${1%/*}$2 ;;
 *) func_dirname_result=$3 ;;
 esac'

else
 # ...otherwise fall back to using sed.
 _b='func_basename_result=`$ECHO "$1" |$SED "$sed_basename"`'
 _d='func_dirname_result=`$ECHO "$1" |$SED "$sed_dirname"`
 if test "X$func_dirname_result" = "X$1"; then
 func_dirname_result=$3
 else
 func_append func_dirname_result "$2"
 fi'
fi

eval 'func_basename ()
{
 $debug_cmd

 '"$_b"'
}'

func_dirname FILE APPEND NONDIR_REPLACEMENT

Compute the dirname of FILE. If nonempty, add APPEND to the result,
otherwise set result to NONDIR_REPLACEMENT.
eval 'func_dirname ()
{
 $debug_cmd

 '"$_d"'
}'

func_dirname_and_basename FILE APPEND NONDIR_REPLACEMENT
--
Perform func_basename and func_dirname in a single function
call:
dirname: Compute the dirname of FILE. If nonempty,
add APPEND to the result, otherwise set result
to NONDIR_REPLACEMENT.
value returned in "$func_dirname_result"
basename: Compute filename of FILE.
value retuned in "$func_basename_result"
For efficiency, we do not delegate to the functions above but instead
duplicate the functionality here.
eval 'func_dirname_and_basename ()
{
 $debug_cmd

 '"$_b"'
 '"$_d"'
}'

func_echo ARG...

Echo program name prefixed message.
func_echo ()
{
 $debug_cmd

 _G_message=$*

 func_echo_IFS=$IFS
 IFS=$nl
 for _G_line in $_G_message; do
 IFS=$func_echo_IFS
 $ECHO "$progname: $_G_line"
 done
 IFS=$func_echo_IFS
}

func_echo_all ARG...

Invoke $ECHO with all args, space-separated.
func_echo_all ()
{
 $ECHO "$*"
}

func_echo_infix_1 INFIX ARG...

Echo program name, followed by INFIX on the first line, with any
additional lines not showing INFIX.
func_echo_infix_1 ()
{
 $debug_cmd

 $require_term_colors

 _G_infix=$1; shift
 _G_indent=$_G_infix
 _G_prefix="$progname: $_G_infix: "
 _G_message=$*

 # Strip color escape sequences before counting printable length
 for _G_tc in "$tc_reset" "$tc_bold" "$tc_standout" "$tc_red" "$tc_green" "$tc_blue" "$tc_cyan"
 do
 test -n "$_G_tc" && {
 _G_esc_tc=`$ECHO "$_G_tc" | $SED "$sed_make_literal_regex"`
 _G_indent=`$ECHO "$_G_indent" | $SED "s|$_G_esc_tc||g"`
 }
 done
 _G_indent="$progname: "`echo "$_G_indent" | $SED 's|.| |g'`" " ## exclude from sc_prohibit_nested_quotes

 func_echo_infix_1_IFS=$IFS
 IFS=$nl
 for _G_line in $_G_message; do
 IFS=$func_echo_infix_1_IFS
 $ECHO "$_G_prefixtc_bold_G_line$tc_reset" >&2
 _G_prefix=$_G_indent
 done
 IFS=$func_echo_infix_1_IFS
}

func_error ARG...

Echo program name prefixed message to standard error.
func_error ()
{
 $debug_cmd

 $require_term_colors

 func_echo_infix_1 " $tc_standout${tc_red}error$tc_reset" "$*" >&2
}

func_fatal_error ARG...

Echo program name prefixed message to standard error, and exit.
func_fatal_error ()
{
 $debug_cmd

 func_error "$*"
 exit $EXIT_FAILURE
}

func_grep EXPRESSION FILENAME

Check whether EXPRESSION matches any line of FILENAME, without output.
func_grep ()
{
 $debug_cmd

 $GREP "$1" "$2" >/dev/null 2>&1
}

func_len STRING

Set func_len_result to the length of STRING. STRING may not
start with a hyphen.
 test -z "$_G_HAVE_XSI_OPS" \
 && (eval 'x=a/b/c;
 test 5aa/bb/cc = "${#x}${x%%/*}${x%/*}${x#*/}${x##*/}"') 2>/dev/null \
 && _G_HAVE_XSI_OPS=yes

if test yes = "$_G_HAVE_XSI_OPS"; then
 eval 'func_len ()
 {
 $debug_cmd

 func_len_result=${#1}
 }'
else
 func_len ()
 {
 $debug_cmd

 func_len_result=`expr "$1" : ".*" 2>/dev/null || echo $max_cmd_len`
 }
fi

func_mkdir_p DIRECTORY-PATH

Make sure the entire path to DIRECTORY-PATH is available.
func_mkdir_p ()
{
 $debug_cmd

 _G_directory_path=$1
 _G_dir_list=

 if test -n "$_G_directory_path" && test : != "$opt_dry_run"; then

 # Protect directory names starting with '-'
 case $_G_directory_path in
 -*) _G_directory_path=./$_G_directory_path ;;
 esac

 # While some portion of DIR does not yet exist...
 while test ! -d "$_G_directory_path"; do
 # ...make a list in topmost first order. Use a colon delimited
	# list incase some portion of path contains whitespace.
 _G_dir_list=$_G_directory_path:$_G_dir_list

 # If the last portion added has no slash in it, the list is done
 case $_G_directory_path in */*) ;; *) break ;; esac

 # ...otherwise throw away the child directory and loop
 _G_directory_path=`$ECHO "$_G_directory_path" | $SED -e "$sed_dirname"`
 done
 _G_dir_list=`$ECHO "$_G_dir_list" | $SED 's|:*$||'`

 func_mkdir_p_IFS=$IFS; IFS=:
 for _G_dir in $_G_dir_list; do
	IFS=$func_mkdir_p_IFS
 # mkdir can fail with a 'File exist' error if two processes
 # try to create one of the directories concurrently. Don't
 # stop in that case!
 $MKDIR "$_G_dir" 2>/dev/null || :
 done
 IFS=$func_mkdir_p_IFS

 # Bail out if we (or some other process) failed to create a directory.
 test -d "$_G_directory_path" || \
 func_fatal_error "Failed to create '$1'"
 fi
}

func_mktempdir [BASENAME]

Make a temporary directory that won't clash with other running
libtool processes, and avoids race conditions if possible. If
given, BASENAME is the basename for that directory.
func_mktempdir ()
{
 $debug_cmd

 _G_template=${TMPDIR-/tmp}/${1-$progname}

 if test : = "$opt_dry_run"; then
 # Return a directory name, but don't create it in dry-run mode
 _G_tmpdir=$_G_template-$$
 else

 # If mktemp works, use that first and foremost
 _G_tmpdir=`mktemp -d "$_G_template-XXXXXXXX" 2>/dev/null`

 if test ! -d "$_G_tmpdir"; then
 # Failing that, at least try and use $RANDOM to avoid a race
 _G_tmpdir=$_G_template-${RANDOM-0}$$

 func_mktempdir_umask=`umask`
 umask 0077
 $MKDIR "$_G_tmpdir"
 umask $func_mktempdir_umask
 fi

 # If we're not in dry-run mode, bomb out on failure
 test -d "$_G_tmpdir" || \
 func_fatal_error "cannot create temporary directory '$_G_tmpdir'"
 fi

 $ECHO "$_G_tmpdir"
}

func_normal_abspath PATH

Remove doubled-up and trailing slashes, "." path components,
and cancel out any ".." path components in PATH after making
it an absolute path.
func_normal_abspath ()
{
 $debug_cmd

 # These SED scripts presuppose an absolute path with a trailing slash.
 _G_pathcar='s|^/\([^/]*\).*$|\1|'
 _G_pathcdr='s|^/[^/]*||'
 _G_removedotparts=':dotsl
		s|/\./|/|g
		t dotsl
		s|/\.$|/|'
 _G_collapseslashes='s|/\{1,\}|/|g'
 _G_finalslash='s|/*$|/|'

 # Start from root dir and reassemble the path.
 func_normal_abspath_result=
 func_normal_abspath_tpath=$1
 func_normal_abspath_altnamespace=
 case $func_normal_abspath_tpath in
 "")
 # Empty path, that just means $cwd.
 func_stripname '' '/' "`pwd`"
 func_normal_abspath_result=$func_stripname_result
 return
 ;;
 # The next three entries are used to spot a run of precisely
 # two leading slashes without using negated character classes;
 # we take advantage of case's first-match behaviour.
 ///*)
 # Unusual form of absolute path, do nothing.
 ;;
 //*)
 # Not necessarily an ordinary path; POSIX reserves leading '//'
 # and for example Cygwin uses it to access remote file shares
 # over CIFS/SMB, so we conserve a leading double slash if found.
 func_normal_abspath_altnamespace=/
 ;;
 /*)
 # Absolute path, do nothing.
 ;;
 *)
 # Relative path, prepend $cwd.
 func_normal_abspath_tpath=`pwd`/$func_normal_abspath_tpath
 ;;
 esac

 # Cancel out all the simple stuff to save iterations. We also want
 # the path to end with a slash for ease of parsing, so make sure
 # there is one (and only one) here.
 func_normal_abspath_tpath=`$ECHO "$func_normal_abspath_tpath" | $SED \
 -e "$_G_removedotparts" -e "$_G_collapseslashes" -e "$_G_finalslash"`
 while :; do
 # Processed it all yet?
 if test / = "$func_normal_abspath_tpath"; then
 # If we ascended to the root using ".." the result may be empty now.
 if test -z "$func_normal_abspath_result"; then
 func_normal_abspath_result=/
 fi
 break
 fi
 func_normal_abspath_tcomponent=`$ECHO "$func_normal_abspath_tpath" | $SED \
 -e "$_G_pathcar"`
 func_normal_abspath_tpath=`$ECHO "$func_normal_abspath_tpath" | $SED \
 -e "$_G_pathcdr"`
 # Figure out what to do with it
 case $func_normal_abspath_tcomponent in
 "")
 # Trailing empty path component, ignore it.
 ;;
 ..)
 # Parent dir; strip last assembled component from result.
 func_dirname "$func_normal_abspath_result"
 func_normal_abspath_result=$func_dirname_result
 ;;
 *)
 # Actual path component, append it.
 func_append func_normal_abspath_result "/$func_normal_abspath_tcomponent"
 ;;
 esac
 done
 # Restore leading double-slash if one was found on entry.
 func_normal_abspath_result=$func_normal_abspath_altnamespace$func_normal_abspath_result
}

func_notquiet ARG...

Echo program name prefixed message only when not in quiet mode.
func_notquiet ()
{
 $debug_cmd

 $opt_quiet || func_echo ${1+"$@"}

 # A bug in bash halts the script if the last line of a function
 # fails when set -e is in force, so we need another command to
 # work around that:
 :
}

func_relative_path SRCDIR DSTDIR

Set func_relative_path_result to the relative path from SRCDIR to DSTDIR.
func_relative_path ()
{
 $debug_cmd

 func_relative_path_result=
 func_normal_abspath "$1"
 func_relative_path_tlibdir=$func_normal_abspath_result
 func_normal_abspath "$2"
 func_relative_path_tbindir=$func_normal_abspath_result

 # Ascend the tree starting from libdir
 while :; do
 # check if we have found a prefix of bindir
 case $func_relative_path_tbindir in
 $func_relative_path_tlibdir)
 # found an exact match
 func_relative_path_tcancelled=
 break
 ;;
 $func_relative_path_tlibdir*)
 # found a matching prefix
 func_stripname "$func_relative_path_tlibdir" '' "$func_relative_path_tbindir"
 func_relative_path_tcancelled=$func_stripname_result
 if test -z "$func_relative_path_result"; then
 func_relative_path_result=.
 fi
 break
 ;;
 *)
 func_dirname $func_relative_path_tlibdir
 func_relative_path_tlibdir=$func_dirname_result
 if test -z "$func_relative_path_tlibdir"; then
 # Have to descend all the way to the root!
 func_relative_path_result=../$func_relative_path_result
 func_relative_path_tcancelled=$func_relative_path_tbindir
 break
 fi
 func_relative_path_result=../$func_relative_path_result
 ;;
 esac
 done

 # Now calculate path; take care to avoid doubling-up slashes.
 func_stripname '' '/' "$func_relative_path_result"
 func_relative_path_result=$func_stripname_result
 func_stripname '/' '/' "$func_relative_path_tcancelled"
 if test -n "$func_stripname_result"; then
 func_append func_relative_path_result "/$func_stripname_result"
 fi

 # Normalisation. If bindir is libdir, return '.' else relative path.
 if test -n "$func_relative_path_result"; then
 func_stripname './' '' "$func_relative_path_result"
 func_relative_path_result=$func_stripname_result
 fi

 test -n "$func_relative_path_result" || func_relative_path_result=.

 :
}

func_quote_for_eval ARG...

Aesthetically quote ARGs to be evaled later.
This function returns two values:
i) func_quote_for_eval_result
double-quoted, suitable for a subsequent eval
ii) func_quote_for_eval_unquoted_result
has all characters that are still active within double
quotes backslashified.
func_quote_for_eval ()
{
 $debug_cmd

 func_quote_for_eval_unquoted_result=
 func_quote_for_eval_result=
 while test 0 -lt $#; do
 case $1 in
 [\\\`\"\$])
	 _G_unquoted_arg=`printf '%s\n' "$1" |$SED "$sed_quote_subst"` ;;
 *)
 _G_unquoted_arg=$1 ;;
 esac
 if test -n "$func_quote_for_eval_unquoted_result"; then
	func_append func_quote_for_eval_unquoted_result " $_G_unquoted_arg"
 else
 func_append func_quote_for_eval_unquoted_result "$_G_unquoted_arg"
 fi

 case $_G_unquoted_arg in
 # Double-quote args containing shell metacharacters to delay
 # word splitting, command substitution and variable expansion
 # for a subsequent eval.
 # Many Bourne shells cannot handle close brackets correctly
 # in scan sets, so we specify it separately.
 [\[\~\#\^\&\(\)\{\}\|\;\<\>\?\'\ \]*|*]*|"")
 _G_quoted_arg=\"$_G_unquoted_arg\"
 ;;
 *)
 _G_quoted_arg=$_G_unquoted_arg
	 ;;
 esac

 if test -n "$func_quote_for_eval_result"; then
	func_append func_quote_for_eval_result " $_G_quoted_arg"
 else
 func_append func_quote_for_eval_result "$_G_quoted_arg"
 fi
 shift
 done
}

func_quote_for_expand ARG

Aesthetically quote ARG to be evaled later; same as above,
but do not quote variable references.
func_quote_for_expand ()
{
 $debug_cmd

 case $1 in
 [\\\`\"])
	_G_arg=`$ECHO "$1" | $SED \
	 -e "$sed_double_quote_subst" -e "$sed_double_backslash"` ;;
 *)
 _G_arg=$1 ;;
 esac

 case $_G_arg in
 # Double-quote args containing shell metacharacters to delay
 # word splitting and command substitution for a subsequent eval.
 # Many Bourne shells cannot handle close brackets correctly
 # in scan sets, so we specify it separately.
 [\[\~\#\^\&\(\)\{\}\|\;\<\>\?\'\ \]*|*]*|"")
 _G_arg=\"$_G_arg\"
 ;;
 esac

 func_quote_for_expand_result=$_G_arg
}

func_stripname PREFIX SUFFIX NAME

strip PREFIX and SUFFIX from NAME, and store in func_stripname_result.
PREFIX and SUFFIX must not contain globbing or regex special
characters, hashes, percent signs, but SUFFIX may contain a leading
dot (in which case that matches only a dot).
if test yes = "$_G_HAVE_XSI_OPS"; then
 eval 'func_stripname ()
 {
 $debug_cmd

 # pdksh 5.2.14 does not do ${X%$Y} correctly if both X and Y are
 # positional parameters, so assign one to ordinary variable first.
 func_stripname_result=$3
 func_stripname_result=${func_stripname_result#"$1"}
 func_stripname_result=${func_stripname_result%"$2"}
 }'
else
 func_stripname ()
 {
 $debug_cmd

 case $2 in
 .*) func_stripname_result=`$ECHO "$3" | $SED -e "s%^$1%%" -e "s%\\\\$2\$%%"`;;
 *) func_stripname_result=`$ECHO "$3" | $SED -e "s%^$1%%" -e "s%$2\$%%"`;;
 esac
 }
fi

func_show_eval CMD [FAIL_EXP]

Unless opt_quiet is true, then output CMD. Then, if opt_dryrun is
not true, evaluate CMD. If the evaluation of CMD fails, and FAIL_EXP
is given, then evaluate it.
func_show_eval ()
{
 $debug_cmd

 _G_cmd=$1
 _G_fail_exp=${2-':'}

 func_quote_for_expand "$_G_cmd"
 eval "func_notquiet $func_quote_for_expand_result"

 $opt_dry_run || {
 eval "$_G_cmd"
 _G_status=$?
 if test 0 -ne "$_G_status"; then
	eval "(exit $_G_status); $_G_fail_exp"
 fi
 }
}

func_show_eval_locale CMD [FAIL_EXP]

Unless opt_quiet is true, then output CMD. Then, if opt_dryrun is
not true, evaluate CMD. If the evaluation of CMD fails, and FAIL_EXP
is given, then evaluate it. Use the saved locale for evaluation.
func_show_eval_locale ()
{
 $debug_cmd

 _G_cmd=$1
 _G_fail_exp=${2-':'}

 $opt_quiet || {
 func_quote_for_expand "$_G_cmd"
 eval "func_echo $func_quote_for_expand_result"
 }

 $opt_dry_run || {
 eval "$_G_user_locale
	 $_G_cmd"
 _G_status=$?
 eval "$_G_safe_locale"
 if test 0 -ne "$_G_status"; then
	eval "(exit $_G_status); $_G_fail_exp"
 fi
 }
}

func_tr_sh

Turn $1 into a string suitable for a shell variable name.
Result is stored in $func_tr_sh_result. All characters
not in the set a-zA-Z0-9_ are replaced with '_'. Further,
if $1 begins with a digit, a '_' is prepended as well.
func_tr_sh ()
{
 $debug_cmd

 case $1 in
 [0-9]* | *[!a-zA-Z0-9_]*)
 func_tr_sh_result=`$ECHO "$1" | $SED -e 's/^\([0-9]\)/_\1/' -e 's/[^a-zA-Z0-9_]/_/g'`
 ;;
 *)
 func_tr_sh_result=$1
 ;;
 esac
}

func_verbose ARG...

Echo program name prefixed message in verbose mode only.
func_verbose ()
{
 $debug_cmd

 $opt_verbose && func_echo "$*"

 :
}

func_warn_and_continue ARG...

Echo program name prefixed warning message to standard error.
func_warn_and_continue ()
{
 $debug_cmd

 $require_term_colors

 func_echo_infix_1 "${tc_red}warning$tc_reset" "$*" >&2
}

func_warning CATEGORY ARG...

Echo program name prefixed warning message to standard error. Warning
messages can be filtered according to CATEGORY, where this function
elides messages where CATEGORY is not listed in the global variable
'opt_warning_types'.
func_warning ()
{
 $debug_cmd

 # CATEGORY must be in the warning_categories list!
 case " $warning_categories " in
 " $1 ") ;;
 *) func_internal_error "invalid warning category '$1'" ;;
 esac

 _G_category=$1
 shift

 case " $opt_warning_types " in
 " $_G_category ") $warning_func ${1+"$@"} ;;
 esac
}

func_sort_ver VER1 VER2

'sort -V' is not generally available.
Note this deviates from the version comparison in automake
in that it treats 1.5 < 1.5.0, and treats 1.4.4a < 1.4-p3a
but this should suffice as we won't be specifying old
version formats or redundant trailing .0 in bootstrap.conf.
If we did want full compatibility then we should probably
use m4_version_compare from autoconf.
func_sort_ver ()
{
 $debug_cmd

 printf '%s\n%s\n' "$1" "$2" \
 | sort -t. -k 1,1n -k 2,2n -k 3,3n -k 4,4n -k 5,5n -k 6,6n -k 7,7n -k 8,8n -k 9,9n
}

func_lt_ver PREV CURR

Return true if PREV and CURR are in the correct order according to
func_sort_ver, otherwise false. Use it like this:
#
func_lt_ver "$prev_ver" "$proposed_ver" || func_fatal_error "..."
func_lt_ver ()
{
 $debug_cmd

 test "x$1" = x`func_sort_ver "$1" "$2" | $SED 1q`
}

Local variables:
mode: shell-script
sh-indentation: 2
eval: (add-hook 'before-save-hook 'time-stamp)
time-stamp-pattern: "10/scriptversion=%:y-%02m-%02d.%02H; # UTC"
time-stamp-time-zone: "UTC"
End:
#! /bin/sh

Set a version string for this script.
scriptversion=2014-01-07.03; # UTC

A portable, pluggable option parser for Bourne shell.
Written by Gary V. Vaughan, 2010

Copyright (C) 2010-2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Please report bugs or propose patches to gary@gnu.org.

Usage.

This file is a library for parsing options in your shell scripts along
with assorted other useful supporting features that you can make use
of too.
#
For the simplest scripts you might need only:
#
#!/bin/sh
. relative/path/to/funclib.sh
. relative/path/to/options-parser
scriptversion=1.0
func_options ${1+"$@"}
eval set dummy "$func_options_result"; shift
...rest of your script...
#
In order for the '--version' option to work, you will need to have a
suitably formatted comment like the one at the top of this file
starting with '# Written by ' and ending with '# warranty; '.
#
For '-h' and '--help' to work, you will also need a one line
description of your script's purpose in a comment directly above the
'# Written by ' line, like the one at the top of this file.
#
The default options also support '--debug', which will turn on shell
execution tracing (see the comment above debug_cmd below for another
use), and '--verbose' and the func_verbose function to allow your script
to display verbose messages only when your user has specified
'--verbose'.
#
After sourcing this file, you can plug processing for additional
options by amending the variables from the 'Configuration' section
below, and following the instructions in the 'Option parsing'
section further down.

Configuration.

You should override these variables in your script after sourcing this
file so that they reflect the customisations you have added to the
option parser.

The usage line for option parsing errors and the start of '-h' and
'--help' output messages. You can embed shell variables for delayed
expansion at the time the message is displayed, but you will need to
quote other shell meta-characters carefully to prevent them being
expanded when the contents are evaled.
usage='$progpath [OPTION]...'

Short help message in response to '-h' and '--help'. Add to this or
override it after sourcing this library to reflect the full set of
options your script accepts.
usage_message="\
 --debug enable verbose shell tracing
 -W, --warnings=CATEGORY
 report the warnings falling in CATEGORY [all]
 -v, --verbose verbosely report processing
 --version print version information and exit
 -h, --help print short or long help message and exit
"

Additional text appended to 'usage_message' in response to '--help'.
long_help_message="
Warning categories include:
 'all' show all warnings
 'none' turn off all the warnings
 'error' warnings are treated as fatal errors"

Help message printed before fatal option parsing errors.
fatal_help="Try '\$progname --help' for more information."

Hook function management.

This section contains functions for adding, removing, and running hooks
to the main code. A hook is just a named list of of function, that can
be run in order later on.

func_hookable FUNC_NAME

Declare that FUNC_NAME will run hooks added with
'func_add_hook FUNC_NAME ...'.
func_hookable ()
{
 $debug_cmd

 func_append hookable_fns " $1"
}

func_add_hook FUNC_NAME HOOK_FUNC

Request that FUNC_NAME call HOOK_FUNC before it returns. FUNC_NAME must
first have been declared "hookable" by a call to 'func_hookable'.
func_add_hook ()
{
 $debug_cmd

 case " $hookable_fns " in
 " $1 ") ;;
 *) func_fatal_error "'$1' does not accept hook functions." ;;
 esac

 eval func_append ${1}_hooks '" $2"'
}

func_remove_hook FUNC_NAME HOOK_FUNC

Remove HOOK_FUNC from the list of functions called by FUNC_NAME.
func_remove_hook ()
{
 $debug_cmd

 eval ${1}_hooks='`$ECHO "\$'$1'_hooks" |$SED "s| '$2'||"`'
}

func_run_hooks FUNC_NAME [ARG]...

Run all hook functions registered to FUNC_NAME.
It is assumed that the list of hook functions contains nothing more
than a whitespace-delimited list of legal shell function names, and
no effort is wasted trying to catch shell meta-characters or preserve
whitespace.
func_run_hooks ()
{
 $debug_cmd

 case " $hookable_fns " in
 " $1 ") ;;
 *) func_fatal_error "'$1' does not support hook funcions.n" ;;
 esac

 eval _G_hook_fns=\$$1_hooks; shift

 for _G_hook in $_G_hook_fns; do
 eval $_G_hook '"$@"'

 # store returned options list back into positional
 # parameters for next 'cmd' execution.
 eval _G_hook_result=\$${_G_hook}_result
 eval set dummy "$_G_hook_result"; shift
 done

 func_quote_for_eval ${1+"$@"}
 func_run_hooks_result=$func_quote_for_eval_result
}

Option parsing.

In order to add your own option parsing hooks, you must accept the
full positional parameter list in your hook function, remove any
options that you action, and then pass back the remaining unprocessed
options in '<hooked_function_name>_result', escaped suitably for
'eval'. Like this:
#
my_options_prep ()
{
$debug_cmd
#
Extend the existing usage message.
usage_message=$usage_message'
-s, --silent don'\''t print informational messages
'
#
func_quote_for_eval ${1+"$@"}
my_options_prep_result=$func_quote_for_eval_result
}
func_add_hook func_options_prep my_options_prep
#
#
my_silent_option ()
{
$debug_cmd
#
Note that for efficiency, we parse as many options as we can
recognise in a loop before passing the remainder back to the
caller on the first unrecognised argument we encounter.
while test $# -gt 0; do
opt=$1; shift
case $opt in
--silent|-s) opt_silent=: ;;
Separate non-argument short options:
-s*) func_split_short_opt "$_G_opt"
set dummy "$func_split_short_opt_name" \
"-$func_split_short_opt_arg" ${1+"$@"}
shift
;;
) set dummy "$_G_opt" "$"; shift; break ;;
esac
done
#
func_quote_for_eval ${1+"$@"}
my_silent_option_result=$func_quote_for_eval_result
}
func_add_hook func_parse_options my_silent_option
#
#
my_option_validation ()
{
$debug_cmd
#
$opt_silent && $opt_verbose && func_fatal_help "\
'--silent' and '--verbose' options are mutually exclusive."
#
func_quote_for_eval ${1+"$@"}
my_option_validation_result=$func_quote_for_eval_result
}
func_add_hook func_validate_options my_option_validation
#
You'll alse need to manually amend $usage_message to reflect the extra
options you parse. It's preferable to append if you can, so that
multiple option parsing hooks can be added safely.

func_options [ARG]...

All the functions called inside func_options are hookable. See the
individual implementations for details.
func_hookable func_options
func_options ()
{
 $debug_cmd

 func_options_prep ${1+"$@"}
 eval func_parse_options \
 ${func_options_prep_result+"$func_options_prep_result"}
 eval func_validate_options \
 ${func_parse_options_result+"$func_parse_options_result"}

 eval func_run_hooks func_options \
 ${func_validate_options_result+"$func_validate_options_result"}

 # save modified positional parameters for caller
 func_options_result=$func_run_hooks_result
}

func_options_prep [ARG]...

All initialisations required before starting the option parse loop.
Note that when calling hook functions, we pass through the list of
positional parameters. If a hook function modifies that list, and
needs to propogate that back to rest of this script, then the complete
modified list must be put in 'func_run_hooks_result' before
returning.
func_hookable func_options_prep
func_options_prep ()
{
 $debug_cmd

 # Option defaults:
 opt_verbose=false
 opt_warning_types=

 func_run_hooks func_options_prep ${1+"$@"}

 # save modified positional parameters for caller
 func_options_prep_result=$func_run_hooks_result
}

func_parse_options [ARG]...

The main option parsing loop.
func_hookable func_parse_options
func_parse_options ()
{
 $debug_cmd

 func_parse_options_result=

 # this just eases exit handling
 while test $# -gt 0; do
 # Defer to hook functions for initial option parsing, so they
 # get priority in the event of reusing an option name.
 func_run_hooks func_parse_options ${1+"$@"}

 # Adjust func_parse_options positional parameters to match
 eval set dummy "$func_run_hooks_result"; shift

 # Break out of the loop if we already parsed every option.
 test $# -gt 0 || break

 _G_opt=$1
 shift
 case $_G_opt in
 --debug|-x) debug_cmd='set -x'
 func_echo "enabling shell trace mode"
 $debug_cmd
 ;;

 --no-warnings|--no-warning|--no-warn)
 set dummy --warnings none ${1+"$@"}
 shift
		 ;;

 --warnings|--warning|-W)
 test $# = 0 && func_missing_arg $_G_opt && break
 case " $warning_categories $1" in
 " $1 ")
 # trailing space prevents matching last $1 above
 func_append_uniq opt_warning_types " $1"
 ;;
 *all)
 opt_warning_types=$warning_categories
 ;;
 *none)
 opt_warning_types=none
 warning_func=:
 ;;
 *error)
 opt_warning_types=$warning_categories
 warning_func=func_fatal_error
 ;;
 *)
 func_fatal_error \
 "unsupported warning category: '$1'"
 ;;
 esac
 shift
 ;;

 --verbose|-v) opt_verbose=: ;;
 --version) func_version ;;
 -\?|-h) func_usage ;;
 --help) func_help ;;

	# Separate optargs to long options (plugins may need this):
	--*=*) func_split_equals "$_G_opt"
	 set dummy "$func_split_equals_lhs" \
 "$func_split_equals_rhs" ${1+"$@"}
 shift
 ;;

 # Separate optargs to short options:
 -W*)
 func_split_short_opt "$_G_opt"
 set dummy "$func_split_short_opt_name" \
 "$func_split_short_opt_arg" ${1+"$@"}
 shift
 ;;

 # Separate non-argument short options:
 -\?*|-h*|-v*|-x*)
 func_split_short_opt "$_G_opt"
 set dummy "$func_split_short_opt_name" \
 "-$func_split_short_opt_arg" ${1+"$@"}
 shift
 ;;

 --) break ;;
 -*) func_fatal_help "unrecognised option: '$_G_opt'" ;;
 *) set dummy "$_G_opt" ${1+"$@"}; shift; break ;;
 esac
 done

 # save modified positional parameters for caller
 func_quote_for_eval ${1+"$@"}
 func_parse_options_result=$func_quote_for_eval_result
}

func_validate_options [ARG]...

Perform any sanity checks on option settings and/or unconsumed
arguments.
func_hookable func_validate_options
func_validate_options ()
{
 $debug_cmd

 # Display all warnings if -W was not given.
 test -n "$opt_warning_types" || opt_warning_types=" $warning_categories"

 func_run_hooks func_validate_options ${1+"$@"}

 # Bail if the options were screwed!
 $exit_cmd $EXIT_FAILURE

 # save modified positional parameters for caller
 func_validate_options_result=$func_run_hooks_result
}

Helper functions.

This section contains the helper functions used by the rest of the
hookable option parser framework in ascii-betical order.

func_fatal_help ARG...

Echo program name prefixed message to standard error, followed by
a help hint, and exit.
func_fatal_help ()
{
 $debug_cmd

 eval \$ECHO \""Usage: $usage"\"
 eval \$ECHO \""$fatal_help"\"
 func_error ${1+"$@"}
 exit $EXIT_FAILURE
}

func_help

Echo long help message to standard output and exit.
func_help ()
{
 $debug_cmd

 func_usage_message
 $ECHO "$long_help_message"
 exit 0
}

func_missing_arg ARGNAME

Echo program name prefixed message to standard error and set global
exit_cmd.
func_missing_arg ()
{
 $debug_cmd

 func_error "Missing argument for '$1'."
 exit_cmd=exit
}

func_split_equals STRING

Set func_split_equals_lhs and func_split_equals_rhs shell variables after
splitting STRING at the '=' sign.
test -z "$_G_HAVE_XSI_OPS" \
 && (eval 'x=a/b/c;
 test 5aa/bb/cc = "${#x}${x%%/*}${x%/*}${x#*/}${x##*/}"') 2>/dev/null \
 && _G_HAVE_XSI_OPS=yes

if test yes = "$_G_HAVE_XSI_OPS"
then
 # This is an XSI compatible shell, allowing a faster implementation...
 eval 'func_split_equals ()
 {
 $debug_cmd

 func_split_equals_lhs=${1%%=*}
 func_split_equals_rhs=${1#*=}
 test "x$func_split_equals_lhs" = "x$1" \
 && func_split_equals_rhs=
 }'
else
 # ...otherwise fall back to using expr, which is often a shell builtin.
 func_split_equals ()
 {
 $debug_cmd

 func_split_equals_lhs=`expr "x$1" : 'x\([^=]*\)'`
 func_split_equals_rhs=
 test "x$func_split_equals_lhs" = "x$1" \
 || func_split_equals_rhs=`expr "x$1" : 'x[^=]*=\(.*\)$'`
 }
fi #func_split_equals

func_split_short_opt SHORTOPT

Set func_split_short_opt_name and func_split_short_opt_arg shell
variables after splitting SHORTOPT after the 2nd character.
if test yes = "$_G_HAVE_XSI_OPS"
then
 # This is an XSI compatible shell, allowing a faster implementation...
 eval 'func_split_short_opt ()
 {
 $debug_cmd

 func_split_short_opt_arg=${1#??}
 func_split_short_opt_name=${1%"$func_split_short_opt_arg"}
 }'
else
 # ...otherwise fall back to using expr, which is often a shell builtin.
 func_split_short_opt ()
 {
 $debug_cmd

 func_split_short_opt_name=`expr "x$1" : 'x-\(.\)'`
 func_split_short_opt_arg=`expr "x$1" : 'x-.\(.*\)$'`
 }
fi #func_split_short_opt

func_usage

Echo short help message to standard output and exit.
func_usage ()
{
 $debug_cmd

 func_usage_message
 $ECHO "Run '$progname --help |${PAGER-more}' for full usage"
 exit 0
}

func_usage_message

Echo short help message to standard output.
func_usage_message ()
{
 $debug_cmd

 eval \$ECHO \""Usage: $usage"\"
 echo
 $SED -n 's|^# ||
 /^Written by/{
 x;p;x
 }
	h
	/^Written by/q' < "$progpath"
 echo
 eval \$ECHO \""$usage_message"\"
}

func_version

Echo version message to standard output and exit.
func_version ()
{
 $debug_cmd

 printf '%s\n' "$progname $scriptversion"
 $SED -n '
 /(C)/!b go
 :more
 /\./!{
 N
 s|\n# | |
 b more
 }
 :go
 /^# Written by /,/# warranty; / {
 s|^# ||
 s|^# *$||
 s|\((C)\)[0-9,-]*[,-]\([1-9][0-9]* \)|\1 \2|
 p
 }
 /^# Written by / {
 s|^# ||
 p
 }
 /^warranty; /q' < "$progpath"

 exit $?
}

Local variables:
mode: shell-script
sh-indentation: 2
eval: (add-hook 'before-save-hook 'time-stamp)
time-stamp-pattern: "10/scriptversion=%:y-%02m-%02d.%02H; # UTC"
time-stamp-time-zone: "UTC"
End:

Set a version string.
scriptversion='(GNU libtool) 2.4.6'

func_echo ARG...

Libtool also displays the current mode in messages, so override
funclib.sh func_echo with this custom definition.
func_echo ()
{
 $debug_cmd

 _G_message=$*

 func_echo_IFS=$IFS
 IFS=$nl
 for _G_line in $_G_message; do
 IFS=$func_echo_IFS
 $ECHO "$progname${opt_mode+: $opt_mode}: $_G_line"
 done
 IFS=$func_echo_IFS
}

func_warning ARG...

Libtool warnings are not categorized, so override funclib.sh
func_warning with this simpler definition.
func_warning ()
{
 $debug_cmd

 $warning_func ${1+"$@"}
}

Options parsing.

Hook in the functions to make sure our own options are parsed during
the option parsing loop.

usage='$progpath [OPTION]... [MODE-ARG]...'

Short help message in response to '-h'.
usage_message="Options:
 --config show all configuration variables
 --debug enable verbose shell tracing
 -n, --dry-run display commands without modifying any files
 --features display basic configuration information and exit
 --mode=MODE use operation mode MODE
 --no-warnings equivalent to '-Wnone'
 --preserve-dup-deps don't remove duplicate dependency libraries
 --quiet, --silent don't print informational messages
 --tag=TAG use configuration variables from tag TAG
 -v, --verbose print more informational messages than default
 --version print version information
 -W, --warnings=CATEGORY report the warnings falling in CATEGORY [all]
 -h, --help, --help-all print short, long, or detailed help message
"

Additional text appended to 'usage_message' in response to '--help'.
func_help ()
{
 $debug_cmd

 func_usage_message
 $ECHO "$long_help_message

MODE must be one of the following:

 clean remove files from the build directory
 compile compile a source file into a libtool object
 execute automatically set library path, then run a program
 finish complete the installation of libtool libraries
 install install libraries or executables
 link create a library or an executable
 uninstall remove libraries from an installed directory

MODE-ARGS vary depending on the MODE. When passed as first option,
'--mode=MODE' may be abbreviated as 'MODE' or a unique abbreviation of that.
Try '$progname --help --mode=MODE' for a more detailed description of MODE.

When reporting a bug, please describe a test case to reproduce it and
include the following information:

 host-triplet: $host
 shell: $SHELL
 compiler: $LTCC
 compiler flags: $LTCFLAGS
 linker: $LD (gnu? $with_gnu_ld)
 version: $progname $scriptversion Debian-2.4.6-2
 automake: `($AUTOMAKE --version) 2>/dev/null |$SED 1q`
 autoconf: `($AUTOCONF --version) 2>/dev/null |$SED 1q`

Report bugs to <bug-libtool@gnu.org>.
GNU libtool home page: <http://www.gnu.org/s/libtool/>.
General help using GNU software: <http://www.gnu.org/gethelp/>."
 exit 0
}

func_lo2o OBJECT-NAME

Transform OBJECT-NAME from a '.lo' suffix to the platform specific
object suffix.

lo2o=s/\\.lo\$/.$objext/
o2lo=s/\\.$objext\$/.lo/

if test yes = "$_G_HAVE_XSI_OPS"; then
 eval 'func_lo2o ()
 {
 case $1 in
 *.lo) func_lo2o_result=${1%.lo}.$objext ;;
 *) func_lo2o_result=$1 ;;
 esac
 }'

 # func_xform LIBOBJ-OR-SOURCE
 # ---------------------------
 # Transform LIBOBJ-OR-SOURCE from a '.o' or '.c' (or otherwise)
 # suffix to a '.lo' libtool-object suffix.
 eval 'func_xform ()
 {
 func_xform_result=${1%.*}.lo
 }'
else
 # ...otherwise fall back to using sed.
 func_lo2o ()
 {
 func_lo2o_result=`$ECHO "$1" | $SED "$lo2o"`
 }

 func_xform ()
 {
 func_xform_result=`$ECHO "$1" | $SED 's|\.[^.]*$|.lo|'`
 }
fi

func_fatal_configuration ARG...

Echo program name prefixed message to standard error, followed by
a configuration failure hint, and exit.
func_fatal_configuration ()
{
 func__fatal_error ${1+"$@"} \
 "See the $PACKAGE documentation for more information." \
 "Fatal configuration error."
}

func_config

Display the configuration for all the tags in this script.
func_config ()
{
 re_begincf='^# ### BEGIN LIBTOOL'
 re_endcf='^# ### END LIBTOOL'

 # Default configuration.
 $SED "1,/$re_begincf CONFIG/d;/$re_endcf CONFIG/,\$d" < "$progpath"

 # Now print the configurations for the tags.
 for tagname in $taglist; do
 $SED -n "/$re_begincf TAG CONFIG: $tagname\$/,/$re_endcf TAG CONFIG: $tagname\$/p" < "$progpath"
 done

 exit $?
}

func_features

Display the features supported by this script.
func_features ()
{
 echo "host: $host"
 if test yes = "$build_libtool_libs"; then
 echo "enable shared libraries"
 else
 echo "disable shared libraries"
 fi
 if test yes = "$build_old_libs"; then
 echo "enable static libraries"
 else
 echo "disable static libraries"
 fi

 exit $?
}

func_enable_tag TAGNAME

Verify that TAGNAME is valid, and either flag an error and exit, or
enable the TAGNAME tag. We also add TAGNAME to the global $taglist
variable here.
func_enable_tag ()
{
 # Global variable:
 tagname=$1

 re_begincf="^# ### BEGIN LIBTOOL TAG CONFIG: $tagname\$"
 re_endcf="^# ### END LIBTOOL TAG CONFIG: $tagname\$"
 sed_extractcf=/$re_begincf/,/$re_endcf/p

 # Validate tagname.
 case $tagname in
 [!-_A-Za-z0-9,/])
 func_fatal_error "invalid tag name: $tagname"
 ;;
 esac

 # Don't test for the "default" C tag, as we know it's
 # there but not specially marked.
 case $tagname in
 CC) ;;
 *)
 if $GREP "$re_begincf" "$progpath" >/dev/null 2>&1; then
	 taglist="$taglist $tagname"

	 # Evaluate the configuration. Be careful to quote the path
	 # and the sed script, to avoid splitting on whitespace, but
	 # also don't use non-portable quotes within backquotes within
	 # quotes we have to do it in 2 steps:
	 extractedcf=`$SED -n -e "$sed_extractcf" < "$progpath"`
	 eval "$extractedcf"
 else
	 func_error "ignoring unknown tag $tagname"
 fi
 ;;
 esac
}

func_check_version_match

Ensure that we are using m4 macros, and libtool script from the same
release of libtool.
func_check_version_match ()
{
 if test "$package_revision" != "$macro_revision"; then
 if test "$VERSION" != "$macro_version"; then
 if test -z "$macro_version"; then
 cat >&2 <<_LT_EOF
$progname: Version mismatch error. This is $PACKAGE $VERSION, but the
$progname: definition of this LT_INIT comes from an older release.
$progname: You should recreate aclocal.m4 with macros from $PACKAGE $VERSION
$progname: and run autoconf again.
_LT_EOF
 else
 cat >&2 <<_LT_EOF
$progname: Version mismatch error. This is $PACKAGE $VERSION, but the
$progname: definition of this LT_INIT comes from $PACKAGE $macro_version.
$progname: You should recreate aclocal.m4 with macros from $PACKAGE $VERSION
$progname: and run autoconf again.
_LT_EOF
 fi
 else
 cat >&2 <<_LT_EOF
$progname: Version mismatch error. This is $PACKAGE $VERSION, revision $package_revision,
$progname: but the definition of this LT_INIT comes from revision $macro_revision.
$progname: You should recreate aclocal.m4 with macros from revision $package_revision
$progname: of $PACKAGE $VERSION and run autoconf again.
_LT_EOF
 fi

 exit $EXIT_MISMATCH
 fi
}

libtool_options_prep [ARG]...

Preparation for options parsed by libtool.
libtool_options_prep ()
{
 $debug_mode

 # Option defaults:
 opt_config=false
 opt_dlopen=
 opt_dry_run=false
 opt_help=false
 opt_mode=
 opt_preserve_dup_deps=false
 opt_quiet=false

 nonopt=
 preserve_args=

 # Shorthand for --mode=foo, only valid as the first argument
 case $1 in
 clean|clea|cle|cl)
 shift; set dummy --mode clean ${1+"$@"}; shift
 ;;
 compile|compil|compi|comp|com|co|c)
 shift; set dummy --mode compile ${1+"$@"}; shift
 ;;
 execute|execut|execu|exec|exe|ex|e)
 shift; set dummy --mode execute ${1+"$@"}; shift
 ;;
 finish|finis|fini|fin|fi|f)
 shift; set dummy --mode finish ${1+"$@"}; shift
 ;;
 install|instal|insta|inst|ins|in|i)
 shift; set dummy --mode install ${1+"$@"}; shift
 ;;
 link|lin|li|l)
 shift; set dummy --mode link ${1+"$@"}; shift
 ;;
 uninstall|uninstal|uninsta|uninst|unins|unin|uni|un|u)
 shift; set dummy --mode uninstall ${1+"$@"}; shift
 ;;
 esac

 # Pass back the list of options.
 func_quote_for_eval ${1+"$@"}
 libtool_options_prep_result=$func_quote_for_eval_result
}
func_add_hook func_options_prep libtool_options_prep

libtool_parse_options [ARG]...

Provide handling for libtool specific options.
libtool_parse_options ()
{
 $debug_cmd

 # Perform our own loop to consume as many options as possible in
 # each iteration.
 while test $# -gt 0; do
 _G_opt=$1
 shift
 case $_G_opt in
 --dry-run|--dryrun|-n)
 opt_dry_run=:
 ;;

 --config) func_config ;;

 --dlopen|-dlopen)
 opt_dlopen="${opt_dlopen+$opt_dlopen
}$1"
 shift
 ;;

 --preserve-dup-deps)
 opt_preserve_dup_deps=: ;;

 --features) func_features ;;

 --finish) set dummy --mode finish ${1+"$@"}; shift ;;

 --help) opt_help=: ;;

 --help-all) opt_help=': help-all' ;;

 --mode) test $# = 0 && func_missing_arg $_G_opt && break
 opt_mode=$1
 case $1 in
 # Valid mode arguments:
 clean|compile|execute|finish|install|link|relink|uninstall) ;;

 # Catch anything else as an error
 *) func_error "invalid argument for $_G_opt"
 exit_cmd=exit
 break
 ;;
 esac
 shift
 ;;

 --no-silent|--no-quiet)
 opt_quiet=false
 func_append preserve_args " $_G_opt"
 ;;

 --no-warnings|--no-warning|--no-warn)
 opt_warning=false
 func_append preserve_args " $_G_opt"
 ;;

 --no-verbose)
 opt_verbose=false
 func_append preserve_args " $_G_opt"
 ;;

 --silent|--quiet)
 opt_quiet=:
 opt_verbose=false
 func_append preserve_args " $_G_opt"
 ;;

 --tag) test $# = 0 && func_missing_arg $_G_opt && break
 opt_tag=$1
 func_append preserve_args " $_G_opt $1"
 func_enable_tag "$1"
 shift
 ;;

 --verbose|-v) opt_quiet=false
 opt_verbose=:
 func_append preserve_args " $_G_opt"
 ;;

	# An option not handled by this hook function:
 *)		set dummy "$_G_opt" ${1+"$@"};	shift; break ;;
 esac
 done

 # save modified positional parameters for caller
 func_quote_for_eval ${1+"$@"}
 libtool_parse_options_result=$func_quote_for_eval_result
}
func_add_hook func_parse_options libtool_parse_options

libtool_validate_options [ARG]...

Perform any sanity checks on option settings and/or unconsumed
arguments.
libtool_validate_options ()
{
 # save first non-option argument
 if test 0 -lt $#; then
 nonopt=$1
 shift
 fi

 # preserve --debug
 test : = "$debug_cmd" || func_append preserve_args " --debug"

 case $host in
 # Solaris2 added to fix http://debbugs.gnu.org/cgi/bugreport.cgi?bug=16452
 # see also: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=59788
 cygwin | *mingw* | *pw32* | *cegcc* | *solaris2* | *os2*)
 # don't eliminate duplications in $postdeps and $predeps
 opt_duplicate_compiler_generated_deps=:
 ;;
 *)
 opt_duplicate_compiler_generated_deps=$opt_preserve_dup_deps
 ;;
 esac

 $opt_help || {
 # Sanity checks first:
 func_check_version_match

 test yes != "$build_libtool_libs" \
 && test yes != "$build_old_libs" \
 && func_fatal_configuration "not configured to build any kind of library"

 # Darwin sucks
 eval std_shrext=\"$shrext_cmds\"

 # Only execute mode is allowed to have -dlopen flags.
 if test -n "$opt_dlopen" && test execute != "$opt_mode"; then
 func_error "unrecognized option '-dlopen'"
 $ECHO "$help" 1>&2
 exit $EXIT_FAILURE
 fi

 # Change the help message to a mode-specific one.
 generic_help=$help
 help="Try '$progname --help --mode=$opt_mode' for more information."
 }

 # Pass back the unparsed argument list
 func_quote_for_eval ${1+"$@"}
 libtool_validate_options_result=$func_quote_for_eval_result
}
func_add_hook func_validate_options libtool_validate_options

Process options as early as possible so that --help and --version
can return quickly.
func_options ${1+"$@"}
eval set dummy "$func_options_result"; shift

Main.

magic='%%%MAGIC variable%%%'
magic_exe='%%%MAGIC EXE variable%%%'

Global variables.
extracted_archives=
extracted_serial=0

If this variable is set in any of the actions, the command in it
will be execed at the end. This prevents here-documents from being
left over by shells.
exec_cmd=

A function that is used when there is no print builtin or printf.
func_fallback_echo ()
{
 eval 'cat <<_LTECHO_EOF
$1
_LTECHO_EOF'
}

func_generated_by_libtool
True iff stdin has been generated by Libtool. This function is only
a basic sanity check; it will hardly flush out determined imposters.
func_generated_by_libtool_p ()
{
 $GREP "^# Generated by .*$PACKAGE" > /dev/null 2>&1
}

func_lalib_p file
True iff FILE is a libtool '.la' library or '.lo' object file.
This function is only a basic sanity check; it will hardly flush out
determined imposters.
func_lalib_p ()
{
 test -f "$1" &&
 $SED -e 4q "$1" 2>/dev/null | func_generated_by_libtool_p
}

func_lalib_unsafe_p file
True iff FILE is a libtool '.la' library or '.lo' object file.
This function implements the same check as func_lalib_p without
resorting to external programs. To this end, it redirects stdin and
closes it afterwards, without saving the original file descriptor.
As a safety measure, use it only where a negative result would be
fatal anyway. Works if 'file' does not exist.
func_lalib_unsafe_p ()
{
 lalib_p=no
 if test -f "$1" && test -r "$1" && exec 5<&0 <"$1"; then
	for lalib_p_l in 1 2 3 4
	do
	 read lalib_p_line
	 case $lalib_p_line in
		\#\ Generated\ by\ *$PACKAGE*) lalib_p=yes; break;;
	 esac
	done
	exec 0<&5 5<&-
 fi
 test yes = "$lalib_p"
}

func_ltwrapper_script_p file
True iff FILE is a libtool wrapper script
This function is only a basic sanity check; it will hardly flush out
determined imposters.
func_ltwrapper_script_p ()
{
 test -f "$1" &&
 $lt_truncate_bin < "$1" 2>/dev/null | func_generated_by_libtool_p
}

func_ltwrapper_executable_p file
True iff FILE is a libtool wrapper executable
This function is only a basic sanity check; it will hardly flush out
determined imposters.
func_ltwrapper_executable_p ()
{
 func_ltwrapper_exec_suffix=
 case $1 in
 *.exe) ;;
 *) func_ltwrapper_exec_suffix=.exe ;;
 esac
 $GREP "$magic_exe" "1func_ltwrapper_exec_suffix" >/dev/null 2>&1
}

func_ltwrapper_scriptname file
Assumes file is an ltwrapper_executable
uses $file to determine the appropriate filename for a
temporary ltwrapper_script.
func_ltwrapper_scriptname ()
{
 func_dirname_and_basename "$1" "" "."
 func_stripname '' '.exe' "$func_basename_result"
 func_ltwrapper_scriptname_result=$func_dirname_result/$objdir/${func_stripname_result}_ltshwrapper
}

func_ltwrapper_p file
True iff FILE is a libtool wrapper script or wrapper executable
This function is only a basic sanity check; it will hardly flush out
determined imposters.
func_ltwrapper_p ()
{
 func_ltwrapper_script_p "$1" || func_ltwrapper_executable_p "$1"
}

func_execute_cmds commands fail_cmd
Execute tilde-delimited COMMANDS.
If FAIL_CMD is given, eval that upon failure.
FAIL_CMD may read-access the current command in variable CMD!
func_execute_cmds ()
{
 $debug_cmd

 save_ifs=$IFS; IFS='~'
 for cmd in $1; do
 IFS=spnl
 eval cmd=\"$cmd\"
 IFS=$save_ifs
 func_show_eval "$cmd" "${2-:}"
 done
 IFS=$save_ifs
}

func_source file
Source FILE, adding directory component if necessary.
Note that it is not necessary on cygwin/mingw to append a dot to
FILE even if both FILE and FILE.exe exist: automatic-append-.exe
behavior happens only for exec(3), not for open(2)! Also, sourcing
'FILE.' does not work on cygwin managed mounts.
func_source ()
{
 $debug_cmd

 case $1 in
 / | **)	. "$1" ;;
 *)		. "./$1" ;;
 esac
}

func_resolve_sysroot PATH
Replace a leading = in PATH with a sysroot. Store the result into
func_resolve_sysroot_result
func_resolve_sysroot ()
{
 func_resolve_sysroot_result=$1
 case $func_resolve_sysroot_result in
 =*)
 func_stripname '=' '' "$func_resolve_sysroot_result"
 func_resolve_sysroot_result=$lt_sysroot$func_stripname_result
 ;;
 esac
}

func_replace_sysroot PATH
If PATH begins with the sysroot, replace it with = and
store the result into func_replace_sysroot_result.
func_replace_sysroot ()
{
 case $lt_sysroot:$1 in
 ?*:"$lt_sysroot"*)
 func_stripname "$lt_sysroot" '' "$1"
 func_replace_sysroot_result='='$func_stripname_result
 ;;
 *)
 # Including no sysroot.
 func_replace_sysroot_result=$1
 ;;
 esac
}

func_infer_tag arg
Infer tagged configuration to use if any are available and
if one wasn't chosen via the "--tag" command line option.
Only attempt this if the compiler in the base compile
command doesn't match the default compiler.
arg is usually of the form 'gcc ...'
func_infer_tag ()
{
 $debug_cmd

 if test -n "$available_tags" && test -z "$tagname"; then
 CC_quoted=
 for arg in $CC; do
	func_append_quoted CC_quoted "$arg"
 done
 CC_expanded=`func_echo_all $CC`
 CC_quoted_expanded=`func_echo_all $CC_quoted`
 case $@ in
 # Blanks in the command may have been stripped by the calling shell,
 # but not from the CC environment variable when configure was run.
 " $CC "* | "$CC "* | " $CC_expanded "* | "$CC_expanded "* | \
 " $CC_quoted"* | "$CC_quoted "* | " $CC_quoted_expanded "* | "$CC_quoted_expanded "*) ;;
 # Blanks at the start of $base_compile will cause this to fail
 # if we don't check for them as well.
 *)
	for z in $available_tags; do
	 if $GREP "^# ### BEGIN LIBTOOL TAG CONFIG: z" < "$progpath" > /dev/null; then
	 # Evaluate the configuration.
	 eval "`$SED -n -e '/^# ### BEGIN LIBTOOL TAG CONFIG: 'z'/,/^# ### END LIBTOOL TAG CONFIG: 'z'/p' < $progpath`"
	 CC_quoted=
	 for arg in $CC; do
	 # Double-quote args containing other shell metacharacters.
	 func_append_quoted CC_quoted "$arg"
	 done
	 CC_expanded=`func_echo_all $CC`
	 CC_quoted_expanded=`func_echo_all $CC_quoted`
	 case "$@ " in
	 " $CC "* | "$CC "* | " $CC_expanded "* | "$CC_expanded "* | \
	 " $CC_quoted"* | "$CC_quoted "* | " $CC_quoted_expanded "* | "$CC_quoted_expanded "*)
	 # The compiler in the base compile command matches
	 # the one in the tagged configuration.
	 # Assume this is the tagged configuration we want.
	 tagname=$z
	 break
	 ;;
	 esac
	 fi
	done
	# If $tagname still isn't set, then no tagged configuration
	# was found and let the user know that the "--tag" command
	# line option must be used.
	if test -z "$tagname"; then
	 func_echo "unable to infer tagged configuration"
	 func_fatal_error "specify a tag with '--tag'"
#	else
#	 func_verbose "using $tagname tagged configuration"
	fi
	;;
 esac
 fi
}

func_write_libtool_object output_name pic_name nonpic_name
Create a libtool object file (analogous to a ".la" file),
but don't create it if we're doing a dry run.
func_write_libtool_object ()
{
 write_libobj=$1
 if test yes = "$build_libtool_libs"; then
 write_lobj=\'$2\'
 else
 write_lobj=none
 fi

 if test yes = "$build_old_libs"; then
 write_oldobj=\'$3\'
 else
 write_oldobj=none
 fi

 $opt_dry_run || {
 cat >${write_libobj}T <<EOF
$write_libobj - a libtool object file
Generated by $PROGRAM (GNU $PACKAGE) $VERSION
#
Please DO NOT delete this file!
It is necessary for linking the library.

Name of the PIC object.
pic_object=$write_lobj

Name of the non-PIC object
non_pic_object=$write_oldobj

EOF
 $MV "${write_libobj}T" "$write_libobj"
 }
}

##
FILE NAME AND PATH CONVERSION HELPER FUNCTIONS
##

func_convert_core_file_wine_to_w32 ARG
Helper function used by file name conversion functions when $build is *nix,
and $host is mingw, cygwin, or some other w32 environment. Relies on a
correctly configured wine environment available, with the winepath program
in $build's $PATH.
#
ARG is the $build file name to be converted to w32 format.
Result is available in $func_convert_core_file_wine_to_w32_result, and will
be empty on error (or when ARG is empty)
func_convert_core_file_wine_to_w32 ()
{
 $debug_cmd

 func_convert_core_file_wine_to_w32_result=$1
 if test -n "$1"; then
 # Unfortunately, winepath does not exit with a non-zero error code, so we
 # are forced to check the contents of stdout. On the other hand, if the
 # command is not found, the shell will set an exit code of 127 and print
 # *an error message* to stdout. So we must check for both error code of
 # zero AND non-empty stdout, which explains the odd construction:
 func_convert_core_file_wine_to_w32_tmp=`winepath -w "$1" 2>/dev/null`
 if test "$?" -eq 0 && test -n "$func_convert_core_file_wine_to_w32_tmp"; then
 func_convert_core_file_wine_to_w32_result=`$ECHO "$func_convert_core_file_wine_to_w32_tmp" |
 $SED -e "$sed_naive_backslashify"`
 else
 func_convert_core_file_wine_to_w32_result=
 fi
 fi
}
end: func_convert_core_file_wine_to_w32

func_convert_core_path_wine_to_w32 ARG
Helper function used by path conversion functions when $build is *nix, and
$host is mingw, cygwin, or some other w32 environment. Relies on a correctly
configured wine environment available, with the winepath program in $build's
$PATH. Assumes ARG has no leading or trailing path separator characters.
#
ARG is path to be converted from $build format to win32.
Result is available in $func_convert_core_path_wine_to_w32_result.
Unconvertible file (directory) names in ARG are skipped; if no directory names
are convertible, then the result may be empty.
func_convert_core_path_wine_to_w32 ()
{
 $debug_cmd

 # unfortunately, winepath doesn't convert paths, only file names
 func_convert_core_path_wine_to_w32_result=
 if test -n "$1"; then
 oldIFS=$IFS
 IFS=:
 for func_convert_core_path_wine_to_w32_f in $1; do
 IFS=$oldIFS
 func_convert_core_file_wine_to_w32 "$func_convert_core_path_wine_to_w32_f"
 if test -n "$func_convert_core_file_wine_to_w32_result"; then
 if test -z "$func_convert_core_path_wine_to_w32_result"; then
 func_convert_core_path_wine_to_w32_result=$func_convert_core_file_wine_to_w32_result
 else
 func_append func_convert_core_path_wine_to_w32_result ";$func_convert_core_file_wine_to_w32_result"
 fi
 fi
 done
 IFS=$oldIFS
 fi
}
end: func_convert_core_path_wine_to_w32

func_cygpath ARGS...
Wrapper around calling the cygpath program via LT_CYGPATH. This is used when
when (1) $build is *nix and Cygwin is hosted via a wine environment; or (2)
$build is MSYS and $host is Cygwin, or (3) $build is Cygwin. In case (1) or
(2), returns the Cygwin file name or path in func_cygpath_result (input
file name or path is assumed to be in w32 format, as previously converted
from $build's *nix or MSYS format). In case (3), returns the w32 file name
or path in func_cygpath_result (input file name or path is assumed to be in
Cygwin format). Returns an empty string on error.
#
ARGS are passed to cygpath, with the last one being the file name or path to
be converted.
#
Specify the absolute *nix (or w32) name to cygpath in the LT_CYGPATH
environment variable; do not put it in $PATH.
func_cygpath ()
{
 $debug_cmd

 if test -n "$LT_CYGPATH" && test -f "$LT_CYGPATH"; then
 func_cygpath_result=`$LT_CYGPATH "$@" 2>/dev/null`
 if test "$?" -ne 0; then
 # on failure, ensure result is empty
 func_cygpath_result=
 fi
 else
 func_cygpath_result=
 func_error "LT_CYGPATH is empty or specifies non-existent file: '$LT_CYGPATH'"
 fi
}
#end: func_cygpath

func_convert_core_msys_to_w32 ARG
Convert file name or path ARG from MSYS format to w32 format. Return
result in func_convert_core_msys_to_w32_result.
func_convert_core_msys_to_w32 ()
{
 $debug_cmd

 # awkward: cmd appends spaces to result
 func_convert_core_msys_to_w32_result=`(cmd //c echo "$1") 2>/dev/null |
 $SED -e 's/[]*$//' -e "$sed_naive_backslashify"`
}
#end: func_convert_core_msys_to_w32

func_convert_file_check ARG1 ARG2
Verify that ARG1 (a file name in $build format) was converted to $host
format in ARG2. Otherwise, emit an error message, but continue (resetting
func_to_host_file_result to ARG1).
func_convert_file_check ()
{
 $debug_cmd

 if test -z "$2" && test -n "$1"; then
 func_error "Could not determine host file name corresponding to"
 func_error " '$1'"
 func_error "Continuing, but uninstalled executables may not work."
 # Fallback:
 func_to_host_file_result=$1
 fi
}
end func_convert_file_check

func_convert_path_check FROM_PATHSEP TO_PATHSEP FROM_PATH TO_PATH
Verify that FROM_PATH (a path in $build format) was converted to $host
format in TO_PATH. Otherwise, emit an error message, but continue, resetting
func_to_host_file_result to a simplistic fallback value (see below).
func_convert_path_check ()
{
 $debug_cmd

 if test -z "$4" && test -n "$3"; then
 func_error "Could not determine the host path corresponding to"
 func_error " '$3'"
 func_error "Continuing, but uninstalled executables may not work."
 # Fallback. This is a deliberately simplistic "conversion" and
 # should not be "improved". See libtool.info.
 if test "x$1" != "x$2"; then
 lt_replace_pathsep_chars="s|$1|$2|g"
 func_to_host_path_result=`echo "$3" |
 $SED -e "$lt_replace_pathsep_chars"`
 else
 func_to_host_path_result=$3
 fi
 fi
}
end func_convert_path_check

func_convert_path_front_back_pathsep FRONTPAT BACKPAT REPL ORIG
Modifies func_to_host_path_result by prepending REPL if ORIG matches FRONTPAT
and appending REPL if ORIG matches BACKPAT.
func_convert_path_front_back_pathsep ()
{
 $debug_cmd

 case $4 in
 $1) func_to_host_path_result=3func_to_host_path_result
 ;;
 esac
 case $4 in
 $2) func_append func_to_host_path_result "$3"
 ;;
 esac
}
end func_convert_path_front_back_pathsep

##
$build to $host FILE NAME CONVERSION FUNCTIONS
##
invoked via '$to_host_file_cmd ARG'
#
In each case, ARG is the path to be converted from $build to $host format.
Result will be available in $func_to_host_file_result.

func_to_host_file ARG
Converts the file name ARG from $build format to $host format. Return result
in func_to_host_file_result.
func_to_host_file ()
{
 $debug_cmd

 $to_host_file_cmd "$1"
}
end func_to_host_file

func_to_tool_file ARG LAZY
converts the file name ARG from $build format to toolchain format. Return
result in func_to_tool_file_result. If the conversion in use is listed
in (the comma separated) LAZY, no conversion takes place.
func_to_tool_file ()
{
 $debug_cmd

 case ,$2, in
 ,"$to_tool_file_cmd",)
 func_to_tool_file_result=$1
 ;;
 *)
 $to_tool_file_cmd "$1"
 func_to_tool_file_result=$func_to_host_file_result
 ;;
 esac
}
end func_to_tool_file

func_convert_file_noop ARG
Copy ARG to func_to_host_file_result.
func_convert_file_noop ()
{
 func_to_host_file_result=$1
}
end func_convert_file_noop

func_convert_file_msys_to_w32 ARG
Convert file name ARG from (mingw) MSYS to (mingw) w32 format; automatic
conversion to w32 is not available inside the cwrapper. Returns result in
func_to_host_file_result.
func_convert_file_msys_to_w32 ()
{
 $debug_cmd

 func_to_host_file_result=$1
 if test -n "$1"; then
 func_convert_core_msys_to_w32 "$1"
 func_to_host_file_result=$func_convert_core_msys_to_w32_result
 fi
 func_convert_file_check "$1" "$func_to_host_file_result"
}
end func_convert_file_msys_to_w32

func_convert_file_cygwin_to_w32 ARG
Convert file name ARG from Cygwin to w32 format. Returns result in
func_to_host_file_result.
func_convert_file_cygwin_to_w32 ()
{
 $debug_cmd

 func_to_host_file_result=$1
 if test -n "$1"; then
 # because $build is cygwin, we call "the" cygpath in $PATH; no need to use
 # LT_CYGPATH in this case.
 func_to_host_file_result=`cygpath -m "$1"`
 fi
 func_convert_file_check "$1" "$func_to_host_file_result"
}
end func_convert_file_cygwin_to_w32

func_convert_file_nix_to_w32 ARG
Convert file name ARG from *nix to w32 format. Requires a wine environment
and a working winepath. Returns result in func_to_host_file_result.
func_convert_file_nix_to_w32 ()
{
 $debug_cmd

 func_to_host_file_result=$1
 if test -n "$1"; then
 func_convert_core_file_wine_to_w32 "$1"
 func_to_host_file_result=$func_convert_core_file_wine_to_w32_result
 fi
 func_convert_file_check "$1" "$func_to_host_file_result"
}
end func_convert_file_nix_to_w32

func_convert_file_msys_to_cygwin ARG
Convert file name ARG from MSYS to Cygwin format. Requires LT_CYGPATH set.
Returns result in func_to_host_file_result.
func_convert_file_msys_to_cygwin ()
{
 $debug_cmd

 func_to_host_file_result=$1
 if test -n "$1"; then
 func_convert_core_msys_to_w32 "$1"
 func_cygpath -u "$func_convert_core_msys_to_w32_result"
 func_to_host_file_result=$func_cygpath_result
 fi
 func_convert_file_check "$1" "$func_to_host_file_result"
}
end func_convert_file_msys_to_cygwin

func_convert_file_nix_to_cygwin ARG
Convert file name ARG from *nix to Cygwin format. Requires Cygwin installed
in a wine environment, working winepath, and LT_CYGPATH set. Returns result
in func_to_host_file_result.
func_convert_file_nix_to_cygwin ()
{
 $debug_cmd

 func_to_host_file_result=$1
 if test -n "$1"; then
 # convert from *nix to w32, then use cygpath to convert from w32 to cygwin.
 func_convert_core_file_wine_to_w32 "$1"
 func_cygpath -u "$func_convert_core_file_wine_to_w32_result"
 func_to_host_file_result=$func_cygpath_result
 fi
 func_convert_file_check "$1" "$func_to_host_file_result"
}
end func_convert_file_nix_to_cygwin

###
$build to $host PATH CONVERSION FUNCTIONS
###
invoked via '$to_host_path_cmd ARG'
#
In each case, ARG is the path to be converted from $build to $host format.
The result will be available in $func_to_host_path_result.
#
Path separators are also converted from $build format to $host format. If
ARG begins or ends with a path separator character, it is preserved (but
converted to $host format) on output.
#
All path conversion functions are named using the following convention:
file name conversion function : func_convert_file_X_to_Y ()
path conversion function : func_convert_path_X_to_Y ()
where, for any given $build/$host combination the 'X_to_Y' value is the
same. If conversion functions are added for new $build/$host combinations,
the two new functions must follow this pattern, or func_init_to_host_path_cmd
will break.

func_init_to_host_path_cmd
Ensures that function "pointer" variable $to_host_path_cmd is set to the
appropriate value, based on the value of $to_host_file_cmd.
to_host_path_cmd=
func_init_to_host_path_cmd ()
{
 $debug_cmd

 if test -z "$to_host_path_cmd"; then
 func_stripname 'func_convert_file_' '' "$to_host_file_cmd"
 to_host_path_cmd=func_convert_path_$func_stripname_result
 fi
}

func_to_host_path ARG
Converts the path ARG from $build format to $host format. Return result
in func_to_host_path_result.
func_to_host_path ()
{
 $debug_cmd

 func_init_to_host_path_cmd
 $to_host_path_cmd "$1"
}
end func_to_host_path

func_convert_path_noop ARG
Copy ARG to func_to_host_path_result.
func_convert_path_noop ()
{
 func_to_host_path_result=$1
}
end func_convert_path_noop

func_convert_path_msys_to_w32 ARG
Convert path ARG from (mingw) MSYS to (mingw) w32 format; automatic
conversion to w32 is not available inside the cwrapper. Returns result in
func_to_host_path_result.
func_convert_path_msys_to_w32 ()
{
 $debug_cmd

 func_to_host_path_result=$1
 if test -n "$1"; then
 # Remove leading and trailing path separator characters from ARG. MSYS
 # behavior is inconsistent here; cygpath turns them into '.;' and ';.';
 # and winepath ignores them completely.
 func_stripname : : "$1"
 func_to_host_path_tmp1=$func_stripname_result
 func_convert_core_msys_to_w32 "$func_to_host_path_tmp1"
 func_to_host_path_result=$func_convert_core_msys_to_w32_result
 func_convert_path_check : ";" \
 "$func_to_host_path_tmp1" "$func_to_host_path_result"
 func_convert_path_front_back_pathsep ":*" "*:" ";" "$1"
 fi
}
end func_convert_path_msys_to_w32

func_convert_path_cygwin_to_w32 ARG
Convert path ARG from Cygwin to w32 format. Returns result in
func_to_host_file_result.
func_convert_path_cygwin_to_w32 ()
{
 $debug_cmd

 func_to_host_path_result=$1
 if test -n "$1"; then
 # See func_convert_path_msys_to_w32:
 func_stripname : : "$1"
 func_to_host_path_tmp1=$func_stripname_result
 func_to_host_path_result=`cygpath -m -p "$func_to_host_path_tmp1"`
 func_convert_path_check : ";" \
 "$func_to_host_path_tmp1" "$func_to_host_path_result"
 func_convert_path_front_back_pathsep ":*" "*:" ";" "$1"
 fi
}
end func_convert_path_cygwin_to_w32

func_convert_path_nix_to_w32 ARG
Convert path ARG from *nix to w32 format. Requires a wine environment and
a working winepath. Returns result in func_to_host_file_result.
func_convert_path_nix_to_w32 ()
{
 $debug_cmd

 func_to_host_path_result=$1
 if test -n "$1"; then
 # See func_convert_path_msys_to_w32:
 func_stripname : : "$1"
 func_to_host_path_tmp1=$func_stripname_result
 func_convert_core_path_wine_to_w32 "$func_to_host_path_tmp1"
 func_to_host_path_result=$func_convert_core_path_wine_to_w32_result
 func_convert_path_check : ";" \
 "$func_to_host_path_tmp1" "$func_to_host_path_result"
 func_convert_path_front_back_pathsep ":*" "*:" ";" "$1"
 fi
}
end func_convert_path_nix_to_w32

func_convert_path_msys_to_cygwin ARG
Convert path ARG from MSYS to Cygwin format. Requires LT_CYGPATH set.
Returns result in func_to_host_file_result.
func_convert_path_msys_to_cygwin ()
{
 $debug_cmd

 func_to_host_path_result=$1
 if test -n "$1"; then
 # See func_convert_path_msys_to_w32:
 func_stripname : : "$1"
 func_to_host_path_tmp1=$func_stripname_result
 func_convert_core_msys_to_w32 "$func_to_host_path_tmp1"
 func_cygpath -u -p "$func_convert_core_msys_to_w32_result"
 func_to_host_path_result=$func_cygpath_result
 func_convert_path_check : : \
 "$func_to_host_path_tmp1" "$func_to_host_path_result"
 func_convert_path_front_back_pathsep ":*" "*:" : "$1"
 fi
}
end func_convert_path_msys_to_cygwin

func_convert_path_nix_to_cygwin ARG
Convert path ARG from *nix to Cygwin format. Requires Cygwin installed in a
a wine environment, working winepath, and LT_CYGPATH set. Returns result in
func_to_host_file_result.
func_convert_path_nix_to_cygwin ()
{
 $debug_cmd

 func_to_host_path_result=$1
 if test -n "$1"; then
 # Remove leading and trailing path separator characters from
 # ARG. msys behavior is inconsistent here, cygpath turns them
 # into '.;' and ';.', and winepath ignores them completely.
 func_stripname : : "$1"
 func_to_host_path_tmp1=$func_stripname_result
 func_convert_core_path_wine_to_w32 "$func_to_host_path_tmp1"
 func_cygpath -u -p "$func_convert_core_path_wine_to_w32_result"
 func_to_host_path_result=$func_cygpath_result
 func_convert_path_check : : \
 "$func_to_host_path_tmp1" "$func_to_host_path_result"
 func_convert_path_front_back_pathsep ":*" "*:" : "$1"
 fi
}
end func_convert_path_nix_to_cygwin

func_dll_def_p FILE
True iff FILE is a Windows DLL '.def' file.
Keep in sync with _LT_DLL_DEF_P in libtool.m4
func_dll_def_p ()
{
 $debug_cmd

 func_dll_def_p_tmp=`$SED -n \
 -e 's/^[]*//' \
 -e '/^\(;.*\)*$/d' \
 -e 's/^\(EXPORTS\|LIBRARY\)\([].*\)*$/DEF/p' \
 -e q \
 "$1"`
 test DEF = "$func_dll_def_p_tmp"
}

func_mode_compile arg...
func_mode_compile ()
{
 $debug_cmd

 # Get the compilation command and the source file.
 base_compile=
 srcfile=$nonopt # always keep a non-empty value in "srcfile"
 suppress_opt=yes
 suppress_output=
 arg_mode=normal
 libobj=
 later=
 pie_flag=

 for arg
 do
 case $arg_mode in
 arg)
	# do not "continue". Instead, add this to base_compile
	lastarg=$arg
	arg_mode=normal
	;;

 target)
	libobj=$arg
	arg_mode=normal
	continue
	;;

 normal)
	# Accept any command-line options.
	case $arg in
	-o)
	 test -n "$libobj" && \
	 func_fatal_error "you cannot specify '-o' more than once"
	 arg_mode=target
	 continue
	 ;;

	-pie | -fpie | -fPIE)
 func_append pie_flag " $arg"
	 continue
	 ;;

	-shared | -static | -prefer-pic | -prefer-non-pic)
	 func_append later " $arg"
	 continue
	 ;;

	-no-suppress)
	 suppress_opt=no
	 continue
	 ;;

	-Xcompiler)
	 arg_mode=arg # the next one goes into the "base_compile" arg list
	 continue # The current "srcfile" will either be retained or
	 ;; # replaced later. I would guess that would be a bug.

	-Wc,*)
	 func_stripname '-Wc,' '' "$arg"
	 args=$func_stripname_result
	 lastarg=
	 save_ifs=$IFS; IFS=,
	 for arg in $args; do
	 IFS=$save_ifs
	 func_append_quoted lastarg "$arg"
	 done
	 IFS=$save_ifs
	 func_stripname ' ' '' "$lastarg"
	 lastarg=$func_stripname_result

	 # Add the arguments to base_compile.
	 func_append base_compile " $lastarg"
	 continue
	 ;;

	*)
	 # Accept the current argument as the source file.
	 # The previous "srcfile" becomes the current argument.
	 #
	 lastarg=$srcfile
	 srcfile=$arg
	 ;;
	esac # case $arg
	;;
 esac # case $arg_mode

 # Aesthetically quote the previous argument.
 func_append_quoted base_compile "$lastarg"
 done # for arg

 case $arg_mode in
 arg)
 func_fatal_error "you must specify an argument for -Xcompile"
 ;;
 target)
 func_fatal_error "you must specify a target with '-o'"
 ;;
 *)
 # Get the name of the library object.
 test -z "$libobj" && {
	func_basename "$srcfile"
	libobj=$func_basename_result
 }
 ;;
 esac

 # Recognize several different file suffixes.
 # If the user specifies -o file.o, it is replaced with file.lo
 case $libobj in
 *.[cCFSifmso] | \
 *.ada | *.adb | *.ads | *.asm | \
 *.c++ | *.cc | *.ii | *.class | *.cpp | *.cxx | \
 *.[fF][09]? | *.for | *.java | *.go | *.obj | *.sx | *.cu | *.cup)
 func_xform "$libobj"
 libobj=$func_xform_result
 ;;
 esac

 case $libobj in
 *.lo) func_lo2o "$libobj"; obj=$func_lo2o_result ;;
 *)
 func_fatal_error "cannot determine name of library object from '$libobj'"
 ;;
 esac

 func_infer_tag $base_compile

 for arg in $later; do
 case $arg in
 -shared)
	test yes = "$build_libtool_libs" \
	 || func_fatal_configuration "cannot build a shared library"
	build_old_libs=no
	continue
	;;

 -static)
	build_libtool_libs=no
	build_old_libs=yes
	continue
	;;

 -prefer-pic)
	pic_mode=yes
	continue
	;;

 -prefer-non-pic)
	pic_mode=no
	continue
	;;
 esac
 done

 func_quote_for_eval "$libobj"
 test "X$libobj" != "X$func_quote_for_eval_result" \
 && $ECHO "X$libobj" | $GREP '[]~#^*{};<>?"'"'"'	 &()|`$[]' \
 && func_warning "libobj name '$libobj' may not contain shell special characters."
 func_dirname_and_basename "$obj" "/" ""
 objname=$func_basename_result
 xdir=$func_dirname_result
 lobj=$xdir$objdir/$objname

 test -z "$base_compile" && \
 func_fatal_help "you must specify a compilation command"

 # Delete any leftover library objects.
 if test yes = "$build_old_libs"; then
 removelist="$obj $lobj $libobj ${libobj}T"
 else
 removelist="$lobj $libobj ${libobj}T"
 fi

 # On Cygwin there's no "real" PIC flag so we must build both object types
 case $host_os in
 cygwin* | mingw* | pw32* | os2* | cegcc*)
 pic_mode=default
 ;;
 esac
 if test no = "$pic_mode" && test pass_all != "$deplibs_check_method"; then
 # non-PIC code in shared libraries is not supported
 pic_mode=default
 fi

 # Calculate the filename of the output object if compiler does
 # not support -o with -c
 if test no = "$compiler_c_o"; then
 output_obj=`$ECHO "$srcfile" | $SED 's%^.*/%%; s%\.[^.]*$%%'`.$objext
 lockfile=$output_obj.lock
 else
 output_obj=
 need_locks=no
 lockfile=
 fi

 # Lock this critical section if it is needed
 # We use this script file to make the link, it avoids creating a new file
 if test yes = "$need_locks"; then
 until $opt_dry_run || ln "$progpath" "$lockfile" 2>/dev/null; do
	func_echo "Waiting for $lockfile to be removed"
	sleep 2
 done
 elif test warn = "$need_locks"; then
 if test -f "$lockfile"; then
	$ECHO "\
*** ERROR, $lockfile exists and contains:
`cat $lockfile 2>/dev/null`

This indicates that another process is trying to use the same
temporary object file, and libtool could not work around it because
your compiler does not support '-c' and '-o' together. If you
repeat this compilation, it may succeed, by chance, but you had better
avoid parallel builds (make -j) in this platform, or get a better
compiler."

	$opt_dry_run || $RM $removelist
	exit $EXIT_FAILURE
 fi
 func_append removelist " $output_obj"
 $ECHO "$srcfile" > "$lockfile"
 fi

 $opt_dry_run || $RM $removelist
 func_append removelist " $lockfile"
 trap '$opt_dry_run || $RM $removelist; exit $EXIT_FAILURE' 1 2 15

 func_to_tool_file "$srcfile" func_convert_file_msys_to_w32
 srcfile=$func_to_tool_file_result
 func_quote_for_eval "$srcfile"
 qsrcfile=$func_quote_for_eval_result

 # Only build a PIC object if we are building libtool libraries.
 if test yes = "$build_libtool_libs"; then
 # Without this assignment, base_compile gets emptied.
 fbsd_hideous_sh_bug=$base_compile

 if test no != "$pic_mode"; then
	command="$base_compile $qsrcfile $pic_flag"
 else
	# Don't build PIC code
	command="$base_compile $qsrcfile"
 fi

 func_mkdir_p "$xdir$objdir"

 if test -z "$output_obj"; then
	# Place PIC objects in $objdir
	func_append command " -o $lobj"
 fi

 func_show_eval_locale "$command"	\
 'test -n "$output_obj" && $RM $removelist; exit $EXIT_FAILURE'

 if test warn = "$need_locks" &&
	 test "X`cat $lockfile 2>/dev/null`" != "X$srcfile"; then
	$ECHO "\
*** ERROR, $lockfile contains:
`cat $lockfile 2>/dev/null`

but it should contain:
$srcfile

This indicates that another process is trying to use the same
temporary object file, and libtool could not work around it because
your compiler does not support '-c' and '-o' together. If you
repeat this compilation, it may succeed, by chance, but you had better
avoid parallel builds (make -j) in this platform, or get a better
compiler."

	$opt_dry_run || $RM $removelist
	exit $EXIT_FAILURE
 fi

 # Just move the object if needed, then go on to compile the next one
 if test -n "$output_obj" && test "X$output_obj" != "X$lobj"; then
	func_show_eval '$MV "$output_obj" "$lobj"' \
	 'error=$?; $opt_dry_run || $RM $removelist; exit $error'
 fi

 # Allow error messages only from the first compilation.
 if test yes = "$suppress_opt"; then
	suppress_output=' >/dev/null 2>&1'
 fi
 fi

 # Only build a position-dependent object if we build old libraries.
 if test yes = "$build_old_libs"; then
 if test yes != "$pic_mode"; then
	# Don't build PIC code
	command="$base_compile $qsrcfile$pie_flag"
 else
	command="$base_compile $qsrcfile $pic_flag"
 fi
 if test yes = "$compiler_c_o"; then
	func_append command " -o $obj"
 fi

 # Suppress compiler output if we already did a PIC compilation.
 func_append command "$suppress_output"
 func_show_eval_locale "$command" \
 '$opt_dry_run || $RM $removelist; exit $EXIT_FAILURE'

 if test warn = "$need_locks" &&
	 test "X`cat $lockfile 2>/dev/null`" != "X$srcfile"; then
	$ECHO "\
*** ERROR, $lockfile contains:
`cat $lockfile 2>/dev/null`

but it should contain:
$srcfile

This indicates that another process is trying to use the same
temporary object file, and libtool could not work around it because
your compiler does not support '-c' and '-o' together. If you
repeat this compilation, it may succeed, by chance, but you had better
avoid parallel builds (make -j) in this platform, or get a better
compiler."

	$opt_dry_run || $RM $removelist
	exit $EXIT_FAILURE
 fi

 # Just move the object if needed
 if test -n "$output_obj" && test "X$output_obj" != "X$obj"; then
	func_show_eval '$MV "$output_obj" "$obj"' \
	 'error=$?; $opt_dry_run || $RM $removelist; exit $error'
 fi
 fi

 $opt_dry_run || {
 func_write_libtool_object "$libobj" "$objdir/$objname" "$objname"

 # Unlock the critical section if it was locked
 if test no != "$need_locks"; then
	removelist=$lockfile
 $RM "$lockfile"
 fi
 }

 exit $EXIT_SUCCESS
}

$opt_help || {
 test compile = "$opt_mode" && func_mode_compile ${1+"$@"}
}

func_mode_help ()
{
 # We need to display help for each of the modes.
 case $opt_mode in
 "")
 # Generic help is extracted from the usage comments
 # at the start of this file.
 func_help
 ;;

 clean)
 $ECHO \
"Usage: $progname [OPTION]... --mode=clean RM [RM-OPTION]... FILE...

Remove files from the build directory.

RM is the name of the program to use to delete files associated with each FILE
(typically '/bin/rm'). RM-OPTIONS are options (such as '-f') to be passed
to RM.

If FILE is a libtool library, object or program, all the files associated
with it are deleted. Otherwise, only FILE itself is deleted using RM."
 ;;

 compile)
 $ECHO \
"Usage: $progname [OPTION]... --mode=compile COMPILE-COMMAND... SOURCEFILE

Compile a source file into a libtool library object.

This mode accepts the following additional options:

 -o OUTPUT-FILE set the output file name to OUTPUT-FILE
 -no-suppress do not suppress compiler output for multiple passes
 -prefer-pic try to build PIC objects only
 -prefer-non-pic try to build non-PIC objects only
 -shared do not build a '.o' file suitable for static linking
 -static only build a '.o' file suitable for static linking
 -Wc,FLAG pass FLAG directly to the compiler

COMPILE-COMMAND is a command to be used in creating a 'standard' object file
from the given SOURCEFILE.

The output file name is determined by removing the directory component from
SOURCEFILE, then substituting the C source code suffix '.c' with the
library object suffix, '.lo'."
 ;;

 execute)
 $ECHO \
"Usage: $progname [OPTION]... --mode=execute COMMAND [ARGS]...

Automatically set library path, then run a program.

This mode accepts the following additional options:

 -dlopen FILE add the directory containing FILE to the library path

This mode sets the library path environment variable according to '-dlopen'
flags.

If any of the ARGS are libtool executable wrappers, then they are translated
into their corresponding uninstalled binary, and any of their required library
directories are added to the library path.

Then, COMMAND is executed, with ARGS as arguments."
 ;;

 finish)
 $ECHO \
"Usage: $progname [OPTION]... --mode=finish [LIBDIR]...

Complete the installation of libtool libraries.

Each LIBDIR is a directory that contains libtool libraries.

The commands that this mode executes may require superuser privileges. Use
the '--dry-run' option if you just want to see what would be executed."
 ;;

 install)
 $ECHO \
"Usage: $progname [OPTION]... --mode=install INSTALL-COMMAND...

Install executables or libraries.

INSTALL-COMMAND is the installation command. The first component should be
either the 'install' or 'cp' program.

The following components of INSTALL-COMMAND are treated specially:

 -inst-prefix-dir PREFIX-DIR Use PREFIX-DIR as a staging area for installation

The rest of the components are interpreted as arguments to that command (only
BSD-compatible install options are recognized)."
 ;;

 link)
 $ECHO \
"Usage: $progname [OPTION]... --mode=link LINK-COMMAND...

Link object files or libraries together to form another library, or to
create an executable program.

LINK-COMMAND is a command using the C compiler that you would use to create
a program from several object files.

The following components of LINK-COMMAND are treated specially:

 -all-static do not do any dynamic linking at all
 -avoid-version do not add a version suffix if possible
 -bindir BINDIR specify path to binaries directory (for systems where
 libraries must be found in the PATH setting at runtime)
 -dlopen FILE '-dlpreopen' FILE if it cannot be dlopened at runtime
 -dlpreopen FILE link in FILE and add its symbols to lt_preloaded_symbols
 -export-dynamic allow symbols from OUTPUT-FILE to be resolved with dlsym(3)
 -export-symbols SYMFILE
 try to export only the symbols listed in SYMFILE
 -export-symbols-regex REGEX
 try to export only the symbols matching REGEX
 -LLIBDIR search LIBDIR for required installed libraries
 -lNAME OUTPUT-FILE requires the installed library libNAME
 -module build a library that can dlopened
 -no-fast-install disable the fast-install mode
 -no-install link a not-installable executable
 -no-undefined declare that a library does not refer to external symbols
 -o OUTPUT-FILE create OUTPUT-FILE from the specified objects
 -objectlist FILE use a list of object files found in FILE to specify objects
 -os2dllname NAME force a short DLL name on OS/2 (no effect on other OSes)
 -precious-files-regex REGEX
 don't remove output files matching REGEX
 -release RELEASE specify package release information
 -rpath LIBDIR the created library will eventually be installed in LIBDIR
 -R[]LIBDIR add LIBDIR to the runtime path of programs and libraries
 -shared only do dynamic linking of libtool libraries
 -shrext SUFFIX override the standard shared library file extension
 -static do not do any dynamic linking of uninstalled libtool libraries
 -static-libtool-libs
 do not do any dynamic linking of libtool libraries
 -version-info CURRENT[:REVISION[:AGE]]
 specify library version info [each variable defaults to 0]
 -weak LIBNAME declare that the target provides the LIBNAME interface
 -Wc,FLAG
 -Xcompiler FLAG pass linker-specific FLAG directly to the compiler
 -Wl,FLAG
 -Xlinker FLAG pass linker-specific FLAG directly to the linker
 -XCClinker FLAG pass link-specific FLAG to the compiler driver (CC)

All other options (arguments beginning with '-') are ignored.

Every other argument is treated as a filename. Files ending in '.la' are
treated as uninstalled libtool libraries, other files are standard or library
object files.

If the OUTPUT-FILE ends in '.la', then a libtool library is created,
only library objects ('.lo' files) may be specified, and '-rpath' is
required, except when creating a convenience library.

If OUTPUT-FILE ends in '.a' or '.lib', then a standard library is created
using 'ar' and 'ranlib', or on Windows using 'lib'.

If OUTPUT-FILE ends in '.lo' or '.$objext', then a reloadable object file
is created, otherwise an executable program is created."
 ;;

 uninstall)
 $ECHO \
"Usage: $progname [OPTION]... --mode=uninstall RM [RM-OPTION]... FILE...

Remove libraries from an installation directory.

RM is the name of the program to use to delete files associated with each FILE
(typically '/bin/rm'). RM-OPTIONS are options (such as '-f') to be passed
to RM.

If FILE is a libtool library, all the files associated with it are deleted.
Otherwise, only FILE itself is deleted using RM."
 ;;

 *)
 func_fatal_help "invalid operation mode '$opt_mode'"
 ;;
 esac

 echo
 $ECHO "Try '$progname --help' for more information about other modes."
}

Now that we've collected a possible --mode arg, show help if necessary
if $opt_help; then
 if test : = "$opt_help"; then
 func_mode_help
 else
 {
 func_help noexit
 for opt_mode in compile link execute install finish uninstall clean; do
	func_mode_help
 done
 } | $SED -n '1p; 2,$s/^Usage:/ or: /p'
 {
 func_help noexit
 for opt_mode in compile link execute install finish uninstall clean; do
	echo
	func_mode_help
 done
 } |
 $SED '1d
 /^When reporting/,/^Report/{
	H
	d
 }
 $x
 /information about other modes/d
 /more detailed .*MODE/d
 s/^Usage:.*--mode=\([^]*\) .*/Description of \1 mode:/'
 fi
 exit $?
fi

func_mode_execute arg...
func_mode_execute ()
{
 $debug_cmd

 # The first argument is the command name.
 cmd=$nonopt
 test -z "$cmd" && \
 func_fatal_help "you must specify a COMMAND"

 # Handle -dlopen flags immediately.
 for file in $opt_dlopen; do
 test -f "$file" \
	|| func_fatal_help "'$file' is not a file"

 dir=
 case $file in
 *.la)
	func_resolve_sysroot "$file"
	file=$func_resolve_sysroot_result

	# Check to see that this really is a libtool archive.
	func_lalib_unsafe_p "$file" \
	 || func_fatal_help "'$lib' is not a valid libtool archive"

	# Read the libtool library.
	dlname=
	library_names=
	func_source "$file"

	# Skip this library if it cannot be dlopened.
	if test -z "$dlname"; then
	 # Warn if it was a shared library.
	 test -n "$library_names" && \
	 func_warning "'$file' was not linked with '-export-dynamic'"
	 continue
	fi

	func_dirname "$file" "" "."
	dir=$func_dirname_result

	if test -f "$dir/$objdir/$dlname"; then
	 func_append dir "/$objdir"
	else
	 if test ! -f "$dir/$dlname"; then
	 func_fatal_error "cannot find '$dlname' in '$dir' or '$dir/$objdir'"
	 fi
	fi
	;;

 *.lo)
	# Just add the directory containing the .lo file.
	func_dirname "$file" "" "."
	dir=$func_dirname_result
	;;

 *)
	func_warning "'-dlopen' is ignored for non-libtool libraries and objects"
	continue
	;;
 esac

 # Get the absolute pathname.
 absdir=`cd "$dir" && pwd`
 test -n "$absdir" && dir=$absdir

 # Now add the directory to shlibpath_var.
 if eval "test -z \"\$$shlibpath_var\""; then
	eval "$shlibpath_var=\"\$dir\""
 else
	eval "$shlibpath_var=\"\$dir:\$$shlibpath_var\""
 fi
 done

 # This variable tells wrapper scripts just to set shlibpath_var
 # rather than running their programs.
 libtool_execute_magic=$magic

 # Check if any of the arguments is a wrapper script.
 args=
 for file
 do
 case $file in
 -* | *.la | *.lo) ;;
 *)
	# Do a test to see if this is really a libtool program.
	if func_ltwrapper_script_p "$file"; then
	 func_source "$file"
	 # Transform arg to wrapped name.
	 file=$progdir/$program
	elif func_ltwrapper_executable_p "$file"; then
	 func_ltwrapper_scriptname "$file"
	 func_source "$func_ltwrapper_scriptname_result"
	 # Transform arg to wrapped name.
	 file=$progdir/$program
	fi
	;;
 esac
 # Quote arguments (to preserve shell metacharacters).
 func_append_quoted args "$file"
 done

 if $opt_dry_run; then
 # Display what would be done.
 if test -n "$shlibpath_var"; then
	eval "\$ECHO \"\$shlibpath_var=\$$shlibpath_var\""
	echo "export $shlibpath_var"
 fi
 $ECHO "$cmd$args"
 exit $EXIT_SUCCESS
 else
 if test -n "$shlibpath_var"; then
	# Export the shlibpath_var.
	eval "export $shlibpath_var"
 fi

 # Restore saved environment variables
 for lt_var in LANG LANGUAGE LC_ALL LC_CTYPE LC_COLLATE LC_MESSAGES
 do
	eval "if test \"\${save_$lt_var+set}\" = set; then
 $lt_var=\$save_$lt_var; export $lt_var
	 else
		$lt_unset $lt_var
	 fi"
 done

 # Now prepare to actually exec the command.
 exec_cmd=\cmdargs
 fi
}

test execute = "$opt_mode" && func_mode_execute ${1+"$@"}

func_mode_finish arg...
func_mode_finish ()
{
 $debug_cmd

 libs=
 libdirs=
 admincmds=

 for opt in "$nonopt" ${1+"$@"}
 do
 if test -d "$opt"; then
	func_append libdirs " $opt"

 elif test -f "$opt"; then
	if func_lalib_unsafe_p "$opt"; then
	 func_append libs " $opt"
	else
	 func_warning "'$opt' is not a valid libtool archive"
	fi

 else
	func_fatal_error "invalid argument '$opt'"
 fi
 done

 if test -n "$libs"; then
 if test -n "$lt_sysroot"; then
 sysroot_regex=`$ECHO "$lt_sysroot" | $SED "$sed_make_literal_regex"`
 sysroot_cmd="s/\([']\)$sysroot_regex/\1/g;"
 else
 sysroot_cmd=
 fi

 # Remove sysroot references
 if $opt_dry_run; then
 for lib in $libs; do
 echo "removing references to $lt_sysroot and '=' prefixes from $lib"
 done
 else
 tmpdir=`func_mktempdir`
 for lib in $libs; do
	 $SED -e "$sysroot_cmd s/\([']-[LR]\)=/\1/g; s/\([']\)=/\1/g" $lib \
	 > $tmpdir/tmp-la
	 mv -f $tmpdir/tmp-la $lib
	done
 ${RM}r "$tmpdir"
 fi
 fi

 if test -n "$finish_cmds$finish_eval" && test -n "$libdirs"; then
 for libdir in $libdirs; do
	if test -n "$finish_cmds"; then
	 # Do each command in the finish commands.
	 func_execute_cmds "$finish_cmds" 'admincmds="$admincmds
'"$cmd"'"'
	fi
	if test -n "$finish_eval"; then
	 # Do the single finish_eval.
	 eval cmds=\"$finish_eval\"
	 $opt_dry_run || eval "$cmds" || func_append admincmds "
 $cmds"
	fi
 done
 fi

 # Exit here if they wanted silent mode.
 $opt_quiet && exit $EXIT_SUCCESS

 if test -n "$finish_cmds$finish_eval" && test -n "$libdirs"; then
 echo "--"
 echo "Libraries have been installed in:"
 for libdir in $libdirs; do
	$ECHO " $libdir"
 done
 echo
 echo "If you ever happen to want to link against installed libraries"
 echo "in a given directory, LIBDIR, you must either use libtool, and"
 echo "specify the full pathname of the library, or use the '-LLIBDIR'"
 echo "flag during linking and do at least one of the following:"
 if test -n "$shlibpath_var"; then
	echo " - add LIBDIR to the '$shlibpath_var' environment variable"
	echo " during execution"
 fi
 if test -n "$runpath_var"; then
	echo " - add LIBDIR to the '$runpath_var' environment variable"
	echo " during linking"
 fi
 if test -n "$hardcode_libdir_flag_spec"; then
	libdir=LIBDIR
	eval flag=\"$hardcode_libdir_flag_spec\"

	$ECHO " - use the '$flag' linker flag"
 fi
 if test -n "$admincmds"; then
	$ECHO " - have your system administrator run these commands:$admincmds"
 fi
 if test -f /etc/ld.so.conf; then
	echo " - have your system administrator add LIBDIR to '/etc/ld.so.conf'"
 fi
 echo

 echo "See any operating system documentation about shared libraries for"
 case $host in
	solaris2.[6789]|solaris2.1[0-9])
	 echo "more information, such as the ld(1), crle(1) and ld.so(8) manual"
	 echo "pages."
	 ;;
	*)
	 echo "more information, such as the ld(1) and ld.so(8) manual pages."
	 ;;
 esac
 echo "--"
 fi
 exit $EXIT_SUCCESS
}

test finish = "$opt_mode" && func_mode_finish ${1+"$@"}

func_mode_install arg...
func_mode_install ()
{
 $debug_cmd

 # There may be an optional sh(1) argument at the beginning of
 # install_prog (especially on Windows NT).
 if test "$SHELL" = "$nonopt" || test /bin/sh = "$nonopt" ||
 # Allow the use of GNU shtool's install command.
 case $nonopt in *shtool*) :;; *) false;; esac
 then
 # Aesthetically quote it.
 func_quote_for_eval "$nonopt"
 install_prog="$func_quote_for_eval_result "
 arg=$1
 shift
 else
 install_prog=
 arg=$nonopt
 fi

 # The real first argument should be the name of the installation program.
 # Aesthetically quote it.
 func_quote_for_eval "$arg"
 func_append install_prog "$func_quote_for_eval_result"
 install_shared_prog=$install_prog
 case " $install_prog " in
 *[\\\ /]cp\ *) install_cp=: ;;
 *) install_cp=false ;;
 esac

 # We need to accept at least all the BSD install flags.
 dest=
 files=
 opts=
 prev=
 install_type=
 isdir=false
 stripme=
 no_mode=:
 for arg
 do
 arg2=
 if test -n "$dest"; then
	func_append files " $dest"
	dest=$arg
	continue
 fi

 case $arg in
 -d) isdir=: ;;
 -f)
	if $install_cp; then :; else
	 prev=$arg
	fi
	;;
 -g | -m | -o)
	prev=$arg
	;;
 -s)
	stripme=" -s"
	continue
	;;
 -*)
	;;
 *)
	# If the previous option needed an argument, then skip it.
	if test -n "$prev"; then
	 if test X-m = "X$prev" && test -n "$install_override_mode"; then
	 arg2=$install_override_mode
	 no_mode=false
	 fi
	 prev=
	else
	 dest=$arg
	 continue
	fi
	;;
 esac

 # Aesthetically quote the argument.
 func_quote_for_eval "$arg"
 func_append install_prog " $func_quote_for_eval_result"
 if test -n "$arg2"; then
	func_quote_for_eval "$arg2"
 fi
 func_append install_shared_prog " $func_quote_for_eval_result"
 done

 test -z "$install_prog" && \
 func_fatal_help "you must specify an install program"

 test -n "$prev" && \
 func_fatal_help "the '$prev' option requires an argument"

 if test -n "$install_override_mode" && $no_mode; then
 if $install_cp; then :; else
	func_quote_for_eval "$install_override_mode"
	func_append install_shared_prog " -m $func_quote_for_eval_result"
 fi
 fi

 if test -z "$files"; then
 if test -z "$dest"; then
	func_fatal_help "no file or destination specified"
 else
	func_fatal_help "you must specify a destination"
 fi
 fi

 # Strip any trailing slash from the destination.
 func_stripname '' '/' "$dest"
 dest=$func_stripname_result

 # Check to see that the destination is a directory.
 test -d "$dest" && isdir=:
 if $isdir; then
 destdir=$dest
 destname=
 else
 func_dirname_and_basename "$dest" "" "."
 destdir=$func_dirname_result
 destname=$func_basename_result

 # Not a directory, so check to see that there is only one file specified.
 set dummy $files; shift
 test "$#" -gt 1 && \
	func_fatal_help "'$dest' is not a directory"
 fi
 case $destdir in
 [\\/]* | [A-Za-z]:[\\/]*) ;;
 *)
 for file in $files; do
	case $file in
	*.lo) ;;
	*)
	 func_fatal_help "'$destdir' must be an absolute directory name"
	 ;;
	esac
 done
 ;;
 esac

 # This variable tells wrapper scripts just to set variables rather
 # than running their programs.
 libtool_install_magic=$magic

 staticlibs=
 future_libdirs=
 current_libdirs=
 for file in $files; do

 # Do each installation.
 case $file in
 *.$libext)
	# Do the static libraries later.
	func_append staticlibs " $file"
	;;

 *.la)
	func_resolve_sysroot "$file"
	file=$func_resolve_sysroot_result

	# Check to see that this really is a libtool archive.
	func_lalib_unsafe_p "$file" \
	 || func_fatal_help "'$file' is not a valid libtool archive"

	library_names=
	old_library=
	relink_command=
	func_source "$file"

	# Add the libdir to current_libdirs if it is the destination.
	if test "X$destdir" = "X$libdir"; then
	 case "$current_libdirs " in
	 " $libdir ") ;;
	 *) func_append current_libdirs " $libdir" ;;
	 esac
	else
	 # Note the libdir as a future libdir.
	 case "$future_libdirs " in
	 " $libdir ") ;;
	 *) func_append future_libdirs " $libdir" ;;
	 esac
	fi

	func_dirname "$file" "/" ""
	dir=$func_dirname_result
	func_append dir "$objdir"

	if test -n "$relink_command"; then
	 # Determine the prefix the user has applied to our future dir.
	 inst_prefix_dir=`$ECHO "$destdir" | $SED -e "s%$libdir\$%%"`

	 # Don't allow the user to place us outside of our expected
	 # location b/c this prevents finding dependent libraries that
	 # are installed to the same prefix.
	 # At present, this check doesn't affect windows .dll's that
	 # are installed into $libdir/../bin (currently, that works fine)
	 # but it's something to keep an eye on.
	 test "$inst_prefix_dir" = "$destdir" && \
	 func_fatal_error "error: cannot install '$file' to a directory not ending in $libdir"

	 if test -n "$inst_prefix_dir"; then
	 # Stick the inst_prefix_dir data into the link command.
	 relink_command=`$ECHO "$relink_command" | $SED "s%@inst_prefix_dir@%-inst-prefix-dir $inst_prefix_dir%"`
	 else
	 relink_command=`$ECHO "$relink_command" | $SED "s%@inst_prefix_dir@%%"`
	 fi

	 func_warning "relinking '$file'"
	 func_show_eval "$relink_command" \
	 'func_fatal_error "error: relink '\''$file'\'' with the above command before installing it"'
	fi

	# See the names of the shared library.
	set dummy $library_names; shift
	if test -n "$1"; then
	 realname=$1
	 shift

	 srcname=$realname
	 test -n "$relink_command" && srcname=${realname}T

	 # Install the shared library and build the symlinks.
	 func_show_eval "$install_shared_prog $dir/$srcname $destdir/$realname" \
	 'exit $?'
	 tstripme=$stripme
	 case $host_os in
	 cygwin* | mingw* | pw32* | cegcc*)
	 case $realname in
	 *.dll.a)
	 tstripme=
	 ;;
	 esac
	 ;;
	 os2*)
	 case $realname in
	 *_dll.a)
	 tstripme=
	 ;;
	 esac
	 ;;
	 esac
	 if test -n "$tstripme" && test -n "$striplib"; then
	 func_show_eval "$striplib $destdir/$realname" 'exit $?'
	 fi

	 if test "$#" -gt 0; then
	 # Delete the old symlinks, and create new ones.
	 # Try 'ln -sf' first, because the 'ln' binary might depend on
	 # the symlink we replace! Solaris /bin/ln does not understand -f,
	 # so we also need to try rm && ln -s.
	 for linkname
	 do
	 test "$linkname" != "$realname" \
		&& func_show_eval "(cd $destdir && { $LN_S -f $realname $linkname || { $RM $linkname && $LN_S $realname $linkname; }; })"
	 done
	 fi

	 # Do each command in the postinstall commands.
	 lib=$destdir/$realname
	 func_execute_cmds "$postinstall_cmds" 'exit $?'
	fi

	# Install the pseudo-library for information purposes.
	func_basename "$file"
	name=$func_basename_result
	instname=$dir/${name}i
	func_show_eval "$install_prog $instname $destdir/$name" 'exit $?'

	# Maybe install the static library, too.
	test -n "$old_library" && func_append staticlibs " $dir/$old_library"
	;;

 *.lo)
	# Install (i.e. copy) a libtool object.

	# Figure out destination file name, if it wasn't already specified.
	if test -n "$destname"; then
	 destfile=$destdir/$destname
	else
	 func_basename "$file"
	 destfile=$func_basename_result
	 destfile=$destdir/$destfile
	fi

	# Deduce the name of the destination old-style object file.
	case $destfile in
	*.lo)
	 func_lo2o "$destfile"
	 staticdest=$func_lo2o_result
	 ;;
	*.$objext)
	 staticdest=$destfile
	 destfile=
	 ;;
	*)
	 func_fatal_help "cannot copy a libtool object to '$destfile'"
	 ;;
	esac

	# Install the libtool object if requested.
	test -n "$destfile" && \
	 func_show_eval "$install_prog $file $destfile" 'exit $?'

	# Install the old object if enabled.
	if test yes = "$build_old_libs"; then
	 # Deduce the name of the old-style object file.
	 func_lo2o "$file"
	 staticobj=$func_lo2o_result
	 func_show_eval "$install_prog \$staticobj \$staticdest" 'exit $?'
	fi
	exit $EXIT_SUCCESS
	;;

 *)
	# Figure out destination file name, if it wasn't already specified.
	if test -n "$destname"; then
	 destfile=$destdir/$destname
	else
	 func_basename "$file"
	 destfile=$func_basename_result
	 destfile=$destdir/$destfile
	fi

	# If the file is missing, and there is a .exe on the end, strip it
	# because it is most likely a libtool script we actually want to
	# install
	stripped_ext=
	case $file in
	 *.exe)
	 if test ! -f "$file"; then
	 func_stripname '' '.exe' "$file"
	 file=$func_stripname_result
	 stripped_ext=.exe
	 fi
	 ;;
	esac

	# Do a test to see if this is really a libtool program.
	case $host in
	cygwin | *mingw*)
	 if func_ltwrapper_executable_p "$file"; then
	 func_ltwrapper_scriptname "$file"
	 wrapper=$func_ltwrapper_scriptname_result
	 else
	 func_stripname '' '.exe' "$file"
	 wrapper=$func_stripname_result
	 fi
	 ;;
	*)
	 wrapper=$file
	 ;;
	esac
	if func_ltwrapper_script_p "$wrapper"; then
	 notinst_deplibs=
	 relink_command=

	 func_source "$wrapper"

	 # Check the variables that should have been set.
	 test -z "$generated_by_libtool_version" && \
	 func_fatal_error "invalid libtool wrapper script '$wrapper'"

	 finalize=:
	 for lib in $notinst_deplibs; do
	 # Check to see that each library is installed.
	 libdir=
	 if test -f "$lib"; then
	 func_source "$lib"
	 fi
	 libfile=$libdir/`$ECHO "$lib" | $SED 's%^.*/%%g'`
	 if test -n "$libdir" && test ! -f "$libfile"; then
	 func_warning "'$lib' has not been installed in '$libdir'"
	 finalize=false
	 fi
	 done

	 relink_command=
	 func_source "$wrapper"

	 outputname=
	 if test no = "$fast_install" && test -n "$relink_command"; then
	 $opt_dry_run || {
	 if $finalize; then
	 tmpdir=`func_mktempdir`
		func_basename "$file$stripped_ext"
		file=$func_basename_result
	 outputname=$tmpdir/$file
	 # Replace the output file specification.
	 relink_command=`$ECHO "$relink_command" | $SED 's%@OUTPUT@%'"$outputname"'%g'`

	 $opt_quiet || {
	 func_quote_for_expand "$relink_command"
		 eval "func_echo $func_quote_for_expand_result"
	 }
	 if eval "$relink_command"; then :
	 else
		 func_error "error: relink '$file' with the above command before installing it"
		 $opt_dry_run || ${RM}r "$tmpdir"
		 continue
	 fi
	 file=$outputname
	 else
	 func_warning "cannot relink '$file'"
	 fi
	 }
	 else
	 # Install the binary that we compiled earlier.
	 file=`$ECHO "$file$stripped_ext" | $SED "s%\([^/]*\)$%$objdir/\1%"`
	 fi
	fi

	# remove .exe since cygwin /usr/bin/install will append another
	# one anyway
	case $install_prog,$host in
	/usr/bin/install,*cygwin*)
	 case $file:$destfile in
	 .exe:.exe)
	 # this is ok
	 ;;
	 .exe:)
	 destfile=$destfile.exe
	 ;;
	 :.exe)
	 func_stripname '' '.exe' "$destfile"
	 destfile=$func_stripname_result
	 ;;
	 esac
	 ;;
	esac
	func_show_eval "$install_prog\$stripme \$file \$destfile" 'exit $?'
	$opt_dry_run || if test -n "$outputname"; then
	 ${RM}r "$tmpdir"
	fi
	;;
 esac
 done

 for file in $staticlibs; do
 func_basename "$file"
 name=$func_basename_result

 # Set up the ranlib parameters.
 oldlib=$destdir/$name
 func_to_tool_file "$oldlib" func_convert_file_msys_to_w32
 tool_oldlib=$func_to_tool_file_result

 func_show_eval "$install_prog \$file \$oldlib" 'exit $?'

 if test -n "$stripme" && test -n "$old_striplib"; then
	func_show_eval "$old_striplib $tool_oldlib" 'exit $?'
 fi

 # Do each command in the postinstall commands.
 func_execute_cmds "$old_postinstall_cmds" 'exit $?'
 done

 test -n "$future_libdirs" && \
 func_warning "remember to run '$progname --finish$future_libdirs'"

 if test -n "$current_libdirs"; then
 # Maybe just do a dry run.
 $opt_dry_run && current_libdirs=" -n$current_libdirs"
 exec_cmd='$SHELL "$progpath" $preserve_args --finish$current_libdirs'
 else
 exit $EXIT_SUCCESS
 fi
}

test install = "$opt_mode" && func_mode_install ${1+"$@"}

func_generate_dlsyms outputname originator pic_p
Extract symbols from dlprefiles and create ${outputname}S.o with
a dlpreopen symbol table.
func_generate_dlsyms ()
{
 $debug_cmd

 my_outputname=$1
 my_originator=$2
 my_pic_p=${3-false}
 my_prefix=`$ECHO "$my_originator" | $SED 's%[^a-zA-Z0-9]%_%g'`
 my_dlsyms=

 if test -n "$dlfiles$dlprefiles" || test no != "$dlself"; then
 if test -n "$NM" && test -n "$global_symbol_pipe"; then
	my_dlsyms=${my_outputname}S.c
 else
	func_error "not configured to extract global symbols from dlpreopened files"
 fi
 fi

 if test -n "$my_dlsyms"; then
 case $my_dlsyms in
 "") ;;
 *.c)
	# Discover the nlist of each of the dlfiles.
	nlist=$output_objdir/$my_outputname.nm

	func_show_eval "$RM $nlist ${nlist}S ${nlist}T"

	# Parse the name list into a source file.
	func_verbose "creating $output_objdir/$my_dlsyms"

	$opt_dry_run || $ECHO > "$output_objdir/$my_dlsyms" "\
/* $my_dlsyms - symbol resolution table for '$my_outputname' dlsym emulation. */
/* Generated by $PROGRAM (GNU $PACKAGE) $VERSION */

#ifdef __cplusplus
extern \"C\" {
#endif

#if defined __GNUC__ && (((__GNUC__ == 4) && (__GNUC_MINOR__ >= 4)) || (__GNUC__ > 4))
#pragma GCC diagnostic ignored \"-Wstrict-prototypes\"
#endif

/* Keep this code in sync between libtool.m4, ltmain, lt_system.h, and tests. */
#if defined _WIN32 || defined __CYGWIN__ || defined _WIN32_WCE
/* DATA imports from DLLs on WIN32 can't be const, because runtime
 relocations are performed -- see ld's documentation on pseudo-relocs. */
define LT_DLSYM_CONST
#elif defined __osf__
/* This system does not cope well with relocations in const data. */
define LT_DLSYM_CONST
#else
define LT_DLSYM_CONST const
#endif

#define STREQ(s1, s2) (strcmp ((s1), (s2)) == 0)

/* External symbol declarations for the compiler. */\
"

	if test yes = "$dlself"; then
	 func_verbose "generating symbol list for '$output'"

	 $opt_dry_run || echo ': @PROGRAM@ ' > "$nlist"

	 # Add our own program objects to the symbol list.
	 progfiles=`$ECHO "$objs$old_deplibs" | $SP2NL | $SED "$lo2o" | $NL2SP`
	 for progfile in $progfiles; do
	 func_to_tool_file "$progfile" func_convert_file_msys_to_w32
	 func_verbose "extracting global C symbols from '$func_to_tool_file_result'"
	 $opt_dry_run || eval "$NM $func_to_tool_file_result | $global_symbol_pipe >> '$nlist'"
	 done

	 if test -n "$exclude_expsyms"; then
	 $opt_dry_run || {
	 eval '$EGREP -v " ($exclude_expsyms)$" "$nlist" > "$nlist"T'
	 eval '$MV "$nlist"T "$nlist"'
	 }
	 fi

	 if test -n "$export_symbols_regex"; then
	 $opt_dry_run || {
	 eval '$EGREP -e "$export_symbols_regex" "$nlist" > "$nlist"T'
	 eval '$MV "$nlist"T "$nlist"'
	 }
	 fi

	 # Prepare the list of exported symbols
	 if test -z "$export_symbols"; then
	 export_symbols=$output_objdir/$outputname.exp
	 $opt_dry_run || {
	 $RM $export_symbols
	 eval "$SED -n -e '/^: @PROGRAM@ $/d' -e 's/^.* \(.*\)$/\1/p' "'< "$nlist" > "$export_symbols"'
	 case $host in
	 cygwin | *mingw* | *cegcc*)
 eval "echo EXPORTS "'> "$output_objdir/$outputname.def"'
 eval 'cat "$export_symbols" >> "$output_objdir/$outputname.def"'
	 ;;
	 esac
	 }
	 else
	 $opt_dry_run || {
	 eval "$SED -e 's/\([].[*^$]\)/\\\\\1/g' -e 's/^/ /' -e 's/$/$/'"' < "$export_symbols" > "$output_objdir/$outputname.exp"'
	 eval '$GREP -f "$output_objdir/$outputname.exp" < "$nlist" > "$nlist"T'
	 eval '$MV "$nlist"T "$nlist"'
	 case $host in
	 cygwin | *mingw* | *cegcc*)
	 eval "echo EXPORTS "'> "$output_objdir/$outputname.def"'
	 eval 'cat "$nlist" >> "$output_objdir/$outputname.def"'
	 ;;
	 esac
	 }
	 fi
	fi

	for dlprefile in $dlprefiles; do
	 func_verbose "extracting global C symbols from '$dlprefile'"
	 func_basename "$dlprefile"
	 name=$func_basename_result
 case $host in
	 cygwin | *mingw* | *cegcc*)
	 # if an import library, we need to obtain dlname
	 if func_win32_import_lib_p "$dlprefile"; then
	 func_tr_sh "$dlprefile"
	 eval "curr_lafile=\$libfile_$func_tr_sh_result"
	 dlprefile_dlbasename=
	 if test -n "$curr_lafile" && func_lalib_p "$curr_lafile"; then
	 # Use subshell, to avoid clobbering current variable values
	 dlprefile_dlname=`source "$curr_lafile" && echo "$dlname"`
	 if test -n "$dlprefile_dlname"; then
	 func_basename "$dlprefile_dlname"
	 dlprefile_dlbasename=$func_basename_result
	 else
	 # no lafile. user explicitly requested -dlpreopen <import library>.
	 $sharedlib_from_linklib_cmd "$dlprefile"
	 dlprefile_dlbasename=$sharedlib_from_linklib_result
	 fi
	 fi
	 $opt_dry_run || {
	 if test -n "$dlprefile_dlbasename"; then
	 eval '$ECHO ": $dlprefile_dlbasename" >> "$nlist"'
	 else
	 func_warning "Could not compute DLL name from $name"
	 eval '$ECHO ": $name " >> "$nlist"'
	 fi
	 func_to_tool_file "$dlprefile" func_convert_file_msys_to_w32
	 eval "$NM \"$func_to_tool_file_result\" 2>/dev/null | $global_symbol_pipe |
	 $SED -e '/I __imp/d' -e 's/I __nm_/D /;s/_nm__//' >> '$nlist'"
	 }
	 else # not an import lib
	 $opt_dry_run || {
	 eval '$ECHO ": $name " >> "$nlist"'
	 func_to_tool_file "$dlprefile" func_convert_file_msys_to_w32
	 eval "$NM \"$func_to_tool_file_result\" 2>/dev/null | $global_symbol_pipe >> '$nlist'"
	 }
	 fi
	 ;;
	 *)
	 $opt_dry_run || {
	 eval '$ECHO ": $name " >> "$nlist"'
	 func_to_tool_file "$dlprefile" func_convert_file_msys_to_w32
	 eval "$NM \"$func_to_tool_file_result\" 2>/dev/null | $global_symbol_pipe >> '$nlist'"
	 }
	 ;;
 esac
	done

	$opt_dry_run || {
	 # Make sure we have at least an empty file.
	 test -f "$nlist" || : > "$nlist"

	 if test -n "$exclude_expsyms"; then
	 $EGREP -v " ($exclude_expsyms)$" "$nlist" > "$nlist"T
	 $MV "$nlist"T "$nlist"
	 fi

	 # Try sorting and uniquifying the output.
	 if $GREP -v "^: " < "$nlist" |
	 if sort -k 3 </dev/null >/dev/null 2>&1; then
		sort -k 3
	 else
		sort +2
	 fi |
	 uniq > "$nlist"S; then
	 :
	 else
	 $GREP -v "^: " < "$nlist" > "$nlist"S
	 fi

	 if test -f "$nlist"S; then
	 eval "$global_symbol_to_cdecl"' < "$nlist"S >> "$output_objdir/$my_dlsyms"'
	 else
	 echo '/* NONE */' >> "$output_objdir/$my_dlsyms"
	 fi

	 func_show_eval '$RM "${nlist}I"'
	 if test -n "$global_symbol_to_import"; then
	 eval "$global_symbol_to_import"' < "$nlist"S > "$nlist"I'
	 fi

	 echo >> "$output_objdir/$my_dlsyms" "\

/* The mapping between symbol names and symbols. */
typedef struct {
 const char *name;
 void *address;
} lt_dlsymlist;
extern LT_DLSYM_CONST lt_dlsymlist
lt_${my_prefix}_LTX_preloaded_symbols[];\
"

	 if test -s "$nlist"I; then
	 echo >> "$output_objdir/$my_dlsyms" "\
static void lt_syminit(void)
{
 LT_DLSYM_CONST lt_dlsymlist *symbol = lt_${my_prefix}_LTX_preloaded_symbols;
 for (; symbol->name; ++symbol)
 {"
	 $SED 's/.*/ if (STREQ (symbol->name, \"&\")) symbol->address = (void *) \&&;/' < "$nlist"I >> "$output_objdir/$my_dlsyms"
	 echo >> "$output_objdir/$my_dlsyms" "\
 }
}"
	 fi
	 echo >> "$output_objdir/$my_dlsyms" "\
LT_DLSYM_CONST lt_dlsymlist
lt_${my_prefix}_LTX_preloaded_symbols[] =
{ {\"$my_originator\", (void *) 0},"

	 if test -s "$nlist"I; then
	 echo >> "$output_objdir/$my_dlsyms" "\
 {\"@INIT@\", (void *) <_syminit},"
	 fi

	 case $need_lib_prefix in
	 no)
	 eval "$global_symbol_to_c_name_address" < "$nlist" >> "$output_objdir/$my_dlsyms"
	 ;;
	 *)
	 eval "$global_symbol_to_c_name_address_lib_prefix" < "$nlist" >> "$output_objdir/$my_dlsyms"
	 ;;
	 esac
	 echo >> "$output_objdir/$my_dlsyms" "\
 {0, (void *) 0}
};

/* This works around a problem in FreeBSD linker */
#ifdef FREEBSD_WORKAROUND
static const void *lt_preloaded_setup() {
 return lt_${my_prefix}_LTX_preloaded_symbols;
}
#endif

#ifdef __cplusplus
}
#endif\
"
	} # !$opt_dry_run

	pic_flag_for_symtable=
	case "$compile_command " in
	" -static ") ;;
	*)
	 case $host in
	 # compiling the symbol table file with pic_flag works around
	 # a FreeBSD bug that causes programs to crash when -lm is
	 # linked before any other PIC object. But we must not use
	 # pic_flag when linking with -static. The problem exists in
	 # FreeBSD 2.2.6 and is fixed in FreeBSD 3.1.
	 --freebsd2.*|*-*-freebsd3.0*|*-*-freebsdelf3.0*)
	 pic_flag_for_symtable=" $pic_flag -DFREEBSD_WORKAROUND" ;;
	 --hpux*)
	 pic_flag_for_symtable=" $pic_flag" ;;
	 *)
	 $my_pic_p && pic_flag_for_symtable=" $pic_flag"
	 ;;
	 esac
	 ;;
	esac
	symtab_cflags=
	for arg in $LTCFLAGS; do
	 case $arg in
	 -pie | -fpie | -fPIE) ;;
	 *) func_append symtab_cflags " $arg" ;;
	 esac
	done

	# Now compile the dynamic symbol file.
	func_show_eval '(cd $output_objdir && $LTCC$symtab_cflags -c$no_builtin_flag$pic_flag_for_symtable "$my_dlsyms")' 'exit $?'

	# Clean up the generated files.
	func_show_eval '$RM "$output_objdir/$my_dlsyms" "$nlist" "${nlist}S" "${nlist}T" "${nlist}I"'

	# Transform the symbol file into the correct name.
	symfileobj=$output_objdir/${my_outputname}S.$objext
	case $host in
	cygwin | *mingw* | *cegcc*)
	 if test -f "$output_objdir/$my_outputname.def"; then
	 compile_command=`$ECHO "$compile_command" | $SED "s%@SYMFILE@%$output_objdir/$my_outputname.def $symfileobj%"`
	 finalize_command=`$ECHO "$finalize_command" | $SED "s%@SYMFILE@%$output_objdir/$my_outputname.def $symfileobj%"`
	 else
	 compile_command=`$ECHO "$compile_command" | $SED "s%@SYMFILE@%$symfileobj%"`
	 finalize_command=`$ECHO "$finalize_command" | $SED "s%@SYMFILE@%$symfileobj%"`
	 fi
	 ;;
	*)
	 compile_command=`$ECHO "$compile_command" | $SED "s%@SYMFILE@%$symfileobj%"`
	 finalize_command=`$ECHO "$finalize_command" | $SED "s%@SYMFILE@%$symfileobj%"`
	 ;;
	esac
	;;
 *)
	func_fatal_error "unknown suffix for '$my_dlsyms'"
	;;
 esac
 else
 # We keep going just in case the user didn't refer to
 # lt_preloaded_symbols. The linker will fail if global_symbol_pipe
 # really was required.

 # Nullify the symbol file.
 compile_command=`$ECHO "$compile_command" | $SED "s% @SYMFILE@%%"`
 finalize_command=`$ECHO "$finalize_command" | $SED "s% @SYMFILE@%%"`
 fi
}

func_cygming_gnu_implib_p ARG
This predicate returns with zero status (TRUE) if
ARG is a GNU/binutils-style import library. Returns
with nonzero status (FALSE) otherwise.
func_cygming_gnu_implib_p ()
{
 $debug_cmd

 func_to_tool_file "$1" func_convert_file_msys_to_w32
 func_cygming_gnu_implib_tmp=`$NM "$func_to_tool_file_result" | eval "$global_symbol_pipe" | $EGREP ' (_head_[A-Za-z0-9_]+_[ad]l*|[A-Za-z0-9_]+_[ad]l*_iname)$'`
 test -n "$func_cygming_gnu_implib_tmp"
}

func_cygming_ms_implib_p ARG
This predicate returns with zero status (TRUE) if
ARG is an MS-style import library. Returns
with nonzero status (FALSE) otherwise.
func_cygming_ms_implib_p ()
{
 $debug_cmd

 func_to_tool_file "$1" func_convert_file_msys_to_w32
 func_cygming_ms_implib_tmp=`$NM "$func_to_tool_file_result" | eval "$global_symbol_pipe" | $GREP '_NULL_IMPORT_DESCRIPTOR'`
 test -n "$func_cygming_ms_implib_tmp"
}

func_win32_libid arg
return the library type of file 'arg'
#
Need a lot of goo to handle *both* DLLs and import libs
Has to be a shell function in order to 'eat' the argument
that is supplied when $file_magic_command is called.
Despite the name, also deal with 64 bit binaries.
func_win32_libid ()
{
 $debug_cmd

 win32_libid_type=unknown
 win32_fileres=`file -L $1 2>/dev/null`
 case $win32_fileres in
 ar\ archive\ import\ library) # definitely import
 win32_libid_type="x86 archive import"
 ;;
 ar\ archive) # could be an import, or static
 # Keep the egrep pattern in sync with the one in _LT_CHECK_MAGIC_METHOD.
 if eval $OBJDUMP -f $1 | $SED -e '10q' 2>/dev/null |
 $EGREP 'file format (pei*-i386(.*architecture: i386)?|pe-arm-wince|pe-x86-64)' >/dev/null; then
 case $nm_interface in
 "MS dumpbin")
	if func_cygming_ms_implib_p "$1" ||
	 func_cygming_gnu_implib_p "$1"
	then
	 win32_nmres=import
	else
	 win32_nmres=
	fi
	;;
 *)
	func_to_tool_file "$1" func_convert_file_msys_to_w32
	win32_nmres=`eval $NM -f posix -A \"$func_to_tool_file_result\" |
	 $SED -n -e '
	 1,100{
		/ I /{
		 s|.*|import|
		 p
		 q
		}
	 }'`
	;;
 esac
 case $win32_nmres in
 import*) win32_libid_type="x86 archive import";;
 *) win32_libid_type="x86 archive static";;
 esac
 fi
 ;;
 DLL)
 win32_libid_type="x86 DLL"
 ;;
 executable) # but shell scripts are "executable" too...
 case $win32_fileres in
 MS\ Windows\ PE\ Intel)
 win32_libid_type="x86 DLL"
 ;;
 esac
 ;;
 esac
 $ECHO "$win32_libid_type"
}

func_cygming_dll_for_implib ARG
#
Platform-specific function to extract the
name of the DLL associated with the specified
import library ARG.
Invoked by eval'ing the libtool variable
$sharedlib_from_linklib_cmd
Result is available in the variable
$sharedlib_from_linklib_result
func_cygming_dll_for_implib ()
{
 $debug_cmd

 sharedlib_from_linklib_result=`$DLLTOOL --identify-strict --identify "$1"`
}

func_cygming_dll_for_implib_fallback_core SECTION_NAME LIBNAMEs
#
The is the core of a fallback implementation of a
platform-specific function to extract the name of the
DLL associated with the specified import library LIBNAME.
#
SECTION_NAME is either .idata$6 or .idata$7, depending
on the platform and compiler that created the implib.
#
Echos the name of the DLL associated with the
specified import library.
func_cygming_dll_for_implib_fallback_core ()
{
 $debug_cmd

 match_literal=`$ECHO "$1" | $SED "$sed_make_literal_regex"`
 $OBJDUMP -s --section "$1" "$2" 2>/dev/null |
 $SED '/^Contents of section '"$match_literal"':/{
 # Place marker at beginning of archive member dllname section
 s/.*/====MARK====/
 p
 d
 }
 # These lines can sometimes be longer than 43 characters, but
 # are always uninteresting
 /:[]*file format pe[i]\{,1\}-/d
 /^In archive [^:]*:/d
 # Ensure marker is printed
 /^====MARK====/p
 # Remove all lines with less than 43 characters
 /^.\{43\}/!d
 # From remaining lines, remove first 43 characters
 s/^.\{43\}//' |
 $SED -n '
 # Join marker and all lines until next marker into a single line
 /^====MARK====/ b para
 H
 $ b para
 b
 :para
 x
 s/\n//g
 # Remove the marker
 s/^====MARK====//
 # Remove trailing dots and whitespace
 s/[\. \t]*$//
 # Print
 /./p' |
 # we now have a list, one entry per line, of the stringified
 # contents of the appropriate section of all members of the
 # archive that possess that section. Heuristic: eliminate
 # all those that have a first or second character that is
 # a '.' (that is, objdump's representation of an unprintable
 # character.) This should work for all archives with less than
 # 0x302f exports -- but will fail for DLLs whose name actually
 # begins with a literal '.' or a single character followed by
 # a '.'.
 #
 # Of those that remain, print the first one.
 $SED -e '/^\./d;/^.\./d;q'
}

func_cygming_dll_for_implib_fallback ARG
Platform-specific function to extract the
name of the DLL associated with the specified
import library ARG.
#
This fallback implementation is for use when $DLLTOOL
does not support the --identify-strict option.
Invoked by eval'ing the libtool variable
$sharedlib_from_linklib_cmd
Result is available in the variable
$sharedlib_from_linklib_result
func_cygming_dll_for_implib_fallback ()
{
 $debug_cmd

 if func_cygming_gnu_implib_p "$1"; then
 # binutils import library
 sharedlib_from_linklib_result=`func_cygming_dll_for_implib_fallback_core '.idata$7' "$1"`
 elif func_cygming_ms_implib_p "$1"; then
 # ms-generated import library
 sharedlib_from_linklib_result=`func_cygming_dll_for_implib_fallback_core '.idata$6' "$1"`
 else
 # unknown
 sharedlib_from_linklib_result=
 fi
}

func_extract_an_archive dir oldlib
func_extract_an_archive ()
{
 $debug_cmd

 f_ex_an_ar_dir=$1; shift
 f_ex_an_ar_oldlib=$1
 if test yes = "$lock_old_archive_extraction"; then
 lockfile=$f_ex_an_ar_oldlib.lock
 until $opt_dry_run || ln "$progpath" "$lockfile" 2>/dev/null; do
	func_echo "Waiting for $lockfile to be removed"
	sleep 2
 done
 fi
 func_show_eval "(cd \$f_ex_an_ar_dir && $AR x \"\$f_ex_an_ar_oldlib\")" \
		 'stat=$?; rm -f "$lockfile"; exit $stat'
 if test yes = "$lock_old_archive_extraction"; then
 $opt_dry_run || rm -f "$lockfile"
 fi
 if ($AR t "$f_ex_an_ar_oldlib" | sort | sort -uc >/dev/null 2>&1); then
 :
 else
 func_fatal_error "object name conflicts in archive: $f_ex_an_ar_dir/$f_ex_an_ar_oldlib"
 fi
}

func_extract_archives gentop oldlib ...
func_extract_archives ()
{
 $debug_cmd

 my_gentop=$1; shift
 my_oldlibs=${1+"$@"}
 my_oldobjs=
 my_xlib=
 my_xabs=
 my_xdir=

 for my_xlib in $my_oldlibs; do
 # Extract the objects.
 case $my_xlib in
	[\\/]* | [A-Za-z]:[\\/]*) my_xabs=$my_xlib ;;
	*) my_xabs=`pwd`"/$my_xlib" ;;
 esac
 func_basename "$my_xlib"
 my_xlib=$func_basename_result
 my_xlib_u=$my_xlib
 while :; do
 case " $extracted_archives " in
	" $my_xlib_u ")
	 func_arith $extracted_serial + 1
	 extracted_serial=$func_arith_result
	 my_xlib_u=lt$extracted_serial-$my_xlib ;;
	*) break ;;
	esac
 done
 extracted_archives="$extracted_archives $my_xlib_u"
 my_xdir=$my_gentop/$my_xlib_u

 func_mkdir_p "$my_xdir"

 case $host in
 -darwin)
	func_verbose "Extracting $my_xabs"
	# Do not bother doing anything if just a dry run
	$opt_dry_run || {
	 darwin_orig_dir=`pwd`
	 cd $my_xdir || exit $?
	 darwin_archive=$my_xabs
	 darwin_curdir=`pwd`
	 func_basename "$darwin_archive"
	 darwin_base_archive=$func_basename_result
	 darwin_arches=`$LIPO -info "$darwin_archive" 2>/dev/null | $GREP Architectures 2>/dev/null || true`
	 if test -n "$darwin_arches"; then
	 darwin_arches=`$ECHO "$darwin_arches" | $SED -e 's/.*are://'`
	 darwin_arch=
	 func_verbose "$darwin_base_archive has multiple architectures $darwin_arches"
	 for darwin_arch in $darwin_arches; do
	 func_mkdir_p "unfat-$$/$darwin_base_archive-$darwin_arch"
	 $LIPO -thin $darwin_arch -output "unfat-$$/$darwin_base_archive-$darwin_arch/$darwin_base_archive" "$darwin_archive"
	 cd "unfat-$$/$darwin_base_archive-$darwin_arch"
	 func_extract_an_archive "`pwd`" "$darwin_base_archive"
	 cd "$darwin_curdir"
	 $RM "unfat-$$/$darwin_base_archive-$darwin_arch/$darwin_base_archive"
	 done # $darwin_arches
 ## Okay now we've a bunch of thin objects, gotta fatten them up :)
	 darwin_filelist=`find unfat-$$ -type f -name *.o -print -o -name *.lo -print | $SED -e "$sed_basename" | sort -u`
	 darwin_file=
	 darwin_files=
	 for darwin_file in $darwin_filelist; do
	 darwin_files=`find unfat-$$ -name $darwin_file -print | sort | $NL2SP`
	 $LIPO -create -output "$darwin_file" $darwin_files
	 done # $darwin_filelist
	 $RM -rf unfat-$$
	 cd "$darwin_orig_dir"
	 else
	 cd $darwin_orig_dir
	 func_extract_an_archive "$my_xdir" "$my_xabs"
	 fi # $darwin_arches
	} # !$opt_dry_run
	;;
 *)
 func_extract_an_archive "$my_xdir" "$my_xabs"
	;;
 esac
 my_oldobjs="$my_oldobjs "`find $my_xdir -name *.$objext -print -o -name *.lo -print | sort | $NL2SP`
 done

 func_extract_archives_result=$my_oldobjs
}

func_emit_wrapper [arg=no]
#
Emit a libtool wrapper script on stdout.
Don't directly open a file because we may want to
incorporate the script contents within a cygwin/mingw
wrapper executable. Must ONLY be called from within
func_mode_link because it depends on a number of variables
set therein.
#
ARG is the value that the WRAPPER_SCRIPT_BELONGS_IN_OBJDIR
variable will take. If 'yes', then the emitted script
will assume that the directory where it is stored is
the $objdir directory. This is a cygwin/mingw-specific
behavior.
func_emit_wrapper ()
{
	func_emit_wrapper_arg1=${1-no}

	$ECHO "\
#! $SHELL

$output - temporary wrapper script for $objdir/$outputname
Generated by $PROGRAM (GNU $PACKAGE) $VERSION
#
The $output program cannot be directly executed until all the libtool
libraries that it depends on are installed.
#
This wrapper script should never be moved out of the build directory.
If it is, it will not operate correctly.

Sed substitution that helps us do robust quoting. It backslashifies
metacharacters that are still active within double-quoted strings.
sed_quote_subst='$sed_quote_subst'

Be Bourne compatible
if test -n \"\${ZSH_VERSION+set}\" && (emulate sh) >/dev/null 2>&1; then
 emulate sh
 NULLCMD=:
 # Zsh 3.x and 4.x performs word splitting on \${1+\"\$@\"}, which
 # is contrary to our usage. Disable this feature.
 alias -g '\${1+\"\$@\"}'='\"\$@\"'
 setopt NO_GLOB_SUBST
else
 case \`(set -o) 2>/dev/null\` in *posix*) set -o posix;; esac
fi
BIN_SH=xpg4; export BIN_SH # for Tru64
DUALCASE=1; export DUALCASE # for MKS sh

The HP-UX ksh and POSIX shell print the target directory to stdout
if CDPATH is set.
(unset CDPATH) >/dev/null 2>&1 && unset CDPATH

relink_command=\"$relink_command\"

This environment variable determines our operation mode.
if test \"\$libtool_install_magic\" = \"$magic\"; then
 # install mode needs the following variables:
 generated_by_libtool_version='$macro_version'
 notinst_deplibs='$notinst_deplibs'
else
 # When we are sourced in execute mode, \$file and \$ECHO are already set.
 if test \"\$libtool_execute_magic\" != \"$magic\"; then
 file=\"\$0\""

 qECHO=`$ECHO "$ECHO" | $SED "$sed_quote_subst"`
 $ECHO "\

A function that is used when there is no print builtin or printf.
func_fallback_echo ()
{
 eval 'cat <<_LTECHO_EOF
\$1
_LTECHO_EOF'
}
 ECHO=\"$qECHO\"
 fi

Very basic option parsing. These options are (a) specific to
the libtool wrapper, (b) are identical between the wrapper
/script/ and the wrapper /executable/ that is used only on
windows platforms, and (c) all begin with the string "--lt-"
(application programs are unlikely to have options that match
this pattern).
#
There are only two supported options: --lt-debug and
--lt-dump-script. There is, deliberately, no --lt-help.
#
The first argument to this parsing function should be the
script's $0 value, followed by "$@".
lt_option_debug=
func_parse_lt_options ()
{
 lt_script_arg0=\$0
 shift
 for lt_opt
 do
 case \"\$lt_opt\" in
 --lt-debug) lt_option_debug=1 ;;
 --lt-dump-script)
 lt_dump_D=\`\$ECHO \"X\$lt_script_arg0\" | $SED -e 's/^X//' -e 's%/[^/]*$%%'\`
 test \"X\$lt_dump_D\" = \"X\$lt_script_arg0\" && lt_dump_D=.
 lt_dump_F=\`\$ECHO \"X\$lt_script_arg0\" | $SED -e 's/^X//' -e 's%^.*/%%'\`
 cat \"\$lt_dump_D/\$lt_dump_F\"
 exit 0
 ;;
 --lt-*)
 \$ECHO \"Unrecognized --lt- option: '\$lt_opt'\" 1>&2
 exit 1
 ;;
 esac
 done

 # Print the debug banner immediately:
 if test -n \"\$lt_option_debug\"; then
 echo \"$outputname:$output:\$LINENO: libtool wrapper (GNU $PACKAGE) $VERSION\" 1>&2
 fi
}

Used when --lt-debug. Prints its arguments to stdout
(redirection is the responsibility of the caller)
func_lt_dump_args ()
{
 lt_dump_args_N=1;
 for lt_arg
 do
 \$ECHO \"$outputname:$output:\$LINENO: newargv[\$lt_dump_args_N]: \$lt_arg\"
 lt_dump_args_N=\`expr \$lt_dump_args_N + 1\`
 done
}

Core function for launching the target application
func_exec_program_core ()
{
"
 case $host in
 # Backslashes separate directories on plain windows
 --mingw | *-*-os2* | *-cegcc*)
 $ECHO "\
 if test -n \"\$lt_option_debug\"; then
 \$ECHO \"$outputname:$output:\$LINENO: newargv[0]: \$progdir\\\\\$program\" 1>&2
 func_lt_dump_args \${1+\"\$@\"} 1>&2
 fi
 exec \"\$progdir\\\\\$program\" \${1+\"\$@\"}
"
 ;;

 *)
 $ECHO "\
 if test -n \"\$lt_option_debug\"; then
 \$ECHO \"$outputname:$output:\$LINENO: newargv[0]: \$progdir/\$program\" 1>&2
 func_lt_dump_args \${1+\"\$@\"} 1>&2
 fi
 exec \"\$progdir/\$program\" \${1+\"\$@\"}
"
 ;;
 esac
 $ECHO "\
 \$ECHO \"\$0: cannot exec \$program \$*\" 1>&2
 exit 1
}

A function to encapsulate launching the target application
Strips options in the --lt-* namespace from \$@ and
launches target application with the remaining arguments.
func_exec_program ()
{
 case \" \$* \" in
 \\ --lt-)
 for lt_wr_arg
 do
 case \$lt_wr_arg in
 --lt-*) ;;
 *) set x \"\$@\" \"\$lt_wr_arg\"; shift;;
 esac
 shift
 done ;;
 esac
 func_exec_program_core \${1+\"\$@\"}
}

 # Parse options
 func_parse_lt_options \"\$0\" \${1+\"\$@\"}

 # Find the directory that this script lives in.
 thisdir=\`\$ECHO \"\$file\" | $SED 's%/[^/]*$%%'\`
 test \"x\$thisdir\" = \"x\$file\" && thisdir=.

 # Follow symbolic links until we get to the real thisdir.
 file=\`ls -ld \"\$file\" | $SED -n 's/.*-> //p'\`
 while test -n \"\$file\"; do
 destdir=\`\$ECHO \"\$file\" | $SED 's%/[^/]*\$%%'\`

 # If there was a directory component, then change thisdir.
 if test \"x\$destdir\" != \"x\$file\"; then
 case \"\$destdir\" in
 [\\\\/]* | [A-Za-z]:[\\\\/]*) thisdir=\"\$destdir\" ;;
 *) thisdir=\"\$thisdir/\$destdir\" ;;
 esac
 fi

 file=\`\$ECHO \"\$file\" | $SED 's%^.*/%%'\`
 file=\`ls -ld \"\$thisdir/\$file\" | $SED -n 's/.*-> //p'\`
 done

 # Usually 'no', except on cygwin/mingw when embedded into
 # the cwrapper.
 WRAPPER_SCRIPT_BELONGS_IN_OBJDIR=$func_emit_wrapper_arg1
 if test \"\$WRAPPER_SCRIPT_BELONGS_IN_OBJDIR\" = \"yes\"; then
 # special case for '.'
 if test \"\$thisdir\" = \".\"; then
 thisdir=\`pwd\`
 fi
 # remove .libs from thisdir
 case \"\$thisdir\" in
 [\\\\/]$objdir) thisdir=\`\$ECHO \"\$thisdir\" | $SED 's%[\\\\/][^\\\\/]$%%'\` ;;
 $objdir) thisdir=. ;;
 esac
 fi

 # Try to get the absolute directory name.
 absdir=\`cd \"\$thisdir\" && pwd\`
 test -n \"\$absdir\" && thisdir=\"\$absdir\"
"

	if test yes = "$fast_install"; then
	 $ECHO "\
 program=lt-'$outputname'$exeext
 progdir=\"\$thisdir/$objdir\"

 if test ! -f \"\$progdir/\$program\" ||
 { file=\`ls -1dt \"\$progdir/\$program\" \"\$progdir/../\$program\" 2>/dev/null | $SED 1q\`; \\
 test \"X\$file\" != \"X\$progdir/\$program\"; }; then

 file=\"\$\$-\$program\"

 if test ! -d \"\$progdir\"; then
 $MKDIR \"\$progdir\"
 else
 $RM \"\$progdir/\$file\"
 fi"

	 $ECHO "\

 # relink executable if necessary
 if test -n \"\$relink_command\"; then
 if relink_command_output=\`eval \$relink_command 2>&1\`; then :
 else
	\$ECHO \"\$relink_command_output\" >&2
	$RM \"\$progdir/\$file\"
	exit 1
 fi
 fi

 $MV \"\$progdir/\$file\" \"\$progdir/\$program\" 2>/dev/null ||
 { $RM \"\$progdir/\$program\";
 $MV \"\$progdir/\$file\" \"\$progdir/\$program\"; }
 $RM \"\$progdir/\$file\"
 fi"
	else
	 $ECHO "\
 program='$outputname'
 progdir=\"\$thisdir/$objdir\"
"
	fi

	$ECHO "\

 if test -f \"\$progdir/\$program\"; then"

	# fixup the dll searchpath if we need to.
	#
	# Fix the DLL searchpath if we need to. Do this before prepending
	# to shlibpath, because on Windows, both are PATH and uninstalled
	# libraries must come first.
	if test -n "$dllsearchpath"; then
	 $ECHO "\
 # Add the dll search path components to the executable PATH
 PATH=$dllsearchpath:\$PATH
"
	fi

	# Export our shlibpath_var if we have one.
	if test yes = "$shlibpath_overrides_runpath" && test -n "$shlibpath_var" && test -n "$temp_rpath"; then
	 $ECHO "\
 # Add our own library path to $shlibpath_var
 $shlibpath_var=\"$temp_rpath\$$shlibpath_var\"

 # Some systems cannot cope with colon-terminated $shlibpath_var
 # The second colon is a workaround for a bug in BeOS R4 sed
 $shlibpath_var=\`\$ECHO \"\$$shlibpath_var\" | $SED 's/::*\$//'\`

 export $shlibpath_var
"
	fi

	$ECHO "\
 if test \"\$libtool_execute_magic\" != \"$magic\"; then
 # Run the actual program with our arguments.
 func_exec_program \${1+\"\$@\"}
 fi
 else
 # The program doesn't exist.
 \$ECHO \"\$0: error: '\$progdir/\$program' does not exist\" 1>&2
 \$ECHO \"This script is just a wrapper for \$program.\" 1>&2
 \$ECHO \"See the $PACKAGE documentation for more information.\" 1>&2
 exit 1
 fi
fi\
"
}

func_emit_cwrapperexe_src
emit the source code for a wrapper executable on stdout
Must ONLY be called from within func_mode_link because
it depends on a number of variable set therein.
func_emit_cwrapperexe_src ()
{
	cat <<EOF

/* $cwrappersource - temporary wrapper executable for $objdir/$outputname
 Generated by $PROGRAM (GNU $PACKAGE) $VERSION

 The $output program cannot be directly executed until all the libtool
 libraries that it depends on are installed.

 This wrapper executable should never be moved out of the build directory.
 If it is, it will not operate correctly.
*/
EOF
	 cat <<"EOF"
#ifdef _MSC_VER
define _CRT_SECURE_NO_DEPRECATE 1
#endif
#include <stdio.h>
#include <stdlib.h>
#ifdef _MSC_VER
include <direct.h>
include <process.h>
include <io.h>
#else
include <unistd.h>
include <stdint.h>
ifdef __CYGWIN__
include <io.h>
endif
#endif
#include <malloc.h>
#include <stdarg.h>
#include <assert.h>
#include <string.h>
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/stat.h>

#define STREQ(s1, s2) (strcmp ((s1), (s2)) == 0)

/* declarations of non-ANSI functions */
#if defined __MINGW32__
ifdef __STRICT_ANSI__
int _putenv (const char *);
endif
#elif defined __CYGWIN__
ifdef __STRICT_ANSI__
char *realpath (const char *, char *);
int putenv (char *);
int setenv (const char *, const char *, int);
endif
/* #elif defined other_platform || defined ... */
#endif

/* portability defines, excluding path handling macros */
#if defined _MSC_VER
define setmode _setmode
define stat _stat
define chmod _chmod
define getcwd _getcwd
define putenv _putenv
define S_IXUSR _S_IEXEC
#elif defined __MINGW32__
define setmode _setmode
define stat _stat
define chmod _chmod
define getcwd _getcwd
define putenv _putenv
#elif defined __CYGWIN__
define HAVE_SETENV
define FOPEN_WB "wb"
/* #elif defined other platforms ... */
#endif

#if defined PATH_MAX
define LT_PATHMAX PATH_MAX
#elif defined MAXPATHLEN
define LT_PATHMAX MAXPATHLEN
#else
define LT_PATHMAX 1024
#endif

#ifndef S_IXOTH
define S_IXOTH 0
#endif
#ifndef S_IXGRP
define S_IXGRP 0
#endif

/* path handling portability macros */
#ifndef DIR_SEPARATOR
define DIR_SEPARATOR '/'
define PATH_SEPARATOR ':'
#endif

#if defined _WIN32 || defined __MSDOS__ || defined __DJGPP__ || \
 defined __OS2__
define HAVE_DOS_BASED_FILE_SYSTEM
define FOPEN_WB "wb"
ifndef DIR_SEPARATOR_2
define DIR_SEPARATOR_2 '\\'
endif
ifndef PATH_SEPARATOR_2
define PATH_SEPARATOR_2 ';'
endif
#endif

#ifndef DIR_SEPARATOR_2
define IS_DIR_SEPARATOR(ch) ((ch) == DIR_SEPARATOR)
#else /* DIR_SEPARATOR_2 */
define IS_DIR_SEPARATOR(ch) \
	(((ch) == DIR_SEPARATOR) || ((ch) == DIR_SEPARATOR_2))
#endif /* DIR_SEPARATOR_2 */

#ifndef PATH_SEPARATOR_2
define IS_PATH_SEPARATOR(ch) ((ch) == PATH_SEPARATOR)
#else /* PATH_SEPARATOR_2 */
define IS_PATH_SEPARATOR(ch) ((ch) == PATH_SEPARATOR_2)
#endif /* PATH_SEPARATOR_2 */

#ifndef FOPEN_WB
define FOPEN_WB "w"
#endif
#ifndef _O_BINARY
define _O_BINARY 0
#endif

#define XMALLOC(type, num) ((type *) xmalloc ((num) * sizeof(type)))
#define XFREE(stale) do { \
 if (stale) { free (stale); stale = 0; } \
} while (0)

#if defined LT_DEBUGWRAPPER
static int lt_debug = 1;
#else
static int lt_debug = 0;
#endif

const char *program_name = "libtool-wrapper"; /* in case xstrdup fails */

void *xmalloc (size_t num);
char *xstrdup (const char *string);
const char *base_name (const char *name);
char *find_executable (const char *wrapper);
char *chase_symlinks (const char *pathspec);
int make_executable (const char *path);
int check_executable (const char *path);
char *strendzap (char *str, const char *pat);
void lt_debugprintf (const char *file, int line, const char *fmt, ...);
void lt_fatal (const char *file, int line, const char *message, ...);
static const char *nonnull (const char *s);
static const char *nonempty (const char *s);
void lt_setenv (const char *name, const char *value);
char *lt_extend_str (const char *orig_value, const char *add, int to_end);
void lt_update_exe_path (const char *name, const char *value);
void lt_update_lib_path (const char *name, const char *value);
char **prepare_spawn (char **argv);
void lt_dump_script (FILE *f);
EOF

	 cat <<EOF
#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 5)
define externally_visible volatile
#else
define externally_visible __attribute__((externally_visible)) volatile
#endif
externally_visible const char * MAGIC_EXE = "$magic_exe";
const char * LIB_PATH_VARNAME = "$shlibpath_var";
EOF

	 if test yes = "$shlibpath_overrides_runpath" && test -n "$shlibpath_var" && test -n "$temp_rpath"; then
 func_to_host_path "$temp_rpath"
	 cat <<EOF
const char * LIB_PATH_VALUE = "$func_to_host_path_result";
EOF
	 else
	 cat <<"EOF"
const char * LIB_PATH_VALUE = "";
EOF
	 fi

	 if test -n "$dllsearchpath"; then
 func_to_host_path "$dllsearchpath:"
	 cat <<EOF
const char * EXE_PATH_VARNAME = "PATH";
const char * EXE_PATH_VALUE = "$func_to_host_path_result";
EOF
	 else
	 cat <<"EOF"
const char * EXE_PATH_VARNAME = "";
const char * EXE_PATH_VALUE = "";
EOF
	 fi

	 if test yes = "$fast_install"; then
	 cat <<EOF
const char * TARGET_PROGRAM_NAME = "lt-$outputname"; /* hopefully, no .exe */
EOF
	 else
	 cat <<EOF
const char * TARGET_PROGRAM_NAME = "$outputname"; /* hopefully, no .exe */
EOF
	 fi

	 cat <<"EOF"

#define LTWRAPPER_OPTION_PREFIX "--lt-"

static const char *ltwrapper_option_prefix = LTWRAPPER_OPTION_PREFIX;
static const char *dumpscript_opt = LTWRAPPER_OPTION_PREFIX "dump-script";
static const char *debug_opt = LTWRAPPER_OPTION_PREFIX "debug";

int
main (int argc, char *argv[])
{
 char **newargz;
 int newargc;
 char *tmp_pathspec;
 char *actual_cwrapper_path;
 char *actual_cwrapper_name;
 char *target_name;
 char *lt_argv_zero;
 int rval = 127;

 int i;

 program_name = (char *) xstrdup (base_name (argv[0]));
 newargz = XMALLOC (char *, (size_t) argc + 1);

 /* very simple arg parsing; don't want to rely on getopt
 * also, copy all non cwrapper options to newargz, except
 * argz[0], which is handled differently
 */
 newargc=0;
 for (i = 1; i < argc; i++)
 {
 if (STREQ (argv[i], dumpscript_opt))
	{
EOF
	 case $host in
	 mingw | *cygwin*)
		# make stdout use "unix" line endings
		echo " setmode(1,_O_BINARY);"
		;;
	 esac

	 cat <<"EOF"
	 lt_dump_script (stdout);
	 return 0;
	}
 if (STREQ (argv[i], debug_opt))
	{
 lt_debug = 1;
 continue;
	}
 if (STREQ (argv[i], ltwrapper_option_prefix))
 {
 /* however, if there is an option in the LTWRAPPER_OPTION_PREFIX
 namespace, but it is not one of the ones we know about and
 have already dealt with, above (inluding dump-script), then
 report an error. Otherwise, targets might begin to believe
 they are allowed to use options in the LTWRAPPER_OPTION_PREFIX
 namespace. The first time any user complains about this, we'll
 need to make LTWRAPPER_OPTION_PREFIX a configure-time option
 or a configure.ac-settable value.
 */
 lt_fatal (__FILE__, __LINE__,
		 "unrecognized %s option: '%s'",
 ltwrapper_option_prefix, argv[i]);
 }
 /* otherwise ... */
 newargz[++newargc] = xstrdup (argv[i]);
 }
 newargz[++newargc] = NULL;

EOF
	 cat <<EOF
 /* The GNU banner must be the first non-error debug message */
 lt_debugprintf (__FILE__, __LINE__, "libtool wrapper (GNU $PACKAGE) $VERSION\n");
EOF
	 cat <<"EOF"
 lt_debugprintf (__FILE__, __LINE__, "(main) argv[0]: %s\n", argv[0]);
 lt_debugprintf (__FILE__, __LINE__, "(main) program_name: %s\n", program_name);

 tmp_pathspec = find_executable (argv[0]);
 if (tmp_pathspec == NULL)
 lt_fatal (__FILE__, __LINE__, "couldn't find %s", argv[0]);
 lt_debugprintf (__FILE__, __LINE__,
 "(main) found exe (before symlink chase) at: %s\n",
		 tmp_pathspec);

 actual_cwrapper_path = chase_symlinks (tmp_pathspec);
 lt_debugprintf (__FILE__, __LINE__,
 "(main) found exe (after symlink chase) at: %s\n",
		 actual_cwrapper_path);
 XFREE (tmp_pathspec);

 actual_cwrapper_name = xstrdup (base_name (actual_cwrapper_path));
 strendzap (actual_cwrapper_path, actual_cwrapper_name);

 /* wrapper name transforms */
 strendzap (actual_cwrapper_name, ".exe");
 tmp_pathspec = lt_extend_str (actual_cwrapper_name, ".exe", 1);
 XFREE (actual_cwrapper_name);
 actual_cwrapper_name = tmp_pathspec;
 tmp_pathspec = 0;

 /* target_name transforms -- use actual target program name; might have lt- prefix */
 target_name = xstrdup (base_name (TARGET_PROGRAM_NAME));
 strendzap (target_name, ".exe");
 tmp_pathspec = lt_extend_str (target_name, ".exe", 1);
 XFREE (target_name);
 target_name = tmp_pathspec;
 tmp_pathspec = 0;

 lt_debugprintf (__FILE__, __LINE__,
		 "(main) libtool target name: %s\n",
		 target_name);
EOF

	 cat <<EOF
 newargz[0] =
 XMALLOC (char, (strlen (actual_cwrapper_path) +
		 strlen ("$objdir") + 1 + strlen (actual_cwrapper_name) + 1));
 strcpy (newargz[0], actual_cwrapper_path);
 strcat (newargz[0], "$objdir");
 strcat (newargz[0], "/");
EOF

	 cat <<"EOF"
 /* stop here, and copy so we don't have to do this twice */
 tmp_pathspec = xstrdup (newargz[0]);

 /* do NOT want the lt- prefix here, so use actual_cwrapper_name */
 strcat (newargz[0], actual_cwrapper_name);

 /* DO want the lt- prefix here if it exists, so use target_name */
 lt_argv_zero = lt_extend_str (tmp_pathspec, target_name, 1);
 XFREE (tmp_pathspec);
 tmp_pathspec = NULL;
EOF

	 case $host_os in
	 mingw*)
	 cat <<"EOF"
 {
 char* p;
 while ((p = strchr (newargz[0], '\\')) != NULL)
 {
	*p = '/';
 }
 while ((p = strchr (lt_argv_zero, '\\')) != NULL)
 {
	*p = '/';
 }
 }
EOF
	 ;;
	 esac

	 cat <<"EOF"
 XFREE (target_name);
 XFREE (actual_cwrapper_path);
 XFREE (actual_cwrapper_name);

 lt_setenv ("BIN_SH", "xpg4"); /* for Tru64 */
 lt_setenv ("DUALCASE", "1"); /* for MSK sh */
 /* Update the DLL searchpath. EXE_PATH_VALUE ($dllsearchpath) must
 be prepended before (that is, appear after) LIB_PATH_VALUE ($temp_rpath)
 because on Windows, both *_VARNAMEs are PATH but uninstalled
 libraries must come first. */
 lt_update_exe_path (EXE_PATH_VARNAME, EXE_PATH_VALUE);
 lt_update_lib_path (LIB_PATH_VARNAME, LIB_PATH_VALUE);

 lt_debugprintf (__FILE__, __LINE__, "(main) lt_argv_zero: %s\n",
		 nonnull (lt_argv_zero));
 for (i = 0; i < newargc; i++)
 {
 lt_debugprintf (__FILE__, __LINE__, "(main) newargz[%d]: %s\n",
		 i, nonnull (newargz[i]));
 }

EOF

	 case $host_os in
	 mingw*)
		cat <<"EOF"
 /* execv doesn't actually work on mingw as expected on unix */
 newargz = prepare_spawn (newargz);
 rval = (int) _spawnv (_P_WAIT, lt_argv_zero, (const char * const *) newargz);
 if (rval == -1)
 {
 /* failed to start process */
 lt_debugprintf (__FILE__, __LINE__,
		 "(main) failed to launch target \"%s\": %s\n",
		 lt_argv_zero, nonnull (strerror (errno)));
 return 127;
 }
 return rval;
EOF
		;;
	 *)
		cat <<"EOF"
 execv (lt_argv_zero, newargz);
 return rval; /* =127, but avoids unused variable warning */
EOF
		;;
	 esac

	 cat <<"EOF"
}

void *
xmalloc (size_t num)
{
 void *p = (void *) malloc (num);
 if (!p)
 lt_fatal (__FILE__, __LINE__, "memory exhausted");

 return p;
}

char *
xstrdup (const char *string)
{
 return string ? strcpy ((char *) xmalloc (strlen (string) + 1),
			 string) : NULL;
}

const char *
base_name (const char *name)
{
 const char *base;

#if defined HAVE_DOS_BASED_FILE_SYSTEM
 /* Skip over the disk name in MSDOS pathnames. */
 if (isalpha ((unsigned char) name[0]) && name[1] == ':')
 name += 2;
#endif

 for (base = name; *name; name++)
 if (IS_DIR_SEPARATOR (*name))
 base = name + 1;
 return base;
}

int
check_executable (const char *path)
{
 struct stat st;

 lt_debugprintf (__FILE__, __LINE__, "(check_executable): %s\n",
 nonempty (path));
 if ((!path) || (!*path))
 return 0;

 if ((stat (path, &st) >= 0)
 && (st.st_mode & (S_IXUSR | S_IXGRP | S_IXOTH)))
 return 1;
 else
 return 0;
}

int
make_executable (const char *path)
{
 int rval = 0;
 struct stat st;

 lt_debugprintf (__FILE__, __LINE__, "(make_executable): %s\n",
 nonempty (path));
 if ((!path) || (!*path))
 return 0;

 if (stat (path, &st) >= 0)
 {
 rval = chmod (path, st.st_mode | S_IXOTH | S_IXGRP | S_IXUSR);
 }
 return rval;
}

/* Searches for the full path of the wrapper. Returns
 newly allocated full path name if found, NULL otherwise
 Does not chase symlinks, even on platforms that support them.
*/
char *
find_executable (const char *wrapper)
{
 int has_slash = 0;
 const char *p;
 const char *p_next;
 /* static buffer for getcwd */
 char tmp[LT_PATHMAX + 1];
 size_t tmp_len;
 char *concat_name;

 lt_debugprintf (__FILE__, __LINE__, "(find_executable): %s\n",
 nonempty (wrapper));

 if ((wrapper == NULL) || (*wrapper == '\0'))
 return NULL;

 /* Absolute path? */
#if defined HAVE_DOS_BASED_FILE_SYSTEM
 if (isalpha ((unsigned char) wrapper[0]) && wrapper[1] == ':')
 {
 concat_name = xstrdup (wrapper);
 if (check_executable (concat_name))
	return concat_name;
 XFREE (concat_name);
 }
 else
 {
#endif
 if (IS_DIR_SEPARATOR (wrapper[0]))
	{
	 concat_name = xstrdup (wrapper);
	 if (check_executable (concat_name))
	 return concat_name;
	 XFREE (concat_name);
	}
#if defined HAVE_DOS_BASED_FILE_SYSTEM
 }
#endif

 for (p = wrapper; *p; p++)
 if (*p == '/')
 {
	has_slash = 1;
	break;
 }
 if (!has_slash)
 {
 /* no slashes; search PATH */
 const char *path = getenv ("PATH");
 if (path != NULL)
	{
	 for (p = path; *p; p = p_next)
	 {
	 const char *q;
	 size_t p_len;
	 for (q = p; *q; q++)
		if (IS_PATH_SEPARATOR (*q))
		 break;
	 p_len = (size_t) (q - p);
	 p_next = (*q == '\0' ? q : q + 1);
	 if (p_len == 0)
		{
		 /* empty path: current directory */
		 if (getcwd (tmp, LT_PATHMAX) == NULL)
		 lt_fatal (__FILE__, __LINE__, "getcwd failed: %s",
 nonnull (strerror (errno)));
		 tmp_len = strlen (tmp);
		 concat_name =
		 XMALLOC (char, tmp_len + 1 + strlen (wrapper) + 1);
		 memcpy (concat_name, tmp, tmp_len);
		 concat_name[tmp_len] = '/';
		 strcpy (concat_name + tmp_len + 1, wrapper);
		}
	 else
		{
		 concat_name =
		 XMALLOC (char, p_len + 1 + strlen (wrapper) + 1);
		 memcpy (concat_name, p, p_len);
		 concat_name[p_len] = '/';
		 strcpy (concat_name + p_len + 1, wrapper);
		}
	 if (check_executable (concat_name))
		return concat_name;
	 XFREE (concat_name);
	 }
	}
 /* not found in PATH; assume curdir */
 }
 /* Relative path | not found in path: prepend cwd */
 if (getcwd (tmp, LT_PATHMAX) == NULL)
 lt_fatal (__FILE__, __LINE__, "getcwd failed: %s",
 nonnull (strerror (errno)));
 tmp_len = strlen (tmp);
 concat_name = XMALLOC (char, tmp_len + 1 + strlen (wrapper) + 1);
 memcpy (concat_name, tmp, tmp_len);
 concat_name[tmp_len] = '/';
 strcpy (concat_name + tmp_len + 1, wrapper);

 if (check_executable (concat_name))
 return concat_name;
 XFREE (concat_name);
 return NULL;
}

char *
chase_symlinks (const char *pathspec)
{
#ifndef S_ISLNK
 return xstrdup (pathspec);
#else
 char buf[LT_PATHMAX];
 struct stat s;
 char *tmp_pathspec = xstrdup (pathspec);
 char *p;
 int has_symlinks = 0;
 while (strlen (tmp_pathspec) && !has_symlinks)
 {
 lt_debugprintf (__FILE__, __LINE__,
		 "checking path component for symlinks: %s\n",
		 tmp_pathspec);
 if (lstat (tmp_pathspec, &s) == 0)
	{
	 if (S_ISLNK (s.st_mode) != 0)
	 {
	 has_symlinks = 1;
	 break;
	 }

	 /* search backwards for last DIR_SEPARATOR */
	 p = tmp_pathspec + strlen (tmp_pathspec) - 1;
	 while ((p > tmp_pathspec) && (!IS_DIR_SEPARATOR (*p)))
	 p--;
	 if ((p == tmp_pathspec) && (!IS_DIR_SEPARATOR (*p)))
	 {
	 /* no more DIR_SEPARATORS left */
	 break;
	 }
	 *p = '\0';
	}
 else
	{
	 lt_fatal (__FILE__, __LINE__,
		 "error accessing file \"%s\": %s",
		 tmp_pathspec, nonnull (strerror (errno)));
	}
 }
 XFREE (tmp_pathspec);

 if (!has_symlinks)
 {
 return xstrdup (pathspec);
 }

 tmp_pathspec = realpath (pathspec, buf);
 if (tmp_pathspec == 0)
 {
 lt_fatal (__FILE__, __LINE__,
		"could not follow symlinks for %s", pathspec);
 }
 return xstrdup (tmp_pathspec);
#endif
}

char *
strendzap (char *str, const char *pat)
{
 size_t len, patlen;

 assert (str != NULL);
 assert (pat != NULL);

 len = strlen (str);
 patlen = strlen (pat);

 if (patlen <= len)
 {
 str += len - patlen;
 if (STREQ (str, pat))
	*str = '\0';
 }
 return str;
}

void
lt_debugprintf (const char *file, int line, const char *fmt, ...)
{
 va_list args;
 if (lt_debug)
 {
 (void) fprintf (stderr, "%s:%s:%d: ", program_name, file, line);
 va_start (args, fmt);
 (void) vfprintf (stderr, fmt, args);
 va_end (args);
 }
}

static void
lt_error_core (int exit_status, const char *file,
	 int line, const char *mode,
	 const char *message, va_list ap)
{
 fprintf (stderr, "%s:%s:%d: %s: ", program_name, file, line, mode);
 vfprintf (stderr, message, ap);
 fprintf (stderr, ".\n");

 if (exit_status >= 0)
 exit (exit_status);
}

void
lt_fatal (const char *file, int line, const char *message, ...)
{
 va_list ap;
 va_start (ap, message);
 lt_error_core (EXIT_FAILURE, file, line, "FATAL", message, ap);
 va_end (ap);
}

static const char *
nonnull (const char *s)
{
 return s ? s : "(null)";
}

static const char *
nonempty (const char *s)
{
 return (s && !*s) ? "(empty)" : nonnull (s);
}

void
lt_setenv (const char *name, const char *value)
{
 lt_debugprintf (__FILE__, __LINE__,
		 "(lt_setenv) setting '%s' to '%s'\n",
 nonnull (name), nonnull (value));
 {
#ifdef HAVE_SETENV
 /* always make a copy, for consistency with !HAVE_SETENV */
 char *str = xstrdup (value);
 setenv (name, str, 1);
#else
 size_t len = strlen (name) + 1 + strlen (value) + 1;
 char *str = XMALLOC (char, len);
 sprintf (str, "%s=%s", name, value);
 if (putenv (str) != EXIT_SUCCESS)
 {
 XFREE (str);
 }
#endif
 }
}

char *
lt_extend_str (const char *orig_value, const char *add, int to_end)
{
 char *new_value;
 if (orig_value && *orig_value)
 {
 size_t orig_value_len = strlen (orig_value);
 size_t add_len = strlen (add);
 new_value = XMALLOC (char, add_len + orig_value_len + 1);
 if (to_end)
 {
 strcpy (new_value, orig_value);
 strcpy (new_value + orig_value_len, add);
 }
 else
 {
 strcpy (new_value, add);
 strcpy (new_value + add_len, orig_value);
 }
 }
 else
 {
 new_value = xstrdup (add);
 }
 return new_value;
}

void
lt_update_exe_path (const char *name, const char *value)
{
 lt_debugprintf (__FILE__, __LINE__,
		 "(lt_update_exe_path) modifying '%s' by prepending '%s'\n",
 nonnull (name), nonnull (value));

 if (name && *name && value && *value)
 {
 char *new_value = lt_extend_str (getenv (name), value, 0);
 /* some systems can't cope with a ':'-terminated path #' */
 size_t len = strlen (new_value);
 while ((len > 0) && IS_PATH_SEPARATOR (new_value[len-1]))
 {
 new_value[--len] = '\0';
 }
 lt_setenv (name, new_value);
 XFREE (new_value);
 }
}

void
lt_update_lib_path (const char *name, const char *value)
{
 lt_debugprintf (__FILE__, __LINE__,
		 "(lt_update_lib_path) modifying '%s' by prepending '%s'\n",
 nonnull (name), nonnull (value));

 if (name && *name && value && *value)
 {
 char *new_value = lt_extend_str (getenv (name), value, 0);
 lt_setenv (name, new_value);
 XFREE (new_value);
 }
}

EOF
	 case $host_os in
	 mingw*)
		cat <<"EOF"

/* Prepares an argument vector before calling spawn().
 Note that spawn() does not by itself call the command interpreter
 (getenv ("COMSPEC") != NULL ? getenv ("COMSPEC") :
 ({ OSVERSIONINFO v; v.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
 GetVersionEx(&v);
 v.dwPlatformId == VER_PLATFORM_WIN32_NT;
 }) ? "cmd.exe" : "command.com").
 Instead it simply concatenates the arguments, separated by ' ', and calls
 CreateProcess(). We must quote the arguments since Win32 CreateProcess()
 interprets characters like ' ', '\t', '\\', '"' (but not '<' and '>') in a
 special way:
 - Space and tab are interpreted as delimiters. They are not treated as
 delimiters if they are surrounded by double quotes: "...".
 - Unescaped double quotes are removed from the input. Their only effect is
 that within double quotes, space and tab are treated like normal
 characters.
 - Backslashes not followed by double quotes are not special.
 - But 2*n+1 backslashes followed by a double quote become
 n backslashes followed by a double quote (n >= 0):
 \" -> "
 \\\" -> \"
 \\\\\" -> \\"
 */
#define SHELL_SPECIAL_CHARS "\"\\ \001\002\003\004\005\006\007\010\011\012\013\014\015\016\017\020\021\022\023\024\025\026\027\030\031\032\033\034\035\036\037"
#define SHELL_SPACE_CHARS " \001\002\003\004\005\006\007\010\011\012\013\014\015\016\017\020\021\022\023\024\025\026\027\030\031\032\033\034\035\036\037"
char **
prepare_spawn (char **argv)
{
 size_t argc;
 char **new_argv;
 size_t i;

 /* Count number of arguments. */
 for (argc = 0; argv[argc] != NULL; argc++)
 ;

 /* Allocate new argument vector. */
 new_argv = XMALLOC (char *, argc + 1);

 /* Put quoted arguments into the new argument vector. */
 for (i = 0; i < argc; i++)
 {
 const char *string = argv[i];

 if (string[0] == '\0')
	new_argv[i] = xstrdup ("\"\"");
 else if (strpbrk (string, SHELL_SPECIAL_CHARS) != NULL)
	{
	 int quote_around = (strpbrk (string, SHELL_SPACE_CHARS) != NULL);
	 size_t length;
	 unsigned int backslashes;
	 const char *s;
	 char *quoted_string;
	 char *p;

	 length = 0;
	 backslashes = 0;
	 if (quote_around)
	 length++;
	 for (s = string; *s != '\0'; s++)
	 {
	 char c = *s;
	 if (c == '"')
		length += backslashes + 1;
	 length++;
	 if (c == '\\')
		backslashes++;
	 else
		backslashes = 0;
	 }
	 if (quote_around)
	 length += backslashes + 1;

	 quoted_string = XMALLOC (char, length + 1);

	 p = quoted_string;
	 backslashes = 0;
	 if (quote_around)
	 *p++ = '"';
	 for (s = string; *s != '\0'; s++)
	 {
	 char c = *s;
	 if (c == '"')
		{
		 unsigned int j;
		 for (j = backslashes + 1; j > 0; j--)
		 *p++ = '\\';
		}
	 *p++ = c;
	 if (c == '\\')
		backslashes++;
	 else
		backslashes = 0;
	 }
	 if (quote_around)
	 {
	 unsigned int j;
	 for (j = backslashes; j > 0; j--)
		*p++ = '\\';
	 *p++ = '"';
	 }
	 *p = '\0';

	 new_argv[i] = quoted_string;
	}
 else
	new_argv[i] = (char *) string;
 }
 new_argv[argc] = NULL;

 return new_argv;
}
EOF
		;;
	 esac

 cat <<"EOF"
void lt_dump_script (FILE* f)
{
EOF
	 func_emit_wrapper yes |
	 $SED -n -e '
s/^\(.\{79\}\)\(..*\)/\1\
\2/
h
s/\([\\"]\)/\\\1/g
s/$/\\n/
s/\([^\n]*\).*/ fputs ("\1", f);/p
g
D'
 cat <<"EOF"
}
EOF
}
end: func_emit_cwrapperexe_src

func_win32_import_lib_p ARG
True if ARG is an import lib, as indicated by $file_magic_cmd
func_win32_import_lib_p ()
{
 $debug_cmd

 case `eval $file_magic_cmd \"\$1\" 2>/dev/null | $SED -e 10q` in
 import) : ;;
 *) false ;;
 esac
}

func_suncc_cstd_abi
!!ONLY CALL THIS FOR SUN CC AFTER $compile_command IS FULLY EXPANDED!!
Several compiler flags select an ABI that is incompatible with the
Cstd library. Avoid specifying it if any are in CXXFLAGS.
func_suncc_cstd_abi ()
{
 $debug_cmd

 case " $compile_command " in
 " -compat=g "|*\ -std=c++[0-9][0-9]\ *|*" -library=stdcxx4 "*|*" -library=stlport4 "*)
 suncc_use_cstd_abi=no
 ;;
 *)
 suncc_use_cstd_abi=yes
 ;;
 esac
}

func_mode_link arg...
func_mode_link ()
{
 $debug_cmd

 case $host in
 --cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-cegcc*)
 # It is impossible to link a dll without this setting, and
 # we shouldn't force the makefile maintainer to figure out
 # what system we are compiling for in order to pass an extra
 # flag for every libtool invocation.
 # allow_undefined=no

 # FIXME: Unfortunately, there are problems with the above when trying
 # to make a dll that has undefined symbols, in which case not
 # even a static library is built. For now, we need to specify
 # -no-undefined on the libtool link line when we can be certain
 # that all symbols are satisfied, otherwise we get a static library.
 allow_undefined=yes
 ;;
 *)
 allow_undefined=yes
 ;;
 esac
 libtool_args=$nonopt
 base_compile="$nonopt $@"
 compile_command=$nonopt
 finalize_command=$nonopt

 compile_rpath=
 finalize_rpath=
 compile_shlibpath=
 finalize_shlibpath=
 convenience=
 old_convenience=
 deplibs=
 old_deplibs=
 compiler_flags=
 linker_flags=
 dllsearchpath=
 lib_search_path=`pwd`
 inst_prefix_dir=
 new_inherited_linker_flags=

 avoid_version=no
 bindir=
 dlfiles=
 dlprefiles=
 dlself=no
 export_dynamic=no
 export_symbols=
 export_symbols_regex=
 generated=
 libobjs=
 ltlibs=
 module=no
 no_install=no
 objs=
 os2dllname=
 non_pic_objects=
 precious_files_regex=
 prefer_static_libs=no
 preload=false
 prev=
 prevarg=
 release=
 rpath=
 xrpath=
 perm_rpath=
 temp_rpath=
 thread_safe=no
 vinfo=
 vinfo_number=no
 weak_libs=
 single_module=$wl-single_module
 func_infer_tag $base_compile

 # We need to know -static, to get the right output filenames.
 for arg
 do
 case $arg in
 -shared)
	test yes != "$build_libtool_libs" \
	 && func_fatal_configuration "cannot build a shared library"
	build_old_libs=no
	break
	;;
 -all-static | -static | -static-libtool-libs)
	case $arg in
	-all-static)
	 if test yes = "$build_libtool_libs" && test -z "$link_static_flag"; then
	 func_warning "complete static linking is impossible in this configuration"
	 fi
	 if test -n "$link_static_flag"; then
	 dlopen_self=$dlopen_self_static
	 fi
	 prefer_static_libs=yes
	 ;;
	-static)
	 if test -z "$pic_flag" && test -n "$link_static_flag"; then
	 dlopen_self=$dlopen_self_static
	 fi
	 prefer_static_libs=built
	 ;;
	-static-libtool-libs)
	 if test -z "$pic_flag" && test -n "$link_static_flag"; then
	 dlopen_self=$dlopen_self_static
	 fi
	 prefer_static_libs=yes
	 ;;
	esac
	build_libtool_libs=no
	build_old_libs=yes
	break
	;;
 esac
 done

 # See if our shared archives depend on static archives.
 test -n "$old_archive_from_new_cmds" && build_old_libs=yes

 # Go through the arguments, transforming them on the way.
 while test "$#" -gt 0; do
 arg=$1
 shift
 func_quote_for_eval "$arg"
 qarg=$func_quote_for_eval_unquoted_result
 func_append libtool_args " $func_quote_for_eval_result"

 # If the previous option needs an argument, assign it.
 if test -n "$prev"; then
	case $prev in
	output)
	 func_append compile_command " @OUTPUT@"
	 func_append finalize_command " @OUTPUT@"
	 ;;
	esac

	case $prev in
	bindir)
	 bindir=$arg
	 prev=
	 continue
	 ;;
	dlfiles|dlprefiles)
	 $preload || {
	 # Add the symbol object into the linking commands.
	 func_append compile_command " @SYMFILE@"
	 func_append finalize_command " @SYMFILE@"
	 preload=:
	 }
	 case $arg in
	 *.la | *.lo) ;; # We handle these cases below.
	 force)
	 if test no = "$dlself"; then
	 dlself=needless
	 export_dynamic=yes
	 fi
	 prev=
	 continue
	 ;;
	 self)
	 if test dlprefiles = "$prev"; then
	 dlself=yes
	 elif test dlfiles = "$prev" && test yes != "$dlopen_self"; then
	 dlself=yes
	 else
	 dlself=needless
	 export_dynamic=yes
	 fi
	 prev=
	 continue
	 ;;
	 *)
	 if test dlfiles = "$prev"; then
	 func_append dlfiles " $arg"
	 else
	 func_append dlprefiles " $arg"
	 fi
	 prev=
	 continue
	 ;;
	 esac
	 ;;
	expsyms)
	 export_symbols=$arg
	 test -f "$arg" \
	 || func_fatal_error "symbol file '$arg' does not exist"
	 prev=
	 continue
	 ;;
	expsyms_regex)
	 export_symbols_regex=$arg
	 prev=
	 continue
	 ;;
	framework)
	 case $host in
	 --darwin*)
	 case "$deplibs " in
		" $qarg.ltframework ") ;;
		*) func_append deplibs " $qarg.ltframework" # this is fixed later
		 ;;
	 esac
	 ;;
	 esac
	 prev=
	 continue
	 ;;
	inst_prefix)
	 inst_prefix_dir=$arg
	 prev=
	 continue
	 ;;
	mllvm)
	 # Clang does not use LLVM to link, so we can simply discard any
	 # '-mllvm $arg' options when doing the link step.
	 prev=
	 continue
	 ;;
	objectlist)
	 if test -f "$arg"; then
	 save_arg=$arg
	 moreargs=
	 for fil in `cat "$save_arg"`
	 do
#	 func_append moreargs " $fil"
	 arg=$fil
	 # A libtool-controlled object.

	 # Check to see that this really is a libtool object.
	 if func_lalib_unsafe_p "$arg"; then
		pic_object=
		non_pic_object=

		# Read the .lo file
		func_source "$arg"

		if test -z "$pic_object" ||
		 test -z "$non_pic_object" ||
		 test none = "$pic_object" &&
		 test none = "$non_pic_object"; then
		 func_fatal_error "cannot find name of object for '$arg'"
		fi

		# Extract subdirectory from the argument.
		func_dirname "$arg" "/" ""
		xdir=$func_dirname_result

		if test none != "$pic_object"; then
		 # Prepend the subdirectory the object is found in.
		 pic_object=$xdir$pic_object

		 if test dlfiles = "$prev"; then
		 if test yes = "$build_libtool_libs" && test yes = "$dlopen_support"; then
		 func_append dlfiles " $pic_object"
		 prev=
		 continue
		 else
		 # If libtool objects are unsupported, then we need to preload.
		 prev=dlprefiles
		 fi
		 fi

		 # CHECK ME: I think I busted this. -Ossama
		 if test dlprefiles = "$prev"; then
		 # Preload the old-style object.
		 func_append dlprefiles " $pic_object"
		 prev=
		 fi

		 # A PIC object.
		 func_append libobjs " $pic_object"
		 arg=$pic_object
		fi

		# Non-PIC object.
		if test none != "$non_pic_object"; then
		 # Prepend the subdirectory the object is found in.
		 non_pic_object=$xdir$non_pic_object

		 # A standard non-PIC object
		 func_append non_pic_objects " $non_pic_object"
		 if test -z "$pic_object" || test none = "$pic_object"; then
		 arg=$non_pic_object
		 fi
		else
		 # If the PIC object exists, use it instead.
		 # $xdir was prepended to $pic_object above.
		 non_pic_object=$pic_object
		 func_append non_pic_objects " $non_pic_object"
		fi
	 else
		# Only an error if not doing a dry-run.
		if $opt_dry_run; then
		 # Extract subdirectory from the argument.
		 func_dirname "$arg" "/" ""
		 xdir=$func_dirname_result

		 func_lo2o "$arg"
		 pic_object=$xdir$objdir/$func_lo2o_result
		 non_pic_object=$xdir$func_lo2o_result
		 func_append libobjs " $pic_object"
		 func_append non_pic_objects " $non_pic_object"
	 else
		 func_fatal_error "'$arg' is not a valid libtool object"
		fi
	 fi
	 done
	 else
	 func_fatal_error "link input file '$arg' does not exist"
	 fi
	 arg=$save_arg
	 prev=
	 continue
	 ;;
	os2dllname)
	 os2dllname=$arg
	 prev=
	 continue
	 ;;
	precious_regex)
	 precious_files_regex=$arg
	 prev=
	 continue
	 ;;
	release)
	 release=-$arg
	 prev=
	 continue
	 ;;
	rpath | xrpath)
	 # We need an absolute path.
	 case $arg in
	 [\\/]* | [A-Za-z]:[\\/]*) ;;
	 *)
	 func_fatal_error "only absolute run-paths are allowed"
	 ;;
	 esac
	 if test rpath = "$prev"; then
	 case "$rpath " in
	 " $arg ") ;;
	 *) func_append rpath " $arg" ;;
	 esac
	 else
	 case "$xrpath " in
	 " $arg ") ;;
	 *) func_append xrpath " $arg" ;;
	 esac
	 fi
	 prev=
	 continue
	 ;;
	shrext)
	 shrext_cmds=$arg
	 prev=
	 continue
	 ;;
	weak)
	 func_append weak_libs " $arg"
	 prev=
	 continue
	 ;;
	xcclinker)
	 func_append linker_flags " $qarg"
	 func_append compiler_flags " $qarg"
	 prev=
	 func_append compile_command " $qarg"
	 func_append finalize_command " $qarg"
	 continue
	 ;;
	xcompiler)
	 func_append compiler_flags " $qarg"
	 prev=
	 func_append compile_command " $qarg"
	 func_append finalize_command " $qarg"
	 continue
	 ;;
	xlinker)
	 func_append linker_flags " $qarg"
	 func_append compiler_flags " wlqarg"
	 prev=
	 func_append compile_command " wlqarg"
	 func_append finalize_command " wlqarg"
	 continue
	 ;;
	*)
	 eval "$prev=\"\$arg\""
	 prev=
	 continue
	 ;;
	esac
 fi # test -n "$prev"

 prevarg=$arg

 case $arg in
 -all-static)
	if test -n "$link_static_flag"; then
	 # See comment for -static flag below, for more details.
	 func_append compile_command " $link_static_flag"
	 func_append finalize_command " $link_static_flag"
	fi
	continue
	;;

 -allow-undefined)
	# FIXME: remove this flag sometime in the future.
	func_fatal_error "'-allow-undefined' must not be used because it is the default"
	;;

 -avoid-version)
	avoid_version=yes
	continue
	;;

 -bindir)
	prev=bindir
	continue
	;;

 -dlopen)
	prev=dlfiles
	continue
	;;

 -dlpreopen)
	prev=dlprefiles
	continue
	;;

 -export-dynamic)
	export_dynamic=yes
	continue
	;;

 -export-symbols | -export-symbols-regex)
	if test -n "$export_symbols" || test -n "$export_symbols_regex"; then
	 func_fatal_error "more than one -exported-symbols argument is not allowed"
	fi
	if test X-export-symbols = "X$arg"; then
	 prev=expsyms
	else
	 prev=expsyms_regex
	fi
	continue
	;;

 -framework)
	prev=framework
	continue
	;;

 -inst-prefix-dir)
	prev=inst_prefix
	continue
	;;

 # The native IRIX linker understands -LANG:*, -LIST:* and -LNO:*
 # so, if we see these flags be careful not to treat them like -L
 -L[A-Z][A-Z]*:*)
	case $with_gcc/$host in
	no/*-*-irix* | /*-*-irix*)
	 func_append compile_command " $arg"
	 func_append finalize_command " $arg"
	 ;;
	esac
	continue
	;;

 -L*)
	func_stripname "-L" '' "$arg"
	if test -z "$func_stripname_result"; then
	 if test "$#" -gt 0; then
	 func_fatal_error "require no space between '-L' and '$1'"
	 else
	 func_fatal_error "need path for '-L' option"
	 fi
	fi
	func_resolve_sysroot "$func_stripname_result"
	dir=$func_resolve_sysroot_result
	# We need an absolute path.
	case $dir in
	[\\/]* | [A-Za-z]:[\\/]*) ;;
	*)
	 absdir=`cd "$dir" && pwd`
	 test -z "$absdir" && \
	 func_fatal_error "cannot determine absolute directory name of '$dir'"
	 dir=$absdir
	 ;;
	esac
	case "$deplibs " in
	" -L$dir " | *" $arg "*)
	 # Will only happen for absolute or sysroot arguments
	 ;;
	*)
	 # Preserve sysroot, but never include relative directories
	 case $dir in
	 [\\/]* | [A-Za-z]:[\\/]* | =*) func_append deplibs " $arg" ;;
	 *) func_append deplibs " -L$dir" ;;
	 esac
	 func_append lib_search_path " $dir"
	 ;;
	esac
	case $host in
	--cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-cegcc*)
	 testbindir=`$ECHO "$dir" | $SED 's*/lib$*/bin*'`
	 case :$dllsearchpath: in
	 ":$dir:") ;;
	 ::) dllsearchpath=$dir;;
	 *) func_append dllsearchpath ":$dir";;
	 esac
	 case :$dllsearchpath: in
	 ":$testbindir:") ;;
	 ::) dllsearchpath=$testbindir;;
	 *) func_append dllsearchpath ":$testbindir";;
	 esac
	 ;;
	esac
	continue
	;;

 -l*)
	if test X-lc = "X$arg" || test X-lm = "X$arg"; then
	 case $host in
	 --cygwin* | *-*-mingw* | *-*-pw32* | *-*-beos* | *-cegcc* | *-*-haiku*)
	 # These systems don't actually have a C or math library (as such)
	 continue
	 ;;
	 --os2*)
	 # These systems don't actually have a C library (as such)
	 test X-lc = "X$arg" && continue
	 ;;
	 --openbsd* | *-*-freebsd* | *-*-dragonfly* | *-*-bitrig*)
	 # Do not include libc due to us having libc/libc_r.
	 test X-lc = "X$arg" && continue
	 ;;
	 --rhapsody* | *-*-darwin1.[012])
	 # Rhapsody C and math libraries are in the System framework
	 func_append deplibs " System.ltframework"
	 continue
	 ;;
	 --sco3.2v5* | *-*-sco5v6*)
	 # Causes problems with __ctype
	 test X-lc = "X$arg" && continue
	 ;;
	 --sysv4.2uw2* | *-*-sysv5* | *-*-unixware* | *-*-OpenUNIX*)
	 # Compiler inserts libc in the correct place for threads to work
	 test X-lc = "X$arg" && continue
	 ;;
	 esac
	elif test X-lc_r = "X$arg"; then
	 case $host in
	 --openbsd* | *-*-freebsd* | *-*-dragonfly* | *-*-bitrig*)
	 # Do not include libc_r directly, use -pthread flag.
	 continue
	 ;;
	 esac
	fi
	func_append deplibs " $arg"
	continue
	;;

 -mllvm)
	prev=mllvm
	continue
	;;

 -module)
	module=yes
	continue
	;;

 # Tru64 UNIX uses -model [arg] to determine the layout of C++
 # classes, name mangling, and exception handling.
 # Darwin uses the -arch flag to determine output architecture.
 -model|-arch|-isysroot|--sysroot)
	func_append compiler_flags " $arg"
	func_append compile_command " $arg"
	func_append finalize_command " $arg"
	prev=xcompiler
	continue
	;;

 -mt|-mthreads|-kthread|-Kthread|-pthread|-pthreads|--thread-safe \
 |-threads|-fopenmp|-openmp|-mp|-xopenmp|-omp|-qsmp=*)
	func_append compiler_flags " $arg"
	func_append compile_command " $arg"
	func_append finalize_command " $arg"
	case "$new_inherited_linker_flags " in
	 " $arg ") ;;
	 *) func_append new_inherited_linker_flags " $arg" ;;
	esac
	continue
	;;

 -multi_module)
	single_module=$wl-multi_module
	continue
	;;

 -no-fast-install)
	fast_install=no
	continue
	;;

 -no-install)
	case $host in
	--cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-*-darwin* | *-cegcc*)
	 # The PATH hackery in wrapper scripts is required on Windows
	 # and Darwin in order for the loader to find any dlls it needs.
	 func_warning "'-no-install' is ignored for $host"
	 func_warning "assuming '-no-fast-install' instead"
	 fast_install=no
	 ;;
	*) no_install=yes ;;
	esac
	continue
	;;

 -no-undefined)
	allow_undefined=no
	continue
	;;

 -objectlist)
	prev=objectlist
	continue
	;;

 -os2dllname)
	prev=os2dllname
	continue
	;;

 -o) prev=output ;;

 -precious-files-regex)
	prev=precious_regex
	continue
	;;

 -release)
	prev=release
	continue
	;;

 -rpath)
	prev=rpath
	continue
	;;

 -R)
	prev=xrpath
	continue
	;;

 -R*)
	func_stripname '-R' '' "$arg"
	dir=$func_stripname_result
	# We need an absolute path.
	case $dir in
	[\\/]* | [A-Za-z]:[\\/]*) ;;
	=*)
	 func_stripname '=' '' "$dir"
	 dir=$lt_sysroot$func_stripname_result
	 ;;
	*)
	 func_fatal_error "only absolute run-paths are allowed"
	 ;;
	esac
	case "$xrpath " in
	" $dir ") ;;
	*) func_append xrpath " $dir" ;;
	esac
	continue
	;;

 -shared)
	# The effects of -shared are defined in a previous loop.
	continue
	;;

 -shrext)
	prev=shrext
	continue
	;;

 -static | -static-libtool-libs)
	# The effects of -static are defined in a previous loop.
	# We used to do the same as -all-static on platforms that
	# didn't have a PIC flag, but the assumption that the effects
	# would be equivalent was wrong. It would break on at least
	# Digital Unix and AIX.
	continue
	;;

 -thread-safe)
	thread_safe=yes
	continue
	;;

 -version-info)
	prev=vinfo
	continue
	;;

 -version-number)
	prev=vinfo
	vinfo_number=yes
	continue
	;;

 -weak)
 prev=weak
	continue
	;;

 -Wc,*)
	func_stripname '-Wc,' '' "$arg"
	args=$func_stripname_result
	arg=
	save_ifs=$IFS; IFS=,
	for flag in $args; do
	 IFS=$save_ifs
 func_quote_for_eval "$flag"
	 func_append arg " $func_quote_for_eval_result"
	 func_append compiler_flags " $func_quote_for_eval_result"
	done
	IFS=$save_ifs
	func_stripname ' ' '' "$arg"
	arg=$func_stripname_result
	;;

 -Wl,*)
	func_stripname '-Wl,' '' "$arg"
	args=$func_stripname_result
	arg=
	save_ifs=$IFS; IFS=,
	for flag in $args; do
	 IFS=$save_ifs
 func_quote_for_eval "$flag"
	 func_append arg " wlfunc_quote_for_eval_result"
	 func_append compiler_flags " wlfunc_quote_for_eval_result"
	 func_append linker_flags " $func_quote_for_eval_result"
	done
	IFS=$save_ifs
	func_stripname ' ' '' "$arg"
	arg=$func_stripname_result
	;;

 -Xcompiler)
	prev=xcompiler
	continue
	;;

 -Xlinker)
	prev=xlinker
	continue
	;;

 -XCClinker)
	prev=xcclinker
	continue
	;;

 # -msg_* for osf cc
 -msg_*)
	func_quote_for_eval "$arg"
	arg=$func_quote_for_eval_result
	;;

 # Flags to be passed through unchanged, with rationale:
 # -64, -mips[0-9] enable 64-bit mode for the SGI compiler
 # -r[0-9][0-9]* specify processor for the SGI compiler
 # -xarch=*, -xtarget=* enable 64-bit mode for the Sun compiler
 # +DA*, +DD* enable 64-bit mode for the HP compiler
 # -q* compiler args for the IBM compiler
 # -m*, -t[45]*, -txscale* architecture-specific flags for GCC
 # -F/path path to uninstalled frameworks, gcc on darwin
 # -p, -pg, --coverage, -fprofile-* profiling flags for GCC
 # -fstack-protector* stack protector flags for GCC
 # @file GCC response files
 # -tp=* Portland pgcc target processor selection
 # --sysroot=* for sysroot support
 # -O*, -g*, -flto*, -fwhopr*, -fuse-linker-plugin GCC link-time optimization
 # -specs=* GCC specs files
 # -stdlib=* select c++ std lib with clang
 # -fsanitize=* Clang/GCC memory and address sanitizer
 -64|-mips[0-9]|-r[0-9][0-9]*|-xarch=*|-xtarget=*|+DA*|+DD*|-q*|-m*| \
 -t[45]*|-txscale*|-p|-pg|--coverage|-fprofile-*|-F*|@*|-tp=*|--sysroot=*| \
 -O*|-g*|-flto*|-fwhopr*|-fuse-linker-plugin|-fstack-protector*|-stdlib=*| \
 -specs=*|-fsanitize=*)
 func_quote_for_eval "$arg"
	arg=$func_quote_for_eval_result
 func_append compile_command " $arg"
 func_append finalize_command " $arg"
 func_append compiler_flags " $arg"
 continue
 ;;

 -Z*)
 if test os2 = "`expr $host : '.*\(os2\)'`"; then
 # OS/2 uses -Zxxx to specify OS/2-specific options
	 compiler_flags="$compiler_flags $arg"
	 func_append compile_command " $arg"
	 func_append finalize_command " $arg"
	 case $arg in
	 -Zlinker | -Zstack)
	 prev=xcompiler
	 ;;
	 esac
	 continue
 else
	 # Otherwise treat like 'Some other compiler flag' below
	 func_quote_for_eval "$arg"
	 arg=$func_quote_for_eval_result
 fi
	;;

 # Some other compiler flag.
 -* | +*)
 func_quote_for_eval "$arg"
	arg=$func_quote_for_eval_result
	;;

 *.$objext)
	# A standard object.
	func_append objs " $arg"
	;;

 *.lo)
	# A libtool-controlled object.

	# Check to see that this really is a libtool object.
	if func_lalib_unsafe_p "$arg"; then
	 pic_object=
	 non_pic_object=

	 # Read the .lo file
	 func_source "$arg"

	 if test -z "$pic_object" ||
	 test -z "$non_pic_object" ||
	 test none = "$pic_object" &&
	 test none = "$non_pic_object"; then
	 func_fatal_error "cannot find name of object for '$arg'"
	 fi

	 # Extract subdirectory from the argument.
	 func_dirname "$arg" "/" ""
	 xdir=$func_dirname_result

	 test none = "$pic_object" || {
	 # Prepend the subdirectory the object is found in.
	 pic_object=$xdir$pic_object

	 if test dlfiles = "$prev"; then
	 if test yes = "$build_libtool_libs" && test yes = "$dlopen_support"; then
		func_append dlfiles " $pic_object"
		prev=
		continue
	 else
		# If libtool objects are unsupported, then we need to preload.
		prev=dlprefiles
	 fi
	 fi

	 # CHECK ME: I think I busted this. -Ossama
	 if test dlprefiles = "$prev"; then
	 # Preload the old-style object.
	 func_append dlprefiles " $pic_object"
	 prev=
	 fi

	 # A PIC object.
	 func_append libobjs " $pic_object"
	 arg=$pic_object
	 }

	 # Non-PIC object.
	 if test none != "$non_pic_object"; then
	 # Prepend the subdirectory the object is found in.
	 non_pic_object=$xdir$non_pic_object

	 # A standard non-PIC object
	 func_append non_pic_objects " $non_pic_object"
	 if test -z "$pic_object" || test none = "$pic_object"; then
	 arg=$non_pic_object
	 fi
	 else
	 # If the PIC object exists, use it instead.
	 # $xdir was prepended to $pic_object above.
	 non_pic_object=$pic_object
	 func_append non_pic_objects " $non_pic_object"
	 fi
	else
	 # Only an error if not doing a dry-run.
	 if $opt_dry_run; then
	 # Extract subdirectory from the argument.
	 func_dirname "$arg" "/" ""
	 xdir=$func_dirname_result

	 func_lo2o "$arg"
	 pic_object=$xdir$objdir/$func_lo2o_result
	 non_pic_object=$xdir$func_lo2o_result
	 func_append libobjs " $pic_object"
	 func_append non_pic_objects " $non_pic_object"
	 else
	 func_fatal_error "'$arg' is not a valid libtool object"
	 fi
	fi
	;;

 *.$libext)
	# An archive.
	func_append deplibs " $arg"
	func_append old_deplibs " $arg"
	continue
	;;

 *.la)
	# A libtool-controlled library.

	func_resolve_sysroot "$arg"
	if test dlfiles = "$prev"; then
	 # This library was specified with -dlopen.
	 func_append dlfiles " $func_resolve_sysroot_result"
	 prev=
	elif test dlprefiles = "$prev"; then
	 # The library was specified with -dlpreopen.
	 func_append dlprefiles " $func_resolve_sysroot_result"
	 prev=
	else
	 func_append deplibs " $func_resolve_sysroot_result"
	fi
	continue
	;;

 # Some other compiler argument.
 *)
	# Unknown arguments in both finalize_command and compile_command need
	# to be aesthetically quoted because they are evaled later.
	func_quote_for_eval "$arg"
	arg=$func_quote_for_eval_result
	;;
 esac # arg

 # Now actually substitute the argument into the commands.
 if test -n "$arg"; then
	func_append compile_command " $arg"
	func_append finalize_command " $arg"
 fi
 done # argument parsing loop

 test -n "$prev" && \
 func_fatal_help "the '$prevarg' option requires an argument"

 if test yes = "$export_dynamic" && test -n "$export_dynamic_flag_spec"; then
 eval arg=\"$export_dynamic_flag_spec\"
 func_append compile_command " $arg"
 func_append finalize_command " $arg"
 fi

 oldlibs=
 # calculate the name of the file, without its directory
 func_basename "$output"
 outputname=$func_basename_result
 libobjs_save=$libobjs

 if test -n "$shlibpath_var"; then
 # get the directories listed in $shlibpath_var
 eval shlib_search_path=\`\$ECHO \"\$$shlibpath_var\" \| \$SED \'s/:/ /g\'\`
 else
 shlib_search_path=
 fi
 eval sys_lib_search_path=\"$sys_lib_search_path_spec\"
 eval sys_lib_dlsearch_path=\"$sys_lib_dlsearch_path_spec\"

 # Definition is injected by LT_CONFIG during libtool generation.
 func_munge_path_list sys_lib_dlsearch_path "$LT_SYS_LIBRARY_PATH"

 func_dirname "$output" "/" ""
 output_objdir=$func_dirname_result$objdir
 func_to_tool_file "$output_objdir/"
 tool_output_objdir=$func_to_tool_file_result
 # Create the object directory.
 func_mkdir_p "$output_objdir"

 # Determine the type of output
 case $output in
 "")
 func_fatal_help "you must specify an output file"
 ;;
 *.$libext) linkmode=oldlib ;;
 *.lo | *.$objext) linkmode=obj ;;
 *.la) linkmode=lib ;;
 *) linkmode=prog ;; # Anything else should be a program.
 esac

 specialdeplibs=

 libs=
 # Find all interdependent deplibs by searching for libraries
 # that are linked more than once (e.g. -la -lb -la)
 for deplib in $deplibs; do
 if $opt_preserve_dup_deps; then
	case "$libs " in
	" $deplib ") func_append specialdeplibs " $deplib" ;;
	esac
 fi
 func_append libs " $deplib"
 done

 if test lib = "$linkmode"; then
 libs="$predeps $libs $compiler_lib_search_path $postdeps"

 # Compute libraries that are listed more than once in $predeps
 # $postdeps and mark them as special (i.e., whose duplicates are
 # not to be eliminated).
 pre_post_deps=
 if $opt_duplicate_compiler_generated_deps; then
	for pre_post_dep in $predeps $postdeps; do
	 case "$pre_post_deps " in
	 " $pre_post_dep ") func_append specialdeplibs " $pre_post_deps" ;;
	 esac
	 func_append pre_post_deps " $pre_post_dep"
	done
 fi
 pre_post_deps=
 fi

 deplibs=
 newdependency_libs=
 newlib_search_path=
 need_relink=no # whether we're linking any uninstalled libtool libraries
 notinst_deplibs= # not-installed libtool libraries
 notinst_path= # paths that contain not-installed libtool libraries

 case $linkmode in
 lib)
	passes="conv dlpreopen link"
	for file in $dlfiles $dlprefiles; do
	 case $file in
	 *.la) ;;
	 *)
	 func_fatal_help "libraries can '-dlopen' only libtool libraries: $file"
	 ;;
	 esac
	done
	;;
 prog)
	compile_deplibs=
	finalize_deplibs=
	alldeplibs=false
	newdlfiles=
	newdlprefiles=
	passes="conv scan dlopen dlpreopen link"
	;;
 *) passes="conv"
	;;
 esac

 for pass in $passes; do
 # The preopen pass in lib mode reverses $deplibs; put it back here
 # so that -L comes before libs that need it for instance...
 if test lib,link = "$linkmode,$pass"; then
	## FIXME: Find the place where the list is rebuilt in the wrong
	## order, and fix it there properly
 tmp_deplibs=
	for deplib in $deplibs; do
	 tmp_deplibs="$deplib $tmp_deplibs"
	done
	deplibs=$tmp_deplibs
 fi

 if test lib,link = "$linkmode,$pass" ||
	 test prog,scan = "$linkmode,$pass"; then
	libs=$deplibs
	deplibs=
 fi
 if test prog = "$linkmode"; then
	case $pass in
	dlopen) libs=$dlfiles ;;
	dlpreopen) libs=$dlprefiles ;;
	link)
	 libs="$deplibs %DEPLIBS%"
	 test "X$link_all_deplibs" != Xno && libs="$libs $dependency_libs"
	 ;;
	esac
 fi
 if test lib,dlpreopen = "$linkmode,$pass"; then
	# Collect and forward deplibs of preopened libtool libs
	for lib in $dlprefiles; do
	 # Ignore non-libtool-libs
	 dependency_libs=
	 func_resolve_sysroot "$lib"
	 case $lib in
	 *.la)	func_source "$func_resolve_sysroot_result" ;;
	 esac

	 # Collect preopened libtool deplibs, except any this library
	 # has declared as weak libs
	 for deplib in $dependency_libs; do
	 func_basename "$deplib"
 deplib_base=$func_basename_result
	 case " $weak_libs " in
	 " $deplib_base ") ;;
	 *) func_append deplibs " $deplib" ;;
	 esac
	 done
	done
	libs=$dlprefiles
 fi
 if test dlopen = "$pass"; then
	# Collect dlpreopened libraries
	save_deplibs=$deplibs
	deplibs=
 fi

 for deplib in $libs; do
	lib=
	found=false
	case $deplib in
	-mt|-mthreads|-kthread|-Kthread|-pthread|-pthreads|--thread-safe \
 |-threads|-fopenmp|-openmp|-mp|-xopenmp|-omp|-qsmp=*)
	 if test prog,link = "$linkmode,$pass"; then
	 compile_deplibs="$deplib $compile_deplibs"
	 finalize_deplibs="$deplib $finalize_deplibs"
	 else
	 func_append compiler_flags " $deplib"
	 if test lib = "$linkmode"; then
		case "$new_inherited_linker_flags " in
		 " $deplib ") ;;
		 *) func_append new_inherited_linker_flags " $deplib" ;;
		esac
	 fi
	 fi
	 continue
	 ;;
	-l*)
	 if test lib != "$linkmode" && test prog != "$linkmode"; then
	 func_warning "'-l' is ignored for archives/objects"
	 continue
	 fi
	 func_stripname '-l' '' "$deplib"
	 name=$func_stripname_result
	 if test lib = "$linkmode"; then
	 searchdirs="$newlib_search_path $lib_search_path $compiler_lib_search_dirs $sys_lib_search_path $shlib_search_path"
	 else
	 searchdirs="$newlib_search_path $lib_search_path $sys_lib_search_path $shlib_search_path"
	 fi
	 for searchdir in $searchdirs; do
	 for search_ext in .la $std_shrext .so .a; do
	 # Search the libtool library
	 lib=$searchdir/lib$name$search_ext
	 if test -f "$lib"; then
		if test .la = "$search_ext"; then
		 found=:
		else
		 found=false
		fi
		break 2
	 fi
	 done
	 done
	 if $found; then
	 # deplib is a libtool library
	 # If $allow_libtool_libs_with_static_runtimes && $deplib is a stdlib,
	 # We need to do some special things here, and not later.
	 if test yes = "$allow_libtool_libs_with_static_runtimes"; then
	 case " $predeps $postdeps " in
	 " $deplib ")
		if func_lalib_p "$lib"; then
		 library_names=
		 old_library=
		 func_source "$lib"
		 for l in $old_library $library_names; do
		 ll=$l
		 done
		 if test "X$ll" = "X$old_library"; then # only static version available
		 found=false
		 func_dirname "$lib" "" "."
		 ladir=$func_dirname_result
		 lib=$ladir/$old_library
		 if test prog,link = "$linkmode,$pass"; then
		 compile_deplibs="$deplib $compile_deplibs"
		 finalize_deplibs="$deplib $finalize_deplibs"
		 else
		 deplibs="$deplib $deplibs"
		 test lib = "$linkmode" && newdependency_libs="$deplib $newdependency_libs"
		 fi
		 continue
		 fi
		fi
		;;
	 *) ;;
	 esac
	 fi
	 else
	 # deplib doesn't seem to be a libtool library
	 if test prog,link = "$linkmode,$pass"; then
	 compile_deplibs="$deplib $compile_deplibs"
	 finalize_deplibs="$deplib $finalize_deplibs"
	 else
	 deplibs="$deplib $deplibs"
	 test lib = "$linkmode" && newdependency_libs="$deplib $newdependency_libs"
	 fi
	 continue
	 fi
	 ;; # -l
	*.ltframework)
	 if test prog,link = "$linkmode,$pass"; then
	 compile_deplibs="$deplib $compile_deplibs"
	 finalize_deplibs="$deplib $finalize_deplibs"
	 else
	 deplibs="$deplib $deplibs"
	 if test lib = "$linkmode"; then
		case "$new_inherited_linker_flags " in
		 " $deplib ") ;;
		 *) func_append new_inherited_linker_flags " $deplib" ;;
		esac
	 fi
	 fi
	 continue
	 ;;
	-L*)
	 case $linkmode in
	 lib)
	 deplibs="$deplib $deplibs"
	 test conv = "$pass" && continue
	 newdependency_libs="$deplib $newdependency_libs"
	 func_stripname '-L' '' "$deplib"
	 func_resolve_sysroot "$func_stripname_result"
	 func_append newlib_search_path " $func_resolve_sysroot_result"
	 ;;
	 prog)
	 if test conv = "$pass"; then
	 deplibs="$deplib $deplibs"
	 continue
	 fi
	 if test scan = "$pass"; then
	 deplibs="$deplib $deplibs"
	 else
	 compile_deplibs="$deplib $compile_deplibs"
	 finalize_deplibs="$deplib $finalize_deplibs"
	 fi
	 func_stripname '-L' '' "$deplib"
	 func_resolve_sysroot "$func_stripname_result"
	 func_append newlib_search_path " $func_resolve_sysroot_result"
	 ;;
	 *)
	 func_warning "'-L' is ignored for archives/objects"
	 ;;
	 esac # linkmode
	 continue
	 ;; # -L
	-R*)
	 if test link = "$pass"; then
	 func_stripname '-R' '' "$deplib"
	 func_resolve_sysroot "$func_stripname_result"
	 dir=$func_resolve_sysroot_result
	 # Make sure the xrpath contains only unique directories.
	 case "$xrpath " in
	 " $dir ") ;;
	 *) func_append xrpath " $dir" ;;
	 esac
	 fi
	 deplibs="$deplib $deplibs"
	 continue
	 ;;
	*.la)
	 func_resolve_sysroot "$deplib"
	 lib=$func_resolve_sysroot_result
	 ;;
	*.$libext)
	 if test conv = "$pass"; then
	 deplibs="$deplib $deplibs"
	 continue
	 fi
	 case $linkmode in
	 lib)
	 # Linking convenience modules into shared libraries is allowed,
	 # but linking other static libraries is non-portable.
	 case " $dlpreconveniencelibs " in
	 " $deplib ") ;;
	 *)
	 valid_a_lib=false
	 case $deplibs_check_method in
		match_pattern*)
		 set dummy $deplibs_check_method; shift
		 match_pattern_regex=`expr "$deplibs_check_method" : "$1 \(.*\)"`
		 if eval "\$ECHO \"$deplib\"" 2>/dev/null | $SED 10q \
		 | $EGREP "$match_pattern_regex" > /dev/null; then
		 valid_a_lib=:
		 fi
		;;
		pass_all)
		 valid_a_lib=:
		;;
	 esac
	 if $valid_a_lib; then
		echo
		$ECHO "*** Warning: Linking the shared library $output against the"
		$ECHO "*** static library $deplib is not portable!"
		deplibs="$deplib $deplibs"
	 else
		echo
		$ECHO "*** Warning: Trying to link with static lib archive $deplib."
		echo "*** I have the capability to make that library automatically link in when"
		echo "*** you link to this library. But I can only do this if you have a"
		echo "*** shared version of the library, which you do not appear to have"
		echo "*** because the file extensions .$libext of this argument makes me believe"
		echo "*** that it is just a static archive that I should not use here."
	 fi
	 ;;
	 esac
	 continue
	 ;;
	 prog)
	 if test link != "$pass"; then
	 deplibs="$deplib $deplibs"
	 else
	 compile_deplibs="$deplib $compile_deplibs"
	 finalize_deplibs="$deplib $finalize_deplibs"
	 fi
	 continue
	 ;;
	 esac # linkmode
	 ;; # *.$libext
	*.lo | *.$objext)
	 if test conv = "$pass"; then
	 deplibs="$deplib $deplibs"
	 elif test prog = "$linkmode"; then
	 if test dlpreopen = "$pass" || test yes != "$dlopen_support" || test no = "$build_libtool_libs"; then
	 # If there is no dlopen support or we're linking statically,
	 # we need to preload.
	 func_append newdlprefiles " $deplib"
	 compile_deplibs="$deplib $compile_deplibs"
	 finalize_deplibs="$deplib $finalize_deplibs"
	 else
	 func_append newdlfiles " $deplib"
	 fi
	 fi
	 continue
	 ;;
	%DEPLIBS%)
	 alldeplibs=:
	 continue
	 ;;
	esac # case $deplib

	$found || test -f "$lib" \
	 || func_fatal_error "cannot find the library '$lib' or unhandled argument '$deplib'"

	# Check to see that this really is a libtool archive.
	func_lalib_unsafe_p "$lib" \
	 || func_fatal_error "'$lib' is not a valid libtool archive"

	func_dirname "$lib" "" "."
	ladir=$func_dirname_result

	dlname=
	dlopen=
	dlpreopen=
	libdir=
	library_names=
	old_library=
	inherited_linker_flags=
	# If the library was installed with an old release of libtool,
	# it will not redefine variables installed, or shouldnotlink
	installed=yes
	shouldnotlink=no
	avoidtemprpath=

	# Read the .la file
	func_source "$lib"

	# Convert "-framework foo" to "foo.ltframework"
	if test -n "$inherited_linker_flags"; then
	 tmp_inherited_linker_flags=`$ECHO "$inherited_linker_flags" | $SED 's/-framework \([^ $]*\)/\1.ltframework/g'`
	 for tmp_inherited_linker_flag in $tmp_inherited_linker_flags; do
	 case " $new_inherited_linker_flags " in
	 " $tmp_inherited_linker_flag ") ;;
	 *) func_append new_inherited_linker_flags " $tmp_inherited_linker_flag";;
	 esac
	 done
	fi
	dependency_libs=`$ECHO " $dependency_libs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'`
	if test lib,link = "$linkmode,$pass" ||
	 test prog,scan = "$linkmode,$pass" ||
	 { test prog != "$linkmode" && test lib != "$linkmode"; }; then
	 test -n "$dlopen" && func_append dlfiles " $dlopen"
	 test -n "$dlpreopen" && func_append dlprefiles " $dlpreopen"
	fi

	if test conv = "$pass"; then
	 # Only check for convenience libraries
	 deplibs="$lib $deplibs"
	 if test -z "$libdir"; then
	 if test -z "$old_library"; then
	 func_fatal_error "cannot find name of link library for '$lib'"
	 fi
	 # It is a libtool convenience library, so add in its objects.
	 func_append convenience " $ladir/$objdir/$old_library"
	 func_append old_convenience " $ladir/$objdir/$old_library"
	 tmp_libs=
	 for deplib in $dependency_libs; do
	 deplibs="$deplib $deplibs"
	 if $opt_preserve_dup_deps; then
		case "$tmp_libs " in
		" $deplib ") func_append specialdeplibs " $deplib" ;;
		esac
	 fi
	 func_append tmp_libs " $deplib"
	 done
	 elif test prog != "$linkmode" && test lib != "$linkmode"; then
	 func_fatal_error "'$lib' is not a convenience library"
	 fi
	 continue
	fi # $pass = conv

	# Get the name of the library we link against.
	linklib=
	if test -n "$old_library" &&
	 { test yes = "$prefer_static_libs" ||
	 test built,no = "$prefer_static_libs,$installed"; }; then
	 linklib=$old_library
	else
	 for l in $old_library $library_names; do
	 linklib=$l
	 done
	fi
	if test -z "$linklib"; then
	 func_fatal_error "cannot find name of link library for '$lib'"
	fi

	# This library was specified with -dlopen.
	if test dlopen = "$pass"; then
	 test -z "$libdir" \
	 && func_fatal_error "cannot -dlopen a convenience library: '$lib'"
	 if test -z "$dlname" ||
	 test yes != "$dlopen_support" ||
	 test no = "$build_libtool_libs"
	 then
	 # If there is no dlname, no dlopen support or we're linking
	 # statically, we need to preload. We also need to preload any
	 # dependent libraries so libltdl's deplib preloader doesn't
	 # bomb out in the load deplibs phase.
	 func_append dlprefiles " $lib $dependency_libs"
	 else
	 func_append newdlfiles " $lib"
	 fi
	 continue
	fi # $pass = dlopen

	# We need an absolute path.
	case $ladir in
	[\\/]* | [A-Za-z]:[\\/]*) abs_ladir=$ladir ;;
	*)
	 abs_ladir=`cd "$ladir" && pwd`
	 if test -z "$abs_ladir"; then
	 func_warning "cannot determine absolute directory name of '$ladir'"
	 func_warning "passing it literally to the linker, although it might fail"
	 abs_ladir=$ladir
	 fi
	 ;;
	esac
	func_basename "$lib"
	laname=$func_basename_result

	# Find the relevant object directory and library name.
	if test yes = "$installed"; then
	 if test ! -f "$lt_sysroot$libdir/$linklib" && test -f "$abs_ladir/$linklib"; then
	 func_warning "library '$lib' was moved."
	 dir=$ladir
	 absdir=$abs_ladir
	 libdir=$abs_ladir
	 else
	 dir=$lt_sysroot$libdir
	 absdir=$lt_sysroot$libdir
	 fi
	 test yes = "$hardcode_automatic" && avoidtemprpath=yes
	else
	 if test ! -f "$ladir/$objdir/$linklib" && test -f "$abs_ladir/$linklib"; then
	 dir=$ladir
	 absdir=$abs_ladir
	 # Remove this search path later
	 func_append notinst_path " $abs_ladir"
	 else
	 dir=$ladir/$objdir
	 absdir=$abs_ladir/$objdir
	 # Remove this search path later
	 func_append notinst_path " $abs_ladir"
	 fi
	fi # $installed = yes
	func_stripname 'lib' '.la' "$laname"
	name=$func_stripname_result

	# This library was specified with -dlpreopen.
	if test dlpreopen = "$pass"; then
	 if test -z "$libdir" && test prog = "$linkmode"; then
	 func_fatal_error "only libraries may -dlpreopen a convenience library: '$lib'"
	 fi
	 case $host in
	 # special handling for platforms with PE-DLLs.
	 cygwin | *mingw* | *cegcc*)
	 # Linker will automatically link against shared library if both
	 # static and shared are present. Therefore, ensure we extract
	 # symbols from the import library if a shared library is present
	 # (otherwise, the dlopen module name will be incorrect). We do
	 # this by putting the import library name into $newdlprefiles.
	 # We recover the dlopen module name by 'saving' the la file
	 # name in a special purpose variable, and (later) extracting the
	 # dlname from the la file.
	 if test -n "$dlname"; then
	 func_tr_sh "$dir/$linklib"
	 eval "libfile_$func_tr_sh_result=\$abs_ladir/\$laname"
	 func_append newdlprefiles " $dir/$linklib"
	 else
	 func_append newdlprefiles " $dir/$old_library"
	 # Keep a list of preopened convenience libraries to check
	 # that they are being used correctly in the link pass.
	 test -z "$libdir" && \
	 func_append dlpreconveniencelibs " $dir/$old_library"
	 fi
	 ;;
	 *)
	 # Prefer using a static library (so that no silly _DYNAMIC symbols
	 # are required to link).
	 if test -n "$old_library"; then
	 func_append newdlprefiles " $dir/$old_library"
	 # Keep a list of preopened convenience libraries to check
	 # that they are being used correctly in the link pass.
	 test -z "$libdir" && \
	 func_append dlpreconveniencelibs " $dir/$old_library"
	 # Otherwise, use the dlname, so that lt_dlopen finds it.
	 elif test -n "$dlname"; then
	 func_append newdlprefiles " $dir/$dlname"
	 else
	 func_append newdlprefiles " $dir/$linklib"
	 fi
	 ;;
	 esac
	fi # $pass = dlpreopen

	if test -z "$libdir"; then
	 # Link the convenience library
	 if test lib = "$linkmode"; then
	 deplibs="$dir/$old_library $deplibs"
	 elif test prog,link = "$linkmode,$pass"; then
	 compile_deplibs="$dir/$old_library $compile_deplibs"
	 finalize_deplibs="$dir/$old_library $finalize_deplibs"
	 else
	 deplibs="$lib $deplibs" # used for prog,scan pass
	 fi
	 continue
	fi

	if test prog = "$linkmode" && test link != "$pass"; then
	 func_append newlib_search_path " $ladir"
	 deplibs="$lib $deplibs"

	 linkalldeplibs=false
	 if test no != "$link_all_deplibs" || test -z "$library_names" ||
	 test no = "$build_libtool_libs"; then
	 linkalldeplibs=:
	 fi

	 tmp_libs=
	 for deplib in $dependency_libs; do
	 case $deplib in
	 -L*) func_stripname '-L' '' "$deplib"
	 func_resolve_sysroot "$func_stripname_result"
	 func_append newlib_search_path " $func_resolve_sysroot_result"
		 ;;
	 esac
	 # Need to link against all dependency_libs?
	 if $linkalldeplibs; then
	 deplibs="$deplib $deplibs"
	 else
	 # Need to hardcode shared library paths
	 # or/and link against static libraries
	 newdependency_libs="$deplib $newdependency_libs"
	 fi
	 if $opt_preserve_dup_deps; then
	 case "$tmp_libs " in
	 " $deplib ") func_append specialdeplibs " $deplib" ;;
	 esac
	 fi
	 func_append tmp_libs " $deplib"
	 done # for deplib
	 continue
	fi # $linkmode = prog...

	if test prog,link = "$linkmode,$pass"; then
	 if test -n "$library_names" &&
	 { { test no = "$prefer_static_libs" ||
	 test built,yes = "$prefer_static_libs,$installed"; } ||
	 test -z "$old_library"; }; then
	 # We need to hardcode the library path
	 if test -n "$shlibpath_var" && test -z "$avoidtemprpath"; then
	 # Make sure the rpath contains only unique directories.
	 case $temp_rpath: in
	 "$absdir:") ;;
	 *) func_append temp_rpath "$absdir:" ;;
	 esac
	 fi

	 # Hardcode the library path.
	 # Skip directories that are in the system default run-time
	 # search path.
	 case " $sys_lib_dlsearch_path " in
	 " $absdir ") ;;
	 *)
	 case "$compile_rpath " in
	 " $absdir ") ;;
	 *) func_append compile_rpath " $absdir" ;;
	 esac
	 ;;
	 esac
	 case " $sys_lib_dlsearch_path " in
	 " $libdir ") ;;
	 *)
	 case "$finalize_rpath " in
	 " $libdir ") ;;
	 *) func_append finalize_rpath " $libdir" ;;
	 esac
	 ;;
	 esac
	 fi # $linkmode,$pass = prog,link...

	 if $alldeplibs &&
	 { test pass_all = "$deplibs_check_method" ||
	 { test yes = "$build_libtool_libs" &&
		 test -n "$library_names"; }; }; then
	 # We only need to search for static libraries
	 continue
	 fi
	fi

	link_static=no # Whether the deplib will be linked statically
	use_static_libs=$prefer_static_libs
	if test built = "$use_static_libs" && test yes = "$installed"; then
	 use_static_libs=no
	fi
	if test -n "$library_names" &&
	 { test no = "$use_static_libs" || test -z "$old_library"; }; then
	 case $host in
	 cygwin | *mingw* | *cegcc* | *os2*)
	 # No point in relinking DLLs because paths are not encoded
	 func_append notinst_deplibs " $lib"
	 need_relink=no
	 ;;
	 *)
	 if test no = "$installed"; then
	 func_append notinst_deplibs " $lib"
	 need_relink=yes
	 fi
	 ;;
	 esac
	 # This is a shared library

	 # Warn about portability, can't link against -module's on some
	 # systems (darwin). Don't bleat about dlopened modules though!
	 dlopenmodule=
	 for dlpremoduletest in $dlprefiles; do
	 if test "X$dlpremoduletest" = "X$lib"; then
	 dlopenmodule=$dlpremoduletest
	 break
	 fi
	 done
	 if test -z "$dlopenmodule" && test yes = "$shouldnotlink" && test link = "$pass"; then
	 echo
	 if test prog = "$linkmode"; then
	 $ECHO "*** Warning: Linking the executable $output against the loadable module"
	 else
	 $ECHO "*** Warning: Linking the shared library $output against the loadable module"
	 fi
	 $ECHO "*** $linklib is not portable!"
	 fi
	 if test lib = "$linkmode" &&
	 test yes = "$hardcode_into_libs"; then
	 # Hardcode the library path.
	 # Skip directories that are in the system default run-time
	 # search path.
	 case " $sys_lib_dlsearch_path " in
	 " $absdir ") ;;
	 *)
	 case "$compile_rpath " in
	 " $absdir ") ;;
	 *) func_append compile_rpath " $absdir" ;;
	 esac
	 ;;
	 esac
	 case " $sys_lib_dlsearch_path " in
	 " $libdir ") ;;
	 *)
	 case "$finalize_rpath " in
	 " $libdir ") ;;
	 *) func_append finalize_rpath " $libdir" ;;
	 esac
	 ;;
	 esac
	 fi

	 if test -n "$old_archive_from_expsyms_cmds"; then
	 # figure out the soname
	 set dummy $library_names
	 shift
	 realname=$1
	 shift
	 libname=`eval "\\$ECHO \"$libname_spec\""`
	 # use dlname if we got it. it's perfectly good, no?
	 if test -n "$dlname"; then
	 soname=$dlname
	 elif test -n "$soname_spec"; then
	 # bleh windows
	 case $host in
	 cygwin | mingw* | *cegcc* | *os2*)
	 func_arith $current - $age
		major=$func_arith_result
		versuffix=-$major
		;;
	 esac
	 eval soname=\"$soname_spec\"
	 else
	 soname=$realname
	 fi

	 # Make a new name for the extract_expsyms_cmds to use
	 soroot=$soname
	 func_basename "$soroot"
	 soname=$func_basename_result
	 func_stripname 'lib' '.dll' "$soname"
	 newlib=libimp-$func_stripname_result.a

	 # If the library has no export list, then create one now
	 if test -f "$output_objdir/$soname-def"; then :
	 else
	 func_verbose "extracting exported symbol list from '$soname'"
	 func_execute_cmds "$extract_expsyms_cmds" 'exit $?'
	 fi

	 # Create $newlib
	 if test -f "$output_objdir/$newlib"; then :; else
	 func_verbose "generating import library for '$soname'"
	 func_execute_cmds "$old_archive_from_expsyms_cmds" 'exit $?'
	 fi
	 # make sure the library variables are pointing to the new library
	 dir=$output_objdir
	 linklib=$newlib
	 fi # test -n "$old_archive_from_expsyms_cmds"

	 if test prog = "$linkmode" || test relink != "$opt_mode"; then
	 add_shlibpath=
	 add_dir=
	 add=
	 lib_linked=yes
	 case $hardcode_action in
	 immediate | unsupported)
	 if test no = "$hardcode_direct"; then
		add=$dir/$linklib
		case $host in
		 --sco3.2v5.0.[024]*) add_dir=-L$dir ;;
		 --sysv4*uw2*) add_dir=-L$dir ;;
		 --sysv5OpenUNIX* | *-*-sysv5UnixWare7.[01].[10]* | \
		 --unixware7*) add_dir=-L$dir ;;
		 --darwin*)
		 # if the lib is a (non-dlopened) module then we cannot
		 # link against it, someone is ignoring the earlier warnings
		 if /usr/bin/file -L $add 2> /dev/null |
			 $GREP ": [^:]* bundle" >/dev/null; then
		 if test "X$dlopenmodule" != "X$lib"; then
			$ECHO "*** Warning: lib $linklib is a module, not a shared library"
			if test -z "$old_library"; then
			 echo
			 echo "*** And there doesn't seem to be a static archive available"
			 echo "*** The link will probably fail, sorry"
			else
			 add=$dir/$old_library
			fi
		 elif test -n "$old_library"; then
			add=$dir/$old_library
		 fi
		 fi
		esac
	 elif test no = "$hardcode_minus_L"; then
		case $host in
		--sunos*) add_shlibpath=$dir ;;
		esac
		add_dir=-L$dir
		add=-l$name
	 elif test no = "$hardcode_shlibpath_var"; then
		add_shlibpath=$dir
		add=-l$name
	 else
		lib_linked=no
	 fi
	 ;;
	 relink)
	 if test yes = "$hardcode_direct" &&
	 test no = "$hardcode_direct_absolute"; then
		add=$dir/$linklib
	 elif test yes = "$hardcode_minus_L"; then
		add_dir=-L$absdir
		# Try looking first in the location we're being installed to.
		if test -n "$inst_prefix_dir"; then
		 case $libdir in
		 [\\/]*)
		 func_append add_dir " -L$inst_prefix_dir$libdir"
		 ;;
		 esac
		fi
		add=-l$name
	 elif test yes = "$hardcode_shlibpath_var"; then
		add_shlibpath=$dir
		add=-l$name
	 else
		lib_linked=no
	 fi
	 ;;
	 *) lib_linked=no ;;
	 esac

	 if test yes != "$lib_linked"; then
	 func_fatal_configuration "unsupported hardcode properties"
	 fi

	 if test -n "$add_shlibpath"; then
	 case :$compile_shlibpath: in
	 ":$add_shlibpath:") ;;
	 *) func_append compile_shlibpath "$add_shlibpath:" ;;
	 esac
	 fi
	 if test prog = "$linkmode"; then
	 test -n "$add_dir" && compile_deplibs="$add_dir $compile_deplibs"
	 test -n "$add" && compile_deplibs="$add $compile_deplibs"
	 else
	 test -n "$add_dir" && deplibs="$add_dir $deplibs"
	 test -n "$add" && deplibs="$add $deplibs"
	 if test yes != "$hardcode_direct" &&
		 test yes != "$hardcode_minus_L" &&
		 test yes = "$hardcode_shlibpath_var"; then
		case :$finalize_shlibpath: in
		":$libdir:") ;;
		*) func_append finalize_shlibpath "$libdir:" ;;
		esac
	 fi
	 fi
	 fi

	 if test prog = "$linkmode" || test relink = "$opt_mode"; then
	 add_shlibpath=
	 add_dir=
	 add=
	 # Finalize command for both is simple: just hardcode it.
	 if test yes = "$hardcode_direct" &&
	 test no = "$hardcode_direct_absolute"; then
	 add=$libdir/$linklib
	 elif test yes = "$hardcode_minus_L"; then
	 add_dir=-L$libdir
	 add=-l$name
	 elif test yes = "$hardcode_shlibpath_var"; then
	 case :$finalize_shlibpath: in
	 ":$libdir:") ;;
	 *) func_append finalize_shlibpath "$libdir:" ;;
	 esac
	 add=-l$name
	 elif test yes = "$hardcode_automatic"; then
	 if test -n "$inst_prefix_dir" &&
		 test -f "$inst_prefix_dir$libdir/$linklib"; then
		add=$inst_prefix_dir$libdir/$linklib
	 else
		add=$libdir/$linklib
	 fi
	 else
	 # We cannot seem to hardcode it, guess we'll fake it.
	 add_dir=-L$libdir
	 # Try looking first in the location we're being installed to.
	 if test -n "$inst_prefix_dir"; then
		case $libdir in
		 [\\/]*)
		 func_append add_dir " -L$inst_prefix_dir$libdir"
		 ;;
		esac
	 fi
	 add=-l$name
	 fi

	 if test prog = "$linkmode"; then
	 test -n "$add_dir" && finalize_deplibs="$add_dir $finalize_deplibs"
	 test -n "$add" && finalize_deplibs="$add $finalize_deplibs"
	 else
	 test -n "$add_dir" && deplibs="$add_dir $deplibs"
	 test -n "$add" && deplibs="$add $deplibs"
	 fi
	 fi
	elif test prog = "$linkmode"; then
	 # Here we assume that one of hardcode_direct or hardcode_minus_L
	 # is not unsupported. This is valid on all known static and
	 # shared platforms.
	 if test unsupported != "$hardcode_direct"; then
	 test -n "$old_library" && linklib=$old_library
	 compile_deplibs="$dir/$linklib $compile_deplibs"
	 finalize_deplibs="$dir/$linklib $finalize_deplibs"
	 else
	 compile_deplibs="-l$name -L$dir $compile_deplibs"
	 finalize_deplibs="-l$name -L$dir $finalize_deplibs"
	 fi
	elif test yes = "$build_libtool_libs"; then
	 # Not a shared library
	 if test pass_all != "$deplibs_check_method"; then
	 # We're trying link a shared library against a static one
	 # but the system doesn't support it.

	 # Just print a warning and add the library to dependency_libs so
	 # that the program can be linked against the static library.
	 echo
	 $ECHO "*** Warning: This system cannot link to static lib archive $lib."
	 echo "*** I have the capability to make that library automatically link in when"
	 echo "*** you link to this library. But I can only do this if you have a"
	 echo "*** shared version of the library, which you do not appear to have."
	 if test yes = "$module"; then
	 echo "*** But as you try to build a module library, libtool will still create "
	 echo "*** a static module, that should work as long as the dlopening application"
	 echo "*** is linked with the -dlopen flag to resolve symbols at runtime."
	 if test -z "$global_symbol_pipe"; then
		echo
		echo "*** However, this would only work if libtool was able to extract symbol"
		echo "*** lists from a program, using 'nm' or equivalent, but libtool could"
		echo "*** not find such a program. So, this module is probably useless."
		echo "*** 'nm' from GNU binutils and a full rebuild may help."
	 fi
	 if test no = "$build_old_libs"; then
		build_libtool_libs=module
		build_old_libs=yes
	 else
		build_libtool_libs=no
	 fi
	 fi
	 else
	 deplibs="$dir/$old_library $deplibs"
	 link_static=yes
	 fi
	fi # link shared/static library?

	if test lib = "$linkmode"; then
	 if test -n "$dependency_libs" &&
	 { test yes != "$hardcode_into_libs" ||
	 test yes = "$build_old_libs" ||
	 test yes = "$link_static"; }; then
	 # Extract -R from dependency_libs
	 temp_deplibs=
	 for libdir in $dependency_libs; do
	 case $libdir in
	 -R*) func_stripname '-R' '' "$libdir"
	 temp_xrpath=$func_stripname_result
		 case " $xrpath " in
		 " $temp_xrpath ") ;;
		 *) func_append xrpath " $temp_xrpath";;
		 esac;;
	 *) func_append temp_deplibs " $libdir";;
	 esac
	 done
	 dependency_libs=$temp_deplibs
	 fi

	 func_append newlib_search_path " $absdir"
	 # Link against this library
	 test no = "$link_static" && newdependency_libs="$abs_ladir/$laname $newdependency_libs"
	 # ... and its dependency_libs
	 tmp_libs=
	 for deplib in $dependency_libs; do
	 newdependency_libs="$deplib $newdependency_libs"
	 case $deplib in
 -L*) func_stripname '-L' '' "$deplib"
 func_resolve_sysroot "$func_stripname_result";;
 *) func_resolve_sysroot "$deplib" ;;
 esac
	 if $opt_preserve_dup_deps; then
	 case "$tmp_libs " in
	 " $func_resolve_sysroot_result ")
 func_append specialdeplibs " $func_resolve_sysroot_result" ;;
	 esac
	 fi
	 func_append tmp_libs " $func_resolve_sysroot_result"
	 done

	 if test no != "$link_all_deplibs"; then
	 # Add the search paths of all dependency libraries
	 for deplib in $dependency_libs; do
	 path=
	 case $deplib in
	 -L*) path=$deplib ;;
	 *.la)
	 func_resolve_sysroot "$deplib"
	 deplib=$func_resolve_sysroot_result
	 func_dirname "$deplib" "" "."
		dir=$func_dirname_result
		# We need an absolute path.
		case $dir in
		[\\/]* | [A-Za-z]:[\\/]*) absdir=$dir ;;
		*)
		 absdir=`cd "$dir" && pwd`
		 if test -z "$absdir"; then
		 func_warning "cannot determine absolute directory name of '$dir'"
		 absdir=$dir
		 fi
		 ;;
		esac
		if $GREP "^installed=no" $deplib > /dev/null; then
		case $host in
		--darwin*)
		 depdepl=
		 eval deplibrary_names=`$SED -n -e 's/^library_names=\(.*\)$/\1/p' $deplib`
		 if test -n "$deplibrary_names"; then
		 for tmp in $deplibrary_names; do
		 depdepl=$tmp
		 done
		 if test -f "$absdir/$objdir/$depdepl"; then
		 depdepl=$absdir/$objdir/$depdepl
		 darwin_install_name=`$OTOOL -L $depdepl | awk '{if (NR == 2) {print $1;exit}}'`
 if test -z "$darwin_install_name"; then
 darwin_install_name=`$OTOOL64 -L $depdepl | awk '{if (NR == 2) {print $1;exit}}'`
 fi
		 func_append compiler_flags " $wl-dylib_file wldarwin_install_name:$depdepl"
		 func_append linker_flags " -dylib_file $darwin_install_name:$depdepl"
		 path=
		 fi
		 fi
		 ;;
		*)
		 path=-L$absdir/$objdir
		 ;;
		esac
		else
		 eval libdir=`$SED -n -e 's/^libdir=\(.*\)$/\1/p' $deplib`
		 test -z "$libdir" && \
		 func_fatal_error "'$deplib' is not a valid libtool archive"
		 test "$absdir" != "$libdir" && \
		 func_warning "'$deplib' seems to be moved"

		 path=-L$absdir
		fi
		;;
	 esac
	 case " $deplibs " in
	 " $path ") ;;
	 *) deplibs="$path $deplibs" ;;
	 esac
	 done
	 fi # link_all_deplibs != no
	fi # linkmode = lib
 done # for deplib in $libs
 if test link = "$pass"; then
	if test prog = "$linkmode"; then
	 compile_deplibs="$new_inherited_linker_flags $compile_deplibs"
	 finalize_deplibs="$new_inherited_linker_flags $finalize_deplibs"
	else
	 compiler_flags="$compiler_flags "`$ECHO " $new_inherited_linker_flags" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'`
	fi
 fi
 dependency_libs=$newdependency_libs
 if test dlpreopen = "$pass"; then
	# Link the dlpreopened libraries before other libraries
	for deplib in $save_deplibs; do
	 deplibs="$deplib $deplibs"
	done
 fi
 if test dlopen != "$pass"; then
	test conv = "$pass" || {
	 # Make sure lib_search_path contains only unique directories.
	 lib_search_path=
	 for dir in $newlib_search_path; do
	 case "$lib_search_path " in
	 " $dir ") ;;
	 *) func_append lib_search_path " $dir" ;;
	 esac
	 done
	 newlib_search_path=
	}

	if test prog,link = "$linkmode,$pass"; then
	 vars="compile_deplibs finalize_deplibs"
	else
	 vars=deplibs
	fi
	for var in $vars dependency_libs; do
	 # Add libraries to $var in reverse order
	 eval tmp_libs=\"\$$var\"
	 new_libs=
	 for deplib in $tmp_libs; do
	 # FIXME: Pedantically, this is the right thing to do, so
	 # that some nasty dependency loop isn't accidentally
	 # broken:
	 #new_libs="$deplib $new_libs"
	 # Pragmatically, this seems to cause very few problems in
	 # practice:
	 case $deplib in
	 -L*) new_libs="$deplib $new_libs" ;;
	 -R*) ;;
	 *)
	 # And here is the reason: when a library appears more
	 # than once as an explicit dependence of a library, or
	 # is implicitly linked in more than once by the
	 # compiler, it is considered special, and multiple
	 # occurrences thereof are not removed. Compare this
	 # with having the same library being listed as a
	 # dependency of multiple other libraries: in this case,
	 # we know (pedantically, we assume) the library does not
	 # need to be listed more than once, so we keep only the
	 # last copy. This is not always right, but it is rare
	 # enough that we require users that really mean to play
	 # such unportable linking tricks to link the library
	 # using -Wl,-lname, so that libtool does not consider it
	 # for duplicate removal.
	 case " $specialdeplibs " in
	 " $deplib ") new_libs="$deplib $new_libs" ;;
	 *)
		case " $new_libs " in
		" $deplib ") ;;
		*) new_libs="$deplib $new_libs" ;;
		esac
		;;
	 esac
	 ;;
	 esac
	 done
	 tmp_libs=
	 for deplib in $new_libs; do
	 case $deplib in
	 -L*)
	 case " $tmp_libs " in
	 " $deplib ") ;;
	 *) func_append tmp_libs " $deplib" ;;
	 esac
	 ;;
	 *) func_append tmp_libs " $deplib" ;;
	 esac
	 done
	 eval $var=\"$tmp_libs\"
	done # for var
 fi

 # Add Sun CC postdeps if required:
 test CXX = "$tagname" && {
 case $host_os in
 linux*)
 case `$CC -V 2>&1 | sed 5q` in
 Sun\ C) # Sun C++ 5.9
 func_suncc_cstd_abi

 if test no != "$suncc_use_cstd_abi"; then
 func_append postdeps ' -library=Cstd -library=Crun'
 fi
 ;;
 esac
 ;;

 solaris*)
 func_cc_basename "$CC"
 case $func_cc_basename_result in
 CC* | sunCC*)
 func_suncc_cstd_abi

 if test no != "$suncc_use_cstd_abi"; then
 func_append postdeps ' -library=Cstd -library=Crun'
 fi
 ;;
 esac
 ;;
 esac
 }

 # Last step: remove runtime libs from dependency_libs
 # (they stay in deplibs)
 tmp_libs=
 for i in $dependency_libs; do
	case " $predeps $postdeps $compiler_lib_search_path " in
	" $i ")
	 i=
	 ;;
	esac
	if test -n "$i"; then
	 func_append tmp_libs " $i"
	fi
 done
 dependency_libs=$tmp_libs
 done # for pass
 if test prog = "$linkmode"; then
 dlfiles=$newdlfiles
 fi
 if test prog = "$linkmode" || test lib = "$linkmode"; then
 dlprefiles=$newdlprefiles
 fi

 case $linkmode in
 oldlib)
 if test -n "$dlfiles$dlprefiles" || test no != "$dlself"; then
	func_warning "'-dlopen' is ignored for archives"
 fi

 case " $deplibs" in
 \ -l | *\ -L*)
	func_warning "'-l' and '-L' are ignored for archives" ;;
 esac

 test -n "$rpath" && \
	func_warning "'-rpath' is ignored for archives"

 test -n "$xrpath" && \
	func_warning "'-R' is ignored for archives"

 test -n "$vinfo" && \
	func_warning "'-version-info/-version-number' is ignored for archives"

 test -n "$release" && \
	func_warning "'-release' is ignored for archives"

 test -n "$export_symbols$export_symbols_regex" && \
	func_warning "'-export-symbols' is ignored for archives"

 # Now set the variables for building old libraries.
 build_libtool_libs=no
 oldlibs=$output
 func_append objs "$old_deplibs"
 ;;

 lib)
 # Make sure we only generate libraries of the form 'libNAME.la'.
 case $outputname in
 lib*)
	func_stripname 'lib' '.la' "$outputname"
	name=$func_stripname_result
	eval shared_ext=\"$shrext_cmds\"
	eval libname=\"$libname_spec\"
	;;
 *)
	test no = "$module" \
	 && func_fatal_help "libtool library '$output' must begin with 'lib'"

	if test no != "$need_lib_prefix"; then
	 # Add the "lib" prefix for modules if required
	 func_stripname '' '.la' "$outputname"
	 name=$func_stripname_result
	 eval shared_ext=\"$shrext_cmds\"
	 eval libname=\"$libname_spec\"
	else
	 func_stripname '' '.la' "$outputname"
	 libname=$func_stripname_result
	fi
	;;
 esac

 if test -n "$objs"; then
	if test pass_all != "$deplibs_check_method"; then
	 func_fatal_error "cannot build libtool library '$output' from non-libtool objects on this host:$objs"
	else
	 echo
	 $ECHO "*** Warning: Linking the shared library $output against the non-libtool"
	 $ECHO "*** objects $objs is not portable!"
	 func_append libobjs " $objs"
	fi
 fi

 test no = "$dlself" \
	|| func_warning "'-dlopen self' is ignored for libtool libraries"

 set dummy $rpath
 shift
 test 1 -lt "$#" \
	&& func_warning "ignoring multiple '-rpath's for a libtool library"

 install_libdir=$1

 oldlibs=
 if test -z "$rpath"; then
	if test yes = "$build_libtool_libs"; then
	 # Building a libtool convenience library.
	 # Some compilers have problems with a '.al' extension so
	 # convenience libraries should have the same extension an
	 # archive normally would.
	 oldlibs="$output_objdir/$libname.$libext $oldlibs"
	 build_libtool_libs=convenience
	 build_old_libs=yes
	fi

	test -n "$vinfo" && \
	 func_warning "'-version-info/-version-number' is ignored for convenience libraries"

	test -n "$release" && \
	 func_warning "'-release' is ignored for convenience libraries"
 else

	# Parse the version information argument.
	save_ifs=$IFS; IFS=:
	set dummy $vinfo 0 0 0
	shift
	IFS=$save_ifs

	test -n "$7" && \
	 func_fatal_help "too many parameters to '-version-info'"

	# convert absolute version numbers to libtool ages
	# this retains compatibility with .la files and attempts
	# to make the code below a bit more comprehensible

	case $vinfo_number in
	yes)
	 number_major=$1
	 number_minor=$2
	 number_revision=$3
	 #
	 # There are really only two kinds -- those that
	 # use the current revision as the major version
	 # and those that subtract age and use age as
	 # a minor version. But, then there is irix
	 # that has an extra 1 added just for fun
	 #
	 case $version_type in
	 # correct linux to gnu/linux during the next big refactor
	 darwin|freebsd-elf|linux|osf|windows|none)
	 func_arith $number_major + $number_minor
	 current=$func_arith_result
	 age=$number_minor
	 revision=$number_revision
	 ;;
	 freebsd-aout|qnx|sunos)
	 current=$number_major
	 revision=$number_minor
	 age=0
	 ;;
	 irix|nonstopux)
	 func_arith $number_major + $number_minor
	 current=$func_arith_result
	 age=$number_minor
	 revision=$number_minor
	 lt_irix_increment=no
	 ;;
	 *)
	 func_fatal_configuration "$modename: unknown library version type '$version_type'"
	 ;;
	 esac
	 ;;
	no)
	 current=$1
	 revision=$2
	 age=$3
	 ;;
	esac

	# Check that each of the things are valid numbers.
	case $current in
	0|[1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9]|[1-9][0-9][0-9][0-9][0-9]) ;;
	*)
	 func_error "CURRENT '$current' must be a nonnegative integer"
	 func_fatal_error "'$vinfo' is not valid version information"
	 ;;
	esac

	case $revision in
	0|[1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9]|[1-9][0-9][0-9][0-9][0-9]) ;;
	*)
	 func_error "REVISION '$revision' must be a nonnegative integer"
	 func_fatal_error "'$vinfo' is not valid version information"
	 ;;
	esac

	case $age in
	0|[1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9]|[1-9][0-9][0-9][0-9][0-9]) ;;
	*)
	 func_error "AGE '$age' must be a nonnegative integer"
	 func_fatal_error "'$vinfo' is not valid version information"
	 ;;
	esac

	if test "$age" -gt "$current"; then
	 func_error "AGE '$age' is greater than the current interface number '$current'"
	 func_fatal_error "'$vinfo' is not valid version information"
	fi

	# Calculate the version variables.
	major=
	versuffix=
	verstring=
	case $version_type in
	none) ;;

	darwin)
	 # Like Linux, but with the current version available in
	 # verstring for coding it into the library header
	 func_arith $current - $age
	 major=.$func_arith_result
	 versuffix=$major.$age.$revision
	 # Darwin ld doesn't like 0 for these options...
	 func_arith $current + 1
	 minor_current=$func_arith_result
	 xlcverstring="$wl-compatibility_version wlminor_current $wl-current_version wlminor_current.$revision"
	 verstring="-compatibility_version $minor_current -current_version $minor_current.$revision"
 # On Darwin other compilers
 case $CC in
 nagfor*)
 verstring="$wl-compatibility_version wlminor_current $wl-current_version wlminor_current.$revision"
 ;;
 *)
 verstring="-compatibility_version $minor_current -current_version $minor_current.$revision"
 ;;
 esac
	 ;;

	freebsd-aout)
	 major=.$current
	 versuffix=.$current.$revision
	 ;;

	freebsd-elf)
	 func_arith $current - $age
	 major=.$func_arith_result
	 versuffix=$major.$age.$revision
	 ;;

	irix | nonstopux)
	 if test no = "$lt_irix_increment"; then
	 func_arith $current - $age
	 else
	 func_arith $current - $age + 1
	 fi
	 major=$func_arith_result

	 case $version_type in
	 nonstopux) verstring_prefix=nonstopux ;;
	 *) verstring_prefix=sgi ;;
	 esac
	 verstring=$verstring_prefix$major.$revision

	 # Add in all the interfaces that we are compatible with.
	 loop=$revision
	 while test 0 -ne "$loop"; do
	 func_arith $revision - $loop
	 iface=$func_arith_result
	 func_arith $loop - 1
	 loop=$func_arith_result
	 verstring=$verstring_prefix$major.$iface:$verstring
	 done

	 # Before this point, $major must not contain '.'.
	 major=.$major
	 versuffix=$major.$revision
	 ;;

	linux) # correct to gnu/linux during the next big refactor
	 func_arith $current - $age
	 major=.$func_arith_result
	 versuffix=$major.$age.$revision
	 ;;

	osf)
	 func_arith $current - $age
	 major=.$func_arith_result
	 versuffix=.$current.$age.$revision
	 verstring=$current.$age.$revision

	 # Add in all the interfaces that we are compatible with.
	 loop=$age
	 while test 0 -ne "$loop"; do
	 func_arith $current - $loop
	 iface=$func_arith_result
	 func_arith $loop - 1
	 loop=$func_arith_result
	 verstring=$verstring:$iface.0
	 done

	 # Make executables depend on our current version.
	 func_append verstring ":$current.0"
	 ;;

	qnx)
	 major=.$current
	 versuffix=.$current
	 ;;

	sco)
	 major=.$current
	 versuffix=.$current
	 ;;

	sunos)
	 major=.$current
	 versuffix=.$current.$revision
	 ;;

	windows)
	 # Use '-' rather than '.', since we only want one
	 # extension on DOS 8.3 file systems.
	 func_arith $current - $age
	 major=$func_arith_result
	 versuffix=-$major
	 ;;

	*)
	 func_fatal_configuration "unknown library version type '$version_type'"
	 ;;
	esac

	# Clear the version info if we defaulted, and they specified a release.
	if test -z "$vinfo" && test -n "$release"; then
	 major=
	 case $version_type in
	 darwin)
	 # we can't check for "0.0" in archive_cmds due to quoting
	 # problems, so we reset it completely
	 verstring=
	 ;;
	 *)
	 verstring=0.0
	 ;;
	 esac
	 if test no = "$need_version"; then
	 versuffix=
	 else
	 versuffix=.0.0
	 fi
	fi

	# Remove version info from name if versioning should be avoided
	if test yes,no = "$avoid_version,$need_version"; then
	 major=
	 versuffix=
	 verstring=
	fi

	# Check to see if the archive will have undefined symbols.
	if test yes = "$allow_undefined"; then
	 if test unsupported = "$allow_undefined_flag"; then
	 if test yes = "$build_old_libs"; then
	 func_warning "undefined symbols not allowed in $host shared libraries; building static only"
	 build_libtool_libs=no
	 else
	 func_fatal_error "can't build $host shared library unless -no-undefined is specified"
	 fi
	 fi
	else
	 # Don't allow undefined symbols.
	 allow_undefined_flag=$no_undefined_flag
	fi

 fi

 func_generate_dlsyms "$libname" "$libname" :
 func_append libobjs " $symfileobj"
 test " " = "$libobjs" && libobjs=

 if test relink != "$opt_mode"; then
	# Remove our outputs, but don't remove object files since they
	# may have been created when compiling PIC objects.
	removelist=
	tempremovelist=`$ECHO "$output_objdir/*"`
	for p in $tempremovelist; do
	 case $p in
	 *.$objext | *.gcno)
	 ;;
	 $output_objdir/$outputname | $output_objdir/$libname.* | $output_objdir/$libname$release.*)
	 if test -n "$precious_files_regex"; then
		 if $ECHO "$p" | $EGREP -e "$precious_files_regex" >/dev/null 2>&1
		 then
		 continue
		 fi
	 fi
	 func_append removelist " $p"
	 ;;
	 *) ;;
	 esac
	done
	test -n "$removelist" && \
	 func_show_eval "${RM}r \$removelist"
 fi

 # Now set the variables for building old libraries.
 if test yes = "$build_old_libs" && test convenience != "$build_libtool_libs"; then
	func_append oldlibs " $output_objdir/$libname.$libext"

	# Transform .lo files to .o files.
	oldobjs="$objs "`$ECHO "$libobjs" | $SP2NL | $SED "/\.$libext$/d; $lo2o" | $NL2SP`
 fi

 # Eliminate all temporary directories.
 #for path in $notinst_path; do
 #	lib_search_path=`$ECHO "$lib_search_path " | $SED "s% $path % %g"`
 #	deplibs=`$ECHO "$deplibs " | $SED "s% -L$path % %g"`
 #	dependency_libs=`$ECHO "$dependency_libs " | $SED "s% -L$path % %g"`
 #done

 if test -n "$xrpath"; then
	# If the user specified any rpath flags, then add them.
	temp_xrpath=
	for libdir in $xrpath; do
	 func_replace_sysroot "$libdir"
	 func_append temp_xrpath " -R$func_replace_sysroot_result"
	 case "$finalize_rpath " in
	 " $libdir ") ;;
	 *) func_append finalize_rpath " $libdir" ;;
	 esac
	done
	if test yes != "$hardcode_into_libs" || test yes = "$build_old_libs"; then
	 dependency_libs="$temp_xrpath $dependency_libs"
	fi
 fi

 # Make sure dlfiles contains only unique files that won't be dlpreopened
 old_dlfiles=$dlfiles
 dlfiles=
 for lib in $old_dlfiles; do
	case " $dlprefiles $dlfiles " in
	" $lib ") ;;
	*) func_append dlfiles " $lib" ;;
	esac
 done

 # Make sure dlprefiles contains only unique files
 old_dlprefiles=$dlprefiles
 dlprefiles=
 for lib in $old_dlprefiles; do
	case "$dlprefiles " in
	" $lib ") ;;
	*) func_append dlprefiles " $lib" ;;
	esac
 done

 if test yes = "$build_libtool_libs"; then
	if test -n "$rpath"; then
	 case $host in
	 --cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-*-beos* | *-cegcc* | *-*-haiku*)
	 # these systems don't actually have a c library (as such)!
	 ;;
	 --rhapsody* | *-*-darwin1.[012])
	 # Rhapsody C library is in the System framework
	 func_append deplibs " System.ltframework"
	 ;;
	 --netbsd*)
	 # Don't link with libc until the a.out ld.so is fixed.
	 ;;
	 --openbsd* | *-*-freebsd* | *-*-dragonfly*)
	 # Do not include libc due to us having libc/libc_r.
	 ;;
	 --sco3.2v5* | *-*-sco5v6*)
	 # Causes problems with __ctype
	 ;;
	 --sysv4.2uw2* | *-*-sysv5* | *-*-unixware* | *-*-OpenUNIX*)
	 # Compiler inserts libc in the correct place for threads to work
	 ;;
	 *)
	 # Add libc to deplibs on all other systems if necessary.
	 if test yes = "$build_libtool_need_lc"; then
	 func_append deplibs " -lc"
	 fi
	 ;;
	 esac
	fi

	# Transform deplibs into only deplibs that can be linked in shared.
	name_save=$name
	libname_save=$libname
	release_save=$release
	versuffix_save=$versuffix
	major_save=$major
	# I'm not sure if I'm treating the release correctly. I think
	# release should show up in the -l (ie -lgmp5) so we don't want to
	# add it in twice. Is that correct?
	release=
	versuffix=
	major=
	newdeplibs=
	droppeddeps=no
	case $deplibs_check_method in
	pass_all)
	 # Don't check for shared/static. Everything works.
	 # This might be a little naive. We might want to check
	 # whether the library exists or not. But this is on
	 # osf3 & osf4 and I'm not really sure... Just
	 # implementing what was already the behavior.
	 newdeplibs=$deplibs
	 ;;
	test_compile)
	 # This code stresses the "libraries are programs" paradigm to its
	 # limits. Maybe even breaks it. We compile a program, linking it
	 # against the deplibs as a proxy for the library. Then we can check
	 # whether they linked in statically or dynamically with ldd.
	 $opt_dry_run || $RM conftest.c
	 cat > conftest.c <<EOF
	 int main() { return 0; }
EOF
	 $opt_dry_run || $RM conftest
	 if $LTCC $LTCFLAGS -o conftest conftest.c $deplibs; then
	 ldd_output=`ldd conftest`
	 for i in $deplibs; do
	 case $i in
	 -l*)
		func_stripname -l '' "$i"
		name=$func_stripname_result
		if test yes = "$allow_libtool_libs_with_static_runtimes"; then
		 case " $predeps $postdeps " in
		 " $i ")
		 func_append newdeplibs " $i"
		 i=
		 ;;
		 esac
		fi
		if test -n "$i"; then
		 libname=`eval "\\$ECHO \"$libname_spec\""`
		 deplib_matches=`eval "\\$ECHO \"$library_names_spec\""`
		 set dummy $deplib_matches; shift
		 deplib_match=$1
		 if test `expr "$ldd_output" : ".*$deplib_match"` -ne 0; then
		 func_append newdeplibs " $i"
		 else
		 droppeddeps=yes
		 echo
		 $ECHO "*** Warning: dynamic linker does not accept needed library $i."
		 echo "*** I have the capability to make that library automatically link in when"
		 echo "*** you link to this library. But I can only do this if you have a"
		 echo "*** shared version of the library, which I believe you do not have"
		 echo "*** because a test_compile did reveal that the linker did not use it for"
		 echo "*** its dynamic dependency list that programs get resolved with at runtime."
		 fi
		fi
		;;
	 *)
		func_append newdeplibs " $i"
		;;
	 esac
	 done
	 else
	 # Error occurred in the first compile. Let's try to salvage
	 # the situation: Compile a separate program for each library.
	 for i in $deplibs; do
	 case $i in
	 -l*)
		func_stripname -l '' "$i"
		name=$func_stripname_result
		$opt_dry_run || $RM conftest
		if $LTCC $LTCFLAGS -o conftest conftest.c $i; then
		 ldd_output=`ldd conftest`
		 if test yes = "$allow_libtool_libs_with_static_runtimes"; then
		 case " $predeps $postdeps " in
		 " $i ")
		 func_append newdeplibs " $i"
		 i=
		 ;;
		 esac
		 fi
		 if test -n "$i"; then
		 libname=`eval "\\$ECHO \"$libname_spec\""`
		 deplib_matches=`eval "\\$ECHO \"$library_names_spec\""`
		 set dummy $deplib_matches; shift
		 deplib_match=$1
		 if test `expr "$ldd_output" : ".*$deplib_match"` -ne 0; then
		 func_append newdeplibs " $i"
		 else
		 droppeddeps=yes
		 echo
		 $ECHO "*** Warning: dynamic linker does not accept needed library $i."
		 echo "*** I have the capability to make that library automatically link in when"
		 echo "*** you link to this library. But I can only do this if you have a"
		 echo "*** shared version of the library, which you do not appear to have"
		 echo "*** because a test_compile did reveal that the linker did not use this one"
		 echo "*** as a dynamic dependency that programs can get resolved with at runtime."
		 fi
		 fi
		else
		 droppeddeps=yes
		 echo
		 $ECHO "*** Warning! Library $i is needed by this library but I was not able to"
		 echo "*** make it link in! You will probably need to install it or some"
		 echo "*** library that it depends on before this library will be fully"
		 echo "*** functional. Installing it before continuing would be even better."
		fi
		;;
	 *)
		func_append newdeplibs " $i"
		;;
	 esac
	 done
	 fi
	 ;;
	file_magic*)
	 set dummy $deplibs_check_method; shift
	 file_magic_regex=`expr "$deplibs_check_method" : "$1 \(.*\)"`
	 for a_deplib in $deplibs; do
	 case $a_deplib in
	 -l*)
	 func_stripname -l '' "$a_deplib"
	 name=$func_stripname_result
	 if test yes = "$allow_libtool_libs_with_static_runtimes"; then
		case " $predeps $postdeps " in
		" $a_deplib ")
		 func_append newdeplibs " $a_deplib"
		 a_deplib=
		 ;;
		esac
	 fi
	 if test -n "$a_deplib"; then
		libname=`eval "\\$ECHO \"$libname_spec\""`
		if test -n "$file_magic_glob"; then
		 libnameglob=`func_echo_all "$libname" | $SED -e $file_magic_glob`
		else
		 libnameglob=$libname
		fi
		test yes = "$want_nocaseglob" && nocaseglob=`shopt -p nocaseglob`
		for i in $lib_search_path $sys_lib_search_path $shlib_search_path; do
		 if test yes = "$want_nocaseglob"; then
		 shopt -s nocaseglob
		 potential_libs=`ls $i/$libnameglob[.-]* 2>/dev/null`
		 $nocaseglob
		 else
		 potential_libs=`ls $i/$libnameglob[.-]* 2>/dev/null`
		 fi
		 for potent_lib in $potential_libs; do
		 # Follow soft links.
		 if ls -lLd "$potent_lib" 2>/dev/null |
			 $GREP " -> " >/dev/null; then
			continue
		 fi
		 # The statement above tries to avoid entering an
		 # endless loop below, in case of cyclic links.
		 # We might still enter an endless loop, since a link
		 # loop can be closed while we follow links,
		 # but so what?
		 potlib=$potent_lib
		 while test -h "$potlib" 2>/dev/null; do
			potliblink=`ls -ld $potlib | $SED 's/.* -> //'`
			case $potliblink in
			[\\/]* | [A-Za-z]:[\\/]*) potlib=$potliblink;;
) potlib=`$ECHO "$potlib" | $SED 's|[^/]$||'`"$potliblink";;
			esac
		 done
		 if eval $file_magic_cmd \"\$potlib\" 2>/dev/null |
			 $SED -e 10q |
			 $EGREP "$file_magic_regex" > /dev/null; then
			func_append newdeplibs " $a_deplib"
			a_deplib=
			break 2
		 fi
		 done
		done
	 fi
	 if test -n "$a_deplib"; then
		droppeddeps=yes
		echo
		$ECHO "*** Warning: linker path does not have real file for library $a_deplib."
		echo "*** I have the capability to make that library automatically link in when"
		echo "*** you link to this library. But I can only do this if you have a"
		echo "*** shared version of the library, which you do not appear to have"
		echo "*** because I did check the linker path looking for a file starting"
		if test -z "$potlib"; then
		 $ECHO "*** with $libname but no candidates were found. (...for file magic test)"
		else
		 $ECHO "*** with $libname and none of the candidates passed a file format test"
		 $ECHO "*** using a file magic. Last file checked: $potlib"
		fi
	 fi
	 ;;
	 *)
	 # Add a -L argument.
	 func_append newdeplibs " $a_deplib"
	 ;;
	 esac
	 done # Gone through all deplibs.
	 ;;
	match_pattern*)
	 set dummy $deplibs_check_method; shift
	 match_pattern_regex=`expr "$deplibs_check_method" : "$1 \(.*\)"`
	 for a_deplib in $deplibs; do
	 case $a_deplib in
	 -l*)
	 func_stripname -l '' "$a_deplib"
	 name=$func_stripname_result
	 if test yes = "$allow_libtool_libs_with_static_runtimes"; then
		case " $predeps $postdeps " in
		" $a_deplib ")
		 func_append newdeplibs " $a_deplib"
		 a_deplib=
		 ;;
		esac
	 fi
	 if test -n "$a_deplib"; then
		libname=`eval "\\$ECHO \"$libname_spec\""`
		for i in $lib_search_path $sys_lib_search_path $shlib_search_path; do
		 potential_libs=`ls $i/$libname[.-]* 2>/dev/null`
		 for potent_lib in $potential_libs; do
		 potlib=$potent_lib # see symlink-check above in file_magic test
		 if eval "\$ECHO \"$potent_lib\"" 2>/dev/null | $SED 10q | \
		 $EGREP "$match_pattern_regex" > /dev/null; then
		 func_append newdeplibs " $a_deplib"
		 a_deplib=
		 break 2
		 fi
		 done
		done
	 fi
	 if test -n "$a_deplib"; then
		droppeddeps=yes
		echo
		$ECHO "*** Warning: linker path does not have real file for library $a_deplib."
		echo "*** I have the capability to make that library automatically link in when"
		echo "*** you link to this library. But I can only do this if you have a"
		echo "*** shared version of the library, which you do not appear to have"
		echo "*** because I did check the linker path looking for a file starting"
		if test -z "$potlib"; then
		 $ECHO "*** with $libname but no candidates were found. (...for regex pattern test)"
		else
		 $ECHO "*** with $libname and none of the candidates passed a file format test"
		 $ECHO "*** using a regex pattern. Last file checked: $potlib"
		fi
	 fi
	 ;;
	 *)
	 # Add a -L argument.
	 func_append newdeplibs " $a_deplib"
	 ;;
	 esac
	 done # Gone through all deplibs.
	 ;;
	none | unknown | *)
	 newdeplibs=
	 tmp_deplibs=`$ECHO " $deplibs" | $SED 's/ -lc$//; s/ -[LR][^]*//g'`
	 if test yes = "$allow_libtool_libs_with_static_runtimes"; then
	 for i in $predeps $postdeps; do
	 # can't use Xsed below, because $i might contain '/'
	 tmp_deplibs=`$ECHO " $tmp_deplibs" | $SED "s|$i||"`
	 done
	 fi
	 case $tmp_deplibs in
	 [!\	\])
	 echo
	 if test none = "$deplibs_check_method"; then
	 echo "*** Warning: inter-library dependencies are not supported in this platform."
	 else
	 echo "*** Warning: inter-library dependencies are not known to be supported."
	 fi
	 echo "*** All declared inter-library dependencies are being dropped."
	 droppeddeps=yes
	 ;;
	 esac
	 ;;
	esac
	versuffix=$versuffix_save
	major=$major_save
	release=$release_save
	libname=$libname_save
	name=$name_save

	case $host in
	--rhapsody* | *-*-darwin1.[012])
	 # On Rhapsody replace the C library with the System framework
	 newdeplibs=`$ECHO " $newdeplibs" | $SED 's/ -lc / System.ltframework /'`
	 ;;
	esac

	if test yes = "$droppeddeps"; then
	 if test yes = "$module"; then
	 echo
	 echo "*** Warning: libtool could not satisfy all declared inter-library"
	 $ECHO "*** dependencies of module $libname. Therefore, libtool will create"
	 echo "*** a static module, that should work as long as the dlopening"
	 echo "*** application is linked with the -dlopen flag."
	 if test -z "$global_symbol_pipe"; then
	 echo
	 echo "*** However, this would only work if libtool was able to extract symbol"
	 echo "*** lists from a program, using 'nm' or equivalent, but libtool could"
	 echo "*** not find such a program. So, this module is probably useless."
	 echo "*** 'nm' from GNU binutils and a full rebuild may help."
	 fi
	 if test no = "$build_old_libs"; then
	 oldlibs=$output_objdir/$libname.$libext
	 build_libtool_libs=module
	 build_old_libs=yes
	 else
	 build_libtool_libs=no
	 fi
	 else
	 echo "*** The inter-library dependencies that have been dropped here will be"
	 echo "*** automatically added whenever a program is linked with this library"
	 echo "*** or is declared to -dlopen it."

	 if test no = "$allow_undefined"; then
	 echo
	 echo "*** Since this library must not contain undefined symbols,"
	 echo "*** because either the platform does not support them or"
	 echo "*** it was explicitly requested with -no-undefined,"
	 echo "*** libtool will only create a static version of it."
	 if test no = "$build_old_libs"; then
		oldlibs=$output_objdir/$libname.$libext
		build_libtool_libs=module
		build_old_libs=yes
	 else
		build_libtool_libs=no
	 fi
	 fi
	 fi
	fi
	# Done checking deplibs!
	deplibs=$newdeplibs
 fi
 # Time to change all our "foo.ltframework" stuff back to "-framework foo"
 case $host in
	--darwin*)
	 newdeplibs=`$ECHO " $newdeplibs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'`
	 new_inherited_linker_flags=`$ECHO " $new_inherited_linker_flags" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'`
	 deplibs=`$ECHO " $deplibs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'`
	 ;;
 esac

 # move library search paths that coincide with paths to not yet
 # installed libraries to the beginning of the library search list
 new_libs=
 for path in $notinst_path; do
	case " $new_libs " in
	" -L$path/$objdir ") ;;
	*)
	 case " $deplibs " in
	 " -L$path/$objdir ")
	 func_append new_libs " -L$path/$objdir" ;;
	 esac
	 ;;
	esac
 done
 for deplib in $deplibs; do
	case $deplib in
	-L*)
	 case " $new_libs " in
	 " $deplib ") ;;
	 *) func_append new_libs " $deplib" ;;
	 esac
	 ;;
	*) func_append new_libs " $deplib" ;;
	esac
 done
 deplibs=$new_libs

 # All the library-specific variables (install_libdir is set above).
 library_names=
 old_library=
 dlname=

 # Test again, we may have decided not to build it any more
 if test yes = "$build_libtool_libs"; then
	# Remove $wl instances when linking with ld.
	# FIXME: should test the right _cmds variable.
	case $archive_cmds in
	 *\$LD\ *) wl= ;;
 esac
	if test yes = "$hardcode_into_libs"; then
	 # Hardcode the library paths
	 hardcode_libdirs=
	 dep_rpath=
	 rpath=$finalize_rpath
	 test relink = "$opt_mode" || rpath=$compile_rpath$rpath
	 for libdir in $rpath; do
	 if test -n "$hardcode_libdir_flag_spec"; then
	 if test -n "$hardcode_libdir_separator"; then
		func_replace_sysroot "$libdir"
		libdir=$func_replace_sysroot_result
		if test -z "$hardcode_libdirs"; then
		 hardcode_libdirs=$libdir
		else
		 # Just accumulate the unique libdirs.
		 case $hardcode_libdir_separator$hardcode_libdirs$hardcode_libdir_separator in
		 "$hardcode_libdir_separator$libdir$hardcode_libdir_separator")
		 ;;
		 *)
		 func_append hardcode_libdirs "$hardcode_libdir_separator$libdir"
		 ;;
		 esac
		fi
	 else
		eval flag=\"$hardcode_libdir_flag_spec\"
		func_append dep_rpath " $flag"
	 fi
	 elif test -n "$runpath_var"; then
	 case "$perm_rpath " in
	 " $libdir ") ;;
	 *) func_append perm_rpath " $libdir" ;;
	 esac
	 fi
	 done
	 # Substitute the hardcoded libdirs into the rpath.
	 if test -n "$hardcode_libdir_separator" &&
	 test -n "$hardcode_libdirs"; then
	 libdir=$hardcode_libdirs
	 eval "dep_rpath=\"$hardcode_libdir_flag_spec\""
	 fi
	 if test -n "$runpath_var" && test -n "$perm_rpath"; then
	 # We should set the runpath_var.
	 rpath=
	 for dir in $perm_rpath; do
	 func_append rpath "$dir:"
	 done
	 eval "$runpath_var='$rpath\$$runpath_var'; export $runpath_var"
	 fi
	 test -n "$dep_rpath" && deplibs="$dep_rpath $deplibs"
	fi

	shlibpath=$finalize_shlibpath
	test relink = "$opt_mode" || shlibpath=$compile_shlibpath$shlibpath
	if test -n "$shlibpath"; then
	 eval "$shlibpath_var='$shlibpath\$$shlibpath_var'; export $shlibpath_var"
	fi

	# Get the real and link names of the library.
	eval shared_ext=\"$shrext_cmds\"
	eval library_names=\"$library_names_spec\"
	set dummy $library_names
	shift
	realname=$1
	shift

	if test -n "$soname_spec"; then
	 eval soname=\"$soname_spec\"
	else
	 soname=$realname
	fi
	if test -z "$dlname"; then
	 dlname=$soname
	fi

	lib=$output_objdir/$realname
	linknames=
	for link
	do
	 func_append linknames " $link"
	done

	# Use standard objects if they are pic
	test -z "$pic_flag" && libobjs=`$ECHO "$libobjs" | $SP2NL | $SED "$lo2o" | $NL2SP`
	test "X$libobjs" = "X " && libobjs=

	delfiles=
	if test -n "$export_symbols" && test -n "$include_expsyms"; then
	 $opt_dry_run || cp "$export_symbols" "$output_objdir/$libname.uexp"
	 export_symbols=$output_objdir/$libname.uexp
	 func_append delfiles " $export_symbols"
	fi

	orig_export_symbols=
	case $host_os in
	cygwin* | mingw* | cegcc*)
	 if test -n "$export_symbols" && test -z "$export_symbols_regex"; then
	 # exporting using user supplied symfile
	 func_dll_def_p "$export_symbols" || {
	 # and it's NOT already a .def file. Must figure out
	 # which of the given symbols are data symbols and tag
	 # them as such. So, trigger use of export_symbols_cmds.
	 # export_symbols gets reassigned inside the "prepare
	 # the list of exported symbols" if statement, so the
	 # include_expsyms logic still works.
	 orig_export_symbols=$export_symbols
	 export_symbols=
	 always_export_symbols=yes
	 }
	 fi
	 ;;
	esac

	# Prepare the list of exported symbols
	if test -z "$export_symbols"; then
	 if test yes = "$always_export_symbols" || test -n "$export_symbols_regex"; then
	 func_verbose "generating symbol list for '$libname.la'"
	 export_symbols=$output_objdir/$libname.exp
	 $opt_dry_run || $RM $export_symbols
	 cmds=$export_symbols_cmds
	 save_ifs=$IFS; IFS='~'
	 for cmd1 in $cmds; do
	 IFS=$save_ifs
	 # Take the normal branch if the nm_file_list_spec branch
	 # doesn't work or if tool conversion is not needed.
	 case $nm_file_list_spec~$to_tool_file_cmd in
		*~func_convert_file_noop | *~func_convert_file_msys_to_w32 | ~*)
		 try_normal_branch=yes
		 eval cmd=\"$cmd1\"
		 func_len " $cmd"
		 len=$func_len_result
		 ;;
		*)
		 try_normal_branch=no
		 ;;
	 esac
	 if test yes = "$try_normal_branch" \
		 && { test "$len" -lt "$max_cmd_len" \
		 || test "$max_cmd_len" -le -1; }
	 then
		func_show_eval "$cmd" 'exit $?'
		skipped_export=false
	 elif test -n "$nm_file_list_spec"; then
		func_basename "$output"
		output_la=$func_basename_result
		save_libobjs=$libobjs
		save_output=$output
		output=$output_objdir/$output_la.nm
		func_to_tool_file "$output"
		libobjs=$nm_file_list_spec$func_to_tool_file_result
		func_append delfiles " $output"
		func_verbose "creating $NM input file list: $output"
		for obj in $save_libobjs; do
		 func_to_tool_file "$obj"
		 $ECHO "$func_to_tool_file_result"
		done > "$output"
		eval cmd=\"$cmd1\"
		func_show_eval "$cmd" 'exit $?'
		output=$save_output
		libobjs=$save_libobjs
		skipped_export=false
	 else
		# The command line is too long to execute in one step.
		func_verbose "using reloadable object file for export list..."
		skipped_export=:
		# Break out early, otherwise skipped_export may be
		# set to false by a later but shorter cmd.
		break
	 fi
	 done
	 IFS=$save_ifs
	 if test -n "$export_symbols_regex" && test : != "$skipped_export"; then
	 func_show_eval '$EGREP -e "$export_symbols_regex" "$export_symbols" > "${export_symbols}T"'
	 func_show_eval '$MV "${export_symbols}T" "$export_symbols"'
	 fi
	 fi
	fi

	if test -n "$export_symbols" && test -n "$include_expsyms"; then
	 tmp_export_symbols=$export_symbols
	 test -n "$orig_export_symbols" && tmp_export_symbols=$orig_export_symbols
	 $opt_dry_run || eval '$ECHO "$include_expsyms" | $SP2NL >> "$tmp_export_symbols"'
	fi

	if test : != "$skipped_export" && test -n "$orig_export_symbols"; then
	 # The given exports_symbols file has to be filtered, so filter it.
	 func_verbose "filter symbol list for '$libname.la' to tag DATA exports"
	 # FIXME: $output_objdir/$libname.filter potentially contains lots of
	 # 's' commands, which not all seds can handle. GNU sed should be fine
	 # though. Also, the filter scales superlinearly with the number of
	 # global variables. join(1) would be nice here, but unfortunately
	 # isn't a blessed tool.
	 $opt_dry_run || $SED -e '/[,]DATA/!d;s,\(.*\)\([\,].*\),s|^\1$|\1\2|,' < $export_symbols > $output_objdir/$libname.filter
	 func_append delfiles " $export_symbols $output_objdir/$libname.filter"
	 export_symbols=$output_objdir/$libname.def
	 $opt_dry_run || $SED -f $output_objdir/$libname.filter < $orig_export_symbols > $export_symbols
	fi

	tmp_deplibs=
	for test_deplib in $deplibs; do
	 case " $convenience " in
	 " $test_deplib ") ;;
	 *)
	 func_append tmp_deplibs " $test_deplib"
	 ;;
	 esac
	done
	deplibs=$tmp_deplibs

	if test -n "$convenience"; then
	 if test -n "$whole_archive_flag_spec" &&
	 test yes = "$compiler_needs_object" &&
	 test -z "$libobjs"; then
	 # extract the archives, so we have objects to list.
	 # TODO: could optimize this to just extract one archive.
	 whole_archive_flag_spec=
	 fi
	 if test -n "$whole_archive_flag_spec"; then
	 save_libobjs=$libobjs
	 eval libobjs=\"\$libobjs $whole_archive_flag_spec\"
	 test "X$libobjs" = "X " && libobjs=
	 else
	 gentop=$output_objdir/${outputname}x
	 func_append generated " $gentop"

	 func_extract_archives $gentop $convenience
	 func_append libobjs " $func_extract_archives_result"
	 test "X$libobjs" = "X " && libobjs=
	 fi
	fi

	if test yes = "$thread_safe" && test -n "$thread_safe_flag_spec"; then
	 eval flag=\"$thread_safe_flag_spec\"
	 func_append linker_flags " $flag"
	fi

	# Make a backup of the uninstalled library when relinking
	if test relink = "$opt_mode"; then
	 $opt_dry_run || eval '(cd $output_objdir && $RM ${realname}U && $MV $realname ${realname}U)' || exit $?
	fi

	# Do each of the archive commands.
	if test yes = "$module" && test -n "$module_cmds"; then
	 if test -n "$export_symbols" && test -n "$module_expsym_cmds"; then
	 eval test_cmds=\"$module_expsym_cmds\"
	 cmds=$module_expsym_cmds
	 else
	 eval test_cmds=\"$module_cmds\"
	 cmds=$module_cmds
	 fi
	else
	 if test -n "$export_symbols" && test -n "$archive_expsym_cmds"; then
	 eval test_cmds=\"$archive_expsym_cmds\"
	 cmds=$archive_expsym_cmds
	 else
	 eval test_cmds=\"$archive_cmds\"
	 cmds=$archive_cmds
	 fi
	fi

	if test : != "$skipped_export" &&
	 func_len " $test_cmds" &&
	 len=$func_len_result &&
	 test "$len" -lt "$max_cmd_len" || test "$max_cmd_len" -le -1; then
	 :
	else
	 # The command line is too long to link in one step, link piecewise
	 # or, if using GNU ld and skipped_export is not :, use a linker
	 # script.

	 # Save the value of $output and $libobjs because we want to
	 # use them later. If we have whole_archive_flag_spec, we
	 # want to use save_libobjs as it was before
	 # whole_archive_flag_spec was expanded, because we can't
	 # assume the linker understands whole_archive_flag_spec.
	 # This may have to be revisited, in case too many
	 # convenience libraries get linked in and end up exceeding
	 # the spec.
	 if test -z "$convenience" || test -z "$whole_archive_flag_spec"; then
	 save_libobjs=$libobjs
	 fi
	 save_output=$output
	 func_basename "$output"
	 output_la=$func_basename_result

	 # Clear the reloadable object creation command queue and
	 # initialize k to one.
	 test_cmds=
	 concat_cmds=
	 objlist=
	 last_robj=
	 k=1

	 if test -n "$save_libobjs" && test : != "$skipped_export" && test yes = "$with_gnu_ld"; then
	 output=$output_objdir/$output_la.lnkscript
	 func_verbose "creating GNU ld script: $output"
	 echo 'INPUT (' > $output
	 for obj in $save_libobjs
	 do
	 func_to_tool_file "$obj"
	 $ECHO "$func_to_tool_file_result" >> $output
	 done
	 echo ')' >> $output
	 func_append delfiles " $output"
	 func_to_tool_file "$output"
	 output=$func_to_tool_file_result
	 elif test -n "$save_libobjs" && test : != "$skipped_export" && test -n "$file_list_spec"; then
	 output=$output_objdir/$output_la.lnk
	 func_verbose "creating linker input file list: $output"
	 : > $output
	 set x $save_libobjs
	 shift
	 firstobj=
	 if test yes = "$compiler_needs_object"; then
	 firstobj="$1 "
	 shift
	 fi
	 for obj
	 do
	 func_to_tool_file "$obj"
	 $ECHO "$func_to_tool_file_result" >> $output
	 done
	 func_append delfiles " $output"
	 func_to_tool_file "$output"
	 output=$firstobj\"$file_list_spec$func_to_tool_file_result\"
	 else
	 if test -n "$save_libobjs"; then
	 func_verbose "creating reloadable object files..."
	 output=$output_objdir/$output_la-$k.$objext
	 eval test_cmds=\"$reload_cmds\"
	 func_len " $test_cmds"
	 len0=$func_len_result
	 len=$len0

	 # Loop over the list of objects to be linked.
	 for obj in $save_libobjs
	 do
		func_len " $obj"
		func_arith $len + $func_len_result
		len=$func_arith_result
		if test -z "$objlist" ||
		 test "$len" -lt "$max_cmd_len"; then
		 func_append objlist " $obj"
		else
		 # The command $test_cmds is almost too long, add a
		 # command to the queue.
		 if test 1 -eq "$k"; then
		 # The first file doesn't have a previous command to add.
		 reload_objs=$objlist
		 eval concat_cmds=\"$reload_cmds\"
		 else
		 # All subsequent reloadable object files will link in
		 # the last one created.
		 reload_objs="$objlist $last_robj"
		 eval concat_cmds=\"\$concat_cmds~$reload_cmds~\$RM $last_robj\"
		 fi
		 last_robj=$output_objdir/$output_la-$k.$objext
		 func_arith $k + 1
		 k=$func_arith_result
		 output=$output_objdir/$output_la-$k.$objext
		 objlist=" $obj"
		 func_len " $last_robj"
		 func_arith $len0 + $func_len_result
		 len=$func_arith_result
		fi
	 done
	 # Handle the remaining objects by creating one last
	 # reloadable object file. All subsequent reloadable object
	 # files will link in the last one created.
	 test -z "$concat_cmds" || concat_cmds=$concat_cmds~
	 reload_objs="$objlist $last_robj"
	 eval concat_cmds=\"\$concat_cmds$reload_cmds\"
	 if test -n "$last_robj"; then
	 eval concat_cmds=\"\$concat_cmds~\$RM $last_robj\"
	 fi
	 func_append delfiles " $output"

	 else
	 output=
	 fi

	 ${skipped_export-false} && {
	 func_verbose "generating symbol list for '$libname.la'"
	 export_symbols=$output_objdir/$libname.exp
	 $opt_dry_run || $RM $export_symbols
	 libobjs=$output
	 # Append the command to create the export file.
	 test -z "$concat_cmds" || concat_cmds=$concat_cmds~
	 eval concat_cmds=\"\$concat_cmds$export_symbols_cmds\"
	 if test -n "$last_robj"; then
		eval concat_cmds=\"\$concat_cmds~\$RM $last_robj\"
	 fi
	 }

	 test -n "$save_libobjs" &&
	 func_verbose "creating a temporary reloadable object file: $output"

	 # Loop through the commands generated above and execute them.
	 save_ifs=$IFS; IFS='~'
	 for cmd in $concat_cmds; do
	 IFS=$save_ifs
	 $opt_quiet || {
		 func_quote_for_expand "$cmd"
		 eval "func_echo $func_quote_for_expand_result"
	 }
	 $opt_dry_run || eval "$cmd" || {
		lt_exit=$?

		# Restore the uninstalled library and exit
		if test relink = "$opt_mode"; then
		 (cd "$output_objdir" && \
		 $RM "${realname}T" && \
		 $MV "${realname}U" "$realname")
		fi

		exit $lt_exit
	 }
	 done
	 IFS=$save_ifs

	 if test -n "$export_symbols_regex" && ${skipped_export-false}; then
	 func_show_eval '$EGREP -e "$export_symbols_regex" "$export_symbols" > "${export_symbols}T"'
	 func_show_eval '$MV "${export_symbols}T" "$export_symbols"'
	 fi
	 fi

 ${skipped_export-false} && {
	 if test -n "$export_symbols" && test -n "$include_expsyms"; then
	 tmp_export_symbols=$export_symbols
	 test -n "$orig_export_symbols" && tmp_export_symbols=$orig_export_symbols
	 $opt_dry_run || eval '$ECHO "$include_expsyms" | $SP2NL >> "$tmp_export_symbols"'
	 fi

	 if test -n "$orig_export_symbols"; then
	 # The given exports_symbols file has to be filtered, so filter it.
	 func_verbose "filter symbol list for '$libname.la' to tag DATA exports"
	 # FIXME: $output_objdir/$libname.filter potentially contains lots of
	 # 's' commands, which not all seds can handle. GNU sed should be fine
	 # though. Also, the filter scales superlinearly with the number of
	 # global variables. join(1) would be nice here, but unfortunately
	 # isn't a blessed tool.
	 $opt_dry_run || $SED -e '/[,]DATA/!d;s,\(.*\)\([\,].*\),s|^\1$|\1\2|,' < $export_symbols > $output_objdir/$libname.filter
	 func_append delfiles " $export_symbols $output_objdir/$libname.filter"
	 export_symbols=$output_objdir/$libname.def
	 $opt_dry_run || $SED -f $output_objdir/$libname.filter < $orig_export_symbols > $export_symbols
	 fi
	 }

	 libobjs=$output
	 # Restore the value of output.
	 output=$save_output

	 if test -n "$convenience" && test -n "$whole_archive_flag_spec"; then
	 eval libobjs=\"\$libobjs $whole_archive_flag_spec\"
	 test "X$libobjs" = "X " && libobjs=
	 fi
	 # Expand the library linking commands again to reset the
	 # value of $libobjs for piecewise linking.

	 # Do each of the archive commands.
	 if test yes = "$module" && test -n "$module_cmds"; then
	 if test -n "$export_symbols" && test -n "$module_expsym_cmds"; then
	 cmds=$module_expsym_cmds
	 else
	 cmds=$module_cmds
	 fi
	 else
	 if test -n "$export_symbols" && test -n "$archive_expsym_cmds"; then
	 cmds=$archive_expsym_cmds
	 else
	 cmds=$archive_cmds
	 fi
	 fi
	fi

	if test -n "$delfiles"; then
	 # Append the command to remove temporary files to $cmds.
	 eval cmds=\"\$cmds~\$RM $delfiles\"
	fi

	# Add any objects from preloaded convenience libraries
	if test -n "$dlprefiles"; then
	 gentop=$output_objdir/${outputname}x
	 func_append generated " $gentop"

	 func_extract_archives $gentop $dlprefiles
	 func_append libobjs " $func_extract_archives_result"
	 test "X$libobjs" = "X " && libobjs=
	fi

	save_ifs=$IFS; IFS='~'
	for cmd in $cmds; do
	 IFS=spnl
	 eval cmd=\"$cmd\"
	 IFS=$save_ifs
	 $opt_quiet || {
	 func_quote_for_expand "$cmd"
	 eval "func_echo $func_quote_for_expand_result"
	 }
	 $opt_dry_run || eval "$cmd" || {
	 lt_exit=$?

	 # Restore the uninstalled library and exit
	 if test relink = "$opt_mode"; then
	 (cd "$output_objdir" && \
	 $RM "${realname}T" && \
		$MV "${realname}U" "$realname")
	 fi

	 exit $lt_exit
	 }
	done
	IFS=$save_ifs

	# Restore the uninstalled library and exit
	if test relink = "$opt_mode"; then
	 $opt_dry_run || eval '(cd $output_objdir && $RM ${realname}T && $MV $realname ${realname}T && $MV ${realname}U $realname)' || exit $?

	 if test -n "$convenience"; then
	 if test -z "$whole_archive_flag_spec"; then
	 func_show_eval '${RM}r "$gentop"'
	 fi
	 fi

	 exit $EXIT_SUCCESS
	fi

	# Create links to the real library.
	for linkname in $linknames; do
	 if test "$realname" != "$linkname"; then
	 func_show_eval '(cd "$output_objdir" && $RM "$linkname" && $LN_S "$realname" "$linkname")' 'exit $?'
	 fi
	done

	# If -module or -export-dynamic was specified, set the dlname.
	if test yes = "$module" || test yes = "$export_dynamic"; then
	 # On all known operating systems, these are identical.
	 dlname=$soname
	fi
 fi
 ;;

 obj)
 if test -n "$dlfiles$dlprefiles" || test no != "$dlself"; then
	func_warning "'-dlopen' is ignored for objects"
 fi

 case " $deplibs" in
 \ -l | *\ -L*)
	func_warning "'-l' and '-L' are ignored for objects" ;;
 esac

 test -n "$rpath" && \
	func_warning "'-rpath' is ignored for objects"

 test -n "$xrpath" && \
	func_warning "'-R' is ignored for objects"

 test -n "$vinfo" && \
	func_warning "'-version-info' is ignored for objects"

 test -n "$release" && \
	func_warning "'-release' is ignored for objects"

 case $output in
 *.lo)
	test -n "$objs$old_deplibs" && \
	 func_fatal_error "cannot build library object '$output' from non-libtool objects"

	libobj=$output
	func_lo2o "$libobj"
	obj=$func_lo2o_result
	;;
 *)
	libobj=
	obj=$output
	;;
 esac

 # Delete the old objects.
 $opt_dry_run || $RM $obj $libobj

 # Objects from convenience libraries. This assumes
 # single-version convenience libraries. Whenever we create
 # different ones for PIC/non-PIC, this we'll have to duplicate
 # the extraction.
 reload_conv_objs=
 gentop=
 # if reload_cmds runs $LD directly, get rid of -Wl from
 # whole_archive_flag_spec and hope we can get by with turning comma
 # into space.
 case $reload_cmds in
 \$LD[\ \$]) wl= ;;
 esac
 if test -n "$convenience"; then
	if test -n "$whole_archive_flag_spec"; then
	 eval tmp_whole_archive_flags=\"$whole_archive_flag_spec\"
	 test -n "$wl" || tmp_whole_archive_flags=`$ECHO "$tmp_whole_archive_flags" | $SED 's|,| |g'`
	 reload_conv_objs=$reload_objs\ $tmp_whole_archive_flags
	else
	 gentop=$output_objdir/${obj}x
	 func_append generated " $gentop"

	 func_extract_archives $gentop $convenience
	 reload_conv_objs="$reload_objs $func_extract_archives_result"
	fi
 fi

 # If we're not building shared, we need to use non_pic_objs
 test yes = "$build_libtool_libs" || libobjs=$non_pic_objects

 # Create the old-style object.
 reload_objs=$objs$old_deplibs' '`$ECHO "$libobjs" | $SP2NL | $SED "/\.$libext$/d; /\.lib$/d; $lo2o" | $NL2SP`' '$reload_conv_objs

 output=$obj
 func_execute_cmds "$reload_cmds" 'exit $?'

 # Exit if we aren't doing a library object file.
 if test -z "$libobj"; then
	if test -n "$gentop"; then
	 func_show_eval '${RM}r "$gentop"'
	fi

	exit $EXIT_SUCCESS
 fi

 test yes = "$build_libtool_libs" || {
	if test -n "$gentop"; then
	 func_show_eval '${RM}r "$gentop"'
	fi

	# Create an invalid libtool object if no PIC, so that we don't
	# accidentally link it into a program.
	# $show "echo timestamp > $libobj"
	# $opt_dry_run || eval "echo timestamp > $libobj" || exit $?
	exit $EXIT_SUCCESS
 }

 if test -n "$pic_flag" || test default != "$pic_mode"; then
	# Only do commands if we really have different PIC objects.
	reload_objs="$libobjs $reload_conv_objs"
	output=$libobj
	func_execute_cmds "$reload_cmds" 'exit $?'
 fi

 if test -n "$gentop"; then
	func_show_eval '${RM}r "$gentop"'
 fi

 exit $EXIT_SUCCESS
 ;;

 prog)
 case $host in
	cygwin) func_stripname '' '.exe' "$output"
	 output=$func_stripname_result.exe;;
 esac
 test -n "$vinfo" && \
	func_warning "'-version-info' is ignored for programs"

 test -n "$release" && \
	func_warning "'-release' is ignored for programs"

 $preload \
	&& test unknown,unknown,unknown = "$dlopen_support,$dlopen_self,$dlopen_self_static" \
	&& func_warning "'LT_INIT([dlopen])' not used. Assuming no dlopen support."

 case $host in
 --rhapsody* | *-*-darwin1.[012])
	# On Rhapsody replace the C library is the System framework
	compile_deplibs=`$ECHO " $compile_deplibs" | $SED 's/ -lc / System.ltframework /'`
	finalize_deplibs=`$ECHO " $finalize_deplibs" | $SED 's/ -lc / System.ltframework /'`
	;;
 esac

 case $host in
 --darwin*)
	# Don't allow lazy linking, it breaks C++ global constructors
	# But is supposedly fixed on 10.4 or later (yay!).
	if test CXX = "$tagname"; then
	 case ${MACOSX_DEPLOYMENT_TARGET-10.0} in
	 10.[0123])
	 func_append compile_command " $wl-bind_at_load"
	 func_append finalize_command " $wl-bind_at_load"
	 ;;
	 esac
	fi
	# Time to change all our "foo.ltframework" stuff back to "-framework foo"
	compile_deplibs=`$ECHO " $compile_deplibs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'`
	finalize_deplibs=`$ECHO " $finalize_deplibs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'`
	;;
 esac

 # move library search paths that coincide with paths to not yet
 # installed libraries to the beginning of the library search list
 new_libs=
 for path in $notinst_path; do
	case " $new_libs " in
	" -L$path/$objdir ") ;;
	*)
	 case " $compile_deplibs " in
	 " -L$path/$objdir ")
	 func_append new_libs " -L$path/$objdir" ;;
	 esac
	 ;;
	esac
 done
 for deplib in $compile_deplibs; do
	case $deplib in
	-L*)
	 case " $new_libs " in
	 " $deplib ") ;;
	 *) func_append new_libs " $deplib" ;;
	 esac
	 ;;
	*) func_append new_libs " $deplib" ;;
	esac
 done
 compile_deplibs=$new_libs

 func_append compile_command " $compile_deplibs"
 func_append finalize_command " $finalize_deplibs"

 if test -n "$rpath$xrpath"; then
	# If the user specified any rpath flags, then add them.
	for libdir in $rpath $xrpath; do
	 # This is the magic to use -rpath.
	 case "$finalize_rpath " in
	 " $libdir ") ;;
	 *) func_append finalize_rpath " $libdir" ;;
	 esac
	done
 fi

 # Now hardcode the library paths
 rpath=
 hardcode_libdirs=
 for libdir in $compile_rpath $finalize_rpath; do
	if test -n "$hardcode_libdir_flag_spec"; then
	 if test -n "$hardcode_libdir_separator"; then
	 if test -z "$hardcode_libdirs"; then
	 hardcode_libdirs=$libdir
	 else
	 # Just accumulate the unique libdirs.
	 case $hardcode_libdir_separator$hardcode_libdirs$hardcode_libdir_separator in
	 "$hardcode_libdir_separator$libdir$hardcode_libdir_separator")
		;;
	 *)
		func_append hardcode_libdirs "$hardcode_libdir_separator$libdir"
		;;
	 esac
	 fi
	 else
	 eval flag=\"$hardcode_libdir_flag_spec\"
	 func_append rpath " $flag"
	 fi
	elif test -n "$runpath_var"; then
	 case "$perm_rpath " in
	 " $libdir ") ;;
	 *) func_append perm_rpath " $libdir" ;;
	 esac
	fi
	case $host in
	--cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-cegcc*)
	 testbindir=`$ECHO "$libdir" | $SED -e 's*/lib$*/bin*'`
	 case :$dllsearchpath: in
	 ":$libdir:") ;;
	 ::) dllsearchpath=$libdir;;
	 *) func_append dllsearchpath ":$libdir";;
	 esac
	 case :$dllsearchpath: in
	 ":$testbindir:") ;;
	 ::) dllsearchpath=$testbindir;;
	 *) func_append dllsearchpath ":$testbindir";;
	 esac
	 ;;
	esac
 done
 # Substitute the hardcoded libdirs into the rpath.
 if test -n "$hardcode_libdir_separator" &&
	 test -n "$hardcode_libdirs"; then
	libdir=$hardcode_libdirs
	eval rpath=\" $hardcode_libdir_flag_spec\"
 fi
 compile_rpath=$rpath

 rpath=
 hardcode_libdirs=
 for libdir in $finalize_rpath; do
	if test -n "$hardcode_libdir_flag_spec"; then
	 if test -n "$hardcode_libdir_separator"; then
	 if test -z "$hardcode_libdirs"; then
	 hardcode_libdirs=$libdir
	 else
	 # Just accumulate the unique libdirs.
	 case $hardcode_libdir_separator$hardcode_libdirs$hardcode_libdir_separator in
	 "$hardcode_libdir_separator$libdir$hardcode_libdir_separator")
		;;
	 *)
		func_append hardcode_libdirs "$hardcode_libdir_separator$libdir"
		;;
	 esac
	 fi
	 else
	 eval flag=\"$hardcode_libdir_flag_spec\"
	 func_append rpath " $flag"
	 fi
	elif test -n "$runpath_var"; then
	 case "$finalize_perm_rpath " in
	 " $libdir ") ;;
	 *) func_append finalize_perm_rpath " $libdir" ;;
	 esac
	fi
 done
 # Substitute the hardcoded libdirs into the rpath.
 if test -n "$hardcode_libdir_separator" &&
	 test -n "$hardcode_libdirs"; then
	libdir=$hardcode_libdirs
	eval rpath=\" $hardcode_libdir_flag_spec\"
 fi
 finalize_rpath=$rpath

 if test -n "$libobjs" && test yes = "$build_old_libs"; then
	# Transform all the library objects into standard objects.
	compile_command=`$ECHO "$compile_command" | $SP2NL | $SED "$lo2o" | $NL2SP`
	finalize_command=`$ECHO "$finalize_command" | $SP2NL | $SED "$lo2o" | $NL2SP`
 fi

 func_generate_dlsyms "$outputname" "@PROGRAM@" false

 # template prelinking step
 if test -n "$prelink_cmds"; then
	func_execute_cmds "$prelink_cmds" 'exit $?'
 fi

 wrappers_required=:
 case $host in
 cegcc | *mingw32ce*)
 # Disable wrappers for cegcc and mingw32ce hosts, we are cross compiling anyway.
 wrappers_required=false
 ;;
 cygwin | *mingw*)
 test yes = "$build_libtool_libs" || wrappers_required=false
 ;;
 *)
 if test no = "$need_relink" || test yes != "$build_libtool_libs"; then
 wrappers_required=false
 fi
 ;;
 esac
 $wrappers_required || {
	# Replace the output file specification.
	compile_command=`$ECHO "$compile_command" | $SED 's%@OUTPUT@%'"$output"'%g'`
	link_command=$compile_command$compile_rpath

	# We have no uninstalled library dependencies, so finalize right now.
	exit_status=0
	func_show_eval "$link_command" 'exit_status=$?'

	if test -n "$postlink_cmds"; then
	 func_to_tool_file "$output"
	 postlink_cmds=`func_echo_all "$postlink_cmds" | $SED -e 's%@OUTPUT@%'"$output"'%g' -e 's%@TOOL_OUTPUT@%'"$func_to_tool_file_result"'%g'`
	 func_execute_cmds "$postlink_cmds" 'exit $?'
	fi

	# Delete the generated files.
	if test -f "$output_objdir/${outputname}S.$objext"; then
	 func_show_eval '$RM "$output_objdir/${outputname}S.$objext"'
	fi

	exit $exit_status
 }

 if test -n "$compile_shlibpath$finalize_shlibpath"; then
	compile_command="$shlibpath_var=\"$compile_shlibpath$finalize_shlibpath\$$shlibpath_var\" $compile_command"
 fi
 if test -n "$finalize_shlibpath"; then
	finalize_command="$shlibpath_var=\"$finalize_shlibpath\$$shlibpath_var\" $finalize_command"
 fi

 compile_var=
 finalize_var=
 if test -n "$runpath_var"; then
	if test -n "$perm_rpath"; then
	 # We should set the runpath_var.
	 rpath=
	 for dir in $perm_rpath; do
	 func_append rpath "$dir:"
	 done
	 compile_var="$runpath_var=\"$rpath\$$runpath_var\" "
	fi
	if test -n "$finalize_perm_rpath"; then
	 # We should set the runpath_var.
	 rpath=
	 for dir in $finalize_perm_rpath; do
	 func_append rpath "$dir:"
	 done
	 finalize_var="$runpath_var=\"$rpath\$$runpath_var\" "
	fi
 fi

 if test yes = "$no_install"; then
	# We don't need to create a wrapper script.
	link_command=$compile_var$compile_command$compile_rpath
	# Replace the output file specification.
	link_command=`$ECHO "$link_command" | $SED 's%@OUTPUT@%'"$output"'%g'`
	# Delete the old output file.
	$opt_dry_run || $RM $output
	# Link the executable and exit
	func_show_eval "$link_command" 'exit $?'

	if test -n "$postlink_cmds"; then
	 func_to_tool_file "$output"
	 postlink_cmds=`func_echo_all "$postlink_cmds" | $SED -e 's%@OUTPUT@%'"$output"'%g' -e 's%@TOOL_OUTPUT@%'"$func_to_tool_file_result"'%g'`
	 func_execute_cmds "$postlink_cmds" 'exit $?'
	fi

	exit $EXIT_SUCCESS
 fi

 case $hardcode_action,$fast_install in
 relink,*)
	 # Fast installation is not supported
	 link_command=$compile_var$compile_command$compile_rpath
	 relink_command=$finalize_var$finalize_command$finalize_rpath

	 func_warning "this platform does not like uninstalled shared libraries"
	 func_warning "'$output' will be relinked during installation"
	 ;;
 *,yes)
	 link_command=$finalize_var$compile_command$finalize_rpath
	 relink_command=`$ECHO "$compile_var$compile_command$compile_rpath" | $SED 's%@OUTPUT@%\$progdir/\$file%g'`
 ;;
	*,no)
	 link_command=$compile_var$compile_command$compile_rpath
	 relink_command=$finalize_var$finalize_command$finalize_rpath
 ;;
	*,needless)
	 link_command=$finalize_var$compile_command$finalize_rpath
	 relink_command=
 ;;
 esac

 # Replace the output file specification.
 link_command=`$ECHO "$link_command" | $SED 's%@OUTPUT@%'"$output_objdir/$outputname"'%g'`

 # Delete the old output files.
 $opt_dry_run || $RM $output $output_objdir/$outputname $output_objdir/lt-$outputname

 func_show_eval "$link_command" 'exit $?'

 if test -n "$postlink_cmds"; then
	func_to_tool_file "$output_objdir/$outputname"
	postlink_cmds=`func_echo_all "$postlink_cmds" | $SED -e 's%@OUTPUT@%'"$output_objdir/$outputname"'%g' -e 's%@TOOL_OUTPUT@%'"$func_to_tool_file_result"'%g'`
	func_execute_cmds "$postlink_cmds" 'exit $?'
 fi

 # Now create the wrapper script.
 func_verbose "creating $output"

 # Quote the relink command for shipping.
 if test -n "$relink_command"; then
	# Preserve any variables that may affect compiler behavior
	for var in $variables_saved_for_relink; do
	 if eval test -z \"\${$var+set}\"; then
	 relink_command="{ test -z \"\${$var+set}\" || $lt_unset $var || { $var=; export $var; }; }; $relink_command"
	 elif eval var_value=\$$var; test -z "$var_value"; then
	 relink_command="$var=; export $var; $relink_command"
	 else
	 func_quote_for_eval "$var_value"
	 relink_command="$var=$func_quote_for_eval_result; export $var; $relink_command"
	 fi
	done
	relink_command="(cd `pwd`; $relink_command)"
	relink_command=`$ECHO "$relink_command" | $SED "$sed_quote_subst"`
 fi

 # Only actually do things if not in dry run mode.
 $opt_dry_run || {
	# win32 will think the script is a binary if it has
	# a .exe suffix, so we strip it off here.
	case $output in
	 *.exe) func_stripname '' '.exe' "$output"
	 output=$func_stripname_result ;;
	esac
	# test for cygwin because mv fails w/o .exe extensions
	case $host in
	 cygwin)
	 exeext=.exe
	 func_stripname '' '.exe' "$outputname"
	 outputname=$func_stripname_result ;;
	 *) exeext= ;;
	esac
	case $host in
	 cygwin | *mingw*)
	 func_dirname_and_basename "$output" "" "."
	 output_name=$func_basename_result
	 output_path=$func_dirname_result
	 cwrappersource=$output_path/$objdir/lt-$output_name.c
	 cwrapper=$output_path/$output_name.exe
	 $RM $cwrappersource $cwrapper
	 trap "$RM $cwrappersource $cwrapper; exit $EXIT_FAILURE" 1 2 15

	 func_emit_cwrapperexe_src > $cwrappersource

	 # The wrapper executable is built using the $host compiler,
	 # because it contains $host paths and files. If cross-
	 # compiling, it, like the target executable, must be
	 # executed on the $host or under an emulation environment.
	 $opt_dry_run || {
	 $LTCC $LTCFLAGS -o $cwrapper $cwrappersource
	 $STRIP $cwrapper
	 }

	 # Now, create the wrapper script for func_source use:
	 func_ltwrapper_scriptname $cwrapper
	 $RM $func_ltwrapper_scriptname_result
	 trap "$RM $func_ltwrapper_scriptname_result; exit $EXIT_FAILURE" 1 2 15
	 $opt_dry_run || {
	 # note: this script will not be executed, so do not chmod.
	 if test "x$build" = "x$host"; then
		$cwrapper --lt-dump-script > $func_ltwrapper_scriptname_result
	 else
		func_emit_wrapper no > $func_ltwrapper_scriptname_result
	 fi
	 }
	 ;;
	 *)
	 $RM $output
	 trap "$RM $output; exit $EXIT_FAILURE" 1 2 15

	 func_emit_wrapper no > $output
	 chmod +x $output
	 ;;
	esac
 }
 exit $EXIT_SUCCESS
 ;;
 esac

 # See if we need to build an old-fashioned archive.
 for oldlib in $oldlibs; do

 case $build_libtool_libs in
 convenience)
	 oldobjs="$libobjs_save $symfileobj"
	 addlibs=$convenience
	 build_libtool_libs=no
	 ;;
	module)
	 oldobjs=$libobjs_save
	 addlibs=$old_convenience
	 build_libtool_libs=no
 ;;
	*)
	 oldobjs="$old_deplibs $non_pic_objects"
	 $preload && test -f "$symfileobj" \
	 && func_append oldobjs " $symfileobj"
	 addlibs=$old_convenience
	 ;;
 esac

 if test -n "$addlibs"; then
	gentop=$output_objdir/${outputname}x
	func_append generated " $gentop"

	func_extract_archives $gentop $addlibs
	func_append oldobjs " $func_extract_archives_result"
 fi

 # Do each command in the archive commands.
 if test -n "$old_archive_from_new_cmds" && test yes = "$build_libtool_libs"; then
	cmds=$old_archive_from_new_cmds
 else

	# Add any objects from preloaded convenience libraries
	if test -n "$dlprefiles"; then
	 gentop=$output_objdir/${outputname}x
	 func_append generated " $gentop"

	 func_extract_archives $gentop $dlprefiles
	 func_append oldobjs " $func_extract_archives_result"
	fi

	# POSIX demands no paths to be encoded in archives. We have
	# to avoid creating archives with duplicate basenames if we
	# might have to extract them afterwards, e.g., when creating a
	# static archive out of a convenience library, or when linking
	# the entirety of a libtool archive into another (currently
	# not supported by libtool).
	if (for obj in $oldobjs
	 do
	 func_basename "$obj"
	 $ECHO "$func_basename_result"
	 done | sort | sort -uc >/dev/null 2>&1); then
	 :
	else
	 echo "copying selected object files to avoid basename conflicts..."
	 gentop=$output_objdir/${outputname}x
	 func_append generated " $gentop"
	 func_mkdir_p "$gentop"
	 save_oldobjs=$oldobjs
	 oldobjs=
	 counter=1
	 for obj in $save_oldobjs
	 do
	 func_basename "$obj"
	 objbase=$func_basename_result
	 case " $oldobjs " in
	 " ") oldobjs=$obj ;;
	 [\ /]"$objbase ")
	 while :; do
		# Make sure we don't pick an alternate name that also
		# overlaps.
		newobj=lt$counter-$objbase
		func_arith $counter + 1
		counter=$func_arith_result
		case " $oldobjs " in
		[\ /]"$newobj ") ;;
		*) if test ! -f "$gentop/$newobj"; then break; fi ;;
		esac
	 done
	 func_show_eval "ln $obj $gentop/$newobj || cp $obj $gentop/$newobj"
	 func_append oldobjs " $gentop/$newobj"
	 ;;
	 *) func_append oldobjs " $obj" ;;
	 esac
	 done
	fi
	func_to_tool_file "$oldlib" func_convert_file_msys_to_w32
	tool_oldlib=$func_to_tool_file_result
	eval cmds=\"$old_archive_cmds\"

	func_len " $cmds"
	len=$func_len_result
	if test "$len" -lt "$max_cmd_len" || test "$max_cmd_len" -le -1; then
	 cmds=$old_archive_cmds
	elif test -n "$archiver_list_spec"; then
	 func_verbose "using command file archive linking..."
	 for obj in $oldobjs
	 do
	 func_to_tool_file "$obj"
	 $ECHO "$func_to_tool_file_result"
	 done > $output_objdir/$libname.libcmd
	 func_to_tool_file "$output_objdir/$libname.libcmd"
	 oldobjs=" $archiver_list_spec$func_to_tool_file_result"
	 cmds=$old_archive_cmds
	else
	 # the command line is too long to link in one step, link in parts
	 func_verbose "using piecewise archive linking..."
	 save_RANLIB=$RANLIB
	 RANLIB=:
	 objlist=
	 concat_cmds=
	 save_oldobjs=$oldobjs
	 oldobjs=
	 # Is there a better way of finding the last object in the list?
	 for obj in $save_oldobjs
	 do
	 last_oldobj=$obj
	 done
	 eval test_cmds=\"$old_archive_cmds\"
	 func_len " $test_cmds"
	 len0=$func_len_result
	 len=$len0
	 for obj in $save_oldobjs
	 do
	 func_len " $obj"
	 func_arith $len + $func_len_result
	 len=$func_arith_result
	 func_append objlist " $obj"
	 if test "$len" -lt "$max_cmd_len"; then
	 :
	 else
	 # the above command should be used before it gets too long
	 oldobjs=$objlist
	 if test "$obj" = "$last_oldobj"; then
		RANLIB=$save_RANLIB
	 fi
	 test -z "$concat_cmds" || concat_cmds=$concat_cmds~
	 eval concat_cmds=\"\$concat_cmds$old_archive_cmds\"
	 objlist=
	 len=$len0
	 fi
	 done
	 RANLIB=$save_RANLIB
	 oldobjs=$objlist
	 if test -z "$oldobjs"; then
	 eval cmds=\"\$concat_cmds\"
	 else
	 eval cmds=\"\$concat_cmds~\$old_archive_cmds\"
	 fi
	fi
 fi
 func_execute_cmds "$cmds" 'exit $?'
 done

 test -n "$generated" && \
 func_show_eval "${RM}r$generated"

 # Now create the libtool archive.
 case $output in
 *.la)
 old_library=
 test yes = "$build_old_libs" && old_library=$libname.$libext
 func_verbose "creating $output"

 # Preserve any variables that may affect compiler behavior
 for var in $variables_saved_for_relink; do
	if eval test -z \"\${$var+set}\"; then
	 relink_command="{ test -z \"\${$var+set}\" || $lt_unset $var || { $var=; export $var; }; }; $relink_command"
	elif eval var_value=\$$var; test -z "$var_value"; then
	 relink_command="$var=; export $var; $relink_command"
	else
	 func_quote_for_eval "$var_value"
	 relink_command="$var=$func_quote_for_eval_result; export $var; $relink_command"
	fi
 done
 # Quote the link command for shipping.
 relink_command="(cd `pwd`; $SHELL \"$progpath\" $preserve_args --mode=relink $libtool_args @inst_prefix_dir@)"
 relink_command=`$ECHO "$relink_command" | $SED "$sed_quote_subst"`
 if test yes = "$hardcode_automatic"; then
	relink_command=
 fi

 # Only create the output if not a dry run.
 $opt_dry_run || {
	for installed in no yes; do
	 if test yes = "$installed"; then
	 if test -z "$install_libdir"; then
	 break
	 fi
	 output=$output_objdir/${outputname}i
	 # Replace all uninstalled libtool libraries with the installed ones
	 newdependency_libs=
	 for deplib in $dependency_libs; do
	 case $deplib in
	 *.la)
		func_basename "$deplib"
		name=$func_basename_result
		func_resolve_sysroot "$deplib"
		eval libdir=`$SED -n -e 's/^libdir=\(.*\)$/\1/p' $func_resolve_sysroot_result`
		test -z "$libdir" && \
		 func_fatal_error "'$deplib' is not a valid libtool archive"
		func_append newdependency_libs " ${lt_sysroot:+=}$libdir/$name"
		;;
	 -L*)
		func_stripname -L '' "$deplib"
		func_replace_sysroot "$func_stripname_result"
		func_append newdependency_libs " -L$func_replace_sysroot_result"
		;;
	 -R*)
		func_stripname -R '' "$deplib"
		func_replace_sysroot "$func_stripname_result"
		func_append newdependency_libs " -R$func_replace_sysroot_result"
		;;
	 *) func_append newdependency_libs " $deplib" ;;
	 esac
	 done
	 dependency_libs=$newdependency_libs
	 newdlfiles=

	 for lib in $dlfiles; do
	 case $lib in
	 *.la)
	 func_basename "$lib"
		name=$func_basename_result
		eval libdir=`$SED -n -e 's/^libdir=\(.*\)$/\1/p' $lib`
		test -z "$libdir" && \
		 func_fatal_error "'$lib' is not a valid libtool archive"
		func_append newdlfiles " ${lt_sysroot:+=}$libdir/$name"
		;;
	 *) func_append newdlfiles " $lib" ;;
	 esac
	 done
	 dlfiles=$newdlfiles
	 newdlprefiles=
	 for lib in $dlprefiles; do
	 case $lib in
	 *.la)
		# Only pass preopened files to the pseudo-archive (for
		# eventual linking with the app. that links it) if we
		# didn't already link the preopened objects directly into
		# the library:
		func_basename "$lib"
		name=$func_basename_result
		eval libdir=`$SED -n -e 's/^libdir=\(.*\)$/\1/p' $lib`
		test -z "$libdir" && \
		 func_fatal_error "'$lib' is not a valid libtool archive"
		func_append newdlprefiles " ${lt_sysroot:+=}$libdir/$name"
		;;
	 esac
	 done
	 dlprefiles=$newdlprefiles
	 else
	 newdlfiles=
	 for lib in $dlfiles; do
	 case $lib in
		[\\/]* | [A-Za-z]:[\\/]*) abs=$lib ;;
		*) abs=`pwd`"/$lib" ;;
	 esac
	 func_append newdlfiles " $abs"
	 done
	 dlfiles=$newdlfiles
	 newdlprefiles=
	 for lib in $dlprefiles; do
	 case $lib in
		[\\/]* | [A-Za-z]:[\\/]*) abs=$lib ;;
		*) abs=`pwd`"/$lib" ;;
	 esac
	 func_append newdlprefiles " $abs"
	 done
	 dlprefiles=$newdlprefiles
	 fi
	 $RM $output
	 # place dlname in correct position for cygwin
	 # In fact, it would be nice if we could use this code for all target
	 # systems that can't hard-code library paths into their executables
	 # and that have no shared library path variable independent of PATH,
	 # but it turns out we can't easily determine that from inspecting
	 # libtool variables, so we have to hard-code the OSs to which it
	 # applies here; at the moment, that means platforms that use the PE
	 # object format with DLL files. See the long comment at the top of
	 # tests/bindir.at for full details.
	 tdlname=$dlname
	 case $host,$output,$installed,$module,$dlname in
	 cygwin,*lai,yes,no,*.dll | *mingw*,*lai,yes,no,*.dll | *cegcc*,*lai,yes,no,*.dll)
	 # If a -bindir argument was supplied, place the dll there.
	 if test -n "$bindir"; then
		func_relative_path "$install_libdir" "$bindir"
		tdlname=$func_relative_path_result/$dlname
	 else
		# Otherwise fall back on heuristic.
		tdlname=../bin/$dlname
	 fi
	 ;;
	 esac
	 $ECHO > $output "\
$outputname - a libtool library file
Generated by $PROGRAM (GNU $PACKAGE) $VERSION
#
Please DO NOT delete this file!
It is necessary for linking the library.

The name that we can dlopen(3).
dlname='$tdlname'

Names of this library.
library_names='$library_names'

The name of the static archive.
old_library='$old_library'

Linker flags that cannot go in dependency_libs.
inherited_linker_flags='$new_inherited_linker_flags'

Libraries that this one depends upon.
dependency_libs='$dependency_libs'

Names of additional weak libraries provided by this library
weak_library_names='$weak_libs'

Version information for $libname.
current=$current
age=$age
revision=$revision

Is this an already installed library?
installed=$installed

Should we warn about portability when linking against -modules?
shouldnotlink=$module

Files to dlopen/dlpreopen
dlopen='$dlfiles'
dlpreopen='$dlprefiles'

Directory that this library needs to be installed in:
libdir='$install_libdir'"
	 if test no,yes = "$installed,$need_relink"; then
	 $ECHO >> $output "\
relink_command=\"$relink_command\""
	 fi
	done
 }

 # Do a symbolic link so that the libtool archive can be found in
 # LD_LIBRARY_PATH before the program is installed.
 func_show_eval '(cd "$output_objdir" && $RM "$outputname" && $LN_S "../$outputname" "$outputname")' 'exit $?'
 ;;
 esac
 exit $EXIT_SUCCESS
}

if test link = "$opt_mode" || test relink = "$opt_mode"; then
 func_mode_link ${1+"$@"}
fi

func_mode_uninstall arg...
func_mode_uninstall ()
{
 $debug_cmd

 RM=$nonopt
 files=
 rmforce=false
 exit_status=0

 # This variable tells wrapper scripts just to set variables rather
 # than running their programs.
 libtool_install_magic=$magic

 for arg
 do
 case $arg in
 -f) func_append RM " $arg"; rmforce=: ;;
 -*) func_append RM " $arg" ;;
 *) func_append files " $arg" ;;
 esac
 done

 test -z "$RM" && \
 func_fatal_help "you must specify an RM program"

 rmdirs=

 for file in $files; do
 func_dirname "$file" "" "."
 dir=$func_dirname_result
 if test . = "$dir"; then
	odir=$objdir
 else
	odir=$dir/$objdir
 fi
 func_basename "$file"
 name=$func_basename_result
 test uninstall = "$opt_mode" && odir=$dir

 # Remember odir for removal later, being careful to avoid duplicates
 if test clean = "$opt_mode"; then
	case " $rmdirs " in
	 " $odir ") ;;
	 *) func_append rmdirs " $odir" ;;
	esac
 fi

 # Don't error if the file doesn't exist and rm -f was used.
 if { test -L "$file"; } >/dev/null 2>&1 ||
	 { test -h "$file"; } >/dev/null 2>&1 ||
	 test -f "$file"; then
	:
 elif test -d "$file"; then
	exit_status=1
	continue
 elif $rmforce; then
	continue
 fi

 rmfiles=$file

 case $name in
 *.la)
	# Possibly a libtool archive, so verify it.
	if func_lalib_p "$file"; then
	 func_source $dir/$name

	 # Delete the libtool libraries and symlinks.
	 for n in $library_names; do
	 func_append rmfiles " $odir/$n"
	 done
	 test -n "$old_library" && func_append rmfiles " $odir/$old_library"

	 case $opt_mode in
	 clean)
	 case " $library_names " in
	 " $dlname ") ;;
	 *) test -n "$dlname" && func_append rmfiles " $odir/$dlname" ;;
	 esac
	 test -n "$libdir" && func_append rmfiles " $odir/$name $odir/${name}i"
	 ;;
	 uninstall)
	 if test -n "$library_names"; then
	 # Do each command in the postuninstall commands.
	 func_execute_cmds "$postuninstall_cmds" '$rmforce || exit_status=1'
	 fi

	 if test -n "$old_library"; then
	 # Do each command in the old_postuninstall commands.
	 func_execute_cmds "$old_postuninstall_cmds" '$rmforce || exit_status=1'
	 fi
	 # FIXME: should reinstall the best remaining shared library.
	 ;;
	 esac
	fi
	;;

 *.lo)
	# Possibly a libtool object, so verify it.
	if func_lalib_p "$file"; then

	 # Read the .lo file
	 func_source $dir/$name

	 # Add PIC object to the list of files to remove.
	 if test -n "$pic_object" && test none != "$pic_object"; then
	 func_append rmfiles " $dir/$pic_object"
	 fi

	 # Add non-PIC object to the list of files to remove.
	 if test -n "$non_pic_object" && test none != "$non_pic_object"; then
	 func_append rmfiles " $dir/$non_pic_object"
	 fi
	fi
	;;

 *)
	if test clean = "$opt_mode"; then
	 noexename=$name
	 case $file in
	 *.exe)
	 func_stripname '' '.exe' "$file"
	 file=$func_stripname_result
	 func_stripname '' '.exe' "$name"
	 noexename=$func_stripname_result
	 # $file with .exe has already been added to rmfiles,
	 # add $file without .exe
	 func_append rmfiles " $file"
	 ;;
	 esac
	 # Do a test to see if this is a libtool program.
	 if func_ltwrapper_p "$file"; then
	 if func_ltwrapper_executable_p "$file"; then
	 func_ltwrapper_scriptname "$file"
	 relink_command=
	 func_source $func_ltwrapper_scriptname_result
	 func_append rmfiles " $func_ltwrapper_scriptname_result"
	 else
	 relink_command=
	 func_source $dir/$noexename
	 fi

	 # note $name still contains .exe if it was in $file originally
	 # as does the version of $file that was added into $rmfiles
	 func_append rmfiles " $odir/$name $odir/${name}S.$objext"
	 if test yes = "$fast_install" && test -n "$relink_command"; then
	 func_append rmfiles " $odir/lt-$name"
	 fi
	 if test "X$noexename" != "X$name"; then
	 func_append rmfiles " $odir/lt-$noexename.c"
	 fi
	 fi
	fi
	;;
 esac
 func_show_eval "$RM $rmfiles" 'exit_status=1'
 done

 # Try to remove the $objdir's in the directories where we deleted files
 for dir in $rmdirs; do
 if test -d "$dir"; then
	func_show_eval "rmdir $dir >/dev/null 2>&1"
 fi
 done

 exit $exit_status
}

if test uninstall = "$opt_mode" || test clean = "$opt_mode"; then
 func_mode_uninstall ${1+"$@"}
fi

test -z "$opt_mode" && {
 help=$generic_help
 func_fatal_help "you must specify a MODE"
}

test -z "$exec_cmd" && \
 func_fatal_help "invalid operation mode '$opt_mode'"

if test -n "$exec_cmd"; then
 eval exec "$exec_cmd"
 exit $EXIT_FAILURE
fi

exit $exit_status

The TAGs below are defined such that we never get into a situation
where we disable both kinds of libraries. Given conflicting
choices, we go for a static library, that is the most portable,
since we can't tell whether shared libraries were disabled because
the user asked for that or because the platform doesn't support
them. This is particularly important on AIX, because we don't
support having both static and shared libraries enabled at the same
time on that platform, so we default to a shared-only configuration.
If a disable-shared tag is given, we'll fallback to a static-only
configuration. But we'll never go from static-only to shared-only.

BEGIN LIBTOOL TAG CONFIG: disable-shared
build_libtool_libs=no
build_old_libs=yes
END LIBTOOL TAG CONFIG: disable-shared

BEGIN LIBTOOL TAG CONFIG: disable-static
build_old_libs=`case $build_libtool_libs in yes) echo no;; *) echo yes;; esac`
END LIBTOOL TAG CONFIG: disable-static

Local Variables:
mode:shell-script
sh-indentation:2
End:

qpdf-7.1.0/.gitignore

*.pdb
.lineno
aclocal.m4
autoconf.mk
autofiles.zip
autom4te.cache/
config.log
config.status
configure
doc/fix-qdf.1
doc/qpdf-manual.html
doc/qpdf-manual.pdf
doc/qpdf.1
doc/zlib-flate.1
examples/build/
external-libs
libqpdf.map
libqpdf.pc
libqpdf/build/
libqpdf/qpdf/qpdf-config.h
libqpdf/qpdf/qpdf-config.h.in
libtests/build/
libtool
manual/build/
manual/html.xsl
manual/print.xsl
qpdf/build/
zlib-flate/build/

qpdf-7.1.0/qtest/bin/qtest-driver

#!/usr/bin/env perl
#
This file is part of qtest.
#
Copyright 1993-2007, Jay Berkenbilt
#
QTest is distributed under the terms of version 2.0 of the Artistic
license which may be found in the source distribution.
#
require 5.008;
BEGIN { $^W = 1; }
use strict;
use IO::Handle;
use IO::File;
use IO::Socket;
use Cwd 'abs_path';
use Cwd;
use Config;
use File::Copy;
use File::Basename;
use File::Spec;

my $whoami = basename($0);
my $dirname = dirname(abs_path($0));
my $cwd = getcwd();
my $top = dirname($dirname);
my $module_dir = "$top/module";
my $qtc_dir = "$top/QTC/perl";

unshift(@INC, $module_dir, $qtc_dir);
require QTC;
require TestDriver;

if ((@ARGV == 1) && ($ARGV[0] eq '--version'))
{
 print "$whoami version 1.4\n";
 exit 0;
}
if ((@ARGV == 1) && ($ARGV[0] eq '--print-path'))
{
 print $top, "\n";
 exit 0;
}

my @bindirs = ();
my $datadir = undef;
my $covdir = '.';
my $stdout_tty = (-t STDOUT) ? "1" : "0";

while (@ARGV)
{
 my $arg = shift(@ARGV);
 if ($arg eq '-bindirs')
 {
	usage() unless @ARGV;
	push(@bindirs, split(':', shift(@ARGV)));
 }
 elsif ($arg eq '-datadir')
 {
	usage() unless @ARGV;
	$datadir = shift(@ARGV);
 }
 elsif ($arg eq '-covdir')
 {
	usage() unless @ARGV;
	$covdir = shift(@ARGV);
 }
 elsif ($arg =~ m/^-stdout-tty=([01])$/)
 {
	$stdout_tty = $1;
 }
 else
 {
	usage();
 }
}
usage() unless defined($datadir);
if (@bindirs)
{
 my @path = ();
 foreach my $d (@bindirs)
 {
	my $abs = abs_path($d) or
	 fatal("can't canonicalize path to bindir $d: $!");
	push(@path, $abs);
 }
 my $sep = ($^O eq 'MSWin32' ? ';' : ':');
 my $path = join($sep, @path) . $sep . $ENV{'PATH'};
 # Delete and explicitly recreate the PATH environment variable.
 # This seems to be more reliable. If we just reassign, in some
 # cases, the modified environment is not inherited by the child
 # process. (This happens when qtest-driver is invoked from ant
 # running from gjc-compat. I have no idea how or why.)
 delete $ENV{'PATH'};
 $ENV{'PATH'} = $path;
}

if ($stdout_tty)
{
 TestDriver::get_tty_features();
}

my $pid = undef;
my $pid_cleanup = new TestDriver::PidKiller(\$pid);

$in_testsuite is whether the test driver itself is being run from a
test suite! Check before we set the environment variable.
my $in_testsuite = $ENV{'IN_TESTSUITE'} || 0;

$ENV{'IN_TESTSUITE'} = 1;

Temporary path is intended to be easy to locate so its contents can
be inspected by impatient test suite runners. It is not intended to
be a "secure" (unpredictable) path.
my $tempdir = File::Spec->tmpdir() . "/testtemp.$$";
my $thispid = $$;

END
{
 # We have to make sure we don't call this from the child
 # qtest-driver when fork is called.
 if ((defined $thispid) && ($$ == $thispid) && (defined $tempdir))
 {
	local $?;
	TestDriver::rmrf($tempdir) if -d $tempdir;
 }
}

$| = 1;
$SIG{'PIPE'} = 'IGNORE';
$SIG{'INT'} = $SIG{'HUP'} = $SIG{'TERM'} = $SIG{'QUIT'} = sub { exit 2 };

TestDriver::rmrf($tempdir);
fatal("removal of $tempdir failed") if -e "$tempdir";

mkdir($tempdir, 0777) || die "mkdir $tempdir: $!\n";
$tempdir = abs_path($tempdir) or
 fatal("can't canonicalize path to $tempdir: $!");

my $errors = 0;

my $tc_input = undef;
my $tc_scope = undef;
my @testcov = (<$covdir/*.testcov>);
if (@testcov > 1)
{
 fatal("more than one testcov file exists");
}
elsif (@testcov)
{
 &QTC::TC("testdriver", "coverage directory",
	 ($covdir eq '.' ? 1 : 0));
 $tc_input = $testcov[0];
 $tc_input =~ s,^\./,,;
 $tc_scope = basename($tc_input);
 $tc_scope =~ s/\.testcov$// or
	fatal("can't get scope from testcov filename");
}

my $testlogfile = 'qtest.log';
my $testxmlfile = 'qtest-results.xml';
unlink $testlogfile;
unlink $testxmlfile;

my $totmissing = 0;
my $totextra = 0;
my $tottests = 0;
my $totpasses = 0;
my $totfails = 0;
my $totxpasses = 0;
my $totxfails = 0;

my $now = ($in_testsuite ? '---timestamp---' : localtime(time));
my $msg = "STARTING TESTS on $now";
print "\n";
print_and_log(('*' x length($msg)) . "\n$msg\n" .
	 ('*' x length($msg)) . "\n\n");

my $tc_log = undef;
my $tc_winlog = undef;
my %tc_cases = ();
my %tc_ignored_scopes = ();
parse_tc_file();
tc_do_initial_checks();

my $tests_to_run;
defined($tests_to_run = $ENV{"TESTS"}) or $tests_to_run = "";
my @tests = ();
if ($tests_to_run ne "")
{
 @tests = split(/\s+/, $tests_to_run);
 for (@tests)
 {
	&QTC::TC("testdriver", "driver tests specified");
	$_ = "$datadir/$_.test";
 }
}
else
{
 &QTC::TC("testdriver", "driver tests not specified");
 @tests = <$datadir/*.test>;
}

print_xml("<?xml version=\"1.0\"?>\n" .
	 "<qtest-results version=\"1\" timestamp=\"$now\"");
if (defined $tc_log)
{
 print_xml(" coverage-scope=\"$tc_scope\"");
}
print_xml(">\n");
foreach my $test (@tests)
{
 print_and_log("\nRunning $test\n");
 print_xml(" <testsuite file=\"$test\">\n");
 my @results = run_test($test);
 if (scalar(@results) != 5)
 {
	error("test driver $test returned invalid results");
 }
 else
 {
	my ($ntests, $passes, $fails, $xpasses, $xfails) = @results;
	my $actual = $passes + $fails + $xpasses + $xfails;
	my $extra = 0;
	my $missing = 0;
	if ($actual > $ntests)
	{
	 &QTC::TC("testdriver", "driver extra tests");
	 my $n = ($actual - $ntests);
	 print_and_log(sprintf("\n*** WARNING: saw $n extra test%s\n\n",
				 ($n == 1 ? "" : "s")));
	 $extra = $n;
	}
	elsif ($actual < $ntests)
	{
	 &QTC::TC("testdriver", "driver missing tests");
	 my $n = ($ntests - $actual);
	 print_and_log(sprintf("\n*** WARNING: missing $n test%s\n\n",
				 ($n == 1 ? "" : "s")));
	 $missing = $n;
	}

	$totmissing += $missing;
	$totextra += $extra;
	$totpasses += $passes;
	$totfails += $fails;
	$totxpasses += $xpasses;
	$totxfails += $xfails;
	$tottests += ($passes + $fails + $xpasses + $xfails);

	my $passed = (($extra == 0) && ($missing == 0) &&
		 ($fails == 0) && ($xpasses == 0));

	print_xml(" <testsummary\n" .
		 " overall-outcome=\"" .($passed ? 'pass' : 'fail') . "\"\n".
		 " total-cases=\"$actual\"\n" .
		 " passes=\"$passes\"\n" .
		 " failures=\"$fails\"\n" .
		 " unexpected-passes=\"$xpasses\"\n" .
		 " expected-failures=\"$xfails\"\n" .
		 " missing-cases=\"$missing\"\n" .
		 " extra-cases=\"$extra\"\n");
	print_xml(" />\n");
 }
 print_xml(" </testsuite>\n");
}

my $coverage_okay = 1;
tc_do_final_checks();

my $okay = ((($totpasses + $totxfails) == $tottests) &&
	 ($errors == 0) && ($totmissing == 0) && ($totextra == 0) &&
	 ($coverage_okay));

print "\n";
print_and_pad("Overall test suite");
if ($okay)
{
 &QTC::TC("testdriver", "driver overall pass");
 print_results(pass(), pass());
}
else
{
 &QTC::TC("testdriver", "driver overall fail");
 print_results(fail(), pass());
 print "\nFailure summary may be found in $testlogfile\n";
}

my $summary = "\nTESTS COMPLETE. Summary:\n\n";
$summary .=
 sprintf("Total tests: %d\n" .
	 "Passes: %d\n" .
	 "Failures: %d\n" .
	 "Unexpected Passes: %d\n" .
	 "Expected Failures: %d\n" .
	 "Missing Tests: %d\n" .
	 "Extra Tests: %d\n",
	 $tottests, $totpasses, $totfails, $totxpasses, $totxfails,
	 $totmissing, $totextra);

print_and_log($summary);
print "\n";

print_xml(" <testsummary\n" .
	 " overall-outcome=\"" . ($okay ? 'pass' : 'fail') . "\"\n" .
	 " total-cases=\"$tottests\"\n" .
	 " passes=\"$totpasses\"\n" .
	 " failures=\"$totfails\"\n" .
	 " unexpected-passes=\"$totxpasses\"\n" .
	 " expected-failures=\"$totxfails\"\n" .
	 " missing-cases=\"$totmissing\"\n" .
	 " extra-cases=\"$totextra\"\n");
if (defined $tc_log)
{
 print_xml(" coverage-outcome=\"" .
	 ($coverage_okay ? 'pass' : 'fail') . "\"\n");
}
print_xml(" />\n" .
	 "</qtest-results>\n");

exit ($okay ? 0 : 2);

sub run_test
{
 my $prog = shift;
 my @results = ();

 # Open a socket for communication with subsidiary test drivers.
 # Exchange some handshaking information over this socket. When
 # the subsidiary test suite exits, it reports its results over the
 # socket.

 my $use_socketpair = (defined $Config{d_sockpair});
 if ($Config{'osname'} eq 'cygwin')
 {
	$use_socketpair = 0;
 }

 my $listensock;
 my $for_parent;
 my $for_child;

 my @comm_args = ();

 if ($use_socketpair)
 {
	socketpair($for_child, $for_parent, AF_UNIX, SOCK_STREAM, PF_UNSPEC)
	 or fatal("socketpair: $!");
	my $fd = fileno($for_child);
	close($for_child);
	close($for_parent);
	local $^F = $fd; # prevent control fd from being closed on exec
	socketpair($for_child, $for_parent, AF_UNIX, SOCK_STREAM, PF_UNSPEC)
	 or fatal("socketpair: $!");
	if (fileno($for_child) != $fd)
	{
	 fatal("FOR_CHILD socket has wrong file descriptor number: got " .
		 fileno($for_child) . "; wanted $fd");
	}
	$for_parent->autoflush(1);
	$for_child->autoflush(1);
	binmode $for_parent;
	binmode $for_child;
	@comm_args = ('-fd', $fd);
 }
 else
 {
	$listensock = IO::Socket::INET->new(
	 Listen => 1, Proto => 'tcp', LocalPort => 0) or
	 fatal("listen: $!");
	my ($s_port, $s_addr) = unpack_sockaddr_in($listensock->sockname());
	@comm_args = ('-port', $s_port);
 }

 my $pid = fork;
 fatal("fork failed: $!") unless defined $pid;
 if ($pid == 0)
 {
	if ($use_socketpair)
	{
	 close($for_parent);
	}
	chdir($datadir) or fatal("chdir $datadir failed: $!");

	if (defined $tc_log)
	{
	 # Set these environment variables in the child process so
	 # that we can actually use the coverage system
	 # successfully to test the test driver itself.
	 $ENV{'TC_SCOPE'} = $tc_scope;
	 $ENV{'TC_FILENAME'} = $tc_log;
	 if (defined $tc_winlog)
	 {
		$ENV{'TC_WIN_FILENAME'} = $tc_winlog;
	 }
	}

	# Clear this environment variable so that nested test suites
	# don't inherit the value from this test suite. Note that as
	# of perl 5.8.7 in cygwin, deleting an environment variable
	# doesn't work.
	$ENV{'TESTS'} = "";

	exec +('perl', '-I', $module_dir, '-I', $qtc_dir,
	 basename($prog),
	 @comm_args,
	 '-origdir', $cwd,
	 '-tempdir', $tempdir,
	 '-testlog', "$cwd/$testlogfile",
	 '-testxml', "$cwd/$testxmlfile",
	 "-stdout-tty=$stdout_tty") or
		 fatal("exec $prog failed: $!");
 }
 if ($use_socketpair)
 {
	close($for_child);
 }
 else
 {
	$for_parent = $listensock->accept() or die $!;
	$for_parent->autoflush();
	$listensock->close();
 }

 eval
 {
	# Either CHLD or PIPE here indicates premature exiting of
	# subsidiary process which will be detected by either a
	# protocol error or a timeout on the select below.
	local $SIG{'CHLD'} = local $SIG{'PIPE'} = 'IGNORE';
	print $for_parent "TEST_DRIVER 1\n"
	 or die "--child--\n";
	my $rin = '';
	vec($rin, fileno($for_parent), 1) = 1;
	my $nfound = select($rin, '', '', 60);
	if ($nfound == 0)
	{
	 fatal("timed out waiting for input on $for_parent");
	}
	# Setting to DEFAULT should be unnecessary because of "local"
	# above, but there seems to be a race condition that this
	# helps to correct.
	$SIG{'CHLD'} = $SIG{'PIPE'} = 'DEFAULT';
 };
 if ($@)
 {
	if ($@ =~ m/--child--/)
	{
	 error("subsidiary test driver exited");
	}
	else
	{
	 die $@;
	}
 }
 else
 {
	my $line = <$for_parent>;
	if (! ((defined $line) && ($line =~ m/^TEST_DRIVER_CLIENT 1$/)))
	{
	 error("invalid protocol with subdiary test driver");
	 kill 1, $pid;
	}
	waitpid $pid, 0;
	my $results = <$for_parent>;
	close($for_parent);
	if (! ((defined $results) && ($results =~ m/^\d+(?: \d+){4}$/)))
	{
	 &QTC::TC("testdriver", "driver test returned invalid results");
	 error("invalid results from subsidiary test driver");
	}
	else
	{
	 @results = split(/ /, $results);
	}
 }
 @results;
}

sub parse_tc_file
{
 return unless defined $tc_input;

 my $tc = new IO::File("<$tc_input") or fatal("can't read $tc_input: $!");
 binmode $tc;
 while (<$tc>)
 {
	s/\r?\n$//s;
	next if m/^\#/;
	next if m/^\s*$/;
	if (m/^ignored-scope: (\S+)$/)
	{
	 $tc_ignored_scopes{$1} = 1;
	}
	elsif (m/^\s*?(\S.+?)\s+(\d+)\s*$/)
	{
	 my ($case, $n) = ($1, $2);
	 if (exists $tc_cases{$case})
	 {
		&QTC::TC("testdriver", "driver duplicate coverage case");
		error("$tc_input:$.: duplicate case");
	 }
	 $tc_cases{$case} = $n;
	}
	else
	{
	 error("$tc_input:$.: invalid syntax");
	}
 }
 $tc->close();
}

sub tc_do_initial_checks
{
 return unless defined $tc_input;

 if (! exists $ENV{'TC_SRCS'})
 {
	fatal("TC_SRCS must be set");
 }

 my @tc_srcs = (grep { m/\S/ } (split(/\s+/, $ENV{'TC_SRCS'})));

 my %seen_cases = ();
 foreach my $src (@tc_srcs)
 {
	my $s = new IO::File("<$src") or die "$whoami: open $src: $!\n";
	binmode $s;
	while (<$s>)
	{
	 # Look for coverage calls in the source subject to certain
	 # lexical constraints
	 my ($lscope, $case);
	 if (m/^\s*\&?QTC(?:::|\.)TC\(\"([^\"]+)\",\s*\"([^\"]+)\"/)
	 {
		# C++, Java, Perl, etc.
		($lscope, $case) = ($1, $2);
	 }
	 elsif (m/^[^\#]*\$\(call QTC.TC,([^,]+),([^,\)]+)/)
	 {
		# make
		($lscope, $case) = ($1, $2);
	 }
	 if ((defined $lscope) && (defined $case))
	 {
		if ($lscope eq $tc_scope)
		{
		 push(@{$seen_cases{$case}}, [$src, $.]);
		}
		elsif (exists $tc_ignored_scopes{$lscope})
		{
		 &QTC::TC("testdriver", "driver ignored scope");
		}
		else
		{
		 &QTC::TC("testdriver", "driver out-of-scope case");
		 error("$src:$.: out-of-scope coverage case");
		}
	 }
	}
	$s->close();
 }

 my %wanted_cases = %tc_cases;
 foreach my $case (sort keys %seen_cases)
 {
	my $wanted = 1;
	my $whybad = undef;
	if (exists $wanted_cases{$case})
	{
	 delete $wanted_cases{$case};
	}
	else
	{
	 &QTC::TC("testdriver", "driver unregistered coverage case");
	 $wanted = 0;
	 $whybad = "unregistered";
	}
	if (scalar(@{$seen_cases{$case}}) > $wanted)
	{
	 $whybad = $whybad || "duplicate";
	 foreach my $d (@{$seen_cases{$case}})
	 {
		my ($file, $lineno) = @$d;
		&QTC::TC("testdriver", "driver coverage error in src",
			 ($whybad eq 'unregistered' ? 0 :
			 $whybad eq 'duplicate' ? 1 :
			 9999));
		error("$file:$lineno: $whybad coverage case \"$case\"");
	 }
	}
 }
 foreach my $case (sort keys %wanted_cases)
 {
	&QTC::TC("testdriver", "driver unseen coverage case");
	error("$whoami: coverage case \"$case\" was not seen");
 }

 fatal("errors detected; exiting") if $errors;

 $tc_log = "$cwd/$tc_scope.cov_out";
 if ($^O eq 'cygwin')
 {
	chop(my $f = `cygpath --windows $tc_log`);
	$tc_winlog = $f;
 }
 elsif ($^O =~ m/^MSWin32|msys$/)
 {
	$tc_winlog = $tc_log;
 }
 unlink $tc_log;
 print_and_log("Test coverage active in scope $tc_scope\n");
}

sub tc_do_final_checks
{
 return unless (defined $tc_log);

 my %seen_cases = ();
 my $tc = new IO::File("<$tc_log");
 binmode $tc;
 if ($tc)
 {
	binmode $tc;
	while (<$tc>)
	{
	 s/\r?\n$//s;
	 next if m/^\#/;
	 next if m/^\s*$/;
	 if (m/^(.+) (\d+)\s*$/)
	 {
		$seen_cases{$1}{$2} = 1;
	 }
	}
	$tc->close();
 }

 my $testlog = open_log();

 $testlog->print("\nTest coverage results:\n");

 my @problems = ();
 foreach my $c (sort keys %tc_cases)
 {
	my ($case, $n) = ($c, $tc_cases{$c});
	for (my $i = 0; $i <= $n; ++$i)
	{
	 if (exists $seen_cases{$c}{$i})
	 {
		delete $seen_cases{$c}{$i};
	 }
	 else
	 {
		&QTC::TC("testdriver", "driver missing coverage case");
		push(@problems, "missing: $c $i");
	 }
	}
 }
 foreach my $c (sort keys %seen_cases)
 {
	foreach my $n (sort { $a <=> $b } (keys %{$seen_cases{$c}}))
	{
	 &QTC::TC("testdriver", "driver extra coverage case");
	 push(@problems, "extra: $c $n");
	}
 }

 if (@problems)
 {
	my $testxml = open_xml();
	$testxml->print(" <coverage-errors count=\"" .
			scalar(@problems) . "\">\n");
	foreach my $p (@problems)
	{
	 $testlog->print("$p\n");
	 $testxml->print(" <coverage-error case=\"$p\"/>\n");
	}
	$testxml->print(" </coverage-errors>\n");
	$testxml->close();
	$testlog->print("coverage errors: " . scalar(@problems) . "\n");
 }
 my $passed = (@problems == 0);
 $testlog->print("\nCoverage analysis: ", ($passed ? 'PASSED' : 'FAILED'),
		 "\n");
 $testlog->close();

 print "\n";
 print_and_pad("Coverage analysis");
 if ($passed)
 {
	print_results(pass(), pass());
	my $passlog = $tc_log;
	$passlog =~ s/(\.[^\.]+)$/-passed$1/;
	copy($tc_log, $passlog);
 }
 else
 {
	$coverage_okay = 0;
	print_results(fail(), pass());
 }
}

sub open_binary
{
 my $file = shift;
 my $fh = new IO::File(">>$file") or fatal("can't open $file: $!");
 binmode $fh;
 $fh;
}

sub open_log
{
 open_binary($testlogfile);
}

sub open_xml
{
 open_binary($testxmlfile);
}

sub print_and_log
{
 my $fh = open_log();
 print @_;
 print $fh @_;
 $fh->close();
}

sub print_xml
{
 my $fh = open_xml();
 print $fh @_;
 $fh->close();
}

sub print_and_pad
{
 TestDriver::print_and_pad(@_);
}

sub print_results
{
 TestDriver::print_results(@_);
}

sub pass
{
 TestDriver->PASS;
}

sub fail
{
 TestDriver->FAIL;
}

sub error
{
 my $msg = shift;
 warn $msg, "\n";
 ++$errors;
}

sub fatal
{
 my $msg = shift;
 warn "$whoami: $msg\n";
 exit 2;
}

sub usage
{
 warn "
Usage: $whoami --print-path

Prints full path to ${whoami}'s installation directory and exits.

 - OR -

Usage: $whoami options

Options include:

 -datadir datadir
 -bindirs bindir[:bindir...]
 [-covdir [coverage-dir]]
 [-stdout-tty=[01]]

Subsidiary test programs are run with the -bindirs argument (a
colon-separated list of directories, which may be relative but will be
internally converted to absolute) prepended to the path and with the
-datadir argument set as the current working directory.

By default, this program runs datadir/*.test as subsidiary test
suites. If the TESTS environment variable is set, it is taken to be a
space-separated list of test suite names. For each name n,
datadir/n.test is run.

Test coverage support is built in. If a file whose name matches
*.testcov in the coverage directory (which defaults to \".\") that is
a valid test coverage file, the full path to the file into which test
coverage results are written will be placed in the TC_FILENAME
environment variable. (If running under cygwin, the Windows path will
be in TC_WIN_FILENAME.) The test coverage scope, which is equal to
the part of the testcov file name excluding the extension, is placed
in the TC_SCOPE environment variable.

If the -stdout-tty option is passed, its value overrides ${whoami}'s
determination of whether standard output is a terminal. This can be
useful for cases in which another program is invoking ${whoami} and
passing its output through a pipe to a terminal.

";
 exit 2;

}

qpdf-7.1.0/qtest/README.txt

This is a copy of qtest (http://qtest.qbilt.org) which is distributed
under the terms of the Artistic license and has the same author as
qpdf.

qpdf-7.1.0/qtest/QTC/perl/QTC.pm

-*- perl -*-

require 5.005;
use strict;
use FileHandle;

package QTC;

sub TC
{
 my ($scope, $case, $n) = @_;
 local $!;
 $n = 0 unless defined $n;
 return unless ($scope eq ($ENV{'TC_SCOPE'} || ""));
 my $filename = $ENV{'TC_FILENAME'} || return;
 my $fh = new FileHandle(">>$filename") or
	die "open test coverage file: $!\n";
 print $fh "$case $n\n";
 $fh->close();
}

1;

#
END OF QTC
#

qpdf-7.1.0/qtest/module/TestDriver.pm

-*- perl -*-
#
This file is part of qtest.
#
Copyright 1993-2007, Jay Berkenbilt
#
QTest is distributed under the terms of version 2.0 of the Artistic
license which may be found in the source distribution.
#

Search for "PUBLIC METHODS" to find the public methods and
documentation on how to use them.

require 5.008;
use strict;

package TestDriver::PidKiller;

use vars qw($f_pid);
$f_pid = 'pid';

sub new
{
 my $class = shift;
 my $rep = +{+__PACKAGE__ => {} };
 $rep->{+__PACKAGE__}{$f_pid} = shift;
 bless $rep, $class;
}

sub DESTROY
{
 my $rep = shift;
 my $pid = $rep->{+__PACKAGE__}{$f_pid};
 defined($$pid) && $$pid && kill 15, $$pid;
}

package TestDriver;

use IO::Handle;
use IO::File;
use IO::Socket;
use IO::Select;
use POSIX ':sys_wait_h';
use File::Copy;
use File::Find;
use Carp;
use Cwd;
require QTC;

Constants

Possible test case outcomes
use constant PASS => 'PASS';
use constant FAIL => 'FAIL';

Input/Output keys
use constant STRING => 'STRING';
use constant FILE => 'FILE';
use constant COMMAND => 'COMMAND';
use constant FILTER => 'FILTER';
use constant REGEXP => 'REGEXP';
use constant EXIT_STATUS => 'EXIT_STATUS';
use constant THREAD_DATA => 'THREAD_DATA';
use constant TD_THREADS => 'TD_THREADS';
use constant TD_SEQGROUPS => 'TD_SEQGROUPS';

Flags
use constant NORMALIZE_NEWLINES => 1 << 0;
use constant NORMALIZE_WHITESPACE => 1 << 1;
use constant EXPECT_FAILURE => 1 << 2;
use constant RM_WS_ONLY_LINES => 1 << 3;

Field names
use vars qw($f_socket $f_origdir $f_tempdir $f_testlog $f_testxml $f_suitename);
$f_socket = 'socket';
$f_origdir = 'origdir';
$f_tempdir = 'tempdir';
$f_testlog = 'testlog';
$f_testxml = 'testxml';
$f_suitename = 'suitename';

use vars qw($f_passes $f_fails $f_xpasses $f_xfails $f_testnum);
$f_passes = 'passes';		# expected passes
$f_fails = 'fails';		# unexpected failures
$f_xpasses = 'xpasses';		# unexpected passes
$f_xfails = 'xfails';		# expected failures
$f_testnum = 'testnum';

Static Variables

QTEST_MARGIN sets the number of spaces to after PASSED or FAILED and
before the rightmost column of the screen.
my $margin = $ENV{'QTEST_MARGIN'} || 8;
$margin += $ENV{'QTEST_EXTRA_MARGIN'} || 0;

my $ncols = 80;

my $color_reset = "";
my $color_green = "";
my $color_yellow = "";
my $color_red = "";
my $color_magenta = "";
my $color_emph = "";

MSWin32 support
my $in_windows = 0;
my $winbin = undef;
if ($^O eq 'MSWin32')
{
 $in_windows = 1;
}

sub get_tty_features
{
 my $got_size = 0;
 eval
 {
	require Term::ReadKey;
	($ncols, undef, undef, undef) = Term::ReadKey::GetTerminalSize();
	$got_size = 1;
 };
 if (! $got_size)
 {
	eval
	{
	 # Get screen columns if possible
	 no strict;
	 local $^W = 0;
	 local *X;
	 {
		local $SIG{'__WARN__'} = sub {};
		require 'sys/ioctl.ph';
	 }
	 if ((defined &TIOCGWINSZ) && open(X, "+</dev/tty"))
	 {
		my $winsize = "";
		if (ioctl(X, &TIOCGWINSZ, $winsize))
		{
		 (undef, $ncols) = unpack('S4', $winsize);
		 $got_size = 1;
		}
		close(X);
	 }
	};
 }
 eval
 {
	if ($in_windows)
	{
	 eval
	 {
		# If you don't have this module, you may want to set
		# the environment variable ANSI_COLORS_DISABLED to 1
		# to avoid "garbage" output around PASSED, FAILED,
		# etc.
		require Win32::Console::ANSI;
	 }
	}
	require Term::ANSIColor;
	$color_reset = Term::ANSIColor::RESET();
	$color_green = Term::ANSIColor::GREEN();
	$color_yellow = Term::ANSIColor::YELLOW();
	$color_red = Term::ANSIColor::RED();
	$color_magenta = Term::ANSIColor::MAGENTA();
	$color_emph = Term::ANSIColor::color('bold blue on_black');
 };
}

Static Methods

sub print_and_pad
{
 my $str = shift;
 my $spaces = $ncols - 10 - length($str) - $margin;
 $spaces = 0 if $spaces < 0;
 print $str . (' ' x $spaces) . ' ... ';
}

sub print_results
{
 my ($outcome, $exp_outcome) = @_;

 my $color = "";
 my $outcome_text;
 if ($outcome eq $exp_outcome)
 {
	if ($outcome eq PASS)
	{
	 &QTC::TC("testdriver", "TestDriver expected pass");
	 $color = $color_green;
	 $outcome_text = "PASSED";
	}
	else
	{
	 &QTC::TC("testdriver", "TestDriver expected fail");
	 $color = $color_yellow;
	 # " (exp)" is fewer characters than the default margin
	 # which keeps this from wrapping lines with default
	 # settings.
	 $outcome_text = "FAILED (exp)";
	}
 }
 else
 {
	if ($outcome eq PASS)
	{
	 &QTC::TC("testdriver", "TestDriver unexpected pass");
	 $color = $color_magenta;
	 $outcome_text = "PASSED-UNEXP";
	}
	else
	{
	 &QTC::TC("testdriver", "TestDriver unexpected fail");
	 $color = $color_red;
	 $outcome_text = "FAILED";
	}
 }

 print $color, $outcome_text, $color_reset, "\n";
 $outcome_text;
}

Normal Methods

sub new
{
 my $class = shift;
 my $rep = +{+__PACKAGE__ => {} };

 if (@_ != 1)
 {
	croak "Usage: ", __PACKAGE__, "->new(\"test-suite name\")\n";
 }
 my $suitename = shift;

 if (! ((@ARGV == 11) &&
	 (($ARGV[0] eq '-fd') || ($ARGV[0] eq '-port')) &&
	 ($ARGV[2] eq '-origdir') &&
	 ($ARGV[4] eq '-tempdir') &&
	 ($ARGV[6] eq '-testlog') &&
	 ($ARGV[8] eq '-testxml') &&
	 ($ARGV[10] =~ m/^-stdout-tty=([01])$/) &&
	 (-d $ARGV[5])))
 {
	die +__PACKAGE__, ": improper invocation of test driver $0 (" .
	 join(' ', @ARGV) . ")\n";
 }
 my $fd = ($ARGV[0] eq '-fd') ? $ARGV[1] : undef;
 my $port = ($ARGV[0] eq '-port') ? $ARGV[1] : undef;
 my $origdir = $ARGV[3];
 my $tempdir = $ARGV[5];
 my $testlogfile = $ARGV[7];
 my $testxmlfile = $ARGV[9];
 my $testlog = new IO::File(">>$testlogfile");
 binmode $testlog;
 my $testxml = new IO::File(">>$testxmlfile");
 binmode $testxml;
 $ARGV[10] =~ m/=([01])/ or die +__PACKAGE__, ": INTERNAL ERROR in ARGV[10]";
 my $stdout_is_tty = $1;
 if ($stdout_is_tty)
 {
	get_tty_features();
 }

 my $socket;
 if (defined $fd)
 {
	$socket = new IO::Handle;
	if (! $socket->fdopen($fd, "w+"))
	{
	 warn +__PACKAGE__, ": unable to open file descriptor $fd.\n";
	 warn +__PACKAGE__, " must be created from a program invoked by" .
		" the test driver system\n";
	 die +__PACKAGE__, ": initialization failed";
	}
 }
 else
 {
	$socket = IO::Socket::INET->new(
	 PeerAddr => '127.0.0.1', PeerPort => $port) or
	 die "unable to connect to port $port: $!\n";
 }
 $socket->autoflush();
 binmode $socket;

 # Do some setup that would ordinarily be reserved for a main
 # program. We want test suites to behave in a certain way so tha
 # the overall system works as desired.

 # Killing the driver should cause to to exit. Without this, it
 # may cause whatever subsidiary program is being run to exit and
 # the driver to continue to the next test case.
 $SIG{'INT'} = $SIG{'HUP'} = $SIG{'TERM'} = $SIG{'QUIT'} = sub { exit 2 };

 # Unbuffer our output.
 $| = 1;

 $rep->{+__PACKAGE__}{$f_socket} = $socket;
 $rep->{+__PACKAGE__}{$f_origdir} = $origdir;
 $rep->{+__PACKAGE__}{$f_tempdir} = $tempdir;
 $rep->{+__PACKAGE__}{$f_testlog} = $testlog;
 $rep->{+__PACKAGE__}{$f_testxml} = $testxml;
 $rep->{+__PACKAGE__}{$f_suitename} = $suitename;
 $rep->{+__PACKAGE__}{$f_passes} = 0;
 $rep->{+__PACKAGE__}{$f_fails} = 0;
 $rep->{+__PACKAGE__}{$f_xpasses} = 0;
 $rep->{+__PACKAGE__}{$f_xfails} = 0;
 $rep->{+__PACKAGE__}{$f_testnum} = 1;

 # Do protocol handshaking with the test driver system
 my $init = scalar(<$socket>);
 if ($init !~ m/^TEST_DRIVER 1$/)
 {
	die +__PACKAGE__, ": incorrect protocol with test driver system\n";
 }
 $socket->print("TEST_DRIVER_CLIENT 1\n");

 bless $rep, $class;
}

sub _socket
{
 my $rep = shift;
 $rep->{+__PACKAGE__}{$f_socket};
}

sub _tempdir
{
 my $rep = shift;
 $rep->{+__PACKAGE__}{$f_tempdir};
}

sub _testlog
{
 my $rep = shift;
 $rep->{+__PACKAGE__}{$f_testlog};
}

sub _testxml
{
 my $rep = shift;
 $rep->{+__PACKAGE__}{$f_testxml};
}

sub _suitename
{
 my $rep = shift;
 $rep->{+__PACKAGE__}{$f_suitename};
}

sub _testnum
{
 my $rep = shift;
 $rep->{+__PACKAGE__}{$f_testnum} = $_[0] if @_;
 $rep->{+__PACKAGE__}{$f_testnum};
}

PUBLIC METHODS

Usage: report(n)
Specify the number of tests that are expected to have been run.
Please note: the purpose of reporting the number of test cases with
"report" is as an extra check to make sure that the test suite
itself didn't have a logic error that caused some test cases to be
skipped. The argument to "report" should therefore be a hard-coded
number or a number computed only from static features in the test
suite. It should not be a number that is counted up during the
process of running the test suite. Computing this number as a side
effect of running test cases would defeat the purpose of the number.
For example, if the test suite consists of an array of test cases,
and the test suite code iterates through that loop and calls
"runtest" twice for each element, it would be reasonable to pass an
expression that includes the size of the array as an argument to
"report", but it would not be appropriate to have a variable called
"$ntests" that is incremented each time "runtest" is called and then
passed to "report".
sub report
{
 my $rep = shift;
 croak "Usage: ", __PACKAGE__, "->report(num-tests-expected)\n"
	unless @_ && $_[0] =~ m/^\d+$/;

 # Message to test driver system:
 # n-expected-tests passes fails unexpected-passes expected-fails

 my @vals = (shift);
 push(@vals, map { $rep->{+__PACKAGE__}{$_} } ($f_passes, $f_fails,
						 $f_xpasses, $f_xfails));
 my $socket = $rep->_socket();
 $socket->print(join(' ', @vals));
 $socket->flush();
}

Usage: notify(string)
Prints the string followed by a newline to standard output of the
test suite.
sub notify
{
 my $rep = shift;
 my $msg = shift;
 &QTC::TC("testdriver", "TestDriver notify");
 print $msg, "\n";
}

Usage: emphasize(string)
Prints the string followed by a newline to standard output of the
test suite. The string is printed with emphasis if the terminal
supports color.
sub emphasize
{
 my $rep = shift;
 my $msg = shift;
 &QTC::TC("testdriver", "TestDriver emphasize");
 print $color_emph, $msg, $color_reset, "\n";
}

Usage: prompt(msg, env, default)
If the environment variable "env" is set, its value is returned.
Otherwise, if STDIN is a tty, the user is prompted for an answer
using msg as the prompt, or if STDIN is not a tty, the value
specified in "default" is returned. Note that careless use of
prompt in test suites may make the test suites unable to be run in
batch mode.
sub prompt
{
 my $rep = shift;
 my ($msg, $env, $default) = @_;
 &QTC::TC("testdriver", "TestDriver prompt");
 my $answer = $ENV{$env};
 if (defined $answer)
 {
	print "$msg\n";
	print "[Question answered from environment variable \$$env: $answer]\n";
 }
 else
 {
	print "To avoid question, place answer in" .
	 " environment variable \$$env\n";
	# Note: ActiveState perl 5.10.1 gives the wrong answer for -t
	# STDIN when NUL (http://bugs.activestate.com/show_bug.cgi?id=85614).
	if ((-t STDIN) && (-t STDOUT))
	{
	 print "$msg ";
	 chop($answer = <STDIN>);
	 if ($answer eq '')
	 {
		print "[Using default answer for question: $default]\n";
		$answer = $default;
	 }
	}
	else
	{
	 print "$msg\n";
	 print "[Using default answer for question: $default]\n";
	 $answer = $default;
	}
 }
 $answer;
}

Usage: get_start_dir()
Returns the name of the directory from which the test driver was
originally invoked. This can be useful for test suites that are
designed to be run from read-only areas or from multiple locations
simultaneously: they can get the original invocation directory and
use it as a place to write temporary files.
sub get_start_dir
{
 my $rep = shift;
 $rep->{+__PACKAGE__}{$f_origdir};
}

Usage: runtest description input output [flags]
Returns true iff test passes; i.e., input matches output

Parameters:

description: a short textual description of the test case

input: a hash reference that defines the input to the test case
input keys and associated values:

STRING: a string that is used verbatim as the test input

FILE: a file whose contents are used as the test input

COMMAND: an array reference containing a command and arguments
or a string representing the command. This is passed to exec,
so the rules that exec uses to determine whether to pass this
to a shell are followed. The command is run with STDIN set to
/dev/null, STDOUT redirected to an internal file, and STDERR
copied to STDOUT.

Note that exactly one of STRING, FILE, or COMMAND must appear.

FILTER: if specified, it is a program that is run on the test
input specified above to generate the true test input.

output: a hash reference that defines the expected output of the
test case

STRING: a string that contains the expected test output

FILE: a file that contains the expected test output

REGEXP: a regular expression that must match the test output

Note that exactly one of STRING, FILE, or REGEXP must appear.

EXIT_STATUS: the exit status of the command. Required iff the
intput is specified by COMMAND. A value of undef means that we
don't care about the exit status of a command. The special
value of '!0' means we allow any abnormal exit status but we
don't care what the specific exit status is. An integer value
is the ordinary exit status of a command. A string of the form
SIG:n indicates that the program has exited with signal n.
Note that SIG:n is not reliable in a Windows (non-Cygwin)
environment.

THREAD_DATA: If specified, the test output is expected to
contain multithreaded output with output lines marked by thread
and sequence group identifiers. The value must be a hash that
contains required key TD_THREADS and optional key TD_SEQGROUPS.
The value of each key is an array reference containing a list
of threads or sequence groups as appropriate. When THREAD_DATA
is specified, the single call to runtest actually generates t +
s + 3 tests where "t" is the number of threads and "s" is the
number of sequence groups specified. See the documentation for
full details on how multithreaded output is handled by the test
driver.

flags: additional flags to control the test case; should be
logically orred together (e.g. NORMALIZE_WHITESPACE | EXPECT_FAILURE)

NORMALIZE_NEWLINES: If specified, all newlines or carriage
return/newline combinations in the input are translated to
straight UNIX-style newlines. This is done before writing
through any filter. Newlines are also normalized in the
expected output.

NORMALIZE_WHITESPACE: If specified, all carriage returns are
removed, and all strings of one or more space or tab characters
are replaced by a single space character in the input. This is
done before writing through any filter. The expected output
must be normalized in this way as well in order for the test to
pass.

EXPECT_FAILURE: If specified, the test case is expected to
fail. In this case, a test case failure will not generate
verbose output or cause overall test suite failure, and a pass
will generate test suite failure. This should be used for
place-holder test cases that exercise a known bug that cannot
yet be fixed.

RM_WS_ONLY_LINES: If specified, all lines only containing any
whitespace character like newlines, spaces or tabs are removed
from the input. This is done before writing through any filter
and is especially useful if some tests output more newlines on
some platforms than on others.

sub runtest
{
 my $rep = shift;

 if (! ((@_ == 3) || (@_ == 4)))
 {
	croak +("Usage: ", +__PACKAGE__,
		"->runtest(description, input, output[, flags])\n");
 }

 my ($description, $input, $output, $flags) = @_;
 $flags = 0 unless defined $flags;

 my $tempdir = $rep->_tempdir();

 if (ref($description) ne '')
 {
	&QTC::TC("testdriver", "TestDriver description not string");
	croak +__PACKAGE__, "->runtest: description must be a string\n";
 }
 if (ref($input) ne 'HASH')
 {
	&QTC::TC("testdriver", "TestDriver input not hash");
	croak +__PACKAGE__, "->runtest: input must be a hash reference\n";
 }
 if (ref($output) ne 'HASH')
 {
	&QTC::TC("testdriver", "TestDriver output not hash");
	croak +__PACKAGE__, "->runtest: output must be a hash reference\n";
 }
 if ((ref($flags) ne '') || ($flags !~ m/^\d+$/))
 {
	&QTC::TC("testdriver", "TestDriver flags not integer");
	croak +__PACKAGE__, "->runtest: flags must be an integer\n";
 }

 my ($extra_in_keys, $in_string, $in_file, $in_command, $in_filter) =
	check_hash_keys($input, $rep->STRING,
			$rep->FILE, $rep->COMMAND, $rep->FILTER);
 if ($extra_in_keys)
 {
	&QTC::TC("testdriver", "TestDriver extraneous input keys");
	croak +(+__PACKAGE__,
		"->runtest: extraneous keys in intput hash: $extra_in_keys\n");
 }
 my ($extra_out_keys, $out_string, $out_file, $out_regexp,
	$out_exit_status, $thread_data) =
	 check_hash_keys($output, $rep->STRING,
			 $rep->FILE, $rep->REGEXP, $rep->EXIT_STATUS,
			 $rep->THREAD_DATA);
 if ($extra_out_keys)
 {
	&QTC::TC("testdriver", "TestDriver extraneous output keys");
	croak +(+__PACKAGE__,
		"->runtest: extraneous keys in output hash: $extra_out_keys\n");
 }

 if ((((defined $in_string) ? 1 : 0) +
	 ((defined $in_file) ? 1 : 0) +
	 ((defined $in_command) ? 1 : 0)) != 1)
 {
	&QTC::TC("testdriver", "TestDriver invalid input");
	croak +__PACKAGE__, "->runtest: exactly one of" .
	 " STRING, FILE, or COMMAND must be present for input\n";
 }
 if ((((defined $out_string) ? 1 : 0) +
	 ((defined $out_file) ? 1 : 0) +
	 ((defined $out_regexp) ? 1 : 0)) != 1)
 {
	&QTC::TC("testdriver", "TestDriver invalid output");
	croak +__PACKAGE__, "->runtest: exactly one of" .
	 " STRING, FILE, or REGEXP must be present for output\n";
 }
 if ((defined $in_command) != (exists $output->{$rep->EXIT_STATUS}))
 {
	&QTC::TC("testdriver", "TestDriver invalid status");
	croak +__PACKAGE__, "->runtest: input COMMAND and output EXIT_STATUS"
	 . " must either both appear both not appear\n";
 }

 my ($threads, $seqgroups) = (undef, undef);
 if (defined $thread_data)
 {
	if (ref($thread_data) ne 'HASH')
	{
	 &QTC::TC("testdriver", "TestDriver thread_data not hash");
	 croak +__PACKAGE__, "->runtest: THREAD_DATA" .
		" must be a hash reference\n";
	}
	my $extra_thread_keys;
	($extra_thread_keys, $threads, $seqgroups) =
	 check_hash_keys($thread_data, $rep->TD_THREADS, $rep->TD_SEQGROUPS);
	if ($extra_thread_keys)
	{
	 &QTC::TC("testdriver", "TestDriver extraneous thread_data keys");
	 croak +(+__PACKAGE__,
		 "->runtest: extraneous keys in THREAD_DATA hash:" .
		 " $extra_thread_keys\n");
	}
	if (! defined $threads)
	{
	 &QTC::TC("testdriver", "TestDriver thread_data no threads");
	 croak +__PACKAGE__, "->runtest: THREAD_DATA" .
		" must contain TD_THREADS\n";
	}
	elsif (ref($threads) ne 'ARRAY')
	{
	 &QTC::TC("testdriver", "TestDriver threads not array ref");
	 croak +__PACKAGE__, "->runtest: TD_THREADS" .
		" must be an array reference\n";
	}
	if ((defined $seqgroups) && (ref($seqgroups) ne 'ARRAY'))
	{
	 &QTC::TC("testdriver", "TestDriver seqgroups not array ref");
	 croak +__PACKAGE__, "->runtest: TD_SEQGROUPS" .
		" must be an array reference\n";
	}
 }

 # testnum is incremented by print_testid
 my $testnum = $rep->_testnum();
 my $category = $rep->_suitename();
 $rep->print_testid($description);

 # Open a file handle to read the raw (unfiltered) test input
 my $pid = undef;
 my $pid_killer = new TestDriver::PidKiller(\$pid);
 my $in = new IO::Handle;
 my $use_tempfile = $in_windows;
 my $tempout_status = undef;
 if (defined $in_string)
 {
	&QTC::TC("testdriver", "TestDriver input string");
	open($in, '<', \$in_string) or
	 die +(+__PACKAGE__,
		 "->runtest: unable to read from input string: $!\n");
 }
 elsif (defined $in_file)
 {
	&QTC::TC("testdriver", "TestDriver input file");
	open($in, '<', $in_file) or
	 croak +(+__PACKAGE__,
		 "->runtest: unable to read from input file $in_file: $!\n");
 }
 elsif (defined $in_command)
 {
	if (ref($in_command) eq 'ARRAY')
	{
	 &QTC::TC("testdriver", "TestDriver input command array");
	}
	elsif (ref($in_command) eq '')
	{
	 &QTC::TC("testdriver", "TestDriver input command string");
	}

	if ($use_tempfile)
	{
	 my $tempout = "$tempdir/tempout";
	 $tempout_status = $rep->winrun(
		$in_command, File::Spec->devnull(), $tempout);
	 open($in, "<$tempout") or
		croak +(+__PACKAGE__,
			"->runtest: unable to read from" .
			" input file $tempout: $!\n");
	}
	else
	{
	 $pid = open($in, "-|");
	 croak +__PACKAGE__, "->runtest: fork failed: $!\n"
		unless defined $pid;
	 if ($pid == 0)
	 {
		open(STDERR, ">&STDOUT");
		open(STDIN, '<', \ "");
		if (ref($in_command) eq 'ARRAY')
		{
		 exec @$in_command or
			croak+(+__PACKAGE__,
			 "->runtest: unable to run command ",
			 join(' ', @$in_command), "\n");
		}
		else
		{
		 exec $in_command or
			croak+(+__PACKAGE__,
			 "->runtest: unable to run command ",
			 $in_command, "\n");
		}
	 }
	}
 }
 else
 {
	die +__PACKAGE__, ": INTERNAL ERROR: invalid test input";
 }
 binmode $in;

 # Open file handle into which to write the actual output
 my $actual = new IO::File;
 my $actual_file = "$tempdir/actual";

 if (defined $in_filter)
 {
	&QTC::TC("testdriver", "TestDriver filter defined");
	if ($use_tempfile)
	{
	 my $filter_file = "$tempdir/filter";
	 open(F, ">$filter_file.1") or
		croak+(+__PACKAGE__,
		 "->runtest: unable to create $filter_file.1: $!\n");
	 binmode F;
	 while (<$in>)
	 {
		print F;
	 }
	 $in->close();
	 close(F);
	 $rep->winrun($in_filter, "$filter_file.1", $filter_file);
	 open($in, "<$filter_file") or
		croak +(+__PACKAGE__,
			"->runtest: unable to read from" .
			" input file $filter_file: $!\n");
	 binmode $in;
	 $in_filter = undef;
	}
 }
 if (defined $in_filter)
 {
	# Write through filter to actual file
	open($actual, "| $in_filter > $actual_file") or
	 croak +(+__PACKAGE__,
		 ": pipe to filter $in_filter failed: $!\n");
 }
 else
 {
	&QTC::TC("testdriver", "TestDriver filter not defined");
	open($actual, ">$actual_file") or
	 die +(+__PACKAGE__, ": write to $actual_file failed: $!\n");
 }
 binmode $actual;

 # Write from input to actual output, normalizing spaces and
 # newlines if needed
 my $exit_status = undef;
 while (1)
 {
	my ($line, $status) = read_line($in, $pid);
	$exit_status = $status if defined $status;
	last unless defined $line;
	if ($flags & $rep->NORMALIZE_WHITESPACE)
	{
	 &QTC::TC("testdriver", "TestDriver normalize whitespace");
	 $line =~ s/[\t]+/ /g;
	}
	else
	{
	 &QTC::TC("testdriver", "TestDriver no normalize whitespace");
	}
	if ($flags & $rep->NORMALIZE_NEWLINES)
	{
	 &QTC::TC("testdriver", "TestDriver normalize newlines");
	 $line =~ s/\r$//;
	}
	else
	{
	 &QTC::TC("testdriver", "TestDriver no normalize newlines");
	}
 if ($flags & $rep->RM_WS_ONLY_LINES)
 {
 &QTC::TC("testdriver", "TestDriver remove empty lines");
 $line =~ s/^\s+$//;
 }
 else
 {
 &QTC::TC("testdriver", "TestDriver no remove empty lines");
 }
	$actual->print($line);
	$actual->flush();
	last if defined $exit_status;
 }
 $in->close();
 if (defined $tempout_status)
 {
	$exit_status = $tempout_status;
 }
 if (defined $in_command)
 {
	if (! defined $exit_status)
	{
	 $exit_status = $?;
	}
	my $exit_status_number = 0;
	my $exit_status_signal = 0;
	if ($in_windows)
	{
	 # WIFSIGNALED et al are not defined. This is emperically
	 # what happens with MSYS 1.0.11 and ActiveState Perl
	 # 5.10.1.
	 if ($exit_status & 0x8000)
	 {
		$exit_status_signal = 1;
		$exit_status = ($exit_status & 0xfff) >> 8;
		$exit_status = "SIG:$exit_status";
	 }
	 elsif ($exit_status >= 256)
	 {
		$exit_status_number = 1;
		$exit_status = $exit_status >> 8;
	 }
	}
	elsif (WIFSIGNALED($exit_status))
	{
	 $exit_status_signal = 1;
	 $exit_status = "SIG:" . WTERMSIG($exit_status);
	}
	elsif (WIFEXITED($exit_status))
	{
	 $exit_status_number = 1;
	 $exit_status = WEXITSTATUS($exit_status);
	}
	if ($exit_status_number)
	{
	 &QTC::TC("testdriver", "TestDriver exit status number");
	}
	if ($exit_status_signal)
	{
	 &QTC::TC("testdriver", "TestDriver exit status signal");
	}
 }
 $? = 0;
 $actual->close();
 $pid = undef;
 if ($?)
 {
	die +(+__PACKAGE__,
	 "->runtest: failure closing actual output; status = $?\n");
 }

 # Compare exit statuses. This expression is always true when the
 # input was not from a command.
 if ((defined $out_exit_status) && ($out_exit_status eq '!0'))
 {
	&QTC::TC("testdriver", "TestDriver non-zero exit status");
 }
 my $status_match =
	((! defined $out_exit_status) ||
	 ((defined $exit_status) &&
	 ((($out_exit_status eq '!0') && ($exit_status ne 0)) ||
	 ($exit_status eq $out_exit_status))));

 # Compare actual output with expected output.
 my $expected_file = undef;
 my $output_match = undef;
 if (defined $out_string)
 {
	&QTC::TC("testdriver", "TestDriver output string");
	# Write output string to a file so we can run diff
	$expected_file = "$tempdir/expected";
	my $e = new IO::File;
	open($e, ">$expected_file") or
	 die +(__PACKAGE__,
		 "->runtest: unable to write to $expected_file: $!\n");
	binmode $e;
	$e->print($out_string);
	$e->close();
 }
 elsif (defined $out_file)
 {
	&QTC::TC("testdriver", "TestDriver output file");
	if ($flags & $rep->NORMALIZE_NEWLINES)
	{
	 # Normalize newlines in expected output file
	 $expected_file = "$tempdir/expected";
	 unlink $expected_file;
	 my $in = new IO::File;
	 if (open($in, "<$out_file"))
	 {
		binmode $in;
		my $e = new IO::File;
		open($e, ">$expected_file") or
		 die +(__PACKAGE__,
			 "->runtest: unable to write to $expected_file: $!\n");
		binmode $e;
		while (<$in>)
		{
		 s/\r?$//;
		 $e->print($_);
		}
		$e->close();
		$in->close();
	 }
	}
	else
	{
	 $expected_file = $out_file;
	}
 }
 elsif (defined $out_regexp)
 {
	&QTC::TC("testdriver", "TestDriver output regexp");
	# No expected file; do regexp test to determine whether output
	# matches
	$actual = new IO::File;
	open($actual, "<$actual_file") or
	 die +(__PACKAGE__,
		 "->runtest: unable to read $actual_file: $!\n");
	binmode $actual;
	local $/ = undef;
	my $actual_output = <$actual>;
	$actual->close();
	$output_match = ($actual_output =~ m/$out_regexp/);
 }
 else
 {
	die +__PACKAGE__, ": INTERNAL ERROR: invalid test output";
 }

 my $output_diff = undef;
 if (! defined $output_match)
 {
	if (! defined $expected_file)
	{
	 die +__PACKAGE__, ": INTERNAL ERROR: expected_file not defined";
	}
	if (defined $threads)
	{
	 # Real output comparisons are done later.
	 $output_match = 1;
	}
	else
	{
	 $output_diff = "$tempdir/difference";
	 my $r = $rep->safe_pipe(['diff', '-a', '-u',
				 $expected_file, $actual_file],
				 $output_diff);
	 $output_match = ($r == 0);
	}
 }

 my $outcome = ($output_match && $status_match) ? PASS : FAIL;
 my $exp_outcome = (($flags & $rep->EXPECT_FAILURE) ? FAIL : PASS);
 my $outcome_text = print_results($outcome, $exp_outcome);
 my $passed = $rep->update_counters($outcome, $exp_outcome);

 my $testxml = $rep->_testxml();
 my $testlog = $rep->_testlog();
 # $outcome_text is for the human-readable. We need something
 # different for the xml file.
 $testxml->print(" <testcase\n" .
		 " testid=\"" . xmlify($category, 1) . " $testnum\"\n" .
		 " description=\"" . xmlify($description, 1) . "\"\n" .
		 " outcome=\"" .
		 (($outcome eq PASS)
		 ? ($passed ? "pass" : "unexpected-pass")
		 : ($passed ? "expected-fail" : "fail")) .
		 "\"\n");

 if (($outcome eq FAIL) && ($outcome ne $exp_outcome))
 {
	# Test failed and failure was not expected

	$testxml->print(" >\n");
	$testlog->printf("$category test %d (%s) FAILED\n",
			 $testnum, $description);
	my $cwd = getcwd();
	$testlog->print("cwd: $cwd\n");
	$testxml->print(" <cwd>" . xmlify($cwd) . "</cwd>\n");
	my $cmd = $in_command;
	if ((defined $cmd) && (ref($cmd) eq 'ARRAY'))
	{
	 $cmd = join(' ', @$cmd);
	}
	if (defined $cmd)
	{
	 $testlog->print("command: $cmd\n");
	 $testxml->print(" <command>" . xmlify($cmd) . "</command>\n");
	}
	if (defined $out_file)
	{
	 # Use $out_file, not $expected_file -- we are only
	 # interested in dispaying this information if the user's
	 # real output was original in a file.
	 $testlog->print("expected output in $out_file\n");
	 $testxml->print(
		" <expected-output-file>" . xmlify($out_file) .
		"</expected-output-file>\n");
	}

	# It would be nice if we could filter out internal calls for
	# times when runtest is called inside of the module for
	# multithreaded testing.
	$testlog->print(Carp::longmess());

	$testxml->print(" <stacktrace>test failure" .
			xmlify(Carp::longmess()) .
			"</stacktrace>\n");

	if (! $status_match)
	{
	 &QTC::TC("testdriver", "TestDriver status mismatch");
	 $testlog->printf("\tExpected status: %s\n", $out_exit_status);
	 $testlog->printf("\tActual status: %s\n", $exit_status);
	 $testxml->print(
		" <expected-status>$out_exit_status</expected-status>\n");
	 $testxml->print(
		" <actual-status>$exit_status</actual-status>\n");
	}
	if (! $output_match)
	{
	 &QTC::TC("testdriver", "TestDriver output mismatch");
	 $testlog->print("--> BEGIN EXPECTED OUTPUT <--\n");
	 $testxml->print(" <expected-output>");
	 if (defined $expected_file)
	 {
		write_file_to_fh($expected_file, $testlog);
		xml_write_file_to_fh($expected_file, $testxml);
	 }
	 elsif (defined $out_regexp)
	 {
		$testlog->print("regexp: " . $out_regexp);
		if ($out_regexp !~ m/\n$/s)
		{
		 $testlog->print("\n");
		}
		$testxml->print("regexp: " . xmlify($out_regexp));
	 }
	 else
	 {
		die +(+__PACKAGE__,
		 "->runtest: INTERNAL ERROR: no expected output\n");
	 }
	 $testlog->print("--> END EXPECTED OUTPUT <--\n" .
			 "--> BEGIN ACTUAL OUTPUT <--\n");
	 $testxml->print("</expected-output>\n" .
			 " <actual-output>");
	 write_file_to_fh($actual_file, $testlog);
	 xml_write_file_to_fh($actual_file, $testxml);
	 $testlog->print("--> END ACTUAL OUTPUT <--\n");
	 $testxml->print("</actual-output>\n");
	 if (defined $output_diff)
	 {
		&QTC::TC("testdriver", "TestDriver display diff");
		$testlog->print("--> DIFF EXPECTED ACTUAL <--\n");
		$testxml->print(" <diff-output>");
		write_file_to_fh($output_diff, $testlog);
		xml_write_file_to_fh($output_diff, $testxml);
		$testlog->print("--> END DIFFERENCES <--\n");
		$testxml->print("</diff-output>\n");
	 }
	 else
	 {
		&QTC::TC("testdriver", "TestDriver display no diff");
	 }
	}
	$testxml->print(" </testcase>\n");
 }
 else
 {
	$testxml->print(" />\n");
 }

 if (defined $threads)
 {
	if (! defined $expected_file)
	{
	 &QTC::TC("testdriver", "TestDriver thread data but no exp output");
	 croak +(+__PACKAGE__,
		 "->runtest: thread data invalid".
		 " without fixed test output\n");
	}

	my $thread_expected = "$tempdir/thread-expected";
	my $thread_actual = "$tempdir/thread-actual";
	copy($actual_file, $thread_actual);
	filter_seqgroups($expected_file, $thread_expected);

	$passed =
	 $rep->analyze_thread_data($description,
				 $expected_file, $actual_file,
				 $threads, $seqgroups)
	 && $passed;

	if ($passed)
	{
	 $rep->runtest($description . ": all subcases passed",
			 {$rep->STRING => ""},
			 {$rep->STRING => ""});
	}
	else
	{
	 $rep->runtest($description . ": original output",
			 {$rep->FILE => $thread_actual},
			 {$rep->FILE => $thread_expected});
	}

	unlink $thread_expected, $thread_actual;
 }

 $passed;
}

sub read_line
{
 my ($fh, $pid) = @_;
 my $line = undef;
 my $status = undef;

 if (defined $pid)
 {
	# It doesn't work to just call <$fh> in this case. For some
	# unknown reason, some programs occasionally exit and cause an
	# interrupted system call return from read which perl just
	# ignores, making the call to <$fh> hang. To protect
	# ourselves, we explicitly check for the program having exited
	# periodically if read hasn't returned anything.

	while (1)
	{
	 my $s = new IO::Select();
	 $s->add($fh);
	 my @ready = $s->can_read(1);
	 if (@ready == 0)
	 {
		if (waitpid($pid, WNOHANG) > 0)
		{
		 $status = $?;
		 last;
		}
		next;
	 }
	 else
	 {
		my $buf = "";
		my $status = sysread($fh, $buf, 1);
		if ((defined $status) && ($status == 1))
		{
		 $line = "" unless defined $line;
		 $line .= $buf;
		 last if $buf eq "\n";
		}
		else
		{
		 last;
		}
	 }
	}
 }
 else
 {
	$line = <$fh>;
 }
 ($line, $status);
}

sub write_file_to_fh
{
 my ($file, $out) = @_;
 my $in = new IO::File("<$file");
 if (defined $in)
 {
	binmode $in;
	my $ended_with_newline = 1;
	while (<$in>)
	{
	 $out->print($_);
	 $ended_with_newline = m/\n$/s;
	}
	if (! $ended_with_newline)
	{
	 $out->print("[no newline at end of data]\n");
	}
	$in->close();
 }
 else
 {
	$out->print("[unable to open $file: $!]\n");
 }
}

sub xmlify
{
 my ($str, $attr) = @_;
 $attr = 0 unless defined $attr;
 $str =~ s/\&/\&/g;
 $str =~ s/</</g;
 $str =~ s/>/>/g;
 $str =~ s/\"/"/g if $attr;
 $str =~ s/([\000-\010\013-\037\177-\377])/sprintf("&#x%02x;", ord($1))/ge;
 $str;
}

sub xml_write_file_to_fh
{
 my ($file, $out) = @_;
 my $in = new IO::File("<$file");
 if (defined $in)
 {
	binmode $in;
	while (defined ($_ = <$in>))
	{
	 $out->print(xmlify($_));
	}
	$in->close();
 }
 else
 {
	$out->print("[unable to open $file: $!]");
 }
}

sub check_hash_keys
{
 my ($hash, @keys) = @_;
 my %actual_keys = ();
 foreach my $k (keys %$hash)
 {
	$actual_keys{$k} = 1;
 }
 foreach my $k (@keys)
 {
	delete $actual_keys{$k};
 }
 my $extra_keys = join(', ', sort (keys %actual_keys));
 ($extra_keys, (map { $hash->{$_} } @keys));
}

sub print_testid
{
 my $rep = shift;
 my ($description) = @_;

 my $testnum = $rep->_testnum();
 my $category = $rep->_suitename();
 print_and_pad(sprintf("$category %2d (%s)", $testnum, $description));
 my $tc_filename = $ENV{'TC_FILENAME'} || "";
 if ($tc_filename && open(F, ">>$tc_filename"))
 {
	binmode F;
	printf F "# $category %2d (%s)\n", $testnum, $description;
	close(F);
 }
 $rep->_testnum(++$testnum);
}

sub update_counters
{
 my $rep = shift;
 my ($outcome, $exp_outcome) = @_;

 (($outcome eq PASS) && ($exp_outcome eq PASS)) &&
	$rep->{+__PACKAGE__}{$f_passes}++;
 (($outcome eq PASS) && ($exp_outcome eq FAIL)) &&
	$rep->{+__PACKAGE__}{$f_xpasses}++;
 (($outcome eq FAIL) && ($exp_outcome eq PASS)) &&
	$rep->{+__PACKAGE__}{$f_fails}++;
 (($outcome eq FAIL) && ($exp_outcome eq FAIL)) &&
	$rep->{+__PACKAGE__}{$f_xfails}++;

 ($outcome eq PASS);
}

sub analyze_thread_data
{
 my $rep = shift;
 my ($description, $expected, $actual,
	$expected_threads, $expected_seqgroups) = @_;

 my $tempdir = $rep->_tempdir();

 my %actual_threads = ();
 my %actual_seqgroups = ();
 my @errors = ();

 $rep->thread_cleanup();
 $rep->split_combined($expected);
 $rep->analyze_threaded_output
	($actual, \%actual_threads, \%actual_seqgroups, \@errors);

 # Make sure we saw the right threads and sequences

 my $desired = "threads:\n";
 $desired .= join('', map { " $_\n" } (sort @$expected_threads));
 $desired .= "sequence groups:\n";
 if (defined $expected_seqgroups)
 {
	$desired .= join('', map { " $_\n" } (sort @$expected_seqgroups));
 }

 my $observed = "threads:\n";
 $observed .= join('', map { " $_\n" } (sort keys %actual_threads));
 $observed .= "sequence groups:\n";
 $observed .= join('', map { " $_\n" } (sort keys %actual_seqgroups));

 if (@errors)
 {
	$observed .= join('', @errors);
 }

 my $passed =
	$rep->runtest("$description: multithreaded data",
		 {$rep->STRING => $observed},
		 {$rep->STRING => $desired});

 foreach my $th (@{$expected_threads})
 {
	create_if_missing("$tempdir/$th.thread-actual",
			 "[no actual output]\n");
	filter_seqgroups("$tempdir/$th.thread-expected",
			 "$tempdir/$th.thread-filtered");
	$passed =
	 $rep->runtest($description . ": thread $th",
			 {$rep->FILE => "$tempdir/$th.thread-actual"},
			 {$rep->FILE => "$tempdir/$th.thread-filtered"})
	 && $passed;
 }
 if (defined $expected_seqgroups)
 {
	foreach my $sg (@{$expected_seqgroups})
	{
	 create_if_missing("$tempdir/$sg.seq-actual",
			 "[no actual output]\n");
	 $passed =
		$rep->runtest($description . ": seqgroup $sg",
			 {$rep->FILE => "$tempdir/$sg.seq-actual"},
			 {$rep->FILE => "$tempdir/$sg.seq-expected"})
		&& $passed;
	}
 }

 $rep->thread_cleanup();

 $passed;
}

sub analyze_threaded_output
{
 my $rep = shift;
 my ($file, $threads, $seqgroups, $errors) = @_;
 my $sequence_checking = 1;
 open(F, "<$file") or die +__PACKAGE__, ": can't open $file: $!\n";
 binmode F;
 my $cur_thread = undef;
 while (<F>)
 {
	if (m/^(\[\[(.+?)\]\]:)/)
	{
	 my $tag = $1;
	 my $thread = $2;
	 my $rest = $';	#' [unconfuse emacs font lock mode]

	 $rep->handle_line($file, $., $tag, $thread, $rest,
			 \$sequence_checking, $threads, $seqgroups,
			 $errors);

	 $cur_thread = $thread;
	}
	else
	{
	 $rep->handle_line($file, $., "", $cur_thread, $_,
			 \$sequence_checking, $threads, $seqgroups,
			 $errors);
	}
 }
 close(F);
}

sub handle_line
{
 my $rep = shift;
 my ($file, $lineno, $tag, $thread, $rest,
	$sequence_checking, $threads, $seqgroups, $errors) = @_;

 my $tempdir = $rep->_tempdir();

 if (! exists $threads->{$thread})
 {
	my $fh = new IO::File("<$tempdir/$thread.thread-expected");
	if (! $fh)
	{
	 &QTC::TC("testdriver", "TestDriver no input file for thread");
	 $fh = undef;
	 $$sequence_checking = 0;
	 push(@$errors,
		 "$file:$.: no input file for thread $thread; " .
		 "sequence checking abandoned\n");
	}
	else
	{
	 binmode $fh;
	}
	$threads->{$thread} = $fh;
 }
 my $known = defined($threads->{$thread});

 my $seqs = "";
 if ($$sequence_checking)
 {
	my $fh = $threads->{$thread};
	my $next_input_line = scalar(<$fh>);
	if (! defined $next_input_line)
	{
	 $next_input_line = "[EOF]\n";
	}
	$seqs = $rep->strip_seqs(\$next_input_line);
	if ($next_input_line eq $rest)
	{
	 if ($seqs ne "")
	 {
		$rep->handle_seqs($seqs, $tag . $rest, $seqgroups);
	 }
	}
	else
	{
	 &QTC::TC("testdriver", "TestDriver thread mismatch");
	 $$sequence_checking = 0;
	 push(@$errors,
		 "$file:$.: thread $thread mismatch; " .
		 "sequencing checking abandoned\n" .
		 "actual $rest" .
		 "expected $next_input_line");
	}
 }
 output_line("$tempdir/$thread.thread-actual", $rest);
 if (! $known)
 {
	&QTC::TC("testdriver", "TestDriver output from unknown thread");
	push(@$errors, "[[$thread]]:$rest");
 }
}

sub strip_seqs
{
 my $rep = shift;
 my $linep = shift;
 my $seqs = "";
 if ($$linep =~ s/^\(\(.*?\)\)//)
 {
	$seqs = $&;
 }
 $seqs;
}

sub handle_seqs
{
 my $rep = shift;
 my ($seqs, $line, $seqgroups) = @_;
 my $tempdir = $rep->_tempdir();
 $seqs =~ s/^\(\((.*?)\)\)/$1/;
 foreach my $seq (split(',', $seqs))
 {
	$seqgroups->{$seq} = 1;
	output_line("$tempdir/$seq.seq-actual", $line);
 }
}

sub filter_seqgroups
{
 my ($infile, $outfile) = @_;
 open(F, "<$infile") or
	die +__PACKAGE__, ": can't open $infile: $!\n";
 binmode F;
 open(O, ">$outfile") or
	die +__PACKAGE__, ": can't create $outfile: $!\n";
 binmode O;
 while (<F>)
 {
	s/^((?:\[\[.+?\]\]:)?)\(\(.+?\)\)/$1/;
	print O;
 }
 close(O);
 close(F);
}

sub output_line
{
 my ($file, $line) = @_;
 open(O, ">>$file") or die +__PACKAGE__, ": can't open $file: $!\n";
 binmode O;
 print O $line or die +__PACKAGE__, ": can't append to $file: $!\n";
 close(O) or die +__PACKAGE__, ": close $file failed: $!\n";
}

sub create_if_missing
{
 my ($file, $line) = @_;
 if (! -e $file)
 {
	open(O, ">$file") or die +__PACKAGE__, ": can't create $file: $!\n";
	binmode O;
	print O $line;
	close(O);
 }
}

sub split_combined
{
 my $rep = shift;
 my $combined = shift;
 my $tempdir = $rep->_tempdir();

 open(C, "<$combined") or die +__PACKAGE__, ": can't open $combined: $!\n";
 binmode C;
 my %files = ();
 my $last_thread_fh = undef;
 while (<C>)
 {
	my $thread_fh = $last_thread_fh;
	my $thread_out = undef;
	if (m/^(\[\[(.+?)\]\]:)(\(\((.+?)\)\))?(.*\n?)$/)
	{
	 my $thread_full = $1;
	 my $thread = $2;
	 my $seq_full = $3;
	 my $seq = $4;
	 my $rest = $5;
	 my $seq_out = undef;
	 $thread_out = $rest;

	 my @seq_files = ();
	 my $thread_file = "$tempdir/$thread.thread-expected";
	 if (defined $seq_full)
	 {
		$thread_out = $seq_full . $thread_out;
		$seq_out = $thread_full . $rest;
		foreach my $s (split(/,/, $seq))
		{
		 my $f = "$tempdir/$s.seq-expected";
		 my $fh = cache_open(\%files, $f);
		 $fh->print($seq_out);
		}
	 }

	 $thread_fh = cache_open(\%files, $thread_file);
	}
	else
	{
	 $thread_out = $_;
	}
	if ((defined $thread_out) && (! defined $thread_fh))
	{
	 die +__PACKAGE__, ": no place to put output lines\n";
	}
	$thread_fh->print($thread_out) if defined $thread_out;
	$last_thread_fh = $thread_fh;
 }
 close(C);
 map { $_->close() } (values %files);
}

sub cache_open
{
 my ($cache, $file) = @_;
 if (! defined $file)
 {
	return undef;
 }
 if (! exists $cache->{$file})
 {
	unlink $file;
	my $fh = new IO::File(">$file") or
	 die +__PACKAGE__, ": can't open $file: $!\n";
	binmode $fh;
	$cache->{$file} = $fh;
 }
 $cache->{$file};
}

sub thread_cleanup
{
 my $rep = shift;
 my $dir = $rep->_tempdir();
 my @files = +(grep { m/\.(thread|seq)-(actual|expected|filtered)$/ }
		 (glob("$dir/*")));
 if (@files)
 {
	unlink @files;
 }
}

sub rmrf
{
 my $path = shift;
 return unless -e $path;
 my $wanted = sub
 {
	if ((-d $_) && (! -l $_))
	{
	 rmdir $_ or die "rmdir $_ failed: $!\n";
	}
	else
	{
	 unlink $_ or die "unlink $_ failed: $!\n";
	}
 };
 finddepth({wanted => $wanted, no_chdir => 1}, $path);
}

sub safe_pipe
{
 my $rep = shift;
 my ($cmd, $outfile) = @_;
 my $result = 0;

 if ($in_windows)
 {
	$result = $rep->winrun($cmd, File::Spec->devnull(), $outfile);
 }
 else
 {
	my $pid = open(C, "-|");

	if ($pid)
	{
	 # parent
	 my $out = new IO::File(">$outfile") or
		die +__PACKAGE__, ": can't open $outfile: $!\n";
	 binmode C;
	 while (<C>)
	 {
		$out->print($_);
	 }
	 close(C);
	 $result = $?;
	 $out->close();
	}
	else
	{
	 # child
	 open(STDERR, ">&STDOUT");
	 exec(@$cmd) || die +__PACKAGE__, ": $cmd->[0] failed: $!\n";
	}
 }

 $result;
}

sub winrun
{
 # This function does several things to make running stuff on
 # Windows look sort of like running things on UNIX. It assumes
 # MinGW perl is running in an MSYS/MinGW environment.
 #
 # * When an MSYS/MinGW program is run with system("..."), its
 # newlines generate \r\n, but when it's run from MSYS sh, its
 # newlines generate \n. We want \n for UNIX-like programs.
 #
 # * system("...") in perl doesn't have any special magic to
 # handle #! lines in scripts. A lot of test suites will count
 # on that.
 #
 # * There's no Windows equivalent to execve with separate
 # arguments, so all sorts of fancy quoting is necessary when *
 # dealing with arguments with spaces, etc.
 #
 # * Pipes work unreliably. Fork emulation is very incomplete.
 #
 # To work around these issues, we ensure that everything is
 # actually executed from the MSYS /bin/sh. We find the actual
 # path of that and then write a shell script which we explicitly
 # invoke as an argument to /bin/sh. If we have a string that we
 # want executed with /bin/sh, we include the string in the shell
 # script. If we have an array, we pass the array on the
 # commandline to the shell script and let it preserve spacing. We
 # also do our output redirection in the shell script itself since
 # redirection of STDOUT and STDERR doesn't carry forward to
 # programs invoked by programs we invoke. Finally, we filter out
 # errors generated by the script itself, since it is supposed to
 # be an invisible buffer for smoother execution of programs.
 # Experience shows that its output comes from things like printing
 # the names of signals generated by subsidiary programs.

 my $rep = shift;
 my ($in_command, $in, $out) = @_;
 my $tempdir = $rep->_tempdir();
 my $tempfilename = "$tempdir/winrun.tmp";
 if (! defined $winbin)
 {
	my $comspec = $ENV{'COMSPEC'};
	$comspec =~ s,\\,/,g;
	if ((system("sh -c 'cd /bin; $comspec /c cd'" .
		 " > $tempfilename") == 0) &&
	 open(F, "<$tempfilename"))
	{
	 $winbin = <F>;
	 close(F);
	 $winbin =~ s,[\r\n],,g;
	 $winbin =~ s,\\,/,g;
	}
	if (! defined $winbin)
	{
	 die +__PACKAGE__, ": unable to find windows path to /bin\n";
	}
 }
 my $script = "$tempdir/tmpscript";
 open(F, ">$script") or
	croak +(+__PACKAGE__,
		"->runtest: unable to open $script to write: $!\n");
 binmode F;
 print F "exec >$tempfilename\n";
 print F "exec 2>&1\n";
 print F "exec <$in\n";
 my @cmd = ("$winbin/sh", $script);
 if (ref($in_command) eq 'ARRAY')
 {
	# For debugging, write out the args
	foreach my $arg (@$in_command)
	{
	 print F "# $arg\n";
	}
	print F '"$@"', "\n";
	push(@cmd, @$in_command);
 }
 else
 {
	print F "$in_command\n";
 }
 close(F);
 my $status = system @cmd;
 if (open(IN, "<$tempfilename") &&
	open(OUT, ">$out"))
 {
	binmode IN;
	binmode OUT;
	while (<IN>)
	{
	 next if m/^$script:/;
	 print OUT;
	}
	close(IN);
	close(OUT);
 }
 $status;
}

1;

#
END OF TestDriver
#

qpdf-7.1.0/qpdf/build.mk

BINS_qpdf = qpdf test_driver pdf_from_scratch test_large_file
CBINS_qpdf = qpdf-ctest

TARGETS_qpdf = $(foreach B,$(BINS_qpdf) $(CBINS_qpdf),qpdf/$(OUTPUT_DIR)/$(call binname,$(B)))

$(TARGETS_qpdf): $(TARGETS_libqpdf)

INCLUDES_qpdf = include

TC_SRCS_qpdf = $(wildcard libqpdf/*.cc) $(wildcard qpdf/*.cc)

$(foreach B,$(BINS_qpdf),$(eval \
 OBJS_$(B) = $(call src_to_obj,qpdf/$(B).cc)))
$(foreach B,$(CBINS_qpdf),$(eval \
 OBJS_$(B) = $(call c_src_to_obj,qpdf/$(B).c)))

ifeq ($(GENDEPS),1)
-include $(foreach B,$(BINS_qpdf) $(CBINS_qpdf),$(call obj_to_dep,$(OBJS_$(B))))
endif

$(foreach B,$(BINS_qpdf),$(eval \
 $(OBJS_$(B)): qpdf/$(OUTPUT_DIR)/%.$(OBJ): qpdf/$(B).cc ; \
	$(call compile,qpdf/$(B).cc,$(INCLUDES_qpdf))))

$(foreach B,$(CBINS_qpdf),$(eval \
 $(OBJS_$(B)): qpdf/$(OUTPUT_DIR)/%.$(OBJ): qpdf/$(B).c ; \
	$(call c_compile,qpdf/$(B).c,$(INCLUDES_qpdf))))

$(foreach B,$(BINS_qpdf) $(CBINS_qpdf),$(eval \
 qpdf/$(OUTPUT_DIR)/$(call binname,$(B)): $(OBJS_$(B)) ; \
	$(call makebin,$(OBJS_$(B)),$$@,$(LDFLAGS_libqpdf) $(LDFLAGS),$(LIBS_libqpdf) $(LIBS))))

qpdf-7.1.0/qpdf/qpdf-ctest.c

#include <qpdf/qpdf-c.h>
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>

static char* whoami = 0;
static qpdf_data qpdf = 0;

static FILE* safe_fopen(char const* filename, char const* mode)
{
 // This function is basically a "C" port of QUtil::safe_fopen.
 FILE* f = 0;
#ifdef _MSC_VER
 errno_t err = fopen_s(&f, filename, mode);
 if (err != 0)
 {
 char buf[94];
 strerror_s(buf, sizeof(buf), errno);
	fprintf(stderr, "%s: unable to open %s: %s\n",
		whoami, filename, buf);
	exit(2);
 }
#else
 f = fopen(filename, mode);
 if (f == NULL)
 {
	fprintf(stderr, "%s: unable to open %s: %s\n",
		whoami, filename, strerror(errno));
	exit(2);
 }
#endif
 return f;
}

static void report_errors()
{
#ifdef _WIN32
define POS_FMT " pos : %I64d\n"
#else
/* If your compiler doesn't support lld, change to ld and lose
 precision on offsets in error messages. */
define POS_FMT " pos : %lld\n"
#endif
 qpdf_error e = 0;
 while (qpdf_more_warnings(qpdf))
 {
	e = qpdf_next_warning(qpdf);
	printf("warning: %s\n", qpdf_get_error_full_text(qpdf, e));
	printf(" code: %d\n", qpdf_get_error_code(qpdf, e));
	printf(" file: %s\n", qpdf_get_error_filename(qpdf, e));
	printf(POS_FMT, qpdf_get_error_file_position(qpdf, e));
	printf(" text: %s\n", qpdf_get_error_message_detail(qpdf, e));
 }
 if (qpdf_has_error(qpdf))
 {
	e = qpdf_get_error(qpdf);
	assert(qpdf_has_error(qpdf) == QPDF_FALSE);
	printf("error: %s\n", qpdf_get_error_full_text(qpdf, e));
	printf(" code: %d\n", qpdf_get_error_code(qpdf, e));
	printf(" file: %s\n", qpdf_get_error_filename(qpdf, e));
	printf(POS_FMT, qpdf_get_error_file_position(qpdf, e));
	printf(" text: %s\n", qpdf_get_error_message_detail(qpdf, e));
 }
 else
 {
	e = qpdf_get_error(qpdf);
	assert(e == 0);
	assert(qpdf_get_error_code(qpdf, e) == qpdf_e_success);
	// Call these to ensure that they can be called on a null
	// error pointer.
	(void)qpdf_get_error_full_text(qpdf, e);
	(void)qpdf_get_error_filename(qpdf, e);
	(void)qpdf_get_error_file_position(qpdf, e);
	(void)qpdf_get_error_message_detail(qpdf, e);
 }
}

static void read_file_into_memory(char const* filename,
				 char** buf, unsigned long* size)
{
 char* buf_p = 0;
 FILE* f = NULL;
 size_t bytes_read = 0;
 size_t len = 0;

 f = safe_fopen(filename, "rb");
 fseek(f, 0, SEEK_END);
 *size = (unsigned long) ftell(f);
 fseek(f, 0, SEEK_SET);
 *buf = malloc(*size);
 if (*buf == NULL)
 {
	fprintf(stderr, "%s: unable to allocate %lu bytes\n",
		whoami, *size);
	exit(2);
 }
 buf_p = *buf;
 bytes_read = 0;
 len = 0;
 while ((len = fread(buf_p + bytes_read, 1, *size - bytes_read, f)) > 0)
 {
	bytes_read += len;
 }
 if (bytes_read != *size)
 {
	if (ferror(f))
	{
	 fprintf(stderr, "%s: failure reading file %s into memory:",
		 whoami, filename);
	}
	else
	{
	 fprintf(stderr, "%s: premature EOF reading file %s:",
		 whoami, filename);
	}
	fprintf(stderr, " read %lu, wanted %lu\n",
		(unsigned long) bytes_read, (unsigned long) *size);
	exit(2);
 }
 fclose(f);
}

static void test01(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_read(qpdf, infile, password);
 printf("version: %s\n", qpdf_get_pdf_version(qpdf));
 if (qpdf_get_pdf_extension_level(qpdf) > 0)
 {
 printf("extension level: %d\n", qpdf_get_pdf_extension_level(qpdf));
 }
 printf("linearized: %d\n", qpdf_is_linearized(qpdf));
 printf("encrypted: %d\n", qpdf_is_encrypted(qpdf));
 if (qpdf_is_encrypted(qpdf))
 {
	printf("user password: %s\n", qpdf_get_user_password(qpdf));
	printf("extract for accessibility: %d\n",
	 qpdf_allow_accessibility(qpdf));
	printf("extract for any purpose: %d\n",
	 qpdf_allow_extract_all(qpdf));
	printf("print low resolution: %d\n",
	 qpdf_allow_print_low_res(qpdf));
	printf("print high resolution: %d\n",
	 qpdf_allow_print_high_res(qpdf));
	printf("modify document assembly: %d\n",
	 qpdf_allow_modify_assembly(qpdf));
	printf("modify forms: %d\n",
	 qpdf_allow_modify_form(qpdf));
	printf("modify annotations: %d\n",
	 qpdf_allow_modify_annotation(qpdf));
	printf("modify other: %d\n",
	 qpdf_allow_modify_other(qpdf));
	printf("modify anything: %d\n",
	 qpdf_allow_modify_all(qpdf));
 }
 report_errors();
}

static void test02(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_set_suppress_warnings(qpdf, QPDF_TRUE);
 if (((qpdf_read(qpdf, infile, password) & QPDF_ERRORS) == 0) &&
	((qpdf_init_write(qpdf, outfile) & QPDF_ERRORS) == 0))
 {
	qpdf_set_static_ID(qpdf, QPDF_TRUE);
	qpdf_write(qpdf);
 }
 report_errors();
}

static void test03(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_read(qpdf, infile, password);
 qpdf_init_write(qpdf, outfile);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_set_content_normalization(qpdf, QPDF_TRUE);
 qpdf_write(qpdf);
 report_errors();
}

static void test04(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_set_ignore_xref_streams(qpdf, QPDF_TRUE);
 qpdf_read(qpdf, infile, password);
 qpdf_init_write(qpdf, outfile);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_write(qpdf);
 report_errors();
}

static void test05(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_read(qpdf, infile, password);
 qpdf_init_write(qpdf, outfile);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_set_linearization(qpdf, QPDF_TRUE);
 qpdf_write(qpdf);
 report_errors();
}

static void test06(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 char* buf = NULL;
 unsigned long size = 0;
 read_file_into_memory(infile, &buf, &size);
 qpdf_read_memory(qpdf, infile, buf, size, password);
 qpdf_init_write(qpdf, outfile);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_set_object_stream_mode(qpdf, qpdf_o_generate);
 qpdf_write(qpdf);
 report_errors();
 free(buf);
}

static void test07(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_read(qpdf, infile, password);
 qpdf_init_write(qpdf, outfile);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_set_qdf_mode(qpdf, QPDF_TRUE);
 qpdf_write(qpdf);
 report_errors();
}

static void test08(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_read(qpdf, infile, password);
 qpdf_init_write(qpdf, outfile);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_set_qdf_mode(qpdf, QPDF_TRUE);
 qpdf_set_suppress_original_object_IDs(qpdf, QPDF_TRUE);
 qpdf_write(qpdf);
 report_errors();
}

static void test09(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_read(qpdf, infile, password);
 qpdf_init_write(qpdf, outfile);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_set_stream_data_mode(qpdf, qpdf_s_uncompress);
 qpdf_write(qpdf);
 report_errors();
}

static void test10(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_set_attempt_recovery(qpdf, QPDF_FALSE);
 qpdf_read(qpdf, infile, password);
 report_errors();
}

static void test11(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_read(qpdf, infile, password);
 qpdf_init_write(qpdf, outfile);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_set_r2_encryption_parameters(
	qpdf, "user1", "owner1", QPDF_FALSE, QPDF_TRUE, QPDF_TRUE, QPDF_TRUE);
 qpdf_write(qpdf);
 report_errors();
}

static void test12(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_read(qpdf, infile, password);
 qpdf_init_write(qpdf, outfile);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_set_r3_encryption_parameters(
	qpdf, "user2", "owner2", QPDF_TRUE, QPDF_TRUE,
	qpdf_r3p_low, qpdf_r3m_all);
 qpdf_write(qpdf);
 report_errors();
}

static void test13(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_read(qpdf, infile, password);
 printf("user password: %s\n", qpdf_get_user_password(qpdf));
 qpdf_init_write(qpdf, outfile);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_set_preserve_encryption(qpdf, QPDF_FALSE);
 qpdf_write(qpdf);
 report_errors();
}

static void test14(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_read(qpdf, infile, password);
 qpdf_init_write(qpdf, outfile);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_set_minimum_pdf_version_and_extension(qpdf, "1.7", 8);
 qpdf_write(qpdf);
 qpdf_init_write(qpdf, outfile2);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_force_pdf_version(qpdf, "1.4");
 qpdf_write(qpdf);
 report_errors();
}

static void test15(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_read(qpdf, infile, password);
 qpdf_init_write(qpdf, outfile);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_set_static_aes_IV(qpdf, QPDF_TRUE);
 qpdf_set_r4_encryption_parameters(
	qpdf, "user2", "owner2", QPDF_TRUE, QPDF_TRUE,
	qpdf_r3p_low, qpdf_r3m_all, QPDF_TRUE, QPDF_TRUE);
 qpdf_write(qpdf);
 report_errors();
}

static void print_info(char const* key)
{
 char const* value = qpdf_get_info_key(qpdf, key);
 printf("Info key %s: %s\n",
	 key, (value ? value : "(null)"));
}

static void test16(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 unsigned long buflen = 0L;
 unsigned char const* buf = 0;
 FILE* f = 0;

 qpdf_read(qpdf, infile, password);
 print_info("/Author");
 print_info("/Producer");
 print_info("/Creator");
 qpdf_set_info_key(qpdf, "/Author", "Mr. Potato Head");
 qpdf_set_info_key(qpdf, "/Producer", "QPDF library");
 qpdf_set_info_key(qpdf, "/Creator", 0);
 print_info("/Author");
 print_info("/Producer");
 print_info("/Creator");
 qpdf_init_write_memory(qpdf);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_set_static_aes_IV(qpdf, QPDF_TRUE);
 qpdf_set_stream_data_mode(qpdf, qpdf_s_uncompress);
 qpdf_write(qpdf);
 f = safe_fopen(outfile, "wb");
 buflen = qpdf_get_buffer_length(qpdf);
 buf = qpdf_get_buffer(qpdf);
 fwrite(buf, 1, buflen, f);
 fclose(f);
 report_errors();
}

static void test17(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_read(qpdf, infile, password);
 qpdf_init_write(qpdf, outfile);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_set_static_aes_IV(qpdf, QPDF_TRUE);
 qpdf_set_r5_encryption_parameters(
	qpdf, "user3", "owner3", QPDF_TRUE, QPDF_TRUE,
	qpdf_r3p_low, qpdf_r3m_all, QPDF_TRUE);
 qpdf_write(qpdf);
 report_errors();
}

static void test18(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_read(qpdf, infile, password);
 qpdf_init_write(qpdf, outfile);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_set_static_aes_IV(qpdf, QPDF_TRUE);
 qpdf_set_r6_encryption_parameters(
	qpdf, "user4", "owner4", QPDF_TRUE, QPDF_TRUE,
	qpdf_r3p_low, qpdf_r3m_all, QPDF_TRUE);
 qpdf_write(qpdf);
 report_errors();
}

static void test19(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_read(qpdf, infile, password);
 qpdf_init_write(qpdf, outfile);
 qpdf_set_deterministic_ID(qpdf, QPDF_TRUE);
 qpdf_write(qpdf);
 report_errors();
}

static void test20(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_read(qpdf, infile, password);
 qpdf_init_write(qpdf, outfile);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_set_static_aes_IV(qpdf, QPDF_TRUE);
 qpdf_set_compress_streams(qpdf, QPDF_FALSE);
 qpdf_set_decode_level(qpdf, qpdf_dl_specialized);
 qpdf_write(qpdf);
 report_errors();
}

static void test21(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_read(qpdf, infile, password);
 qpdf_init_write(qpdf, outfile);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_set_static_aes_IV(qpdf, QPDF_TRUE);
 qpdf_set_preserve_unreferenced_objects(qpdf, QPDF_TRUE);
 qpdf_write(qpdf);
 report_errors();
}

static void test22(char const* infile,
		 char const* password,
		 char const* outfile,
		 char const* outfile2)
{
 qpdf_read(qpdf, infile, password);
 qpdf_init_write(qpdf, outfile);
 qpdf_set_static_ID(qpdf, QPDF_TRUE);
 qpdf_set_static_aes_IV(qpdf, QPDF_TRUE);
 qpdf_set_compress_streams(qpdf, QPDF_FALSE);
 qpdf_set_newline_before_endstream(qpdf, QPDF_TRUE);
 qpdf_write(qpdf);
 report_errors();
}

int main(int argc, char* argv[])
{
 char* p = 0;
 int n = 0;
 char const* infile = 0;
 char const* password = 0;
 char const* outfile = 0;
 char const* outfile2 = 0;
 void (*fn)(char const*, char const*, char const*, char const*) = 0;

 if ((p = strrchr(argv[0], '/')) != NULL)
 {
	whoami = p + 1;
 }
 else if ((p = strrchr(argv[0], '\\')) != NULL)
 {
	whoami = p + 1;
 }
 else
 {
	whoami = argv[0];
 }
 if ((argc == 2) && (strcmp(argv[1], "--version") == 0))
 {
	printf("qpdf-ctest version %s\n", qpdf_get_qpdf_version());
	return 0;
 }

 if (argc < 5)
 {
	fprintf(stderr, "usage: %s n infile password outfile\n", whoami);
	exit(2);
 }

 n = atoi(argv[1]);
 infile = argv[2];
 password = argv[3];
 outfile = argv[4];
 outfile2 = (argc > 5 ? argv[5] : 0);

 fn = ((n == 1) ? test01 :
	 (n == 2) ? test02 :
	 (n == 3) ? test03 :
	 (n == 4) ? test04 :
	 (n == 5) ? test05 :
	 (n == 6) ? test06 :
	 (n == 7) ? test07 :
	 (n == 8) ? test08 :
	 (n == 9) ? test09 :
	 (n == 10) ? test10 :
	 (n == 11) ? test11 :
	 (n == 12) ? test12 :
	 (n == 13) ? test13 :
	 (n == 14) ? test14 :
	 (n == 15) ? test15 :
	 (n == 16) ? test16 :
	 (n == 17) ? test17 :
	 (n == 18) ? test18 :
	 (n == 19) ? test19 :
	 (n == 20) ? test20 :
	 (n == 21) ? test21 :
	 (n == 22) ? test22 :
	 0);

 if (fn == 0)
 {
	fprintf(stderr, "%s: invalid test number %d\n", whoami, n);
	exit(2);
 }

 qpdf = qpdf_init();
 fn(infile, password, outfile, outfile2);
 qpdf_cleanup(&qpdf);
 assert(qpdf == 0);

 return 0;
}

qpdf-7.1.0/qpdf/qpdf.cc

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <fcntl.h>
#include <stdio.h>
#include <ctype.h>

#include <qpdf/QUtil.hh>
#include <qpdf/QTC.hh>
#include <qpdf/Pl_StdioFile.hh>
#include <qpdf/Pl_Discard.hh>
#include <qpdf/PointerHolder.hh>

#include <qpdf/QPDF.hh>
#include <qpdf/QPDFExc.hh>

#include <qpdf/QPDFWriter.hh>

static int const EXIT_ERROR = 2;
static int const EXIT_WARNING = 3;

static char const* whoami = 0;

struct PageSpec
{
 PageSpec(std::string const& filename,
 char const* password,
 char const* range) :
 filename(filename),
 password(password),
 range(range)
 {
 }

 std::string filename;
 char const* password;
 char const* range;
};

struct RotationSpec
{
 RotationSpec(int angle = 0, bool relative = false) :
 angle(angle),
 relative(relative)
 {
 }

 int angle;
 bool relative;
};

struct Options
{
 Options() :
 password(0),
 linearize(false),
 decrypt(false),
 split_pages(0),
 verbose(false),
 copy_encryption(false),
 encryption_file(0),
 encryption_file_password(0),
 encrypt(false),
 password_is_hex_key(false),
 keylen(0),
 r2_print(true),
 r2_modify(true),
 r2_extract(true),
 r2_annotate(true),
 r3_accessibility(true),
 r3_extract(true),
 r3_print(qpdf_r3p_full),
 r3_modify(qpdf_r3m_all),
 force_V4(false),
 force_R5(false),
 cleartext_metadata(false),
 use_aes(false),
 stream_data_set(false),
 stream_data_mode(qpdf_s_compress),
 compress_streams(true),
 compress_streams_set(false),
 decode_level(qpdf_dl_generalized),
 decode_level_set(false),
 normalize_set(false),
 normalize(false),
 suppress_recovery(false),
 object_stream_set(false),
 object_stream_mode(qpdf_o_preserve),
 ignore_xref_streams(false),
 qdf_mode(false),
 preserve_unreferenced_objects(false),
 newline_before_endstream(false),
 show_npages(false),
 deterministic_id(false),
 static_id(false),
 static_aes_iv(false),
 suppress_original_object_id(false),
 show_encryption(false),
 show_encryption_key(false),
 check_linearization(false),
 show_linearization(false),
 show_xref(false),
 show_obj(0),
 show_gen(0),
 show_raw_stream_data(false),
 show_filtered_stream_data(false),
 show_pages(false),
 show_page_images(false),
 check(false),
 require_outfile(true),
 infilename(0),
 outfilename(0)
 {
 }

 char const* password;
 bool linearize;
 bool decrypt;
 int split_pages;
 bool verbose;
 bool copy_encryption;
 char const* encryption_file;
 char const* encryption_file_password;
 bool encrypt;
 bool password_is_hex_key;
 std::string user_password;
 std::string owner_password;
 int keylen;
 bool r2_print;
 bool r2_modify;
 bool r2_extract;
 bool r2_annotate;
 bool r3_accessibility;
 bool r3_extract;
 qpdf_r3_print_e r3_print;
 qpdf_r3_modify_e r3_modify;
 bool force_V4;
 bool force_R5;
 bool cleartext_metadata;
 bool use_aes;
 bool stream_data_set;
 qpdf_stream_data_e stream_data_mode;
 bool compress_streams;
 bool compress_streams_set;
 qpdf_stream_decode_level_e decode_level;
 bool decode_level_set;
 bool normalize_set;
 bool normalize;
 bool suppress_recovery;
 bool object_stream_set;
 qpdf_object_stream_e object_stream_mode;
 bool ignore_xref_streams;
 bool qdf_mode;
 bool preserve_unreferenced_objects;
 bool newline_before_endstream;
 std::string min_version;
 std::string force_version;
 bool show_npages;
 bool deterministic_id;
 bool static_id;
 bool static_aes_iv;
 bool suppress_original_object_id;
 bool show_encryption;
 bool show_encryption_key;
 bool check_linearization;
 bool show_linearization;
 bool show_xref;
 int show_obj;
 int show_gen;
 bool show_raw_stream_data;
 bool show_filtered_stream_data;
 bool show_pages;
 bool show_page_images;
 bool check;
 std::vector<PageSpec> page_specs;
 std::map<std::string, RotationSpec> rotations;
 bool require_outfile;
 char const* infilename;
 char const* outfilename;
};

struct QPDFPageData
{
 QPDFPageData(QPDF* qpdf, char const* range);

 QPDF* qpdf;
 std::vector<QPDFObjectHandle> orig_pages;
 std::vector<int> selected_pages;
};

class DiscardContents: public QPDFObjectHandle::ParserCallbacks
{
 public:
 virtual ~DiscardContents() {}
 virtual void handleObject(QPDFObjectHandle) {}
 virtual void handleEOF() {}
};

// Note: let's not be too noisy about documenting the fact that this
// software purposely fails to enforce the distinction between user
// and owner passwords. A user password is sufficient to gain full
// access to the PDF file, so there is nothing this software can do
// with an owner password that it couldn't do with a user password
// other than changing the /P value in the encryption dictionary.
// (Setting this value requires the owner password.) The
// documentation discusses this as well.

static char const* help = "\
\n\
Usage: qpdf [options] { infilename | --empty } [outfilename]\n\
\n\
An option summary appears below. Please see the documentation for details.\n\
\n\
If @filename appears anywhere in the command-line, each line of filename\n\
will be interpreted as an argument. No interpolation is done. Line\n\
terminators are stripped. @- can be specified to read from standard input.\n\
\n\
Note that when contradictory options are provided, whichever options are\n\
provided last take precedence.\n\
\n\
\n\
Basic Options\n\
-------------\n\
\n\
--password=password specify a password for accessing encrypted files\n\
--verbose provide additional informational output\n\
--linearize generated a linearized (web optimized) file\n\
--copy-encryption=file copy encryption parameters from specified file\n\
--encryption-file-password=password\n\
 password used to open the file from which encryption\n\
 parameters are being copied\n\
--encrypt options -- generate an encrypted file\n\
--decrypt remove any encryption on the file\n\
--password-is-hex-key treat primary password option as a hex-encoded key\n\
--pages options -- select specific pages from one or more files\n\
--rotate=[+|-]angle:page-range\n\
 rotate each specified page 90, 180, or 270 degrees\n\
--split-pages=[n] write each output page to a separate file\n\
\n\
If none of --copy-encryption, --encrypt or --decrypt are given, qpdf will\n\
preserve any encryption data associated with a file.\n\
\n\
Note that when copying encryption parameters from another file, all\n\
parameters will be copied, including both user and owner passwords, even\n\
if the user password is used to open the other file. This works even if\n\
the owner password is not known.\n\
\n\
The --password-is-hex-key option overrides the normal computation of\n\
encryption keys. It only applies to the password used to open the main\n\
file. This option is not ordinarily useful but can be helpful for forensic\n\
or investigatory purposes. See manual for further discussion.\n\
\n\
The --rotate flag can be used to specify pages to rotate pages either\n\
90, 180, or 270 degrees. The page range is specified in the same\n\
format as with the --pages option, described below. Repeat the option\n\
to rotate multiple groups of pages. If the angle is preceded by + or -,\n\
it is added to or subtracted from the original rotation. Otherwise, the\n\
rotation angle is set explicitly to the given value.\n\
\n\
If --split-pages is specified, each page is written to a separate output\n\
file. File names are generated as follows:\n\
* If the string %d appears in the output file name, it is replaced with a\n\
 zero-padded page range starting from 1\n\
* Otherwise, if the output file name ends in .pdf (case insensitive), a\n\
 zero-padded page range, preceded by a dash, is inserted before the file\n\
 extension\n\
* Otherwise, the file name is appended with a zero-padded page range\n\
 preceded by a dash.\n\
Page ranges are single page numbers for single-page groups or first-last\n\
for multipage groups.\n\
\n\
\n\
Encryption Options\n\
------------------\n\
\n\
 --encrypt user-password owner-password key-length flags --\n\
\n\
Note that -- terminates parsing of encryption flags.\n\
\n\
Either or both of the user password and the owner password may be\n\
empty strings.\n\
\n\
key-length may be 40, 128, or 256\n\
\n\
Additional flags are dependent upon key length.\n\
\n\
 If 40:\n\
\n\
 --print=[yn] allow printing\n\
 --modify=[yn] allow document modification\n\
 --extract=[yn] allow text/graphic extraction\n\
 --annotate=[yn] allow comments and form fill-in and signing\n\
\n\
 If 128:\n\
\n\
 --accessibility=[yn] allow accessibility to visually impaired\n\
 --extract=[yn] allow other text/graphic extraction\n\
 --print=print-opt control printing access\n\
 --modify=modify-opt control modify access\n\
 --cleartext-metadata prevents encryption of metadata\n\
 --use-aes=[yn] indicates whether to use AES encryption\n\
 --force-V4 forces use of V=4 encryption handler\n\
\n\
 If 256, options are the same as 128 with these exceptions:\n\
 --force-V4 this option is not available with 256-bit keys\n\
 --use-aes this option is always on with 256-bit keys\n\
 --force-R5 forces use of deprecated R=5 encryption\n\
\n\
 print-opt may be:\n\
\n\
 full allow full printing\n\
 low allow only low-resolution printing\n\
 none disallow printing\n\
\n\
 modify-opt may be:\n\
\n\
 all allow full document modification\n\
 annotate allow comment authoring and form operations\n\
 form allow form field fill-in and signing\n\
 assembly allow document assembly only\n\
 none allow no modifications\n\
\n\
The default for each permission option is to be fully permissive.\n\
\n\
Specifying cleartext-metadata forces the PDF version to at least 1.5.\n\
Specifying use of AES forces the PDF version to at least 1.6. These\n\
options are both off by default.\n\
\n\
The --force-V4 flag forces the V=4 encryption handler introduced in PDF 1.5\n\
to be used even if not otherwise needed. This option is primarily useful\n\
for testing qpdf and has no other practical use.\n\
\n\
\n\
Page Selection Options\n\
----------------------\n\
\n\
These options allow pages to be selected from one or more PDF files.\n\
Whatever file is given as the primary input file is used as the\n\
starting point, but its pages are replaced with pages as specified.\n\
\n\
--pages file [--password=password] [page-range] ... --\n\
\n\
For each file that pages should be taken from, specify the file, a\n\
password needed to open the file (if any), and a page range. The\n\
password needs to be given only once per file. If any of the input\n\
files are the same as the primary input file or the file used to copy\n\
encryption parameters (if specified), you do not need to repeat the\n\
password here. The same file can be repeated multiple times. All\n\
non-page data (info, outlines, page numbers, etc. are taken from the\n\
primary input file. To discard this, use --empty as the primary\n\
input.\n\
\n\
The page range is a set of numbers separated by commas, ranges of\n\
numbers separated dashes, or combinations of those. The character\n\
\"z\" represents the last page. Pages can appear in any order. Ranges\n\
can appear with a high number followed by a low number, which causes the\n\
pages to appear in reverse. Repeating a number will cause an error, but\n\
the manual discusses a workaround should you really want to include the\n\
same page twice.\n\
\n\
If the page range is omitted, the range of 1-z is assumed. qpdf decides\n\
that the page range is omitted if the range argument is either -- or a\n\
valid file name and not a valid range.\n\
\n\
See the manual for examples and a discussion of additional subtleties.\n\
\n\
\n\
Advanced Parsing Options\n\
-------------------------------\n\
\n\
These options control aspects of how qpdf reads PDF files. Mostly these are\n\
of use to people who are working with damaged files. There is little reason\n\
to use these options unless you are trying to solve specific problems.\n\
\n\
--suppress-recovery prevents qpdf from attempting to recover damaged files\n\
--ignore-xref-streams tells qpdf to ignore any cross-reference streams\n\
\n\
\n\
Advanced Transformation Options\n\
-------------------------------\n\
\n\
These transformation options control fine points of how qpdf creates\n\
the output file. Mostly these are of use only to people who are very\n\
familiar with the PDF file format or who are PDF developers.\n\
\n\
--stream-data=option controls transformation of stream data (below)\n\
--compress-streams=[yn] controls whether to compress streams on output\n\
--decode-level=option controls how to filter streams from the input\n\
--normalize-content=[yn] enables or disables normalization of content streams\n\
--object-streams=mode controls handing of object streams\n\
--preserve-unreferenced preserve unreferenced objects\n\
--newline-before-endstream always put a newline before endstream\n\
--qdf turns on \"QDF mode\" (below)\n\
--min-version=version sets the minimum PDF version of the output file\n\
--force-version=version forces this to be the PDF version of the output file\n\
\n\
Version numbers may be expressed as major.minor.extension-level, so 1.7.3\n\
means PDF version 1.7 at extension level 3.\n\
\n\
Values for stream data options:\n\
\n\
 compress recompress stream data when possible (default)\n\
 preserve leave all stream data as is\n\
 uncompress uncompress stream data when possible\n\
\n\
Values for object stream mode:\n\
\n\
 preserve preserve original object streams (default)\n\
 disable don't write any object streams\n\
 generate use object streams wherever possible\n\
\n\
When --compress-streams=n is specified, this overrides the default behavior\n\
of qpdf, which is to attempt compress uncompressed streams. Setting\n\
stream data mode to uncompress or preserve has the same effect.\n\
\n\
The --decode-level parameter may be set to one of the following values:\n\
 none do not decode streams\n\
 generalized decode streams compressed with generalized filters\n\
 including LZW, Flate, and the ASCII encoding filters.\n\
 specialized additionally decode streams with non-lossy specialized\n\
 filters including RunLength\n\
 all additionally decode streams with lossy filters\n\
 including DCT (JPEG)\n\
\n\
In qdf mode, by default, content normalization is turned on, and the\n\
stream data mode is set to uncompress.\n\
\n\
Setting the minimum PDF version of the output file may raise the version\n\
but will never lower it. Forcing the PDF version of the output file may\n\
set the PDF version to a lower value than actually allowed by the file's\n\
contents. You should only do this if you have no other possible way to\n\
open the file or if you know that the file definitely doesn't include\n\
features not supported later versions.\n\
\n\
Testing, Inspection, and Debugging Options\n\
--\n\
\n\
These options can be useful for digging into PDF files or for use in\n\
automated test suites for software that uses the qpdf library.\n\
\n\
--deterministic-id generate deterministic /ID\n\
--static-id generate static /ID: FOR TESTING ONLY!\n\
--static-aes-iv use a static initialization vector for AES-CBC\n\
 This is option is not secure! FOR TESTING ONLY!\n\
--no-original-object-ids suppress original object ID comments in qdf mode\n\
--show-encryption quickly show encryption parameters\n\
--show-encryption-key when showing encryption, reveal the actual key\n\
--check-linearization check file integrity and linearization status\n\
--show-linearization check and show all linearization data\n\
--show-xref show the contents of the cross-reference table\n\
--show-object=obj[,gen] show the contents of the given object\n\
 --raw-stream-data show raw stream data instead of object contents\n\
 --filtered-stream-data show filtered stream data instead of object contents\n\
--show-npages print the number of pages in the file\n\
--show-pages shows the object/generation number for each page\n\
 --with-images also shows the object IDs for images on each page\n\
--check check file structure + encryption, linearization\n\
\n\
The --raw-stream-data and --filtered-stream-data options are ignored\n\
unless --show-object is given. Either of these options will cause the\n\
stream data to be written to standard output.\n\
\n\
If --filtered-stream-data is given and --normalize-content=y is also\n\
given, qpdf will attempt to normalize the stream data as if it is a\n\
page content stream. This attempt will be made even if it is not a\n\
page content stream, in which case it will produce unusable results.\n\
\n\
Ordinarily, qpdf exits with a status of 0 on success or a status of 2\n\
if any errors occurred. In --check mode, if there were warnings but not\n\
errors, qpdf exits with a status of 3.\n\
\n";

void usage(std::string const& msg)
{
 std::cerr
	<< std::endl
	<< whoami << ": " << msg << std::endl
	<< std::endl
	<< "Usage: " << whoami << " [options] infile outfile" << std::endl
	<< "For detailed help, run " << whoami << " --help" << std::endl
	<< std::endl;
 exit(EXIT_ERROR);
}

static std::string show_bool(bool v)
{
 return v ? "allowed" : "not allowed";
}

static std::string show_encryption_method(QPDF::encryption_method_e method)
{
 std::string result = "unknown";
 switch (method)
 {
 case QPDF::e_none:
 result = "none";
 break;
 case QPDF::e_unknown:
 result = "unknown";
 break;
 case QPDF::e_rc4:
 result = "RC4";
 break;
 case QPDF::e_aes:
 result = "AESv2";
 break;
 case QPDF::e_aesv3:
 result = "AESv3";
 break;
 // no default so gcc will warn for missing case
 }
 return result;
}

static void show_encryption(QPDF& pdf, Options& o)
{
 // Extract /P from /Encrypt
 int R = 0;
 int P = 0;
 int V = 0;
 QPDF::encryption_method_e stream_method = QPDF::e_unknown;
 QPDF::encryption_method_e string_method = QPDF::e_unknown;
 QPDF::encryption_method_e file_method = QPDF::e_unknown;
 if (! pdf.isEncrypted(R, P, V,
 stream_method, string_method, file_method))
 {
	std::cout << "File is not encrypted" << std::endl;
 }
 else
 {
	std::cout << "R = " << R << std::endl;
	std::cout << "P = " << P << std::endl;
	std::string user_password = pdf.getTrimmedUserPassword();
 std::string encryption_key = pdf.getEncryptionKey();
	std::cout << "User password = " << user_password << std::endl;
 if (o.show_encryption_key)
 {
 std::cout << "Encryption key = "
 << QUtil::hex_encode(encryption_key) << std::endl;
 }
 std::cout << "extract for accessibility: "
		 << show_bool(pdf.allowAccessibility()) << std::endl
 << "extract for any purpose: "
		 << show_bool(pdf.allowExtractAll()) << std::endl
 << "print low resolution: "
		 << show_bool(pdf.allowPrintLowRes()) << std::endl
 << "print high resolution: "
		 << show_bool(pdf.allowPrintHighRes()) << std::endl
 << "modify document assembly: "
		 << show_bool(pdf.allowModifyAssembly()) << std::endl
 << "modify forms: "
		 << show_bool(pdf.allowModifyForm()) << std::endl
 << "modify annotations: "
		 << show_bool(pdf.allowModifyAnnotation()) << std::endl
 << "modify other: "
		 << show_bool(pdf.allowModifyOther()) << std::endl
 << "modify anything: "
		 << show_bool(pdf.allowModifyAll()) << std::endl;
 if (V >= 4)
 {
 std::cout << "stream encryption method: "
 << show_encryption_method(stream_method) << std::endl
 << "string encryption method: "
 << show_encryption_method(string_method) << std::endl
 << "file encryption method: "
 << show_encryption_method(file_method) << std::endl;
 }
 }
}

static std::vector<int> parse_numrange(char const* range, int max,
 bool throw_error = false)
{
 std::vector<int> result;
 char const* p = range;
 try
 {
 std::vector<int> work;
 static int const comma = -1;
 static int const dash = -2;

 enum { st_top,
 st_in_number,
 st_after_number } state = st_top;
 bool last_separator_was_dash = false;
 int cur_number = 0;
 while (*p)
 {
 char ch = *p;
 if (isdigit(ch))
 {
 if (! ((state == st_top) || (state == st_in_number)))
 {
 throw std::runtime_error("digit not expected");
 }
 state = st_in_number;
 cur_number *= 10;
 cur_number += (ch - '0');
 }
 else if (ch == 'z')
 {
 // z represents max
 if (! (state == st_top))
 {
 throw std::runtime_error("z not expected");
 }
 state = st_after_number;
 cur_number = max;
 }
 else if ((ch == ',') || (ch == '-'))
 {
 if (! ((state == st_in_number) || (state == st_after_number)))
 {
 throw std::runtime_error("unexpected separator");
 }
 work.push_back(cur_number);
 cur_number = 0;
 if (ch == ',')
 {
 state = st_top;
 last_separator_was_dash = false;
 work.push_back(comma);
 }
 else if (ch == '-')
 {
 if (last_separator_was_dash)
 {
 throw std::runtime_error("unexpected dash");
 }
 state = st_top;
 last_separator_was_dash = true;
 work.push_back(dash);
 }
 }
 else
 {
 throw std::runtime_error("unexpected character");
 }
 ++p;
 }
 if ((state == st_in_number) || (state == st_after_number))
 {
 work.push_back(cur_number);
 }
 else
 {
 throw std::runtime_error("number expected");
 }

 p = 0;
 for (size_t i = 0; i < work.size(); i += 2)
 {
 int num = work.at(i);
 // max == 0 means we don't know the max and are just
 // testing for valid syntax.
 if ((max > 0) && ((num < 1) || (num > max)))
 {
 throw std::runtime_error(
 "number " + QUtil::int_to_string(num) + " out of range");
 }
 if (i == 0)
 {
 result.push_back(work.at(i));
 }
 else
 {
 int separator = work.at(i-1);
 if (separator == comma)
 {
 result.push_back(num);
 }
 else if (separator == dash)
 {
 int lastnum = result.back();
 if (num > lastnum)
 {
 for (int j = lastnum + 1; j <= num; ++j)
 {
 result.push_back(j);
 }
 }
 else
 {
 for (int j = lastnum - 1; j >= num; --j)
 {
 result.push_back(j);
 }
 }
 }
 else
 {
 throw std::logic_error(
 "INTERNAL ERROR parsing numeric range");
 }
 }
 }
 }
 catch (std::runtime_error e)
 {
 if (throw_error)
 {
 throw e;
 }
 if (p)
 {
 usage("error at * in numeric range " +
 std::string(range, p - range) + "*" + p + ": " + e.what());
 }
 else
 {
 usage("error in numeric range " +
 std::string(range) + ": " + e.what());
 }
 }
 return result;
}

static void
parse_encrypt_options(
 int argc, char* argv[], int& cur_arg,
 std::string& user_password, std::string& owner_password, int& keylen,
 bool& r2_print, bool& r2_modify, bool& r2_extract, bool& r2_annotate,
 bool& r3_accessibility, bool& r3_extract,
 qpdf_r3_print_e& r3_print, qpdf_r3_modify_e& r3_modify,
 bool& force_V4, bool& cleartext_metadata, bool& use_aes,
 bool& force_R5)
{
 if (cur_arg + 3 >= argc)
 {
	usage("insufficient arguments to --encrypt");
 }
 user_password = argv[cur_arg++];
 owner_password = argv[cur_arg++];
 std::string len_str = argv[cur_arg++];
 if (len_str == "40")
 {
	keylen = 40;
 }
 else if (len_str == "128")
 {
	keylen = 128;
 }
 else if (len_str == "256")
 {
	keylen = 256;
 use_aes = true;
 }
 else
 {
	usage("encryption key length must be 40, 128, or 256");
 }
 while (1)
 {
	char* arg = argv[cur_arg];
	if (arg == 0)
	{
	 usage("insufficient arguments to --encrypt");
	}
	else if (strcmp(arg, "--") == 0)
	{
	 return;
	}
	if (arg[0] == '-')
	{
	 ++arg;
	 if (arg[0] == '-')
	 {
		++arg;
	 }
	}
	else
	{
	 usage(std::string("invalid encryption parameter ") + arg);
	}
	++cur_arg;
	char* parameter = strchr(arg, '=');
	if (parameter)
	{
	 *parameter++ = 0;
	}
	if (strcmp(arg, "print") == 0)
	{
	 if (parameter == 0)
	 {
		usage("--print must be given as --print=option");
	 }
	 std::string val = parameter;
	 if (keylen == 40)
	 {
		if (val == "y")
		{
		 r2_print = true;
		}
		else if (val == "n")
		{
		 r2_print = false;
		}
		else
		{
		 usage("invalid 40-bit -print parameter");
		}
	 }
	 else
	 {
		if (val == "full")
		{
		 r3_print = qpdf_r3p_full;
		}
		else if (val == "low")
		{
		 r3_print = qpdf_r3p_low;
		}
		else if (val == "none")
		{
		 r3_print = qpdf_r3p_none;
		}
		else
		{
		 usage("invalid 128-bit -print parameter");
		}
	 }
	}
	else if (strcmp(arg, "modify") == 0)
	{
	 if (parameter == 0)
	 {
		usage("--modify must be given as --modify=option");
	 }
	 std::string val = parameter;
	 if (keylen == 40)
	 {
		if (val == "y")
		{
		 r2_modify = true;
		}
		else if (val == "n")
		{
		 r2_modify = false;
		}
		else
		{
		 usage("invalid 40-bit -modify parameter");
		}
	 }
	 else
	 {
		if (val == "all")
		{
		 r3_modify = qpdf_r3m_all;
		}
		else if (val == "annotate")
		{
		 r3_modify = qpdf_r3m_annotate;
		}
		else if (val == "form")
		{
		 r3_modify = qpdf_r3m_form;
		}
		else if (val == "assembly")
		{
		 r3_modify = qpdf_r3m_assembly;
		}
		else if (val == "none")
		{
		 r3_modify = qpdf_r3m_none;
		}
		else
		{
		 usage("invalid 128-bit -modify parameter");
		}
	 }
	}
	else if (strcmp(arg, "extract") == 0)
	{
	 if (parameter == 0)
	 {
		usage("--extract must be given as --extract=option");
	 }
	 std::string val = parameter;
	 bool result = false;
	 if (val == "y")
	 {
		result = true;
	 }
	 else if (val == "n")
	 {
		result = false;
	 }
	 else
	 {
		usage("invalid -extract parameter");
	 }
	 if (keylen == 40)
	 {
		r2_extract = result;
	 }
	 else
	 {
		r3_extract = result;
	 }
	}
	else if (strcmp(arg, "annotate") == 0)
	{
	 if (parameter == 0)
	 {
		usage("--annotate must be given as --annotate=option");
	 }
	 std::string val = parameter;
	 bool result = false;
	 if (val == "y")
	 {
		result = true;
	 }
	 else if (val == "n")
	 {
		result = false;
	 }
	 else
	 {
		usage("invalid -annotate parameter");
	 }
	 if (keylen == 40)
	 {
		r2_annotate = result;
	 }
	 else
	 {
		usage("-annotate invalid for 128-bit keys");
	 }
	}
	else if (strcmp(arg, "accessibility") == 0)
	{
	 if (parameter == 0)
	 {
		usage("--accessibility must be given as"
		 " --accessibility=option");
	 }
	 std::string val = parameter;
	 bool result = false;
	 if (val == "y")
	 {
		result = true;
	 }
	 else if (val == "n")
	 {
		result = false;
	 }
	 else
	 {
		usage("invalid -accessibility parameter");
	 }
	 if (keylen == 40)
	 {
		usage("-accessibility invalid for 40-bit keys");
	 }
	 else
	 {
		r3_accessibility = result;
	 }
	}
	else if (strcmp(arg, "cleartext-metadata") == 0)
	{
	 if (parameter)
	 {
		usage("--cleartext-metadata does not take a parameter");
	 }
	 if (keylen == 40)
	 {
		usage("--cleartext-metadata is invalid for 40-bit keys");
	 }
	 else
	 {
		cleartext_metadata = true;
	 }
	}
	else if (strcmp(arg, "force-V4") == 0)
	{
	 if (parameter)
	 {
		usage("--force-V4 does not take a parameter");
	 }
	 if (keylen != 128)
	 {
		usage("--force-V4 is invalid only for 128-bit keys");
	 }
	 else
	 {
		force_V4 = true;
	 }
	}
	else if (strcmp(arg, "force-R5") == 0)
	{
	 if (parameter)
	 {
		usage("--force-R5 does not take a parameter");
	 }
	 if (keylen != 256)
	 {
		usage("--force-R5 is invalid only for 256-bit keys");
	 }
	 else
	 {
		force_R5 = true;
	 }
	}
	else if (strcmp(arg, "use-aes") == 0)
	{
	 if (parameter == 0)
	 {
		usage("--use-aes must be given as --extract=option");
	 }
	 std::string val = parameter;
	 bool result = false;
	 if (val == "y")
	 {
		result = true;
	 }
	 else if (val == "n")
	 {
		result = false;
	 }
	 else
	 {
		usage("invalid -use-aes parameter");
	 }
	 if ((keylen == 40) && result)
	 {
		usage("use-aes is invalid for 40-bit keys");
	 }
 else if ((keylen == 256) && (! result))
 {
 // qpdf would happily create files encrypted with RC4
 // using /V=5, but Adobe reader can't read them.
 usage("use-aes can't be disabled with 256-bit keys");
 }
	 else
	 {
		use_aes = result;
	 }
	}
	else
	{
	 usage(std::string("invalid encryption parameter --") + arg);
	}
 }
}

static std::vector<PageSpec>
parse_pages_options(
 int argc, char* argv[], int& cur_arg)
{
 std::vector<PageSpec> result;
 while (1)
 {
 if ((cur_arg < argc) && (strcmp(argv[cur_arg], "--") == 0))
 {
 break;
 }
 if (cur_arg + 1 >= argc)
 {
 usage("insufficient arguments to --pages");
 }
 char const* file = argv[cur_arg++];
 char const* password = 0;
 char const* range = argv[cur_arg++];
 if (strncmp(range, "--password=", 11) == 0)
 {
 // Oh, that's the password, not the range
 if (cur_arg + 1 >= argc)
 {
 usage("insufficient arguments to --pages");
 }
 password = range + 11;
 range = argv[cur_arg++];
 }

 // See if the user omitted the range entirely, in which case
 // we assume "1-z".
 bool range_omitted = false;
 if (strcmp(range, "--") == 0)
 {
 // The filename or password was the last argument
 QTC::TC("qpdf", "qpdf pages range omitted at end");
 range_omitted = true;
 }
 else
 {
 try
 {
 parse_numrange(range, 0, true);
 }
 catch (std::runtime_error& e1)
 {
 // The range is invalid. Let's see if it's a file.
 try
 {
 fclose(QUtil::safe_fopen(range, "rb"));
 // Yup, it's a file.
 QTC::TC("qpdf", "qpdf pages range omitted in middle");
 range_omitted = true;
 }
 catch (std::runtime_error& e2)
 {
 // Ignore. The range is invalid and not a file.
 // We'll get an error message later.
 }
 }
 }
 if (range_omitted)
 {
 --cur_arg;
 range = "1-z";
 }

 result.push_back(PageSpec(file, password, range));
 }
 return result;
}

static void test_numrange(char const* range)
{
 if (range == 0)
 {
 std::cout << "null" << std::endl;
 }
 else
 {
 std::vector<int> result = parse_numrange(range, 15);
 std::cout << "numeric range " << range << " ->";
 for (std::vector<int>::iterator iter = result.begin();
 iter != result.end(); ++iter)
 {
 std::cout << " " << *iter;
 }
 std::cout << std::endl;
 }
}

QPDFPageData::QPDFPageData(QPDF* qpdf, char const* range) :
 qpdf(qpdf),
 orig_pages(qpdf->getAllPages())
{
 this->selected_pages = parse_numrange(range, this->orig_pages.size());
}

static void parse_version(std::string const& full_version_string,
 std::string& version, int& extension_level)
{
 PointerHolder<char> vp(true, QUtil::copy_string(full_version_string));
 char* v = vp.getPointer();
 char* p1 = strchr(v, '.');
 char* p2 = (p1 ? strchr(1 + p1, '.') : 0);
 if (p2 && *(p2 + 1))
 {
 *p2++ = '\0';
 extension_level = QUtil::string_to_int(p2);
 }
 version = v;
}

static void read_args_from_file(char const* filename,
 std::vector<PointerHolder<char> >& new_argv)
{
 std::list<std::string> lines;
 if (strcmp(filename, "-") == 0)
 {
 QTC::TC("qpdf", "qpdf read args from stdin");
 lines = QUtil::read_lines_from_file(std::cin);
 }
 else
 {
 QTC::TC("qpdf", "qpdf read args from file");
 lines = QUtil::read_lines_from_file(filename);
 }
 for (std::list<std::string>::iterator iter = lines.begin();
 iter != lines.end(); ++iter)
 {
 new_argv.push_back(
 PointerHolder<char>(true, QUtil::copy_string((*iter).c_str())));
 }
}

static void handle_help_version(int argc, char* argv[])
{
 if ((argc == 2) &&
 ((strcmp(argv[1], "--version") == 0) ||
 (strcmp(argv[1], "-version") == 0)))
 {
 // make_dist looks for the line of code here that actually
 // prints the version number, so read make_dist if you change
 // anything other than the version number. Don't worry about
 // the numbers. That's just a guide to 80 columns so that the
 // help message looks right on an 80-column display.

 // 1 2 3 4 5 6 7 8
 // 12345678901234567890123456789012345678901234567890123456789012345678901234567890
 std::cout
 << whoami << " version " << QPDF::QPDFVersion() << std::endl
 << std::endl
 << "Copyright (c) 2005-2018 Jay Berkenbilt"
 << std::endl
 << "QPDF is licensed under the Apache License, Version 2.0 (the \"License\");"
 << std::endl
 << "not use this file except in compliance with the License."
 << std::endl
 << "You may obtain a copy of the License at"
 << std::endl
 << std::endl
 << " http://www.apache.org/licenses/LICENSE-2.0"
 << std::endl
 << std::endl
 << "Unless required by applicable law or agreed to in writing, software"
 << std::endl
 << "distributed under the License is distributed on an \"AS IS\" BASIS,"
 << std::endl
 << "WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied."
 << std::endl
 << "See the License for the specific language governing permissions and"
 << std::endl
 << "limitations under the License."
 << std::endl
 << std::endl
 << "Versions of qpdf prior to version 7 were released under the terms"
 << std::endl
 << "of version 2.0 of the Artistic License. At your option, you may"
 << std::endl
 << "continue to consider qpdf to be licensed under those terms. Please"
 << std::endl
 << "see the manual for additional information."
 << std::endl;
 exit(0);
 }

 if ((argc == 2) &&
 ((strcmp(argv[1], "--help") == 0) ||
 (strcmp(argv[1], "-help") == 0)))
 {
 std::cout << help;
 exit(0);
 }
}

static void parse_rotation_parameter(Options& o, std::string const& parameter)
{
 std::string angle_str;
 std::string range;
 size_t colon = parameter.find(':');
 int relative = 0;
 if (colon != std::string::npos)
 {
 if (colon > 0)
 {
 angle_str = parameter.substr(0, colon);
 if (angle_str.length() > 0)
 {
 char first = angle_str.at(0);
 if ((first == '+') || (first == '-'))
 {
 relative = ((first == '+') ? 1 : -1);
 angle_str = angle_str.substr(1);
 }
 else if (! QUtil::is_digit(angle_str.at(0)))
 {
 angle_str = "";
 }
 }
 }
 if (colon + 1 < parameter.length())
 {
 range = parameter.substr(colon + 1);
 }
 }
 bool range_valid = false;
 try
 {
 parse_numrange(range.c_str(), 0, true);
 range_valid = true;
 }
 catch (std::runtime_error)
 {
 // ignore
 }
 if (range_valid &&
 ((angle_str == "90") || (angle_str == "180") || (angle_str == "270")))
 {
 int angle = QUtil::string_to_int(angle_str.c_str());
 if (relative == -1)
 {
 angle = -angle;
 }
 o.rotations[range] = RotationSpec(angle, (relative != 0));
 }
 else
 {
 usage("invalid parameter to rotate: " + parameter);
 }
}

static void parse_options(int argc, char* argv[], Options& o)
{
 for (int i = 1; i < argc; ++i)
 {
 char const* arg = argv[i];
 if ((arg[0] == '-') && (strcmp(arg, "-") != 0))
 {
 ++arg;
 if (arg[0] == '-')
 {
 // Be lax about -arg vs --arg
 ++arg;
 }
 char* parameter = const_cast<char*>(strchr(arg, '='));
 if (parameter)
 {
 *parameter++ = 0;
 }

 // Arguments that start with space are undocumented and
 // are for use by the test suite.
 if (strcmp(arg, " test-numrange") == 0)
 {
 test_numrange(parameter);
 exit(0);
 }
 else if (strcmp(arg, "password") == 0)
 {
 if (parameter == 0)
 {
 usage("--password must be given as --password=pass");
 }
 o.password = parameter;
 }
 else if (strcmp(arg, "empty") == 0)
 {
 o.infilename = "";
 }
 else if (strcmp(arg, "linearize") == 0)
 {
 o.linearize = true;
 }
 else if (strcmp(arg, "encrypt") == 0)
 {
 parse_encrypt_options(
 argc, argv, ++i,
 o.user_password, o.owner_password, o.keylen,
 o.r2_print, o.r2_modify, o.r2_extract, o.r2_annotate,
 o.r3_accessibility, o.r3_extract, o.r3_print, o.r3_modify,
 o.force_V4, o.cleartext_metadata, o.use_aes, o.force_R5);
 o.encrypt = true;
 o.decrypt = false;
 o.copy_encryption = false;
 }
 else if (strcmp(arg, "decrypt") == 0)
 {
 o.decrypt = true;
 o.encrypt = false;
 o.copy_encryption = false;
 }
 else if (strcmp(arg, "password-is-hex-key") == 0)
 {
 o.password_is_hex_key = true;
 }
 else if (strcmp(arg, "copy-encryption") == 0)
 {
 if (parameter == 0)
 {
 usage("--copy-encryption must be given as"
 "--copy_encryption=file");
 }
 o.encryption_file = parameter;
 o.copy_encryption = true;
 o.encrypt = false;
 o.decrypt = false;
 }
 else if (strcmp(arg, "encryption-file-password") == 0)
 {
 if (parameter == 0)
 {
 usage("--encryption-file-password must be given as"
 "--encryption-file-password=password");
 }
 o.encryption_file_password = parameter;
 }
 else if (strcmp(arg, "pages") == 0)
 {
 o.page_specs = parse_pages_options(argc, argv, ++i);
 if (o.page_specs.empty())
 {
 usage("--pages: no page specifications given");
 }
 }
 else if (strcmp(arg, "rotate") == 0)
 {
 if (parameter == 0)
 {
 usage("--rotate must be given as"
 " --rotate=[+|-]angle:page-range");
 }
 parse_rotation_parameter(o, parameter);
 }
 else if (strcmp(arg, "stream-data") == 0)
 {
 if (parameter == 0)
 {
 usage("--stream-data must be given as"
 "--stream-data=option");
 }
 o.stream_data_set = true;
 if (strcmp(parameter, "compress") == 0)
 {
 o.stream_data_mode = qpdf_s_compress;
 }
 else if (strcmp(parameter, "preserve") == 0)
 {
 o.stream_data_mode = qpdf_s_preserve;
 }
 else if (strcmp(parameter, "uncompress") == 0)
 {
 o.stream_data_mode = qpdf_s_uncompress;
 }
 else
 {
 usage("invalid stream-data option");
 }
 }
 else if (strcmp(arg, "compress-streams") == 0)
 {
 o.compress_streams_set = true;
 if (parameter && (strcmp(parameter, "y") == 0))
 {
 o.compress_streams = true;
 }
 else if (parameter && (strcmp(parameter, "n") == 0))
 {
 o.compress_streams = false;
 }
 else
 {
 usage("--compress-streams must be given as"
 " --compress-streams=[yn]");
 }
 }
 else if (strcmp(arg, "decode-level") == 0)
 {
 if (parameter == 0)
 {
 usage("--decode-level must be given as"
 "--decode-level=option");
 }
 o.decode_level_set = true;
 if (strcmp(parameter, "none") == 0)
 {
 o.decode_level = qpdf_dl_none;
 }
 else if (strcmp(parameter, "generalized") == 0)
 {
 o.decode_level = qpdf_dl_generalized;
 }
 else if (strcmp(parameter, "specialized") == 0)
 {
 o.decode_level = qpdf_dl_specialized;
 }
 else if (strcmp(parameter, "all") == 0)
 {
 o.decode_level = qpdf_dl_all;
 }
 else
 {
 usage("invalid stream-data option");
 }
 }
 else if (strcmp(arg, "normalize-content") == 0)
 {
 o.normalize_set = true;
 if (parameter && (strcmp(parameter, "y") == 0))
 {
 o.normalize = true;
 }
 else if (parameter && (strcmp(parameter, "n") == 0))
 {
 o.normalize = false;
 }
 else
 {
 usage("--normalize-content must be given as"
 " --normalize-content=[yn]");
 }
 }
 else if (strcmp(arg, "suppress-recovery") == 0)
 {
 o.suppress_recovery = true;
 }
 else if (strcmp(arg, "object-streams") == 0)
 {
 if (parameter == 0)
 {
 usage("--object-streams must be given as"
 " --object-streams=option");
 }
 o.object_stream_set = true;
 if (strcmp(parameter, "disable") == 0)
 {
 o.object_stream_mode = qpdf_o_disable;
 }
 else if (strcmp(parameter, "preserve") == 0)
 {
 o.object_stream_mode = qpdf_o_preserve;
 }
 else if (strcmp(parameter, "generate") == 0)
 {
 o.object_stream_mode = qpdf_o_generate;
 }
 else
 {
 usage("invalid object stream mode");
 }
 }
 else if (strcmp(arg, "ignore-xref-streams") == 0)
 {
 o.ignore_xref_streams = true;
 }
 else if (strcmp(arg, "qdf") == 0)
 {
 o.qdf_mode = true;
 }
 else if (strcmp(arg, "preserve-unreferenced") == 0)
 {
 o.preserve_unreferenced_objects = true;
 }
 else if (strcmp(arg, "newline-before-endstream") == 0)
 {
 o.newline_before_endstream = true;
 }
 else if (strcmp(arg, "min-version") == 0)
 {
 if (parameter == 0)
 {
 usage("--min-version be given as"
 "--min-version=version");
 }
 o.min_version = parameter;
 }
 else if (strcmp(arg, "force-version") == 0)
 {
 if (parameter == 0)
 {
 usage("--force-version be given as"
 "--force-version=version");
 }
 o.force_version = parameter;
 }
 else if (strcmp(arg, "split-pages") == 0)
 {
 int n = ((parameter == 0) ? 1 :
 QUtil::string_to_int(parameter));
 o.split_pages = n;
 }
 else if (strcmp(arg, "verbose") == 0)
 {
 o.verbose = true;
 }
 else if (strcmp(arg, "deterministic-id") == 0)
 {
 o.deterministic_id = true;
 }
 else if (strcmp(arg, "static-id") == 0)
 {
 o.static_id = true;
 }
 else if (strcmp(arg, "static-aes-iv") == 0)
 {
 o.static_aes_iv = true;
 }
 else if (strcmp(arg, "no-original-object-ids") == 0)
 {
 o.suppress_original_object_id = true;
 }
 else if (strcmp(arg, "show-encryption") == 0)
 {
 o.show_encryption = true;
 o.require_outfile = false;
 }
 else if (strcmp(arg, "show-encryption-key") == 0)
 {
 o.show_encryption_key = true;
 }
 else if (strcmp(arg, "check-linearization") == 0)
 {
 o.check_linearization = true;
 o.require_outfile = false;
 }
 else if (strcmp(arg, "show-linearization") == 0)
 {
 o.show_linearization = true;
 o.require_outfile = false;
 }
 else if (strcmp(arg, "show-xref") == 0)
 {
 o.show_xref = true;
 o.require_outfile = false;
 }
 else if (strcmp(arg, "show-object") == 0)
 {
 if (parameter == 0)
 {
 usage("--show-object must be given as"
 " --show-object=obj[,gen]");
 }
 char* obj = parameter;
 char* gen = obj;
 if ((gen = strchr(obj, ',')) != 0)
 {
 *gen++ = 0;
 o.show_gen = QUtil::string_to_int(gen);
 }
 o.show_obj = QUtil::string_to_int(obj);
 o.require_outfile = false;
 }
 else if (strcmp(arg, "raw-stream-data") == 0)
 {
 o.show_raw_stream_data = true;
 }
 else if (strcmp(arg, "filtered-stream-data") == 0)
 {
 o.show_filtered_stream_data = true;
 }
 else if (strcmp(arg, "show-npages") == 0)
 {
 o.show_npages = true;
 o.require_outfile = false;
 }
 else if (strcmp(arg, "show-pages") == 0)
 {
 o.show_pages = true;
 o.require_outfile = false;
 }
 else if (strcmp(arg, "with-images") == 0)
 {
 o.show_page_images = true;
 }
 else if (strcmp(arg, "check") == 0)
 {
 o.check = true;
 o.require_outfile = false;
 }
 else
 {
 usage(std::string("unknown option --") + arg);
 }
 }
 else if (o.infilename == 0)
 {
 o.infilename = arg;
 }
 else if (o.outfilename == 0)
 {
 o.outfilename = arg;
 }
 else
 {
 usage(std::string("unknown argument ") + arg);
 }
 }

 if (o.infilename == 0)
 {
 usage("an input file name is required");
 }
 else if (o.require_outfile && (o.outfilename == 0))
 {
 usage("an output file name is required; use - for standard output");
 }
 else if ((! o.require_outfile) && (o.outfilename != 0))
 {
 usage("no output file may be given for this option");
 }

 if (o.require_outfile && (strcmp(o.outfilename, "-") == 0) &&
 o.split_pages)
 {
 usage("--split-pages may not be used when writing to standard output");
 }

 if (QUtil::same_file(o.infilename, o.outfilename))
 {
 QTC::TC("qpdf", "qpdf same file error");
 usage("input file and output file are the same; this would cause input file to be lost");
 }
}

static void set_qpdf_options(QPDF& pdf, Options& o)
{
 if (o.ignore_xref_streams)
 {
 pdf.setIgnoreXRefStreams(true);
 }
 if (o.suppress_recovery)
 {
 pdf.setAttemptRecovery(false);
 }
 if (o.password_is_hex_key)
 {
 pdf.setPasswordIsHexKey(true);
 }
}

static void do_check(QPDF& pdf, Options& o, int& exit_code)
{
 // Code below may set okay to false but not to true.
 // We assume okay until we prove otherwise but may
 // continue to perform additional checks after finding
 // errors.
 bool okay = true;
 std::cout << "checking " << o.infilename << std::endl;
 try
 {
 int extension_level = pdf.getExtensionLevel();
 std::cout << "PDF Version: " << pdf.getPDFVersion();
 if (extension_level > 0)
 {
 std::cout << " extension level "
 << pdf.getExtensionLevel();
 }
 std::cout << std::endl;
 show_encryption(pdf, o);
 if (pdf.isLinearized())
 {
 std::cout << "File is linearized\n";
 if (! pdf.checkLinearization())
 {
 // any errors are reported by checkLinearization()
 okay = false;
 }
 }
 else
 {
 std::cout << "File is not linearized\n";
 }

 // Write the file no nowhere, uncompressing
 // streams. This causes full file traversal and
 // decoding of all streams we can decode.
 QPDFWriter w(pdf);
 Pl_Discard discard;
 w.setOutputPipeline(&discard);
 w.setDecodeLevel(qpdf_dl_all);
 w.write();

 // Parse all content streams
 std::vector<QPDFObjectHandle> pages = pdf.getAllPages();
 DiscardContents discard_contents;
 int pageno = 0;
 for (std::vector<QPDFObjectHandle>::iterator iter =
 pages.begin();
 iter != pages.end(); ++iter)
 {
 ++pageno;
 try
 {
 QPDFObjectHandle::parseContentStream(
 (*iter).getKey("/Contents"),
 &discard_contents);
 }
 catch (QPDFExc& e)
 {
 okay = false;
 std::cout << "page " << pageno << ": "
 << e.what() << std::endl;
 }
 }
 }
 catch (std::exception& e)
 {
 std::cout << e.what() << std::endl;
 okay = false;
 }
 if (okay)
 {
 if (! pdf.getWarnings().empty())
 {
 exit_code = EXIT_WARNING;
 }
 else
 {
 std::cout << "No syntax or stream encoding errors"
 << " found; the file may still contain"
 << std::endl
 << "errors that qpdf cannot detect"
 << std::endl;
 }
 }
 else
 {
 exit_code = EXIT_ERROR;
 }
}

static void do_show_obj(QPDF& pdf, Options& o, int& exit_code)
{
 QPDFObjectHandle obj = pdf.getObjectByID(o.show_obj, o.show_gen);
 if (obj.isStream())
 {
 if (o.show_raw_stream_data || o.show_filtered_stream_data)
 {
 bool filter = o.show_filtered_stream_data;
 if (filter &&
 (! obj.pipeStreamData(0, 0, qpdf_dl_all)))
 {
 QTC::TC("qpdf", "qpdf unable to filter");
 std::cerr << "Unable to filter stream data."
 << std::endl;
 exit_code = EXIT_ERROR;
 }
 else
 {
 QUtil::binary_stdout();
 Pl_StdioFile out("stdout", stdout);
 obj.pipeStreamData(
 &out,
 (filter && o.normalize) ? qpdf_ef_normalize : 0,
 filter ? qpdf_dl_all : qpdf_dl_none);
 }
 }
 else
 {
 std::cout
 << "Object is stream. Dictionary:" << std::endl
 << obj.getDict().unparseResolved() << std::endl;
 }
 }
 else
 {
 std::cout << obj.unparseResolved() << std::endl;
 }
}

static void do_show_pages(QPDF& pdf, Options& o)
{
 if (o.show_page_images)
 {
 pdf.pushInheritedAttributesToPage();
 }
 std::vector<QPDFObjectHandle> pages = pdf.getAllPages();
 int pageno = 0;
 for (std::vector<QPDFObjectHandle>::iterator iter =
 pages.begin();
 iter != pages.end(); ++iter)
 {
 QPDFObjectHandle& page = *iter;
 ++pageno;

 std::cout << "page " << pageno << ": "
 << page.getObjectID() << " "
 << page.getGeneration() << " R" << std::endl;
 if (o.show_page_images)
 {
 std::map<std::string, QPDFObjectHandle> images =
 page.getPageImages();
 if (! images.empty())
 {
 std::cout << " images:" << std::endl;
 for (std::map<std::string,
 QPDFObjectHandle>::iterator
 iter = images.begin();
 iter != images.end(); ++iter)
 {
 std::string const& name = (*iter).first;
 QPDFObjectHandle image = (*iter).second;
 QPDFObjectHandle dict = image.getDict();
 int width =
 dict.getKey("/Width").getIntValue();
 int height =
 dict.getKey("/Height").getIntValue();
 std::cout << " " << name << ": "
 << image.unparse()
 << ", " << width << " x " << height
 << std::endl;
 }
 }
 }

 std::cout << " content:" << std::endl;
 std::vector<QPDFObjectHandle> content =
 page.getPageContents();
 for (std::vector<QPDFObjectHandle>::iterator iter =
 content.begin();
 iter != content.end(); ++iter)
 {
 std::cout << " " << (*iter).unparse() << std::endl;
 }
 }
}

static void do_inspection(QPDF& pdf, Options& o)
{
 int exit_code = 0;
 if (o.check)
 {
 do_check(pdf, o, exit_code);
 }
 if (o.show_npages)
 {
 QTC::TC("qpdf", "qpdf npages");
 std::cout << pdf.getRoot().getKey("/Pages").
 getKey("/Count").getIntValue() << std::endl;
 }
 if (o.show_encryption)
 {
 show_encryption(pdf, o);
 }
 if (o.check_linearization)
 {
 if (pdf.checkLinearization())
 {
 std::cout << o.infilename << ": no linearization errors"
 << std::endl;
 }
 else
 {
 exit_code = EXIT_ERROR;
 }
 }
 if (o.show_linearization)
 {
 if (pdf.isLinearized())
 {
 pdf.showLinearizationData();
 }
 else
 {
 std::cout << o.infilename << " is not linearized"
 << std::endl;
 }
 }
 if (o.show_xref)
 {
 pdf.showXRefTable();
 }
 if (o.show_obj > 0)
 {
 do_show_obj(pdf, o, exit_code);
 }
 if (o.show_pages)
 {
 do_show_pages(pdf, o);
 }
 if (exit_code)
 {
 exit(exit_code);
 }
}

static void handle_page_specs(QPDF& pdf, Options& o,
 std::vector<PointerHolder<QPDF> >& page_heap)
{
 // Parse all page specifications and translate them into lists of
 // actual pages.

 // Create a QPDF object for each file that we may take pages from.
 std::map<std::string, QPDF*> page_spec_qpdfs;
 page_spec_qpdfs[o.infilename] = &pdf;
 std::vector<QPDFPageData> parsed_specs;
 for (std::vector<PageSpec>::iterator iter = o.page_specs.begin();
 iter != o.page_specs.end(); ++iter)
 {
 PageSpec& page_spec = *iter;
 if (page_spec_qpdfs.count(page_spec.filename) == 0)
 {
 // Open the PDF file and store the QPDF object. Throw a
 // PointerHolder to the qpdf into a heap so that it
 // survives through writing the output but gets cleaned up
 // automatically at the end. Do not canonicalize the file
 // name. Using two different paths to refer to the same
 // file is a document workaround for duplicating a page.
 // If you are using this an example of how to do this with
 // the API, you can just create two different QPDF objects
 // to the same underlying file with the same path to
 // achieve the same affect.
 PointerHolder<QPDF> qpdf_ph = new QPDF();
 page_heap.push_back(qpdf_ph);
 QPDF* qpdf = qpdf_ph.getPointer();
 char const* password = page_spec.password;
 if (o.encryption_file && (password == 0) &&
 (page_spec.filename == o.encryption_file))
 {
 QTC::TC("qpdf", "qpdf pages encryption password");
 password = o.encryption_file_password;
 }
 qpdf->processFile(
 page_spec.filename.c_str(), password);
 page_spec_qpdfs[page_spec.filename] = qpdf;
 }

 // Read original pages from the PDF, and parse the page range
 // associated with this occurrence of the file.
 parsed_specs.push_back(
 QPDFPageData(page_spec_qpdfs[page_spec.filename],
 page_spec.range));
 }

 // Clear all pages out of the primary QPDF's pages tree but leave
 // the objects in place in the file so they can be re-added
 // without changing their object numbers. This enables other
 // things in the original file, such as outlines, to continue to
 // work.
 std::vector<QPDFObjectHandle> orig_pages = pdf.getAllPages();
 for (std::vector<QPDFObjectHandle>::iterator iter =
 orig_pages.begin();
 iter != orig_pages.end(); ++iter)
 {
 pdf.removePage(*iter);
 }

 // Add all the pages from all the files in the order specified.
 // Keep track of any pages from the original file that we are
 // selecting.
 std::set<int> selected_from_orig;
 for (std::vector<QPDFPageData>::iterator iter =
 parsed_specs.begin();
 iter != parsed_specs.end(); ++iter)
 {
 QPDFPageData& page_data = *iter;
 for (std::vector<int>::iterator pageno_iter =
 page_data.selected_pages.begin();
 pageno_iter != page_data.selected_pages.end();
 ++pageno_iter)
 {
 // Pages are specified from 1 but numbered from 0 in the
 // vector
 int pageno = *pageno_iter - 1;
 pdf.addPage(page_data.orig_pages.at(pageno), false);
 if (page_data.qpdf == &pdf)
 {
 // This is a page from the original file. Keep track
 // of the fact that we are using it.
 selected_from_orig.insert(pageno);
 }
 }
 }

 // Delete page objects for unused page in primary. This prevents
 // those objects from being preserved by being referred to from
 // other places, such as the outlines dictionary.
 for (size_t pageno = 0; pageno < orig_pages.size(); ++pageno)
 {
 if (selected_from_orig.count(pageno) == 0)
 {
 pdf.replaceObject(orig_pages.at(pageno).getObjGen(),
 QPDFObjectHandle::newNull());
 }
 }
}

static void handle_rotations(QPDF& pdf, Options& o)
{
 std::vector<QPDFObjectHandle> pages = pdf.getAllPages();
 int npages = static_cast<int>(pages.size());
 for (std::map<std::string, RotationSpec>::iterator iter =
 o.rotations.begin();
 iter != o.rotations.end(); ++iter)
 {
 std::string const& range = (*iter).first;
 RotationSpec const& rspec = (*iter).second;
 std::vector<int> to_rotate = parse_numrange(range.c_str(), npages);
 for (std::vector<int>::iterator i2 = to_rotate.begin();
 i2 != to_rotate.end(); ++i2)
 {
 int pageno = *i2 - 1;
 if ((pageno >= 0) && (pageno < npages))
 {
 pages.at(pageno).rotatePage(rspec.angle, rspec.relative);
 }
 }
 }
}

static void set_encryption_options(QPDF& pdf, Options& o, QPDFWriter& w)
{
 int R = 0;
 if (o.keylen == 40)
 {
 R = 2;
 }
 else if (o.keylen == 128)
 {
 if (o.force_V4 || o.cleartext_metadata || o.use_aes)
 {
 R = 4;
 }
 else
 {
 R = 3;
 }
 }
 else if (o.keylen == 256)
 {
 if (o.force_R5)
 {
 R = 5;
 }
 else
 {
 R = 6;
 }
 }
 else
 {
 throw std::logic_error("bad encryption keylen");
 }
 if ((R > 3) && (o.r3_accessibility == false))
 {
 std::cerr << whoami
 << ": -accessibility=n is ignored for modern"
 << " encryption formats" << std::endl;
 }
 switch (R)
 {
 case 2:
 w.setR2EncryptionParameters(
 o.user_password.c_str(), o.owner_password.c_str(),
 o.r2_print, o.r2_modify, o.r2_extract, o.r2_annotate);
 break;
 case 3:
 w.setR3EncryptionParameters(
 o.user_password.c_str(), o.owner_password.c_str(),
 o.r3_accessibility, o.r3_extract, o.r3_print, o.r3_modify);
 break;
 case 4:
 w.setR4EncryptionParameters(
 o.user_password.c_str(), o.owner_password.c_str(),
 o.r3_accessibility, o.r3_extract, o.r3_print, o.r3_modify,
 !o.cleartext_metadata, o.use_aes);
 break;
 case 5:
 w.setR5EncryptionParameters(
 o.user_password.c_str(), o.owner_password.c_str(),
 o.r3_accessibility, o.r3_extract, o.r3_print, o.r3_modify,
 !o.cleartext_metadata);
 break;
 case 6:
 w.setR6EncryptionParameters(
 o.user_password.c_str(), o.owner_password.c_str(),
 o.r3_accessibility, o.r3_extract, o.r3_print, o.r3_modify,
 !o.cleartext_metadata);
 break;
 default:
 throw std::logic_error("bad encryption R value");
 break;
 }
}

static void set_writer_options(QPDF& pdf, Options& o, QPDFWriter& w)
{
 if (o.qdf_mode)
 {
 w.setQDFMode(true);
 }
 if (o.preserve_unreferenced_objects)
 {
 w.setPreserveUnreferencedObjects(true);
 }
 if (o.newline_before_endstream)
 {
 w.setNewlineBeforeEndstream(true);
 }
 if (o.normalize_set)
 {
 w.setContentNormalization(o.normalize);
 }
 if (o.stream_data_set)
 {
 w.setStreamDataMode(o.stream_data_mode);
 }
 if (o.compress_streams_set)
 {
 w.setCompressStreams(o.compress_streams);
 }
 if (o.decode_level_set)
 {
 w.setDecodeLevel(o.decode_level);
 }
 if (o.decrypt)
 {
 w.setPreserveEncryption(false);
 }
 if (o.deterministic_id)
 {
 w.setDeterministicID(true);
 }
 if (o.static_id)
 {
 w.setStaticID(true);
 }
 if (o.static_aes_iv)
 {
 w.setStaticAesIV(true);
 }
 if (o.suppress_original_object_id)
 {
 w.setSuppressOriginalObjectIDs(true);
 }
 if (o.copy_encryption)
 {
 QPDF encryption_pdf;
 encryption_pdf.processFile(
 o.encryption_file, o.encryption_file_password);
 w.copyEncryptionParameters(encryption_pdf);
 }
 if (o.encrypt)
 {
 set_encryption_options(pdf, o, w);
 }
 if (o.linearize)
 {
 w.setLinearization(true);
 }
 if (o.object_stream_set)
 {
 w.setObjectStreamMode(o.object_stream_mode);
 }
 if (! o.min_version.empty())
 {
 std::string version;
 int extension_level = 0;
 parse_version(o.min_version, version, extension_level);
 w.setMinimumPDFVersion(version, extension_level);
 }
 if (! o.force_version.empty())
 {
 std::string version;
 int extension_level = 0;
 parse_version(o.force_version, version, extension_level);
 w.forcePDFVersion(version, extension_level);
 }
}

static void write_outfile(QPDF& pdf, Options& o)
{
 if (o.split_pages)
 {
 // Generate output file pattern
 std::string before;
 std::string after;
 size_t len = strlen(o.outfilename);
 char* num_spot = strstr(const_cast<char*>(o.outfilename), "%d");
 if (num_spot != 0)
 {
 QTC::TC("qpdf", "qpdf split-pages %d");
 before = std::string(o.outfilename, (num_spot - o.outfilename));
 after = num_spot + 2;
 }
 else if ((len >= 4) &&
 (QUtil::strcasecmp(o.outfilename + len - 4, ".pdf") == 0))
 {
 QTC::TC("qpdf", "qpdf split-pages .pdf");
 before = std::string(o.outfilename, len - 4) + "-";
 after = o.outfilename + len - 4;
 }
 else
 {
 QTC::TC("qpdf", "qpdf split-pages other");
 before = std::string(o.outfilename) + "-";
 }

 std::vector<QPDFObjectHandle> const& pages = pdf.getAllPages();
 int pageno_len = QUtil::int_to_string(pages.size()).length();
 unsigned int num_pages = pages.size();
 for (unsigned int i = 0; i < num_pages; i += o.split_pages)
 {
 unsigned int first = i + 1;
 unsigned int last = i + o.split_pages;
 if (last > num_pages)
 {
 last = num_pages;
 }
 QPDF outpdf;
 outpdf.emptyPDF();
 for (unsigned int pageno = first; pageno <= last; ++pageno)
 {
 QPDFObjectHandle page = pages.at(pageno - 1);
 outpdf.addPage(page, false);
 }
 std::string page_range = QUtil::int_to_string(first, pageno_len);
 if (o.split_pages > 1)
 {
 page_range += "-" + QUtil::int_to_string(last, pageno_len);
 }
 std::string outfile = before + page_range + after;
 QPDFWriter w(outpdf, outfile.c_str());
 set_writer_options(outpdf, o, w);
 w.write();
 if (o.verbose)
 {
 std::cout << whoami << ": wrote file " << outfile << std::endl;
 }
 }
 }
 else
 {
 if (strcmp(o.outfilename, "-") == 0)
 {
 o.outfilename = 0;
 }
 QPDFWriter w(pdf, o.outfilename);
 set_writer_options(pdf, o, w);
 w.write();
 if (o.verbose && o.outfilename)
 {
 std::cout << whoami << ": wrote file "
 << o.outfilename << std::endl;
 }
 }
}

int main(int argc, char* argv[])
{
 whoami = QUtil::getWhoami(argv[0]);
 QUtil::setLineBuf(stdout);

 // For libtool's sake....
 if (strncmp(whoami, "lt-", 3) == 0)
 {
	whoami += 3;
 }

 handle_help_version(argc, argv);

 // Support reading arguments from files. Create a new argv. Ensure
 // that argv itself as well as all its contents are automatically
 // deleted by using PointerHolder objects to back the pointers in
 // argv.
 std::vector<PointerHolder<char> > new_argv;
 new_argv.push_back(PointerHolder<char>(true, QUtil::copy_string(argv[0])));
 for (int i = 1; i < argc; ++i)
 {
 if ((strlen(argv[i]) > 1) && (argv[i][0] == '@'))
 {
 read_args_from_file(1+argv[i], new_argv);
 }
 else
 {
 new_argv.push_back(
 PointerHolder<char>(true, QUtil::copy_string(argv[i])));
 }
 }
 PointerHolder<char*> argv_ph(true, new char*[1+new_argv.size()]);
 argv = argv_ph.getPointer();
 for (size_t i = 0; i < new_argv.size(); ++i)
 {
 argv[i] = new_argv.at(i).getPointer();
 }
 argc = static_cast<int>(new_argv.size());
 argv[argc] = 0;

 Options o;
 parse_options(argc, argv, o);

 try
 {
	QPDF pdf;
 set_qpdf_options(pdf, o);
 if (strcmp(o.infilename, "") == 0)
 {
 pdf.emptyPDF();
 }
 else
 {
 pdf.processFile(o.infilename, o.password);
 }

 std::vector<PointerHolder<QPDF> > page_heap;
 if (! o.page_specs.empty())
 {
 handle_page_specs(pdf, o, page_heap);
 }
 if (! o.rotations.empty())
 {
 handle_rotations(pdf, o);
 }

	if (o.outfilename == 0)
	{
 do_inspection(pdf, o);
	}
	else
	{
 write_outfile(pdf, o);
	}
	if (! pdf.getWarnings().empty())
	{
	 std::cerr << whoami << ": operation succeeded with warnings;"
		 << " resulting file may have some problems" << std::endl;
	 exit(EXIT_WARNING);
	}
 }
 catch (std::exception& e)
 {
	std::cerr << e.what() << std::endl;
	exit(EXIT_ERROR);
 }

 return 0;
}

qpdf-7.1.0/qpdf/Makefile

include ../make/proxy.mk

qpdf-7.1.0/qpdf/qtest/qpdf/deterministic-id-yy.pdf

QPDF Manual

For QPDF Version 5.1.3, May 24, 2015

Jay Berkenbilt

QPDF Manual: For QPDF Version 5.1.3, May 24, 2015
Jay Berkenbilt
Copyright © 2005–2014 Jay Berkenbilt

iii

Table of Contents
General Information .. iv
1. What is QPDF? ... 1
2. Building and Installing QPDF .. 2

2.1. System Requirements ... 2
2.2. Build Instructions .. 2

3. Running QPDF ... 4
3.1. Basic Invocation ... 4
3.2. Basic Options ... 4
3.3. Encryption Options ... 5
3.4. Page Selection Options .. 6
3.5. Advanced Transformation Options ... 8
3.6. Testing, Inspection, and Debugging Options .. 10

4. QDF Mode ... 12
5. Using the QPDF Library ... 14
6. Design and Library Notes ... 15

6.1. Introduction .. 15
6.2. Design Goals .. 15
6.3. Casting Policy .. 17
6.4. Encryption ... 18
6.5. Random Number Generation ... 19
6.6. Adding and Removing Pages ... 19
6.7. Reserving Object Numbers ... 19
6.8. Copying Objects From Other PDF Files .. 20
6.9. Writing PDF Files ... 20
6.10. Filtered Streams .. 21

7. Linearization ... 22
7.1. Basic Strategy for Linearization ... 22
7.2. Preparing For Linearization ... 22
7.3. Optimization ... 22
7.4. Writing Linearized Files ... 23
7.5. Calculating Linearization Data ... 23
7.6. Known Issues with Linearization ... 23
7.7. Debugging Note .. 24

8. Object and Cross-Reference Streams ... 25
8.1. Object Streams .. 25
8.2. Cross-Reference Streams .. 25

8.2.1. Cross-Reference Stream Data .. 26
8.3. Implications for Linearized Files .. 26
8.4. Implementation Notes .. 27

A. Release Notes ... 28
B. Upgrading from 2.0 to 2.1 .. 37
C. Upgrading to 3.0 ... 38
D. Upgrading to 4.0 ... 39

iv

General Information
QPDF is a program that does structural, content-preserving transformations on PDF files. QPDF's website is located
at http://qpdf.sourceforge.net/. QPDF's source code is hosted on github at https://github.com/qpdf/qpdf.

QPDF has been released under the terms of Version 2.0 of the Artistic License [http://www.opensource.org/licenses/
artistic-license-2.0.php], a copy of which appears in the file Artistic-2.0 in the source distribution.

QPDF was originally created in 2001 and modified periodically between 2001 and 2005 during my employment at
Apex CoVantage [http://www.apexcovantage.com]. Upon my departure from Apex, the company graciously allowed
me to take ownership of the software and continue maintaining as an open source project, a decision for which I am
very grateful. I have made considerable enhancements to it since that time. I feel fortunate to have worked for people
who would make such a decision. This work would not have been possible without their support.

http://qpdf.sourceforge.net/

https://github.com/qpdf/qpdf

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.apexcovantage.com

http://www.apexcovantage.com

1

Chapter 1. What is QPDF?
QPDF is a program that does structural, content-preserving transformations on PDF files. It could have been called
something like pdf-to-pdf. It also provides many useful capabilities to developers of PDF-producing software or for
people who just want to look at the innards of a PDF file to learn more about how they work.

With QPDF, it is possible to copy objects from one PDF file into another and to manipulate the list of pages in a PDF
file. This makes it possible to merge and split PDF files. The QPDF library also makes it possible for you to create
PDF files from scratch. In this mode, you are responsible for supplying all the contents of the file, while the QPDF
library takes care off all the syntactical representation of the objects, creation of cross references tables and, if you
use them, object streams, encryption, linearization, and other syntactic details. You are still responsible for generating
PDF content on your own.

QPDF has been designed with very few external dependencies, and it is intentionally very lightweight. QPDF is not a
PDF content creation library, a PDF viewer, or a program capable of converting PDF into other formats. In particular,
QPDF knows nothing about the semantics of PDF content streams. If you are looking for something that can do that,
you should look elsewhere. However, once you have a valid PDF file, QPDF can be used to transform that file in ways
perhaps your original PDF creation can't handle. For example, many programs generate simple PDF files but can't
password-protect them, web-optimize them, or perform other transformations of that type.

2

Chapter 2. Building and Installing
QPDF
This chapter describes how to build and install qpdf. Please see also the README and INSTALL files in the source
distribution.

2.1. System Requirements
The qpdf package has relatively few external dependencies. In order to build qpdf, the following packages are required:

• zlib: http://www.zlib.net/

• pcre: http://www.pcre.org/

• gnu make 3.81 or newer: http://www.gnu.org/software/make

• perl version 5.8 or newer: http://www.perl.org/; required for fix-qdf and the test suite.

• GNU diffutils (any version): http://www.gnu.org/software/diffutils/ is required to run the test suite. Note that this is
the version of diff present on virtually all GNU/Linux systems. This is required because the test suite uses diff -u.

• A C++ compiler that works well with STL and has the long long type. Most modern C++ compilers should fit
the bill fine. QPDF is tested with gcc and Microsoft Visual C++.

Part of qpdf's test suite does comparisons of the contents PDF files by converting them images and comparing the
images. The image comparison tests are disabled by default. Those tests are not required for determining correctness of
a qpdf build if you have not modified the code since the test suite also contains expected output files that are compared
literally. The image comparison tests provide an extra check to make sure that any content transformations don't break
the rendering of pages. Transformations that affect the content streams themselves are off by default and are only
provided to help developers look into the contents of PDF files. If you are making deep changes to the library that cause
changes in the contents of the files that qpdf generates, then you should enable the image comparison tests. Enable
them by running configure with the --enable-test-compare-images flag. If you enable this, the following additional
requirements are required by the test suite. Note that in no case are these items required to use qpdf.

• libtiff: http://www.remotesensing.org/libtiff/

• GhostScript version 8.60 or newer: http://www.ghostscript.com

If you do not enable this, then you do not need to have tiff and ghostscript.

If Adobe Reader is installed as acroread, some additional test cases will be enabled. These test cases simply verify
that Adobe Reader can open the files that qpdf creates. They require version 8.0 or newer to pass. However, in order
to avoid having qpdf depend on non-free (as in liberty) software, the test suite will still pass without Adobe reader,
and the test suite still exercises the full functionality of the software.

Pre-built documentation is distributed with qpdf, so you should generally not need to rebuild the documentation.
In order to build the documentation from its docbook sources, you need the docbook XML style sheets (http://
downloads.sourceforge.net/docbook/). To build the PDF version of the documentation, you need Apache fop (http://
xml.apache.org/fop/) version 0.94 or higher.

2.2. Build Instructions
Building qpdf on UNIX is generally just a matter of running

http://www.zlib.net/

http://www.pcre.org/

http://www.gnu.org/software/make

http://www.perl.org/

http://www.gnu.org/software/diffutils/

http://www.remotesensing.org/libtiff/

http://www.ghostscript.com

http://downloads.sourceforge.net/docbook/

http://downloads.sourceforge.net/docbook/

http://xml.apache.org/fop/

http://xml.apache.org/fop/

Building and Installing QPDF

3

./configure
make

You can also run make check to run the test suite and make install to install. Please run ./configure --help for
options on what can be configured. You can also set the value of DESTDIR during installation to install to a temporary
location, as is common with many open source packages. Please see also the README and INSTALL files in the
source distribution.

Building on Windows is a little bit more complicated. For details, please see README-windows.txt in the source
distribution. You can also download a binary distribution for Windows. There is a port of qpdf to Visual C++ version 6
in the contrib area generously contributed by Jian Ma. This is also discussed in more detail in README-windows.txt.

There are some other things you can do with the build. Although qpdf uses autoconf, it does not use automake but
instead uses a hand-crafted non-recursive Makefile that requires gnu make. If you're really interested, please read the
comments in the top-level Makefile.

4

Chapter 3. Running QPDF
This chapter describes how to run the qpdf program from the command line.

3.1. Basic Invocation
When running qpdf, the basic invocation is as follows:

qpdf [options] infilename [outfilename]

This converts PDF file infilename to PDF file outfilename. The output file is functionally identical to the input file but
may have been structurally reorganized. Also, orphaned objects will be removed from the file. Many transformations
are available as controlled by the options below. In place of infilename, the parameter --empty may be specified. This
causes qpdf to use a dummy input file that contains zero pages. The only normal use case for using --empty would be if
you were going to add pages from another source, as discussed in Section 3.4, “Page Selection Options”, page 6.

outfilename does not have to be seekable, even when generating linearized files. Specifying “--” as outfilename
means to write to standard output. However, you can't specify the same file as both the input and the output because
qpdf reads data from the input file as it writes to the output file.

Most options require an output file, but some testing or inspection commands do not. These are specifically noted.

3.2. Basic Options
The following options are the most common ones and perform commonly needed transformations.

--password=password
Specifies a password for accessing encrypted files.

--linearize
Causes generation of a linearized (web-optimized) output file.

--copy-encryption=file
Encrypt the file using the same encryption parameters, including user and owner password, as the specified file.
Use --encrypt-file-password to specify a password if one is needed to open this file. Note that copying the
encryption parameters from a file also copies the first half of /ID from the file since this is part of the encryption
parameters.

--encrypt-file-password=password
If the file specified with --copy-encryption requires a password, specify the password using this option. Note
that only one of the user or owner password is required. Both passwords will be preserved since QPDF does
not distinguish between the two passwords. It is possible to preserve encryption parameters, including the owner
password, from a file even if you don't know the file's owner password.

--encrypt options --
Causes generation an encrypted output file. Please see Section 3.3, “Encryption Options”, page 5 for details
on how to specify encryption parameters.

--decrypt
Removes any encryption on the file. A password must be supplied if the file is password protected.

--pages options --
Select specific pages from one or more input files. See Section 3.4, “Page Selection Options”, page 6 for
details on how to do page selection (splitting and merging).

Running QPDF

5

Password-protected files may be opened by specifying a password. By default, qpdf will preserve any encryption data
associated with a file. If --decrypt is specified, qpdf will attempt to remove any encryption information. If --encrypt
is specified, qpdf will replace the document's encryption parameters with whatever is specified.

Note that qpdf does not obey encryption restrictions already imposed on the file. Doing so would be meaningless since
qpdf can be used to remove encryption from the file entirely. This functionality is not intended to be used for bypassing
copyright restrictions or other restrictions placed on files by their producers.

In all cases where qpdf allows specification of a password, care must be taken if the password contains characters
that fall outside of the 7-bit US-ASCII character range to ensure that the exact correct byte sequence is provided. It
is possible that a future version of qpdf may handle this more gracefully. For example, if a password was encrypted
using a password that was encoded in ISO-8859-1 and your terminal is configured to use UTF-8, the password you
supply may not work properly. There are various approaches to handling this. For example, if you are using Linux and
have the iconv executable (part of the ICU package) installed, you could pass --password=`echo password | iconv
-t iso-8859-1` to qpdf where password is a password specified in your terminal's locale. A detailed discussion of
this is out of scope for this manual, but just be aware of this issue if you have trouble with a password that contains
8-bit characters.

3.3. Encryption Options
To change the encryption parameters of a file, use the --encrypt flag. The syntax is

--encrypt user-password owner-password key-length [restrictions] --

Note that “--” terminates parsing of encryption flags and must be present even if no restrictions are present.

Either or both of the user password and the owner password may be empty strings.

The value for key-length may be 40, 128, or 256. The restriction flags are dependent upon key length. When no
additional restrictions are given, the default is to be fully permissive.

If key-length is 40, the following restriction options are available:

--print=[yn]
Determines whether or not to allow printing.

--modify=[yn]
Determines whether or not to allow document modification.

--extract=[yn]
Determines whether or not to allow text/image extraction.

--annotate=[yn]
Determines whether or not to allow comments and form fill-in and signing.

If key-length is 128, the following restriction options are available:

--accessibility=[yn]
Determines whether or not to allow accessibility to visually impaired.

--extract=[yn]
Determines whether or not to allow text/graphic extraction.

--print=print-opt
Controls printing access. print-opt may be one of the following:

Running QPDF

6

• full: allow full printing

• low: allow low-resolution printing only

• none: disallow printing

--modify=modify-opt
Controls modify access. modify-opt may be one of the following, each of which implies all the options that
follow it:

• all: allow full document modification

• annotate: allow comment authoring and form operations

• form: allow form field fill-in and signing

• assembly: allow document assembly only

• none: allow no modifications

--cleartext-metadata
If specified, any metadata stream in the document will be left unencrypted even if the rest of the document is
encrypted. This also forces the PDF version to be at least 1.5.

--use-aes=[yn]
If --use-aes=y is specified, AES encryption will be used instead of RC4 encryption. This forces the PDF version
to be at least 1.6.

--force-V4
Use of this option forces the /V and /R parameters in the document's encryption dictionary to be set to the value
4. As qpdf will automatically do this when required, there is no reason to ever use this option. It exists primarily
for use in testing qpdf itself. This option also forces the PDF version to be at least 1.5.

If key-length is 256, the minimum PDF version is 1.7 with extension level 8, and the AES-based encryption format
used is the PDF 2.0 encryption method supported by Acrobat X. the same options are available as with 128 bits with
the following exceptions:

--use-aes
This option is not available with 256-bit keys. AES is always used with 256-bit encryption keys.

--force-V4
This option is not available with 256 keys.

--force-R5
If specified, qpdf sets the minimum version to 1.7 at extension level 3 and writes the deprecated encryption format
used by Acrobat version IX. This option should not be used in practice to generate PDF files that will be in general
use, but it can be useful to generate files if you are trying to test proper support in another application for PDF
files encrypted in this way.

The default for each permission option is to be fully permissive.

3.4. Page Selection Options
Starting with qpdf 3.0, it is possible to split and merge PDF files by selecting pages from one or more input files.
Whatever file is given as the primary input file is used as the starting point, but its pages are replaced with pages as
specified.

Running QPDF

7

--pages input-file [--password=password] [page-range] [...] --

Multiple input files may be specified. Each one is given as the name of the input file, an optional password (if required
to open the file), and the range of pages. Note that “--” terminates parsing of page selection flags.

For each file that pages should be taken from, specify the file, a password needed to open the file (if any), and a page
range. The password needs to be given only once per file. If any of the input files are the same as the primary input
file or the file used to copy encryption parameters (if specified), you do not need to repeat the password here. The
same file can be repeated multiple times. If a file that is repeated has a password, the password only has to be given
the first time. All non-page data (info, outlines, page numbers, etc.) are taken from the primary input file. To discard
these, use --empty as the primary input.

Starting with qpdf 5.0.0, it is possible to omit the page range. If qpdf sees a value in the place where it expects a page
range and that value is not a valid range but is a valid file name, qpdf will implicitly use the range 1-z, meaning that
it will include all pages in the file. This makes it possible to easily combine all pages in a set of files with a command
like qpdf --empty out.pdf --pages *.pdf --.

It is not presently possible to specify the same page from the same file directly more than once, but you can make this
work by specifying two different paths to the same file (such as by putting ./ somewhere in the path). This can also be
used if you want to repeat a page from one of the input files in the output file. This may be made more convenient in
a future version of qpdf if there is enough demand for this feature.

The page range is a set of numbers separated by commas, ranges of numbers separated dashes, or combinations of
those. The character “z” represents the last page. Pages can appear in any order. Ranges can appear with a high number
followed by a low number, which causes the pages to appear in reverse. Repeating a number will cause an error, but
you can use the workaround discussed above should you really want to include the same page twice.

Example page ranges:

• 1,3,5-9,15-12: pages 1, 2, 3, 5, 6, 7, 8, 9, 15, 14, 13, and 12.

• z-1: all pages in the document in reverse

Note that qpdf doesn't presently do anything special about other constructs in a PDF file that may know about pages,
so semantics of splitting and merging vary across features. For example, the document's outlines (bookmarks) point
to actual page objects, so if you select some pages and not others, bookmarks that point to pages that are in the output
file will work, and remaining bookmarks will not work. On the other hand, page labels (page numbers specified in the
file) are just sequential, so page labels will be messed up in the output file. A future version of qpdf may do a better
job at handling these issues. (Note that the qpdf library already contains all of the APIs required in order to implement
this in your own application if you need it.) In the mean time, you can always use --empty as the primary input file to
avoid copying all of that from the first file. For example, to take pages 1 through 5 from a infile.pdf while preserving
all metadata associated with that file, you could use

qpdf infile.pdf --pages infile.pdf 1-5 -- outfile.pdf

If you wanted pages 1 through 5 from infile.pdf but you wanted the rest of the metadata to be dropped, you could
instead run

qpdf --empty --pages infile.pdf 1-5 -- outfile.pdf

If you wanted to take pages 1–5 from file1.pdf and pages 11–15 from file2.pdf in reverse, you would run

qpdf file1.pdf --pages file1.pdf 1-5 file2.pdf 15-11 -- outfile.pdf

Running QPDF

8

If, for some reason, you wanted to take the first page of an encrypted file called encrypted.pdf with password pass
and repeat it twice in an output file, and if you wanted to drop metadata (like page numbers and outlines) but preserve
encryption, you would use

qpdf --empty --copy-encryption=encrypted.pdf --encryption-file-password=pass
--pages encrypted.pdf --password=pass 1 ./encrypted.pdf --password=pass 1 --
outfile.pdf

Note that we had to specify the password all three times because giving a password as --encryption-file-password
doesn't count for page selection, and as far as qpdf is concerned, encrypted.pdf and ./encrypted.pdf are separated files.
These are all corner cases that most users should hopefully never have to be bothered with.

3.5. Advanced Transformation Options
These transformation options control fine points of how qpdf creates the output file. Mostly these are of use only to
people who are very familiar with the PDF file format or who are PDF developers. The following options are available:

--stream-data=option
Controls transformation of stream data. The value of option may be one of the following:

• compress: recompress stream data when possible (default)

• preserve: leave all stream data as is

• uncompress: uncompress stream data when possible

--normalize-content=[yn]
Enables or disables normalization of content streams.

--suppress-recovery
Prevents qpdf from attempting to recover damaged files.

--object-streams=mode
Controls handling of object streams. The value of mode may be one of the following:

• preserve: preserve original object streams (default)

• disable: don't write any object streams

• generate: use object streams wherever possible

--ignore-xref-streams
Tells qpdf to ignore any cross-reference streams.

--qdf
Turns on QDF mode. For additional information on QDF, please see Chapter 4, QDF Mode, page 12.

--min-version=version
Forces the PDF version of the output file to be at least version. In other words, if the input file has a lower
version than the specified version, the specified version will be used. If the input file has a higher version, the
input file's original version will be used. It is seldom necessary to use this option since qpdf will automatically
increase the version as needed when adding features that require newer PDF readers.

The version number may be expressed in the form major.minor.extension-level, in which case the
version is interpreted as major.minor at extension level extension-level. For example, version 1.7.8
represents version 1.7 at extension level 8. Note that minimal syntax checking is done on the command line.

Running QPDF

9

--force-version=version
This option forces the PDF version to be the exact version specified even when the file may have content that
is not supported in that version. The version number is interpreted in the same way as with --min-version so
that extension levels can be set. In some cases, forcing the output file's PDF version to be lower than that of the
input file will cause qpdf to disable certain features of the document. Specifically, 256-bit keys are disabled if
the version is less than 1.7 with extension level 8 (except R5 is disabled if less than 1.7 with extension level 3),
AES encryption is disabled if the version is less than 1.6, cleartext metadata and object streams are disabled if less
than 1.5, 128-bit encryption keys are disabled if less than 1.4, and all encryption is disabled if less than 1.3. Even
with these precautions, qpdf won't be able to do things like eliminate use of newer image compression schemes,
transparency groups, or other features that may have been added in more recent versions of PDF.

As a general rule, with the exception of big structural things like the use of object streams or AES encryption,
PDF viewers are supposed to ignore features in files that they don't support from newer versions. This means that
forcing the version to a lower version may make it possible to open your PDF file with an older version, though
bear in mind that some of the original document's functionality may be lost.

By default, when a stream is encoded using non-lossy filters that qpdf understands and is not already compressed
using a good compression scheme, qpdf will uncompress and recompress streams. Assuming proper filter implements,
this is safe and generally results in smaller files. This behavior may also be explicitly requested with --stream-
data=compress.

When --stream-data=preserve is specified, qpdf will never attempt to change the filtering of any stream data.

When --stream-data=uncompress is specified, qpdf will attempt to remove any non-lossy filters that it supports. This
includes /FlateDecode, /LZWDecode, /ASCII85Decode, and /ASCIIHexDecode. This can be very useful
for inspecting the contents of various streams.

When --normalize-content=y is specified, qpdf will attempt to normalize whitespace and newlines in page content
streams. This is generally safe but could, in some cases, cause damage to the content streams. This option is intended
for people who wish to study PDF content streams or to debug PDF content. You should not use this for “production”
PDF files.

Ordinarily, qpdf will attempt to recover from certain types of errors in PDF files. These include errors in the cross-
reference table, certain types of object numbering errors, and certain types of stream length errors. Sometimes, qpdf
may think it has recovered but may not have actually recovered, so care should be taken when using this option as
some data loss is possible. The --suppress-recovery option will prevent qpdf from attempting recovery. In this case,
it will fail on the first error that it encounters.

Object streams, also known as compressed objects, were introduced into the PDF specification at version 1.5,
corresponding to Acrobat 6. Some older PDF viewers may not support files with object streams. qpdf can be used to
transform files with object streams to files without object streams or vice versa. As mentioned above, there are three
object stream modes: preserve, disable, and generate.

In preserve mode, the relationship to objects and the streams that contain them is preserved from the original file. In
disable mode, all objects are written as regular, uncompressed objects. The resulting file should be readable by older
PDF viewers. (Of course, the content of the files may include features not supported by older viewers, but at least
the structure will be supported.) In generate mode, qpdf will create its own object streams. This will usually result in
more compact PDF files, though they may not be readable by older viewers. In this mode, qpdf will also make sure
the PDF version number in the header is at least 1.5.

Ordinarily, qpdf reads cross-reference streams when they are present in a PDF file. If --ignore-xref-streams is
specified, qpdf will ignore any cross-reference streams for hybrid PDF files. The purpose of hybrid files is to make
some content available to viewers that are not aware of cross-reference streams. It is almost never desirable to ignore
them. The only time when you might want to use this feature is if you are testing creation of hybrid PDF files and wish
to see how a PDF consumer that doesn't understand object and cross-reference streams would interpret such a file.

Running QPDF

10

The --qdf flag turns on QDF mode, which changes some of the defaults described above. Specifically, in QDF mode,
by default, stream data is uncompressed, content streams are normalized, and encryption is removed. These defaults
can still be overridden by specifying the appropriate options as described above. Additionally, in QDF mode, stream
lengths are stored as indirect objects, objects are laid out in a less efficient but more readable fashion, and the documents
are interspersed with comments that make it easier for the user to find things and also make it possible for fix-qdf to
work properly. QDF mode is intended for people, mostly developers, who wish to inspect or modify PDF files in a
text editor. For details, please see Chapter 4, QDF Mode, page 12.

3.6. Testing, Inspection, and Debugging
Options
These options can be useful for digging into PDF files or for use in automated test suites for software that uses the qpdf
library. When any of the options in this section are specified, no output file should be given. The following options
are available:

--static-id
Causes generation of a fixed value for /ID. This is intended for testing only. Never use it for production files.

--static-aes-iv
Causes use of a static initialization vector for AES-CBC. This is intended for testing only so that output files
can be reproducible. Never use it for production files. This option in particular is not secure since it significantly
weakens the encryption.

--no-original-object-ids
Suppresses inclusion of original object ID comments in QDF files. This can be useful when generating QDF files
for test purposes, particularly when comparing them to determine whether two PDF files have identical content.

--show-encryption
Shows document encryption parameters. Also shows the document's user password if the owner password is given.

--check-linearization
Checks file integrity and linearization status.

--show-linearization
Checks and displays all data in the linearization hint tables.

--show-xref
Shows the contents of the cross-reference table in a human-readable form. This is especially useful for files with
cross-reference streams which are stored in a binary format.

--show-object=obj[,gen]
Show the contents of the given object. This is especially useful for inspecting objects that are inside of object
streams (also known as “compressed objects”).

--raw-stream-data
When used along with the --show-object option, if the object is a stream, shows the raw stream data instead of
object's contents.

--filtered-stream-data
When used along with the --show-object option, if the object is a stream, shows the filtered stream data instead
of object's contents. If the stream is filtered using filters that qpdf does not support, an error will be issued.

--show-npages
Prints the number of pages in the input file on a line by itself. Since the number of pages appears by itself on a
line, this option can be useful for scripting if you need to know the number of pages in a file.

Running QPDF

11

--show-pages
Shows the object and generation number for each page dictionary object and for each content stream associated
with the page. Having this information makes it more convenient to inspect objects from a particular page.

--with-images
When used along with --show-pages, also shows the object and generation numbers for the image objects on each
page. (At present, information about images in shared resource dictionaries are not output by this command. This
is discussed in a comment in the source code.)

--check
Checks file structure and well as encryption, linearization, and encoding of stream data. A file for which --check
reports no errors may still have errors in stream data content but should otherwise be structurally sound. If --check
any errors, qpdf will exit with a status of 2. There are some recoverable conditions that --check detects. These
are issued as warnings instead of errors. If qpdf finds no errors but finds warnings, it will exit with a status of
3 (as of version 2.0.4).

The --raw-stream-data and --filtered-stream-data options are ignored unless --show-object is given. Either of these
options will cause the stream data to be written to standard output. In order to avoid commingling of stream data with
other output, it is recommend that these objects not be combined with other test/inspection options.

If --filtered-stream-data is given and --normalize-content=y is also given, qpdf will attempt to normalize the stream
data as if it is a page content stream. This attempt will be made even if it is not a page content stream, in which case
it will produce unusable results.

12

Chapter 4. QDF Mode
In QDF mode, qpdf creates PDF files in what we call QDF form. A PDF file in QDF form, sometimes called a QDF
file, is a completely valid PDF file that has %QDF-1.0 as its third line (after the pdf header and binary characters)
and has certain other characteristics. The purpose of QDF form is to make it possible to edit PDF files, with some
restrictions, in an ordinary text editor. This can be very useful for experimenting with different PDF constructs or for
making one-off edits to PDF files (though there are other reasons why this may not always work).

It is ordinarily very difficult to edit PDF files in a text editor for two reasons: most meaningful data in PDF files is
compressed, and PDF files are full of offset and length information that makes it hard to add or remove data. A QDF
file is organized in a manner such that, if edits are kept within certain constraints, the fix-qdf program, distributed with
qpdf, is able to restore edited files to a correct state. The fix-qdf program takes no command-line arguments. It reads
a possibly edited QDF file from standard input and writes a repaired file to standard output.

The following attributes characterize a QDF file:

• All objects appear in numerical order in the PDF file, including when objects appear in object streams.

• Objects are printed in an easy-to-read format, and all line endings are normalized to UNIX line endings.

• Unless specifically overridden, streams appear uncompressed (when qpdf supports the filters and they are
compressed with a non-lossy compression scheme), and most content streams are normalized (line endings are
converted to just a UNIX-style linefeeds).

• All streams lengths are represented as indirect objects, and the stream length object is always the next object after
the stream. If the stream data does not end with a newline, an extra newline is inserted, and a special comment
appears after the stream indicating that this has been done.

• If the PDF file contains object streams, if object stream n contains k objects, those objects are numbered from n
+1 through n+k, and the object number/offset pairs appear on a separate line for each object. Additionally, each
object in the object stream is preceded by a comment indicating its object number and index. This makes it very
easy to find objects in object streams.

• All beginnings of objects, stream tokens, endstream tokens, and endobj tokens appear on lines by themselves.
A blank line follows every endobj token.

• If there is a cross-reference stream, it is unfiltered.

• Page dictionaries and page content streams are marked with special comments that make them easy to find.

• Comments precede each object indicating the object number of the corresponding object in the original file.

When editing a QDF file, any edits can be made as long as the above constraints are maintained. This means that you
can freely edit a page's content without worrying about messing up the QDF file. It is also possible to add new objects
so long as those objects are added after the last object in the file or subsequent objects are renumbered. If a QDF file
has object streams in it, you can always add the new objects before the xref stream and then change the number of the
xref stream, since nothing generally ever references it by number.

It is not generally practical to remove objects from QDF files without messing up object numbering, but if you remove
all references to an object, you can run qpdf on the file (after running fix-qdf), and qpdf will omit the now-orphaned
object.

When fix-qdf is run, it goes through the file and recomputes the following parts of the file:

• the /N, /W, and /First keys of all object stream dictionaries

QDF Mode

13

• the pairs of numbers representing object numbers and offsets of objects in object streams

• all stream lengths

• the cross-reference table or cross-reference stream

• the offset to the cross-reference table or cross-reference stream following the startxref token

14

Chapter 5. Using the QPDF Library
The source tree for the qpdf package has an examples directory that contains a few example programs. The qpdf/
qpdf.cc source file also serves as a useful example since it exercises almost all of the qpdf library's public interface.
The best source of documentation on the library itself is reading comments in include/qpdf/QPDF.hh, include/qpdf/
QDFWriter.hh, and include/qpdf/QPDFObjectHandle.hh.

All header files are installed in the include/qpdf directory. It is recommend that you use #include <qpdf/
QPDF.hh> rather than adding include/qpdf to your include path.

When linking against the qpdf static library, you may also need to specify -lpcre -lz on your link command. If
your system understands how to read libtool .la files, this may not be necessary.

The qpdf library is safe to use in a multithreaded program, but no individual QPDF object instance (including QPDF,
QPDFObjectHandle, or QPDFWriter) can be used in more than one thread at a time. Multiple threads may
simultaneously work with different instances of these and all other QPDF objects.

15

Chapter 6. Design and Library Notes

6.1. Introduction
This section was written prior to the implementation of the qpdf package and was subsequently modified to reflect the
implementation. In some cases, for purposes of explanation, it may differ slightly from the actual implementation. As
always, the source code and test suite are authoritative. Even if there are some errors, this document should serve as
a road map to understanding how this code works.

In general, one should adhere strictly to a specification when writing but be liberal in reading. This way, the product
of our software will be accepted by the widest range of other programs, and we will accept the widest range of input
files. This library attempts to conform to that philosophy whenever possible but also aims to provide strict checking
for people who want to validate PDF files. If you don't want to see warnings and are trying to write something
that is tolerant, you can call setSuppressWarnings(true). If you want to fail on the first error, you can call
setAttemptRecovery(false). The default behavior is to generating warnings for recoverable problems. Note
that recovery will not always produce the desired results even if it is able to get through the file. Unlike most other PDF
files that produce generic warnings such as “This file is damaged,”, qpdf generally issues a detailed error message that
would be most useful to a PDF developer. This is by design as there seems to be a shortage of PDF validation tools
out there. (This was, in fact, one of the major motivations behind the initial creation of qpdf.)

6.2. Design Goals
The QPDF package includes support for reading and rewriting PDF files. It aims to hide from the user details involving
object locations, modified (appended) PDF files, the directness/indirectness of objects, and stream filters including
encryption. It does not aim to hide knowledge of the object hierarchy or content stream contents. Put another way, a
user of the qpdf library is expected to have knowledge about how PDF files work, but is not expected to have to keep
track of bookkeeping details such as file positions.

A user of the library never has to care whether an object is direct or indirect. All access to objects deals with this
transparently. All memory management details are also handled by the library.

The PointerHolder object is used internally by the library to deal with memory management. This is basically a
smart pointer object very similar in spirit to the Boost library's shared_ptr object, but predating it by several years.
This library also makes use of a technique for giving fine-grained access to methods in one class to other classes by
using public subclasses with friends and only private members that in turn call private methods of the containing class.
See QPDFObjectHandle::Factory as an example.

The top-level qpdf class is QPDF. A QPDF object represents a PDF file. The library provides methods for both
accessing and mutating PDF files.

QPDFObject is the basic PDF Object class. It is an abstract base class from which are derived classes for each type
of PDF object. Clients do not interact with Objects directly but instead interact with QPDFObjectHandle.

QPDFObjectHandle contains PointerHolder<QPDFObject> and includes accessor methods that are type-safe
proxies to the methods of the derived object classes as well as methods for querying object types. They can be passed
around by value, copied, stored in containers, etc. with very low overhead. Instances of QPDFObjectHandle always
contain a reference back to the QPDF object from which they were created. A QPDFObjectHandle may be direct
or indirect. If indirect, the QPDFObject the PointerHolder initially points to is a null pointer. In this case, the
first attempt to access the underlying QPDFObject will result in the QPDFObject being resolved via a call to the
referenced QPDF instance. This makes it essentially impossible to make coding errors in which certain things will
work for some PDF files and not for others based on which objects are direct and which objects are indirect.

Design and Library Notes

16

Instances of QPDFObjectHandle can be directly created and modified using static factory methods in the
QPDFObjectHandle class. There are factory methods for each type of object as well as a convenience method
QPDFObjectHandle::parse that creates an object from a string representation of the object. Existing instances of
QPDFObjectHandle can also be modified in several ways. See comments in QPDFObjectHandle.hh for details.

When the QPDF class creates a new object, it dynamically allocates the appropriate type of QPDFObject and
immediately hands the pointer to an instance of QPDFObjectHandle. The parser reads a token from the current
file position. If the token is a not either a dictionary or array opener, an object is immediately constructed from
the single token and the parser returns. Otherwise, the parser is invoked recursively in a special mode in which it
accumulates objects until it finds a balancing closer. During this process, the “R” keyword is recognized and an indirect
QPDFObjectHandle may be constructed.

The QPDF::resolve() method, which is used to resolve an indirect object, may be invoked from the
QPDFObjectHandle class. It first checks a cache to see whether this object has already been read. If not, it reads the
object from the PDF file and caches it. It the returns the resulting QPDFObjectHandle. The calling object handle
then replaces its PointerHolder<QDFObject> with the one from the newly returned QPDFObjectHandle. In this
way, only a single copy of any direct object need exist and clients can access objects transparently without knowing
caring whether they are direct or indirect objects. Additionally, no object is ever read from the file more than once. That
means that only the portions of the PDF file that are actually needed are ever read from the input file, thus allowing
the qpdf package to take advantage of this important design goal of PDF files.

If the requested object is inside of an object stream, the object stream itself is first read into memory. Then the tokenizer
reads objects from the memory stream based on the offset information stored in the stream. Those individual objects
are cached, after which the temporary buffer holding the object stream contents are discarded. In this way, the first
time an object in an object stream is requested, all objects in the stream are cached.

An instance of QPDF is constructed by using the class's default constructor. If desired, the QPDF object may be
configured with various methods that change its default behavior. Then the QPDF::processFile() method is passed
the name of a PDF file, which permanently associates the file with that QPDF object. A password may also be given
for access to password-protected files. QPDF does not enforce encryption parameters and will treat user and owner
passwords equivalently. Either password may be used to access an encrypted file. 1 QPDF will allow recovery of a
user password given an owner password. The input PDF file must be seekable. (Output files written by QPDFWriter
need not be seekable, even when creating linearized files.) During construction, QPDF validates the PDF file's header,
and then reads the cross reference tables and trailer dictionaries. The QPDF class keeps only the first trailer dictionary
though it does read all of them so it can check the /Prev key. QPDF class users may request the root object and
the trailer dictionary specifically. The cross reference table is kept private. Objects may then be requested by number
of by walking the object tree.

When a PDF file has a cross-reference stream instead of a cross-reference table and trailer, requesting the document's
trailer dictionary returns the stream dictionary from the cross-reference stream instead.

There are some convenience routines for very common operations such as walking the page tree and returning a vector
of all page objects. For full details, please see the header file QPDF.hh.

The following example should clarify how QPDF processes a simple file.

• Client constructs QPDF pdf and calls pdf.processFile("a.pdf");.

• The QPDF class checks the beginning of a.pdf for %!PDF-1.[0-9]+. It then reads the cross reference table
mentioned at the end of the file, ensuring that it is looking before the last %%EOF. After getting to trailer
keyword, it invokes the parser.

1 As pointed out earlier, the intention is not for qpdf to be used to bypass security on files. but as any open source PDF consumer may be easily
modified to bypass basic PDF document security, and qpdf offers may transformations that can do this as well, there seems to be little point in the
added complexity of conditionally enforcing document security.

Design and Library Notes

17

• The parser sees “<<”, so it calls itself recursively in dictionary creation mode.

• In dictionary creation mode, the parser keeps accumulating objects until it encounters “>>”. Each object that is
read is pushed onto a stack. If “R” is read, the last two objects on the stack are inspected. If they are integers,
they are popped off the stack and their values are used to construct an indirect object handle which is then pushed
onto the stack. When “>>” is finally read, the stack is converted into a QPDF_Dictionary which is placed in a
QPDFObjectHandle and returned.

• The resulting dictionary is saved as the trailer dictionary.

• The /Prev key is searched. If present, QPDF seeks to that point and repeats except that the new trailer dictionary
is not saved. If /Prev is not present, the initial parsing process is complete.

If there is an encryption dictionary, the document's encryption parameters are initialized.

• The client requests root object. The QPDF class gets the value of root key from trailer dictionary and returns it. It
is an unresolved indirect QPDFObjectHandle.

• The client requests the /Pages key from root QPDFObjectHandle. The QPDFObjectHandle notices that it
is indirect so it asks QPDF to resolve it. QPDF looks in the object cache for an object with the root dictionary's
object ID and generation number. Upon not seeing it, it checks the cross reference table, gets the offset, and reads
the object present at that offset. It stores the result in the object cache and returns the cached result. The calling
QPDFObjectHandle replaces its object pointer with the one from the resolved QPDFObjectHandle, verifies
that it a valid dictionary object, and returns the (unresolved indirect) QPDFObject handle to the top of the Pages
hierarchy.

As the client continues to request objects, the same process is followed for each new requested object.

6.3. Casting Policy
This section describes the casting policy followed by qpdf's implementation. This is no concern to qpdf's end users
and largely of no concern to people writing code that uses qpdf, but it could be of interest to people who are porting
qpdf to a new platform or who are making modifications to the code.

The C++ code in qpdf is free of old-style casts except where unavoidable (e.g. where the old-style cast is in a macro
provided by a third-party header file). When there is a need for a cast, it is handled, in order of preference, by rewriting
the code to avoid the need for a cast, calling const_cast, calling static_cast, calling reinterpret_cast, or calling some
combination of the above. As a last resort, a compiler-specific #pragma may be used to suppress a warning that we
don't want to fix. Examples may include suppressing warnings about the use of old-style casts in code that is shared
between C and C++ code.

The casting policy explicitly prohibits casting between integer sizes for no purpose other than to quiet a compiler
warning when there is no reasonable chance of a problem resulting. The reason for this exclusion is that the practice
of adding these additional casts precludes future use of additional compiler warnings as a tool for making future
improvements to this aspect of the code, and it also damages the readability of the code.

There are a few significant areas where casting is common in the qpdf sources or where casting would be required to
quiet higher levels of compiler warnings but is omitted at present:

• char vs. unsigned char. For historical reasons, there are a lot of places in qpdf's internals that deal with
unsigned char, which means that a lot of casting is required to interoperate with standard library calls and
std::string. In retrospect, qpdf should have probably used regular (signed) char and char* everywhere and
just cast to unsigned char when needed, but it's too late to make that change now. There are reinterpret_cast
calls to go between char* and unsigned char*, and there are static_cast calls to go between char and
unsigned char. These should always be safe.

Design and Library Notes

18

• Non-const unsigned char* used in the Pipeline interface. The pipeline interface has a write call that uses
unsigned char* without a const qualifier. The main reason for this is to support pipelines that make calls to
third-party libraries, such as zlib, that don't include const in their interfaces. Unfortunately, there are many places
in the code where it is desirable to have const char* with pipelines. None of the pipeline implementations in
qpdf currently modify the data passed to write, and doing so would be counter to the intent of Pipeline, but there
is nothing in the code to prevent this from being done. There are places in the code where const_cast is used to
remove the const-ness of pointers going into Pipelines. This could theoretically be unsafe, but there is adequate
testing to assert that it is safe and will remain safe in qpdf's code.

• size_t vs. qpdf_offset_t. This is pretty much unavoidable since sizes are unsigned types and offsets are
signed types. Whenever it is necessary to seek by an amount given by a size_t, it becomes necessary to mix and
match between size_t and qpdf_offset_t. Additionally, qpdf sometimes treats memory buffers like files (as
with BufferInputSource, and those seek interfaces have to be consistent with file-based input sources. Neither
gcc nor MSVC give warnings for this case by default, but both have warning flags that can enable this. (MSVC:
/W14267 or /W3, which also enables some additional warnings that we ignore; gcc: -Wconversion -Wsign-
conversion). This could matter for files whose sizes are larger than 263 bytes, but it is reasonable to expect that a
world where such files are common would also have larger size_t and qpdf_offset_t types in it. On most
64-bit systems at the time of this writing (the release of version 4.1.0 of qpdf), both size_t and qpdf_offset_t
are 64-bit integer types, while on many current 32-bit systems, size_t is a 32-bit type while qpdf_offset_t is
a 64-bit type. I am not aware of any cases where 32-bit systems that have size_t smaller than qpdf_offset_t
could run into problems. Although I can't conclusively rule out the possibility of such problems existing, I suspect
any cases would be pretty contrived. In the event that someone should produce a file that qpdf can't handle because
of what is suspected to be issues involving the handling of size_t vs. qpdf_offset_t (such files may behave
properly on 64-bit systems but not on 32-bit systems because they have very large embedded files or streams, for
example), the above mentioned warning flags could be enabled and all those implicit conversions could be carefully
scrutinized. (I have already gone through that exercise once in adding support for files larger than 4 GB in size.) I
continue to be committed to supporting large files on 32-bit systems, but I would not go to any lengths to support
corner cases involving large embedded files or large streams that work on 64-bit systems but not on 32-bit systems
because of size_t being too small. It is reasonable to assume that anyone working with such files would be using
a 64-bit system anyway since many 32-bit applications would have similar difficulties.

• size_t vs. int or long. There are some cases where size_t and int or long or size_t and unsigned
int or unsigned long are used interchangeably. These cases occur when working with very small amounts of
memory, such as with the bit readers (where we're working with just a few bytes at a time), some cases of strlen, and
a few other cases. I have scrutinized all of these cases and determined them to be safe, but there is no mechanism in
the code to ensure that new unsafe conversions between int and size_t aren't introduced short of good testing
and strong awareness of the issues. Again, if any such bugs are suspected in the future, enabling the additional
warning flags and scrutinizing the warnings would be in order.

To be clear, I believe qpdf to be well-behaved with respect to sizes and offsets, and qpdf's test suite includes actual
generation and full processing of files larger than 4 GB in size. The issues raised here are largely academic and should
not in any way be interpreted to mean that qpdf has practical problems involving sloppiness with integer types. I also
believe that appropriate measures have been taken in the code to avoid problems with signed vs. unsigned integers
from resulting in memory overwrites or other issues with potential security implications, though there are never any
absolute guarantees.

6.4. Encryption
Encryption is supported transparently by qpdf. When opening a PDF file, if an encryption dictionary exists, the QPDF
object processes this dictionary using the password (if any) provided. The primary decryption key is computed and
cached. No further access is made to the encryption dictionary after that time. When an object is read from a file, the
object ID and generation of the object in which it is contained is always known. Using this information along with
the stored encryption key, all stream and string objects are transparently decrypted. Raw encrypted objects are never
stored in memory. This way, nothing in the library ever has to know or care whether it is reading an encrypted file.

Design and Library Notes

19

An interface is also provided for writing encrypted streams and strings given an encryption key. This is used by
QPDFWriter when it rewrites encrypted files.

When copying encrypted files, unless otherwise directed, qpdf will preserve any encryption in force in the original
file. qpdf can do this with either the user or the owner password. There is no difference in capability based on which
password is used. When 40 or 128 bit encryption keys are used, the user password can be recovered with the owner
password. With 256 keys, the user and owner passwords are used independently to encrypt the actual encryption key,
so while either can be used, the owner password can no longer be used to recover the user password.

Starting with version 4.0.0, qpdf can read files that are not encrypted but that contain encrypted attachments, but it
cannot write such files. qpdf also requires the password to be specified in order to open the file, not just to extract
attachments, since once the file is open, all decryption is handled transparently. When copying files like this while
preserving encryption, qpdf will apply the file's encryption to everything in the file, not just to the attachments. When
decrypting the file, qpdf will decrypt the attachments. In general, when copying PDF files with multiple encryption
formats, qpdf will choose the newest format. The only exception to this is that clear-text metadata will be preserved
as clear-text if it is that way in the original file.

6.5. Random Number Generation
QPDF generates random numbers to support generation of encrypted data. Versions prior to 5.0.1 used random or rand
from stdlib to generate random numbers. Version 5.0.1, if available, used operating system-provided secure random
number generation instead, enabling use of stdlib random number generation only if enabled by a compile-time option.
Starting in version 5.1.0, use of insecure random numbers was disabled unless enabled at compile time. Starting in
version 5.1.0, it is also possible for you to disable use of OS-provided secure random numbers. This is especially
useful on Windows if you want to avoid a dependency on Microsoft's cryptography API. In this case, you must provide
your own random data provider. Regardless of how you compile qpdf, starting in version 5.1.0, it is possible for you
to provide your own random data provider at runtime. This would enable you to use some software-based secure
pseudorandom number generator and to avoid use of whatever the operating system provides. For details on how to
do this, please refer to the top-level README file in the source distribution and to comments in QUtil.hh.

6.6. Adding and Removing Pages
While qpdf's API has supported adding and modifying objects for some time, version 3.0 introduces specific methods
for adding and removing pages. These are largely convenience routines that handle two tricky issues: pushing
inheritable resources from the /Pages tree down to individual pages and manipulation of the /Pages tree itself. For
details, see addPage and surrounding methods in QPDF.hh.

6.7. Reserving Object Numbers
Version 3.0 of qpdf introduced the concept of reserved objects. These are seldom needed for ordinary operations, but
there are cases in which you may want to add a series of indirect objects with references to each other to a QPDF object.
This causes a problem because you can't determine the object ID that a new indirect object will have until you add it to
the QPDF object with QPDF::makeIndirectObject. The only way to add two mutually referential objects to a QPDF
object prior to version 3.0 would be to add the new objects first and then make them refer to each other after adding
them. Now it is possible to create a reserved object using QPDFObjectHandle::newReserved. This is an indirect object
that stays “unresolved” even if it is queried for its type. So now, if you want to create a set of mutually referential
objects, you can create reservations for each one of them and use those reservations to construct the references. When
finished, you can call QPDF::replaceReserved to replace the reserved objects with the real ones. This functionality
will never be needed by most applications, but it is used internally by QPDF when copying objects from other PDF
files, as discussed in Section 6.8, “Copying Objects From Other PDF Files”, page 20. For an example of how to
use reserved objects, search for newReserved in test_driver.cc in qpdf's sources.

Design and Library Notes

20

6.8. Copying Objects From Other PDF Files
Version 3.0 of qpdf introduced the ability to copy objects into a QPDF object from a different QPDF object, which
we refer to as foreign objects. This allows arbitrary merging of PDF files. The qpdf command-line tool provides
limited support for basic page selection, including merging in pages from other files, but the library's API makes
it possible to implement arbitrarily complex merging operations. The main method for copying foreign objects is
QPDF::copyForeignObject. This takes an indirect object from another QPDF and copies it recursively into this object
while preserving all object structure, including circular references. This means you can add a direct object that you
create from scratch to a QPDF object with QPDF::makeIndirectObject, and you can add an indirect object from
another file with QPDF::copyForeignObject. The fact that QPDF::makeIndirectObject does not automatically detect
a foreign object and copy it is an explicit design decision. Copying a foreign object seems like a sufficiently significant
thing to do that it should be done explicitly.

The other way to copy foreign objects is by passing a page from one QPDF to another by calling QPDF::addPage.
In contrast to QPDF::makeIndirectObject, this method automatically distinguishes between indirect objects in the
current file, foreign objects, and direct objects.

6.9. Writing PDF Files
The qpdf library supports file writing of QPDF objects to PDF files through the QPDFWriter class. The
QPDFWriter class has two writing modes: one for non-linearized files, and one for linearized files. See Chapter 7,
Linearization, page 22 for a description of linearization is implemented. This section describes how we write non-
linearized files including the creation of QDF files (see Chapter 4, QDF Mode, page 12.

This outline was written prior to implementation and is not exactly accurate, but it provides a correct “notional” idea
of how writing works. Look at the code in QPDFWriter for exact details.

• Initialize state:

• next object number = 1

• object queue = empty

• renumber table: old object id/generation to new id/0 = empty

• xref table: new id -> offset = empty

• Create a QPDF object from a file.

• Write header for new PDF file.

• Request the trailer dictionary.

• For each value that is an indirect object, grab the next object number (via an operation that returns and increments
the number). Map object to new number in renumber table. Push object onto queue.

• While there are more objects on the queue:

• Pop queue.

• Look up object's new number n in the renumbering table.

• Store current offset into xref table.

• Write n 0 obj.

Design and Library Notes

21

• If object is null, whether direct or indirect, write out null, thus eliminating unresolvable indirect object references.

• If the object is a stream stream, write stream contents, piped through any filters as required, to a memory buffer.
Use this buffer to determine the stream length.

• If object is not a stream, array, or dictionary, write out its contents.

• If object is an array or dictionary (including stream), traverse its elements (for array) or values (for dictionaries),
handling recursive dictionaries and arrays, looking for indirect objects. When an indirect object is found, if it is
not resolvable, ignore. (This case is handled when writing it out.) Otherwise, look it up in the renumbering table.
If not found, grab the next available object number, assign to the referenced object in the renumbering table, and
push the referenced object onto the queue. As a special case, when writing out a stream dictionary, replace length,
filters, and decode parameters as required.

Write out dictionary or array, replacing any unresolvable indirect object references with null (pdf spec says
reference to non-existent object is legal and resolves to null) and any resolvable ones with references to the
renumbered objects.

• If the object is a stream, write stream\n, the stream contents (from the memory buffer), and \nendstream\n.

• When done, write endobj.

Once we have finished the queue, all referenced objects will have been written out and all deleted objects or
unreferenced objects will have been skipped. The new cross-reference table will contain an offset for every new object
number from 1 up to the number of objects written. This can be used to write out a new xref table. Finally we can
write out the trailer dictionary with appropriately computed /ID (see spec, 8.3, File Identifiers), the cross reference
table offset, and %%EOF.

6.10. Filtered Streams
Support for streams is implemented through the Pipeline interface which was designed for this package.

When reading streams, create a series of Pipeline objects. The Pipeline abstract base requires implementation write()
and finish() and provides an implementation of getNext(). Each pipeline object, upon receiving data, does whatever it
is going to do and then writes the data (possibly modified) to its successor. Alternatively, a pipeline may be an end-
of-the-line pipeline that does something like store its output to a file or a memory buffer ignoring a successor. For
additional details, look at Pipeline.hh.

QPDF can read raw or filtered streams. When reading a filtered stream, the QPDF class creates a Pipeline object for
one of each appropriate filter object and chains them together. The last filter should write to whatever type of output
is required. The QPDF class has an interface to write raw or filtered stream contents to a given pipeline.

22

Chapter 7. Linearization
This chapter describes how QPDF and QPDFWriter implement creation and processing of linearized PDFS.

7.1. Basic Strategy for Linearization
To avoid the incestuous problem of having the qpdf library validate its own linearized files, we have a special linearized
file checking mode which can be invoked via qpdf --check-linearization (or qpdf --check). This mode reads the
linearization parameter dictionary and the hint streams and validates that object ordering, parameters, and hint stream
contents are correct. The validation code was first tested against linearized files created by external tools (Acrobat and
pdlin) and then used to validate files created by QPDFWriter itself.

7.2. Preparing For Linearization
Before creating a linearized PDF file from any other PDF file, the PDF file must be altered such that all page attributes
are propagated down to the page level (and not inherited from parents in the /Pages tree). We also have to know
which objects refer to which other objects, being concerned with page boundaries and a few other cases. We refer to
this part of preparing the PDF file as optimization, discussed in Section 7.3, “Optimization”, page 22. Note the, in
this context, the term optimization is a qpdf term, and the term linearization is a term from the PDF specification. Do
not be confused by the fact that many applications refer to linearization as optimization or web optimization.

When creating linearized PDF files from optimized PDF files, there are really only a few issues that need to be dealt
with:

• Creation of hints tables

• Placing objects in the correct order

• Filling in offsets and byte sizes

7.3. Optimization
In order to perform various operations such as linearization and splitting files into pages, it is necessary to know which
objects are referenced by which pages, page thumbnails, and root and trailer dictionary keys. It is also necessary to
ensure that all page-level attributes appear directly at the page level and are not inherited from parents in the pages tree.

We refer to the process of enforcing these constraints as optimization. As mentioned above, note that some applications
refer to linearization as optimization. Although this optimization was initially motivated by the need to create linearized
files, we are using these terms separately.

PDF file optimization is implemented in the QPDF_optimization.cc source file. That file is richly commented and
serves as the primary reference for the optimization process.

After optimization has been completed, the private member variables obj_user_to_objects and object_to_obj_users in
QPDF have been populated. Any object that has more than one value in the object_to_obj_users table is shared. Any
object that has exactly one value in the object_to_obj_users table is private. To find all the private objects in a page or
a trailer or root dictionary key, one merely has make this determination for each element in the obj_user_to_objects
table for the given page or key.

Note that pages and thumbnails have different object user types, so the above test on a page will not include objects
referenced by the page's thumbnail dictionary and nothing else.

Linearization

23

7.4. Writing Linearized Files
We will create files with only primary hint streams. We will never write overflow hint streams. (As of PDF version 1.4,
Acrobat doesn't either, and they are never necessary.) The hint streams contain offset information to objects that point
to where they would be if the hint stream were not present. This means that we have to calculate all object positions
before we can generate and write the hint table. This means that we have to generate the file in two passes. To make
this reliable, QPDFWriter in linearization mode invokes exactly the same code twice to write the file to a pipeline.

In the first pass, the target pipeline is a count pipeline chained to a discard pipeline. The count pipeline simply passes
its data through to the next pipeline in the chain but can return the number of bytes passed through it at any intermediate
point. The discard pipeline is an end of line pipeline that just throws its data away. The hint stream is not written and
dummy values with adequate padding are stored in the first cross reference table, linearization parameter dictionary,
and /Prev key of the first trailer dictionary. All the offset, length, object renumbering information, and anything else
we need for the second pass is stored.

At the end of the first pass, this information is passed to the QPDF class which constructs a compressed hint stream
in a memory buffer and returns it. QPDFWriter uses this information to write a complete hint stream object into a
memory buffer. At this point, the length of the hint stream is known.

In the second pass, the end of the pipeline chain is a regular file instead of a discard pipeline, and we have known values
for all the offsets and lengths that we didn't have in the first pass. We have to adjust offsets that appear after the start of
the hint stream by the length of the hint stream, which is known. Anything that is of variable length is padded, with the
padding code surrounding any writing code that differs in the two passes. This ensures that changes to the way things
are represented never results in offsets that were gathered during the first pass becoming incorrect for the second pass.

Using this strategy, we can write linearized files to a non-seekable output stream with only a single pass to disk or
wherever the output is going.

7.5. Calculating Linearization Data
Once a file is optimized, we have information about which objects access which other objects. We can then process
these tables to decide which part (as described in “Linearized PDF Document Structure” in the PDF specification)
each object is contained within. This tells us the exact order in which objects are written. The QPDFWriter class
asks for this information and enqueues objects for writing in the proper order. It also turns on a check that causes an
exception to be thrown if an object is encountered that has not already been queued. (This could happen only if there
were a bug in the traversal code used to calculate the linearization data.)

7.6. Known Issues with Linearization
There are a handful of known issues with this linearization code. These issues do not appear to impact the behavior of
linearized files which still work as intended: it is possible for a web browser to begin to display them before they are
fully downloaded. In fact, it seems that various other programs that create linearized files have many of these same
issues. These items make reference to terminology used in the linearization appendix of the PDF specification.

• Thread Dictionary information keys appear in part 4 with the rest of Threads instead of in part 9. Objects in part
9 are not grouped together functionally.

• We are not calculating numerators for shared object positions within content streams or interleaving them within
content streams.

• We generate only page offset, shared object, and outline hint tables. It would be relatively easy to add some additional
tables. We gather most of the information needed to create thumbnail hint tables. There are comments in the code
about this.

Linearization

24

7.7. Debugging Note
The qpdf --show-linearization command can show the complete contents of linearization hint streams. To look at the
raw data, you can extract the filtered contents of the linearization hint tables using qpdf --show-object=n --filtered-
stream-data. Then, to convert this into a bit stream (since linearization tables are bit streams written without regard
to byte boundaries), you can pipe the resulting data through the following perl code:

use bytes;
binmode STDIN;
undef $/;
my $a = <STDIN>;
my @ch = split(//, $a);
map { printf("%08b", ord($_)) } @ch;
print "\n";

25

Chapter 8. Object and Cross-Reference
Streams
This chapter provides information about the implementation of object stream and cross-reference stream support in
qpdf.

8.1. Object Streams
Object streams can contain any regular object except the following:

• stream objects

• objects with generation > 0

• the encryption dictionary

• objects containing the /Length of another stream

In addition, Adobe reader (at least as of version 8.0.0) appears to not be able to handle having the document catalog
appear in an object stream if the file is encrypted, though this is not specifically disallowed by the specification.

There are additional restrictions for linearized files. See Section 8.3, “Implications for Linearized Files”, page 26for
details.

The PDF specification refers to objects in object streams as “compressed objects” regardless of whether the object
stream is compressed.

The generation number of every object in an object stream must be zero. It is possible to delete and replace an object
in an object stream with a regular object.

The object stream dictionary has the following keys:

• /N: number of objects

• /First: byte offset of first object

• /Extends: indirect reference to stream that this extends

Stream collections are formed with /Extends. They must form a directed acyclic graph. These can be used for
semantic information and are not meaningful to the PDF document's syntactic structure. Although qpdf preserves
stream collections, it never generates them and doesn't make use of this information in any way.

The specification recommends limiting the number of objects in object stream for efficiency in reading and decoding.
Acrobat 6 uses no more than 100 objects per object stream for linearized files and no more 200 objects per stream for
non-linearized files. QPDFWriter, in object stream generation mode, never puts more than 100 objects in an object
stream.

Object stream contents consists of N pairs of integers, each of which is the object number and the byte offset of the
object relative to the first object in the stream, followed by the objects themselves, concatenated.

8.2. Cross-Reference Streams
For non-hybrid files, the value following startxref is the byte offset to the xref stream rather than the word xref.

Object and Cross-Reference Streams

26

For hybrid files (files containing both xref tables and cross-reference streams), the xref table's trailer dictionary contains
the key /XRefStm whose value is the byte offset to a cross-reference stream that supplements the xref table. A
PDF 1.5-compliant application should read the xref table first. Then it should replace any object that it has already
seen with any defined in the xref stream. Then it should follow any /Prev pointer in the original xref table's trailer
dictionary. The specification is not clear about what should be done, if anything, with a /Prev pointer in the xref
stream referenced by an xref table. The QPDF class ignores it, which is probably reasonable since, if this case were
to appear for any sensible PDF file, the previous xref table would probably have a corresponding /XRefStm pointer
of its own. For example, if a hybrid file were appended, the appended section would have its own xref table and /
XRefStm. The appended xref table would point to the previous xref table which would point the /XRefStm, meaning
that the new /XRefStm doesn't have to point to it.

Since xref streams must be read very early, they may not be encrypted, and the may not contain indirect objects for
keys required to read them, which are these:

• /Type: value /XRef

• /Size: value n+1: where n is highest object number (same as /Size in the trailer dictionary)

• /Index (optional): value [n count ...] used to determine which objects' information is stored in this stream.
The default is [0 /Size].

• /Prev: value offset: byte offset of previous xref stream (same as /Prev in the trailer dictionary)

• /W [...]: sizes of each field in the xref table

The other fields in the xref stream, which may be indirect if desired, are the union of those from the xref table's trailer
dictionary.

8.2.1. Cross-Reference Stream Data
The stream data is binary and encoded in big-endian byte order. Entries are concatenated, and each entry has a length
equal to the total of the entries in /W above. Each entry consists of one or more fields, the first of which is the type of
the field. The number of bytes for each field is given by /W above. A 0 in /W indicates that the field is omitted and
has the default value. The default value for the field type is “1”. All other default values are “0”.

PDF 1.5 has three field types:

• 0: for free objects. Format: 0 obj next-generation, same as the free table in a traditional cross-reference table

• 1: regular non-compressed object. Format: 1 offset generation

• 2: for objects in object streams. Format: 2 object-stream-number index, the number of object stream
containing the object and the index within the object stream of the object.

It seems standard to have the first entry in the table be 0 0 0 instead of 0 0 ffff if there are no deleted objects.

8.3. Implications for Linearized Files
For linearized files, the linearization dictionary, document catalog, and page objects may not be contained in object
streams.

Objects stored within object streams are given the highest range of object numbers within the main and first-page
cross-reference sections.

It is okay to use cross-reference streams in place of regular xref tables. There are on special considerations.

Object and Cross-Reference Streams

27

Hint data refers to object streams themselves, not the objects in the streams. Shared object references should also be
made to the object streams. There are no reference in any hint tables to the object numbers of compressed objects
(objects within object streams).

When numbering objects, all shared objects within both the first and second halves of the linearized files must be
numbered consecutively after all normal uncompressed objects in that half.

8.4. Implementation Notes
There are three modes for writing object streams: disable, preserve, and generate. In disable mode, we do not generate
any object streams, and we also generate an xref table rather than xref streams. This can be used to generate PDF
files that are viewable with older readers. In preserve mode, we write object streams such that written object streams
contain the same objects and /Extends relationships as in the original file. This is equal to disable if the file has no
object streams. In generate, we create object streams ourselves by grouping objects that are allowed in object streams
together in sets of no more than 100 objects. We also ensure that the PDF version is at least 1.5 in generate mode, but
we preserve the version header in the other modes. The default is preserve.

We do not support creation of hybrid files. When we write files, even in preserve mode, we will lose any xref tables
and merge any appended sections.

28

Appendix A. Release Notes
For a detailed list of changes, please see the file ChangeLog in the source distribution.

5.1.3: May 24, 2015

• Bug fix: fix-qdf was not properly handling files that contained object streams with more than 255 objects in
them.

• Bug fix: qpdf was not properly initializing Microsoft's secure crypto provider on fresh Windows installations
that had not had any keys created yet.

• Fix a few errors found by Gynvael Coldwind and Mateusz Jurczyk of the Google Security Team. Please see
the ChangeLog for details.

• Properly handle pages that have no contents at all. There were many cases in which qpdf handled this fine, but
a few methods blindly obtained page contents with handling the possibility that there were no contents.

• Make qpdf more robust for a few more kinds of problems that may occur in invalid PDF files.

5.1.2: June 7, 2014

• Bug fix: linearizing files could create a corrupted output file under extremely unlikely file size circumstances.
See ChangeLog for details. The odds of getting hit by this are very low, though one person did.

• Bug fix: qpdf would fail to write files that had streams with decode parameters referencing other streams.

• New example program: pdf-split-pages: efficiently split PDF files into individual pages. The example program
does this more efficiently than using qpdf --pages to do it.

• Packaging fix: Visual C++ binaries did not support Windows XP. This has been rectified by updating the
compilers used to generate the release binaries.

5.1.1: January 14, 2014

• Performance fix: copying foreign objects could be very slow with certain types of files. This was most likely
to be visible during page splitting and was due to traversing the same objects multiple times in some cases.

5.1.0: December 17, 2013

• Added runtime option (QUtil::setRandomDataProvider) to supply your own random data provider. You can
use this if you want to avoid using the OS-provided secure random number generation facility or stdlib's less
secure version. See comments in include/qpdf/QUtil.hh for details.

• Fixed image comparison tests to not create 12-bit-per-pixel images since some versions of tiffcmp have bugs
in comparing them in some cases. This increases the disk space required by the image comparison tests, which
are off by default anyway.

• Introduce a number of small fixes for compilation on the latest clang in MacOS and the latest Visual C++ in
Windows.

• Be able to handle broken files that end the xref table header with a space instead of a newline.

5.0.1: October 18, 2013

• Thanks to a detailed review by Florian Weimer and the Red Hat Product Security Team, this release includes a
number of non-user-visible security hardening changes. Please see the ChangeLog file in the source distribution
for the complete list.

Release Notes

29

• When available, operating system-specific secure random number generation is used for generating
initialization vectors and other random values used during encryption or file creation. For the Windows build,
this results in an added dependency on Microsoft's cryptography API. To disable the OS-specific cryptography
and use the old version, pass the --enable-insecure-random option to ./configure.

• The qpdf command-line tool now issues a warning when -accessibility=n is specified for newer encryption
versions stating that the option is ignored. qpdf, per the spec, has always ignored this flag, but it previously
did so silently. This warning is issued only by the command-line tool, not by the library. The library's handling
of this flag is unchanged.

5.0.0: July 10, 2013

• Bug fix: previous versions of qpdf would lose objects with generation != 0 when generating object streams.
Fixing this required changes to the public API.

• Removed methods from public API that were only supposed to be called by QPDFWriter and couldn't
realistically be called anywhere else. See ChangeLog for details.

• New QPDFObjGen class added to represent an object ID/generation pair. QPDFObjectHandle::getObjGen() is
now preferred over QPDFObjectHandle::getObjectID() and QPDFObjectHandle::getGeneration() as it makes
it less likely for people to accidentally write code that ignores the generation number. See QPDF.hh and
QPDFObjectHandle.hh for additional notes.

• Add --show-npages command-line option to the qpdf command to show the number of pages in a file.

• Allow omission of the page range within --pages for the qpdf command. When omitted, the page range is
implicitly taken to be all the pages in the file.

• Various enhancements were made to support different types of broken files or broken readers. Details can be
found in ChangeLog.

4.1.0: April 14, 2013

• Note to people including qpdf in distributions: the .la files generated by libtool are now installed by qpdf's make
install target. Before, they were not installed. This means that if your distribution does not want to include .la
files, you must remove them as part of your packaging process.

• Major enhancement: API enhancements have been made to support parsing of content streams. This
enhancement includes the following changes:

• QPDFObjectHandle::parseContentStream method parses objects in a content stream and calls handlers in a
callback class. The example examples/pdf-parse-content.cc illustrates how this may be used.

• QPDFObjectHandle can now represent operators and inline images, object types that may only appear
in content streams.

• Method QPDFObjectHandle::getTypeCode() returns an enumerated type value representing the underlying
object type. Method QPDFObjectHandle::getTypeName() returns a text string describing the name of
the type of a QPDFObjectHandle object. These methods can be used for more efficient parsing and
debugging/diagnostic messages.

• qpdf --check now parses all pages' content streams in addition to doing other checks. While there are still many
types of errors that cannot be detected, syntactic errors in content streams will now be reported.

• Minor compilation enhancements have been made to facilitate easier for support for a broader range of compilers
and compiler versions.

Release Notes

30

• Warning flags have been moved into a separate variable in autoconf.mk

• The configure flag --enable-werror work for Microsoft compilers

• All MSVC CRT security warnings have been resolved.

• All C-style casts in C++ Code have been replaced by C++ casts, and many casts that had been included
to suppress higher warning levels for some compilers have been removed, primarily for clarity. Places
where integer type coercion occurs have been scrutinized. A new casting policy has been documented in the
manual. This is of concern mainly to people porting qpdf to new platforms or compilers. It is not visible to
programmers writing code that uses the library

• Some internal limits have been removed in code that converts numbers to strings. This is largely invisible to
users, but it does trigger a bug in some older versions of mingw-w64's C++ library. See README-windows.txt
in the source distribution if you think this may affect you. The copy of the DLL distributed with qpdf's binary
distribution is not affected by this problem.

• The RPM spec file previously included with qpdf has been removed. This is because virtually all Linux
distributions include qpdf now that it is a dependency of CUPS filters.

• A few bug fixes are included:

• Overridden compressed objects are properly handled. Before, there were certain constructs that could cause
qpdf to see old versions of some objects. The most usual manifestation of this was loss of filled in form
values for certain files.

• Installation no longer uses GNU/Linux-specific versions of some commands, so make install works on
Solaris with native tools.

• The 64-bit mingw Windows binary package no longer includes a 32-bit DLL.

4.0.1: January 17, 2013

• Fix detection of binary attachments in test suite to avoid false test failures on some platforms.

• Add clarifying comment in QPDF.hh to methods that return the user password explaining that it is no longer
possible with newer encryption formats to recover the user password knowing the owner password. In earlier
encryption formats, the user password was encrypted in the file using the owner password. In newer encryption
formats, a separate encryption key is used on the file, and that key is independently encrypted using both the
user password and the owner password.

4.0.0: December 31, 2012

• Major enhancement: support has been added for newer encryption schemes supported by version X of Adobe
Acrobat. This includes use of 127-character passwords, 256-bit encryption keys, and the encryption scheme
specified in ISO 32000-2, the PDF 2.0 specification. This scheme can be chosen from the command line by
specifying use of 256-bit keys. qpdf also supports the deprecated encryption method used by Acrobat IX. This
encryption style has known security weaknesses and should not be used in practice. However, such files exist “in
the wild,” so support for this scheme is still useful. New methods QPDFWriter::setR6EncryptionParameters
(for the PDF 2.0 scheme) and QPDFWriter::setR5EncryptionParameters (for the deprecated scheme) have
been added to enable these new encryption schemes. Corresponding functions have been added to the C API
as well.

• Full support for Adobe extension levels in PDF version information. Starting with PDF version 1.7,
corresponding to ISO 32000, Adobe adds new functionality by increasing the extension level rather

Release Notes

31

than increasing the version. This support includes addition of the QPDF::getExtensionLevel method for
retrieving the document's extension level, addition of versions of QPDFWriter::setMinimumPDFVersion
and QPDFWriter::forcePDFVersion that accept an extension level, and extended syntax for specifying
forced and minimum versions on the command line as described in Section 3.5, “Advanced Transformation
Options”, page 8. Corresponding functions have been added to the C API as well.

• Minor fixes to prevent qpdf from referencing objects in the file that are not referenced in the file's overall
structure. Most files don't have any such objects, but some files have contain unreferenced objects with errors,
so these fixes prevent qpdf from needlessly rejecting or complaining about such objects.

• Add new generalized methods for reading and writing files from/to programmer-defined sources. The
method QPDF::processInputSource allows the programmer to use any input source for the input file, and
QPDFWriter::setOutputPipeline allows the programmer to write the output file through any pipeline. These
methods would make it possible to perform any number of specialized operations, such as accessing external
storage systems, creating bindings for qpdf in other programming languages that have their own I/O systems,
etc.

• Add new method QPDF::getEncryptionKey for retrieving the underlying encryption key used in the file.

• This release includes a small handful of non-compatible API changes. While effort is made to avoid such
changes, all the non-compatible API changes in this version were to parts of the API that would likely never
be used outside the library itself. In all cases, the altered methods or structures were parts of the QPDF that
were public to enable them to be called from either QPDFWriter or were part of validation code that was over-
zealous in reporting problems in parts of the file that would not ordinarily be referenced. In no case did any of
the removed methods do anything worse that falsely report error conditions in files that were broken in ways
that didn't matter. The following public parts of the QPDF class were changed in a non-compatible way:

• Updated nested QPDF::EncryptionData class to add fields needed by the newer encryption formats,
member variables changed to private so that future changes will not require breaking backward compatibility.

• Added additional parameters to compute_data_key, which is used by QPDFWriter to compute the
encryption key used to encrypt a specific object.

• Removed the method flattenScalarReferences. This method was previously used prior to writing a new PDF
file, but it has the undesired side effect of causing qpdf to read objects in the file that were not referenced.
Some otherwise files have unreferenced objects with errors in them, so this could cause qpdf to reject files
that would be accepted by virtually all other PDF readers. In fact, qpdf relied on only a very small part of
what flattenScalarReferences did, so only this part has been preserved, and it is now done directly inside
QPDFWriter.

• Removed the method decodeStreams. This method was used by the --check option of the qpdf command-line
tool to force all streams in the file to be decoded, but it also suffered from the problem of opening otherwise
unreferenced streams and thus could report false positive. The --check option now causes qpdf to go through
all the motions of writing a new file based on the original one, so it will always reference and check exactly
those parts of a file that any ordinary viewer would check.

• Removed the method trimTrailerForWrite. This method was used by QPDFWriter to modify the original
QPDF object by removing fields from the trailer dictionary that wouldn't apply to the newly written file.
This functionality, though generally harmless, was a poor implementation and has been replaced by having
QPDFWriter filter these out when copying the trailer rather than modifying the original QPDF object. (Note
that qpdf never modifies the original file itself.)

• Allow the PDF header to appear anywhere in the first 1024 bytes of the file. This is consistent with what other
readers do.

• Fix the pkg-config files to list zlib and pcre in Requires.private to better support static linking using pkg-config.

Release Notes

32

3.0.2: September 6, 2012

• Bug fix: QPDFWriter::setOutputMemory did not work when not used with QPDFWriter::setStaticID, which
made it pretty much useless. This has been fixed.

• New API call QPDFWriter::setExtraHeaderText inserts additional text near the header of the PDF file. The
intended use case is to insert comments that may be consumed by a downstream application, though other use
cases may exist.

3.0.1: August 11, 2012

• Version 3.0.0 included addition of files for pkg-config, but this was not mentioned in the release notes. The
release notes for 3.0.0 were updated to mention this.

• Bug fix: if an object stream ended with a scalar object not followed by space, qpdf would incorrectly report that
it encountered a premature EOF. This bug has been in qpdf since version 2.0.

3.0.0: August 2, 2012

• Acknowledgment: I would like to express gratitude for the contributions of Tobias Hoffmann toward the release
of qpdf version 3.0. He is responsible for most of the implementation and design of the new API for manipulating
pages, and contributed code and ideas for many of the improvements made in version 3.0. Without his work,
this release would certainly not have happened as soon as it did, if at all.

• Non-compatible API change: The version of QPDFObjectHandle::replaceStreamData that uses a
StreamDataProvider no longer requires (or accepts) a length parameter. See Appendix C, Upgrading to
3.0, page 38 for an explanation. While care is taken to avoid non-compatible API changes in general, an
exception was made this time because the new interface offers an opportunity to significantly simplify calling
code.

• Support has been added for large files. The test suite verifies support for files larger than 4 gigabytes, and
manual testing has verified support for files larger than 10 gigabytes. Large file support is available for both
32-bit and 64-bit platforms as long as the compiler and underlying platforms support it.

• Support for page selection (splitting and merging PDF files) has been added to the qpdf command-line tool.
See Section 3.4, “Page Selection Options”, page 6.

• Options have been added to the qpdf command-line tool for copying encryption parameters from another file.
See Section 3.2, “Basic Options”, page 4.

• New methods have been added to the QPDF object for adding and removing pages. See Section 6.6, “Adding
and Removing Pages”, page 19.

• New methods have been added to the QPDF object for copying objects from other PDF files. See Section 6.8,
“Copying Objects From Other PDF Files”, page 20

• A new method QPDFObjectHandle::parse has been added for constructing QPDFObjectHandle objects
from a string description.

• Methods have been added to QPDFWriter to allow writing to an already open stdio FILE* addition to writing
to standard output or a named file. Methods have been added to QPDF to be able to process a file from an
already open stdio FILE*. This makes it possible to read and write PDF from secure temporary files that have
been unlinked prior to being fully read or written.

• The QPDF::emptyPDF can be used to allow creation of PDF files from scratch. The example examples/pdf-
create.cc illustrates how it can be used.

Release Notes

33

• Several methods to take PointerHolder<Buffer> can now also accept std::string arguments.

• Many new convenience methods have been added to the library, most in QPDFObjectHandle. See
ChangeLog for a full list.

• When building on a platform that supports ELF shared libraries (such as Linux), symbol versions are enabled
by default. They can be disabled by passing --disable-ld-version-script to ./configure.

• The file libqpdf.pc is now installed to support pkg-config.

• Image comparison tests are off by default now since they are not needed to verify a correct build or port of
qpdf. They are needed only when changing the actual PDF output generated by qpdf. You should enable them
if you are making deep changes to qpdf itself. See README for details.

• Large file tests are off by default but can be turned on with ./configure or by setting an environment variable
before running the test suite. See README for details.

• When qpdf's test suite fails, failures are not printed to the terminal anymore by default. Instead, find them in
build/qtest.log. For packagers who are building with an autobuilder, you can add the --enable-show-failed-
test-output option to ./configure to restore the old behavior.

2.3.1: December 28, 2011

• Fix thread-safety problem resulting from non-thread-safe use of the PCRE library.

• Made a few minor documentation fixes.

• Add workaround for a bug that appears in some versions of ghostscript to the test suite

• Fix minor build issue for Visual C++ 2010.

2.3.0: August 11, 2011

• Bug fix: when preserving existing encryption on encrypted files with cleartext metadata, older qpdf versions
would generate password-protected files with no valid password. This operation now works. This bug only
affected files created by copying existing encryption parameters; explicit encryption with specification of
cleartext metadata worked before and continues to work.

• Enhance QPDFWriter with a new constructor that allows you to delay the specification of the output file.
When using this constructor, you may now call QPDFWriter::setOutputFilename to specify the output file,
or you may use QPDFWriter::setOutputMemory to cause QPDFWriter to write the resulting PDF file to a
memory buffer. You may then use QPDFWriter::getBuffer to retrieve the memory buffer.

• Add new API call QPDF::replaceObject for replacing objects by object ID

• Add new API call QPDF::swapObjects for swapping two objects by object ID

• Add QPDFObjectHandle::getDictAsMap and QPDFObjectHandle::getArrayAsVector to allow retrieval of
dictionary objects as maps and array objects as vectors.

• Add functions qpdf_get_info_key and qpdf_set_info_key to the C API for manipulating string fields of the
document's /Info dictionary.

• Add functions qpdf_init_write_memory, qpdf_get_buffer_length, and qpdf_get_buffer to the C API for writing
PDF files to a memory buffer instead of a file.

2.2.4: June 25, 2011

• Fix installation and compilation issues; no functionality changes.

Release Notes

34

2.2.3: April 30, 2011

• Handle some damaged streams with incorrect characters following the stream keyword.

• Improve handling of inline images when normalizing content streams.

• Enhance error recovery to properly handle files that use object 0 as a regular object, which is specifically
disallowed by the spec.

2.2.2: October 4, 2010

• Add new function qpdf_read_memory to the C API to call QPDF::processMemoryFile. This was an omission
in qpdf 2.2.1.

2.2.1: October 1, 2010

• Add new method QPDF::setOutputStreams to replace std::cout and std::cerr with other streams for generation
of diagnostic messages and error messages. This can be useful for GUIs or other applications that want to
capture any output generated by the library to present to the user in some other way. Note that QPDF does
not write to std::cout (or the specified output stream) except where explicitly mentioned in QPDF.hh, and
that the only use of the error stream is for warnings. Note also that output of warnings is suppressed when
setSuppressWarnings(true) is called.

• Add new method QPDF::processMemoryFile for operating on PDF files that are loaded into memory rather
than in a file on disk.

• Give a warning but otherwise ignore empty PDF objects by treating them as null. Empty object are not permitted
by the PDF specification but have been known to appear in some actual PDF files.

• Handle inline image filter abbreviations when the appear as stream filter abbreviations. The PDF specification
does not allow use of stream filter abbreviations in this way, but Adobe Reader and some other PDF readers
accept them since they sometimes appear incorrectly in actual PDF files.

• Implement miscellaneous enhancements to PointerHolder and Buffer to support other changes.

2.2.0: August 14, 2010

• Add new methods to QPDFObjectHandle (newStream and replaceStreamData for creating new streams and
replacing stream data. This makes it possible to perform a wide range of operations that were not previously
possible.

• Add new helper method in QPDFObjectHandle (addPageContents) for appending or prepending new content
streams to a page. This method makes it possible to manipulate content streams without having to be concerned
whether a page's contents are a single stream or an array of streams.

• Add new method in QPDFObjectHandle: replaceOrRemoveKey, which replaces a dictionary key with a
given value unless the value is null, in which case it removes the key instead.

• Add new method in QPDFObjectHandle: getRawStreamData, which returns the raw (unfiltered) stream data
into a buffer. This complements the getStreamData method, which returns the filtered (uncompressed) stream
data and can only be used when the stream's data is filterable.

• Provide two new examples: pdf-double-page-size and pdf-invert-images that illustrate the newly added
interfaces.

• Fix a memory leak that would cause loss of a few bytes for every object involved in a cycle of object references.
Thanks to Jian Ma for calling my attention to the leak.

Release Notes

35

2.1.5: April 25, 2010

• Remove restriction of file identifier strings to 16 bytes. This unnecessary restriction was preventing qpdf from
being able to encrypt or decrypt files with identifier strings that were not exactly 16 bytes long. The specification
imposes no such restriction.

2.1.4: April 18, 2010

• Apply the same padding calculation fix from version 2.1.2 to the main cross reference stream as well.

• Since qpdf --check only performs limited checks, clarify the output to make it clear that there still may be
errors that qpdf can't check. This should make it less surprising to people when another PDF reader is unable
to read a file that qpdf thinks is okay.

2.1.3: March 27, 2010

• Fix bug that could cause a failure when rewriting PDF files that contain object streams with unreferenced objects
that in turn reference indirect scalars.

• Don't complain about (invalid) AES streams that aren't a multiple of 16 bytes. Instead, pad them before
decrypting.

2.1.2: January 24, 2010

• Fix bug in padding around first half cross reference stream in linearized files. The bug could cause an assertion
failure when linearizing certain unlucky files.

2.1.1: December 14, 2009

• No changes in functionality; insert missing include in an internal library header file to support gcc 4.4, and
update test suite to ignore broken Adobe Reader installations.

2.1: October 30, 2009

• This is the first version of qpdf to include Windows support. On Windows, it is possible to build a DLL.
Additionally, a partial C-language API has been introduced, which makes it possible to call qpdf functions
from non-C++ environments. I am very grateful to Zarko Gagic (http://delphi.about.com/) for tirelessly testing
numerous pre-release versions of this DLL and providing many excellent suggestions on improving the
interface.

For programming to the C interface, please see the header file qpdf/qpdf-c.h and the example examples/pdf-
linearize.c.

• Zarko Gajic has written a Delphi wrapper for qpdf, which can be downloaded from qpdf's download side.
Zarko's Delphi wrapper is released with the same licensing terms as qpdf itself and comes with this disclaimer:
“Delphi wrapper unit qpdf.pas created by Zarko Gajic (http://delphi.about.com/). Use at your own risk and for
whatever purpose you want. No support is provided. Sample code is provided.”

• Support has been added for AES encryption and crypt filters. Although qpdf does not presently support files
that use PKI-based encryption, with the addition of AES and crypt filters, qpdf is now be able to open most
encrypted files created with newer versions of Acrobat or other PDF creation software. Note that I have not
been able to get very many files encrypted in this way, so it's possible there could still be some cases that qpdf
can't handle. Please report them if you find them.

• Many error messages have been improved to include more information in hopes of making qpdf a more useful
tool for PDF experts to use in manually recovering damaged PDF files.

http://delphi.about.com/

http://delphi.about.com/

Release Notes

36

• Attempt to avoid compressing metadata streams if possible. This is consistent with other PDF creation
applications.

• Provide new command-line options for AES encrypt, cleartext metadata, and setting the minimum and forced
PDF versions of output files.

• Add additional methods to the QPDF object for querying the document's permissions. Although qpdf does
not enforce these permissions, it does make them available so that applications that use qpdf can enforce
permissions.

• The --check option to qpdf has been extended to include some additional information.

• There have been a handful of non-compatible API changes. For details, see Appendix B, Upgrading from 2.0
to 2.1, page 37.

2.0.6: May 3, 2009

• Do not attempt to uncompress streams that have decode parameters we don't recognize. Earlier versions of qpdf
would have rejected files with such streams.

2.0.5: March 10, 2009

• Improve error handling in the LZW decoder, and fix a small error introduced in the previous version with regard
to handling full tables. The LZW decoder has been more strongly verified in this release.

2.0.4: February 21, 2009

• Include proper support for LZW streams encoded without the “early code change” flag. Special thanks to Atom
Smasher who reported the problem and provided an input file compressed in this way, which I did not previously
have.

• Implement some improvements to file recovery logic.

2.0.3: February 15, 2009

• Compile cleanly with gcc 4.4.

• Handle strings encoded as UTF-16BE properly.

2.0.2: June 30, 2008

• Update test suite to work properly with a non-bash /bin/sh and with Perl 5.10. No changes were made to the
actual qpdf source code itself for this release.

2.0.1: May 6, 2008

• No changes in functionality or interface. This release includes fixes to the source code so that qpdf compiles
properly and passes its test suite on a broader range of platforms. See ChangeLog in the source distribution
for details.

2.0: April 29, 2008

• First public release.

37

Appendix B. Upgrading from 2.0 to 2.1
Although, as a general rule, we like to avoid introducing source-level incompatibilities in qpdf's interface, there were a
few non-compatible changes made in this version. A considerable amount of source code that uses qpdf will probably
compile without any changes, but in some cases, you may have to update your code. The changes are enumerated here.
There are also some new interfaces; for those, please refer to the header files.

• QPDF's exception handling mechanism now uses std::logic_error for internal errors and std::runtime_error
for runtime errors in favor of the now removed QEXC classes used in previous versions. The QEXC exception
classes predated the addition of the <stdexcept> header file to the C++ standard library. Most of the exceptions
thrown by the qpdf library itself are still of type QPDFExc which is now derived from std::runtime_error.
Programs that caught an instance of std::exception and displayed it by calling the what() method will not need
to be changed.

• The QPDFExc class now internally represents various fields of the error condition and provides interfaces for
querying them. Among the fields is a numeric error code that can help applications act differently on (a small number
of) different error conditions. See QPDFExc.hh for details.

• Warnings can be retrieved from qpdf as instances of QPDFExc instead of strings.

• The nested QPDF::EncryptionData class's constructor takes an additional argument. This class is primarily
intended to be used by QPDFWriter. There's not really anything useful an end-user application could do with it. It
probably shouldn't really be part of the public interface to begin with. Likewise, some of the methods for computing
internal encryption dictionary parameters have changed to support /R=4 encryption.

• The method QPDF::getUserPassword has been removed since it didn't do what people would think it did. There
are now two new methods: QPDF::getPaddedUserPassword and QPDF::getTrimmedUserPassword. The first one
does what the old QPDF::getUserPassword method used to do, which is to return the password with possible binary
padding as specified by the PDF specification. The second one returns a human-readable password string.

• The enumerated types that used to be nested in QPDFWriter have moved to top-level enumerated types and are
now defined in the file qpdf/Constants.h. This enables them to be shared by both the C and C++ interfaces.

38

Appendix C. Upgrading to 3.0
For the most part, the API for qpdf version 3.0 is backward compatible with versions 2.1 and later. There are two
exceptions:

• The method QPDFObjectHandle::replaceStreamData that uses a StreamDataProvider to provide the stream
data no longer takes a length parameter. While it would have been easy enough to keep the parameter for backward
compatibility, in this case, the parameter was removed since this provides the user an opportunity to simplify the
calling code. This method was introduced in version 2.2. At the time, the length parameter was required in order
to ensure that calls to the stream data provider returned the same length for a specific stream every time they were
invoked. In particular, the linearization code depends on this. Instead, qpdf 3.0 and newer check for that constraint
explicitly. The first time the stream data provider is called for a specific stream, the actual length is saved, and
subsequent calls are required to return the same number of bytes. This means the calling code no longer has to
compute the length in advance, which can be a significant simplification. If your code fails to compile because of
the extra argument and you don't want to make other changes to your code, just omit the argument.

• Many methods take long long instead of other integer types. Most if not all existing code should compile fine
with this change since such parameters had always previously been smaller types. This change was required to
support files larger than two gigabytes in size.

39

Appendix D. Upgrading to 4.0
While version 4.0 includes a few non-compatible API changes, it is very unlikely that anyone's code would have
used any of those parts of the API since they generally required information that would only be available inside the
library. In the unlikely event that you should run into trouble, please see the ChangeLog. See also Appendix A, Release
Notes, page 28 for a complete list of the non-compatible API changes made in this version.

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.10-ogen.c-check

version: 1.5
linearized: 0
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/content-stream-errors.pdf

Potato

Potato

Potato

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/bad33-recover.out

qpdf-7.1.0/qpdf/qtest/qpdf/c-decrypt-with-user.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/c-decrypt-R5-with-user.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/c-qdf.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/lin2.out

WARNING: end of first page section (/E) mismatch: /E = 1827; computed = 3889..3891
WARNING: page 0 has shared identifier entries
WARNING: page 0: shared object 62: in hint table but not computed list
lin2.pdf: linearization data:

file_size: 13103
first_page_object: 62
first_page_end: 1827
npages: 30
xref_zero_offset: 11776
first_page: 0
H_offset: 1211
H_length: 203

Page Offsets Hint Table

min_nobjects: 2
first_page_offset: 1414
nbits_delta_nobjects: 4
min_page_length: 259
nbits_delta_page_length: 12
min_content_offset: 0
nbits_delta_content_offset: 0
min_content_length: 0
nbits_delta_content_length: 12
nbits_nshared_objects: 2
nbits_shared_identifier: 2
nbits_shared_numerator: 4
shared_denominator: 8
Page 0:
 nobjects: 16
 length: 2477
 content_offset: 0
 content_length: 2218
 nshared_objects: 2
 identifier 0: 0
 numerator 0: 0
 identifier 1: 0
 numerator 1: 0
Page 1:
 nobjects: 2
 length: 259
 content_offset: 0
 content_length: 0
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 2:
 nobjects: 2
 length: 259
 content_offset: 0
 content_length: 0
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 3:
 nobjects: 2
 length: 259
 content_offset: 0
 content_length: 0
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 4:
 nobjects: 2
 length: 259
 content_offset: 0
 content_length: 0
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 5:
 nobjects: 2
 length: 261
 content_offset: 0
 content_length: 2
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 6:
 nobjects: 2
 length: 262
 content_offset: 0
 content_length: 3
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 7:
 nobjects: 2
 length: 262
 content_offset: 0
 content_length: 3
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 8:
 nobjects: 2
 length: 262
 content_offset: 0
 content_length: 3
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 9:
 nobjects: 2
 length: 262
 content_offset: 0
 content_length: 3
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 10:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 11:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 12:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 13:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 14:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 15:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 16:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 17:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 18:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 19:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 20:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 21:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 22:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 23:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 24:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 25:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 26:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 27:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 28:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 29:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0

Shared Objects Hint Table

first_shared_obj: 0
first_shared_offset: 0
nshared_first_page: 16
nshared_total: 16
nbits_nobjects: 0
min_group_length: 34
nbits_delta_group_length: 9
Shared Object 0:
 group length: 157
Shared Object 1:
 group length: 105
Shared Object 2:
 group length: 117
Shared Object 3:
 group length: 34
Shared Object 4:
 group length: 82
Shared Object 5:
 group length: 191
Shared Object 6:
 group length: 144
Shared Object 7:
 group length: 168
Shared Object 8:
 group length: 291
Shared Object 9:
 group length: 165
Shared Object 10:
 group length: 162
Shared Object 11:
 group length: 182
Shared Object 12:
 group length: 201
Shared Object 13:
 group length: 150
Shared Object 14:
 group length: 164
Shared Object 15:
 group length: 164

Outlines Hint Table

first_object: 66
first_object_offset: 1827
nobjects: 12
group_length: 2064

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.12.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/07_split-exp.zdf

Original page 7

qpdf-7.1.0/qpdf/qtest/qpdf/bad-jpeg-out.pdf

/DeviceRGB with filter /DCTDecode

qpdf-7.1.0/qpdf/qtest/qpdf/bad28-recover.out

WARNING: bad28.pdf (object 4 0, file position 395): expected endobj
/QTest is indirect and has type stream (10)
/QTest is a stream. Dictionary: << /Length 44 >>
Raw stream data:
BT
 /F1 24 Tf
 72 720 Td
 (Potato) Tj
ET

Uncompressed stream data:
BT
 /F1 24 Tf
 72 720 Td
 (Potato) Tj
ET

End of stream data
unparse: 4 0 R
unparseResolved: 4 0 R
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/empty-object.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/test14-in.pdf

Potato 1

Potato 2

Potato 3

Potato 4

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.9.c-check

version: 1.5
linearized: 1
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.8-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.7-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-11.Pdf

Original page 11

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-force-1.3.out

version: 1.3
extension level: 0
<< /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/c-read-errors.out

warning: bad1.pdf: can't find PDF header
 code: 5
 file: bad1.pdf
 pos : 0
 text: can't find PDF header
warning: bad1.pdf: file is damaged
 code: 5
 file: bad1.pdf
 pos : 0
 text: file is damaged
warning: bad1.pdf: can't find startxref
 code: 5
 file: bad1.pdf
 pos : 0
 text: can't find startxref
warning: bad1.pdf: Attempting to reconstruct cross-reference table
 code: 5
 file: bad1.pdf
 pos : 0
 text: Attempting to reconstruct cross-reference table
error: bad1.pdf: unable to find trailer dictionary while recovering damaged file
 code: 5
 file: bad1.pdf
 pos : 0
 text: unable to find trailer dictionary while recovering damaged file

qpdf-7.1.0/qpdf/qtest/qpdf/bad15.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.6.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.3.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/bad21-recover.out

WARNING: bad21.pdf: file is damaged
WARNING: bad21.pdf (trailer, file position 742): invalid name token
WARNING: bad21.pdf: Attempting to reconstruct cross-reference table
bad21.pdf (trailer, file position 742): invalid name token

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.9.check

checking a.pdf
PDF Version: 1.2
File is not encrypted
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/newline-before-endstream-qdf.pdf

Potato

Potato

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/broken-decode-parms-no-filter.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.4-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-min-1.7.3.out

version: 1.7
extension level: 3
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 3 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-force-1.8.5.out

version: 1.8
extension level: 5
<< /ADBE << /BaseVersion /1.8 /ExtensionLevel 5 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/replaced-stream-data.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/c-info-out.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/c-decrypt-R6-with-owner.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/issue-106.out

WARNING: issue-106.pdf: file is damaged
WARNING: issue-106.pdf (file position 809): xref not found
WARNING: issue-106.pdf: Attempting to reconstruct cross-reference table
WARNING: issue-106.pdf (file position 965): error decoding stream data for object 8 0: stream inflate: inflate: data: incorrect data check
WARNING: issue-106.pdf (file position 965): stream will be re-processed without filtering to avoid data loss
qpdf: operation succeeded with warnings; resulting file may have some problems

qpdf-7.1.0/qpdf/qtest/qpdf/no-space-in-xref.out

checking no-space-in-xref.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/invalid-id-xref.out

WARNING: invalid-id-xref.pdf (trailer, file position 731): invalid /ID in trailer dictionary
checking invalid-id-xref.pdf
PDF Version: 1.4
R = 3
P = -1804
User password =
extract for accessibility: not allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: not allowed
modify forms: not allowed
modify annotations: allowed
modify other: not allowed
modify anything: not allowed
File is not linearized

qpdf-7.1.0/qpdf/qtest/qpdf/split-pages-group.out

qpdf: wrote file split-out-group-01-05.pdf
qpdf: wrote file split-out-group-06-10.pdf
qpdf: wrote file split-out-group-11-11.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/eof-terminates-literal.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/delete-and-reuse.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.6-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/bad2.out

bad2.pdf: can't find startxref

qpdf-7.1.0/qpdf/qtest/qpdf/bad7-recover.out

WARNING: bad7.pdf: file is damaged
WARNING: bad7.pdf (file position 698): expected trailer dictionary
WARNING: bad7.pdf: Attempting to reconstruct cross-reference table
bad7.pdf: unable to find trailer dictionary while recovering damaged file

qpdf-7.1.0/qpdf/qtest/qpdf/linearization-large-vector-alloc.out

checking linearization-large-vector-alloc.pdf
PDF Version: 1.3
File is not encrypted
File is linearized
WARNING: linearization-large-vector-alloc.pdf (linearization hint stream: object 62 0, file position 1282): expected endstream
WARNING: linearization-large-vector-alloc.pdf (linearization hint stream: object 62 0, file position 1183): attempting to recover stream length
WARNING: linearization-large-vector-alloc.pdf (linearization hint stream: object 62 0, file position 1183): recovered stream length: 106
overflow reading bit stream

qpdf-7.1.0/qpdf/qtest/qpdf/filter-abbreviation.out

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-group-11-11.pdf

Original page 11

qpdf-7.1.0/qpdf/qtest/qpdf/page_api_1-out2.pdf

Original page 0

Original page 1

Original page 2

Original page 3

Original page 4

Original page 5

Original page 6

Original page 7

Original page 8

Original page 9

New page 10

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-force-1.8.2.out

version: 1.8
extension level: 2
<< /ADBE << /BaseVersion /1.8 /ExtensionLevel 2 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/enc-XI-R6,V5,U=view,O=master.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.3-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/good10.out

/QTest is direct and has type array (8)
/QTest is an array with 7 items
 item 0 is direct
 item 1 is direct
 item 2 is indirect
 item 3 is direct
 item 4 is direct
 item 5 is direct
 item 6 is direct
unparse: [1 (2) 8 0 R 0.0 -0.0 0. -0.]
unparseResolved: [1 (2) 8 0 R 0.0 -0.0 0. -0.]
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/damaged-stream.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/bad11.pdf

Salad

qpdf-7.1.0/qpdf/qtest/qpdf/obj0.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/issue-120.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/01_split-exp.zdf

Original page 1

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.7.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/issue-99.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/a-07-split-exp.zdf

qpdf-7.1.0/qpdf/qtest/qpdf/lin8.out

WARNING: end of first page section (/E) mismatch: /E = 2656; computed = 1768..1770
WARNING: object count mismatch for page 0: hint table = 7; computed = 4
WARNING: page 0 has shared identifier entries
WARNING: page 0: shared object 105: in hint table but not computed list
WARNING: object count mismatch for page 1: hint table = 3; computed = 2
WARNING: page 1: shared object 110: in hint table but not computed list
WARNING: page 1: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 2: hint table = 3; computed = 2
WARNING: page 2: shared object 110: in hint table but not computed list
WARNING: page 2: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 3: hint table = 3; computed = 2
WARNING: page 3: shared object 110: in hint table but not computed list
WARNING: page 3: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 4: hint table = 3; computed = 2
WARNING: page 4: shared object 110: in hint table but not computed list
WARNING: page 4: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 5: hint table = 3; computed = 2
WARNING: page 5: shared object 110: in hint table but not computed list
WARNING: page 5: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 6: hint table = 3; computed = 2
WARNING: page 6: shared object 110: in hint table but not computed list
WARNING: page 6: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 7: hint table = 3; computed = 2
WARNING: page 7: shared object 110: in hint table but not computed list
WARNING: page 7: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 8: hint table = 3; computed = 2
WARNING: page 8: shared object 110: in hint table but not computed list
WARNING: page 8: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 9: hint table = 3; computed = 2
WARNING: page 9: shared object 110: in hint table but not computed list
WARNING: page 9: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 10: hint table = 3; computed = 2
WARNING: page 10: shared object 110: in hint table but not computed list
WARNING: page 10: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 11: hint table = 3; computed = 2
WARNING: page 11: shared object 110: in hint table but not computed list
WARNING: page 11: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 12: hint table = 3; computed = 2
WARNING: page 12: shared object 110: in hint table but not computed list
WARNING: page 12: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 13: hint table = 3; computed = 2
WARNING: page 13: shared object 110: in hint table but not computed list
WARNING: page 13: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 14: hint table = 3; computed = 2
WARNING: page 14: shared object 110: in hint table but not computed list
WARNING: page 14: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 15: hint table = 3; computed = 2
WARNING: page 15: shared object 110: in hint table but not computed list
WARNING: page 15: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 16: hint table = 3; computed = 2
WARNING: page 16: shared object 110: in hint table but not computed list
WARNING: page 16: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 17: hint table = 3; computed = 2
WARNING: page 17: shared object 110: in hint table but not computed list
WARNING: page 17: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 18: hint table = 3; computed = 2
WARNING: page 18: shared object 110: in hint table but not computed list
WARNING: page 18: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 19: hint table = 3; computed = 2
WARNING: page 19: shared object 110: in hint table but not computed list
WARNING: page 19: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 20: hint table = 3; computed = 2
WARNING: page 20: shared object 110: in hint table but not computed list
WARNING: page 20: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 21: hint table = 3; computed = 2
WARNING: page 21: shared object 110: in hint table but not computed list
WARNING: page 21: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 22: hint table = 3; computed = 2
WARNING: page 22: shared object 110: in hint table but not computed list
WARNING: page 22: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 23: hint table = 3; computed = 2
WARNING: page 23: shared object 110: in hint table but not computed list
WARNING: page 23: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 24: hint table = 3; computed = 2
WARNING: page 24: shared object 110: in hint table but not computed list
WARNING: page 24: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 25: hint table = 3; computed = 2
WARNING: page 25: shared object 110: in hint table but not computed list
WARNING: page 25: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 26: hint table = 3; computed = 2
WARNING: page 26: shared object 110: in hint table but not computed list
WARNING: page 26: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 27: hint table = 3; computed = 2
WARNING: page 27: shared object 110: in hint table but not computed list
WARNING: page 27: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 28: hint table = 3; computed = 2
WARNING: page 28: shared object 110: in hint table but not computed list
WARNING: page 28: shared object 111: in hint table but not computed list
WARNING: object count mismatch for page 29: hint table = 3; computed = 2
WARNING: page 29: shared object 110: in hint table but not computed list
WARNING: page 29: shared object 111: in hint table but not computed list
lin8.pdf: linearization data:

file_size: 24875
first_page_object: 105
first_page_end: 2656
npages: 30
xref_zero_offset: 22687
first_page: 0
H_offset: 1052
H_length: 217

Page Offsets Hint Table

min_nobjects: 3
first_page_offset: 1269
nbits_delta_nobjects: 3
min_page_length: 583
nbits_delta_page_length: 10
min_content_offset: 0
nbits_delta_content_offset: 0
min_content_length: 0
nbits_delta_content_length: 10
nbits_nshared_objects: 3
nbits_shared_identifier: 3
nbits_shared_numerator: 4
shared_denominator: 8
Page 0:
 nobjects: 7
 length: 1387
 content_offset: 0
 content_length: 804
 nshared_objects: 4
 identifier 0: 0
 numerator 0: 0
 identifier 1: 0
 numerator 1: 0
 identifier 2: 0
 numerator 2: 0
 identifier 3: 0
 numerator 3: 0
Page 1:
 nobjects: 3
 length: 583
 content_offset: 0
 content_length: 0
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 2:
 nobjects: 3
 length: 583
 content_offset: 0
 content_length: 0
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 3:
 nobjects: 3
 length: 587
 content_offset: 0
 content_length: 4
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 4:
 nobjects: 3
 length: 594
 content_offset: 0
 content_length: 11
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 5:
 nobjects: 3
 length: 586
 content_offset: 0
 content_length: 3
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 6:
 nobjects: 3
 length: 592
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 7:
 nobjects: 3
 length: 586
 content_offset: 0
 content_length: 3
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 8:
 nobjects: 3
 length: 594
 content_offset: 0
 content_length: 11
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 9:
 nobjects: 3
 length: 587
 content_offset: 0
 content_length: 4
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 10:
 nobjects: 3
 length: 592
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 11:
 nobjects: 3
 length: 591
 content_offset: 0
 content_length: 8
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 12:
 nobjects: 3
 length: 593
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 13:
 nobjects: 3
 length: 593
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 14:
 nobjects: 3
 length: 593
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 15:
 nobjects: 3
 length: 592
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 16:
 nobjects: 3
 length: 593
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 17:
 nobjects: 3
 length: 592
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 18:
 nobjects: 3
 length: 593
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 19:
 nobjects: 3
 length: 592
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 20:
 nobjects: 3
 length: 592
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 21:
 nobjects: 3
 length: 591
 content_offset: 0
 content_length: 8
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 22:
 nobjects: 3
 length: 593
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 23:
 nobjects: 3
 length: 593
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 24:
 nobjects: 3
 length: 592
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 25:
 nobjects: 3
 length: 592
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 26:
 nobjects: 3
 length: 593
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 27:
 nobjects: 3
 length: 592
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 28:
 nobjects: 3
 length: 593
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 29:
 nobjects: 3
 length: 592
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0

Shared Objects Hint Table

first_shared_obj: 0
first_shared_offset: 0
nshared_first_page: 7
nshared_total: 7
nbits_nobjects: 0
min_group_length: 35
nbits_delta_group_length: 10
Shared Object 0:
 group length: 214
Shared Object 1:
 group length: 134
Shared Object 2:
 group length: 118
Shared Object 3:
 group length: 35
Shared Object 4:
 group length: 249
Shared Object 5:
 group length: 56
Shared Object 6:
 group length: 581

Outlines Hint Table

first_object: 89
first_object_offset: 20067
nobjects: 12
group_length: 2069

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp.zdf_10

Original page 10

qpdf-7.1.0/qpdf/qtest/qpdf/append-page-content-damaged-c-check.out

WARNING: append-page-content-damaged.pdf: file is damaged
WARNING: append-page-content-damaged.pdf: can't find startxref
WARNING: append-page-content-damaged.pdf: Attempting to reconstruct cross-reference table
version: 1.3
linearized: 0
encrypted: 0
warning: append-page-content-damaged.pdf: file is damaged
 code: 5
 file: append-page-content-damaged.pdf
 pos : 0
 text: file is damaged
warning: append-page-content-damaged.pdf: can't find startxref
 code: 5
 file: append-page-content-damaged.pdf
 pos : 0
 text: can't find startxref
warning: append-page-content-damaged.pdf: Attempting to reconstruct cross-reference table
 code: 5
 file: append-page-content-damaged.pdf
 pos : 0
 text: Attempting to reconstruct cross-reference table

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.3.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/lin0.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-04.Pdf

Original page 4

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-min-1.6.out

version: 1.6
extension level: 0
<< /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/good5.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/good10.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/to-rotate.pdf

O
ri

gi
na

l p
ag

e
1

O
ri

gi
na

l p
ag

e
2

Original page 3

Original page 4

Original page 5

Original page 6

Original page 7

Original page 8

Original page 9

Original page 10

O
riginal page 11

O
riginal page 12

O
riginal page 13

O
riginal page 14

O
riginal page 15

Original page 16

Original page 17

Original page 18

Original page 19

Original page 20

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-force-1.7.3.out

version: 1.7
extension level: 3
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 3 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.7-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.12.c-check

version: 1.3
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-2

Original page 2

qpdf-7.1.0/qpdf/qtest/qpdf/split-content-stream-errors.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.11-ogen.c-check

version: 1.5
linearized: 1
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.4-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.4.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.7.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad30.out

qpdf-7.1.0/qpdf/qtest/qpdf/bad-data.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/issue-99.out

WARNING: issue-99.pdf: file is damaged
WARNING: issue-99.pdf (file position 3526): xref not found
WARNING: issue-99.pdf: Attempting to reconstruct cross-reference table
issue-99.pdf (file position 4793): unable to find /Root dictionary

qpdf-7.1.0/qpdf/qtest/qpdf/split-content-stream.pdf

Pot
ato

qpdf-7.1.0/qpdf/qtest/qpdf/a-06-split-exp.zdf

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.6-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp.zdf_03

Original page 3

qpdf-7.1.0/qpdf/qtest/qpdf/bad-xref-entry-corrected.out

checking bad-xref-entry.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
WARNING: bad-xref-entry.pdf: file is damaged
WARNING: bad-xref-entry.pdf (object 5 0, file position 580): expected n n obj
WARNING: bad-xref-entry.pdf: Attempting to reconstruct cross-reference table
1/0: uncompressed; offset = 52
2/0: uncompressed; offset = 133
3/0: uncompressed; offset = 242
4/0: uncompressed; offset = 484
5/0: uncompressed; offset = 583
6/0: uncompressed; offset = 629
7/0: uncompressed; offset = 774

qpdf-7.1.0/qpdf/qtest/qpdf/bad32-recover.out

WARNING: bad32.pdf: file is damaged
WARNING: bad32.pdf (object 4 0, file position 307): expected 4 0 obj
WARNING: bad32.pdf: Attempting to reconstruct cross-reference table
WARNING: bad32.pdf: object 4 0 not found in file after regenerating cross reference table
/QTest is implicit
/QTest is indirect and has type null (2)
/QTest is null
unparse: 4 0 R
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/good16.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.8-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/bad16-recover.out

WARNING: bad16.pdf (trailer, file position 753): unexpected dictionary close token
WARNING: bad16.pdf (trailer, file position 756): unexpected dictionary close token
WARNING: bad16.pdf (trailer, file position 759): unknown token while reading object; treating as string
WARNING: bad16.pdf: file is damaged
WARNING: bad16.pdf (trailer, file position 773): EOF while reading token
WARNING: bad16.pdf: Attempting to reconstruct cross-reference table
WARNING: bad16.pdf (trailer, file position 753): unexpected dictionary close token
WARNING: bad16.pdf (trailer, file position 756): unexpected dictionary close token
WARNING: bad16.pdf (trailer, file position 759): unknown token while reading object; treating as string
bad16.pdf (trailer, file position 773): EOF while reading token

qpdf-7.1.0/qpdf/qtest/qpdf/lin4.out

WARNING: page 0 has shared identifier entries
WARNING: page 0: shared object 74: in hint table but not computed list
lin4.pdf: linearization data:

file_size: 13055
first_page_object: 74
first_page_end: 1539
npages: 30
xref_zero_offset: 11488
first_page: 0
H_offset: 946
H_length: 180

Page Offsets Hint Table

min_nobjects: 2
first_page_offset: 1126
nbits_delta_nobjects: 2
min_page_length: 259
nbits_delta_page_length: 8
min_content_offset: 0
nbits_delta_content_offset: 0
min_content_length: 0
nbits_delta_content_length: 8
nbits_nshared_objects: 2
nbits_shared_identifier: 2
nbits_shared_numerator: 4
shared_denominator: 8
Page 0:
 nobjects: 4
 length: 413
 content_offset: 0
 content_length: 154
 nshared_objects: 2
 identifier 0: 0
 numerator 0: 0
 identifier 1: 0
 numerator 1: 0
Page 1:
 nobjects: 2
 length: 259
 content_offset: 0
 content_length: 0
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 2:
 nobjects: 2
 length: 259
 content_offset: 0
 content_length: 0
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 3:
 nobjects: 2
 length: 259
 content_offset: 0
 content_length: 0
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 4:
 nobjects: 2
 length: 259
 content_offset: 0
 content_length: 0
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 5:
 nobjects: 2
 length: 261
 content_offset: 0
 content_length: 2
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 6:
 nobjects: 2
 length: 262
 content_offset: 0
 content_length: 3
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 7:
 nobjects: 2
 length: 262
 content_offset: 0
 content_length: 3
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 8:
 nobjects: 2
 length: 262
 content_offset: 0
 content_length: 3
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 9:
 nobjects: 2
 length: 262
 content_offset: 0
 content_length: 3
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 10:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 11:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 12:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 13:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 14:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 15:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 16:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 17:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 18:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 19:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 20:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 21:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 22:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 23:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 24:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 25:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 26:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 27:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 28:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 29:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0

Shared Objects Hint Table

first_shared_obj: 0
first_shared_offset: 0
nshared_first_page: 4
nshared_total: 4
nbits_nobjects: 0
min_group_length: 34
nbits_delta_group_length: 7
Shared Object 0:
 group length: 157
Shared Object 1:
 group length: 105
Shared Object 2:
 group length: 117
Shared Object 3:
 group length: 34

Outlines Hint Table

first_object: 60
first_object_offset: 9413
nobjects: 12
group_length: 2064

qpdf-7.1.0/qpdf/qtest/qpdf/bad12-recover.out

WARNING: bad12.pdf: reported number of objects (9) inconsistent with actual number of objects (8)
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/good13.out

/QTest is indirect and has type dictionary (9)
/QTest is a dictionary
 /hex strings is direct
 /indirect is indirect
 /nesting is direct
 /strings is direct
unparse: 7 0 R
unparseResolved: << /hex#20strings [(Potato) <01020300040560> (AB)] /indirect 8 0 R /nesting << /a [1 2 << /x (y) >> [(z)]] /b << / (legal) /a [1 2] >> >> /strings [(one) <24a2> () (\(\)) (\() (\)) (a\f\b\t\r\nb) <410042> (a\nb) (a b)] >>
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/good17.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/test11.out

filtered stream data okay
raw stream data okay
test 11 done

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.2-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/unreferenced-indirect-scalar.out

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/lin9.pdf

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.2.check

checking a.pdf
PDF Version: 1.2
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.4.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/misc-3.pdf

Potato
Salad

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-3

Original page 3

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.10-ogen.c-check

version: 1.5
linearized: 0
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/good6.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/bad9.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.11.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/reserved-objects.out

res1 is still reserved after checking if array
res1 is no longer reserved
res1 is an array
logic error: QPDFObjectHandle: attempting to unparse a reserved object
logic error: QPDFObjectHandle: attempting to make a reserved object handle direct
res2 is an array
circular access and lazy resolution worked
test 24 done

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.7.c-check

version: 1.3
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.9-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.10.c-check

version: 1.4
linearized: 0
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.4-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/empty-object.out

WARNING: empty-object.pdf (object 7 0, file position 575): empty object treated as null
null
qpdf: operation succeeded with warnings; resulting file may have some problems

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.9-ogen.c-check

version: 1.5
linearized: 1
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.6.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/a-10-split-exp.zdf

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp.zdf_04

Original page 4

qpdf-7.1.0/qpdf/qtest/qpdf/10_split-exp.zdf

Original page 10

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.1.check

checking a.pdf
PDF Version: 1.2
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/damaged-stream.out

checking damaged-stream.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
WARNING: damaged-stream.pdf (file position 426): error decoding stream data for object 5 0: LZWDecoder: bad code received
WARNING: damaged-stream.pdf (file position 426): stream will be re-processed without filtering to avoid data loss

qpdf-7.1.0/qpdf/qtest/qpdf/fix1.qdf

Potato Soup

and Salad

qpdf-7.1.0/qpdf/qtest/qpdf/issue-141a.out

WARNING: issue-141a.pdf: can't find PDF header
WARNING: issue-141a.pdf (xref stream: object 9 0, file position 10): stream dictionary lacks /Length key
WARNING: issue-141a.pdf (xref stream: object 9 0, file position 47): attempting to recover stream length
WARNING: issue-141a.pdf (xref stream: object 9 0, file position 47): unable to recover stream data; treating stream as empty
WARNING: issue-141a.pdf: file is damaged
WARNING: issue-141a.pdf (xref stream, file position 3): Cross-reference stream's /W indicates entry size of 0
WARNING: issue-141a.pdf: Attempting to reconstruct cross-reference table
issue-141a.pdf: unable to find trailer dictionary while recovering damaged file

qpdf-7.1.0/qpdf/qtest/qpdf/enc-R2,V1,O=master.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isis 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/page_api_2.pdf

Original page 0

Original page 0

Original page 2

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.6.check

checking a.pdf
PDF Version: 1.2
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.1.c-check

version: 1.2
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.11-ogen.c-check

version: 1.5
linearized: 1
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/copy-foreign-objects-out1.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.4-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/V4-aes-encryption.out

R = 4
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
stream encryption method: AESv2
string encryption method: AESv2
file encryption method: AESv2

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.12-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.6.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.12.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.2-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.5-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-force-1.7.2.out

version: 1.7
extension level: 2
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 2 /URL (http://something.adobe.com) >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad-xref-entry.out

1/0: uncompressed; offset = 52
2/0: uncompressed; offset = 133
3/0: uncompressed; offset = 242
4/0: uncompressed; offset = 484
5/0: uncompressed; offset = 580
6/0: uncompressed; offset = 629
7/0: uncompressed; offset = 774

qpdf-7.1.0/qpdf/qtest/qpdf/compressed-metadata.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isis 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/bad9.out

bad9.pdf (trailer, file position 712): trailer dictionary lacks /Size key

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.10.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp.zdf_07

Original page 7

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.12.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-min-1.7.1.out

version: 1.7
extension level: 2
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 2 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/lin4.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/good7-not-normalized.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/fax-decode-parms.pdf

Once upon a qoww.

potato image gray-tiff.img

potato image old-jpeg-tiff.img

potato image jpeg.img

potato image tiff-mb.img

potato image tiff-mw.img

potato image palette-tiff.img

			1 (to] 0 fit

			1.1 to 1 fit h 200

			1.1.1 (π)

			1.1.1.1

			1.1.1.2

			1.1.2 to 8 at current settings

			1.1.2.1 to 3/fít

			1.2 to 7 fit h bottom

			1.2.1 to ισισ (4, fit v)

			1.2.2 to 2 ℵ 400%

			1.3 to 3 at 50%

			2

qpdf-7.1.0/qpdf/qtest/qpdf/large_file-check-normal.out

PDF Version: 1.3
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/page_api_1.out

page_api_1.pdf (page 10 (numbered from zero): object 9 0): duplicate page reference found; this would cause loss of data

qpdf-7.1.0/qpdf/qtest/qpdf/bad13.out

WARNING: bad13.pdf (trailer, file position 753): treating unexpected brace token as null
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 0 done

qpdf-7.1.0/qpdf/qtest/qpdf/short-O-U.out

checking short-O-U.pdf
PDF Version: 1.6
R = 4
P = -4
User password = 19723102477
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
stream encryption method: AESv2
string encryption method: AESv2
file encryption method: AESv2
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.4-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp.zdf_08

Original page 8

qpdf-7.1.0/qpdf/qtest/qpdf/bad20.out

bad20.pdf (trailer, file position 753): invalid character (q) in hexstring

qpdf-7.1.0/qpdf/qtest/qpdf/issue-99b.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/20-pages.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.10-ogen.c-check

version: 1.5
linearized: 0
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/good8.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-force-1.6.out

version: 1.6
extension level: 0
null
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/good16.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.10-ogen.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/issue-119.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/bad2-recover.out

WARNING: bad2.pdf: file is damaged
WARNING: bad2.pdf: can't find startxref
WARNING: bad2.pdf: Attempting to reconstruct cross-reference table
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/V5R5.out

checking a.pdf
PDF Version: 1.7 extension level 3
R = 5
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
stream encryption method: AESv3
string encryption method: AESv3
file encryption method: AESv3
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/new-streams.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.10-ogen.c-check

version: 1.5
linearized: 0
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/c-no-options.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.10.check

checking a.pdf
PDF Version: 1.4
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/from-scratch-0.pdf

First Page

qpdf-7.1.0/qpdf/qtest/qpdf/check-ID.pl

use strict;
$^W=1;

my $okay = 0;
my $id = '31415926535897932384626433832795';
while (<>)
{
 if ((m,/ID ?\[<([[:xdigit:]]{32})><$id>\],) && ($1 ne $id))
 {
	$okay = 1;
 }
}
if ($okay)
{
 print "ID okay\n";
}
else
{
 print "ID bad\n";
}

qpdf-7.1.0/qpdf/qtest/qpdf/bad26.out

WARNING: bad26.pdf (object 4 0, file position 307): expected n n obj
/QTest is implicit
/QTest is indirect and has type null (2)
/QTest is null
unparse: 4 0 R
unparseResolved: null
test 0 done

qpdf-7.1.0/qpdf/qtest/qpdf/good15.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/bad33.out

bad33.pdf (file position 1771): xref not found

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.12-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/bad16.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/c-linearized.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-01.Pdf

Original page 1

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.3-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/good21.out

/QTest is direct and has type name (7)
/QTest is a name with value /#
unparse: /#23
unparseResolved: /#23
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad-jpeg.pdf

/DeviceRGB with filter /DCTDecode

qpdf-7.1.0/qpdf/qtest/qpdf/pages-loop.out

checking pages-loop.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
pages-loop.pdf (object 3 0): Loop detected in /Pages structure (getAllPages)

qpdf-7.1.0/qpdf/qtest/qpdf/pages-copy-encryption.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/good9.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/bad24.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.9-ogen.c-check

version: 1.5
linearized: 1
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-force-1.8.5.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/filter-abbreviation.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/issue-118.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/good7.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.7-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-min-1.7.3.out

version: 1.7
extension level: 3
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 3 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.9.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/good14.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.12-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/issue-101.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp.zdf_06

Original page 6

qpdf-7.1.0/qpdf/qtest/qpdf/append-page-content.pdf

Potato 0 new

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.4.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/a-03-split-exp.zdf

qpdf-7.1.0/qpdf/qtest/qpdf/lin1.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/tiff-predictor.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/good3.out

/QTest is implicit
/QTest is indirect and has type null (2)
/QTest is null
unparse: 7 0 R
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad1-recover.out

WARNING: bad1.pdf: can't find PDF header
WARNING: bad1.pdf: file is damaged
WARNING: bad1.pdf: can't find startxref
WARNING: bad1.pdf: Attempting to reconstruct cross-reference table
bad1.pdf: unable to find trailer dictionary while recovering damaged file

qpdf-7.1.0/qpdf/qtest/qpdf/c-r6-in.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/bad11.out

bad11.pdf (trailer, file position 905): /Prev key in trailer dictionary is not an integer

qpdf-7.1.0/qpdf/qtest/qpdf/bad35.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/indirect-r-arg.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/image-streams-generalized.out

page 1
filter: null, color space: /DeviceCMYK
page 2
filter: /DCTDecode, color space: /DeviceCMYK
page 3
filter: /RunLengthDecode, color space: /DeviceCMYK
page 4
filter: null, color space: /DeviceRGB
page 5
filter: /DCTDecode, color space: /DeviceRGB
page 6
filter: /RunLengthDecode, color space: /DeviceRGB
page 7
filter: null, color space: /DeviceGray
page 8
filter: /DCTDecode, color space: /DeviceGray
page 9
filter: /RunLengthDecode, color space: /DeviceGray
test 39 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-force-1.6.out

version: 1.6
extension level: 0
<< /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/test4-3.out

loop detected while converting object from indirect to direct

qpdf-7.1.0/qpdf/qtest/qpdf/issue-143.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/bad36.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/good19.out

/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/stream-line-enders.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/good3.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/linearized-and-warnings.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/bad12.pdf

Sandwiches

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-min-1.8.2.out

version: 1.8
extension level: 2
<< /ADBE << /BaseVersion /1.8 /ExtensionLevel 2 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/fix2.qdf

qpdf-7.1.0/qpdf/qtest/qpdf/enc-R2,V1,U=view.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/pclm-out.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/eof-in-inline-image.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/indirect-r-arg.out

WARNING: indirect-r-arg.pdf (file position 76): unknown token while reading object; treating as string
WARNING: indirect-r-arg.pdf (file position 62): expected dictionary key but found non-name object; inserting key /QPDFFake1
WARNING: indirect-r-arg.pdf (file position 62): expected dictionary key but found non-name object; inserting key /QPDFFake2
checking indirect-r-arg.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.2.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.5.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad34.out

WARNING: bad34.pdf (object 4 0, file position 322): expected n n obj
/QTest is implicit
/QTest is indirect and has type null (2)
/QTest is null
unparse: 4 0 R
unparseResolved: null
test 0 done

qpdf-7.1.0/qpdf/qtest/qpdf/good11.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.6.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/enc-long-password.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.5-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/large_file-check-ostream.out

PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.2-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad19.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/badlin1.out

ERROR: first page object (/O) mismatch
ERROR: space before first xref item (/T) mismatch (computed = 11777; file = 11771
WARNING: end of first page section (/E) mismatch: /E = 1827; computed = 3889..3891
WARNING: page 0 has shared identifier entries
WARNING: page 0: shared object 62: in hint table but not computed list
badlin1.pdf: linearization data:

file_size: 13103
first_page_object: 63
first_page_end: 1827
npages: 30
xref_zero_offset: 11770
first_page: 0
H_offset: 1211
H_length: 203

Page Offsets Hint Table

min_nobjects: 2
first_page_offset: 1414
nbits_delta_nobjects: 4
min_page_length: 259
nbits_delta_page_length: 12
min_content_offset: 0
nbits_delta_content_offset: 0
min_content_length: 0
nbits_delta_content_length: 12
nbits_nshared_objects: 2
nbits_shared_identifier: 2
nbits_shared_numerator: 4
shared_denominator: 8
Page 0:
 nobjects: 16
 length: 2477
 content_offset: 0
 content_length: 2218
 nshared_objects: 2
 identifier 0: 0
 numerator 0: 0
 identifier 1: 0
 numerator 1: 0
Page 1:
 nobjects: 2
 length: 259
 content_offset: 0
 content_length: 0
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 2:
 nobjects: 2
 length: 259
 content_offset: 0
 content_length: 0
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 3:
 nobjects: 2
 length: 259
 content_offset: 0
 content_length: 0
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 4:
 nobjects: 2
 length: 259
 content_offset: 0
 content_length: 0
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 5:
 nobjects: 2
 length: 261
 content_offset: 0
 content_length: 2
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 6:
 nobjects: 2
 length: 262
 content_offset: 0
 content_length: 3
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 7:
 nobjects: 2
 length: 262
 content_offset: 0
 content_length: 3
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 8:
 nobjects: 2
 length: 262
 content_offset: 0
 content_length: 3
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 9:
 nobjects: 2
 length: 262
 content_offset: 0
 content_length: 3
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 10:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 11:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 12:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 13:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 14:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 15:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 16:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 17:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 18:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 19:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 20:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 21:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 22:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 23:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 24:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 25:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 26:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 27:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 28:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 29:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0

Shared Objects Hint Table

first_shared_obj: 0
first_shared_offset: 0
nshared_first_page: 16
nshared_total: 16
nbits_nobjects: 0
min_group_length: 34
nbits_delta_group_length: 9
Shared Object 0:
 group length: 157
Shared Object 1:
 group length: 105
Shared Object 2:
 group length: 117
Shared Object 3:
 group length: 34
Shared Object 4:
 group length: 82
Shared Object 5:
 group length: 191
Shared Object 6:
 group length: 144
Shared Object 7:
 group length: 168
Shared Object 8:
 group length: 291
Shared Object 9:
 group length: 165
Shared Object 10:
 group length: 162
Shared Object 11:
 group length: 182
Shared Object 12:
 group length: 201
Shared Object 13:
 group length: 150
Shared Object 14:
 group length: 164
Shared Object 15:
 group length: 164

Outlines Hint Table

first_object: 66
first_object_offset: 1827
nobjects: 12
group_length: 2064

qpdf-7.1.0/qpdf/qtest/qpdf/merge-three-files-2.pdf

Potato 0

Potato 2

Potato 4

Potato 5

Potato 6

Potato 29

Original page 19

Original page 18

Original page 17

Original page 16

Original page 15

Original page 14

Potato 11

Original page 9

Original page 9

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.11-ogen.c-check

version: 1.5
linearized: 1
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.5.check

checking a.pdf
PDF Version: 1.2
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.1.c-check

version: 1.3
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.9-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/merge-implicit-ranges.pdf

Potato

Original page 0

Original page 1

Original page 2

Original page 3

Original page 4

Original page 5

Original page 6

Original page 7

Original page 8

Original page 9

Original page 10

Original page 11

Original page 12

Original page 13

Original page 14

Original page 15

Original page 16

Original page 17

Original page 18

Original page 19

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

qpdf-7.1.0/qpdf/qtest/qpdf/bad10.out

bad10.pdf (trailer, file position 712): /Size key in trailer dictionary is not an integer

qpdf-7.1.0/qpdf/qtest/qpdf/V4-aes.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isis 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/page_api_1.out2

page_api_1.pdf (page object: object 4 0): page object not referenced in /Pages tree

qpdf-7.1.0/qpdf/qtest/qpdf/bad34-recover.out

WARNING: bad34.pdf: file is damaged
WARNING: bad34.pdf (object 4 0, file position 322): expected n n obj
WARNING: bad34.pdf: Attempting to reconstruct cross-reference table
/QTest is indirect and has type stream (10)
/QTest is a stream. Dictionary: << /Length 44 /Quack 9 0 R >>
Raw stream data:
BT
 /F1 24 Tf
 72 720 Td
 (Potato) Tj
ET

Uncompressed stream data:
BT
 /F1 24 Tf
 72 720 Td
 (Potato) Tj
ET

End of stream data
unparse: 4 0 R
unparseResolved: 4 0 R
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/badlin1.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.9-ogen.c-check

version: 1.5
linearized: 1
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.10.c-check

version: 1.5
linearized: 0
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/bad10-recover.out

WARNING: bad10.pdf: file is damaged
WARNING: bad10.pdf (trailer, file position 712): /Size key in trailer dictionary is not an integer
WARNING: bad10.pdf: Attempting to reconstruct cross-reference table
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-min-1.8.5.out

version: 1.8
extension level: 5
<< /ADBE << /BaseVersion /1.8 /ExtensionLevel 5 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.8-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-group-01-05.pdf

Original page 1

Original page 2

Original page 3

Original page 4

Original page 5

qpdf-7.1.0/qpdf/qtest/qpdf/xref-errors.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.12.c-check

version: 1.2
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.6-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.3-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.3.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad4.out

bad4.pdf (xref table, file position 547): xref syntax invalid

qpdf-7.1.0/qpdf/qtest/qpdf/image-streams-specialized.out

page 1
filter: null, color space: /DeviceCMYK
page 2
filter: /DCTDecode, color space: /DeviceCMYK
page 3
filter: null, color space: /DeviceCMYK
page 4
filter: null, color space: /DeviceRGB
page 5
filter: /DCTDecode, color space: /DeviceRGB
page 6
filter: null, color space: /DeviceRGB
page 7
filter: null, color space: /DeviceGray
page 8
filter: /DCTDecode, color space: /DeviceGray
page 9
filter: null, color space: /DeviceGray
test 39 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad17-recover.out

WARNING: bad17.pdf (trailer, file position 715): dictionary ended prematurely; using null as value for last key
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.6-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/page-no-content.pdf

Potato

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.4-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/min-version.out

checking a.pdf
PDF Version: 1.6
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/unfilterable-with-crypt-before.out

<< /DL 30 /DecodeParms [<< /Name /StdCF >> null] /Filter [/Crypt /ZlateDecode] /Length 64 /Params << /CheckSum <c4f73a3ba2b5fef86a4085d6f006eacd> /CreationDate (D:20121229172641-05'00') /ModDate (D:20121229172600) /Size 30 >> /Subtype /text#2fplain >>attachment1.txt:
This is the first attachment.
--END--
test 36 done

qpdf-7.1.0/qpdf/qtest/qpdf/show-unfilterable.out

Unable to filter stream data.

qpdf-7.1.0/qpdf/qtest/qpdf/bad29.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/bad15-recover.out

WARNING: bad15.pdf (trailer, file position 753): treating unexpected array close token as null
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/shallow_array-out.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-min-1.8.5.out

version: 1.8
extension level: 5
<< /ADBE << /BaseVersion /1.8 /ExtensionLevel 5 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.1.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/lin0.out

lin0.pdf is not linearized

qpdf-7.1.0/qpdf/qtest/qpdf/linearization-large-vector-alloc.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.9.c-check

version: 1.3
linearized: 1
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/split-pages-stdout.out

qpdf: --split-pages may not be used when writing to standard output

Usage: qpdf [options] infile outfile
For detailed help, run qpdf --help

qpdf-7.1.0/qpdf/qtest/qpdf/03_split-exp.zdf

Original page 3

qpdf-7.1.0/qpdf/qtest/qpdf/enc-R2,V1,U=view,O=master.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/unfilterable.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.4.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/c-r5-in.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.11.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/good17.out

/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/good15.out

/QTest is direct and has type name (7)
/QTest is a name with value /oink
unparse: /oink
unparseResolved: /oink
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-min-1.7.2.out

version: 1.7
extension level: 2
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 2 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.8.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/a-01-split-exp.zdf

qpdf-7.1.0/qpdf/qtest/qpdf/minimal.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.2-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad-data-out.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/bad31-recover.out

qpdf-7.1.0/qpdf/qtest/qpdf/issue-149.pdf

bar

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.7-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.7.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/good14.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.8-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/c-min-version.out

version: 1.7
extension level: 8
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.12-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/zero-offset.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.10.c-check

version: 1.4
linearized: 0
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-min-1.8.0.out

version: 1.8
extension level: 0
<< /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/test4-2.out

attempt to make a stream into a direct object

qpdf-7.1.0/qpdf/qtest/qpdf/c-decrypt-with-owner.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-10.Pdf

Original page 10

qpdf-7.1.0/qpdf/qtest/qpdf/pages-warning.out

WARNING: lin-special.pdf (Pages object: object 6 0): Unknown key /Quack in /Pages object is being discarded as a result of flattening the /Pages tree
test 23 done

qpdf-7.1.0/qpdf/qtest/qpdf/show-xref-by-id.out

Object is stream. Dictionary:
<< /DecodeParms << /Columns 4 /Predictor 12 >> /Encrypt 11 0 R /Filter /FlateDecode /ID [<aa269ffec296b13f3ef835aaa13a0a08> <ed6d13114fb5557408b516ca3927151b>] /Info 3 0 R /Length 52 /Root 1 0 R /Size 13 /Type /XRef /W [1 2 1] >>

qpdf-7.1.0/qpdf/qtest/qpdf/lin5.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/good7.out

/QTest is direct and has type integer (4)
/QTest is an integer with value 16059
unparse: 16059
unparseResolved: 16059
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/long-id.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/bad-jpeg-show.out

WARNING: bad-jpeg.pdf (file position 735): error decoding stream data for object 6 0: Not a JPEG file: starts with 0x77 0x77
qpdf: operation succeeded with warnings; resulting file may have some problems

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.2.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/newline-before-endstream-nl.pdf

Potato

Potato

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/lin2.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.5-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/good18.out

/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.2-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-force-1.7.3.out

version: 1.7
extension level: 3
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 3 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.12-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/forced-version.out

checking b.pdf
PDF Version: 1.4
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.11-ogen.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/good13.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-min-1.3.out

version: 1.5
extension level: 0
<< /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-force-1.8.5.out

version: 1.8
extension level: 5
<< /ADBE << /BaseVersion /1.8 /ExtensionLevel 5 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/indirect-decode-parms-out.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.9.check

checking a.pdf
PDF Version: 1.3
File is not encrypted
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/leading-junk.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/split-content-stream.out

checking split-content-stream.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/big-ostream.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/no-space-in-xref.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/a-08-split-exp.zdf

qpdf-7.1.0/qpdf/qtest/qpdf/c-normalized-content.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/linearization-bounds-1.out

checking linearization-bounds-1.pdf
PDF Version: 1.3
File is not encrypted
File is linearized
WARNING: linearization-bounds-1.pdf (linearization hint stream: object 62 0, file position 1001182): EOF while reading token
WARNING: linearization-bounds-1.pdf (linearization hint stream: object 62 0, file position 1183): attempting to recover stream length
WARNING: linearization-bounds-1.pdf (linearization hint stream: object 62 0, file position 1183): recovered stream length: 106
linearization-bounds-1.pdf (linearization hint table, file position 1183): /S (shared object) offset is out of bounds

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.3-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-force-1.6.out

version: 1.6
extension level: 0
null
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/a-04-split-exp.zdf

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.10-ogen.c-check

version: 1.5
linearized: 0
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.7.check

checking a.pdf
PDF Version: 1.2
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/c-object-streams.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-force-1.8.5.out

version: 1.8
extension level: 5
<< /ADBE << /BaseVersion /1.8 /ExtensionLevel 5 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/good21.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/page_api_2.out

page_api_2.pdf (page 1 (numbered from zero): object 4 0): duplicate page reference found; this would cause loss of data

qpdf-7.1.0/qpdf/qtest/qpdf/p1-a-p2-b.pdf

A

B

qpdf-7.1.0/qpdf/qtest/qpdf/parse-object.out

[/name 16059 3.14159 false << /key true /other [(string1) (string2)] >> null]
logic error parsing indirect: QPDFObjectHandle::parse called without context on an object with indirect references
trailing data: parsed object (trailing test): trailing data found parsing object from string
test 31 done

qpdf-7.1.0/qpdf/qtest/qpdf/test4-4.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.3-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/issue-147.out

WARNING: issue-147.pdf: can't find PDF header
WARNING: issue-147.pdf: file is damaged
WARNING: issue-147.pdf: can't find startxref
WARNING: issue-147.pdf: Attempting to reconstruct cross-reference table
WARNING: issue-147.pdf (trailer, file position 9): expected dictionary key but found non-name object; inserting key /QPDFFake1
WARNING: issue-147.pdf (object 62 0, file position 88): expected endobj
WARNING: issue-147.pdf (trailer, file position 90): invalid /ID in trailer dictionary
issue-147.pdf: invalid password

qpdf-7.1.0/qpdf/qtest/qpdf/lin9.out

WARNING: page 0 has shared identifier entries
WARNING: page 0: shared object 19: in hint table but not computed list
lin9.pdf: linearization data:

file_size: 3316
first_page_object: 19
first_page_end: 1323
npages: 5
xref_zero_offset: 2849
first_page: 0
H_offset: 713
H_length: 162

Page Offsets Hint Table

min_nobjects: 2
first_page_offset: 875
nbits_delta_nobjects: 2
min_page_length: 221
nbits_delta_page_length: 8
min_content_offset: 0
nbits_delta_content_offset: 0
min_content_length: 0
nbits_delta_content_length: 8
nbits_nshared_objects: 2
nbits_shared_identifier: 3
nbits_shared_numerator: 4
shared_denominator: 8
Page 0:
 nobjects: 5
 length: 448
 content_offset: 0
 content_length: 227
 nshared_objects: 1
 identifier 0: 0
 numerator 0: 0
Page 1:
 nobjects: 2
 length: 221
 content_offset: 0
 content_length: 0
 nshared_objects: 3
 identifier 0: 5
 numerator 0: 0
 identifier 1: 6
 numerator 1: 0
 identifier 2: 4
 numerator 2: 0
Page 2:
 nobjects: 2
 length: 234
 content_offset: 0
 content_length: 13
 nshared_objects: 3
 identifier 0: 5
 numerator 0: 0
 identifier 1: 6
 numerator 1: 0
 identifier 2: 4
 numerator 2: 0
Page 3:
 nobjects: 3
 length: 375
 content_offset: 0
 content_length: 154
 nshared_objects: 1
 identifier 0: 4
 numerator 0: 0
Page 4:
 nobjects: 2
 length: 221
 content_offset: 0
 content_length: 0
 nshared_objects: 3
 identifier 0: 5
 numerator 0: 0
 identifier 1: 6
 numerator 1: 0
 identifier 2: 4
 numerator 2: 0

Shared Objects Hint Table

first_shared_obj: 10
first_shared_offset: 2374
nshared_first_page: 5
nshared_total: 7
nbits_nobjects: 0
min_group_length: 34
nbits_delta_group_length: 7
Shared Object 0:
 group length: 119
Shared Object 1:
 group length: 105
Shared Object 2:
 group length: 67
Shared Object 3:
 group length: 123
Shared Object 4:
 group length: 34
Shared Object 5:
 group length: 67
Shared Object 6:
 group length: 117

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp.zdf_11

Original page 11

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.5-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.1.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.9.c-check

version: 1.5
linearized: 1
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-1

Original page 1

qpdf-7.1.0/qpdf/qtest/qpdf/bad6.out

/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 0 done

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.2-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/short-O-U.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-min-1.8.2.out

version: 1.8
extension level: 2
<< /ADBE << /BaseVersion /1.8 /ExtensionLevel 2 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.3.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/issue-106.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/linearized-and-warnings-1.out

WARNING: linearized-and-warnings.pdf (object 2 0, file position 1117): empty object treated as null
linearized-and-warnings.pdf: linearization data:

file_size: 1310
first_page_object: 6
first_page_end: 1044
npages: 1
xref_zero_offset: 1132
first_page: 0
H_offset: 528
H_length: 118

Page Offsets Hint Table

min_nobjects: 4
first_page_offset: 646
nbits_delta_nobjects: 0
min_page_length: 398
nbits_delta_page_length: 0
min_content_offset: 0
nbits_delta_content_offset: 0
min_content_length: 398
nbits_delta_content_length: 0
nbits_nshared_objects: 0
nbits_shared_identifier: 3
nbits_shared_numerator: 0
shared_denominator: 4
Page 0:
 nobjects: 4
 length: 398
 content_offset: 0
 content_length: 398
 nshared_objects: 0

Shared Objects Hint Table

first_shared_obj: 0
first_shared_offset: 0
nshared_first_page: 4
nshared_total: 4
nbits_nobjects: 0
min_group_length: 30
nbits_delta_group_length: 7
Shared Object 0:
 group length: 143
Shared Object 1:
 group length: 118
Shared Object 2:
 group length: 30
Shared Object 3:
 group length: 107
test 12 done

qpdf-7.1.0/qpdf/qtest/qpdf/long-id-check.out

checking a.pdf
PDF Version: 1.3
R = 2
P = -4
User password =
Encryption key = 2f382cf6e1
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad10.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/short-id.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.8.check

checking a.pdf
PDF Version: 1.2
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-min-1.8.0.out

version: 1.8
extension level: 0
null
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/05_split-exp.zdf

Original page 5

qpdf-7.1.0/qpdf/qtest/qpdf/bad25.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.11.c-check

version: 1.5
linearized: 1
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/bad19.out

bad19.pdf (trailer, file position 753): unexpected >

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.3-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.12-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad-token-startxref.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/bad13.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/bad18.out

bad18.pdf (trailer, file position 753): unexpected)

qpdf-7.1.0/qpdf/qtest/qpdf/c-write-damaged.out

warning: append-page-content-damaged.pdf: file is damaged
 code: 5
 file: append-page-content-damaged.pdf
 pos : 0
 text: file is damaged
warning: append-page-content-damaged.pdf: can't find startxref
 code: 5
 file: append-page-content-damaged.pdf
 pos : 0
 text: can't find startxref
warning: append-page-content-damaged.pdf: Attempting to reconstruct cross-reference table
 code: 5
 file: append-page-content-damaged.pdf
 pos : 0
 text: Attempting to reconstruct cross-reference table

qpdf-7.1.0/qpdf/qtest/qpdf/foreign-in-write.out

logic error: QPDFObjectHandle from different QPDF found while writing. Use QPDF::copyForeignObject to add objects from another file.
test 29 done

qpdf-7.1.0/qpdf/qtest/qpdf/page_api_1-out3.pdf

Original page 0

Original page 1

Original page 2

Original page 3

Original page 4

Original page 6

Original page 7

Original page 8

Original page 9

Original page 5

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.generate.exp

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-force-1.3.out

version: 1.3
extension level: 0
<< /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad24.out

WARNING: bad24.pdf (object 4 0, file position 385): expected endstream
/QTest is implicit
/QTest is indirect and has type null (2)
/QTest is null
unparse: 4 0 R
unparseResolved: null
test 0 done

qpdf-7.1.0/qpdf/qtest/qpdf/c-info2-in.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/02_split-exp.zdf

Original page 2

qpdf-7.1.0/qpdf/qtest/qpdf/lin3.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isis 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/good1.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/custom-pipeline.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/good2.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.2-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/bad16.out

WARNING: bad16.pdf (trailer, file position 753): unexpected dictionary close token
WARNING: bad16.pdf (trailer, file position 756): unexpected dictionary close token
WARNING: bad16.pdf (trailer, file position 759): unknown token while reading object; treating as string
bad16.pdf (trailer, file position 773): EOF while reading token

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.6-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/extra-header-newline.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.6-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/attachments.out

attachment1.txt:
This is the first attachment.
--END--
attachment2.png:
.PNG........IHDR...1 (2620 bytes)--END--
test 35 done

qpdf-7.1.0/qpdf/qtest/qpdf/issue-150.pdf

00008 0 obj<</Type/XRef/Filter/Fl/DecodeParms<</Columns 9900000000000000000/Predictor 12>>/W[0 2 0]/Size 0>>stream
x�c0endobj
startxref
4

qpdf-7.1.0/qpdf/qtest/qpdf/good6.out

/QTest is direct and has type boolean (3)
/QTest is Boolean with value false
unparse: false
unparseResolved: false
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.1-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.7.c-check

version: 1.2
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/tiff-predictor.out

checking tiff-predictor.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/show-page-1-image.out

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.11.c-check

version: 1.4
linearized: 1
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/issue-51.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/good19.pdf

Salad

qpdf-7.1.0/qpdf/qtest/qpdf/bad18-recover.out

WARNING: bad18.pdf: file is damaged
WARNING: bad18.pdf (trailer, file position 753): unexpected)
WARNING: bad18.pdf: Attempting to reconstruct cross-reference table
bad18.pdf (trailer, file position 753): unexpected)

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.5-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.1.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/deterministic-id-yn.pdf

QPDF Manual

For QPDF Version 5.1.3, May 24, 2015

Jay Berkenbilt

QPDF Manual: For QPDF Version 5.1.3, May 24, 2015
Jay Berkenbilt
Copyright © 2005–2014 Jay Berkenbilt

iii

Table of Contents
General Information .. iv
1. What is QPDF? ... 1
2. Building and Installing QPDF .. 2

2.1. System Requirements ... 2
2.2. Build Instructions .. 2

3. Running QPDF ... 4
3.1. Basic Invocation ... 4
3.2. Basic Options ... 4
3.3. Encryption Options ... 5
3.4. Page Selection Options .. 6
3.5. Advanced Transformation Options ... 8
3.6. Testing, Inspection, and Debugging Options .. 10

4. QDF Mode ... 12
5. Using the QPDF Library ... 14
6. Design and Library Notes ... 15

6.1. Introduction .. 15
6.2. Design Goals .. 15
6.3. Casting Policy .. 17
6.4. Encryption ... 18
6.5. Random Number Generation ... 19
6.6. Adding and Removing Pages ... 19
6.7. Reserving Object Numbers ... 19
6.8. Copying Objects From Other PDF Files .. 20
6.9. Writing PDF Files ... 20
6.10. Filtered Streams .. 21

7. Linearization ... 22
7.1. Basic Strategy for Linearization ... 22
7.2. Preparing For Linearization ... 22
7.3. Optimization ... 22
7.4. Writing Linearized Files ... 23
7.5. Calculating Linearization Data ... 23
7.6. Known Issues with Linearization ... 23
7.7. Debugging Note .. 24

8. Object and Cross-Reference Streams ... 25
8.1. Object Streams .. 25
8.2. Cross-Reference Streams .. 25

8.2.1. Cross-Reference Stream Data .. 26
8.3. Implications for Linearized Files .. 26
8.4. Implementation Notes .. 27

A. Release Notes ... 28
B. Upgrading from 2.0 to 2.1 .. 37
C. Upgrading to 3.0 ... 38
D. Upgrading to 4.0 ... 39

iv

General Information
QPDF is a program that does structural, content-preserving transformations on PDF files. QPDF's website is located
at http://qpdf.sourceforge.net/. QPDF's source code is hosted on github at https://github.com/qpdf/qpdf.

QPDF has been released under the terms of Version 2.0 of the Artistic License [http://www.opensource.org/licenses/
artistic-license-2.0.php], a copy of which appears in the file Artistic-2.0 in the source distribution.

QPDF was originally created in 2001 and modified periodically between 2001 and 2005 during my employment at
Apex CoVantage [http://www.apexcovantage.com]. Upon my departure from Apex, the company graciously allowed
me to take ownership of the software and continue maintaining as an open source project, a decision for which I am
very grateful. I have made considerable enhancements to it since that time. I feel fortunate to have worked for people
who would make such a decision. This work would not have been possible without their support.

http://qpdf.sourceforge.net/

https://github.com/qpdf/qpdf

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.apexcovantage.com

http://www.apexcovantage.com

1

Chapter 1. What is QPDF?
QPDF is a program that does structural, content-preserving transformations on PDF files. It could have been called
something like pdf-to-pdf. It also provides many useful capabilities to developers of PDF-producing software or for
people who just want to look at the innards of a PDF file to learn more about how they work.

With QPDF, it is possible to copy objects from one PDF file into another and to manipulate the list of pages in a PDF
file. This makes it possible to merge and split PDF files. The QPDF library also makes it possible for you to create
PDF files from scratch. In this mode, you are responsible for supplying all the contents of the file, while the QPDF
library takes care off all the syntactical representation of the objects, creation of cross references tables and, if you
use them, object streams, encryption, linearization, and other syntactic details. You are still responsible for generating
PDF content on your own.

QPDF has been designed with very few external dependencies, and it is intentionally very lightweight. QPDF is not a
PDF content creation library, a PDF viewer, or a program capable of converting PDF into other formats. In particular,
QPDF knows nothing about the semantics of PDF content streams. If you are looking for something that can do that,
you should look elsewhere. However, once you have a valid PDF file, QPDF can be used to transform that file in ways
perhaps your original PDF creation can't handle. For example, many programs generate simple PDF files but can't
password-protect them, web-optimize them, or perform other transformations of that type.

2

Chapter 2. Building and Installing
QPDF
This chapter describes how to build and install qpdf. Please see also the README and INSTALL files in the source
distribution.

2.1. System Requirements
The qpdf package has relatively few external dependencies. In order to build qpdf, the following packages are required:

• zlib: http://www.zlib.net/

• pcre: http://www.pcre.org/

• gnu make 3.81 or newer: http://www.gnu.org/software/make

• perl version 5.8 or newer: http://www.perl.org/; required for fix-qdf and the test suite.

• GNU diffutils (any version): http://www.gnu.org/software/diffutils/ is required to run the test suite. Note that this is
the version of diff present on virtually all GNU/Linux systems. This is required because the test suite uses diff -u.

• A C++ compiler that works well with STL and has the long long type. Most modern C++ compilers should fit
the bill fine. QPDF is tested with gcc and Microsoft Visual C++.

Part of qpdf's test suite does comparisons of the contents PDF files by converting them images and comparing the
images. The image comparison tests are disabled by default. Those tests are not required for determining correctness of
a qpdf build if you have not modified the code since the test suite also contains expected output files that are compared
literally. The image comparison tests provide an extra check to make sure that any content transformations don't break
the rendering of pages. Transformations that affect the content streams themselves are off by default and are only
provided to help developers look into the contents of PDF files. If you are making deep changes to the library that cause
changes in the contents of the files that qpdf generates, then you should enable the image comparison tests. Enable
them by running configure with the --enable-test-compare-images flag. If you enable this, the following additional
requirements are required by the test suite. Note that in no case are these items required to use qpdf.

• libtiff: http://www.remotesensing.org/libtiff/

• GhostScript version 8.60 or newer: http://www.ghostscript.com

If you do not enable this, then you do not need to have tiff and ghostscript.

If Adobe Reader is installed as acroread, some additional test cases will be enabled. These test cases simply verify
that Adobe Reader can open the files that qpdf creates. They require version 8.0 or newer to pass. However, in order
to avoid having qpdf depend on non-free (as in liberty) software, the test suite will still pass without Adobe reader,
and the test suite still exercises the full functionality of the software.

Pre-built documentation is distributed with qpdf, so you should generally not need to rebuild the documentation.
In order to build the documentation from its docbook sources, you need the docbook XML style sheets (http://
downloads.sourceforge.net/docbook/). To build the PDF version of the documentation, you need Apache fop (http://
xml.apache.org/fop/) version 0.94 or higher.

2.2. Build Instructions
Building qpdf on UNIX is generally just a matter of running

http://www.zlib.net/

http://www.pcre.org/

http://www.gnu.org/software/make

http://www.perl.org/

http://www.gnu.org/software/diffutils/

http://www.remotesensing.org/libtiff/

http://www.ghostscript.com

http://downloads.sourceforge.net/docbook/

http://downloads.sourceforge.net/docbook/

http://xml.apache.org/fop/

http://xml.apache.org/fop/

Building and Installing QPDF

3

./configure
make

You can also run make check to run the test suite and make install to install. Please run ./configure --help for
options on what can be configured. You can also set the value of DESTDIR during installation to install to a temporary
location, as is common with many open source packages. Please see also the README and INSTALL files in the
source distribution.

Building on Windows is a little bit more complicated. For details, please see README-windows.txt in the source
distribution. You can also download a binary distribution for Windows. There is a port of qpdf to Visual C++ version 6
in the contrib area generously contributed by Jian Ma. This is also discussed in more detail in README-windows.txt.

There are some other things you can do with the build. Although qpdf uses autoconf, it does not use automake but
instead uses a hand-crafted non-recursive Makefile that requires gnu make. If you're really interested, please read the
comments in the top-level Makefile.

4

Chapter 3. Running QPDF
This chapter describes how to run the qpdf program from the command line.

3.1. Basic Invocation
When running qpdf, the basic invocation is as follows:

qpdf [options] infilename [outfilename]

This converts PDF file infilename to PDF file outfilename. The output file is functionally identical to the input file but
may have been structurally reorganized. Also, orphaned objects will be removed from the file. Many transformations
are available as controlled by the options below. In place of infilename, the parameter --empty may be specified. This
causes qpdf to use a dummy input file that contains zero pages. The only normal use case for using --empty would be if
you were going to add pages from another source, as discussed in Section 3.4, “Page Selection Options”, page 6.

outfilename does not have to be seekable, even when generating linearized files. Specifying “--” as outfilename
means to write to standard output. However, you can't specify the same file as both the input and the output because
qpdf reads data from the input file as it writes to the output file.

Most options require an output file, but some testing or inspection commands do not. These are specifically noted.

3.2. Basic Options
The following options are the most common ones and perform commonly needed transformations.

--password=password
Specifies a password for accessing encrypted files.

--linearize
Causes generation of a linearized (web-optimized) output file.

--copy-encryption=file
Encrypt the file using the same encryption parameters, including user and owner password, as the specified file.
Use --encrypt-file-password to specify a password if one is needed to open this file. Note that copying the
encryption parameters from a file also copies the first half of /ID from the file since this is part of the encryption
parameters.

--encrypt-file-password=password
If the file specified with --copy-encryption requires a password, specify the password using this option. Note
that only one of the user or owner password is required. Both passwords will be preserved since QPDF does
not distinguish between the two passwords. It is possible to preserve encryption parameters, including the owner
password, from a file even if you don't know the file's owner password.

--encrypt options --
Causes generation an encrypted output file. Please see Section 3.3, “Encryption Options”, page 5 for details
on how to specify encryption parameters.

--decrypt
Removes any encryption on the file. A password must be supplied if the file is password protected.

--pages options --
Select specific pages from one or more input files. See Section 3.4, “Page Selection Options”, page 6 for
details on how to do page selection (splitting and merging).

Running QPDF

5

Password-protected files may be opened by specifying a password. By default, qpdf will preserve any encryption data
associated with a file. If --decrypt is specified, qpdf will attempt to remove any encryption information. If --encrypt
is specified, qpdf will replace the document's encryption parameters with whatever is specified.

Note that qpdf does not obey encryption restrictions already imposed on the file. Doing so would be meaningless since
qpdf can be used to remove encryption from the file entirely. This functionality is not intended to be used for bypassing
copyright restrictions or other restrictions placed on files by their producers.

In all cases where qpdf allows specification of a password, care must be taken if the password contains characters
that fall outside of the 7-bit US-ASCII character range to ensure that the exact correct byte sequence is provided. It
is possible that a future version of qpdf may handle this more gracefully. For example, if a password was encrypted
using a password that was encoded in ISO-8859-1 and your terminal is configured to use UTF-8, the password you
supply may not work properly. There are various approaches to handling this. For example, if you are using Linux and
have the iconv executable (part of the ICU package) installed, you could pass --password=`echo password | iconv
-t iso-8859-1` to qpdf where password is a password specified in your terminal's locale. A detailed discussion of
this is out of scope for this manual, but just be aware of this issue if you have trouble with a password that contains
8-bit characters.

3.3. Encryption Options
To change the encryption parameters of a file, use the --encrypt flag. The syntax is

--encrypt user-password owner-password key-length [restrictions] --

Note that “--” terminates parsing of encryption flags and must be present even if no restrictions are present.

Either or both of the user password and the owner password may be empty strings.

The value for key-length may be 40, 128, or 256. The restriction flags are dependent upon key length. When no
additional restrictions are given, the default is to be fully permissive.

If key-length is 40, the following restriction options are available:

--print=[yn]
Determines whether or not to allow printing.

--modify=[yn]
Determines whether or not to allow document modification.

--extract=[yn]
Determines whether or not to allow text/image extraction.

--annotate=[yn]
Determines whether or not to allow comments and form fill-in and signing.

If key-length is 128, the following restriction options are available:

--accessibility=[yn]
Determines whether or not to allow accessibility to visually impaired.

--extract=[yn]
Determines whether or not to allow text/graphic extraction.

--print=print-opt
Controls printing access. print-opt may be one of the following:

Running QPDF

6

• full: allow full printing

• low: allow low-resolution printing only

• none: disallow printing

--modify=modify-opt
Controls modify access. modify-opt may be one of the following, each of which implies all the options that
follow it:

• all: allow full document modification

• annotate: allow comment authoring and form operations

• form: allow form field fill-in and signing

• assembly: allow document assembly only

• none: allow no modifications

--cleartext-metadata
If specified, any metadata stream in the document will be left unencrypted even if the rest of the document is
encrypted. This also forces the PDF version to be at least 1.5.

--use-aes=[yn]
If --use-aes=y is specified, AES encryption will be used instead of RC4 encryption. This forces the PDF version
to be at least 1.6.

--force-V4
Use of this option forces the /V and /R parameters in the document's encryption dictionary to be set to the value
4. As qpdf will automatically do this when required, there is no reason to ever use this option. It exists primarily
for use in testing qpdf itself. This option also forces the PDF version to be at least 1.5.

If key-length is 256, the minimum PDF version is 1.7 with extension level 8, and the AES-based encryption format
used is the PDF 2.0 encryption method supported by Acrobat X. the same options are available as with 128 bits with
the following exceptions:

--use-aes
This option is not available with 256-bit keys. AES is always used with 256-bit encryption keys.

--force-V4
This option is not available with 256 keys.

--force-R5
If specified, qpdf sets the minimum version to 1.7 at extension level 3 and writes the deprecated encryption format
used by Acrobat version IX. This option should not be used in practice to generate PDF files that will be in general
use, but it can be useful to generate files if you are trying to test proper support in another application for PDF
files encrypted in this way.

The default for each permission option is to be fully permissive.

3.4. Page Selection Options
Starting with qpdf 3.0, it is possible to split and merge PDF files by selecting pages from one or more input files.
Whatever file is given as the primary input file is used as the starting point, but its pages are replaced with pages as
specified.

Running QPDF

7

--pages input-file [--password=password] [page-range] [...] --

Multiple input files may be specified. Each one is given as the name of the input file, an optional password (if required
to open the file), and the range of pages. Note that “--” terminates parsing of page selection flags.

For each file that pages should be taken from, specify the file, a password needed to open the file (if any), and a page
range. The password needs to be given only once per file. If any of the input files are the same as the primary input
file or the file used to copy encryption parameters (if specified), you do not need to repeat the password here. The
same file can be repeated multiple times. If a file that is repeated has a password, the password only has to be given
the first time. All non-page data (info, outlines, page numbers, etc.) are taken from the primary input file. To discard
these, use --empty as the primary input.

Starting with qpdf 5.0.0, it is possible to omit the page range. If qpdf sees a value in the place where it expects a page
range and that value is not a valid range but is a valid file name, qpdf will implicitly use the range 1-z, meaning that
it will include all pages in the file. This makes it possible to easily combine all pages in a set of files with a command
like qpdf --empty out.pdf --pages *.pdf --.

It is not presently possible to specify the same page from the same file directly more than once, but you can make this
work by specifying two different paths to the same file (such as by putting ./ somewhere in the path). This can also be
used if you want to repeat a page from one of the input files in the output file. This may be made more convenient in
a future version of qpdf if there is enough demand for this feature.

The page range is a set of numbers separated by commas, ranges of numbers separated dashes, or combinations of
those. The character “z” represents the last page. Pages can appear in any order. Ranges can appear with a high number
followed by a low number, which causes the pages to appear in reverse. Repeating a number will cause an error, but
you can use the workaround discussed above should you really want to include the same page twice.

Example page ranges:

• 1,3,5-9,15-12: pages 1, 2, 3, 5, 6, 7, 8, 9, 15, 14, 13, and 12.

• z-1: all pages in the document in reverse

Note that qpdf doesn't presently do anything special about other constructs in a PDF file that may know about pages,
so semantics of splitting and merging vary across features. For example, the document's outlines (bookmarks) point
to actual page objects, so if you select some pages and not others, bookmarks that point to pages that are in the output
file will work, and remaining bookmarks will not work. On the other hand, page labels (page numbers specified in the
file) are just sequential, so page labels will be messed up in the output file. A future version of qpdf may do a better
job at handling these issues. (Note that the qpdf library already contains all of the APIs required in order to implement
this in your own application if you need it.) In the mean time, you can always use --empty as the primary input file to
avoid copying all of that from the first file. For example, to take pages 1 through 5 from a infile.pdf while preserving
all metadata associated with that file, you could use

qpdf infile.pdf --pages infile.pdf 1-5 -- outfile.pdf

If you wanted pages 1 through 5 from infile.pdf but you wanted the rest of the metadata to be dropped, you could
instead run

qpdf --empty --pages infile.pdf 1-5 -- outfile.pdf

If you wanted to take pages 1–5 from file1.pdf and pages 11–15 from file2.pdf in reverse, you would run

qpdf file1.pdf --pages file1.pdf 1-5 file2.pdf 15-11 -- outfile.pdf

Running QPDF

8

If, for some reason, you wanted to take the first page of an encrypted file called encrypted.pdf with password pass
and repeat it twice in an output file, and if you wanted to drop metadata (like page numbers and outlines) but preserve
encryption, you would use

qpdf --empty --copy-encryption=encrypted.pdf --encryption-file-password=pass
--pages encrypted.pdf --password=pass 1 ./encrypted.pdf --password=pass 1 --
outfile.pdf

Note that we had to specify the password all three times because giving a password as --encryption-file-password
doesn't count for page selection, and as far as qpdf is concerned, encrypted.pdf and ./encrypted.pdf are separated files.
These are all corner cases that most users should hopefully never have to be bothered with.

3.5. Advanced Transformation Options
These transformation options control fine points of how qpdf creates the output file. Mostly these are of use only to
people who are very familiar with the PDF file format or who are PDF developers. The following options are available:

--stream-data=option
Controls transformation of stream data. The value of option may be one of the following:

• compress: recompress stream data when possible (default)

• preserve: leave all stream data as is

• uncompress: uncompress stream data when possible

--normalize-content=[yn]
Enables or disables normalization of content streams.

--suppress-recovery
Prevents qpdf from attempting to recover damaged files.

--object-streams=mode
Controls handling of object streams. The value of mode may be one of the following:

• preserve: preserve original object streams (default)

• disable: don't write any object streams

• generate: use object streams wherever possible

--ignore-xref-streams
Tells qpdf to ignore any cross-reference streams.

--qdf
Turns on QDF mode. For additional information on QDF, please see Chapter 4, QDF Mode, page 12.

--min-version=version
Forces the PDF version of the output file to be at least version. In other words, if the input file has a lower
version than the specified version, the specified version will be used. If the input file has a higher version, the
input file's original version will be used. It is seldom necessary to use this option since qpdf will automatically
increase the version as needed when adding features that require newer PDF readers.

The version number may be expressed in the form major.minor.extension-level, in which case the
version is interpreted as major.minor at extension level extension-level. For example, version 1.7.8
represents version 1.7 at extension level 8. Note that minimal syntax checking is done on the command line.

Running QPDF

9

--force-version=version
This option forces the PDF version to be the exact version specified even when the file may have content that
is not supported in that version. The version number is interpreted in the same way as with --min-version so
that extension levels can be set. In some cases, forcing the output file's PDF version to be lower than that of the
input file will cause qpdf to disable certain features of the document. Specifically, 256-bit keys are disabled if
the version is less than 1.7 with extension level 8 (except R5 is disabled if less than 1.7 with extension level 3),
AES encryption is disabled if the version is less than 1.6, cleartext metadata and object streams are disabled if less
than 1.5, 128-bit encryption keys are disabled if less than 1.4, and all encryption is disabled if less than 1.3. Even
with these precautions, qpdf won't be able to do things like eliminate use of newer image compression schemes,
transparency groups, or other features that may have been added in more recent versions of PDF.

As a general rule, with the exception of big structural things like the use of object streams or AES encryption,
PDF viewers are supposed to ignore features in files that they don't support from newer versions. This means that
forcing the version to a lower version may make it possible to open your PDF file with an older version, though
bear in mind that some of the original document's functionality may be lost.

By default, when a stream is encoded using non-lossy filters that qpdf understands and is not already compressed
using a good compression scheme, qpdf will uncompress and recompress streams. Assuming proper filter implements,
this is safe and generally results in smaller files. This behavior may also be explicitly requested with --stream-
data=compress.

When --stream-data=preserve is specified, qpdf will never attempt to change the filtering of any stream data.

When --stream-data=uncompress is specified, qpdf will attempt to remove any non-lossy filters that it supports. This
includes /FlateDecode, /LZWDecode, /ASCII85Decode, and /ASCIIHexDecode. This can be very useful
for inspecting the contents of various streams.

When --normalize-content=y is specified, qpdf will attempt to normalize whitespace and newlines in page content
streams. This is generally safe but could, in some cases, cause damage to the content streams. This option is intended
for people who wish to study PDF content streams or to debug PDF content. You should not use this for “production”
PDF files.

Ordinarily, qpdf will attempt to recover from certain types of errors in PDF files. These include errors in the cross-
reference table, certain types of object numbering errors, and certain types of stream length errors. Sometimes, qpdf
may think it has recovered but may not have actually recovered, so care should be taken when using this option as
some data loss is possible. The --suppress-recovery option will prevent qpdf from attempting recovery. In this case,
it will fail on the first error that it encounters.

Object streams, also known as compressed objects, were introduced into the PDF specification at version 1.5,
corresponding to Acrobat 6. Some older PDF viewers may not support files with object streams. qpdf can be used to
transform files with object streams to files without object streams or vice versa. As mentioned above, there are three
object stream modes: preserve, disable, and generate.

In preserve mode, the relationship to objects and the streams that contain them is preserved from the original file. In
disable mode, all objects are written as regular, uncompressed objects. The resulting file should be readable by older
PDF viewers. (Of course, the content of the files may include features not supported by older viewers, but at least
the structure will be supported.) In generate mode, qpdf will create its own object streams. This will usually result in
more compact PDF files, though they may not be readable by older viewers. In this mode, qpdf will also make sure
the PDF version number in the header is at least 1.5.

Ordinarily, qpdf reads cross-reference streams when they are present in a PDF file. If --ignore-xref-streams is
specified, qpdf will ignore any cross-reference streams for hybrid PDF files. The purpose of hybrid files is to make
some content available to viewers that are not aware of cross-reference streams. It is almost never desirable to ignore
them. The only time when you might want to use this feature is if you are testing creation of hybrid PDF files and wish
to see how a PDF consumer that doesn't understand object and cross-reference streams would interpret such a file.

Running QPDF

10

The --qdf flag turns on QDF mode, which changes some of the defaults described above. Specifically, in QDF mode,
by default, stream data is uncompressed, content streams are normalized, and encryption is removed. These defaults
can still be overridden by specifying the appropriate options as described above. Additionally, in QDF mode, stream
lengths are stored as indirect objects, objects are laid out in a less efficient but more readable fashion, and the documents
are interspersed with comments that make it easier for the user to find things and also make it possible for fix-qdf to
work properly. QDF mode is intended for people, mostly developers, who wish to inspect or modify PDF files in a
text editor. For details, please see Chapter 4, QDF Mode, page 12.

3.6. Testing, Inspection, and Debugging
Options
These options can be useful for digging into PDF files or for use in automated test suites for software that uses the qpdf
library. When any of the options in this section are specified, no output file should be given. The following options
are available:

--static-id
Causes generation of a fixed value for /ID. This is intended for testing only. Never use it for production files.

--static-aes-iv
Causes use of a static initialization vector for AES-CBC. This is intended for testing only so that output files
can be reproducible. Never use it for production files. This option in particular is not secure since it significantly
weakens the encryption.

--no-original-object-ids
Suppresses inclusion of original object ID comments in QDF files. This can be useful when generating QDF files
for test purposes, particularly when comparing them to determine whether two PDF files have identical content.

--show-encryption
Shows document encryption parameters. Also shows the document's user password if the owner password is given.

--check-linearization
Checks file integrity and linearization status.

--show-linearization
Checks and displays all data in the linearization hint tables.

--show-xref
Shows the contents of the cross-reference table in a human-readable form. This is especially useful for files with
cross-reference streams which are stored in a binary format.

--show-object=obj[,gen]
Show the contents of the given object. This is especially useful for inspecting objects that are inside of object
streams (also known as “compressed objects”).

--raw-stream-data
When used along with the --show-object option, if the object is a stream, shows the raw stream data instead of
object's contents.

--filtered-stream-data
When used along with the --show-object option, if the object is a stream, shows the filtered stream data instead
of object's contents. If the stream is filtered using filters that qpdf does not support, an error will be issued.

--show-npages
Prints the number of pages in the input file on a line by itself. Since the number of pages appears by itself on a
line, this option can be useful for scripting if you need to know the number of pages in a file.

Running QPDF

11

--show-pages
Shows the object and generation number for each page dictionary object and for each content stream associated
with the page. Having this information makes it more convenient to inspect objects from a particular page.

--with-images
When used along with --show-pages, also shows the object and generation numbers for the image objects on each
page. (At present, information about images in shared resource dictionaries are not output by this command. This
is discussed in a comment in the source code.)

--check
Checks file structure and well as encryption, linearization, and encoding of stream data. A file for which --check
reports no errors may still have errors in stream data content but should otherwise be structurally sound. If --check
any errors, qpdf will exit with a status of 2. There are some recoverable conditions that --check detects. These
are issued as warnings instead of errors. If qpdf finds no errors but finds warnings, it will exit with a status of
3 (as of version 2.0.4).

The --raw-stream-data and --filtered-stream-data options are ignored unless --show-object is given. Either of these
options will cause the stream data to be written to standard output. In order to avoid commingling of stream data with
other output, it is recommend that these objects not be combined with other test/inspection options.

If --filtered-stream-data is given and --normalize-content=y is also given, qpdf will attempt to normalize the stream
data as if it is a page content stream. This attempt will be made even if it is not a page content stream, in which case
it will produce unusable results.

12

Chapter 4. QDF Mode
In QDF mode, qpdf creates PDF files in what we call QDF form. A PDF file in QDF form, sometimes called a QDF
file, is a completely valid PDF file that has %QDF-1.0 as its third line (after the pdf header and binary characters)
and has certain other characteristics. The purpose of QDF form is to make it possible to edit PDF files, with some
restrictions, in an ordinary text editor. This can be very useful for experimenting with different PDF constructs or for
making one-off edits to PDF files (though there are other reasons why this may not always work).

It is ordinarily very difficult to edit PDF files in a text editor for two reasons: most meaningful data in PDF files is
compressed, and PDF files are full of offset and length information that makes it hard to add or remove data. A QDF
file is organized in a manner such that, if edits are kept within certain constraints, the fix-qdf program, distributed with
qpdf, is able to restore edited files to a correct state. The fix-qdf program takes no command-line arguments. It reads
a possibly edited QDF file from standard input and writes a repaired file to standard output.

The following attributes characterize a QDF file:

• All objects appear in numerical order in the PDF file, including when objects appear in object streams.

• Objects are printed in an easy-to-read format, and all line endings are normalized to UNIX line endings.

• Unless specifically overridden, streams appear uncompressed (when qpdf supports the filters and they are
compressed with a non-lossy compression scheme), and most content streams are normalized (line endings are
converted to just a UNIX-style linefeeds).

• All streams lengths are represented as indirect objects, and the stream length object is always the next object after
the stream. If the stream data does not end with a newline, an extra newline is inserted, and a special comment
appears after the stream indicating that this has been done.

• If the PDF file contains object streams, if object stream n contains k objects, those objects are numbered from n
+1 through n+k, and the object number/offset pairs appear on a separate line for each object. Additionally, each
object in the object stream is preceded by a comment indicating its object number and index. This makes it very
easy to find objects in object streams.

• All beginnings of objects, stream tokens, endstream tokens, and endobj tokens appear on lines by themselves.
A blank line follows every endobj token.

• If there is a cross-reference stream, it is unfiltered.

• Page dictionaries and page content streams are marked with special comments that make them easy to find.

• Comments precede each object indicating the object number of the corresponding object in the original file.

When editing a QDF file, any edits can be made as long as the above constraints are maintained. This means that you
can freely edit a page's content without worrying about messing up the QDF file. It is also possible to add new objects
so long as those objects are added after the last object in the file or subsequent objects are renumbered. If a QDF file
has object streams in it, you can always add the new objects before the xref stream and then change the number of the
xref stream, since nothing generally ever references it by number.

It is not generally practical to remove objects from QDF files without messing up object numbering, but if you remove
all references to an object, you can run qpdf on the file (after running fix-qdf), and qpdf will omit the now-orphaned
object.

When fix-qdf is run, it goes through the file and recomputes the following parts of the file:

• the /N, /W, and /First keys of all object stream dictionaries

QDF Mode

13

• the pairs of numbers representing object numbers and offsets of objects in object streams

• all stream lengths

• the cross-reference table or cross-reference stream

• the offset to the cross-reference table or cross-reference stream following the startxref token

14

Chapter 5. Using the QPDF Library
The source tree for the qpdf package has an examples directory that contains a few example programs. The qpdf/
qpdf.cc source file also serves as a useful example since it exercises almost all of the qpdf library's public interface.
The best source of documentation on the library itself is reading comments in include/qpdf/QPDF.hh, include/qpdf/
QDFWriter.hh, and include/qpdf/QPDFObjectHandle.hh.

All header files are installed in the include/qpdf directory. It is recommend that you use #include <qpdf/
QPDF.hh> rather than adding include/qpdf to your include path.

When linking against the qpdf static library, you may also need to specify -lpcre -lz on your link command. If
your system understands how to read libtool .la files, this may not be necessary.

The qpdf library is safe to use in a multithreaded program, but no individual QPDF object instance (including QPDF,
QPDFObjectHandle, or QPDFWriter) can be used in more than one thread at a time. Multiple threads may
simultaneously work with different instances of these and all other QPDF objects.

15

Chapter 6. Design and Library Notes

6.1. Introduction
This section was written prior to the implementation of the qpdf package and was subsequently modified to reflect the
implementation. In some cases, for purposes of explanation, it may differ slightly from the actual implementation. As
always, the source code and test suite are authoritative. Even if there are some errors, this document should serve as
a road map to understanding how this code works.

In general, one should adhere strictly to a specification when writing but be liberal in reading. This way, the product
of our software will be accepted by the widest range of other programs, and we will accept the widest range of input
files. This library attempts to conform to that philosophy whenever possible but also aims to provide strict checking
for people who want to validate PDF files. If you don't want to see warnings and are trying to write something
that is tolerant, you can call setSuppressWarnings(true). If you want to fail on the first error, you can call
setAttemptRecovery(false). The default behavior is to generating warnings for recoverable problems. Note
that recovery will not always produce the desired results even if it is able to get through the file. Unlike most other PDF
files that produce generic warnings such as “This file is damaged,”, qpdf generally issues a detailed error message that
would be most useful to a PDF developer. This is by design as there seems to be a shortage of PDF validation tools
out there. (This was, in fact, one of the major motivations behind the initial creation of qpdf.)

6.2. Design Goals
The QPDF package includes support for reading and rewriting PDF files. It aims to hide from the user details involving
object locations, modified (appended) PDF files, the directness/indirectness of objects, and stream filters including
encryption. It does not aim to hide knowledge of the object hierarchy or content stream contents. Put another way, a
user of the qpdf library is expected to have knowledge about how PDF files work, but is not expected to have to keep
track of bookkeeping details such as file positions.

A user of the library never has to care whether an object is direct or indirect. All access to objects deals with this
transparently. All memory management details are also handled by the library.

The PointerHolder object is used internally by the library to deal with memory management. This is basically a
smart pointer object very similar in spirit to the Boost library's shared_ptr object, but predating it by several years.
This library also makes use of a technique for giving fine-grained access to methods in one class to other classes by
using public subclasses with friends and only private members that in turn call private methods of the containing class.
See QPDFObjectHandle::Factory as an example.

The top-level qpdf class is QPDF. A QPDF object represents a PDF file. The library provides methods for both
accessing and mutating PDF files.

QPDFObject is the basic PDF Object class. It is an abstract base class from which are derived classes for each type
of PDF object. Clients do not interact with Objects directly but instead interact with QPDFObjectHandle.

QPDFObjectHandle contains PointerHolder<QPDFObject> and includes accessor methods that are type-safe
proxies to the methods of the derived object classes as well as methods for querying object types. They can be passed
around by value, copied, stored in containers, etc. with very low overhead. Instances of QPDFObjectHandle always
contain a reference back to the QPDF object from which they were created. A QPDFObjectHandle may be direct
or indirect. If indirect, the QPDFObject the PointerHolder initially points to is a null pointer. In this case, the
first attempt to access the underlying QPDFObject will result in the QPDFObject being resolved via a call to the
referenced QPDF instance. This makes it essentially impossible to make coding errors in which certain things will
work for some PDF files and not for others based on which objects are direct and which objects are indirect.

Design and Library Notes

16

Instances of QPDFObjectHandle can be directly created and modified using static factory methods in the
QPDFObjectHandle class. There are factory methods for each type of object as well as a convenience method
QPDFObjectHandle::parse that creates an object from a string representation of the object. Existing instances of
QPDFObjectHandle can also be modified in several ways. See comments in QPDFObjectHandle.hh for details.

When the QPDF class creates a new object, it dynamically allocates the appropriate type of QPDFObject and
immediately hands the pointer to an instance of QPDFObjectHandle. The parser reads a token from the current
file position. If the token is a not either a dictionary or array opener, an object is immediately constructed from
the single token and the parser returns. Otherwise, the parser is invoked recursively in a special mode in which it
accumulates objects until it finds a balancing closer. During this process, the “R” keyword is recognized and an indirect
QPDFObjectHandle may be constructed.

The QPDF::resolve() method, which is used to resolve an indirect object, may be invoked from the
QPDFObjectHandle class. It first checks a cache to see whether this object has already been read. If not, it reads the
object from the PDF file and caches it. It the returns the resulting QPDFObjectHandle. The calling object handle
then replaces its PointerHolder<QDFObject> with the one from the newly returned QPDFObjectHandle. In this
way, only a single copy of any direct object need exist and clients can access objects transparently without knowing
caring whether they are direct or indirect objects. Additionally, no object is ever read from the file more than once. That
means that only the portions of the PDF file that are actually needed are ever read from the input file, thus allowing
the qpdf package to take advantage of this important design goal of PDF files.

If the requested object is inside of an object stream, the object stream itself is first read into memory. Then the tokenizer
reads objects from the memory stream based on the offset information stored in the stream. Those individual objects
are cached, after which the temporary buffer holding the object stream contents are discarded. In this way, the first
time an object in an object stream is requested, all objects in the stream are cached.

An instance of QPDF is constructed by using the class's default constructor. If desired, the QPDF object may be
configured with various methods that change its default behavior. Then the QPDF::processFile() method is passed
the name of a PDF file, which permanently associates the file with that QPDF object. A password may also be given
for access to password-protected files. QPDF does not enforce encryption parameters and will treat user and owner
passwords equivalently. Either password may be used to access an encrypted file. 1 QPDF will allow recovery of a
user password given an owner password. The input PDF file must be seekable. (Output files written by QPDFWriter
need not be seekable, even when creating linearized files.) During construction, QPDF validates the PDF file's header,
and then reads the cross reference tables and trailer dictionaries. The QPDF class keeps only the first trailer dictionary
though it does read all of them so it can check the /Prev key. QPDF class users may request the root object and
the trailer dictionary specifically. The cross reference table is kept private. Objects may then be requested by number
of by walking the object tree.

When a PDF file has a cross-reference stream instead of a cross-reference table and trailer, requesting the document's
trailer dictionary returns the stream dictionary from the cross-reference stream instead.

There are some convenience routines for very common operations such as walking the page tree and returning a vector
of all page objects. For full details, please see the header file QPDF.hh.

The following example should clarify how QPDF processes a simple file.

• Client constructs QPDF pdf and calls pdf.processFile("a.pdf");.

• The QPDF class checks the beginning of a.pdf for %!PDF-1.[0-9]+. It then reads the cross reference table
mentioned at the end of the file, ensuring that it is looking before the last %%EOF. After getting to trailer
keyword, it invokes the parser.

1 As pointed out earlier, the intention is not for qpdf to be used to bypass security on files. but as any open source PDF consumer may be easily
modified to bypass basic PDF document security, and qpdf offers may transformations that can do this as well, there seems to be little point in the
added complexity of conditionally enforcing document security.

Design and Library Notes

17

• The parser sees “<<”, so it calls itself recursively in dictionary creation mode.

• In dictionary creation mode, the parser keeps accumulating objects until it encounters “>>”. Each object that is
read is pushed onto a stack. If “R” is read, the last two objects on the stack are inspected. If they are integers,
they are popped off the stack and their values are used to construct an indirect object handle which is then pushed
onto the stack. When “>>” is finally read, the stack is converted into a QPDF_Dictionary which is placed in a
QPDFObjectHandle and returned.

• The resulting dictionary is saved as the trailer dictionary.

• The /Prev key is searched. If present, QPDF seeks to that point and repeats except that the new trailer dictionary
is not saved. If /Prev is not present, the initial parsing process is complete.

If there is an encryption dictionary, the document's encryption parameters are initialized.

• The client requests root object. The QPDF class gets the value of root key from trailer dictionary and returns it. It
is an unresolved indirect QPDFObjectHandle.

• The client requests the /Pages key from root QPDFObjectHandle. The QPDFObjectHandle notices that it
is indirect so it asks QPDF to resolve it. QPDF looks in the object cache for an object with the root dictionary's
object ID and generation number. Upon not seeing it, it checks the cross reference table, gets the offset, and reads
the object present at that offset. It stores the result in the object cache and returns the cached result. The calling
QPDFObjectHandle replaces its object pointer with the one from the resolved QPDFObjectHandle, verifies
that it a valid dictionary object, and returns the (unresolved indirect) QPDFObject handle to the top of the Pages
hierarchy.

As the client continues to request objects, the same process is followed for each new requested object.

6.3. Casting Policy
This section describes the casting policy followed by qpdf's implementation. This is no concern to qpdf's end users
and largely of no concern to people writing code that uses qpdf, but it could be of interest to people who are porting
qpdf to a new platform or who are making modifications to the code.

The C++ code in qpdf is free of old-style casts except where unavoidable (e.g. where the old-style cast is in a macro
provided by a third-party header file). When there is a need for a cast, it is handled, in order of preference, by rewriting
the code to avoid the need for a cast, calling const_cast, calling static_cast, calling reinterpret_cast, or calling some
combination of the above. As a last resort, a compiler-specific #pragma may be used to suppress a warning that we
don't want to fix. Examples may include suppressing warnings about the use of old-style casts in code that is shared
between C and C++ code.

The casting policy explicitly prohibits casting between integer sizes for no purpose other than to quiet a compiler
warning when there is no reasonable chance of a problem resulting. The reason for this exclusion is that the practice
of adding these additional casts precludes future use of additional compiler warnings as a tool for making future
improvements to this aspect of the code, and it also damages the readability of the code.

There are a few significant areas where casting is common in the qpdf sources or where casting would be required to
quiet higher levels of compiler warnings but is omitted at present:

• char vs. unsigned char. For historical reasons, there are a lot of places in qpdf's internals that deal with
unsigned char, which means that a lot of casting is required to interoperate with standard library calls and
std::string. In retrospect, qpdf should have probably used regular (signed) char and char* everywhere and
just cast to unsigned char when needed, but it's too late to make that change now. There are reinterpret_cast
calls to go between char* and unsigned char*, and there are static_cast calls to go between char and
unsigned char. These should always be safe.

Design and Library Notes

18

• Non-const unsigned char* used in the Pipeline interface. The pipeline interface has a write call that uses
unsigned char* without a const qualifier. The main reason for this is to support pipelines that make calls to
third-party libraries, such as zlib, that don't include const in their interfaces. Unfortunately, there are many places
in the code where it is desirable to have const char* with pipelines. None of the pipeline implementations in
qpdf currently modify the data passed to write, and doing so would be counter to the intent of Pipeline, but there
is nothing in the code to prevent this from being done. There are places in the code where const_cast is used to
remove the const-ness of pointers going into Pipelines. This could theoretically be unsafe, but there is adequate
testing to assert that it is safe and will remain safe in qpdf's code.

• size_t vs. qpdf_offset_t. This is pretty much unavoidable since sizes are unsigned types and offsets are
signed types. Whenever it is necessary to seek by an amount given by a size_t, it becomes necessary to mix and
match between size_t and qpdf_offset_t. Additionally, qpdf sometimes treats memory buffers like files (as
with BufferInputSource, and those seek interfaces have to be consistent with file-based input sources. Neither
gcc nor MSVC give warnings for this case by default, but both have warning flags that can enable this. (MSVC:
/W14267 or /W3, which also enables some additional warnings that we ignore; gcc: -Wconversion -Wsign-
conversion). This could matter for files whose sizes are larger than 263 bytes, but it is reasonable to expect that a
world where such files are common would also have larger size_t and qpdf_offset_t types in it. On most
64-bit systems at the time of this writing (the release of version 4.1.0 of qpdf), both size_t and qpdf_offset_t
are 64-bit integer types, while on many current 32-bit systems, size_t is a 32-bit type while qpdf_offset_t is
a 64-bit type. I am not aware of any cases where 32-bit systems that have size_t smaller than qpdf_offset_t
could run into problems. Although I can't conclusively rule out the possibility of such problems existing, I suspect
any cases would be pretty contrived. In the event that someone should produce a file that qpdf can't handle because
of what is suspected to be issues involving the handling of size_t vs. qpdf_offset_t (such files may behave
properly on 64-bit systems but not on 32-bit systems because they have very large embedded files or streams, for
example), the above mentioned warning flags could be enabled and all those implicit conversions could be carefully
scrutinized. (I have already gone through that exercise once in adding support for files larger than 4 GB in size.) I
continue to be committed to supporting large files on 32-bit systems, but I would not go to any lengths to support
corner cases involving large embedded files or large streams that work on 64-bit systems but not on 32-bit systems
because of size_t being too small. It is reasonable to assume that anyone working with such files would be using
a 64-bit system anyway since many 32-bit applications would have similar difficulties.

• size_t vs. int or long. There are some cases where size_t and int or long or size_t and unsigned
int or unsigned long are used interchangeably. These cases occur when working with very small amounts of
memory, such as with the bit readers (where we're working with just a few bytes at a time), some cases of strlen, and
a few other cases. I have scrutinized all of these cases and determined them to be safe, but there is no mechanism in
the code to ensure that new unsafe conversions between int and size_t aren't introduced short of good testing
and strong awareness of the issues. Again, if any such bugs are suspected in the future, enabling the additional
warning flags and scrutinizing the warnings would be in order.

To be clear, I believe qpdf to be well-behaved with respect to sizes and offsets, and qpdf's test suite includes actual
generation and full processing of files larger than 4 GB in size. The issues raised here are largely academic and should
not in any way be interpreted to mean that qpdf has practical problems involving sloppiness with integer types. I also
believe that appropriate measures have been taken in the code to avoid problems with signed vs. unsigned integers
from resulting in memory overwrites or other issues with potential security implications, though there are never any
absolute guarantees.

6.4. Encryption
Encryption is supported transparently by qpdf. When opening a PDF file, if an encryption dictionary exists, the QPDF
object processes this dictionary using the password (if any) provided. The primary decryption key is computed and
cached. No further access is made to the encryption dictionary after that time. When an object is read from a file, the
object ID and generation of the object in which it is contained is always known. Using this information along with
the stored encryption key, all stream and string objects are transparently decrypted. Raw encrypted objects are never
stored in memory. This way, nothing in the library ever has to know or care whether it is reading an encrypted file.

Design and Library Notes

19

An interface is also provided for writing encrypted streams and strings given an encryption key. This is used by
QPDFWriter when it rewrites encrypted files.

When copying encrypted files, unless otherwise directed, qpdf will preserve any encryption in force in the original
file. qpdf can do this with either the user or the owner password. There is no difference in capability based on which
password is used. When 40 or 128 bit encryption keys are used, the user password can be recovered with the owner
password. With 256 keys, the user and owner passwords are used independently to encrypt the actual encryption key,
so while either can be used, the owner password can no longer be used to recover the user password.

Starting with version 4.0.0, qpdf can read files that are not encrypted but that contain encrypted attachments, but it
cannot write such files. qpdf also requires the password to be specified in order to open the file, not just to extract
attachments, since once the file is open, all decryption is handled transparently. When copying files like this while
preserving encryption, qpdf will apply the file's encryption to everything in the file, not just to the attachments. When
decrypting the file, qpdf will decrypt the attachments. In general, when copying PDF files with multiple encryption
formats, qpdf will choose the newest format. The only exception to this is that clear-text metadata will be preserved
as clear-text if it is that way in the original file.

6.5. Random Number Generation
QPDF generates random numbers to support generation of encrypted data. Versions prior to 5.0.1 used random or rand
from stdlib to generate random numbers. Version 5.0.1, if available, used operating system-provided secure random
number generation instead, enabling use of stdlib random number generation only if enabled by a compile-time option.
Starting in version 5.1.0, use of insecure random numbers was disabled unless enabled at compile time. Starting in
version 5.1.0, it is also possible for you to disable use of OS-provided secure random numbers. This is especially
useful on Windows if you want to avoid a dependency on Microsoft's cryptography API. In this case, you must provide
your own random data provider. Regardless of how you compile qpdf, starting in version 5.1.0, it is possible for you
to provide your own random data provider at runtime. This would enable you to use some software-based secure
pseudorandom number generator and to avoid use of whatever the operating system provides. For details on how to
do this, please refer to the top-level README file in the source distribution and to comments in QUtil.hh.

6.6. Adding and Removing Pages
While qpdf's API has supported adding and modifying objects for some time, version 3.0 introduces specific methods
for adding and removing pages. These are largely convenience routines that handle two tricky issues: pushing
inheritable resources from the /Pages tree down to individual pages and manipulation of the /Pages tree itself. For
details, see addPage and surrounding methods in QPDF.hh.

6.7. Reserving Object Numbers
Version 3.0 of qpdf introduced the concept of reserved objects. These are seldom needed for ordinary operations, but
there are cases in which you may want to add a series of indirect objects with references to each other to a QPDF object.
This causes a problem because you can't determine the object ID that a new indirect object will have until you add it to
the QPDF object with QPDF::makeIndirectObject. The only way to add two mutually referential objects to a QPDF
object prior to version 3.0 would be to add the new objects first and then make them refer to each other after adding
them. Now it is possible to create a reserved object using QPDFObjectHandle::newReserved. This is an indirect object
that stays “unresolved” even if it is queried for its type. So now, if you want to create a set of mutually referential
objects, you can create reservations for each one of them and use those reservations to construct the references. When
finished, you can call QPDF::replaceReserved to replace the reserved objects with the real ones. This functionality
will never be needed by most applications, but it is used internally by QPDF when copying objects from other PDF
files, as discussed in Section 6.8, “Copying Objects From Other PDF Files”, page 20. For an example of how to
use reserved objects, search for newReserved in test_driver.cc in qpdf's sources.

Design and Library Notes

20

6.8. Copying Objects From Other PDF Files
Version 3.0 of qpdf introduced the ability to copy objects into a QPDF object from a different QPDF object, which
we refer to as foreign objects. This allows arbitrary merging of PDF files. The qpdf command-line tool provides
limited support for basic page selection, including merging in pages from other files, but the library's API makes
it possible to implement arbitrarily complex merging operations. The main method for copying foreign objects is
QPDF::copyForeignObject. This takes an indirect object from another QPDF and copies it recursively into this object
while preserving all object structure, including circular references. This means you can add a direct object that you
create from scratch to a QPDF object with QPDF::makeIndirectObject, and you can add an indirect object from
another file with QPDF::copyForeignObject. The fact that QPDF::makeIndirectObject does not automatically detect
a foreign object and copy it is an explicit design decision. Copying a foreign object seems like a sufficiently significant
thing to do that it should be done explicitly.

The other way to copy foreign objects is by passing a page from one QPDF to another by calling QPDF::addPage.
In contrast to QPDF::makeIndirectObject, this method automatically distinguishes between indirect objects in the
current file, foreign objects, and direct objects.

6.9. Writing PDF Files
The qpdf library supports file writing of QPDF objects to PDF files through the QPDFWriter class. The
QPDFWriter class has two writing modes: one for non-linearized files, and one for linearized files. See Chapter 7,
Linearization, page 22 for a description of linearization is implemented. This section describes how we write non-
linearized files including the creation of QDF files (see Chapter 4, QDF Mode, page 12.

This outline was written prior to implementation and is not exactly accurate, but it provides a correct “notional” idea
of how writing works. Look at the code in QPDFWriter for exact details.

• Initialize state:

• next object number = 1

• object queue = empty

• renumber table: old object id/generation to new id/0 = empty

• xref table: new id -> offset = empty

• Create a QPDF object from a file.

• Write header for new PDF file.

• Request the trailer dictionary.

• For each value that is an indirect object, grab the next object number (via an operation that returns and increments
the number). Map object to new number in renumber table. Push object onto queue.

• While there are more objects on the queue:

• Pop queue.

• Look up object's new number n in the renumbering table.

• Store current offset into xref table.

• Write n 0 obj.

Design and Library Notes

21

• If object is null, whether direct or indirect, write out null, thus eliminating unresolvable indirect object references.

• If the object is a stream stream, write stream contents, piped through any filters as required, to a memory buffer.
Use this buffer to determine the stream length.

• If object is not a stream, array, or dictionary, write out its contents.

• If object is an array or dictionary (including stream), traverse its elements (for array) or values (for dictionaries),
handling recursive dictionaries and arrays, looking for indirect objects. When an indirect object is found, if it is
not resolvable, ignore. (This case is handled when writing it out.) Otherwise, look it up in the renumbering table.
If not found, grab the next available object number, assign to the referenced object in the renumbering table, and
push the referenced object onto the queue. As a special case, when writing out a stream dictionary, replace length,
filters, and decode parameters as required.

Write out dictionary or array, replacing any unresolvable indirect object references with null (pdf spec says
reference to non-existent object is legal and resolves to null) and any resolvable ones with references to the
renumbered objects.

• If the object is a stream, write stream\n, the stream contents (from the memory buffer), and \nendstream\n.

• When done, write endobj.

Once we have finished the queue, all referenced objects will have been written out and all deleted objects or
unreferenced objects will have been skipped. The new cross-reference table will contain an offset for every new object
number from 1 up to the number of objects written. This can be used to write out a new xref table. Finally we can
write out the trailer dictionary with appropriately computed /ID (see spec, 8.3, File Identifiers), the cross reference
table offset, and %%EOF.

6.10. Filtered Streams
Support for streams is implemented through the Pipeline interface which was designed for this package.

When reading streams, create a series of Pipeline objects. The Pipeline abstract base requires implementation write()
and finish() and provides an implementation of getNext(). Each pipeline object, upon receiving data, does whatever it
is going to do and then writes the data (possibly modified) to its successor. Alternatively, a pipeline may be an end-
of-the-line pipeline that does something like store its output to a file or a memory buffer ignoring a successor. For
additional details, look at Pipeline.hh.

QPDF can read raw or filtered streams. When reading a filtered stream, the QPDF class creates a Pipeline object for
one of each appropriate filter object and chains them together. The last filter should write to whatever type of output
is required. The QPDF class has an interface to write raw or filtered stream contents to a given pipeline.

22

Chapter 7. Linearization
This chapter describes how QPDF and QPDFWriter implement creation and processing of linearized PDFS.

7.1. Basic Strategy for Linearization
To avoid the incestuous problem of having the qpdf library validate its own linearized files, we have a special linearized
file checking mode which can be invoked via qpdf --check-linearization (or qpdf --check). This mode reads the
linearization parameter dictionary and the hint streams and validates that object ordering, parameters, and hint stream
contents are correct. The validation code was first tested against linearized files created by external tools (Acrobat and
pdlin) and then used to validate files created by QPDFWriter itself.

7.2. Preparing For Linearization
Before creating a linearized PDF file from any other PDF file, the PDF file must be altered such that all page attributes
are propagated down to the page level (and not inherited from parents in the /Pages tree). We also have to know
which objects refer to which other objects, being concerned with page boundaries and a few other cases. We refer to
this part of preparing the PDF file as optimization, discussed in Section 7.3, “Optimization”, page 22. Note the, in
this context, the term optimization is a qpdf term, and the term linearization is a term from the PDF specification. Do
not be confused by the fact that many applications refer to linearization as optimization or web optimization.

When creating linearized PDF files from optimized PDF files, there are really only a few issues that need to be dealt
with:

• Creation of hints tables

• Placing objects in the correct order

• Filling in offsets and byte sizes

7.3. Optimization
In order to perform various operations such as linearization and splitting files into pages, it is necessary to know which
objects are referenced by which pages, page thumbnails, and root and trailer dictionary keys. It is also necessary to
ensure that all page-level attributes appear directly at the page level and are not inherited from parents in the pages tree.

We refer to the process of enforcing these constraints as optimization. As mentioned above, note that some applications
refer to linearization as optimization. Although this optimization was initially motivated by the need to create linearized
files, we are using these terms separately.

PDF file optimization is implemented in the QPDF_optimization.cc source file. That file is richly commented and
serves as the primary reference for the optimization process.

After optimization has been completed, the private member variables obj_user_to_objects and object_to_obj_users in
QPDF have been populated. Any object that has more than one value in the object_to_obj_users table is shared. Any
object that has exactly one value in the object_to_obj_users table is private. To find all the private objects in a page or
a trailer or root dictionary key, one merely has make this determination for each element in the obj_user_to_objects
table for the given page or key.

Note that pages and thumbnails have different object user types, so the above test on a page will not include objects
referenced by the page's thumbnail dictionary and nothing else.

Linearization

23

7.4. Writing Linearized Files
We will create files with only primary hint streams. We will never write overflow hint streams. (As of PDF version 1.4,
Acrobat doesn't either, and they are never necessary.) The hint streams contain offset information to objects that point
to where they would be if the hint stream were not present. This means that we have to calculate all object positions
before we can generate and write the hint table. This means that we have to generate the file in two passes. To make
this reliable, QPDFWriter in linearization mode invokes exactly the same code twice to write the file to a pipeline.

In the first pass, the target pipeline is a count pipeline chained to a discard pipeline. The count pipeline simply passes
its data through to the next pipeline in the chain but can return the number of bytes passed through it at any intermediate
point. The discard pipeline is an end of line pipeline that just throws its data away. The hint stream is not written and
dummy values with adequate padding are stored in the first cross reference table, linearization parameter dictionary,
and /Prev key of the first trailer dictionary. All the offset, length, object renumbering information, and anything else
we need for the second pass is stored.

At the end of the first pass, this information is passed to the QPDF class which constructs a compressed hint stream
in a memory buffer and returns it. QPDFWriter uses this information to write a complete hint stream object into a
memory buffer. At this point, the length of the hint stream is known.

In the second pass, the end of the pipeline chain is a regular file instead of a discard pipeline, and we have known values
for all the offsets and lengths that we didn't have in the first pass. We have to adjust offsets that appear after the start of
the hint stream by the length of the hint stream, which is known. Anything that is of variable length is padded, with the
padding code surrounding any writing code that differs in the two passes. This ensures that changes to the way things
are represented never results in offsets that were gathered during the first pass becoming incorrect for the second pass.

Using this strategy, we can write linearized files to a non-seekable output stream with only a single pass to disk or
wherever the output is going.

7.5. Calculating Linearization Data
Once a file is optimized, we have information about which objects access which other objects. We can then process
these tables to decide which part (as described in “Linearized PDF Document Structure” in the PDF specification)
each object is contained within. This tells us the exact order in which objects are written. The QPDFWriter class
asks for this information and enqueues objects for writing in the proper order. It also turns on a check that causes an
exception to be thrown if an object is encountered that has not already been queued. (This could happen only if there
were a bug in the traversal code used to calculate the linearization data.)

7.6. Known Issues with Linearization
There are a handful of known issues with this linearization code. These issues do not appear to impact the behavior of
linearized files which still work as intended: it is possible for a web browser to begin to display them before they are
fully downloaded. In fact, it seems that various other programs that create linearized files have many of these same
issues. These items make reference to terminology used in the linearization appendix of the PDF specification.

• Thread Dictionary information keys appear in part 4 with the rest of Threads instead of in part 9. Objects in part
9 are not grouped together functionally.

• We are not calculating numerators for shared object positions within content streams or interleaving them within
content streams.

• We generate only page offset, shared object, and outline hint tables. It would be relatively easy to add some additional
tables. We gather most of the information needed to create thumbnail hint tables. There are comments in the code
about this.

Linearization

24

7.7. Debugging Note
The qpdf --show-linearization command can show the complete contents of linearization hint streams. To look at the
raw data, you can extract the filtered contents of the linearization hint tables using qpdf --show-object=n --filtered-
stream-data. Then, to convert this into a bit stream (since linearization tables are bit streams written without regard
to byte boundaries), you can pipe the resulting data through the following perl code:

use bytes;
binmode STDIN;
undef $/;
my $a = <STDIN>;
my @ch = split(//, $a);
map { printf("%08b", ord($_)) } @ch;
print "\n";

25

Chapter 8. Object and Cross-Reference
Streams
This chapter provides information about the implementation of object stream and cross-reference stream support in
qpdf.

8.1. Object Streams
Object streams can contain any regular object except the following:

• stream objects

• objects with generation > 0

• the encryption dictionary

• objects containing the /Length of another stream

In addition, Adobe reader (at least as of version 8.0.0) appears to not be able to handle having the document catalog
appear in an object stream if the file is encrypted, though this is not specifically disallowed by the specification.

There are additional restrictions for linearized files. See Section 8.3, “Implications for Linearized Files”, page 26for
details.

The PDF specification refers to objects in object streams as “compressed objects” regardless of whether the object
stream is compressed.

The generation number of every object in an object stream must be zero. It is possible to delete and replace an object
in an object stream with a regular object.

The object stream dictionary has the following keys:

• /N: number of objects

• /First: byte offset of first object

• /Extends: indirect reference to stream that this extends

Stream collections are formed with /Extends. They must form a directed acyclic graph. These can be used for
semantic information and are not meaningful to the PDF document's syntactic structure. Although qpdf preserves
stream collections, it never generates them and doesn't make use of this information in any way.

The specification recommends limiting the number of objects in object stream for efficiency in reading and decoding.
Acrobat 6 uses no more than 100 objects per object stream for linearized files and no more 200 objects per stream for
non-linearized files. QPDFWriter, in object stream generation mode, never puts more than 100 objects in an object
stream.

Object stream contents consists of N pairs of integers, each of which is the object number and the byte offset of the
object relative to the first object in the stream, followed by the objects themselves, concatenated.

8.2. Cross-Reference Streams
For non-hybrid files, the value following startxref is the byte offset to the xref stream rather than the word xref.

Object and Cross-Reference Streams

26

For hybrid files (files containing both xref tables and cross-reference streams), the xref table's trailer dictionary contains
the key /XRefStm whose value is the byte offset to a cross-reference stream that supplements the xref table. A
PDF 1.5-compliant application should read the xref table first. Then it should replace any object that it has already
seen with any defined in the xref stream. Then it should follow any /Prev pointer in the original xref table's trailer
dictionary. The specification is not clear about what should be done, if anything, with a /Prev pointer in the xref
stream referenced by an xref table. The QPDF class ignores it, which is probably reasonable since, if this case were
to appear for any sensible PDF file, the previous xref table would probably have a corresponding /XRefStm pointer
of its own. For example, if a hybrid file were appended, the appended section would have its own xref table and /
XRefStm. The appended xref table would point to the previous xref table which would point the /XRefStm, meaning
that the new /XRefStm doesn't have to point to it.

Since xref streams must be read very early, they may not be encrypted, and the may not contain indirect objects for
keys required to read them, which are these:

• /Type: value /XRef

• /Size: value n+1: where n is highest object number (same as /Size in the trailer dictionary)

• /Index (optional): value [n count ...] used to determine which objects' information is stored in this stream.
The default is [0 /Size].

• /Prev: value offset: byte offset of previous xref stream (same as /Prev in the trailer dictionary)

• /W [...]: sizes of each field in the xref table

The other fields in the xref stream, which may be indirect if desired, are the union of those from the xref table's trailer
dictionary.

8.2.1. Cross-Reference Stream Data
The stream data is binary and encoded in big-endian byte order. Entries are concatenated, and each entry has a length
equal to the total of the entries in /W above. Each entry consists of one or more fields, the first of which is the type of
the field. The number of bytes for each field is given by /W above. A 0 in /W indicates that the field is omitted and
has the default value. The default value for the field type is “1”. All other default values are “0”.

PDF 1.5 has three field types:

• 0: for free objects. Format: 0 obj next-generation, same as the free table in a traditional cross-reference table

• 1: regular non-compressed object. Format: 1 offset generation

• 2: for objects in object streams. Format: 2 object-stream-number index, the number of object stream
containing the object and the index within the object stream of the object.

It seems standard to have the first entry in the table be 0 0 0 instead of 0 0 ffff if there are no deleted objects.

8.3. Implications for Linearized Files
For linearized files, the linearization dictionary, document catalog, and page objects may not be contained in object
streams.

Objects stored within object streams are given the highest range of object numbers within the main and first-page
cross-reference sections.

It is okay to use cross-reference streams in place of regular xref tables. There are on special considerations.

Object and Cross-Reference Streams

27

Hint data refers to object streams themselves, not the objects in the streams. Shared object references should also be
made to the object streams. There are no reference in any hint tables to the object numbers of compressed objects
(objects within object streams).

When numbering objects, all shared objects within both the first and second halves of the linearized files must be
numbered consecutively after all normal uncompressed objects in that half.

8.4. Implementation Notes
There are three modes for writing object streams: disable, preserve, and generate. In disable mode, we do not generate
any object streams, and we also generate an xref table rather than xref streams. This can be used to generate PDF
files that are viewable with older readers. In preserve mode, we write object streams such that written object streams
contain the same objects and /Extends relationships as in the original file. This is equal to disable if the file has no
object streams. In generate, we create object streams ourselves by grouping objects that are allowed in object streams
together in sets of no more than 100 objects. We also ensure that the PDF version is at least 1.5 in generate mode, but
we preserve the version header in the other modes. The default is preserve.

We do not support creation of hybrid files. When we write files, even in preserve mode, we will lose any xref tables
and merge any appended sections.

28

Appendix A. Release Notes
For a detailed list of changes, please see the file ChangeLog in the source distribution.

5.1.3: May 24, 2015

• Bug fix: fix-qdf was not properly handling files that contained object streams with more than 255 objects in
them.

• Bug fix: qpdf was not properly initializing Microsoft's secure crypto provider on fresh Windows installations
that had not had any keys created yet.

• Fix a few errors found by Gynvael Coldwind and Mateusz Jurczyk of the Google Security Team. Please see
the ChangeLog for details.

• Properly handle pages that have no contents at all. There were many cases in which qpdf handled this fine, but
a few methods blindly obtained page contents with handling the possibility that there were no contents.

• Make qpdf more robust for a few more kinds of problems that may occur in invalid PDF files.

5.1.2: June 7, 2014

• Bug fix: linearizing files could create a corrupted output file under extremely unlikely file size circumstances.
See ChangeLog for details. The odds of getting hit by this are very low, though one person did.

• Bug fix: qpdf would fail to write files that had streams with decode parameters referencing other streams.

• New example program: pdf-split-pages: efficiently split PDF files into individual pages. The example program
does this more efficiently than using qpdf --pages to do it.

• Packaging fix: Visual C++ binaries did not support Windows XP. This has been rectified by updating the
compilers used to generate the release binaries.

5.1.1: January 14, 2014

• Performance fix: copying foreign objects could be very slow with certain types of files. This was most likely
to be visible during page splitting and was due to traversing the same objects multiple times in some cases.

5.1.0: December 17, 2013

• Added runtime option (QUtil::setRandomDataProvider) to supply your own random data provider. You can
use this if you want to avoid using the OS-provided secure random number generation facility or stdlib's less
secure version. See comments in include/qpdf/QUtil.hh for details.

• Fixed image comparison tests to not create 12-bit-per-pixel images since some versions of tiffcmp have bugs
in comparing them in some cases. This increases the disk space required by the image comparison tests, which
are off by default anyway.

• Introduce a number of small fixes for compilation on the latest clang in MacOS and the latest Visual C++ in
Windows.

• Be able to handle broken files that end the xref table header with a space instead of a newline.

5.0.1: October 18, 2013

• Thanks to a detailed review by Florian Weimer and the Red Hat Product Security Team, this release includes a
number of non-user-visible security hardening changes. Please see the ChangeLog file in the source distribution
for the complete list.

Release Notes

29

• When available, operating system-specific secure random number generation is used for generating
initialization vectors and other random values used during encryption or file creation. For the Windows build,
this results in an added dependency on Microsoft's cryptography API. To disable the OS-specific cryptography
and use the old version, pass the --enable-insecure-random option to ./configure.

• The qpdf command-line tool now issues a warning when -accessibility=n is specified for newer encryption
versions stating that the option is ignored. qpdf, per the spec, has always ignored this flag, but it previously
did so silently. This warning is issued only by the command-line tool, not by the library. The library's handling
of this flag is unchanged.

5.0.0: July 10, 2013

• Bug fix: previous versions of qpdf would lose objects with generation != 0 when generating object streams.
Fixing this required changes to the public API.

• Removed methods from public API that were only supposed to be called by QPDFWriter and couldn't
realistically be called anywhere else. See ChangeLog for details.

• New QPDFObjGen class added to represent an object ID/generation pair. QPDFObjectHandle::getObjGen() is
now preferred over QPDFObjectHandle::getObjectID() and QPDFObjectHandle::getGeneration() as it makes
it less likely for people to accidentally write code that ignores the generation number. See QPDF.hh and
QPDFObjectHandle.hh for additional notes.

• Add --show-npages command-line option to the qpdf command to show the number of pages in a file.

• Allow omission of the page range within --pages for the qpdf command. When omitted, the page range is
implicitly taken to be all the pages in the file.

• Various enhancements were made to support different types of broken files or broken readers. Details can be
found in ChangeLog.

4.1.0: April 14, 2013

• Note to people including qpdf in distributions: the .la files generated by libtool are now installed by qpdf's make
install target. Before, they were not installed. This means that if your distribution does not want to include .la
files, you must remove them as part of your packaging process.

• Major enhancement: API enhancements have been made to support parsing of content streams. This
enhancement includes the following changes:

• QPDFObjectHandle::parseContentStream method parses objects in a content stream and calls handlers in a
callback class. The example examples/pdf-parse-content.cc illustrates how this may be used.

• QPDFObjectHandle can now represent operators and inline images, object types that may only appear
in content streams.

• Method QPDFObjectHandle::getTypeCode() returns an enumerated type value representing the underlying
object type. Method QPDFObjectHandle::getTypeName() returns a text string describing the name of
the type of a QPDFObjectHandle object. These methods can be used for more efficient parsing and
debugging/diagnostic messages.

• qpdf --check now parses all pages' content streams in addition to doing other checks. While there are still many
types of errors that cannot be detected, syntactic errors in content streams will now be reported.

• Minor compilation enhancements have been made to facilitate easier for support for a broader range of compilers
and compiler versions.

Release Notes

30

• Warning flags have been moved into a separate variable in autoconf.mk

• The configure flag --enable-werror work for Microsoft compilers

• All MSVC CRT security warnings have been resolved.

• All C-style casts in C++ Code have been replaced by C++ casts, and many casts that had been included
to suppress higher warning levels for some compilers have been removed, primarily for clarity. Places
where integer type coercion occurs have been scrutinized. A new casting policy has been documented in the
manual. This is of concern mainly to people porting qpdf to new platforms or compilers. It is not visible to
programmers writing code that uses the library

• Some internal limits have been removed in code that converts numbers to strings. This is largely invisible to
users, but it does trigger a bug in some older versions of mingw-w64's C++ library. See README-windows.txt
in the source distribution if you think this may affect you. The copy of the DLL distributed with qpdf's binary
distribution is not affected by this problem.

• The RPM spec file previously included with qpdf has been removed. This is because virtually all Linux
distributions include qpdf now that it is a dependency of CUPS filters.

• A few bug fixes are included:

• Overridden compressed objects are properly handled. Before, there were certain constructs that could cause
qpdf to see old versions of some objects. The most usual manifestation of this was loss of filled in form
values for certain files.

• Installation no longer uses GNU/Linux-specific versions of some commands, so make install works on
Solaris with native tools.

• The 64-bit mingw Windows binary package no longer includes a 32-bit DLL.

4.0.1: January 17, 2013

• Fix detection of binary attachments in test suite to avoid false test failures on some platforms.

• Add clarifying comment in QPDF.hh to methods that return the user password explaining that it is no longer
possible with newer encryption formats to recover the user password knowing the owner password. In earlier
encryption formats, the user password was encrypted in the file using the owner password. In newer encryption
formats, a separate encryption key is used on the file, and that key is independently encrypted using both the
user password and the owner password.

4.0.0: December 31, 2012

• Major enhancement: support has been added for newer encryption schemes supported by version X of Adobe
Acrobat. This includes use of 127-character passwords, 256-bit encryption keys, and the encryption scheme
specified in ISO 32000-2, the PDF 2.0 specification. This scheme can be chosen from the command line by
specifying use of 256-bit keys. qpdf also supports the deprecated encryption method used by Acrobat IX. This
encryption style has known security weaknesses and should not be used in practice. However, such files exist “in
the wild,” so support for this scheme is still useful. New methods QPDFWriter::setR6EncryptionParameters
(for the PDF 2.0 scheme) and QPDFWriter::setR5EncryptionParameters (for the deprecated scheme) have
been added to enable these new encryption schemes. Corresponding functions have been added to the C API
as well.

• Full support for Adobe extension levels in PDF version information. Starting with PDF version 1.7,
corresponding to ISO 32000, Adobe adds new functionality by increasing the extension level rather

Release Notes

31

than increasing the version. This support includes addition of the QPDF::getExtensionLevel method for
retrieving the document's extension level, addition of versions of QPDFWriter::setMinimumPDFVersion
and QPDFWriter::forcePDFVersion that accept an extension level, and extended syntax for specifying
forced and minimum versions on the command line as described in Section 3.5, “Advanced Transformation
Options”, page 8. Corresponding functions have been added to the C API as well.

• Minor fixes to prevent qpdf from referencing objects in the file that are not referenced in the file's overall
structure. Most files don't have any such objects, but some files have contain unreferenced objects with errors,
so these fixes prevent qpdf from needlessly rejecting or complaining about such objects.

• Add new generalized methods for reading and writing files from/to programmer-defined sources. The
method QPDF::processInputSource allows the programmer to use any input source for the input file, and
QPDFWriter::setOutputPipeline allows the programmer to write the output file through any pipeline. These
methods would make it possible to perform any number of specialized operations, such as accessing external
storage systems, creating bindings for qpdf in other programming languages that have their own I/O systems,
etc.

• Add new method QPDF::getEncryptionKey for retrieving the underlying encryption key used in the file.

• This release includes a small handful of non-compatible API changes. While effort is made to avoid such
changes, all the non-compatible API changes in this version were to parts of the API that would likely never
be used outside the library itself. In all cases, the altered methods or structures were parts of the QPDF that
were public to enable them to be called from either QPDFWriter or were part of validation code that was over-
zealous in reporting problems in parts of the file that would not ordinarily be referenced. In no case did any of
the removed methods do anything worse that falsely report error conditions in files that were broken in ways
that didn't matter. The following public parts of the QPDF class were changed in a non-compatible way:

• Updated nested QPDF::EncryptionData class to add fields needed by the newer encryption formats,
member variables changed to private so that future changes will not require breaking backward compatibility.

• Added additional parameters to compute_data_key, which is used by QPDFWriter to compute the
encryption key used to encrypt a specific object.

• Removed the method flattenScalarReferences. This method was previously used prior to writing a new PDF
file, but it has the undesired side effect of causing qpdf to read objects in the file that were not referenced.
Some otherwise files have unreferenced objects with errors in them, so this could cause qpdf to reject files
that would be accepted by virtually all other PDF readers. In fact, qpdf relied on only a very small part of
what flattenScalarReferences did, so only this part has been preserved, and it is now done directly inside
QPDFWriter.

• Removed the method decodeStreams. This method was used by the --check option of the qpdf command-line
tool to force all streams in the file to be decoded, but it also suffered from the problem of opening otherwise
unreferenced streams and thus could report false positive. The --check option now causes qpdf to go through
all the motions of writing a new file based on the original one, so it will always reference and check exactly
those parts of a file that any ordinary viewer would check.

• Removed the method trimTrailerForWrite. This method was used by QPDFWriter to modify the original
QPDF object by removing fields from the trailer dictionary that wouldn't apply to the newly written file.
This functionality, though generally harmless, was a poor implementation and has been replaced by having
QPDFWriter filter these out when copying the trailer rather than modifying the original QPDF object. (Note
that qpdf never modifies the original file itself.)

• Allow the PDF header to appear anywhere in the first 1024 bytes of the file. This is consistent with what other
readers do.

• Fix the pkg-config files to list zlib and pcre in Requires.private to better support static linking using pkg-config.

Release Notes

32

3.0.2: September 6, 2012

• Bug fix: QPDFWriter::setOutputMemory did not work when not used with QPDFWriter::setStaticID, which
made it pretty much useless. This has been fixed.

• New API call QPDFWriter::setExtraHeaderText inserts additional text near the header of the PDF file. The
intended use case is to insert comments that may be consumed by a downstream application, though other use
cases may exist.

3.0.1: August 11, 2012

• Version 3.0.0 included addition of files for pkg-config, but this was not mentioned in the release notes. The
release notes for 3.0.0 were updated to mention this.

• Bug fix: if an object stream ended with a scalar object not followed by space, qpdf would incorrectly report that
it encountered a premature EOF. This bug has been in qpdf since version 2.0.

3.0.0: August 2, 2012

• Acknowledgment: I would like to express gratitude for the contributions of Tobias Hoffmann toward the release
of qpdf version 3.0. He is responsible for most of the implementation and design of the new API for manipulating
pages, and contributed code and ideas for many of the improvements made in version 3.0. Without his work,
this release would certainly not have happened as soon as it did, if at all.

• Non-compatible API change: The version of QPDFObjectHandle::replaceStreamData that uses a
StreamDataProvider no longer requires (or accepts) a length parameter. See Appendix C, Upgrading to
3.0, page 38 for an explanation. While care is taken to avoid non-compatible API changes in general, an
exception was made this time because the new interface offers an opportunity to significantly simplify calling
code.

• Support has been added for large files. The test suite verifies support for files larger than 4 gigabytes, and
manual testing has verified support for files larger than 10 gigabytes. Large file support is available for both
32-bit and 64-bit platforms as long as the compiler and underlying platforms support it.

• Support for page selection (splitting and merging PDF files) has been added to the qpdf command-line tool.
See Section 3.4, “Page Selection Options”, page 6.

• Options have been added to the qpdf command-line tool for copying encryption parameters from another file.
See Section 3.2, “Basic Options”, page 4.

• New methods have been added to the QPDF object for adding and removing pages. See Section 6.6, “Adding
and Removing Pages”, page 19.

• New methods have been added to the QPDF object for copying objects from other PDF files. See Section 6.8,
“Copying Objects From Other PDF Files”, page 20

• A new method QPDFObjectHandle::parse has been added for constructing QPDFObjectHandle objects
from a string description.

• Methods have been added to QPDFWriter to allow writing to an already open stdio FILE* addition to writing
to standard output or a named file. Methods have been added to QPDF to be able to process a file from an
already open stdio FILE*. This makes it possible to read and write PDF from secure temporary files that have
been unlinked prior to being fully read or written.

• The QPDF::emptyPDF can be used to allow creation of PDF files from scratch. The example examples/pdf-
create.cc illustrates how it can be used.

Release Notes

33

• Several methods to take PointerHolder<Buffer> can now also accept std::string arguments.

• Many new convenience methods have been added to the library, most in QPDFObjectHandle. See
ChangeLog for a full list.

• When building on a platform that supports ELF shared libraries (such as Linux), symbol versions are enabled
by default. They can be disabled by passing --disable-ld-version-script to ./configure.

• The file libqpdf.pc is now installed to support pkg-config.

• Image comparison tests are off by default now since they are not needed to verify a correct build or port of
qpdf. They are needed only when changing the actual PDF output generated by qpdf. You should enable them
if you are making deep changes to qpdf itself. See README for details.

• Large file tests are off by default but can be turned on with ./configure or by setting an environment variable
before running the test suite. See README for details.

• When qpdf's test suite fails, failures are not printed to the terminal anymore by default. Instead, find them in
build/qtest.log. For packagers who are building with an autobuilder, you can add the --enable-show-failed-
test-output option to ./configure to restore the old behavior.

2.3.1: December 28, 2011

• Fix thread-safety problem resulting from non-thread-safe use of the PCRE library.

• Made a few minor documentation fixes.

• Add workaround for a bug that appears in some versions of ghostscript to the test suite

• Fix minor build issue for Visual C++ 2010.

2.3.0: August 11, 2011

• Bug fix: when preserving existing encryption on encrypted files with cleartext metadata, older qpdf versions
would generate password-protected files with no valid password. This operation now works. This bug only
affected files created by copying existing encryption parameters; explicit encryption with specification of
cleartext metadata worked before and continues to work.

• Enhance QPDFWriter with a new constructor that allows you to delay the specification of the output file.
When using this constructor, you may now call QPDFWriter::setOutputFilename to specify the output file,
or you may use QPDFWriter::setOutputMemory to cause QPDFWriter to write the resulting PDF file to a
memory buffer. You may then use QPDFWriter::getBuffer to retrieve the memory buffer.

• Add new API call QPDF::replaceObject for replacing objects by object ID

• Add new API call QPDF::swapObjects for swapping two objects by object ID

• Add QPDFObjectHandle::getDictAsMap and QPDFObjectHandle::getArrayAsVector to allow retrieval of
dictionary objects as maps and array objects as vectors.

• Add functions qpdf_get_info_key and qpdf_set_info_key to the C API for manipulating string fields of the
document's /Info dictionary.

• Add functions qpdf_init_write_memory, qpdf_get_buffer_length, and qpdf_get_buffer to the C API for writing
PDF files to a memory buffer instead of a file.

2.2.4: June 25, 2011

• Fix installation and compilation issues; no functionality changes.

Release Notes

34

2.2.3: April 30, 2011

• Handle some damaged streams with incorrect characters following the stream keyword.

• Improve handling of inline images when normalizing content streams.

• Enhance error recovery to properly handle files that use object 0 as a regular object, which is specifically
disallowed by the spec.

2.2.2: October 4, 2010

• Add new function qpdf_read_memory to the C API to call QPDF::processMemoryFile. This was an omission
in qpdf 2.2.1.

2.2.1: October 1, 2010

• Add new method QPDF::setOutputStreams to replace std::cout and std::cerr with other streams for generation
of diagnostic messages and error messages. This can be useful for GUIs or other applications that want to
capture any output generated by the library to present to the user in some other way. Note that QPDF does
not write to std::cout (or the specified output stream) except where explicitly mentioned in QPDF.hh, and
that the only use of the error stream is for warnings. Note also that output of warnings is suppressed when
setSuppressWarnings(true) is called.

• Add new method QPDF::processMemoryFile for operating on PDF files that are loaded into memory rather
than in a file on disk.

• Give a warning but otherwise ignore empty PDF objects by treating them as null. Empty object are not permitted
by the PDF specification but have been known to appear in some actual PDF files.

• Handle inline image filter abbreviations when the appear as stream filter abbreviations. The PDF specification
does not allow use of stream filter abbreviations in this way, but Adobe Reader and some other PDF readers
accept them since they sometimes appear incorrectly in actual PDF files.

• Implement miscellaneous enhancements to PointerHolder and Buffer to support other changes.

2.2.0: August 14, 2010

• Add new methods to QPDFObjectHandle (newStream and replaceStreamData for creating new streams and
replacing stream data. This makes it possible to perform a wide range of operations that were not previously
possible.

• Add new helper method in QPDFObjectHandle (addPageContents) for appending or prepending new content
streams to a page. This method makes it possible to manipulate content streams without having to be concerned
whether a page's contents are a single stream or an array of streams.

• Add new method in QPDFObjectHandle: replaceOrRemoveKey, which replaces a dictionary key with a
given value unless the value is null, in which case it removes the key instead.

• Add new method in QPDFObjectHandle: getRawStreamData, which returns the raw (unfiltered) stream data
into a buffer. This complements the getStreamData method, which returns the filtered (uncompressed) stream
data and can only be used when the stream's data is filterable.

• Provide two new examples: pdf-double-page-size and pdf-invert-images that illustrate the newly added
interfaces.

• Fix a memory leak that would cause loss of a few bytes for every object involved in a cycle of object references.
Thanks to Jian Ma for calling my attention to the leak.

Release Notes

35

2.1.5: April 25, 2010

• Remove restriction of file identifier strings to 16 bytes. This unnecessary restriction was preventing qpdf from
being able to encrypt or decrypt files with identifier strings that were not exactly 16 bytes long. The specification
imposes no such restriction.

2.1.4: April 18, 2010

• Apply the same padding calculation fix from version 2.1.2 to the main cross reference stream as well.

• Since qpdf --check only performs limited checks, clarify the output to make it clear that there still may be
errors that qpdf can't check. This should make it less surprising to people when another PDF reader is unable
to read a file that qpdf thinks is okay.

2.1.3: March 27, 2010

• Fix bug that could cause a failure when rewriting PDF files that contain object streams with unreferenced objects
that in turn reference indirect scalars.

• Don't complain about (invalid) AES streams that aren't a multiple of 16 bytes. Instead, pad them before
decrypting.

2.1.2: January 24, 2010

• Fix bug in padding around first half cross reference stream in linearized files. The bug could cause an assertion
failure when linearizing certain unlucky files.

2.1.1: December 14, 2009

• No changes in functionality; insert missing include in an internal library header file to support gcc 4.4, and
update test suite to ignore broken Adobe Reader installations.

2.1: October 30, 2009

• This is the first version of qpdf to include Windows support. On Windows, it is possible to build a DLL.
Additionally, a partial C-language API has been introduced, which makes it possible to call qpdf functions
from non-C++ environments. I am very grateful to Zarko Gagic (http://delphi.about.com/) for tirelessly testing
numerous pre-release versions of this DLL and providing many excellent suggestions on improving the
interface.

For programming to the C interface, please see the header file qpdf/qpdf-c.h and the example examples/pdf-
linearize.c.

• Zarko Gajic has written a Delphi wrapper for qpdf, which can be downloaded from qpdf's download side.
Zarko's Delphi wrapper is released with the same licensing terms as qpdf itself and comes with this disclaimer:
“Delphi wrapper unit qpdf.pas created by Zarko Gajic (http://delphi.about.com/). Use at your own risk and for
whatever purpose you want. No support is provided. Sample code is provided.”

• Support has been added for AES encryption and crypt filters. Although qpdf does not presently support files
that use PKI-based encryption, with the addition of AES and crypt filters, qpdf is now be able to open most
encrypted files created with newer versions of Acrobat or other PDF creation software. Note that I have not
been able to get very many files encrypted in this way, so it's possible there could still be some cases that qpdf
can't handle. Please report them if you find them.

• Many error messages have been improved to include more information in hopes of making qpdf a more useful
tool for PDF experts to use in manually recovering damaged PDF files.

http://delphi.about.com/

http://delphi.about.com/

Release Notes

36

• Attempt to avoid compressing metadata streams if possible. This is consistent with other PDF creation
applications.

• Provide new command-line options for AES encrypt, cleartext metadata, and setting the minimum and forced
PDF versions of output files.

• Add additional methods to the QPDF object for querying the document's permissions. Although qpdf does
not enforce these permissions, it does make them available so that applications that use qpdf can enforce
permissions.

• The --check option to qpdf has been extended to include some additional information.

• There have been a handful of non-compatible API changes. For details, see Appendix B, Upgrading from 2.0
to 2.1, page 37.

2.0.6: May 3, 2009

• Do not attempt to uncompress streams that have decode parameters we don't recognize. Earlier versions of qpdf
would have rejected files with such streams.

2.0.5: March 10, 2009

• Improve error handling in the LZW decoder, and fix a small error introduced in the previous version with regard
to handling full tables. The LZW decoder has been more strongly verified in this release.

2.0.4: February 21, 2009

• Include proper support for LZW streams encoded without the “early code change” flag. Special thanks to Atom
Smasher who reported the problem and provided an input file compressed in this way, which I did not previously
have.

• Implement some improvements to file recovery logic.

2.0.3: February 15, 2009

• Compile cleanly with gcc 4.4.

• Handle strings encoded as UTF-16BE properly.

2.0.2: June 30, 2008

• Update test suite to work properly with a non-bash /bin/sh and with Perl 5.10. No changes were made to the
actual qpdf source code itself for this release.

2.0.1: May 6, 2008

• No changes in functionality or interface. This release includes fixes to the source code so that qpdf compiles
properly and passes its test suite on a broader range of platforms. See ChangeLog in the source distribution
for details.

2.0: April 29, 2008

• First public release.

37

Appendix B. Upgrading from 2.0 to 2.1
Although, as a general rule, we like to avoid introducing source-level incompatibilities in qpdf's interface, there were a
few non-compatible changes made in this version. A considerable amount of source code that uses qpdf will probably
compile without any changes, but in some cases, you may have to update your code. The changes are enumerated here.
There are also some new interfaces; for those, please refer to the header files.

• QPDF's exception handling mechanism now uses std::logic_error for internal errors and std::runtime_error
for runtime errors in favor of the now removed QEXC classes used in previous versions. The QEXC exception
classes predated the addition of the <stdexcept> header file to the C++ standard library. Most of the exceptions
thrown by the qpdf library itself are still of type QPDFExc which is now derived from std::runtime_error.
Programs that caught an instance of std::exception and displayed it by calling the what() method will not need
to be changed.

• The QPDFExc class now internally represents various fields of the error condition and provides interfaces for
querying them. Among the fields is a numeric error code that can help applications act differently on (a small number
of) different error conditions. See QPDFExc.hh for details.

• Warnings can be retrieved from qpdf as instances of QPDFExc instead of strings.

• The nested QPDF::EncryptionData class's constructor takes an additional argument. This class is primarily
intended to be used by QPDFWriter. There's not really anything useful an end-user application could do with it. It
probably shouldn't really be part of the public interface to begin with. Likewise, some of the methods for computing
internal encryption dictionary parameters have changed to support /R=4 encryption.

• The method QPDF::getUserPassword has been removed since it didn't do what people would think it did. There
are now two new methods: QPDF::getPaddedUserPassword and QPDF::getTrimmedUserPassword. The first one
does what the old QPDF::getUserPassword method used to do, which is to return the password with possible binary
padding as specified by the PDF specification. The second one returns a human-readable password string.

• The enumerated types that used to be nested in QPDFWriter have moved to top-level enumerated types and are
now defined in the file qpdf/Constants.h. This enables them to be shared by both the C and C++ interfaces.

38

Appendix C. Upgrading to 3.0
For the most part, the API for qpdf version 3.0 is backward compatible with versions 2.1 and later. There are two
exceptions:

• The method QPDFObjectHandle::replaceStreamData that uses a StreamDataProvider to provide the stream
data no longer takes a length parameter. While it would have been easy enough to keep the parameter for backward
compatibility, in this case, the parameter was removed since this provides the user an opportunity to simplify the
calling code. This method was introduced in version 2.2. At the time, the length parameter was required in order
to ensure that calls to the stream data provider returned the same length for a specific stream every time they were
invoked. In particular, the linearization code depends on this. Instead, qpdf 3.0 and newer check for that constraint
explicitly. The first time the stream data provider is called for a specific stream, the actual length is saved, and
subsequent calls are required to return the same number of bytes. This means the calling code no longer has to
compute the length in advance, which can be a significant simplification. If your code fails to compile because of
the extra argument and you don't want to make other changes to your code, just omit the argument.

• Many methods take long long instead of other integer types. Most if not all existing code should compile fine
with this change since such parameters had always previously been smaller types. This change was required to
support files larger than two gigabytes in size.

39

Appendix D. Upgrading to 4.0
While version 4.0 includes a few non-compatible API changes, it is very unlikely that anyone's code would have
used any of those parts of the API since they generally required information that would only be available inside the
library. In the unlikely event that you should run into trouble, please see the ChangeLog. See also Appendix A, Release
Notes, page 28 for a complete list of the non-compatible API changes made in this version.

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.4-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/issue-141b.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.9-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/V4-aes-clearmeta-encryption.out

R = 4
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
stream encryption method: AESv2
string encryption method: AESv2
file encryption method: AESv2

qpdf-7.1.0/qpdf/qtest/qpdf/c-no-recovery.out

error: bad33.pdf (file position 1771): xref not found
 code: 5
 file: bad33.pdf
 pos : 1771
 text: xref not found

qpdf-7.1.0/qpdf/qtest/qpdf/bad23.out

WARNING: bad23.pdf (object 4 0, file position 314): /Length key in stream dictionary is not an integer
/QTest is implicit
/QTest is indirect and has type null (2)
/QTest is null
unparse: 4 0 R
unparseResolved: null
test 0 done

qpdf-7.1.0/qpdf/qtest/qpdf/issue-119.out

WARNING: issue-119.pdf (file position 298): expected dictionary key but found non-name object; inserting key /QPDFFake1
WARNING: issue-119.pdf (file position 298): expected dictionary key but found non-name object; inserting key /QPDFFake2
qpdf: operation succeeded with warnings; resulting file may have some problems

qpdf-7.1.0/qpdf/qtest/qpdf/show-pages-pages.out

page 1: 3 0 R
 content:
 4 0 R

qpdf-7.1.0/qpdf/qtest/qpdf/misc-2.out

page 1:
 images:
 /Im1: 5100 x 6600
 content:
 5 0 R
end page 1
page 2:
 images:
 /Im2: 5100 x 6600
 /Im3: 305 x 305
 content:
 10 0 R
end page 2
page 3:
 images:
 /Im4: 5100 x 6600
 content:
 14 0 R
end page 3
page 4:
 images:
 /Im5: 5100 x 6600
 content:
 18 0 R
end page 4
test 5 done

qpdf-7.1.0/qpdf/qtest/qpdf/issue-101.out

WARNING: issue-101.pdf: file is damaged
WARNING: issue-101.pdf (file position 3526): xref not found
WARNING: issue-101.pdf: Attempting to reconstruct cross-reference table
WARNING: issue-101.pdf (file position 1242): expected dictionary key but found non-name object; inserting key /QPDFFake1
WARNING: issue-101.pdf (file position 1242): dictionary ended prematurely; using null as value for last key
WARNING: issue-101.pdf (object 5 0, file position 1438): /Length key in stream dictionary is not an integer
WARNING: issue-101.pdf (object 5 0, file position 1509): attempting to recover stream length
WARNING: issue-101.pdf (object 5 0, file position 1509): recovered stream length: 8
WARNING: issue-101.pdf (trailer, file position 1631): /Length key in stream dictionary is not an integer
WARNING: issue-101.pdf (trailer, file position 1702): attempting to recover stream length
WARNING: issue-101.pdf (trailer, file position 1702): recovered stream length: 12
WARNING: issue-101.pdf (trailer, file position 2026): /Length key in stream dictionary is not an integer
WARNING: issue-101.pdf (trailer, file position 2097): attempting to recover stream length
WARNING: issue-101.pdf (trailer, file position 2097): recovered stream length: 257
WARNING: issue-101.pdf (trailer, file position 2613): /Length key in stream dictionary is not an integer
WARNING: issue-101.pdf (trailer, file position 2684): attempting to recover stream length
WARNING: issue-101.pdf (trailer, file position 2684): recovered stream length: 74
WARNING: issue-101.pdf (trailer, file position 2928): unknown token while reading object; treating as string
WARNING: issue-101.pdf (trailer, file position 2929): unknown token while reading object; treating as string
WARNING: issue-101.pdf (trailer, file position 2928): expected dictionary key but found non-name object; inserting key /QPDFFake1
WARNING: issue-101.pdf (trailer, file position 2928): expected dictionary key but found non-name object; inserting key /QPDFFake2
WARNING: issue-101.pdf (trailer, file position 2928): expected dictionary key but found non-name object; inserting key /QPDFFake3
WARNING: issue-101.pdf (trailer, file position 2925): /Length key in stream dictionary is not an integer
WARNING: issue-101.pdf (trailer, file position 2996): attempting to recover stream length
WARNING: issue-101.pdf (trailer, file position 2996): recovered stream length: 12
WARNING: issue-101.pdf (trailer, file position 3339): /Length key in stream dictionary is not an integer
WARNING: issue-101.pdf (trailer, file position 3410): attempting to recover stream length
WARNING: issue-101.pdf (trailer, file position 3410): recovered stream length: 12
WARNING: issue-101.pdf (trailer, file position 3560): /Length key in stream dictionary is not an integer
WARNING: issue-101.pdf (trailer, file position 3631): attempting to recover stream length
WARNING: issue-101.pdf (trailer, file position 3631): recovered stream length: 8
WARNING: issue-101.pdf (trailer, file position 4113): /Length key in stream dictionary is not an integer
WARNING: issue-101.pdf (trailer, file position 4184): attempting to recover stream length
WARNING: issue-101.pdf (trailer, file position 4184): recovered stream length: 8
WARNING: issue-101.pdf (file position 591): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 625): treating unexpected brace token as null
WARNING: issue-101.pdf (file position 626): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 637): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 639): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 644): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 647): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 687): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 691): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 696): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 698): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 701): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 711): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 742): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 745): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 747): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 777): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 790): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 800): treating unexpected brace token as null
WARNING: issue-101.pdf (file position 801): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 811): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 819): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 832): unknown token while reading object; treating as string
WARNING: issue-101.pdf (file position 856): unexpected >
issue-101.pdf (file position 856): unable to find /Root dictionary

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.5-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/bad27.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/deterministic-id-nn.pdf

QPDF Manual

For QPDF Version 5.1.3, May 24, 2015

Jay Berkenbilt

QPDF Manual: For QPDF Version 5.1.3, May 24, 2015
Jay Berkenbilt
Copyright © 2005–2014 Jay Berkenbilt

iii

Table of Contents
General Information .. iv
1. What is QPDF? ... 1
2. Building and Installing QPDF .. 2

2.1. System Requirements ... 2
2.2. Build Instructions .. 2

3. Running QPDF ... 4
3.1. Basic Invocation ... 4
3.2. Basic Options ... 4
3.3. Encryption Options ... 5
3.4. Page Selection Options .. 6
3.5. Advanced Transformation Options ... 8
3.6. Testing, Inspection, and Debugging Options .. 10

4. QDF Mode ... 12
5. Using the QPDF Library ... 14
6. Design and Library Notes ... 15

6.1. Introduction .. 15
6.2. Design Goals .. 15
6.3. Casting Policy .. 17
6.4. Encryption ... 18
6.5. Random Number Generation ... 19
6.6. Adding and Removing Pages ... 19
6.7. Reserving Object Numbers ... 19
6.8. Copying Objects From Other PDF Files .. 20
6.9. Writing PDF Files ... 20
6.10. Filtered Streams .. 21

7. Linearization ... 22
7.1. Basic Strategy for Linearization ... 22
7.2. Preparing For Linearization ... 22
7.3. Optimization ... 22
7.4. Writing Linearized Files ... 23
7.5. Calculating Linearization Data ... 23
7.6. Known Issues with Linearization ... 23
7.7. Debugging Note .. 24

8. Object and Cross-Reference Streams ... 25
8.1. Object Streams .. 25
8.2. Cross-Reference Streams .. 25

8.2.1. Cross-Reference Stream Data .. 26
8.3. Implications for Linearized Files .. 26
8.4. Implementation Notes .. 27

A. Release Notes ... 28
B. Upgrading from 2.0 to 2.1 .. 37
C. Upgrading to 3.0 ... 38
D. Upgrading to 4.0 ... 39

iv

General Information
QPDF is a program that does structural, content-preserving transformations on PDF files. QPDF's website is located
at http://qpdf.sourceforge.net/. QPDF's source code is hosted on github at https://github.com/qpdf/qpdf.

QPDF has been released under the terms of Version 2.0 of the Artistic License [http://www.opensource.org/licenses/
artistic-license-2.0.php], a copy of which appears in the file Artistic-2.0 in the source distribution.

QPDF was originally created in 2001 and modified periodically between 2001 and 2005 during my employment at
Apex CoVantage [http://www.apexcovantage.com]. Upon my departure from Apex, the company graciously allowed
me to take ownership of the software and continue maintaining as an open source project, a decision for which I am
very grateful. I have made considerable enhancements to it since that time. I feel fortunate to have worked for people
who would make such a decision. This work would not have been possible without their support.

http://qpdf.sourceforge.net/

https://github.com/qpdf/qpdf

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.apexcovantage.com

http://www.apexcovantage.com

1

Chapter 1. What is QPDF?
QPDF is a program that does structural, content-preserving transformations on PDF files. It could have been called
something like pdf-to-pdf. It also provides many useful capabilities to developers of PDF-producing software or for
people who just want to look at the innards of a PDF file to learn more about how they work.

With QPDF, it is possible to copy objects from one PDF file into another and to manipulate the list of pages in a PDF
file. This makes it possible to merge and split PDF files. The QPDF library also makes it possible for you to create
PDF files from scratch. In this mode, you are responsible for supplying all the contents of the file, while the QPDF
library takes care off all the syntactical representation of the objects, creation of cross references tables and, if you
use them, object streams, encryption, linearization, and other syntactic details. You are still responsible for generating
PDF content on your own.

QPDF has been designed with very few external dependencies, and it is intentionally very lightweight. QPDF is not a
PDF content creation library, a PDF viewer, or a program capable of converting PDF into other formats. In particular,
QPDF knows nothing about the semantics of PDF content streams. If you are looking for something that can do that,
you should look elsewhere. However, once you have a valid PDF file, QPDF can be used to transform that file in ways
perhaps your original PDF creation can't handle. For example, many programs generate simple PDF files but can't
password-protect them, web-optimize them, or perform other transformations of that type.

2

Chapter 2. Building and Installing
QPDF
This chapter describes how to build and install qpdf. Please see also the README and INSTALL files in the source
distribution.

2.1. System Requirements
The qpdf package has relatively few external dependencies. In order to build qpdf, the following packages are required:

• zlib: http://www.zlib.net/

• pcre: http://www.pcre.org/

• gnu make 3.81 or newer: http://www.gnu.org/software/make

• perl version 5.8 or newer: http://www.perl.org/; required for fix-qdf and the test suite.

• GNU diffutils (any version): http://www.gnu.org/software/diffutils/ is required to run the test suite. Note that this is
the version of diff present on virtually all GNU/Linux systems. This is required because the test suite uses diff -u.

• A C++ compiler that works well with STL and has the long long type. Most modern C++ compilers should fit
the bill fine. QPDF is tested with gcc and Microsoft Visual C++.

Part of qpdf's test suite does comparisons of the contents PDF files by converting them images and comparing the
images. The image comparison tests are disabled by default. Those tests are not required for determining correctness of
a qpdf build if you have not modified the code since the test suite also contains expected output files that are compared
literally. The image comparison tests provide an extra check to make sure that any content transformations don't break
the rendering of pages. Transformations that affect the content streams themselves are off by default and are only
provided to help developers look into the contents of PDF files. If you are making deep changes to the library that cause
changes in the contents of the files that qpdf generates, then you should enable the image comparison tests. Enable
them by running configure with the --enable-test-compare-images flag. If you enable this, the following additional
requirements are required by the test suite. Note that in no case are these items required to use qpdf.

• libtiff: http://www.remotesensing.org/libtiff/

• GhostScript version 8.60 or newer: http://www.ghostscript.com

If you do not enable this, then you do not need to have tiff and ghostscript.

If Adobe Reader is installed as acroread, some additional test cases will be enabled. These test cases simply verify
that Adobe Reader can open the files that qpdf creates. They require version 8.0 or newer to pass. However, in order
to avoid having qpdf depend on non-free (as in liberty) software, the test suite will still pass without Adobe reader,
and the test suite still exercises the full functionality of the software.

Pre-built documentation is distributed with qpdf, so you should generally not need to rebuild the documentation.
In order to build the documentation from its docbook sources, you need the docbook XML style sheets (http://
downloads.sourceforge.net/docbook/). To build the PDF version of the documentation, you need Apache fop (http://
xml.apache.org/fop/) version 0.94 or higher.

2.2. Build Instructions
Building qpdf on UNIX is generally just a matter of running

http://www.zlib.net/

http://www.pcre.org/

http://www.gnu.org/software/make

http://www.perl.org/

http://www.gnu.org/software/diffutils/

http://www.remotesensing.org/libtiff/

http://www.ghostscript.com

http://downloads.sourceforge.net/docbook/

http://downloads.sourceforge.net/docbook/

http://xml.apache.org/fop/

http://xml.apache.org/fop/

Building and Installing QPDF

3

./configure
make

You can also run make check to run the test suite and make install to install. Please run ./configure --help for
options on what can be configured. You can also set the value of DESTDIR during installation to install to a temporary
location, as is common with many open source packages. Please see also the README and INSTALL files in the
source distribution.

Building on Windows is a little bit more complicated. For details, please see README-windows.txt in the source
distribution. You can also download a binary distribution for Windows. There is a port of qpdf to Visual C++ version 6
in the contrib area generously contributed by Jian Ma. This is also discussed in more detail in README-windows.txt.

There are some other things you can do with the build. Although qpdf uses autoconf, it does not use automake but
instead uses a hand-crafted non-recursive Makefile that requires gnu make. If you're really interested, please read the
comments in the top-level Makefile.

4

Chapter 3. Running QPDF
This chapter describes how to run the qpdf program from the command line.

3.1. Basic Invocation
When running qpdf, the basic invocation is as follows:

qpdf [options] infilename [outfilename]

This converts PDF file infilename to PDF file outfilename. The output file is functionally identical to the input file but
may have been structurally reorganized. Also, orphaned objects will be removed from the file. Many transformations
are available as controlled by the options below. In place of infilename, the parameter --empty may be specified. This
causes qpdf to use a dummy input file that contains zero pages. The only normal use case for using --empty would be if
you were going to add pages from another source, as discussed in Section 3.4, “Page Selection Options”, page 6.

outfilename does not have to be seekable, even when generating linearized files. Specifying “--” as outfilename
means to write to standard output. However, you can't specify the same file as both the input and the output because
qpdf reads data from the input file as it writes to the output file.

Most options require an output file, but some testing or inspection commands do not. These are specifically noted.

3.2. Basic Options
The following options are the most common ones and perform commonly needed transformations.

--password=password
Specifies a password for accessing encrypted files.

--linearize
Causes generation of a linearized (web-optimized) output file.

--copy-encryption=file
Encrypt the file using the same encryption parameters, including user and owner password, as the specified file.
Use --encrypt-file-password to specify a password if one is needed to open this file. Note that copying the
encryption parameters from a file also copies the first half of /ID from the file since this is part of the encryption
parameters.

--encrypt-file-password=password
If the file specified with --copy-encryption requires a password, specify the password using this option. Note
that only one of the user or owner password is required. Both passwords will be preserved since QPDF does
not distinguish between the two passwords. It is possible to preserve encryption parameters, including the owner
password, from a file even if you don't know the file's owner password.

--encrypt options --
Causes generation an encrypted output file. Please see Section 3.3, “Encryption Options”, page 5 for details
on how to specify encryption parameters.

--decrypt
Removes any encryption on the file. A password must be supplied if the file is password protected.

--pages options --
Select specific pages from one or more input files. See Section 3.4, “Page Selection Options”, page 6 for
details on how to do page selection (splitting and merging).

Running QPDF

5

Password-protected files may be opened by specifying a password. By default, qpdf will preserve any encryption data
associated with a file. If --decrypt is specified, qpdf will attempt to remove any encryption information. If --encrypt
is specified, qpdf will replace the document's encryption parameters with whatever is specified.

Note that qpdf does not obey encryption restrictions already imposed on the file. Doing so would be meaningless since
qpdf can be used to remove encryption from the file entirely. This functionality is not intended to be used for bypassing
copyright restrictions or other restrictions placed on files by their producers.

In all cases where qpdf allows specification of a password, care must be taken if the password contains characters
that fall outside of the 7-bit US-ASCII character range to ensure that the exact correct byte sequence is provided. It
is possible that a future version of qpdf may handle this more gracefully. For example, if a password was encrypted
using a password that was encoded in ISO-8859-1 and your terminal is configured to use UTF-8, the password you
supply may not work properly. There are various approaches to handling this. For example, if you are using Linux and
have the iconv executable (part of the ICU package) installed, you could pass --password=`echo password | iconv
-t iso-8859-1` to qpdf where password is a password specified in your terminal's locale. A detailed discussion of
this is out of scope for this manual, but just be aware of this issue if you have trouble with a password that contains
8-bit characters.

3.3. Encryption Options
To change the encryption parameters of a file, use the --encrypt flag. The syntax is

--encrypt user-password owner-password key-length [restrictions] --

Note that “--” terminates parsing of encryption flags and must be present even if no restrictions are present.

Either or both of the user password and the owner password may be empty strings.

The value for key-length may be 40, 128, or 256. The restriction flags are dependent upon key length. When no
additional restrictions are given, the default is to be fully permissive.

If key-length is 40, the following restriction options are available:

--print=[yn]
Determines whether or not to allow printing.

--modify=[yn]
Determines whether or not to allow document modification.

--extract=[yn]
Determines whether or not to allow text/image extraction.

--annotate=[yn]
Determines whether or not to allow comments and form fill-in and signing.

If key-length is 128, the following restriction options are available:

--accessibility=[yn]
Determines whether or not to allow accessibility to visually impaired.

--extract=[yn]
Determines whether or not to allow text/graphic extraction.

--print=print-opt
Controls printing access. print-opt may be one of the following:

Running QPDF

6

• full: allow full printing

• low: allow low-resolution printing only

• none: disallow printing

--modify=modify-opt
Controls modify access. modify-opt may be one of the following, each of which implies all the options that
follow it:

• all: allow full document modification

• annotate: allow comment authoring and form operations

• form: allow form field fill-in and signing

• assembly: allow document assembly only

• none: allow no modifications

--cleartext-metadata
If specified, any metadata stream in the document will be left unencrypted even if the rest of the document is
encrypted. This also forces the PDF version to be at least 1.5.

--use-aes=[yn]
If --use-aes=y is specified, AES encryption will be used instead of RC4 encryption. This forces the PDF version
to be at least 1.6.

--force-V4
Use of this option forces the /V and /R parameters in the document's encryption dictionary to be set to the value
4. As qpdf will automatically do this when required, there is no reason to ever use this option. It exists primarily
for use in testing qpdf itself. This option also forces the PDF version to be at least 1.5.

If key-length is 256, the minimum PDF version is 1.7 with extension level 8, and the AES-based encryption format
used is the PDF 2.0 encryption method supported by Acrobat X. the same options are available as with 128 bits with
the following exceptions:

--use-aes
This option is not available with 256-bit keys. AES is always used with 256-bit encryption keys.

--force-V4
This option is not available with 256 keys.

--force-R5
If specified, qpdf sets the minimum version to 1.7 at extension level 3 and writes the deprecated encryption format
used by Acrobat version IX. This option should not be used in practice to generate PDF files that will be in general
use, but it can be useful to generate files if you are trying to test proper support in another application for PDF
files encrypted in this way.

The default for each permission option is to be fully permissive.

3.4. Page Selection Options
Starting with qpdf 3.0, it is possible to split and merge PDF files by selecting pages from one or more input files.
Whatever file is given as the primary input file is used as the starting point, but its pages are replaced with pages as
specified.

Running QPDF

7

--pages input-file [--password=password] [page-range] [...] --

Multiple input files may be specified. Each one is given as the name of the input file, an optional password (if required
to open the file), and the range of pages. Note that “--” terminates parsing of page selection flags.

For each file that pages should be taken from, specify the file, a password needed to open the file (if any), and a page
range. The password needs to be given only once per file. If any of the input files are the same as the primary input
file or the file used to copy encryption parameters (if specified), you do not need to repeat the password here. The
same file can be repeated multiple times. If a file that is repeated has a password, the password only has to be given
the first time. All non-page data (info, outlines, page numbers, etc.) are taken from the primary input file. To discard
these, use --empty as the primary input.

Starting with qpdf 5.0.0, it is possible to omit the page range. If qpdf sees a value in the place where it expects a page
range and that value is not a valid range but is a valid file name, qpdf will implicitly use the range 1-z, meaning that
it will include all pages in the file. This makes it possible to easily combine all pages in a set of files with a command
like qpdf --empty out.pdf --pages *.pdf --.

It is not presently possible to specify the same page from the same file directly more than once, but you can make this
work by specifying two different paths to the same file (such as by putting ./ somewhere in the path). This can also be
used if you want to repeat a page from one of the input files in the output file. This may be made more convenient in
a future version of qpdf if there is enough demand for this feature.

The page range is a set of numbers separated by commas, ranges of numbers separated dashes, or combinations of
those. The character “z” represents the last page. Pages can appear in any order. Ranges can appear with a high number
followed by a low number, which causes the pages to appear in reverse. Repeating a number will cause an error, but
you can use the workaround discussed above should you really want to include the same page twice.

Example page ranges:

• 1,3,5-9,15-12: pages 1, 2, 3, 5, 6, 7, 8, 9, 15, 14, 13, and 12.

• z-1: all pages in the document in reverse

Note that qpdf doesn't presently do anything special about other constructs in a PDF file that may know about pages,
so semantics of splitting and merging vary across features. For example, the document's outlines (bookmarks) point
to actual page objects, so if you select some pages and not others, bookmarks that point to pages that are in the output
file will work, and remaining bookmarks will not work. On the other hand, page labels (page numbers specified in the
file) are just sequential, so page labels will be messed up in the output file. A future version of qpdf may do a better
job at handling these issues. (Note that the qpdf library already contains all of the APIs required in order to implement
this in your own application if you need it.) In the mean time, you can always use --empty as the primary input file to
avoid copying all of that from the first file. For example, to take pages 1 through 5 from a infile.pdf while preserving
all metadata associated with that file, you could use

qpdf infile.pdf --pages infile.pdf 1-5 -- outfile.pdf

If you wanted pages 1 through 5 from infile.pdf but you wanted the rest of the metadata to be dropped, you could
instead run

qpdf --empty --pages infile.pdf 1-5 -- outfile.pdf

If you wanted to take pages 1–5 from file1.pdf and pages 11–15 from file2.pdf in reverse, you would run

qpdf file1.pdf --pages file1.pdf 1-5 file2.pdf 15-11 -- outfile.pdf

Running QPDF

8

If, for some reason, you wanted to take the first page of an encrypted file called encrypted.pdf with password pass
and repeat it twice in an output file, and if you wanted to drop metadata (like page numbers and outlines) but preserve
encryption, you would use

qpdf --empty --copy-encryption=encrypted.pdf --encryption-file-password=pass
--pages encrypted.pdf --password=pass 1 ./encrypted.pdf --password=pass 1 --
outfile.pdf

Note that we had to specify the password all three times because giving a password as --encryption-file-password
doesn't count for page selection, and as far as qpdf is concerned, encrypted.pdf and ./encrypted.pdf are separated files.
These are all corner cases that most users should hopefully never have to be bothered with.

3.5. Advanced Transformation Options
These transformation options control fine points of how qpdf creates the output file. Mostly these are of use only to
people who are very familiar with the PDF file format or who are PDF developers. The following options are available:

--stream-data=option
Controls transformation of stream data. The value of option may be one of the following:

• compress: recompress stream data when possible (default)

• preserve: leave all stream data as is

• uncompress: uncompress stream data when possible

--normalize-content=[yn]
Enables or disables normalization of content streams.

--suppress-recovery
Prevents qpdf from attempting to recover damaged files.

--object-streams=mode
Controls handling of object streams. The value of mode may be one of the following:

• preserve: preserve original object streams (default)

• disable: don't write any object streams

• generate: use object streams wherever possible

--ignore-xref-streams
Tells qpdf to ignore any cross-reference streams.

--qdf
Turns on QDF mode. For additional information on QDF, please see Chapter 4, QDF Mode, page 12.

--min-version=version
Forces the PDF version of the output file to be at least version. In other words, if the input file has a lower
version than the specified version, the specified version will be used. If the input file has a higher version, the
input file's original version will be used. It is seldom necessary to use this option since qpdf will automatically
increase the version as needed when adding features that require newer PDF readers.

The version number may be expressed in the form major.minor.extension-level, in which case the
version is interpreted as major.minor at extension level extension-level. For example, version 1.7.8
represents version 1.7 at extension level 8. Note that minimal syntax checking is done on the command line.

Running QPDF

9

--force-version=version
This option forces the PDF version to be the exact version specified even when the file may have content that
is not supported in that version. The version number is interpreted in the same way as with --min-version so
that extension levels can be set. In some cases, forcing the output file's PDF version to be lower than that of the
input file will cause qpdf to disable certain features of the document. Specifically, 256-bit keys are disabled if
the version is less than 1.7 with extension level 8 (except R5 is disabled if less than 1.7 with extension level 3),
AES encryption is disabled if the version is less than 1.6, cleartext metadata and object streams are disabled if less
than 1.5, 128-bit encryption keys are disabled if less than 1.4, and all encryption is disabled if less than 1.3. Even
with these precautions, qpdf won't be able to do things like eliminate use of newer image compression schemes,
transparency groups, or other features that may have been added in more recent versions of PDF.

As a general rule, with the exception of big structural things like the use of object streams or AES encryption,
PDF viewers are supposed to ignore features in files that they don't support from newer versions. This means that
forcing the version to a lower version may make it possible to open your PDF file with an older version, though
bear in mind that some of the original document's functionality may be lost.

By default, when a stream is encoded using non-lossy filters that qpdf understands and is not already compressed
using a good compression scheme, qpdf will uncompress and recompress streams. Assuming proper filter implements,
this is safe and generally results in smaller files. This behavior may also be explicitly requested with --stream-
data=compress.

When --stream-data=preserve is specified, qpdf will never attempt to change the filtering of any stream data.

When --stream-data=uncompress is specified, qpdf will attempt to remove any non-lossy filters that it supports. This
includes /FlateDecode, /LZWDecode, /ASCII85Decode, and /ASCIIHexDecode. This can be very useful
for inspecting the contents of various streams.

When --normalize-content=y is specified, qpdf will attempt to normalize whitespace and newlines in page content
streams. This is generally safe but could, in some cases, cause damage to the content streams. This option is intended
for people who wish to study PDF content streams or to debug PDF content. You should not use this for “production”
PDF files.

Ordinarily, qpdf will attempt to recover from certain types of errors in PDF files. These include errors in the cross-
reference table, certain types of object numbering errors, and certain types of stream length errors. Sometimes, qpdf
may think it has recovered but may not have actually recovered, so care should be taken when using this option as
some data loss is possible. The --suppress-recovery option will prevent qpdf from attempting recovery. In this case,
it will fail on the first error that it encounters.

Object streams, also known as compressed objects, were introduced into the PDF specification at version 1.5,
corresponding to Acrobat 6. Some older PDF viewers may not support files with object streams. qpdf can be used to
transform files with object streams to files without object streams or vice versa. As mentioned above, there are three
object stream modes: preserve, disable, and generate.

In preserve mode, the relationship to objects and the streams that contain them is preserved from the original file. In
disable mode, all objects are written as regular, uncompressed objects. The resulting file should be readable by older
PDF viewers. (Of course, the content of the files may include features not supported by older viewers, but at least
the structure will be supported.) In generate mode, qpdf will create its own object streams. This will usually result in
more compact PDF files, though they may not be readable by older viewers. In this mode, qpdf will also make sure
the PDF version number in the header is at least 1.5.

Ordinarily, qpdf reads cross-reference streams when they are present in a PDF file. If --ignore-xref-streams is
specified, qpdf will ignore any cross-reference streams for hybrid PDF files. The purpose of hybrid files is to make
some content available to viewers that are not aware of cross-reference streams. It is almost never desirable to ignore
them. The only time when you might want to use this feature is if you are testing creation of hybrid PDF files and wish
to see how a PDF consumer that doesn't understand object and cross-reference streams would interpret such a file.

Running QPDF

10

The --qdf flag turns on QDF mode, which changes some of the defaults described above. Specifically, in QDF mode,
by default, stream data is uncompressed, content streams are normalized, and encryption is removed. These defaults
can still be overridden by specifying the appropriate options as described above. Additionally, in QDF mode, stream
lengths are stored as indirect objects, objects are laid out in a less efficient but more readable fashion, and the documents
are interspersed with comments that make it easier for the user to find things and also make it possible for fix-qdf to
work properly. QDF mode is intended for people, mostly developers, who wish to inspect or modify PDF files in a
text editor. For details, please see Chapter 4, QDF Mode, page 12.

3.6. Testing, Inspection, and Debugging
Options
These options can be useful for digging into PDF files or for use in automated test suites for software that uses the qpdf
library. When any of the options in this section are specified, no output file should be given. The following options
are available:

--static-id
Causes generation of a fixed value for /ID. This is intended for testing only. Never use it for production files.

--static-aes-iv
Causes use of a static initialization vector for AES-CBC. This is intended for testing only so that output files
can be reproducible. Never use it for production files. This option in particular is not secure since it significantly
weakens the encryption.

--no-original-object-ids
Suppresses inclusion of original object ID comments in QDF files. This can be useful when generating QDF files
for test purposes, particularly when comparing them to determine whether two PDF files have identical content.

--show-encryption
Shows document encryption parameters. Also shows the document's user password if the owner password is given.

--check-linearization
Checks file integrity and linearization status.

--show-linearization
Checks and displays all data in the linearization hint tables.

--show-xref
Shows the contents of the cross-reference table in a human-readable form. This is especially useful for files with
cross-reference streams which are stored in a binary format.

--show-object=obj[,gen]
Show the contents of the given object. This is especially useful for inspecting objects that are inside of object
streams (also known as “compressed objects”).

--raw-stream-data
When used along with the --show-object option, if the object is a stream, shows the raw stream data instead of
object's contents.

--filtered-stream-data
When used along with the --show-object option, if the object is a stream, shows the filtered stream data instead
of object's contents. If the stream is filtered using filters that qpdf does not support, an error will be issued.

--show-npages
Prints the number of pages in the input file on a line by itself. Since the number of pages appears by itself on a
line, this option can be useful for scripting if you need to know the number of pages in a file.

Running QPDF

11

--show-pages
Shows the object and generation number for each page dictionary object and for each content stream associated
with the page. Having this information makes it more convenient to inspect objects from a particular page.

--with-images
When used along with --show-pages, also shows the object and generation numbers for the image objects on each
page. (At present, information about images in shared resource dictionaries are not output by this command. This
is discussed in a comment in the source code.)

--check
Checks file structure and well as encryption, linearization, and encoding of stream data. A file for which --check
reports no errors may still have errors in stream data content but should otherwise be structurally sound. If --check
any errors, qpdf will exit with a status of 2. There are some recoverable conditions that --check detects. These
are issued as warnings instead of errors. If qpdf finds no errors but finds warnings, it will exit with a status of
3 (as of version 2.0.4).

The --raw-stream-data and --filtered-stream-data options are ignored unless --show-object is given. Either of these
options will cause the stream data to be written to standard output. In order to avoid commingling of stream data with
other output, it is recommend that these objects not be combined with other test/inspection options.

If --filtered-stream-data is given and --normalize-content=y is also given, qpdf will attempt to normalize the stream
data as if it is a page content stream. This attempt will be made even if it is not a page content stream, in which case
it will produce unusable results.

12

Chapter 4. QDF Mode
In QDF mode, qpdf creates PDF files in what we call QDF form. A PDF file in QDF form, sometimes called a QDF
file, is a completely valid PDF file that has %QDF-1.0 as its third line (after the pdf header and binary characters)
and has certain other characteristics. The purpose of QDF form is to make it possible to edit PDF files, with some
restrictions, in an ordinary text editor. This can be very useful for experimenting with different PDF constructs or for
making one-off edits to PDF files (though there are other reasons why this may not always work).

It is ordinarily very difficult to edit PDF files in a text editor for two reasons: most meaningful data in PDF files is
compressed, and PDF files are full of offset and length information that makes it hard to add or remove data. A QDF
file is organized in a manner such that, if edits are kept within certain constraints, the fix-qdf program, distributed with
qpdf, is able to restore edited files to a correct state. The fix-qdf program takes no command-line arguments. It reads
a possibly edited QDF file from standard input and writes a repaired file to standard output.

The following attributes characterize a QDF file:

• All objects appear in numerical order in the PDF file, including when objects appear in object streams.

• Objects are printed in an easy-to-read format, and all line endings are normalized to UNIX line endings.

• Unless specifically overridden, streams appear uncompressed (when qpdf supports the filters and they are
compressed with a non-lossy compression scheme), and most content streams are normalized (line endings are
converted to just a UNIX-style linefeeds).

• All streams lengths are represented as indirect objects, and the stream length object is always the next object after
the stream. If the stream data does not end with a newline, an extra newline is inserted, and a special comment
appears after the stream indicating that this has been done.

• If the PDF file contains object streams, if object stream n contains k objects, those objects are numbered from n
+1 through n+k, and the object number/offset pairs appear on a separate line for each object. Additionally, each
object in the object stream is preceded by a comment indicating its object number and index. This makes it very
easy to find objects in object streams.

• All beginnings of objects, stream tokens, endstream tokens, and endobj tokens appear on lines by themselves.
A blank line follows every endobj token.

• If there is a cross-reference stream, it is unfiltered.

• Page dictionaries and page content streams are marked with special comments that make them easy to find.

• Comments precede each object indicating the object number of the corresponding object in the original file.

When editing a QDF file, any edits can be made as long as the above constraints are maintained. This means that you
can freely edit a page's content without worrying about messing up the QDF file. It is also possible to add new objects
so long as those objects are added after the last object in the file or subsequent objects are renumbered. If a QDF file
has object streams in it, you can always add the new objects before the xref stream and then change the number of the
xref stream, since nothing generally ever references it by number.

It is not generally practical to remove objects from QDF files without messing up object numbering, but if you remove
all references to an object, you can run qpdf on the file (after running fix-qdf), and qpdf will omit the now-orphaned
object.

When fix-qdf is run, it goes through the file and recomputes the following parts of the file:

• the /N, /W, and /First keys of all object stream dictionaries

QDF Mode

13

• the pairs of numbers representing object numbers and offsets of objects in object streams

• all stream lengths

• the cross-reference table or cross-reference stream

• the offset to the cross-reference table or cross-reference stream following the startxref token

14

Chapter 5. Using the QPDF Library
The source tree for the qpdf package has an examples directory that contains a few example programs. The qpdf/
qpdf.cc source file also serves as a useful example since it exercises almost all of the qpdf library's public interface.
The best source of documentation on the library itself is reading comments in include/qpdf/QPDF.hh, include/qpdf/
QDFWriter.hh, and include/qpdf/QPDFObjectHandle.hh.

All header files are installed in the include/qpdf directory. It is recommend that you use #include <qpdf/
QPDF.hh> rather than adding include/qpdf to your include path.

When linking against the qpdf static library, you may also need to specify -lpcre -lz on your link command. If
your system understands how to read libtool .la files, this may not be necessary.

The qpdf library is safe to use in a multithreaded program, but no individual QPDF object instance (including QPDF,
QPDFObjectHandle, or QPDFWriter) can be used in more than one thread at a time. Multiple threads may
simultaneously work with different instances of these and all other QPDF objects.

15

Chapter 6. Design and Library Notes

6.1. Introduction
This section was written prior to the implementation of the qpdf package and was subsequently modified to reflect the
implementation. In some cases, for purposes of explanation, it may differ slightly from the actual implementation. As
always, the source code and test suite are authoritative. Even if there are some errors, this document should serve as
a road map to understanding how this code works.

In general, one should adhere strictly to a specification when writing but be liberal in reading. This way, the product
of our software will be accepted by the widest range of other programs, and we will accept the widest range of input
files. This library attempts to conform to that philosophy whenever possible but also aims to provide strict checking
for people who want to validate PDF files. If you don't want to see warnings and are trying to write something
that is tolerant, you can call setSuppressWarnings(true). If you want to fail on the first error, you can call
setAttemptRecovery(false). The default behavior is to generating warnings for recoverable problems. Note
that recovery will not always produce the desired results even if it is able to get through the file. Unlike most other PDF
files that produce generic warnings such as “This file is damaged,”, qpdf generally issues a detailed error message that
would be most useful to a PDF developer. This is by design as there seems to be a shortage of PDF validation tools
out there. (This was, in fact, one of the major motivations behind the initial creation of qpdf.)

6.2. Design Goals
The QPDF package includes support for reading and rewriting PDF files. It aims to hide from the user details involving
object locations, modified (appended) PDF files, the directness/indirectness of objects, and stream filters including
encryption. It does not aim to hide knowledge of the object hierarchy or content stream contents. Put another way, a
user of the qpdf library is expected to have knowledge about how PDF files work, but is not expected to have to keep
track of bookkeeping details such as file positions.

A user of the library never has to care whether an object is direct or indirect. All access to objects deals with this
transparently. All memory management details are also handled by the library.

The PointerHolder object is used internally by the library to deal with memory management. This is basically a
smart pointer object very similar in spirit to the Boost library's shared_ptr object, but predating it by several years.
This library also makes use of a technique for giving fine-grained access to methods in one class to other classes by
using public subclasses with friends and only private members that in turn call private methods of the containing class.
See QPDFObjectHandle::Factory as an example.

The top-level qpdf class is QPDF. A QPDF object represents a PDF file. The library provides methods for both
accessing and mutating PDF files.

QPDFObject is the basic PDF Object class. It is an abstract base class from which are derived classes for each type
of PDF object. Clients do not interact with Objects directly but instead interact with QPDFObjectHandle.

QPDFObjectHandle contains PointerHolder<QPDFObject> and includes accessor methods that are type-safe
proxies to the methods of the derived object classes as well as methods for querying object types. They can be passed
around by value, copied, stored in containers, etc. with very low overhead. Instances of QPDFObjectHandle always
contain a reference back to the QPDF object from which they were created. A QPDFObjectHandle may be direct
or indirect. If indirect, the QPDFObject the PointerHolder initially points to is a null pointer. In this case, the
first attempt to access the underlying QPDFObject will result in the QPDFObject being resolved via a call to the
referenced QPDF instance. This makes it essentially impossible to make coding errors in which certain things will
work for some PDF files and not for others based on which objects are direct and which objects are indirect.

Design and Library Notes

16

Instances of QPDFObjectHandle can be directly created and modified using static factory methods in the
QPDFObjectHandle class. There are factory methods for each type of object as well as a convenience method
QPDFObjectHandle::parse that creates an object from a string representation of the object. Existing instances of
QPDFObjectHandle can also be modified in several ways. See comments in QPDFObjectHandle.hh for details.

When the QPDF class creates a new object, it dynamically allocates the appropriate type of QPDFObject and
immediately hands the pointer to an instance of QPDFObjectHandle. The parser reads a token from the current
file position. If the token is a not either a dictionary or array opener, an object is immediately constructed from
the single token and the parser returns. Otherwise, the parser is invoked recursively in a special mode in which it
accumulates objects until it finds a balancing closer. During this process, the “R” keyword is recognized and an indirect
QPDFObjectHandle may be constructed.

The QPDF::resolve() method, which is used to resolve an indirect object, may be invoked from the
QPDFObjectHandle class. It first checks a cache to see whether this object has already been read. If not, it reads the
object from the PDF file and caches it. It the returns the resulting QPDFObjectHandle. The calling object handle
then replaces its PointerHolder<QDFObject> with the one from the newly returned QPDFObjectHandle. In this
way, only a single copy of any direct object need exist and clients can access objects transparently without knowing
caring whether they are direct or indirect objects. Additionally, no object is ever read from the file more than once. That
means that only the portions of the PDF file that are actually needed are ever read from the input file, thus allowing
the qpdf package to take advantage of this important design goal of PDF files.

If the requested object is inside of an object stream, the object stream itself is first read into memory. Then the tokenizer
reads objects from the memory stream based on the offset information stored in the stream. Those individual objects
are cached, after which the temporary buffer holding the object stream contents are discarded. In this way, the first
time an object in an object stream is requested, all objects in the stream are cached.

An instance of QPDF is constructed by using the class's default constructor. If desired, the QPDF object may be
configured with various methods that change its default behavior. Then the QPDF::processFile() method is passed
the name of a PDF file, which permanently associates the file with that QPDF object. A password may also be given
for access to password-protected files. QPDF does not enforce encryption parameters and will treat user and owner
passwords equivalently. Either password may be used to access an encrypted file. 1 QPDF will allow recovery of a
user password given an owner password. The input PDF file must be seekable. (Output files written by QPDFWriter
need not be seekable, even when creating linearized files.) During construction, QPDF validates the PDF file's header,
and then reads the cross reference tables and trailer dictionaries. The QPDF class keeps only the first trailer dictionary
though it does read all of them so it can check the /Prev key. QPDF class users may request the root object and
the trailer dictionary specifically. The cross reference table is kept private. Objects may then be requested by number
of by walking the object tree.

When a PDF file has a cross-reference stream instead of a cross-reference table and trailer, requesting the document's
trailer dictionary returns the stream dictionary from the cross-reference stream instead.

There are some convenience routines for very common operations such as walking the page tree and returning a vector
of all page objects. For full details, please see the header file QPDF.hh.

The following example should clarify how QPDF processes a simple file.

• Client constructs QPDF pdf and calls pdf.processFile("a.pdf");.

• The QPDF class checks the beginning of a.pdf for %!PDF-1.[0-9]+. It then reads the cross reference table
mentioned at the end of the file, ensuring that it is looking before the last %%EOF. After getting to trailer
keyword, it invokes the parser.

1 As pointed out earlier, the intention is not for qpdf to be used to bypass security on files. but as any open source PDF consumer may be easily
modified to bypass basic PDF document security, and qpdf offers may transformations that can do this as well, there seems to be little point in the
added complexity of conditionally enforcing document security.

Design and Library Notes

17

• The parser sees “<<”, so it calls itself recursively in dictionary creation mode.

• In dictionary creation mode, the parser keeps accumulating objects until it encounters “>>”. Each object that is
read is pushed onto a stack. If “R” is read, the last two objects on the stack are inspected. If they are integers,
they are popped off the stack and their values are used to construct an indirect object handle which is then pushed
onto the stack. When “>>” is finally read, the stack is converted into a QPDF_Dictionary which is placed in a
QPDFObjectHandle and returned.

• The resulting dictionary is saved as the trailer dictionary.

• The /Prev key is searched. If present, QPDF seeks to that point and repeats except that the new trailer dictionary
is not saved. If /Prev is not present, the initial parsing process is complete.

If there is an encryption dictionary, the document's encryption parameters are initialized.

• The client requests root object. The QPDF class gets the value of root key from trailer dictionary and returns it. It
is an unresolved indirect QPDFObjectHandle.

• The client requests the /Pages key from root QPDFObjectHandle. The QPDFObjectHandle notices that it
is indirect so it asks QPDF to resolve it. QPDF looks in the object cache for an object with the root dictionary's
object ID and generation number. Upon not seeing it, it checks the cross reference table, gets the offset, and reads
the object present at that offset. It stores the result in the object cache and returns the cached result. The calling
QPDFObjectHandle replaces its object pointer with the one from the resolved QPDFObjectHandle, verifies
that it a valid dictionary object, and returns the (unresolved indirect) QPDFObject handle to the top of the Pages
hierarchy.

As the client continues to request objects, the same process is followed for each new requested object.

6.3. Casting Policy
This section describes the casting policy followed by qpdf's implementation. This is no concern to qpdf's end users
and largely of no concern to people writing code that uses qpdf, but it could be of interest to people who are porting
qpdf to a new platform or who are making modifications to the code.

The C++ code in qpdf is free of old-style casts except where unavoidable (e.g. where the old-style cast is in a macro
provided by a third-party header file). When there is a need for a cast, it is handled, in order of preference, by rewriting
the code to avoid the need for a cast, calling const_cast, calling static_cast, calling reinterpret_cast, or calling some
combination of the above. As a last resort, a compiler-specific #pragma may be used to suppress a warning that we
don't want to fix. Examples may include suppressing warnings about the use of old-style casts in code that is shared
between C and C++ code.

The casting policy explicitly prohibits casting between integer sizes for no purpose other than to quiet a compiler
warning when there is no reasonable chance of a problem resulting. The reason for this exclusion is that the practice
of adding these additional casts precludes future use of additional compiler warnings as a tool for making future
improvements to this aspect of the code, and it also damages the readability of the code.

There are a few significant areas where casting is common in the qpdf sources or where casting would be required to
quiet higher levels of compiler warnings but is omitted at present:

• char vs. unsigned char. For historical reasons, there are a lot of places in qpdf's internals that deal with
unsigned char, which means that a lot of casting is required to interoperate with standard library calls and
std::string. In retrospect, qpdf should have probably used regular (signed) char and char* everywhere and
just cast to unsigned char when needed, but it's too late to make that change now. There are reinterpret_cast
calls to go between char* and unsigned char*, and there are static_cast calls to go between char and
unsigned char. These should always be safe.

Design and Library Notes

18

• Non-const unsigned char* used in the Pipeline interface. The pipeline interface has a write call that uses
unsigned char* without a const qualifier. The main reason for this is to support pipelines that make calls to
third-party libraries, such as zlib, that don't include const in their interfaces. Unfortunately, there are many places
in the code where it is desirable to have const char* with pipelines. None of the pipeline implementations in
qpdf currently modify the data passed to write, and doing so would be counter to the intent of Pipeline, but there
is nothing in the code to prevent this from being done. There are places in the code where const_cast is used to
remove the const-ness of pointers going into Pipelines. This could theoretically be unsafe, but there is adequate
testing to assert that it is safe and will remain safe in qpdf's code.

• size_t vs. qpdf_offset_t. This is pretty much unavoidable since sizes are unsigned types and offsets are
signed types. Whenever it is necessary to seek by an amount given by a size_t, it becomes necessary to mix and
match between size_t and qpdf_offset_t. Additionally, qpdf sometimes treats memory buffers like files (as
with BufferInputSource, and those seek interfaces have to be consistent with file-based input sources. Neither
gcc nor MSVC give warnings for this case by default, but both have warning flags that can enable this. (MSVC:
/W14267 or /W3, which also enables some additional warnings that we ignore; gcc: -Wconversion -Wsign-
conversion). This could matter for files whose sizes are larger than 263 bytes, but it is reasonable to expect that a
world where such files are common would also have larger size_t and qpdf_offset_t types in it. On most
64-bit systems at the time of this writing (the release of version 4.1.0 of qpdf), both size_t and qpdf_offset_t
are 64-bit integer types, while on many current 32-bit systems, size_t is a 32-bit type while qpdf_offset_t is
a 64-bit type. I am not aware of any cases where 32-bit systems that have size_t smaller than qpdf_offset_t
could run into problems. Although I can't conclusively rule out the possibility of such problems existing, I suspect
any cases would be pretty contrived. In the event that someone should produce a file that qpdf can't handle because
of what is suspected to be issues involving the handling of size_t vs. qpdf_offset_t (such files may behave
properly on 64-bit systems but not on 32-bit systems because they have very large embedded files or streams, for
example), the above mentioned warning flags could be enabled and all those implicit conversions could be carefully
scrutinized. (I have already gone through that exercise once in adding support for files larger than 4 GB in size.) I
continue to be committed to supporting large files on 32-bit systems, but I would not go to any lengths to support
corner cases involving large embedded files or large streams that work on 64-bit systems but not on 32-bit systems
because of size_t being too small. It is reasonable to assume that anyone working with such files would be using
a 64-bit system anyway since many 32-bit applications would have similar difficulties.

• size_t vs. int or long. There are some cases where size_t and int or long or size_t and unsigned
int or unsigned long are used interchangeably. These cases occur when working with very small amounts of
memory, such as with the bit readers (where we're working with just a few bytes at a time), some cases of strlen, and
a few other cases. I have scrutinized all of these cases and determined them to be safe, but there is no mechanism in
the code to ensure that new unsafe conversions between int and size_t aren't introduced short of good testing
and strong awareness of the issues. Again, if any such bugs are suspected in the future, enabling the additional
warning flags and scrutinizing the warnings would be in order.

To be clear, I believe qpdf to be well-behaved with respect to sizes and offsets, and qpdf's test suite includes actual
generation and full processing of files larger than 4 GB in size. The issues raised here are largely academic and should
not in any way be interpreted to mean that qpdf has practical problems involving sloppiness with integer types. I also
believe that appropriate measures have been taken in the code to avoid problems with signed vs. unsigned integers
from resulting in memory overwrites or other issues with potential security implications, though there are never any
absolute guarantees.

6.4. Encryption
Encryption is supported transparently by qpdf. When opening a PDF file, if an encryption dictionary exists, the QPDF
object processes this dictionary using the password (if any) provided. The primary decryption key is computed and
cached. No further access is made to the encryption dictionary after that time. When an object is read from a file, the
object ID and generation of the object in which it is contained is always known. Using this information along with
the stored encryption key, all stream and string objects are transparently decrypted. Raw encrypted objects are never
stored in memory. This way, nothing in the library ever has to know or care whether it is reading an encrypted file.

Design and Library Notes

19

An interface is also provided for writing encrypted streams and strings given an encryption key. This is used by
QPDFWriter when it rewrites encrypted files.

When copying encrypted files, unless otherwise directed, qpdf will preserve any encryption in force in the original
file. qpdf can do this with either the user or the owner password. There is no difference in capability based on which
password is used. When 40 or 128 bit encryption keys are used, the user password can be recovered with the owner
password. With 256 keys, the user and owner passwords are used independently to encrypt the actual encryption key,
so while either can be used, the owner password can no longer be used to recover the user password.

Starting with version 4.0.0, qpdf can read files that are not encrypted but that contain encrypted attachments, but it
cannot write such files. qpdf also requires the password to be specified in order to open the file, not just to extract
attachments, since once the file is open, all decryption is handled transparently. When copying files like this while
preserving encryption, qpdf will apply the file's encryption to everything in the file, not just to the attachments. When
decrypting the file, qpdf will decrypt the attachments. In general, when copying PDF files with multiple encryption
formats, qpdf will choose the newest format. The only exception to this is that clear-text metadata will be preserved
as clear-text if it is that way in the original file.

6.5. Random Number Generation
QPDF generates random numbers to support generation of encrypted data. Versions prior to 5.0.1 used random or rand
from stdlib to generate random numbers. Version 5.0.1, if available, used operating system-provided secure random
number generation instead, enabling use of stdlib random number generation only if enabled by a compile-time option.
Starting in version 5.1.0, use of insecure random numbers was disabled unless enabled at compile time. Starting in
version 5.1.0, it is also possible for you to disable use of OS-provided secure random numbers. This is especially
useful on Windows if you want to avoid a dependency on Microsoft's cryptography API. In this case, you must provide
your own random data provider. Regardless of how you compile qpdf, starting in version 5.1.0, it is possible for you
to provide your own random data provider at runtime. This would enable you to use some software-based secure
pseudorandom number generator and to avoid use of whatever the operating system provides. For details on how to
do this, please refer to the top-level README file in the source distribution and to comments in QUtil.hh.

6.6. Adding and Removing Pages
While qpdf's API has supported adding and modifying objects for some time, version 3.0 introduces specific methods
for adding and removing pages. These are largely convenience routines that handle two tricky issues: pushing
inheritable resources from the /Pages tree down to individual pages and manipulation of the /Pages tree itself. For
details, see addPage and surrounding methods in QPDF.hh.

6.7. Reserving Object Numbers
Version 3.0 of qpdf introduced the concept of reserved objects. These are seldom needed for ordinary operations, but
there are cases in which you may want to add a series of indirect objects with references to each other to a QPDF object.
This causes a problem because you can't determine the object ID that a new indirect object will have until you add it to
the QPDF object with QPDF::makeIndirectObject. The only way to add two mutually referential objects to a QPDF
object prior to version 3.0 would be to add the new objects first and then make them refer to each other after adding
them. Now it is possible to create a reserved object using QPDFObjectHandle::newReserved. This is an indirect object
that stays “unresolved” even if it is queried for its type. So now, if you want to create a set of mutually referential
objects, you can create reservations for each one of them and use those reservations to construct the references. When
finished, you can call QPDF::replaceReserved to replace the reserved objects with the real ones. This functionality
will never be needed by most applications, but it is used internally by QPDF when copying objects from other PDF
files, as discussed in Section 6.8, “Copying Objects From Other PDF Files”, page 20. For an example of how to
use reserved objects, search for newReserved in test_driver.cc in qpdf's sources.

Design and Library Notes

20

6.8. Copying Objects From Other PDF Files
Version 3.0 of qpdf introduced the ability to copy objects into a QPDF object from a different QPDF object, which
we refer to as foreign objects. This allows arbitrary merging of PDF files. The qpdf command-line tool provides
limited support for basic page selection, including merging in pages from other files, but the library's API makes
it possible to implement arbitrarily complex merging operations. The main method for copying foreign objects is
QPDF::copyForeignObject. This takes an indirect object from another QPDF and copies it recursively into this object
while preserving all object structure, including circular references. This means you can add a direct object that you
create from scratch to a QPDF object with QPDF::makeIndirectObject, and you can add an indirect object from
another file with QPDF::copyForeignObject. The fact that QPDF::makeIndirectObject does not automatically detect
a foreign object and copy it is an explicit design decision. Copying a foreign object seems like a sufficiently significant
thing to do that it should be done explicitly.

The other way to copy foreign objects is by passing a page from one QPDF to another by calling QPDF::addPage.
In contrast to QPDF::makeIndirectObject, this method automatically distinguishes between indirect objects in the
current file, foreign objects, and direct objects.

6.9. Writing PDF Files
The qpdf library supports file writing of QPDF objects to PDF files through the QPDFWriter class. The
QPDFWriter class has two writing modes: one for non-linearized files, and one for linearized files. See Chapter 7,
Linearization, page 22 for a description of linearization is implemented. This section describes how we write non-
linearized files including the creation of QDF files (see Chapter 4, QDF Mode, page 12.

This outline was written prior to implementation and is not exactly accurate, but it provides a correct “notional” idea
of how writing works. Look at the code in QPDFWriter for exact details.

• Initialize state:

• next object number = 1

• object queue = empty

• renumber table: old object id/generation to new id/0 = empty

• xref table: new id -> offset = empty

• Create a QPDF object from a file.

• Write header for new PDF file.

• Request the trailer dictionary.

• For each value that is an indirect object, grab the next object number (via an operation that returns and increments
the number). Map object to new number in renumber table. Push object onto queue.

• While there are more objects on the queue:

• Pop queue.

• Look up object's new number n in the renumbering table.

• Store current offset into xref table.

• Write n 0 obj.

Design and Library Notes

21

• If object is null, whether direct or indirect, write out null, thus eliminating unresolvable indirect object references.

• If the object is a stream stream, write stream contents, piped through any filters as required, to a memory buffer.
Use this buffer to determine the stream length.

• If object is not a stream, array, or dictionary, write out its contents.

• If object is an array or dictionary (including stream), traverse its elements (for array) or values (for dictionaries),
handling recursive dictionaries and arrays, looking for indirect objects. When an indirect object is found, if it is
not resolvable, ignore. (This case is handled when writing it out.) Otherwise, look it up in the renumbering table.
If not found, grab the next available object number, assign to the referenced object in the renumbering table, and
push the referenced object onto the queue. As a special case, when writing out a stream dictionary, replace length,
filters, and decode parameters as required.

Write out dictionary or array, replacing any unresolvable indirect object references with null (pdf spec says
reference to non-existent object is legal and resolves to null) and any resolvable ones with references to the
renumbered objects.

• If the object is a stream, write stream\n, the stream contents (from the memory buffer), and \nendstream\n.

• When done, write endobj.

Once we have finished the queue, all referenced objects will have been written out and all deleted objects or
unreferenced objects will have been skipped. The new cross-reference table will contain an offset for every new object
number from 1 up to the number of objects written. This can be used to write out a new xref table. Finally we can
write out the trailer dictionary with appropriately computed /ID (see spec, 8.3, File Identifiers), the cross reference
table offset, and %%EOF.

6.10. Filtered Streams
Support for streams is implemented through the Pipeline interface which was designed for this package.

When reading streams, create a series of Pipeline objects. The Pipeline abstract base requires implementation write()
and finish() and provides an implementation of getNext(). Each pipeline object, upon receiving data, does whatever it
is going to do and then writes the data (possibly modified) to its successor. Alternatively, a pipeline may be an end-
of-the-line pipeline that does something like store its output to a file or a memory buffer ignoring a successor. For
additional details, look at Pipeline.hh.

QPDF can read raw or filtered streams. When reading a filtered stream, the QPDF class creates a Pipeline object for
one of each appropriate filter object and chains them together. The last filter should write to whatever type of output
is required. The QPDF class has an interface to write raw or filtered stream contents to a given pipeline.

22

Chapter 7. Linearization
This chapter describes how QPDF and QPDFWriter implement creation and processing of linearized PDFS.

7.1. Basic Strategy for Linearization
To avoid the incestuous problem of having the qpdf library validate its own linearized files, we have a special linearized
file checking mode which can be invoked via qpdf --check-linearization (or qpdf --check). This mode reads the
linearization parameter dictionary and the hint streams and validates that object ordering, parameters, and hint stream
contents are correct. The validation code was first tested against linearized files created by external tools (Acrobat and
pdlin) and then used to validate files created by QPDFWriter itself.

7.2. Preparing For Linearization
Before creating a linearized PDF file from any other PDF file, the PDF file must be altered such that all page attributes
are propagated down to the page level (and not inherited from parents in the /Pages tree). We also have to know
which objects refer to which other objects, being concerned with page boundaries and a few other cases. We refer to
this part of preparing the PDF file as optimization, discussed in Section 7.3, “Optimization”, page 22. Note the, in
this context, the term optimization is a qpdf term, and the term linearization is a term from the PDF specification. Do
not be confused by the fact that many applications refer to linearization as optimization or web optimization.

When creating linearized PDF files from optimized PDF files, there are really only a few issues that need to be dealt
with:

• Creation of hints tables

• Placing objects in the correct order

• Filling in offsets and byte sizes

7.3. Optimization
In order to perform various operations such as linearization and splitting files into pages, it is necessary to know which
objects are referenced by which pages, page thumbnails, and root and trailer dictionary keys. It is also necessary to
ensure that all page-level attributes appear directly at the page level and are not inherited from parents in the pages tree.

We refer to the process of enforcing these constraints as optimization. As mentioned above, note that some applications
refer to linearization as optimization. Although this optimization was initially motivated by the need to create linearized
files, we are using these terms separately.

PDF file optimization is implemented in the QPDF_optimization.cc source file. That file is richly commented and
serves as the primary reference for the optimization process.

After optimization has been completed, the private member variables obj_user_to_objects and object_to_obj_users in
QPDF have been populated. Any object that has more than one value in the object_to_obj_users table is shared. Any
object that has exactly one value in the object_to_obj_users table is private. To find all the private objects in a page or
a trailer or root dictionary key, one merely has make this determination for each element in the obj_user_to_objects
table for the given page or key.

Note that pages and thumbnails have different object user types, so the above test on a page will not include objects
referenced by the page's thumbnail dictionary and nothing else.

Linearization

23

7.4. Writing Linearized Files
We will create files with only primary hint streams. We will never write overflow hint streams. (As of PDF version 1.4,
Acrobat doesn't either, and they are never necessary.) The hint streams contain offset information to objects that point
to where they would be if the hint stream were not present. This means that we have to calculate all object positions
before we can generate and write the hint table. This means that we have to generate the file in two passes. To make
this reliable, QPDFWriter in linearization mode invokes exactly the same code twice to write the file to a pipeline.

In the first pass, the target pipeline is a count pipeline chained to a discard pipeline. The count pipeline simply passes
its data through to the next pipeline in the chain but can return the number of bytes passed through it at any intermediate
point. The discard pipeline is an end of line pipeline that just throws its data away. The hint stream is not written and
dummy values with adequate padding are stored in the first cross reference table, linearization parameter dictionary,
and /Prev key of the first trailer dictionary. All the offset, length, object renumbering information, and anything else
we need for the second pass is stored.

At the end of the first pass, this information is passed to the QPDF class which constructs a compressed hint stream
in a memory buffer and returns it. QPDFWriter uses this information to write a complete hint stream object into a
memory buffer. At this point, the length of the hint stream is known.

In the second pass, the end of the pipeline chain is a regular file instead of a discard pipeline, and we have known values
for all the offsets and lengths that we didn't have in the first pass. We have to adjust offsets that appear after the start of
the hint stream by the length of the hint stream, which is known. Anything that is of variable length is padded, with the
padding code surrounding any writing code that differs in the two passes. This ensures that changes to the way things
are represented never results in offsets that were gathered during the first pass becoming incorrect for the second pass.

Using this strategy, we can write linearized files to a non-seekable output stream with only a single pass to disk or
wherever the output is going.

7.5. Calculating Linearization Data
Once a file is optimized, we have information about which objects access which other objects. We can then process
these tables to decide which part (as described in “Linearized PDF Document Structure” in the PDF specification)
each object is contained within. This tells us the exact order in which objects are written. The QPDFWriter class
asks for this information and enqueues objects for writing in the proper order. It also turns on a check that causes an
exception to be thrown if an object is encountered that has not already been queued. (This could happen only if there
were a bug in the traversal code used to calculate the linearization data.)

7.6. Known Issues with Linearization
There are a handful of known issues with this linearization code. These issues do not appear to impact the behavior of
linearized files which still work as intended: it is possible for a web browser to begin to display them before they are
fully downloaded. In fact, it seems that various other programs that create linearized files have many of these same
issues. These items make reference to terminology used in the linearization appendix of the PDF specification.

• Thread Dictionary information keys appear in part 4 with the rest of Threads instead of in part 9. Objects in part
9 are not grouped together functionally.

• We are not calculating numerators for shared object positions within content streams or interleaving them within
content streams.

• We generate only page offset, shared object, and outline hint tables. It would be relatively easy to add some additional
tables. We gather most of the information needed to create thumbnail hint tables. There are comments in the code
about this.

Linearization

24

7.7. Debugging Note
The qpdf --show-linearization command can show the complete contents of linearization hint streams. To look at the
raw data, you can extract the filtered contents of the linearization hint tables using qpdf --show-object=n --filtered-
stream-data. Then, to convert this into a bit stream (since linearization tables are bit streams written without regard
to byte boundaries), you can pipe the resulting data through the following perl code:

use bytes;
binmode STDIN;
undef $/;
my $a = <STDIN>;
my @ch = split(//, $a);
map { printf("%08b", ord($_)) } @ch;
print "\n";

25

Chapter 8. Object and Cross-Reference
Streams
This chapter provides information about the implementation of object stream and cross-reference stream support in
qpdf.

8.1. Object Streams
Object streams can contain any regular object except the following:

• stream objects

• objects with generation > 0

• the encryption dictionary

• objects containing the /Length of another stream

In addition, Adobe reader (at least as of version 8.0.0) appears to not be able to handle having the document catalog
appear in an object stream if the file is encrypted, though this is not specifically disallowed by the specification.

There are additional restrictions for linearized files. See Section 8.3, “Implications for Linearized Files”, page 26for
details.

The PDF specification refers to objects in object streams as “compressed objects” regardless of whether the object
stream is compressed.

The generation number of every object in an object stream must be zero. It is possible to delete and replace an object
in an object stream with a regular object.

The object stream dictionary has the following keys:

• /N: number of objects

• /First: byte offset of first object

• /Extends: indirect reference to stream that this extends

Stream collections are formed with /Extends. They must form a directed acyclic graph. These can be used for
semantic information and are not meaningful to the PDF document's syntactic structure. Although qpdf preserves
stream collections, it never generates them and doesn't make use of this information in any way.

The specification recommends limiting the number of objects in object stream for efficiency in reading and decoding.
Acrobat 6 uses no more than 100 objects per object stream for linearized files and no more 200 objects per stream for
non-linearized files. QPDFWriter, in object stream generation mode, never puts more than 100 objects in an object
stream.

Object stream contents consists of N pairs of integers, each of which is the object number and the byte offset of the
object relative to the first object in the stream, followed by the objects themselves, concatenated.

8.2. Cross-Reference Streams
For non-hybrid files, the value following startxref is the byte offset to the xref stream rather than the word xref.

Object and Cross-Reference Streams

26

For hybrid files (files containing both xref tables and cross-reference streams), the xref table's trailer dictionary contains
the key /XRefStm whose value is the byte offset to a cross-reference stream that supplements the xref table. A
PDF 1.5-compliant application should read the xref table first. Then it should replace any object that it has already
seen with any defined in the xref stream. Then it should follow any /Prev pointer in the original xref table's trailer
dictionary. The specification is not clear about what should be done, if anything, with a /Prev pointer in the xref
stream referenced by an xref table. The QPDF class ignores it, which is probably reasonable since, if this case were
to appear for any sensible PDF file, the previous xref table would probably have a corresponding /XRefStm pointer
of its own. For example, if a hybrid file were appended, the appended section would have its own xref table and /
XRefStm. The appended xref table would point to the previous xref table which would point the /XRefStm, meaning
that the new /XRefStm doesn't have to point to it.

Since xref streams must be read very early, they may not be encrypted, and the may not contain indirect objects for
keys required to read them, which are these:

• /Type: value /XRef

• /Size: value n+1: where n is highest object number (same as /Size in the trailer dictionary)

• /Index (optional): value [n count ...] used to determine which objects' information is stored in this stream.
The default is [0 /Size].

• /Prev: value offset: byte offset of previous xref stream (same as /Prev in the trailer dictionary)

• /W [...]: sizes of each field in the xref table

The other fields in the xref stream, which may be indirect if desired, are the union of those from the xref table's trailer
dictionary.

8.2.1. Cross-Reference Stream Data
The stream data is binary and encoded in big-endian byte order. Entries are concatenated, and each entry has a length
equal to the total of the entries in /W above. Each entry consists of one or more fields, the first of which is the type of
the field. The number of bytes for each field is given by /W above. A 0 in /W indicates that the field is omitted and
has the default value. The default value for the field type is “1”. All other default values are “0”.

PDF 1.5 has three field types:

• 0: for free objects. Format: 0 obj next-generation, same as the free table in a traditional cross-reference table

• 1: regular non-compressed object. Format: 1 offset generation

• 2: for objects in object streams. Format: 2 object-stream-number index, the number of object stream
containing the object and the index within the object stream of the object.

It seems standard to have the first entry in the table be 0 0 0 instead of 0 0 ffff if there are no deleted objects.

8.3. Implications for Linearized Files
For linearized files, the linearization dictionary, document catalog, and page objects may not be contained in object
streams.

Objects stored within object streams are given the highest range of object numbers within the main and first-page
cross-reference sections.

It is okay to use cross-reference streams in place of regular xref tables. There are on special considerations.

Object and Cross-Reference Streams

27

Hint data refers to object streams themselves, not the objects in the streams. Shared object references should also be
made to the object streams. There are no reference in any hint tables to the object numbers of compressed objects
(objects within object streams).

When numbering objects, all shared objects within both the first and second halves of the linearized files must be
numbered consecutively after all normal uncompressed objects in that half.

8.4. Implementation Notes
There are three modes for writing object streams: disable, preserve, and generate. In disable mode, we do not generate
any object streams, and we also generate an xref table rather than xref streams. This can be used to generate PDF
files that are viewable with older readers. In preserve mode, we write object streams such that written object streams
contain the same objects and /Extends relationships as in the original file. This is equal to disable if the file has no
object streams. In generate, we create object streams ourselves by grouping objects that are allowed in object streams
together in sets of no more than 100 objects. We also ensure that the PDF version is at least 1.5 in generate mode, but
we preserve the version header in the other modes. The default is preserve.

We do not support creation of hybrid files. When we write files, even in preserve mode, we will lose any xref tables
and merge any appended sections.

28

Appendix A. Release Notes
For a detailed list of changes, please see the file ChangeLog in the source distribution.

5.1.3: May 24, 2015

• Bug fix: fix-qdf was not properly handling files that contained object streams with more than 255 objects in
them.

• Bug fix: qpdf was not properly initializing Microsoft's secure crypto provider on fresh Windows installations
that had not had any keys created yet.

• Fix a few errors found by Gynvael Coldwind and Mateusz Jurczyk of the Google Security Team. Please see
the ChangeLog for details.

• Properly handle pages that have no contents at all. There were many cases in which qpdf handled this fine, but
a few methods blindly obtained page contents with handling the possibility that there were no contents.

• Make qpdf more robust for a few more kinds of problems that may occur in invalid PDF files.

5.1.2: June 7, 2014

• Bug fix: linearizing files could create a corrupted output file under extremely unlikely file size circumstances.
See ChangeLog for details. The odds of getting hit by this are very low, though one person did.

• Bug fix: qpdf would fail to write files that had streams with decode parameters referencing other streams.

• New example program: pdf-split-pages: efficiently split PDF files into individual pages. The example program
does this more efficiently than using qpdf --pages to do it.

• Packaging fix: Visual C++ binaries did not support Windows XP. This has been rectified by updating the
compilers used to generate the release binaries.

5.1.1: January 14, 2014

• Performance fix: copying foreign objects could be very slow with certain types of files. This was most likely
to be visible during page splitting and was due to traversing the same objects multiple times in some cases.

5.1.0: December 17, 2013

• Added runtime option (QUtil::setRandomDataProvider) to supply your own random data provider. You can
use this if you want to avoid using the OS-provided secure random number generation facility or stdlib's less
secure version. See comments in include/qpdf/QUtil.hh for details.

• Fixed image comparison tests to not create 12-bit-per-pixel images since some versions of tiffcmp have bugs
in comparing them in some cases. This increases the disk space required by the image comparison tests, which
are off by default anyway.

• Introduce a number of small fixes for compilation on the latest clang in MacOS and the latest Visual C++ in
Windows.

• Be able to handle broken files that end the xref table header with a space instead of a newline.

5.0.1: October 18, 2013

• Thanks to a detailed review by Florian Weimer and the Red Hat Product Security Team, this release includes a
number of non-user-visible security hardening changes. Please see the ChangeLog file in the source distribution
for the complete list.

Release Notes

29

• When available, operating system-specific secure random number generation is used for generating
initialization vectors and other random values used during encryption or file creation. For the Windows build,
this results in an added dependency on Microsoft's cryptography API. To disable the OS-specific cryptography
and use the old version, pass the --enable-insecure-random option to ./configure.

• The qpdf command-line tool now issues a warning when -accessibility=n is specified for newer encryption
versions stating that the option is ignored. qpdf, per the spec, has always ignored this flag, but it previously
did so silently. This warning is issued only by the command-line tool, not by the library. The library's handling
of this flag is unchanged.

5.0.0: July 10, 2013

• Bug fix: previous versions of qpdf would lose objects with generation != 0 when generating object streams.
Fixing this required changes to the public API.

• Removed methods from public API that were only supposed to be called by QPDFWriter and couldn't
realistically be called anywhere else. See ChangeLog for details.

• New QPDFObjGen class added to represent an object ID/generation pair. QPDFObjectHandle::getObjGen() is
now preferred over QPDFObjectHandle::getObjectID() and QPDFObjectHandle::getGeneration() as it makes
it less likely for people to accidentally write code that ignores the generation number. See QPDF.hh and
QPDFObjectHandle.hh for additional notes.

• Add --show-npages command-line option to the qpdf command to show the number of pages in a file.

• Allow omission of the page range within --pages for the qpdf command. When omitted, the page range is
implicitly taken to be all the pages in the file.

• Various enhancements were made to support different types of broken files or broken readers. Details can be
found in ChangeLog.

4.1.0: April 14, 2013

• Note to people including qpdf in distributions: the .la files generated by libtool are now installed by qpdf's make
install target. Before, they were not installed. This means that if your distribution does not want to include .la
files, you must remove them as part of your packaging process.

• Major enhancement: API enhancements have been made to support parsing of content streams. This
enhancement includes the following changes:

• QPDFObjectHandle::parseContentStream method parses objects in a content stream and calls handlers in a
callback class. The example examples/pdf-parse-content.cc illustrates how this may be used.

• QPDFObjectHandle can now represent operators and inline images, object types that may only appear
in content streams.

• Method QPDFObjectHandle::getTypeCode() returns an enumerated type value representing the underlying
object type. Method QPDFObjectHandle::getTypeName() returns a text string describing the name of
the type of a QPDFObjectHandle object. These methods can be used for more efficient parsing and
debugging/diagnostic messages.

• qpdf --check now parses all pages' content streams in addition to doing other checks. While there are still many
types of errors that cannot be detected, syntactic errors in content streams will now be reported.

• Minor compilation enhancements have been made to facilitate easier for support for a broader range of compilers
and compiler versions.

Release Notes

30

• Warning flags have been moved into a separate variable in autoconf.mk

• The configure flag --enable-werror work for Microsoft compilers

• All MSVC CRT security warnings have been resolved.

• All C-style casts in C++ Code have been replaced by C++ casts, and many casts that had been included
to suppress higher warning levels for some compilers have been removed, primarily for clarity. Places
where integer type coercion occurs have been scrutinized. A new casting policy has been documented in the
manual. This is of concern mainly to people porting qpdf to new platforms or compilers. It is not visible to
programmers writing code that uses the library

• Some internal limits have been removed in code that converts numbers to strings. This is largely invisible to
users, but it does trigger a bug in some older versions of mingw-w64's C++ library. See README-windows.txt
in the source distribution if you think this may affect you. The copy of the DLL distributed with qpdf's binary
distribution is not affected by this problem.

• The RPM spec file previously included with qpdf has been removed. This is because virtually all Linux
distributions include qpdf now that it is a dependency of CUPS filters.

• A few bug fixes are included:

• Overridden compressed objects are properly handled. Before, there were certain constructs that could cause
qpdf to see old versions of some objects. The most usual manifestation of this was loss of filled in form
values for certain files.

• Installation no longer uses GNU/Linux-specific versions of some commands, so make install works on
Solaris with native tools.

• The 64-bit mingw Windows binary package no longer includes a 32-bit DLL.

4.0.1: January 17, 2013

• Fix detection of binary attachments in test suite to avoid false test failures on some platforms.

• Add clarifying comment in QPDF.hh to methods that return the user password explaining that it is no longer
possible with newer encryption formats to recover the user password knowing the owner password. In earlier
encryption formats, the user password was encrypted in the file using the owner password. In newer encryption
formats, a separate encryption key is used on the file, and that key is independently encrypted using both the
user password and the owner password.

4.0.0: December 31, 2012

• Major enhancement: support has been added for newer encryption schemes supported by version X of Adobe
Acrobat. This includes use of 127-character passwords, 256-bit encryption keys, and the encryption scheme
specified in ISO 32000-2, the PDF 2.0 specification. This scheme can be chosen from the command line by
specifying use of 256-bit keys. qpdf also supports the deprecated encryption method used by Acrobat IX. This
encryption style has known security weaknesses and should not be used in practice. However, such files exist “in
the wild,” so support for this scheme is still useful. New methods QPDFWriter::setR6EncryptionParameters
(for the PDF 2.0 scheme) and QPDFWriter::setR5EncryptionParameters (for the deprecated scheme) have
been added to enable these new encryption schemes. Corresponding functions have been added to the C API
as well.

• Full support for Adobe extension levels in PDF version information. Starting with PDF version 1.7,
corresponding to ISO 32000, Adobe adds new functionality by increasing the extension level rather

Release Notes

31

than increasing the version. This support includes addition of the QPDF::getExtensionLevel method for
retrieving the document's extension level, addition of versions of QPDFWriter::setMinimumPDFVersion
and QPDFWriter::forcePDFVersion that accept an extension level, and extended syntax for specifying
forced and minimum versions on the command line as described in Section 3.5, “Advanced Transformation
Options”, page 8. Corresponding functions have been added to the C API as well.

• Minor fixes to prevent qpdf from referencing objects in the file that are not referenced in the file's overall
structure. Most files don't have any such objects, but some files have contain unreferenced objects with errors,
so these fixes prevent qpdf from needlessly rejecting or complaining about such objects.

• Add new generalized methods for reading and writing files from/to programmer-defined sources. The
method QPDF::processInputSource allows the programmer to use any input source for the input file, and
QPDFWriter::setOutputPipeline allows the programmer to write the output file through any pipeline. These
methods would make it possible to perform any number of specialized operations, such as accessing external
storage systems, creating bindings for qpdf in other programming languages that have their own I/O systems,
etc.

• Add new method QPDF::getEncryptionKey for retrieving the underlying encryption key used in the file.

• This release includes a small handful of non-compatible API changes. While effort is made to avoid such
changes, all the non-compatible API changes in this version were to parts of the API that would likely never
be used outside the library itself. In all cases, the altered methods or structures were parts of the QPDF that
were public to enable them to be called from either QPDFWriter or were part of validation code that was over-
zealous in reporting problems in parts of the file that would not ordinarily be referenced. In no case did any of
the removed methods do anything worse that falsely report error conditions in files that were broken in ways
that didn't matter. The following public parts of the QPDF class were changed in a non-compatible way:

• Updated nested QPDF::EncryptionData class to add fields needed by the newer encryption formats,
member variables changed to private so that future changes will not require breaking backward compatibility.

• Added additional parameters to compute_data_key, which is used by QPDFWriter to compute the
encryption key used to encrypt a specific object.

• Removed the method flattenScalarReferences. This method was previously used prior to writing a new PDF
file, but it has the undesired side effect of causing qpdf to read objects in the file that were not referenced.
Some otherwise files have unreferenced objects with errors in them, so this could cause qpdf to reject files
that would be accepted by virtually all other PDF readers. In fact, qpdf relied on only a very small part of
what flattenScalarReferences did, so only this part has been preserved, and it is now done directly inside
QPDFWriter.

• Removed the method decodeStreams. This method was used by the --check option of the qpdf command-line
tool to force all streams in the file to be decoded, but it also suffered from the problem of opening otherwise
unreferenced streams and thus could report false positive. The --check option now causes qpdf to go through
all the motions of writing a new file based on the original one, so it will always reference and check exactly
those parts of a file that any ordinary viewer would check.

• Removed the method trimTrailerForWrite. This method was used by QPDFWriter to modify the original
QPDF object by removing fields from the trailer dictionary that wouldn't apply to the newly written file.
This functionality, though generally harmless, was a poor implementation and has been replaced by having
QPDFWriter filter these out when copying the trailer rather than modifying the original QPDF object. (Note
that qpdf never modifies the original file itself.)

• Allow the PDF header to appear anywhere in the first 1024 bytes of the file. This is consistent with what other
readers do.

• Fix the pkg-config files to list zlib and pcre in Requires.private to better support static linking using pkg-config.

Release Notes

32

3.0.2: September 6, 2012

• Bug fix: QPDFWriter::setOutputMemory did not work when not used with QPDFWriter::setStaticID, which
made it pretty much useless. This has been fixed.

• New API call QPDFWriter::setExtraHeaderText inserts additional text near the header of the PDF file. The
intended use case is to insert comments that may be consumed by a downstream application, though other use
cases may exist.

3.0.1: August 11, 2012

• Version 3.0.0 included addition of files for pkg-config, but this was not mentioned in the release notes. The
release notes for 3.0.0 were updated to mention this.

• Bug fix: if an object stream ended with a scalar object not followed by space, qpdf would incorrectly report that
it encountered a premature EOF. This bug has been in qpdf since version 2.0.

3.0.0: August 2, 2012

• Acknowledgment: I would like to express gratitude for the contributions of Tobias Hoffmann toward the release
of qpdf version 3.0. He is responsible for most of the implementation and design of the new API for manipulating
pages, and contributed code and ideas for many of the improvements made in version 3.0. Without his work,
this release would certainly not have happened as soon as it did, if at all.

• Non-compatible API change: The version of QPDFObjectHandle::replaceStreamData that uses a
StreamDataProvider no longer requires (or accepts) a length parameter. See Appendix C, Upgrading to
3.0, page 38 for an explanation. While care is taken to avoid non-compatible API changes in general, an
exception was made this time because the new interface offers an opportunity to significantly simplify calling
code.

• Support has been added for large files. The test suite verifies support for files larger than 4 gigabytes, and
manual testing has verified support for files larger than 10 gigabytes. Large file support is available for both
32-bit and 64-bit platforms as long as the compiler and underlying platforms support it.

• Support for page selection (splitting and merging PDF files) has been added to the qpdf command-line tool.
See Section 3.4, “Page Selection Options”, page 6.

• Options have been added to the qpdf command-line tool for copying encryption parameters from another file.
See Section 3.2, “Basic Options”, page 4.

• New methods have been added to the QPDF object for adding and removing pages. See Section 6.6, “Adding
and Removing Pages”, page 19.

• New methods have been added to the QPDF object for copying objects from other PDF files. See Section 6.8,
“Copying Objects From Other PDF Files”, page 20

• A new method QPDFObjectHandle::parse has been added for constructing QPDFObjectHandle objects
from a string description.

• Methods have been added to QPDFWriter to allow writing to an already open stdio FILE* addition to writing
to standard output or a named file. Methods have been added to QPDF to be able to process a file from an
already open stdio FILE*. This makes it possible to read and write PDF from secure temporary files that have
been unlinked prior to being fully read or written.

• The QPDF::emptyPDF can be used to allow creation of PDF files from scratch. The example examples/pdf-
create.cc illustrates how it can be used.

Release Notes

33

• Several methods to take PointerHolder<Buffer> can now also accept std::string arguments.

• Many new convenience methods have been added to the library, most in QPDFObjectHandle. See
ChangeLog for a full list.

• When building on a platform that supports ELF shared libraries (such as Linux), symbol versions are enabled
by default. They can be disabled by passing --disable-ld-version-script to ./configure.

• The file libqpdf.pc is now installed to support pkg-config.

• Image comparison tests are off by default now since they are not needed to verify a correct build or port of
qpdf. They are needed only when changing the actual PDF output generated by qpdf. You should enable them
if you are making deep changes to qpdf itself. See README for details.

• Large file tests are off by default but can be turned on with ./configure or by setting an environment variable
before running the test suite. See README for details.

• When qpdf's test suite fails, failures are not printed to the terminal anymore by default. Instead, find them in
build/qtest.log. For packagers who are building with an autobuilder, you can add the --enable-show-failed-
test-output option to ./configure to restore the old behavior.

2.3.1: December 28, 2011

• Fix thread-safety problem resulting from non-thread-safe use of the PCRE library.

• Made a few minor documentation fixes.

• Add workaround for a bug that appears in some versions of ghostscript to the test suite

• Fix minor build issue for Visual C++ 2010.

2.3.0: August 11, 2011

• Bug fix: when preserving existing encryption on encrypted files with cleartext metadata, older qpdf versions
would generate password-protected files with no valid password. This operation now works. This bug only
affected files created by copying existing encryption parameters; explicit encryption with specification of
cleartext metadata worked before and continues to work.

• Enhance QPDFWriter with a new constructor that allows you to delay the specification of the output file.
When using this constructor, you may now call QPDFWriter::setOutputFilename to specify the output file,
or you may use QPDFWriter::setOutputMemory to cause QPDFWriter to write the resulting PDF file to a
memory buffer. You may then use QPDFWriter::getBuffer to retrieve the memory buffer.

• Add new API call QPDF::replaceObject for replacing objects by object ID

• Add new API call QPDF::swapObjects for swapping two objects by object ID

• Add QPDFObjectHandle::getDictAsMap and QPDFObjectHandle::getArrayAsVector to allow retrieval of
dictionary objects as maps and array objects as vectors.

• Add functions qpdf_get_info_key and qpdf_set_info_key to the C API for manipulating string fields of the
document's /Info dictionary.

• Add functions qpdf_init_write_memory, qpdf_get_buffer_length, and qpdf_get_buffer to the C API for writing
PDF files to a memory buffer instead of a file.

2.2.4: June 25, 2011

• Fix installation and compilation issues; no functionality changes.

Release Notes

34

2.2.3: April 30, 2011

• Handle some damaged streams with incorrect characters following the stream keyword.

• Improve handling of inline images when normalizing content streams.

• Enhance error recovery to properly handle files that use object 0 as a regular object, which is specifically
disallowed by the spec.

2.2.2: October 4, 2010

• Add new function qpdf_read_memory to the C API to call QPDF::processMemoryFile. This was an omission
in qpdf 2.2.1.

2.2.1: October 1, 2010

• Add new method QPDF::setOutputStreams to replace std::cout and std::cerr with other streams for generation
of diagnostic messages and error messages. This can be useful for GUIs or other applications that want to
capture any output generated by the library to present to the user in some other way. Note that QPDF does
not write to std::cout (or the specified output stream) except where explicitly mentioned in QPDF.hh, and
that the only use of the error stream is for warnings. Note also that output of warnings is suppressed when
setSuppressWarnings(true) is called.

• Add new method QPDF::processMemoryFile for operating on PDF files that are loaded into memory rather
than in a file on disk.

• Give a warning but otherwise ignore empty PDF objects by treating them as null. Empty object are not permitted
by the PDF specification but have been known to appear in some actual PDF files.

• Handle inline image filter abbreviations when the appear as stream filter abbreviations. The PDF specification
does not allow use of stream filter abbreviations in this way, but Adobe Reader and some other PDF readers
accept them since they sometimes appear incorrectly in actual PDF files.

• Implement miscellaneous enhancements to PointerHolder and Buffer to support other changes.

2.2.0: August 14, 2010

• Add new methods to QPDFObjectHandle (newStream and replaceStreamData for creating new streams and
replacing stream data. This makes it possible to perform a wide range of operations that were not previously
possible.

• Add new helper method in QPDFObjectHandle (addPageContents) for appending or prepending new content
streams to a page. This method makes it possible to manipulate content streams without having to be concerned
whether a page's contents are a single stream or an array of streams.

• Add new method in QPDFObjectHandle: replaceOrRemoveKey, which replaces a dictionary key with a
given value unless the value is null, in which case it removes the key instead.

• Add new method in QPDFObjectHandle: getRawStreamData, which returns the raw (unfiltered) stream data
into a buffer. This complements the getStreamData method, which returns the filtered (uncompressed) stream
data and can only be used when the stream's data is filterable.

• Provide two new examples: pdf-double-page-size and pdf-invert-images that illustrate the newly added
interfaces.

• Fix a memory leak that would cause loss of a few bytes for every object involved in a cycle of object references.
Thanks to Jian Ma for calling my attention to the leak.

Release Notes

35

2.1.5: April 25, 2010

• Remove restriction of file identifier strings to 16 bytes. This unnecessary restriction was preventing qpdf from
being able to encrypt or decrypt files with identifier strings that were not exactly 16 bytes long. The specification
imposes no such restriction.

2.1.4: April 18, 2010

• Apply the same padding calculation fix from version 2.1.2 to the main cross reference stream as well.

• Since qpdf --check only performs limited checks, clarify the output to make it clear that there still may be
errors that qpdf can't check. This should make it less surprising to people when another PDF reader is unable
to read a file that qpdf thinks is okay.

2.1.3: March 27, 2010

• Fix bug that could cause a failure when rewriting PDF files that contain object streams with unreferenced objects
that in turn reference indirect scalars.

• Don't complain about (invalid) AES streams that aren't a multiple of 16 bytes. Instead, pad them before
decrypting.

2.1.2: January 24, 2010

• Fix bug in padding around first half cross reference stream in linearized files. The bug could cause an assertion
failure when linearizing certain unlucky files.

2.1.1: December 14, 2009

• No changes in functionality; insert missing include in an internal library header file to support gcc 4.4, and
update test suite to ignore broken Adobe Reader installations.

2.1: October 30, 2009

• This is the first version of qpdf to include Windows support. On Windows, it is possible to build a DLL.
Additionally, a partial C-language API has been introduced, which makes it possible to call qpdf functions
from non-C++ environments. I am very grateful to Zarko Gagic (http://delphi.about.com/) for tirelessly testing
numerous pre-release versions of this DLL and providing many excellent suggestions on improving the
interface.

For programming to the C interface, please see the header file qpdf/qpdf-c.h and the example examples/pdf-
linearize.c.

• Zarko Gajic has written a Delphi wrapper for qpdf, which can be downloaded from qpdf's download side.
Zarko's Delphi wrapper is released with the same licensing terms as qpdf itself and comes with this disclaimer:
“Delphi wrapper unit qpdf.pas created by Zarko Gajic (http://delphi.about.com/). Use at your own risk and for
whatever purpose you want. No support is provided. Sample code is provided.”

• Support has been added for AES encryption and crypt filters. Although qpdf does not presently support files
that use PKI-based encryption, with the addition of AES and crypt filters, qpdf is now be able to open most
encrypted files created with newer versions of Acrobat or other PDF creation software. Note that I have not
been able to get very many files encrypted in this way, so it's possible there could still be some cases that qpdf
can't handle. Please report them if you find them.

• Many error messages have been improved to include more information in hopes of making qpdf a more useful
tool for PDF experts to use in manually recovering damaged PDF files.

http://delphi.about.com/

http://delphi.about.com/

Release Notes

36

• Attempt to avoid compressing metadata streams if possible. This is consistent with other PDF creation
applications.

• Provide new command-line options for AES encrypt, cleartext metadata, and setting the minimum and forced
PDF versions of output files.

• Add additional methods to the QPDF object for querying the document's permissions. Although qpdf does
not enforce these permissions, it does make them available so that applications that use qpdf can enforce
permissions.

• The --check option to qpdf has been extended to include some additional information.

• There have been a handful of non-compatible API changes. For details, see Appendix B, Upgrading from 2.0
to 2.1, page 37.

2.0.6: May 3, 2009

• Do not attempt to uncompress streams that have decode parameters we don't recognize. Earlier versions of qpdf
would have rejected files with such streams.

2.0.5: March 10, 2009

• Improve error handling in the LZW decoder, and fix a small error introduced in the previous version with regard
to handling full tables. The LZW decoder has been more strongly verified in this release.

2.0.4: February 21, 2009

• Include proper support for LZW streams encoded without the “early code change” flag. Special thanks to Atom
Smasher who reported the problem and provided an input file compressed in this way, which I did not previously
have.

• Implement some improvements to file recovery logic.

2.0.3: February 15, 2009

• Compile cleanly with gcc 4.4.

• Handle strings encoded as UTF-16BE properly.

2.0.2: June 30, 2008

• Update test suite to work properly with a non-bash /bin/sh and with Perl 5.10. No changes were made to the
actual qpdf source code itself for this release.

2.0.1: May 6, 2008

• No changes in functionality or interface. This release includes fixes to the source code so that qpdf compiles
properly and passes its test suite on a broader range of platforms. See ChangeLog in the source distribution
for details.

2.0: April 29, 2008

• First public release.

37

Appendix B. Upgrading from 2.0 to 2.1
Although, as a general rule, we like to avoid introducing source-level incompatibilities in qpdf's interface, there were a
few non-compatible changes made in this version. A considerable amount of source code that uses qpdf will probably
compile without any changes, but in some cases, you may have to update your code. The changes are enumerated here.
There are also some new interfaces; for those, please refer to the header files.

• QPDF's exception handling mechanism now uses std::logic_error for internal errors and std::runtime_error
for runtime errors in favor of the now removed QEXC classes used in previous versions. The QEXC exception
classes predated the addition of the <stdexcept> header file to the C++ standard library. Most of the exceptions
thrown by the qpdf library itself are still of type QPDFExc which is now derived from std::runtime_error.
Programs that caught an instance of std::exception and displayed it by calling the what() method will not need
to be changed.

• The QPDFExc class now internally represents various fields of the error condition and provides interfaces for
querying them. Among the fields is a numeric error code that can help applications act differently on (a small number
of) different error conditions. See QPDFExc.hh for details.

• Warnings can be retrieved from qpdf as instances of QPDFExc instead of strings.

• The nested QPDF::EncryptionData class's constructor takes an additional argument. This class is primarily
intended to be used by QPDFWriter. There's not really anything useful an end-user application could do with it. It
probably shouldn't really be part of the public interface to begin with. Likewise, some of the methods for computing
internal encryption dictionary parameters have changed to support /R=4 encryption.

• The method QPDF::getUserPassword has been removed since it didn't do what people would think it did. There
are now two new methods: QPDF::getPaddedUserPassword and QPDF::getTrimmedUserPassword. The first one
does what the old QPDF::getUserPassword method used to do, which is to return the password with possible binary
padding as specified by the PDF specification. The second one returns a human-readable password string.

• The enumerated types that used to be nested in QPDFWriter have moved to top-level enumerated types and are
now defined in the file qpdf/Constants.h. This enables them to be shared by both the C and C++ interfaces.

38

Appendix C. Upgrading to 3.0
For the most part, the API for qpdf version 3.0 is backward compatible with versions 2.1 and later. There are two
exceptions:

• The method QPDFObjectHandle::replaceStreamData that uses a StreamDataProvider to provide the stream
data no longer takes a length parameter. While it would have been easy enough to keep the parameter for backward
compatibility, in this case, the parameter was removed since this provides the user an opportunity to simplify the
calling code. This method was introduced in version 2.2. At the time, the length parameter was required in order
to ensure that calls to the stream data provider returned the same length for a specific stream every time they were
invoked. In particular, the linearization code depends on this. Instead, qpdf 3.0 and newer check for that constraint
explicitly. The first time the stream data provider is called for a specific stream, the actual length is saved, and
subsequent calls are required to return the same number of bytes. This means the calling code no longer has to
compute the length in advance, which can be a significant simplification. If your code fails to compile because of
the extra argument and you don't want to make other changes to your code, just omit the argument.

• Many methods take long long instead of other integer types. Most if not all existing code should compile fine
with this change since such parameters had always previously been smaller types. This change was required to
support files larger than two gigabytes in size.

39

Appendix D. Upgrading to 4.0
While version 4.0 includes a few non-compatible API changes, it is very unlikely that anyone's code would have
used any of those parts of the API since they generally required information that would only be available inside the
library. In the unlikely event that you should run into trouble, please see the ChangeLog. See also Appendix A, Release
Notes, page 28 for a complete list of the non-compatible API changes made in this version.

qpdf-7.1.0/qpdf/qtest/qpdf/page_api_1.pdf

Original page 0

Original page 1

Original page 2

Original page 3

Original page 4

Original page 5

Original page 6

Original page 7

Original page 8

Original page 9

qpdf-7.1.0/qpdf/qtest/qpdf/diff-ignore-ID-version

#!/bin/sh
lines=$(expr 0 + $(diff "$1" "$2" | egrep '^[<>]' | \
 egrep -v '/ID' | egrep -v '%PDF-' | wc -l))
if ["$lines" = "0"]; then
 echo okay
else
 diff -a -U 0 "$1" "$2"
fi

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.10.c-check

version: 1.5
linearized: 0
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.8-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/test4-3.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.5-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-min-1.7.1.out

version: 1.7
extension level: 1
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 1 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/enc-XI-R6,V5,U=attachment,encrypted-attachments.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.3.c-check

version: 1.3
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.9.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/11-pages.pdf

Original page 1

Original page 2

Original page 3

Original page 4

Original page 5

Original page 6

Original page 7

Original page 8

Original page 9

Original page 10

Original page 11

qpdf-7.1.0/qpdf/qtest/qpdf/bad7.out

bad7.pdf (file position 698): expected trailer dictionary

qpdf-7.1.0/qpdf/qtest/qpdf/p1-a-p2-a.pdf

A

A

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.2.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.4.c-check

version: 1.2
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.8.c-check

version: 1.3
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/issue-51.out

WARNING: issue-51.pdf: can't find PDF header
WARNING: issue-51.pdf: reported number of objects (0) inconsistent with actual number of objects (9)
WARNING: issue-51.pdf (object 7 0, file position 553): expected endobj
WARNING: issue-51.pdf (object 1 0, file position 359): expected endobj
WARNING: issue-51.pdf (file position 70): loop detected resolving object 2 0
WARNING: issue-51.pdf (object 2 0, file position 26): /Length key in stream dictionary is not an integer
WARNING: issue-51.pdf (object 2 0, file position 71): attempting to recover stream length
WARNING: issue-51.pdf (object 2 0, file position 71): unable to recover stream data; treating stream as empty
WARNING: issue-51.pdf (object 2 0, file position 977): EOF while reading token
qpdf: operation succeeded with warnings; resulting file may have some problems

qpdf-7.1.0/qpdf/qtest/qpdf/enc-XI-R6,V5,O=master.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.10-ogen.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad13-recover.out

WARNING: bad13.pdf (trailer, file position 753): treating unexpected brace token as null
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad29-recover.out

WARNING: bad29.pdf: file is damaged
WARNING: bad29.pdf (trailer, file position 742): null character not allowed in name token
WARNING: bad29.pdf: Attempting to reconstruct cross-reference table
bad29.pdf (trailer, file position 742): null character not allowed in name token

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.1-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad20-recover.out

WARNING: bad20.pdf: file is damaged
WARNING: bad20.pdf (trailer, file position 753): invalid character (q) in hexstring
WARNING: bad20.pdf: Attempting to reconstruct cross-reference table
bad20.pdf (trailer, file position 753): invalid character (q) in hexstring

qpdf-7.1.0/qpdf/qtest/qpdf/enc-XI-base.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/misc-1.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/lin-delete-and-reuse-check.out

checking lin-delete-and-reuse.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/lin7.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/bad25.out

WARNING: bad25.pdf (object 4 0, file position 307): expected n n obj
/QTest is implicit
/QTest is indirect and has type null (2)
/QTest is null
unparse: 4 0 R
unparseResolved: null
test 0 done

qpdf-7.1.0/qpdf/qtest/qpdf/image-streams-none.out

page 1
filter: /FlateDecode, color space: /DeviceCMYK
page 2
filter: /DCTDecode, color space: /DeviceCMYK
page 3
filter: /RunLengthDecode, color space: /DeviceCMYK
page 4
filter: /FlateDecode, color space: /DeviceRGB
page 5
filter: /DCTDecode, color space: /DeviceRGB
page 6
filter: /RunLengthDecode, color space: /DeviceRGB
page 7
filter: /FlateDecode, color space: /DeviceGray
page 8
filter: /DCTDecode, color space: /DeviceGray
page 9
filter: /RunLengthDecode, color space: /DeviceGray
test 39 done

qpdf-7.1.0/qpdf/qtest/qpdf/append-page-content-damaged.pdf

Potato 0 new

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/show-pages.out

page 1: 5 0 R
 content:
 7 0 R
page 2: 6 0 R
 content:
 10 0 R

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-03.Pdf

Original page 3

qpdf-7.1.0/qpdf/qtest/qpdf/test14-out.pdf

Potato 1

Potato 3

Potato 2

Potato 4

qpdf-7.1.0/qpdf/qtest/qpdf/bad18.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-min-1.7.1.out

version: 1.7
extension level: 1
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 1 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/good4.out

/QTest is implicit
/QTest is indirect and has type null (2)
/QTest is null
unparse: 7 0 R
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.4-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad20.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/gen1.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/c-r4.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.2-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/merge-three-files-1.pdf

Potato 0

Potato 2

Potato 4

Potato 5

Potato 6

Potato 29

Original page 19

Original page 18

Original page 17

Original page 16

Original page 15

Original page 14

Potato 11

Original page 9

Original page 9

Potato

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.11-ogen.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/lin1.out

WARNING: end of first page section (/E) mismatch: /E = 1827; computed = 3889..3891
WARNING: page 0 has shared identifier entries
WARNING: page 0: shared object 62: in hint table but not computed list
lin1.pdf: linearization data:

file_size: 13103
first_page_object: 62
first_page_end: 1827
npages: 30
xref_zero_offset: 11776
first_page: 0
H_offset: 1211
H_length: 203

Page Offsets Hint Table

min_nobjects: 2
first_page_offset: 1414
nbits_delta_nobjects: 4
min_page_length: 259
nbits_delta_page_length: 12
min_content_offset: 0
nbits_delta_content_offset: 0
min_content_length: 0
nbits_delta_content_length: 12
nbits_nshared_objects: 2
nbits_shared_identifier: 2
nbits_shared_numerator: 4
shared_denominator: 8
Page 0:
 nobjects: 16
 length: 2477
 content_offset: 0
 content_length: 2218
 nshared_objects: 2
 identifier 0: 0
 numerator 0: 0
 identifier 1: 0
 numerator 1: 0
Page 1:
 nobjects: 2
 length: 259
 content_offset: 0
 content_length: 0
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 2:
 nobjects: 2
 length: 259
 content_offset: 0
 content_length: 0
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 3:
 nobjects: 2
 length: 259
 content_offset: 0
 content_length: 0
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 4:
 nobjects: 2
 length: 259
 content_offset: 0
 content_length: 0
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 5:
 nobjects: 2
 length: 261
 content_offset: 0
 content_length: 2
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 6:
 nobjects: 2
 length: 262
 content_offset: 0
 content_length: 3
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 7:
 nobjects: 2
 length: 262
 content_offset: 0
 content_length: 3
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 8:
 nobjects: 2
 length: 262
 content_offset: 0
 content_length: 3
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 9:
 nobjects: 2
 length: 262
 content_offset: 0
 content_length: 3
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 10:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 11:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 12:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 13:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 14:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 15:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 16:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 17:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 18:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 19:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 20:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 21:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 22:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 23:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 24:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 25:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 26:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 27:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 28:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
Page 29:
 nobjects: 2
 length: 263
 content_offset: 0
 content_length: 4
 nshared_objects: 2
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0

Shared Objects Hint Table

first_shared_obj: 0
first_shared_offset: 0
nshared_first_page: 16
nshared_total: 16
nbits_nobjects: 0
min_group_length: 34
nbits_delta_group_length: 9
Shared Object 0:
 group length: 157
Shared Object 1:
 group length: 105
Shared Object 2:
 group length: 117
Shared Object 3:
 group length: 34
Shared Object 4:
 group length: 82
Shared Object 5:
 group length: 191
Shared Object 6:
 group length: 144
Shared Object 7:
 group length: 168
Shared Object 8:
 group length: 291
Shared Object 9:
 group length: 165
Shared Object 10:
 group length: 162
Shared Object 11:
 group length: 182
Shared Object 12:
 group length: 201
Shared Object 13:
 group length: 150
Shared Object 14:
 group length: 164
Shared Object 15:
 group length: 164

Outlines Hint Table

first_object: 66
first_object_offset: 1827
nobjects: 12
group_length: 2064

qpdf-7.1.0/qpdf/qtest/qpdf/bad2.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/bad26-recover.out

WARNING: bad26.pdf: file is damaged
WARNING: bad26.pdf (object 4 0, file position 307): expected n n obj
WARNING: bad26.pdf: Attempting to reconstruct cross-reference table
WARNING: bad26.pdf: object 4 0 not found in file after regenerating cross reference table
/QTest is implicit
/QTest is indirect and has type null (2)
/QTest is null
unparse: 4 0 R
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad36.out

WARNING: bad36.pdf (trailer, file position 764): unknown token while reading object; treating as string
WARNING: bad36.pdf (trailer, file position 715): expected dictionary key but found non-name object; inserting key /QPDFFake2
WARNING: bad36.pdf (trailer, file position 715): dictionary ended prematurely; using null as value for last key
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 0 done

qpdf-7.1.0/qpdf/qtest/qpdf/xref-with-short-size.out

WARNING: xref-with-short-size.pdf (xref stream, file position 16227): Cross-reference stream data has the wrong size; expected = 52; actual = 56
1/0: compressed; stream = 5, index = 1
2/0: compressed; stream = 5, index = 0
3/0: uncompressed; offset = 15
4/0: compressed; stream = 5, index = 5
5/0: uncompressed; offset = 15548
6/0: compressed; stream = 5, index = 6
7/0: compressed; stream = 5, index = 4
8/0: compressed; stream = 5, index = 2
9/0: uncompressed; offset = 150
10/0: compressed; stream = 5, index = 3
11/0: compressed; stream = 5, index = 7
12/0: compressed; stream = 5, index = 8
qpdf: operation succeeded with warnings; resulting file may have some problems

qpdf-7.1.0/qpdf/qtest/qpdf/delete-and-reuse.qdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

qpdf-7.1.0/qpdf/qtest/qpdf/bad32.out

WARNING: bad32.pdf (object 4 0, file position 307): expected 4 0 obj
/QTest is implicit
/QTest is indirect and has type null (2)
/QTest is null
unparse: 4 0 R
unparseResolved: null
test 0 done

qpdf-7.1.0/qpdf/qtest/qpdf/aes-forced-check.out

checking b.pdf
PDF Version: 1.4
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/unfilterable-with-crypt.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/png-filters-decoded.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/tokenize-content-streams.out

operator: BT
name: /F1
integer: 24
operator: Tf
integer: 72
integer: 720
operator: Td
string: (Potato)
operator: Tj
operator: ET
-EOF-
real: 0.1
integer: 0
integer: 0
real: 0.1
integer: 0
integer: 0
operator: cm
operator: q
integer: 0
real: 1.1999
real: -1.1999
integer: 0
real: 121.19
real: 150.009
operator: cm
operator: BI
name: /CS
name: /G
name: /W
integer: 1
name: /H
integer: 1
name: /BPC
integer: 8
name: /F
name: /Fl
name: /DP
dictionary: << /Columns 1 /Predictor 15 >>
operator: ID
inline-image: 789c63fc0f0001030101
operator: EI
operator: Q
operator: q
integer: 0
real: 35.997
real: -128.389
integer: 0
real: 431.964
real: 7269.02
operator: cm
operator: BI
name: /CS
name: /G
name: /W
integer: 30
name: /H
integer: 107
name: /BPC
integer: 8
name: /F
name: /Fl
name: /DP
dictionary: << /Columns 30 /Predictor 15 >>
operator: ID
inline-image: 789cedd1a11100300800b1b2ffd06503148283bc8dfcf8af2a306ee352eff2e06318638c31c63b3801627b620a
operator: EI
operator: Q
operator: q
integer: 0
real: 38.3968
real: -93.5922
integer: 0
real: 431.964
real: 7567.79
operator: cm
operator: BI
name: /CS
name: /G
name: /W
integer: 32
name: /H
integer: 78
name: /BPC
integer: 8
name: /F
name: /Fl
name: /DP
dictionary: << /Columns 32 /Predictor 15 >>
operator: ID
inline-image: 789c63fccf801f308e2a185530aa60882a20203faa605401890a0643aa1e5530aa6054010d140000bdd03c13
operator: EI
operator: Q
-EOF-
test 37 done

qpdf-7.1.0/qpdf/qtest/qpdf/c-invalid-password.out

error: enc-R2,V1,U=view.pdf: invalid password
 code: 4
 file: enc-R2,V1,U=view.pdf
 pos : 0
 text: invalid password

qpdf-7.1.0/qpdf/qtest/qpdf/good1.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.9-ogen.c-check

version: 1.5
linearized: 1
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/test4-4.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/reserved-objects.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/c-r5.out

checking a.pdf
PDF Version: 1.7 extension level 3
R = 5
P = -2052
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: not allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
stream encryption method: AESv3
string encryption method: AESv3
file encryption method: AESv3
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad-jpeg.out

WARNING: bad-jpeg.pdf (file position 735): error decoding stream data for object 6 0: Not a JPEG file: starts with 0x77 0x77
WARNING: bad-jpeg.pdf (file position 735): stream will be re-processed without filtering to avoid data loss
qpdf: operation succeeded with warnings; resulting file may have some problems

qpdf-7.1.0/qpdf/qtest/qpdf/bad14.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.3.check

checking a.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.disable.exp

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

qpdf-7.1.0/qpdf/qtest/qpdf/direct-outlines.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/qstream.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/good11.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/enc-R3,V2,U=view.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/bad9-recover.out

WARNING: bad9.pdf: file is damaged
WARNING: bad9.pdf (trailer, file position 712): trailer dictionary lacks /Size key
WARNING: bad9.pdf: Attempting to reconstruct cross-reference table
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/c-info2.out

Info key /Author: Someone Else
Info key /Producer: Something Else
Info key /Creator: A. Nony Mous
Info key /Author: Mr. Potato Head
Info key /Producer: QPDF library
Info key /Creator: (null)

qpdf-7.1.0/qpdf/qtest/qpdf/bad30.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/good17.qdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-min-1.7.2.out

version: 1.7
extension level: 2
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 2 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.2.c-check

version: 1.2
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.3.c-check

version: 1.2
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.7-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.3-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.11-ogen.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.8-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/issue-100.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/good20.out

/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.6.c-check

version: 1.3
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp.zdf_09

Original page 9

qpdf-7.1.0/qpdf/qtest/qpdf/decrypted-crypt-filter.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isis 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.10.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/V4-clearmeta-encryption.out

R = 4
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
stream encryption method: RC4
string encryption method: RC4
file encryption method: RC4

qpdf-7.1.0/qpdf/qtest/qpdf/good11.out

/QTest is direct and has type dictionary (9)
/QTest is a dictionary
 /a is direct
unparse: << /a (a) /b 8 0 R >>
unparseResolved: << /a (a) /b 8 0 R >>
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/enc-R3,V2.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isis 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.3-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.9-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.8.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/lin8.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-force-1.8.5.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.6.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad25-recover.out

WARNING: bad25.pdf: file is damaged
WARNING: bad25.pdf (object 4 0, file position 307): expected n n obj
WARNING: bad25.pdf: Attempting to reconstruct cross-reference table
WARNING: bad25.pdf: object 4 0 not found in file after regenerating cross reference table
/QTest is implicit
/QTest is indirect and has type null (2)
/QTest is null
unparse: 4 0 R
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.6-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/append-page-content-damaged.out

WARNING: append-page-content-damaged.pdf: file is damaged
WARNING: append-page-content-damaged.pdf: can't find startxref
WARNING: append-page-content-damaged.pdf: Attempting to reconstruct cross-reference table
qpdf: operation succeeded with warnings; resulting file may have some problems

qpdf-7.1.0/qpdf/qtest/qpdf/good2.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/good8.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.12.check

checking a.pdf
PDF Version: 1.2
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/png-filters.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.4.check

checking a.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/linearized-and-warnings-2.out

---output---
linearized-and-warnings.pdf: linearization data:

file_size: 1310
first_page_object: 6
first_page_end: 1044
npages: 1
xref_zero_offset: 1132
first_page: 0
H_offset: 528
H_length: 118

Page Offsets Hint Table

min_nobjects: 4
first_page_offset: 646
nbits_delta_nobjects: 0
min_page_length: 398
nbits_delta_page_length: 0
min_content_offset: 0
nbits_delta_content_offset: 0
min_content_length: 398
nbits_delta_content_length: 0
nbits_nshared_objects: 0
nbits_shared_identifier: 3
nbits_shared_numerator: 0
shared_denominator: 4
Page 0:
 nobjects: 4
 length: 398
 content_offset: 0
 content_length: 398
 nshared_objects: 0

Shared Objects Hint Table

first_shared_obj: 0
first_shared_offset: 0
nshared_first_page: 4
nshared_total: 4
nbits_nobjects: 0
min_group_length: 30
nbits_delta_group_length: 7
Shared Object 0:
 group length: 143
Shared Object 1:
 group length: 118
Shared Object 2:
 group length: 30
Shared Object 3:
 group length: 107
---error---
WARNING: linearized-and-warnings.pdf (object 2 0, file position 1117): empty object treated as null
test 13 done

qpdf-7.1.0/qpdf/qtest/qpdf/09_split-exp.zdf

Original page 9

qpdf-7.1.0/qpdf/qtest/qpdf/stream-line-enders.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/streams-with-newlines.pdf

Potato

Potato

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.3.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/c-r3.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.10-ogen.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.5.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.6.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-force-1.7.2.out

version: 1.7
extension level: 2
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 2 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/enc-R2,V1.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isis 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/V4-aes-clearmeta.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isis 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.10-ogen.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/test9.out

exception: pipeStreamData called for stream with no data
test 9 done

qpdf-7.1.0/qpdf/qtest/qpdf/good4.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-min-1.3.out

version: 1.7
extension level: 2
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 2 /URL (http://something.adobe.com) >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.12-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/c-r5-key-hex.out

checking c-r5-in.pdf
PDF Version: 1.7 extension level 3
R = 5
P = -2052
User password =
Encryption key = 35ea16a48b6a3045133b69ac0906c2e8fb0a2cc97903ae17b51a5786ebdba020
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: not allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
stream encryption method: AESv3
string encryption method: AESv3
file encryption method: AESv3
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.12-ogen.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/issue-147.pdf

trailer<<<>/Encrypt 62 0 R>>
62 0 obj<</Filter/Standard/Length 160/O<>/P 0/R 3/U<>/V 2>>0 0

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.7-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-force-1.8.0.out

version: 1.8
extension level: 0
<< /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.4-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/extra-header-no-newline.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/bad14.out

WARNING: bad14.pdf (trailer, file position 753): treating unexpected brace token as null
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 0 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-force-1.8.5.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.10.check

checking a.pdf
PDF Version: 1.4
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/copy-foreign-objects-in.pdf

Original page 0

Original page 1

Original page 2

Original page 3

Original page 4

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp.zdf_02

Original page 2

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-force-1.8.5.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.11.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad31.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.pdf

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

qpdf-7.1.0/qpdf/qtest/qpdf/show-pages-images.out

page 1: 5 0 R
 images:
 /Im1: 8 0 R, 555 x 600
 /Im2: 9 0 R, 185 x 200
 content:
 7 0 R
page 2: 6 0 R
 images:
 /Im2: 9 0 R, 185 x 200
 content:
 10 0 R

qpdf-7.1.0/qpdf/qtest/qpdf/image-streams-all.out

page 1
filter: null, color space: /DeviceCMYK
page 2
filter: null, color space: /DeviceCMYK
page 3
filter: null, color space: /DeviceCMYK
page 4
filter: null, color space: /DeviceRGB
page 5
filter: null, color space: /DeviceRGB
page 6
filter: null, color space: /DeviceRGB
page 7
filter: null, color space: /DeviceGray
page 8
filter: null, color space: /DeviceGray
page 9
filter: null, color space: /DeviceGray
test 39 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-force-1.8.2.out

version: 1.8
extension level: 2
<< /ADBE << /BaseVersion /1.8 /ExtensionLevel 2 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-force-1.7.1.out

version: 1.7
extension level: 1
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 1 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/newline-before-endstream-nl-qdf.pdf

Potato

Potato

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/fix1.qdf.out

Potato Soup

and Salad

qpdf-7.1.0/qpdf/qtest/qpdf/good12.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.2.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/deterministic-id-ny.pdf

QPDF Manual

For QPDF Version 5.1.3, May 24, 2015

Jay Berkenbilt

QPDF Manual: For QPDF Version 5.1.3, May 24, 2015
Jay Berkenbilt
Copyright © 2005–2014 Jay Berkenbilt

iii

Table of Contents
General Information .. iv
1. What is QPDF? ... 1
2. Building and Installing QPDF .. 2

2.1. System Requirements ... 2
2.2. Build Instructions .. 2

3. Running QPDF ... 4
3.1. Basic Invocation ... 4
3.2. Basic Options ... 4
3.3. Encryption Options ... 5
3.4. Page Selection Options .. 6
3.5. Advanced Transformation Options ... 8
3.6. Testing, Inspection, and Debugging Options .. 10

4. QDF Mode ... 12
5. Using the QPDF Library ... 14
6. Design and Library Notes ... 15

6.1. Introduction .. 15
6.2. Design Goals .. 15
6.3. Casting Policy .. 17
6.4. Encryption ... 18
6.5. Random Number Generation ... 19
6.6. Adding and Removing Pages ... 19
6.7. Reserving Object Numbers ... 19
6.8. Copying Objects From Other PDF Files .. 20
6.9. Writing PDF Files ... 20
6.10. Filtered Streams .. 21

7. Linearization ... 22
7.1. Basic Strategy for Linearization ... 22
7.2. Preparing For Linearization ... 22
7.3. Optimization ... 22
7.4. Writing Linearized Files ... 23
7.5. Calculating Linearization Data ... 23
7.6. Known Issues with Linearization ... 23
7.7. Debugging Note .. 24

8. Object and Cross-Reference Streams ... 25
8.1. Object Streams .. 25
8.2. Cross-Reference Streams .. 25

8.2.1. Cross-Reference Stream Data .. 26
8.3. Implications for Linearized Files .. 26
8.4. Implementation Notes .. 27

A. Release Notes ... 28
B. Upgrading from 2.0 to 2.1 .. 37
C. Upgrading to 3.0 ... 38
D. Upgrading to 4.0 ... 39

iv

General Information
QPDF is a program that does structural, content-preserving transformations on PDF files. QPDF's website is located
at http://qpdf.sourceforge.net/. QPDF's source code is hosted on github at https://github.com/qpdf/qpdf.

QPDF has been released under the terms of Version 2.0 of the Artistic License [http://www.opensource.org/licenses/
artistic-license-2.0.php], a copy of which appears in the file Artistic-2.0 in the source distribution.

QPDF was originally created in 2001 and modified periodically between 2001 and 2005 during my employment at
Apex CoVantage [http://www.apexcovantage.com]. Upon my departure from Apex, the company graciously allowed
me to take ownership of the software and continue maintaining as an open source project, a decision for which I am
very grateful. I have made considerable enhancements to it since that time. I feel fortunate to have worked for people
who would make such a decision. This work would not have been possible without their support.

http://qpdf.sourceforge.net/

https://github.com/qpdf/qpdf

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.apexcovantage.com

http://www.apexcovantage.com

1

Chapter 1. What is QPDF?
QPDF is a program that does structural, content-preserving transformations on PDF files. It could have been called
something like pdf-to-pdf. It also provides many useful capabilities to developers of PDF-producing software or for
people who just want to look at the innards of a PDF file to learn more about how they work.

With QPDF, it is possible to copy objects from one PDF file into another and to manipulate the list of pages in a PDF
file. This makes it possible to merge and split PDF files. The QPDF library also makes it possible for you to create
PDF files from scratch. In this mode, you are responsible for supplying all the contents of the file, while the QPDF
library takes care off all the syntactical representation of the objects, creation of cross references tables and, if you
use them, object streams, encryption, linearization, and other syntactic details. You are still responsible for generating
PDF content on your own.

QPDF has been designed with very few external dependencies, and it is intentionally very lightweight. QPDF is not a
PDF content creation library, a PDF viewer, or a program capable of converting PDF into other formats. In particular,
QPDF knows nothing about the semantics of PDF content streams. If you are looking for something that can do that,
you should look elsewhere. However, once you have a valid PDF file, QPDF can be used to transform that file in ways
perhaps your original PDF creation can't handle. For example, many programs generate simple PDF files but can't
password-protect them, web-optimize them, or perform other transformations of that type.

2

Chapter 2. Building and Installing
QPDF
This chapter describes how to build and install qpdf. Please see also the README and INSTALL files in the source
distribution.

2.1. System Requirements
The qpdf package has relatively few external dependencies. In order to build qpdf, the following packages are required:

• zlib: http://www.zlib.net/

• pcre: http://www.pcre.org/

• gnu make 3.81 or newer: http://www.gnu.org/software/make

• perl version 5.8 or newer: http://www.perl.org/; required for fix-qdf and the test suite.

• GNU diffutils (any version): http://www.gnu.org/software/diffutils/ is required to run the test suite. Note that this is
the version of diff present on virtually all GNU/Linux systems. This is required because the test suite uses diff -u.

• A C++ compiler that works well with STL and has the long long type. Most modern C++ compilers should fit
the bill fine. QPDF is tested with gcc and Microsoft Visual C++.

Part of qpdf's test suite does comparisons of the contents PDF files by converting them images and comparing the
images. The image comparison tests are disabled by default. Those tests are not required for determining correctness of
a qpdf build if you have not modified the code since the test suite also contains expected output files that are compared
literally. The image comparison tests provide an extra check to make sure that any content transformations don't break
the rendering of pages. Transformations that affect the content streams themselves are off by default and are only
provided to help developers look into the contents of PDF files. If you are making deep changes to the library that cause
changes in the contents of the files that qpdf generates, then you should enable the image comparison tests. Enable
them by running configure with the --enable-test-compare-images flag. If you enable this, the following additional
requirements are required by the test suite. Note that in no case are these items required to use qpdf.

• libtiff: http://www.remotesensing.org/libtiff/

• GhostScript version 8.60 or newer: http://www.ghostscript.com

If you do not enable this, then you do not need to have tiff and ghostscript.

If Adobe Reader is installed as acroread, some additional test cases will be enabled. These test cases simply verify
that Adobe Reader can open the files that qpdf creates. They require version 8.0 or newer to pass. However, in order
to avoid having qpdf depend on non-free (as in liberty) software, the test suite will still pass without Adobe reader,
and the test suite still exercises the full functionality of the software.

Pre-built documentation is distributed with qpdf, so you should generally not need to rebuild the documentation.
In order to build the documentation from its docbook sources, you need the docbook XML style sheets (http://
downloads.sourceforge.net/docbook/). To build the PDF version of the documentation, you need Apache fop (http://
xml.apache.org/fop/) version 0.94 or higher.

2.2. Build Instructions
Building qpdf on UNIX is generally just a matter of running

http://www.zlib.net/

http://www.pcre.org/

http://www.gnu.org/software/make

http://www.perl.org/

http://www.gnu.org/software/diffutils/

http://www.remotesensing.org/libtiff/

http://www.ghostscript.com

http://downloads.sourceforge.net/docbook/

http://downloads.sourceforge.net/docbook/

http://xml.apache.org/fop/

http://xml.apache.org/fop/

Building and Installing QPDF

3

./configure
make

You can also run make check to run the test suite and make install to install. Please run ./configure --help for
options on what can be configured. You can also set the value of DESTDIR during installation to install to a temporary
location, as is common with many open source packages. Please see also the README and INSTALL files in the
source distribution.

Building on Windows is a little bit more complicated. For details, please see README-windows.txt in the source
distribution. You can also download a binary distribution for Windows. There is a port of qpdf to Visual C++ version 6
in the contrib area generously contributed by Jian Ma. This is also discussed in more detail in README-windows.txt.

There are some other things you can do with the build. Although qpdf uses autoconf, it does not use automake but
instead uses a hand-crafted non-recursive Makefile that requires gnu make. If you're really interested, please read the
comments in the top-level Makefile.

4

Chapter 3. Running QPDF
This chapter describes how to run the qpdf program from the command line.

3.1. Basic Invocation
When running qpdf, the basic invocation is as follows:

qpdf [options] infilename [outfilename]

This converts PDF file infilename to PDF file outfilename. The output file is functionally identical to the input file but
may have been structurally reorganized. Also, orphaned objects will be removed from the file. Many transformations
are available as controlled by the options below. In place of infilename, the parameter --empty may be specified. This
causes qpdf to use a dummy input file that contains zero pages. The only normal use case for using --empty would be if
you were going to add pages from another source, as discussed in Section 3.4, “Page Selection Options”, page 6.

outfilename does not have to be seekable, even when generating linearized files. Specifying “--” as outfilename
means to write to standard output. However, you can't specify the same file as both the input and the output because
qpdf reads data from the input file as it writes to the output file.

Most options require an output file, but some testing or inspection commands do not. These are specifically noted.

3.2. Basic Options
The following options are the most common ones and perform commonly needed transformations.

--password=password
Specifies a password for accessing encrypted files.

--linearize
Causes generation of a linearized (web-optimized) output file.

--copy-encryption=file
Encrypt the file using the same encryption parameters, including user and owner password, as the specified file.
Use --encrypt-file-password to specify a password if one is needed to open this file. Note that copying the
encryption parameters from a file also copies the first half of /ID from the file since this is part of the encryption
parameters.

--encrypt-file-password=password
If the file specified with --copy-encryption requires a password, specify the password using this option. Note
that only one of the user or owner password is required. Both passwords will be preserved since QPDF does
not distinguish between the two passwords. It is possible to preserve encryption parameters, including the owner
password, from a file even if you don't know the file's owner password.

--encrypt options --
Causes generation an encrypted output file. Please see Section 3.3, “Encryption Options”, page 5 for details
on how to specify encryption parameters.

--decrypt
Removes any encryption on the file. A password must be supplied if the file is password protected.

--pages options --
Select specific pages from one or more input files. See Section 3.4, “Page Selection Options”, page 6 for
details on how to do page selection (splitting and merging).

Running QPDF

5

Password-protected files may be opened by specifying a password. By default, qpdf will preserve any encryption data
associated with a file. If --decrypt is specified, qpdf will attempt to remove any encryption information. If --encrypt
is specified, qpdf will replace the document's encryption parameters with whatever is specified.

Note that qpdf does not obey encryption restrictions already imposed on the file. Doing so would be meaningless since
qpdf can be used to remove encryption from the file entirely. This functionality is not intended to be used for bypassing
copyright restrictions or other restrictions placed on files by their producers.

In all cases where qpdf allows specification of a password, care must be taken if the password contains characters
that fall outside of the 7-bit US-ASCII character range to ensure that the exact correct byte sequence is provided. It
is possible that a future version of qpdf may handle this more gracefully. For example, if a password was encrypted
using a password that was encoded in ISO-8859-1 and your terminal is configured to use UTF-8, the password you
supply may not work properly. There are various approaches to handling this. For example, if you are using Linux and
have the iconv executable (part of the ICU package) installed, you could pass --password=`echo password | iconv
-t iso-8859-1` to qpdf where password is a password specified in your terminal's locale. A detailed discussion of
this is out of scope for this manual, but just be aware of this issue if you have trouble with a password that contains
8-bit characters.

3.3. Encryption Options
To change the encryption parameters of a file, use the --encrypt flag. The syntax is

--encrypt user-password owner-password key-length [restrictions] --

Note that “--” terminates parsing of encryption flags and must be present even if no restrictions are present.

Either or both of the user password and the owner password may be empty strings.

The value for key-length may be 40, 128, or 256. The restriction flags are dependent upon key length. When no
additional restrictions are given, the default is to be fully permissive.

If key-length is 40, the following restriction options are available:

--print=[yn]
Determines whether or not to allow printing.

--modify=[yn]
Determines whether or not to allow document modification.

--extract=[yn]
Determines whether or not to allow text/image extraction.

--annotate=[yn]
Determines whether or not to allow comments and form fill-in and signing.

If key-length is 128, the following restriction options are available:

--accessibility=[yn]
Determines whether or not to allow accessibility to visually impaired.

--extract=[yn]
Determines whether or not to allow text/graphic extraction.

--print=print-opt
Controls printing access. print-opt may be one of the following:

Running QPDF

6

• full: allow full printing

• low: allow low-resolution printing only

• none: disallow printing

--modify=modify-opt
Controls modify access. modify-opt may be one of the following, each of which implies all the options that
follow it:

• all: allow full document modification

• annotate: allow comment authoring and form operations

• form: allow form field fill-in and signing

• assembly: allow document assembly only

• none: allow no modifications

--cleartext-metadata
If specified, any metadata stream in the document will be left unencrypted even if the rest of the document is
encrypted. This also forces the PDF version to be at least 1.5.

--use-aes=[yn]
If --use-aes=y is specified, AES encryption will be used instead of RC4 encryption. This forces the PDF version
to be at least 1.6.

--force-V4
Use of this option forces the /V and /R parameters in the document's encryption dictionary to be set to the value
4. As qpdf will automatically do this when required, there is no reason to ever use this option. It exists primarily
for use in testing qpdf itself. This option also forces the PDF version to be at least 1.5.

If key-length is 256, the minimum PDF version is 1.7 with extension level 8, and the AES-based encryption format
used is the PDF 2.0 encryption method supported by Acrobat X. the same options are available as with 128 bits with
the following exceptions:

--use-aes
This option is not available with 256-bit keys. AES is always used with 256-bit encryption keys.

--force-V4
This option is not available with 256 keys.

--force-R5
If specified, qpdf sets the minimum version to 1.7 at extension level 3 and writes the deprecated encryption format
used by Acrobat version IX. This option should not be used in practice to generate PDF files that will be in general
use, but it can be useful to generate files if you are trying to test proper support in another application for PDF
files encrypted in this way.

The default for each permission option is to be fully permissive.

3.4. Page Selection Options
Starting with qpdf 3.0, it is possible to split and merge PDF files by selecting pages from one or more input files.
Whatever file is given as the primary input file is used as the starting point, but its pages are replaced with pages as
specified.

Running QPDF

7

--pages input-file [--password=password] [page-range] [...] --

Multiple input files may be specified. Each one is given as the name of the input file, an optional password (if required
to open the file), and the range of pages. Note that “--” terminates parsing of page selection flags.

For each file that pages should be taken from, specify the file, a password needed to open the file (if any), and a page
range. The password needs to be given only once per file. If any of the input files are the same as the primary input
file or the file used to copy encryption parameters (if specified), you do not need to repeat the password here. The
same file can be repeated multiple times. If a file that is repeated has a password, the password only has to be given
the first time. All non-page data (info, outlines, page numbers, etc.) are taken from the primary input file. To discard
these, use --empty as the primary input.

Starting with qpdf 5.0.0, it is possible to omit the page range. If qpdf sees a value in the place where it expects a page
range and that value is not a valid range but is a valid file name, qpdf will implicitly use the range 1-z, meaning that
it will include all pages in the file. This makes it possible to easily combine all pages in a set of files with a command
like qpdf --empty out.pdf --pages *.pdf --.

It is not presently possible to specify the same page from the same file directly more than once, but you can make this
work by specifying two different paths to the same file (such as by putting ./ somewhere in the path). This can also be
used if you want to repeat a page from one of the input files in the output file. This may be made more convenient in
a future version of qpdf if there is enough demand for this feature.

The page range is a set of numbers separated by commas, ranges of numbers separated dashes, or combinations of
those. The character “z” represents the last page. Pages can appear in any order. Ranges can appear with a high number
followed by a low number, which causes the pages to appear in reverse. Repeating a number will cause an error, but
you can use the workaround discussed above should you really want to include the same page twice.

Example page ranges:

• 1,3,5-9,15-12: pages 1, 2, 3, 5, 6, 7, 8, 9, 15, 14, 13, and 12.

• z-1: all pages in the document in reverse

Note that qpdf doesn't presently do anything special about other constructs in a PDF file that may know about pages,
so semantics of splitting and merging vary across features. For example, the document's outlines (bookmarks) point
to actual page objects, so if you select some pages and not others, bookmarks that point to pages that are in the output
file will work, and remaining bookmarks will not work. On the other hand, page labels (page numbers specified in the
file) are just sequential, so page labels will be messed up in the output file. A future version of qpdf may do a better
job at handling these issues. (Note that the qpdf library already contains all of the APIs required in order to implement
this in your own application if you need it.) In the mean time, you can always use --empty as the primary input file to
avoid copying all of that from the first file. For example, to take pages 1 through 5 from a infile.pdf while preserving
all metadata associated with that file, you could use

qpdf infile.pdf --pages infile.pdf 1-5 -- outfile.pdf

If you wanted pages 1 through 5 from infile.pdf but you wanted the rest of the metadata to be dropped, you could
instead run

qpdf --empty --pages infile.pdf 1-5 -- outfile.pdf

If you wanted to take pages 1–5 from file1.pdf and pages 11–15 from file2.pdf in reverse, you would run

qpdf file1.pdf --pages file1.pdf 1-5 file2.pdf 15-11 -- outfile.pdf

Running QPDF

8

If, for some reason, you wanted to take the first page of an encrypted file called encrypted.pdf with password pass
and repeat it twice in an output file, and if you wanted to drop metadata (like page numbers and outlines) but preserve
encryption, you would use

qpdf --empty --copy-encryption=encrypted.pdf --encryption-file-password=pass
--pages encrypted.pdf --password=pass 1 ./encrypted.pdf --password=pass 1 --
outfile.pdf

Note that we had to specify the password all three times because giving a password as --encryption-file-password
doesn't count for page selection, and as far as qpdf is concerned, encrypted.pdf and ./encrypted.pdf are separated files.
These are all corner cases that most users should hopefully never have to be bothered with.

3.5. Advanced Transformation Options
These transformation options control fine points of how qpdf creates the output file. Mostly these are of use only to
people who are very familiar with the PDF file format or who are PDF developers. The following options are available:

--stream-data=option
Controls transformation of stream data. The value of option may be one of the following:

• compress: recompress stream data when possible (default)

• preserve: leave all stream data as is

• uncompress: uncompress stream data when possible

--normalize-content=[yn]
Enables or disables normalization of content streams.

--suppress-recovery
Prevents qpdf from attempting to recover damaged files.

--object-streams=mode
Controls handling of object streams. The value of mode may be one of the following:

• preserve: preserve original object streams (default)

• disable: don't write any object streams

• generate: use object streams wherever possible

--ignore-xref-streams
Tells qpdf to ignore any cross-reference streams.

--qdf
Turns on QDF mode. For additional information on QDF, please see Chapter 4, QDF Mode, page 12.

--min-version=version
Forces the PDF version of the output file to be at least version. In other words, if the input file has a lower
version than the specified version, the specified version will be used. If the input file has a higher version, the
input file's original version will be used. It is seldom necessary to use this option since qpdf will automatically
increase the version as needed when adding features that require newer PDF readers.

The version number may be expressed in the form major.minor.extension-level, in which case the
version is interpreted as major.minor at extension level extension-level. For example, version 1.7.8
represents version 1.7 at extension level 8. Note that minimal syntax checking is done on the command line.

Running QPDF

9

--force-version=version
This option forces the PDF version to be the exact version specified even when the file may have content that
is not supported in that version. The version number is interpreted in the same way as with --min-version so
that extension levels can be set. In some cases, forcing the output file's PDF version to be lower than that of the
input file will cause qpdf to disable certain features of the document. Specifically, 256-bit keys are disabled if
the version is less than 1.7 with extension level 8 (except R5 is disabled if less than 1.7 with extension level 3),
AES encryption is disabled if the version is less than 1.6, cleartext metadata and object streams are disabled if less
than 1.5, 128-bit encryption keys are disabled if less than 1.4, and all encryption is disabled if less than 1.3. Even
with these precautions, qpdf won't be able to do things like eliminate use of newer image compression schemes,
transparency groups, or other features that may have been added in more recent versions of PDF.

As a general rule, with the exception of big structural things like the use of object streams or AES encryption,
PDF viewers are supposed to ignore features in files that they don't support from newer versions. This means that
forcing the version to a lower version may make it possible to open your PDF file with an older version, though
bear in mind that some of the original document's functionality may be lost.

By default, when a stream is encoded using non-lossy filters that qpdf understands and is not already compressed
using a good compression scheme, qpdf will uncompress and recompress streams. Assuming proper filter implements,
this is safe and generally results in smaller files. This behavior may also be explicitly requested with --stream-
data=compress.

When --stream-data=preserve is specified, qpdf will never attempt to change the filtering of any stream data.

When --stream-data=uncompress is specified, qpdf will attempt to remove any non-lossy filters that it supports. This
includes /FlateDecode, /LZWDecode, /ASCII85Decode, and /ASCIIHexDecode. This can be very useful
for inspecting the contents of various streams.

When --normalize-content=y is specified, qpdf will attempt to normalize whitespace and newlines in page content
streams. This is generally safe but could, in some cases, cause damage to the content streams. This option is intended
for people who wish to study PDF content streams or to debug PDF content. You should not use this for “production”
PDF files.

Ordinarily, qpdf will attempt to recover from certain types of errors in PDF files. These include errors in the cross-
reference table, certain types of object numbering errors, and certain types of stream length errors. Sometimes, qpdf
may think it has recovered but may not have actually recovered, so care should be taken when using this option as
some data loss is possible. The --suppress-recovery option will prevent qpdf from attempting recovery. In this case,
it will fail on the first error that it encounters.

Object streams, also known as compressed objects, were introduced into the PDF specification at version 1.5,
corresponding to Acrobat 6. Some older PDF viewers may not support files with object streams. qpdf can be used to
transform files with object streams to files without object streams or vice versa. As mentioned above, there are three
object stream modes: preserve, disable, and generate.

In preserve mode, the relationship to objects and the streams that contain them is preserved from the original file. In
disable mode, all objects are written as regular, uncompressed objects. The resulting file should be readable by older
PDF viewers. (Of course, the content of the files may include features not supported by older viewers, but at least
the structure will be supported.) In generate mode, qpdf will create its own object streams. This will usually result in
more compact PDF files, though they may not be readable by older viewers. In this mode, qpdf will also make sure
the PDF version number in the header is at least 1.5.

Ordinarily, qpdf reads cross-reference streams when they are present in a PDF file. If --ignore-xref-streams is
specified, qpdf will ignore any cross-reference streams for hybrid PDF files. The purpose of hybrid files is to make
some content available to viewers that are not aware of cross-reference streams. It is almost never desirable to ignore
them. The only time when you might want to use this feature is if you are testing creation of hybrid PDF files and wish
to see how a PDF consumer that doesn't understand object and cross-reference streams would interpret such a file.

Running QPDF

10

The --qdf flag turns on QDF mode, which changes some of the defaults described above. Specifically, in QDF mode,
by default, stream data is uncompressed, content streams are normalized, and encryption is removed. These defaults
can still be overridden by specifying the appropriate options as described above. Additionally, in QDF mode, stream
lengths are stored as indirect objects, objects are laid out in a less efficient but more readable fashion, and the documents
are interspersed with comments that make it easier for the user to find things and also make it possible for fix-qdf to
work properly. QDF mode is intended for people, mostly developers, who wish to inspect or modify PDF files in a
text editor. For details, please see Chapter 4, QDF Mode, page 12.

3.6. Testing, Inspection, and Debugging
Options
These options can be useful for digging into PDF files or for use in automated test suites for software that uses the qpdf
library. When any of the options in this section are specified, no output file should be given. The following options
are available:

--static-id
Causes generation of a fixed value for /ID. This is intended for testing only. Never use it for production files.

--static-aes-iv
Causes use of a static initialization vector for AES-CBC. This is intended for testing only so that output files
can be reproducible. Never use it for production files. This option in particular is not secure since it significantly
weakens the encryption.

--no-original-object-ids
Suppresses inclusion of original object ID comments in QDF files. This can be useful when generating QDF files
for test purposes, particularly when comparing them to determine whether two PDF files have identical content.

--show-encryption
Shows document encryption parameters. Also shows the document's user password if the owner password is given.

--check-linearization
Checks file integrity and linearization status.

--show-linearization
Checks and displays all data in the linearization hint tables.

--show-xref
Shows the contents of the cross-reference table in a human-readable form. This is especially useful for files with
cross-reference streams which are stored in a binary format.

--show-object=obj[,gen]
Show the contents of the given object. This is especially useful for inspecting objects that are inside of object
streams (also known as “compressed objects”).

--raw-stream-data
When used along with the --show-object option, if the object is a stream, shows the raw stream data instead of
object's contents.

--filtered-stream-data
When used along with the --show-object option, if the object is a stream, shows the filtered stream data instead
of object's contents. If the stream is filtered using filters that qpdf does not support, an error will be issued.

--show-npages
Prints the number of pages in the input file on a line by itself. Since the number of pages appears by itself on a
line, this option can be useful for scripting if you need to know the number of pages in a file.

Running QPDF

11

--show-pages
Shows the object and generation number for each page dictionary object and for each content stream associated
with the page. Having this information makes it more convenient to inspect objects from a particular page.

--with-images
When used along with --show-pages, also shows the object and generation numbers for the image objects on each
page. (At present, information about images in shared resource dictionaries are not output by this command. This
is discussed in a comment in the source code.)

--check
Checks file structure and well as encryption, linearization, and encoding of stream data. A file for which --check
reports no errors may still have errors in stream data content but should otherwise be structurally sound. If --check
any errors, qpdf will exit with a status of 2. There are some recoverable conditions that --check detects. These
are issued as warnings instead of errors. If qpdf finds no errors but finds warnings, it will exit with a status of
3 (as of version 2.0.4).

The --raw-stream-data and --filtered-stream-data options are ignored unless --show-object is given. Either of these
options will cause the stream data to be written to standard output. In order to avoid commingling of stream data with
other output, it is recommend that these objects not be combined with other test/inspection options.

If --filtered-stream-data is given and --normalize-content=y is also given, qpdf will attempt to normalize the stream
data as if it is a page content stream. This attempt will be made even if it is not a page content stream, in which case
it will produce unusable results.

12

Chapter 4. QDF Mode
In QDF mode, qpdf creates PDF files in what we call QDF form. A PDF file in QDF form, sometimes called a QDF
file, is a completely valid PDF file that has %QDF-1.0 as its third line (after the pdf header and binary characters)
and has certain other characteristics. The purpose of QDF form is to make it possible to edit PDF files, with some
restrictions, in an ordinary text editor. This can be very useful for experimenting with different PDF constructs or for
making one-off edits to PDF files (though there are other reasons why this may not always work).

It is ordinarily very difficult to edit PDF files in a text editor for two reasons: most meaningful data in PDF files is
compressed, and PDF files are full of offset and length information that makes it hard to add or remove data. A QDF
file is organized in a manner such that, if edits are kept within certain constraints, the fix-qdf program, distributed with
qpdf, is able to restore edited files to a correct state. The fix-qdf program takes no command-line arguments. It reads
a possibly edited QDF file from standard input and writes a repaired file to standard output.

The following attributes characterize a QDF file:

• All objects appear in numerical order in the PDF file, including when objects appear in object streams.

• Objects are printed in an easy-to-read format, and all line endings are normalized to UNIX line endings.

• Unless specifically overridden, streams appear uncompressed (when qpdf supports the filters and they are
compressed with a non-lossy compression scheme), and most content streams are normalized (line endings are
converted to just a UNIX-style linefeeds).

• All streams lengths are represented as indirect objects, and the stream length object is always the next object after
the stream. If the stream data does not end with a newline, an extra newline is inserted, and a special comment
appears after the stream indicating that this has been done.

• If the PDF file contains object streams, if object stream n contains k objects, those objects are numbered from n
+1 through n+k, and the object number/offset pairs appear on a separate line for each object. Additionally, each
object in the object stream is preceded by a comment indicating its object number and index. This makes it very
easy to find objects in object streams.

• All beginnings of objects, stream tokens, endstream tokens, and endobj tokens appear on lines by themselves.
A blank line follows every endobj token.

• If there is a cross-reference stream, it is unfiltered.

• Page dictionaries and page content streams are marked with special comments that make them easy to find.

• Comments precede each object indicating the object number of the corresponding object in the original file.

When editing a QDF file, any edits can be made as long as the above constraints are maintained. This means that you
can freely edit a page's content without worrying about messing up the QDF file. It is also possible to add new objects
so long as those objects are added after the last object in the file or subsequent objects are renumbered. If a QDF file
has object streams in it, you can always add the new objects before the xref stream and then change the number of the
xref stream, since nothing generally ever references it by number.

It is not generally practical to remove objects from QDF files without messing up object numbering, but if you remove
all references to an object, you can run qpdf on the file (after running fix-qdf), and qpdf will omit the now-orphaned
object.

When fix-qdf is run, it goes through the file and recomputes the following parts of the file:

• the /N, /W, and /First keys of all object stream dictionaries

QDF Mode

13

• the pairs of numbers representing object numbers and offsets of objects in object streams

• all stream lengths

• the cross-reference table or cross-reference stream

• the offset to the cross-reference table or cross-reference stream following the startxref token

14

Chapter 5. Using the QPDF Library
The source tree for the qpdf package has an examples directory that contains a few example programs. The qpdf/
qpdf.cc source file also serves as a useful example since it exercises almost all of the qpdf library's public interface.
The best source of documentation on the library itself is reading comments in include/qpdf/QPDF.hh, include/qpdf/
QDFWriter.hh, and include/qpdf/QPDFObjectHandle.hh.

All header files are installed in the include/qpdf directory. It is recommend that you use #include <qpdf/
QPDF.hh> rather than adding include/qpdf to your include path.

When linking against the qpdf static library, you may also need to specify -lpcre -lz on your link command. If
your system understands how to read libtool .la files, this may not be necessary.

The qpdf library is safe to use in a multithreaded program, but no individual QPDF object instance (including QPDF,
QPDFObjectHandle, or QPDFWriter) can be used in more than one thread at a time. Multiple threads may
simultaneously work with different instances of these and all other QPDF objects.

15

Chapter 6. Design and Library Notes

6.1. Introduction
This section was written prior to the implementation of the qpdf package and was subsequently modified to reflect the
implementation. In some cases, for purposes of explanation, it may differ slightly from the actual implementation. As
always, the source code and test suite are authoritative. Even if there are some errors, this document should serve as
a road map to understanding how this code works.

In general, one should adhere strictly to a specification when writing but be liberal in reading. This way, the product
of our software will be accepted by the widest range of other programs, and we will accept the widest range of input
files. This library attempts to conform to that philosophy whenever possible but also aims to provide strict checking
for people who want to validate PDF files. If you don't want to see warnings and are trying to write something
that is tolerant, you can call setSuppressWarnings(true). If you want to fail on the first error, you can call
setAttemptRecovery(false). The default behavior is to generating warnings for recoverable problems. Note
that recovery will not always produce the desired results even if it is able to get through the file. Unlike most other PDF
files that produce generic warnings such as “This file is damaged,”, qpdf generally issues a detailed error message that
would be most useful to a PDF developer. This is by design as there seems to be a shortage of PDF validation tools
out there. (This was, in fact, one of the major motivations behind the initial creation of qpdf.)

6.2. Design Goals
The QPDF package includes support for reading and rewriting PDF files. It aims to hide from the user details involving
object locations, modified (appended) PDF files, the directness/indirectness of objects, and stream filters including
encryption. It does not aim to hide knowledge of the object hierarchy or content stream contents. Put another way, a
user of the qpdf library is expected to have knowledge about how PDF files work, but is not expected to have to keep
track of bookkeeping details such as file positions.

A user of the library never has to care whether an object is direct or indirect. All access to objects deals with this
transparently. All memory management details are also handled by the library.

The PointerHolder object is used internally by the library to deal with memory management. This is basically a
smart pointer object very similar in spirit to the Boost library's shared_ptr object, but predating it by several years.
This library also makes use of a technique for giving fine-grained access to methods in one class to other classes by
using public subclasses with friends and only private members that in turn call private methods of the containing class.
See QPDFObjectHandle::Factory as an example.

The top-level qpdf class is QPDF. A QPDF object represents a PDF file. The library provides methods for both
accessing and mutating PDF files.

QPDFObject is the basic PDF Object class. It is an abstract base class from which are derived classes for each type
of PDF object. Clients do not interact with Objects directly but instead interact with QPDFObjectHandle.

QPDFObjectHandle contains PointerHolder<QPDFObject> and includes accessor methods that are type-safe
proxies to the methods of the derived object classes as well as methods for querying object types. They can be passed
around by value, copied, stored in containers, etc. with very low overhead. Instances of QPDFObjectHandle always
contain a reference back to the QPDF object from which they were created. A QPDFObjectHandle may be direct
or indirect. If indirect, the QPDFObject the PointerHolder initially points to is a null pointer. In this case, the
first attempt to access the underlying QPDFObject will result in the QPDFObject being resolved via a call to the
referenced QPDF instance. This makes it essentially impossible to make coding errors in which certain things will
work for some PDF files and not for others based on which objects are direct and which objects are indirect.

Design and Library Notes

16

Instances of QPDFObjectHandle can be directly created and modified using static factory methods in the
QPDFObjectHandle class. There are factory methods for each type of object as well as a convenience method
QPDFObjectHandle::parse that creates an object from a string representation of the object. Existing instances of
QPDFObjectHandle can also be modified in several ways. See comments in QPDFObjectHandle.hh for details.

When the QPDF class creates a new object, it dynamically allocates the appropriate type of QPDFObject and
immediately hands the pointer to an instance of QPDFObjectHandle. The parser reads a token from the current
file position. If the token is a not either a dictionary or array opener, an object is immediately constructed from
the single token and the parser returns. Otherwise, the parser is invoked recursively in a special mode in which it
accumulates objects until it finds a balancing closer. During this process, the “R” keyword is recognized and an indirect
QPDFObjectHandle may be constructed.

The QPDF::resolve() method, which is used to resolve an indirect object, may be invoked from the
QPDFObjectHandle class. It first checks a cache to see whether this object has already been read. If not, it reads the
object from the PDF file and caches it. It the returns the resulting QPDFObjectHandle. The calling object handle
then replaces its PointerHolder<QDFObject> with the one from the newly returned QPDFObjectHandle. In this
way, only a single copy of any direct object need exist and clients can access objects transparently without knowing
caring whether they are direct or indirect objects. Additionally, no object is ever read from the file more than once. That
means that only the portions of the PDF file that are actually needed are ever read from the input file, thus allowing
the qpdf package to take advantage of this important design goal of PDF files.

If the requested object is inside of an object stream, the object stream itself is first read into memory. Then the tokenizer
reads objects from the memory stream based on the offset information stored in the stream. Those individual objects
are cached, after which the temporary buffer holding the object stream contents are discarded. In this way, the first
time an object in an object stream is requested, all objects in the stream are cached.

An instance of QPDF is constructed by using the class's default constructor. If desired, the QPDF object may be
configured with various methods that change its default behavior. Then the QPDF::processFile() method is passed
the name of a PDF file, which permanently associates the file with that QPDF object. A password may also be given
for access to password-protected files. QPDF does not enforce encryption parameters and will treat user and owner
passwords equivalently. Either password may be used to access an encrypted file. 1 QPDF will allow recovery of a
user password given an owner password. The input PDF file must be seekable. (Output files written by QPDFWriter
need not be seekable, even when creating linearized files.) During construction, QPDF validates the PDF file's header,
and then reads the cross reference tables and trailer dictionaries. The QPDF class keeps only the first trailer dictionary
though it does read all of them so it can check the /Prev key. QPDF class users may request the root object and
the trailer dictionary specifically. The cross reference table is kept private. Objects may then be requested by number
of by walking the object tree.

When a PDF file has a cross-reference stream instead of a cross-reference table and trailer, requesting the document's
trailer dictionary returns the stream dictionary from the cross-reference stream instead.

There are some convenience routines for very common operations such as walking the page tree and returning a vector
of all page objects. For full details, please see the header file QPDF.hh.

The following example should clarify how QPDF processes a simple file.

• Client constructs QPDF pdf and calls pdf.processFile("a.pdf");.

• The QPDF class checks the beginning of a.pdf for %!PDF-1.[0-9]+. It then reads the cross reference table
mentioned at the end of the file, ensuring that it is looking before the last %%EOF. After getting to trailer
keyword, it invokes the parser.

1 As pointed out earlier, the intention is not for qpdf to be used to bypass security on files. but as any open source PDF consumer may be easily
modified to bypass basic PDF document security, and qpdf offers may transformations that can do this as well, there seems to be little point in the
added complexity of conditionally enforcing document security.

Design and Library Notes

17

• The parser sees “<<”, so it calls itself recursively in dictionary creation mode.

• In dictionary creation mode, the parser keeps accumulating objects until it encounters “>>”. Each object that is
read is pushed onto a stack. If “R” is read, the last two objects on the stack are inspected. If they are integers,
they are popped off the stack and their values are used to construct an indirect object handle which is then pushed
onto the stack. When “>>” is finally read, the stack is converted into a QPDF_Dictionary which is placed in a
QPDFObjectHandle and returned.

• The resulting dictionary is saved as the trailer dictionary.

• The /Prev key is searched. If present, QPDF seeks to that point and repeats except that the new trailer dictionary
is not saved. If /Prev is not present, the initial parsing process is complete.

If there is an encryption dictionary, the document's encryption parameters are initialized.

• The client requests root object. The QPDF class gets the value of root key from trailer dictionary and returns it. It
is an unresolved indirect QPDFObjectHandle.

• The client requests the /Pages key from root QPDFObjectHandle. The QPDFObjectHandle notices that it
is indirect so it asks QPDF to resolve it. QPDF looks in the object cache for an object with the root dictionary's
object ID and generation number. Upon not seeing it, it checks the cross reference table, gets the offset, and reads
the object present at that offset. It stores the result in the object cache and returns the cached result. The calling
QPDFObjectHandle replaces its object pointer with the one from the resolved QPDFObjectHandle, verifies
that it a valid dictionary object, and returns the (unresolved indirect) QPDFObject handle to the top of the Pages
hierarchy.

As the client continues to request objects, the same process is followed for each new requested object.

6.3. Casting Policy
This section describes the casting policy followed by qpdf's implementation. This is no concern to qpdf's end users
and largely of no concern to people writing code that uses qpdf, but it could be of interest to people who are porting
qpdf to a new platform or who are making modifications to the code.

The C++ code in qpdf is free of old-style casts except where unavoidable (e.g. where the old-style cast is in a macro
provided by a third-party header file). When there is a need for a cast, it is handled, in order of preference, by rewriting
the code to avoid the need for a cast, calling const_cast, calling static_cast, calling reinterpret_cast, or calling some
combination of the above. As a last resort, a compiler-specific #pragma may be used to suppress a warning that we
don't want to fix. Examples may include suppressing warnings about the use of old-style casts in code that is shared
between C and C++ code.

The casting policy explicitly prohibits casting between integer sizes for no purpose other than to quiet a compiler
warning when there is no reasonable chance of a problem resulting. The reason for this exclusion is that the practice
of adding these additional casts precludes future use of additional compiler warnings as a tool for making future
improvements to this aspect of the code, and it also damages the readability of the code.

There are a few significant areas where casting is common in the qpdf sources or where casting would be required to
quiet higher levels of compiler warnings but is omitted at present:

• char vs. unsigned char. For historical reasons, there are a lot of places in qpdf's internals that deal with
unsigned char, which means that a lot of casting is required to interoperate with standard library calls and
std::string. In retrospect, qpdf should have probably used regular (signed) char and char* everywhere and
just cast to unsigned char when needed, but it's too late to make that change now. There are reinterpret_cast
calls to go between char* and unsigned char*, and there are static_cast calls to go between char and
unsigned char. These should always be safe.

Design and Library Notes

18

• Non-const unsigned char* used in the Pipeline interface. The pipeline interface has a write call that uses
unsigned char* without a const qualifier. The main reason for this is to support pipelines that make calls to
third-party libraries, such as zlib, that don't include const in their interfaces. Unfortunately, there are many places
in the code where it is desirable to have const char* with pipelines. None of the pipeline implementations in
qpdf currently modify the data passed to write, and doing so would be counter to the intent of Pipeline, but there
is nothing in the code to prevent this from being done. There are places in the code where const_cast is used to
remove the const-ness of pointers going into Pipelines. This could theoretically be unsafe, but there is adequate
testing to assert that it is safe and will remain safe in qpdf's code.

• size_t vs. qpdf_offset_t. This is pretty much unavoidable since sizes are unsigned types and offsets are
signed types. Whenever it is necessary to seek by an amount given by a size_t, it becomes necessary to mix and
match between size_t and qpdf_offset_t. Additionally, qpdf sometimes treats memory buffers like files (as
with BufferInputSource, and those seek interfaces have to be consistent with file-based input sources. Neither
gcc nor MSVC give warnings for this case by default, but both have warning flags that can enable this. (MSVC:
/W14267 or /W3, which also enables some additional warnings that we ignore; gcc: -Wconversion -Wsign-
conversion). This could matter for files whose sizes are larger than 263 bytes, but it is reasonable to expect that a
world where such files are common would also have larger size_t and qpdf_offset_t types in it. On most
64-bit systems at the time of this writing (the release of version 4.1.0 of qpdf), both size_t and qpdf_offset_t
are 64-bit integer types, while on many current 32-bit systems, size_t is a 32-bit type while qpdf_offset_t is
a 64-bit type. I am not aware of any cases where 32-bit systems that have size_t smaller than qpdf_offset_t
could run into problems. Although I can't conclusively rule out the possibility of such problems existing, I suspect
any cases would be pretty contrived. In the event that someone should produce a file that qpdf can't handle because
of what is suspected to be issues involving the handling of size_t vs. qpdf_offset_t (such files may behave
properly on 64-bit systems but not on 32-bit systems because they have very large embedded files or streams, for
example), the above mentioned warning flags could be enabled and all those implicit conversions could be carefully
scrutinized. (I have already gone through that exercise once in adding support for files larger than 4 GB in size.) I
continue to be committed to supporting large files on 32-bit systems, but I would not go to any lengths to support
corner cases involving large embedded files or large streams that work on 64-bit systems but not on 32-bit systems
because of size_t being too small. It is reasonable to assume that anyone working with such files would be using
a 64-bit system anyway since many 32-bit applications would have similar difficulties.

• size_t vs. int or long. There are some cases where size_t and int or long or size_t and unsigned
int or unsigned long are used interchangeably. These cases occur when working with very small amounts of
memory, such as with the bit readers (where we're working with just a few bytes at a time), some cases of strlen, and
a few other cases. I have scrutinized all of these cases and determined them to be safe, but there is no mechanism in
the code to ensure that new unsafe conversions between int and size_t aren't introduced short of good testing
and strong awareness of the issues. Again, if any such bugs are suspected in the future, enabling the additional
warning flags and scrutinizing the warnings would be in order.

To be clear, I believe qpdf to be well-behaved with respect to sizes and offsets, and qpdf's test suite includes actual
generation and full processing of files larger than 4 GB in size. The issues raised here are largely academic and should
not in any way be interpreted to mean that qpdf has practical problems involving sloppiness with integer types. I also
believe that appropriate measures have been taken in the code to avoid problems with signed vs. unsigned integers
from resulting in memory overwrites or other issues with potential security implications, though there are never any
absolute guarantees.

6.4. Encryption
Encryption is supported transparently by qpdf. When opening a PDF file, if an encryption dictionary exists, the QPDF
object processes this dictionary using the password (if any) provided. The primary decryption key is computed and
cached. No further access is made to the encryption dictionary after that time. When an object is read from a file, the
object ID and generation of the object in which it is contained is always known. Using this information along with
the stored encryption key, all stream and string objects are transparently decrypted. Raw encrypted objects are never
stored in memory. This way, nothing in the library ever has to know or care whether it is reading an encrypted file.

Design and Library Notes

19

An interface is also provided for writing encrypted streams and strings given an encryption key. This is used by
QPDFWriter when it rewrites encrypted files.

When copying encrypted files, unless otherwise directed, qpdf will preserve any encryption in force in the original
file. qpdf can do this with either the user or the owner password. There is no difference in capability based on which
password is used. When 40 or 128 bit encryption keys are used, the user password can be recovered with the owner
password. With 256 keys, the user and owner passwords are used independently to encrypt the actual encryption key,
so while either can be used, the owner password can no longer be used to recover the user password.

Starting with version 4.0.0, qpdf can read files that are not encrypted but that contain encrypted attachments, but it
cannot write such files. qpdf also requires the password to be specified in order to open the file, not just to extract
attachments, since once the file is open, all decryption is handled transparently. When copying files like this while
preserving encryption, qpdf will apply the file's encryption to everything in the file, not just to the attachments. When
decrypting the file, qpdf will decrypt the attachments. In general, when copying PDF files with multiple encryption
formats, qpdf will choose the newest format. The only exception to this is that clear-text metadata will be preserved
as clear-text if it is that way in the original file.

6.5. Random Number Generation
QPDF generates random numbers to support generation of encrypted data. Versions prior to 5.0.1 used random or rand
from stdlib to generate random numbers. Version 5.0.1, if available, used operating system-provided secure random
number generation instead, enabling use of stdlib random number generation only if enabled by a compile-time option.
Starting in version 5.1.0, use of insecure random numbers was disabled unless enabled at compile time. Starting in
version 5.1.0, it is also possible for you to disable use of OS-provided secure random numbers. This is especially
useful on Windows if you want to avoid a dependency on Microsoft's cryptography API. In this case, you must provide
your own random data provider. Regardless of how you compile qpdf, starting in version 5.1.0, it is possible for you
to provide your own random data provider at runtime. This would enable you to use some software-based secure
pseudorandom number generator and to avoid use of whatever the operating system provides. For details on how to
do this, please refer to the top-level README file in the source distribution and to comments in QUtil.hh.

6.6. Adding and Removing Pages
While qpdf's API has supported adding and modifying objects for some time, version 3.0 introduces specific methods
for adding and removing pages. These are largely convenience routines that handle two tricky issues: pushing
inheritable resources from the /Pages tree down to individual pages and manipulation of the /Pages tree itself. For
details, see addPage and surrounding methods in QPDF.hh.

6.7. Reserving Object Numbers
Version 3.0 of qpdf introduced the concept of reserved objects. These are seldom needed for ordinary operations, but
there are cases in which you may want to add a series of indirect objects with references to each other to a QPDF object.
This causes a problem because you can't determine the object ID that a new indirect object will have until you add it to
the QPDF object with QPDF::makeIndirectObject. The only way to add two mutually referential objects to a QPDF
object prior to version 3.0 would be to add the new objects first and then make them refer to each other after adding
them. Now it is possible to create a reserved object using QPDFObjectHandle::newReserved. This is an indirect object
that stays “unresolved” even if it is queried for its type. So now, if you want to create a set of mutually referential
objects, you can create reservations for each one of them and use those reservations to construct the references. When
finished, you can call QPDF::replaceReserved to replace the reserved objects with the real ones. This functionality
will never be needed by most applications, but it is used internally by QPDF when copying objects from other PDF
files, as discussed in Section 6.8, “Copying Objects From Other PDF Files”, page 20. For an example of how to
use reserved objects, search for newReserved in test_driver.cc in qpdf's sources.

Design and Library Notes

20

6.8. Copying Objects From Other PDF Files
Version 3.0 of qpdf introduced the ability to copy objects into a QPDF object from a different QPDF object, which
we refer to as foreign objects. This allows arbitrary merging of PDF files. The qpdf command-line tool provides
limited support for basic page selection, including merging in pages from other files, but the library's API makes
it possible to implement arbitrarily complex merging operations. The main method for copying foreign objects is
QPDF::copyForeignObject. This takes an indirect object from another QPDF and copies it recursively into this object
while preserving all object structure, including circular references. This means you can add a direct object that you
create from scratch to a QPDF object with QPDF::makeIndirectObject, and you can add an indirect object from
another file with QPDF::copyForeignObject. The fact that QPDF::makeIndirectObject does not automatically detect
a foreign object and copy it is an explicit design decision. Copying a foreign object seems like a sufficiently significant
thing to do that it should be done explicitly.

The other way to copy foreign objects is by passing a page from one QPDF to another by calling QPDF::addPage.
In contrast to QPDF::makeIndirectObject, this method automatically distinguishes between indirect objects in the
current file, foreign objects, and direct objects.

6.9. Writing PDF Files
The qpdf library supports file writing of QPDF objects to PDF files through the QPDFWriter class. The
QPDFWriter class has two writing modes: one for non-linearized files, and one for linearized files. See Chapter 7,
Linearization, page 22 for a description of linearization is implemented. This section describes how we write non-
linearized files including the creation of QDF files (see Chapter 4, QDF Mode, page 12.

This outline was written prior to implementation and is not exactly accurate, but it provides a correct “notional” idea
of how writing works. Look at the code in QPDFWriter for exact details.

• Initialize state:

• next object number = 1

• object queue = empty

• renumber table: old object id/generation to new id/0 = empty

• xref table: new id -> offset = empty

• Create a QPDF object from a file.

• Write header for new PDF file.

• Request the trailer dictionary.

• For each value that is an indirect object, grab the next object number (via an operation that returns and increments
the number). Map object to new number in renumber table. Push object onto queue.

• While there are more objects on the queue:

• Pop queue.

• Look up object's new number n in the renumbering table.

• Store current offset into xref table.

• Write n 0 obj.

Design and Library Notes

21

• If object is null, whether direct or indirect, write out null, thus eliminating unresolvable indirect object references.

• If the object is a stream stream, write stream contents, piped through any filters as required, to a memory buffer.
Use this buffer to determine the stream length.

• If object is not a stream, array, or dictionary, write out its contents.

• If object is an array or dictionary (including stream), traverse its elements (for array) or values (for dictionaries),
handling recursive dictionaries and arrays, looking for indirect objects. When an indirect object is found, if it is
not resolvable, ignore. (This case is handled when writing it out.) Otherwise, look it up in the renumbering table.
If not found, grab the next available object number, assign to the referenced object in the renumbering table, and
push the referenced object onto the queue. As a special case, when writing out a stream dictionary, replace length,
filters, and decode parameters as required.

Write out dictionary or array, replacing any unresolvable indirect object references with null (pdf spec says
reference to non-existent object is legal and resolves to null) and any resolvable ones with references to the
renumbered objects.

• If the object is a stream, write stream\n, the stream contents (from the memory buffer), and \nendstream\n.

• When done, write endobj.

Once we have finished the queue, all referenced objects will have been written out and all deleted objects or
unreferenced objects will have been skipped. The new cross-reference table will contain an offset for every new object
number from 1 up to the number of objects written. This can be used to write out a new xref table. Finally we can
write out the trailer dictionary with appropriately computed /ID (see spec, 8.3, File Identifiers), the cross reference
table offset, and %%EOF.

6.10. Filtered Streams
Support for streams is implemented through the Pipeline interface which was designed for this package.

When reading streams, create a series of Pipeline objects. The Pipeline abstract base requires implementation write()
and finish() and provides an implementation of getNext(). Each pipeline object, upon receiving data, does whatever it
is going to do and then writes the data (possibly modified) to its successor. Alternatively, a pipeline may be an end-
of-the-line pipeline that does something like store its output to a file or a memory buffer ignoring a successor. For
additional details, look at Pipeline.hh.

QPDF can read raw or filtered streams. When reading a filtered stream, the QPDF class creates a Pipeline object for
one of each appropriate filter object and chains them together. The last filter should write to whatever type of output
is required. The QPDF class has an interface to write raw or filtered stream contents to a given pipeline.

22

Chapter 7. Linearization
This chapter describes how QPDF and QPDFWriter implement creation and processing of linearized PDFS.

7.1. Basic Strategy for Linearization
To avoid the incestuous problem of having the qpdf library validate its own linearized files, we have a special linearized
file checking mode which can be invoked via qpdf --check-linearization (or qpdf --check). This mode reads the
linearization parameter dictionary and the hint streams and validates that object ordering, parameters, and hint stream
contents are correct. The validation code was first tested against linearized files created by external tools (Acrobat and
pdlin) and then used to validate files created by QPDFWriter itself.

7.2. Preparing For Linearization
Before creating a linearized PDF file from any other PDF file, the PDF file must be altered such that all page attributes
are propagated down to the page level (and not inherited from parents in the /Pages tree). We also have to know
which objects refer to which other objects, being concerned with page boundaries and a few other cases. We refer to
this part of preparing the PDF file as optimization, discussed in Section 7.3, “Optimization”, page 22. Note the, in
this context, the term optimization is a qpdf term, and the term linearization is a term from the PDF specification. Do
not be confused by the fact that many applications refer to linearization as optimization or web optimization.

When creating linearized PDF files from optimized PDF files, there are really only a few issues that need to be dealt
with:

• Creation of hints tables

• Placing objects in the correct order

• Filling in offsets and byte sizes

7.3. Optimization
In order to perform various operations such as linearization and splitting files into pages, it is necessary to know which
objects are referenced by which pages, page thumbnails, and root and trailer dictionary keys. It is also necessary to
ensure that all page-level attributes appear directly at the page level and are not inherited from parents in the pages tree.

We refer to the process of enforcing these constraints as optimization. As mentioned above, note that some applications
refer to linearization as optimization. Although this optimization was initially motivated by the need to create linearized
files, we are using these terms separately.

PDF file optimization is implemented in the QPDF_optimization.cc source file. That file is richly commented and
serves as the primary reference for the optimization process.

After optimization has been completed, the private member variables obj_user_to_objects and object_to_obj_users in
QPDF have been populated. Any object that has more than one value in the object_to_obj_users table is shared. Any
object that has exactly one value in the object_to_obj_users table is private. To find all the private objects in a page or
a trailer or root dictionary key, one merely has make this determination for each element in the obj_user_to_objects
table for the given page or key.

Note that pages and thumbnails have different object user types, so the above test on a page will not include objects
referenced by the page's thumbnail dictionary and nothing else.

Linearization

23

7.4. Writing Linearized Files
We will create files with only primary hint streams. We will never write overflow hint streams. (As of PDF version 1.4,
Acrobat doesn't either, and they are never necessary.) The hint streams contain offset information to objects that point
to where they would be if the hint stream were not present. This means that we have to calculate all object positions
before we can generate and write the hint table. This means that we have to generate the file in two passes. To make
this reliable, QPDFWriter in linearization mode invokes exactly the same code twice to write the file to a pipeline.

In the first pass, the target pipeline is a count pipeline chained to a discard pipeline. The count pipeline simply passes
its data through to the next pipeline in the chain but can return the number of bytes passed through it at any intermediate
point. The discard pipeline is an end of line pipeline that just throws its data away. The hint stream is not written and
dummy values with adequate padding are stored in the first cross reference table, linearization parameter dictionary,
and /Prev key of the first trailer dictionary. All the offset, length, object renumbering information, and anything else
we need for the second pass is stored.

At the end of the first pass, this information is passed to the QPDF class which constructs a compressed hint stream
in a memory buffer and returns it. QPDFWriter uses this information to write a complete hint stream object into a
memory buffer. At this point, the length of the hint stream is known.

In the second pass, the end of the pipeline chain is a regular file instead of a discard pipeline, and we have known values
for all the offsets and lengths that we didn't have in the first pass. We have to adjust offsets that appear after the start of
the hint stream by the length of the hint stream, which is known. Anything that is of variable length is padded, with the
padding code surrounding any writing code that differs in the two passes. This ensures that changes to the way things
are represented never results in offsets that were gathered during the first pass becoming incorrect for the second pass.

Using this strategy, we can write linearized files to a non-seekable output stream with only a single pass to disk or
wherever the output is going.

7.5. Calculating Linearization Data
Once a file is optimized, we have information about which objects access which other objects. We can then process
these tables to decide which part (as described in “Linearized PDF Document Structure” in the PDF specification)
each object is contained within. This tells us the exact order in which objects are written. The QPDFWriter class
asks for this information and enqueues objects for writing in the proper order. It also turns on a check that causes an
exception to be thrown if an object is encountered that has not already been queued. (This could happen only if there
were a bug in the traversal code used to calculate the linearization data.)

7.6. Known Issues with Linearization
There are a handful of known issues with this linearization code. These issues do not appear to impact the behavior of
linearized files which still work as intended: it is possible for a web browser to begin to display them before they are
fully downloaded. In fact, it seems that various other programs that create linearized files have many of these same
issues. These items make reference to terminology used in the linearization appendix of the PDF specification.

• Thread Dictionary information keys appear in part 4 with the rest of Threads instead of in part 9. Objects in part
9 are not grouped together functionally.

• We are not calculating numerators for shared object positions within content streams or interleaving them within
content streams.

• We generate only page offset, shared object, and outline hint tables. It would be relatively easy to add some additional
tables. We gather most of the information needed to create thumbnail hint tables. There are comments in the code
about this.

Linearization

24

7.7. Debugging Note
The qpdf --show-linearization command can show the complete contents of linearization hint streams. To look at the
raw data, you can extract the filtered contents of the linearization hint tables using qpdf --show-object=n --filtered-
stream-data. Then, to convert this into a bit stream (since linearization tables are bit streams written without regard
to byte boundaries), you can pipe the resulting data through the following perl code:

use bytes;
binmode STDIN;
undef $/;
my $a = <STDIN>;
my @ch = split(//, $a);
map { printf("%08b", ord($_)) } @ch;
print "\n";

25

Chapter 8. Object and Cross-Reference
Streams
This chapter provides information about the implementation of object stream and cross-reference stream support in
qpdf.

8.1. Object Streams
Object streams can contain any regular object except the following:

• stream objects

• objects with generation > 0

• the encryption dictionary

• objects containing the /Length of another stream

In addition, Adobe reader (at least as of version 8.0.0) appears to not be able to handle having the document catalog
appear in an object stream if the file is encrypted, though this is not specifically disallowed by the specification.

There are additional restrictions for linearized files. See Section 8.3, “Implications for Linearized Files”, page 26for
details.

The PDF specification refers to objects in object streams as “compressed objects” regardless of whether the object
stream is compressed.

The generation number of every object in an object stream must be zero. It is possible to delete and replace an object
in an object stream with a regular object.

The object stream dictionary has the following keys:

• /N: number of objects

• /First: byte offset of first object

• /Extends: indirect reference to stream that this extends

Stream collections are formed with /Extends. They must form a directed acyclic graph. These can be used for
semantic information and are not meaningful to the PDF document's syntactic structure. Although qpdf preserves
stream collections, it never generates them and doesn't make use of this information in any way.

The specification recommends limiting the number of objects in object stream for efficiency in reading and decoding.
Acrobat 6 uses no more than 100 objects per object stream for linearized files and no more 200 objects per stream for
non-linearized files. QPDFWriter, in object stream generation mode, never puts more than 100 objects in an object
stream.

Object stream contents consists of N pairs of integers, each of which is the object number and the byte offset of the
object relative to the first object in the stream, followed by the objects themselves, concatenated.

8.2. Cross-Reference Streams
For non-hybrid files, the value following startxref is the byte offset to the xref stream rather than the word xref.

Object and Cross-Reference Streams

26

For hybrid files (files containing both xref tables and cross-reference streams), the xref table's trailer dictionary contains
the key /XRefStm whose value is the byte offset to a cross-reference stream that supplements the xref table. A
PDF 1.5-compliant application should read the xref table first. Then it should replace any object that it has already
seen with any defined in the xref stream. Then it should follow any /Prev pointer in the original xref table's trailer
dictionary. The specification is not clear about what should be done, if anything, with a /Prev pointer in the xref
stream referenced by an xref table. The QPDF class ignores it, which is probably reasonable since, if this case were
to appear for any sensible PDF file, the previous xref table would probably have a corresponding /XRefStm pointer
of its own. For example, if a hybrid file were appended, the appended section would have its own xref table and /
XRefStm. The appended xref table would point to the previous xref table which would point the /XRefStm, meaning
that the new /XRefStm doesn't have to point to it.

Since xref streams must be read very early, they may not be encrypted, and the may not contain indirect objects for
keys required to read them, which are these:

• /Type: value /XRef

• /Size: value n+1: where n is highest object number (same as /Size in the trailer dictionary)

• /Index (optional): value [n count ...] used to determine which objects' information is stored in this stream.
The default is [0 /Size].

• /Prev: value offset: byte offset of previous xref stream (same as /Prev in the trailer dictionary)

• /W [...]: sizes of each field in the xref table

The other fields in the xref stream, which may be indirect if desired, are the union of those from the xref table's trailer
dictionary.

8.2.1. Cross-Reference Stream Data
The stream data is binary and encoded in big-endian byte order. Entries are concatenated, and each entry has a length
equal to the total of the entries in /W above. Each entry consists of one or more fields, the first of which is the type of
the field. The number of bytes for each field is given by /W above. A 0 in /W indicates that the field is omitted and
has the default value. The default value for the field type is “1”. All other default values are “0”.

PDF 1.5 has three field types:

• 0: for free objects. Format: 0 obj next-generation, same as the free table in a traditional cross-reference table

• 1: regular non-compressed object. Format: 1 offset generation

• 2: for objects in object streams. Format: 2 object-stream-number index, the number of object stream
containing the object and the index within the object stream of the object.

It seems standard to have the first entry in the table be 0 0 0 instead of 0 0 ffff if there are no deleted objects.

8.3. Implications for Linearized Files
For linearized files, the linearization dictionary, document catalog, and page objects may not be contained in object
streams.

Objects stored within object streams are given the highest range of object numbers within the main and first-page
cross-reference sections.

It is okay to use cross-reference streams in place of regular xref tables. There are on special considerations.

Object and Cross-Reference Streams

27

Hint data refers to object streams themselves, not the objects in the streams. Shared object references should also be
made to the object streams. There are no reference in any hint tables to the object numbers of compressed objects
(objects within object streams).

When numbering objects, all shared objects within both the first and second halves of the linearized files must be
numbered consecutively after all normal uncompressed objects in that half.

8.4. Implementation Notes
There are three modes for writing object streams: disable, preserve, and generate. In disable mode, we do not generate
any object streams, and we also generate an xref table rather than xref streams. This can be used to generate PDF
files that are viewable with older readers. In preserve mode, we write object streams such that written object streams
contain the same objects and /Extends relationships as in the original file. This is equal to disable if the file has no
object streams. In generate, we create object streams ourselves by grouping objects that are allowed in object streams
together in sets of no more than 100 objects. We also ensure that the PDF version is at least 1.5 in generate mode, but
we preserve the version header in the other modes. The default is preserve.

We do not support creation of hybrid files. When we write files, even in preserve mode, we will lose any xref tables
and merge any appended sections.

28

Appendix A. Release Notes
For a detailed list of changes, please see the file ChangeLog in the source distribution.

5.1.3: May 24, 2015

• Bug fix: fix-qdf was not properly handling files that contained object streams with more than 255 objects in
them.

• Bug fix: qpdf was not properly initializing Microsoft's secure crypto provider on fresh Windows installations
that had not had any keys created yet.

• Fix a few errors found by Gynvael Coldwind and Mateusz Jurczyk of the Google Security Team. Please see
the ChangeLog for details.

• Properly handle pages that have no contents at all. There were many cases in which qpdf handled this fine, but
a few methods blindly obtained page contents with handling the possibility that there were no contents.

• Make qpdf more robust for a few more kinds of problems that may occur in invalid PDF files.

5.1.2: June 7, 2014

• Bug fix: linearizing files could create a corrupted output file under extremely unlikely file size circumstances.
See ChangeLog for details. The odds of getting hit by this are very low, though one person did.

• Bug fix: qpdf would fail to write files that had streams with decode parameters referencing other streams.

• New example program: pdf-split-pages: efficiently split PDF files into individual pages. The example program
does this more efficiently than using qpdf --pages to do it.

• Packaging fix: Visual C++ binaries did not support Windows XP. This has been rectified by updating the
compilers used to generate the release binaries.

5.1.1: January 14, 2014

• Performance fix: copying foreign objects could be very slow with certain types of files. This was most likely
to be visible during page splitting and was due to traversing the same objects multiple times in some cases.

5.1.0: December 17, 2013

• Added runtime option (QUtil::setRandomDataProvider) to supply your own random data provider. You can
use this if you want to avoid using the OS-provided secure random number generation facility or stdlib's less
secure version. See comments in include/qpdf/QUtil.hh for details.

• Fixed image comparison tests to not create 12-bit-per-pixel images since some versions of tiffcmp have bugs
in comparing them in some cases. This increases the disk space required by the image comparison tests, which
are off by default anyway.

• Introduce a number of small fixes for compilation on the latest clang in MacOS and the latest Visual C++ in
Windows.

• Be able to handle broken files that end the xref table header with a space instead of a newline.

5.0.1: October 18, 2013

• Thanks to a detailed review by Florian Weimer and the Red Hat Product Security Team, this release includes a
number of non-user-visible security hardening changes. Please see the ChangeLog file in the source distribution
for the complete list.

Release Notes

29

• When available, operating system-specific secure random number generation is used for generating
initialization vectors and other random values used during encryption or file creation. For the Windows build,
this results in an added dependency on Microsoft's cryptography API. To disable the OS-specific cryptography
and use the old version, pass the --enable-insecure-random option to ./configure.

• The qpdf command-line tool now issues a warning when -accessibility=n is specified for newer encryption
versions stating that the option is ignored. qpdf, per the spec, has always ignored this flag, but it previously
did so silently. This warning is issued only by the command-line tool, not by the library. The library's handling
of this flag is unchanged.

5.0.0: July 10, 2013

• Bug fix: previous versions of qpdf would lose objects with generation != 0 when generating object streams.
Fixing this required changes to the public API.

• Removed methods from public API that were only supposed to be called by QPDFWriter and couldn't
realistically be called anywhere else. See ChangeLog for details.

• New QPDFObjGen class added to represent an object ID/generation pair. QPDFObjectHandle::getObjGen() is
now preferred over QPDFObjectHandle::getObjectID() and QPDFObjectHandle::getGeneration() as it makes
it less likely for people to accidentally write code that ignores the generation number. See QPDF.hh and
QPDFObjectHandle.hh for additional notes.

• Add --show-npages command-line option to the qpdf command to show the number of pages in a file.

• Allow omission of the page range within --pages for the qpdf command. When omitted, the page range is
implicitly taken to be all the pages in the file.

• Various enhancements were made to support different types of broken files or broken readers. Details can be
found in ChangeLog.

4.1.0: April 14, 2013

• Note to people including qpdf in distributions: the .la files generated by libtool are now installed by qpdf's make
install target. Before, they were not installed. This means that if your distribution does not want to include .la
files, you must remove them as part of your packaging process.

• Major enhancement: API enhancements have been made to support parsing of content streams. This
enhancement includes the following changes:

• QPDFObjectHandle::parseContentStream method parses objects in a content stream and calls handlers in a
callback class. The example examples/pdf-parse-content.cc illustrates how this may be used.

• QPDFObjectHandle can now represent operators and inline images, object types that may only appear
in content streams.

• Method QPDFObjectHandle::getTypeCode() returns an enumerated type value representing the underlying
object type. Method QPDFObjectHandle::getTypeName() returns a text string describing the name of
the type of a QPDFObjectHandle object. These methods can be used for more efficient parsing and
debugging/diagnostic messages.

• qpdf --check now parses all pages' content streams in addition to doing other checks. While there are still many
types of errors that cannot be detected, syntactic errors in content streams will now be reported.

• Minor compilation enhancements have been made to facilitate easier for support for a broader range of compilers
and compiler versions.

Release Notes

30

• Warning flags have been moved into a separate variable in autoconf.mk

• The configure flag --enable-werror work for Microsoft compilers

• All MSVC CRT security warnings have been resolved.

• All C-style casts in C++ Code have been replaced by C++ casts, and many casts that had been included
to suppress higher warning levels for some compilers have been removed, primarily for clarity. Places
where integer type coercion occurs have been scrutinized. A new casting policy has been documented in the
manual. This is of concern mainly to people porting qpdf to new platforms or compilers. It is not visible to
programmers writing code that uses the library

• Some internal limits have been removed in code that converts numbers to strings. This is largely invisible to
users, but it does trigger a bug in some older versions of mingw-w64's C++ library. See README-windows.txt
in the source distribution if you think this may affect you. The copy of the DLL distributed with qpdf's binary
distribution is not affected by this problem.

• The RPM spec file previously included with qpdf has been removed. This is because virtually all Linux
distributions include qpdf now that it is a dependency of CUPS filters.

• A few bug fixes are included:

• Overridden compressed objects are properly handled. Before, there were certain constructs that could cause
qpdf to see old versions of some objects. The most usual manifestation of this was loss of filled in form
values for certain files.

• Installation no longer uses GNU/Linux-specific versions of some commands, so make install works on
Solaris with native tools.

• The 64-bit mingw Windows binary package no longer includes a 32-bit DLL.

4.0.1: January 17, 2013

• Fix detection of binary attachments in test suite to avoid false test failures on some platforms.

• Add clarifying comment in QPDF.hh to methods that return the user password explaining that it is no longer
possible with newer encryption formats to recover the user password knowing the owner password. In earlier
encryption formats, the user password was encrypted in the file using the owner password. In newer encryption
formats, a separate encryption key is used on the file, and that key is independently encrypted using both the
user password and the owner password.

4.0.0: December 31, 2012

• Major enhancement: support has been added for newer encryption schemes supported by version X of Adobe
Acrobat. This includes use of 127-character passwords, 256-bit encryption keys, and the encryption scheme
specified in ISO 32000-2, the PDF 2.0 specification. This scheme can be chosen from the command line by
specifying use of 256-bit keys. qpdf also supports the deprecated encryption method used by Acrobat IX. This
encryption style has known security weaknesses and should not be used in practice. However, such files exist “in
the wild,” so support for this scheme is still useful. New methods QPDFWriter::setR6EncryptionParameters
(for the PDF 2.0 scheme) and QPDFWriter::setR5EncryptionParameters (for the deprecated scheme) have
been added to enable these new encryption schemes. Corresponding functions have been added to the C API
as well.

• Full support for Adobe extension levels in PDF version information. Starting with PDF version 1.7,
corresponding to ISO 32000, Adobe adds new functionality by increasing the extension level rather

Release Notes

31

than increasing the version. This support includes addition of the QPDF::getExtensionLevel method for
retrieving the document's extension level, addition of versions of QPDFWriter::setMinimumPDFVersion
and QPDFWriter::forcePDFVersion that accept an extension level, and extended syntax for specifying
forced and minimum versions on the command line as described in Section 3.5, “Advanced Transformation
Options”, page 8. Corresponding functions have been added to the C API as well.

• Minor fixes to prevent qpdf from referencing objects in the file that are not referenced in the file's overall
structure. Most files don't have any such objects, but some files have contain unreferenced objects with errors,
so these fixes prevent qpdf from needlessly rejecting or complaining about such objects.

• Add new generalized methods for reading and writing files from/to programmer-defined sources. The
method QPDF::processInputSource allows the programmer to use any input source for the input file, and
QPDFWriter::setOutputPipeline allows the programmer to write the output file through any pipeline. These
methods would make it possible to perform any number of specialized operations, such as accessing external
storage systems, creating bindings for qpdf in other programming languages that have their own I/O systems,
etc.

• Add new method QPDF::getEncryptionKey for retrieving the underlying encryption key used in the file.

• This release includes a small handful of non-compatible API changes. While effort is made to avoid such
changes, all the non-compatible API changes in this version were to parts of the API that would likely never
be used outside the library itself. In all cases, the altered methods or structures were parts of the QPDF that
were public to enable them to be called from either QPDFWriter or were part of validation code that was over-
zealous in reporting problems in parts of the file that would not ordinarily be referenced. In no case did any of
the removed methods do anything worse that falsely report error conditions in files that were broken in ways
that didn't matter. The following public parts of the QPDF class were changed in a non-compatible way:

• Updated nested QPDF::EncryptionData class to add fields needed by the newer encryption formats,
member variables changed to private so that future changes will not require breaking backward compatibility.

• Added additional parameters to compute_data_key, which is used by QPDFWriter to compute the
encryption key used to encrypt a specific object.

• Removed the method flattenScalarReferences. This method was previously used prior to writing a new PDF
file, but it has the undesired side effect of causing qpdf to read objects in the file that were not referenced.
Some otherwise files have unreferenced objects with errors in them, so this could cause qpdf to reject files
that would be accepted by virtually all other PDF readers. In fact, qpdf relied on only a very small part of
what flattenScalarReferences did, so only this part has been preserved, and it is now done directly inside
QPDFWriter.

• Removed the method decodeStreams. This method was used by the --check option of the qpdf command-line
tool to force all streams in the file to be decoded, but it also suffered from the problem of opening otherwise
unreferenced streams and thus could report false positive. The --check option now causes qpdf to go through
all the motions of writing a new file based on the original one, so it will always reference and check exactly
those parts of a file that any ordinary viewer would check.

• Removed the method trimTrailerForWrite. This method was used by QPDFWriter to modify the original
QPDF object by removing fields from the trailer dictionary that wouldn't apply to the newly written file.
This functionality, though generally harmless, was a poor implementation and has been replaced by having
QPDFWriter filter these out when copying the trailer rather than modifying the original QPDF object. (Note
that qpdf never modifies the original file itself.)

• Allow the PDF header to appear anywhere in the first 1024 bytes of the file. This is consistent with what other
readers do.

• Fix the pkg-config files to list zlib and pcre in Requires.private to better support static linking using pkg-config.

Release Notes

32

3.0.2: September 6, 2012

• Bug fix: QPDFWriter::setOutputMemory did not work when not used with QPDFWriter::setStaticID, which
made it pretty much useless. This has been fixed.

• New API call QPDFWriter::setExtraHeaderText inserts additional text near the header of the PDF file. The
intended use case is to insert comments that may be consumed by a downstream application, though other use
cases may exist.

3.0.1: August 11, 2012

• Version 3.0.0 included addition of files for pkg-config, but this was not mentioned in the release notes. The
release notes for 3.0.0 were updated to mention this.

• Bug fix: if an object stream ended with a scalar object not followed by space, qpdf would incorrectly report that
it encountered a premature EOF. This bug has been in qpdf since version 2.0.

3.0.0: August 2, 2012

• Acknowledgment: I would like to express gratitude for the contributions of Tobias Hoffmann toward the release
of qpdf version 3.0. He is responsible for most of the implementation and design of the new API for manipulating
pages, and contributed code and ideas for many of the improvements made in version 3.0. Without his work,
this release would certainly not have happened as soon as it did, if at all.

• Non-compatible API change: The version of QPDFObjectHandle::replaceStreamData that uses a
StreamDataProvider no longer requires (or accepts) a length parameter. See Appendix C, Upgrading to
3.0, page 38 for an explanation. While care is taken to avoid non-compatible API changes in general, an
exception was made this time because the new interface offers an opportunity to significantly simplify calling
code.

• Support has been added for large files. The test suite verifies support for files larger than 4 gigabytes, and
manual testing has verified support for files larger than 10 gigabytes. Large file support is available for both
32-bit and 64-bit platforms as long as the compiler and underlying platforms support it.

• Support for page selection (splitting and merging PDF files) has been added to the qpdf command-line tool.
See Section 3.4, “Page Selection Options”, page 6.

• Options have been added to the qpdf command-line tool for copying encryption parameters from another file.
See Section 3.2, “Basic Options”, page 4.

• New methods have been added to the QPDF object for adding and removing pages. See Section 6.6, “Adding
and Removing Pages”, page 19.

• New methods have been added to the QPDF object for copying objects from other PDF files. See Section 6.8,
“Copying Objects From Other PDF Files”, page 20

• A new method QPDFObjectHandle::parse has been added for constructing QPDFObjectHandle objects
from a string description.

• Methods have been added to QPDFWriter to allow writing to an already open stdio FILE* addition to writing
to standard output or a named file. Methods have been added to QPDF to be able to process a file from an
already open stdio FILE*. This makes it possible to read and write PDF from secure temporary files that have
been unlinked prior to being fully read or written.

• The QPDF::emptyPDF can be used to allow creation of PDF files from scratch. The example examples/pdf-
create.cc illustrates how it can be used.

Release Notes

33

• Several methods to take PointerHolder<Buffer> can now also accept std::string arguments.

• Many new convenience methods have been added to the library, most in QPDFObjectHandle. See
ChangeLog for a full list.

• When building on a platform that supports ELF shared libraries (such as Linux), symbol versions are enabled
by default. They can be disabled by passing --disable-ld-version-script to ./configure.

• The file libqpdf.pc is now installed to support pkg-config.

• Image comparison tests are off by default now since they are not needed to verify a correct build or port of
qpdf. They are needed only when changing the actual PDF output generated by qpdf. You should enable them
if you are making deep changes to qpdf itself. See README for details.

• Large file tests are off by default but can be turned on with ./configure or by setting an environment variable
before running the test suite. See README for details.

• When qpdf's test suite fails, failures are not printed to the terminal anymore by default. Instead, find them in
build/qtest.log. For packagers who are building with an autobuilder, you can add the --enable-show-failed-
test-output option to ./configure to restore the old behavior.

2.3.1: December 28, 2011

• Fix thread-safety problem resulting from non-thread-safe use of the PCRE library.

• Made a few minor documentation fixes.

• Add workaround for a bug that appears in some versions of ghostscript to the test suite

• Fix minor build issue for Visual C++ 2010.

2.3.0: August 11, 2011

• Bug fix: when preserving existing encryption on encrypted files with cleartext metadata, older qpdf versions
would generate password-protected files with no valid password. This operation now works. This bug only
affected files created by copying existing encryption parameters; explicit encryption with specification of
cleartext metadata worked before and continues to work.

• Enhance QPDFWriter with a new constructor that allows you to delay the specification of the output file.
When using this constructor, you may now call QPDFWriter::setOutputFilename to specify the output file,
or you may use QPDFWriter::setOutputMemory to cause QPDFWriter to write the resulting PDF file to a
memory buffer. You may then use QPDFWriter::getBuffer to retrieve the memory buffer.

• Add new API call QPDF::replaceObject for replacing objects by object ID

• Add new API call QPDF::swapObjects for swapping two objects by object ID

• Add QPDFObjectHandle::getDictAsMap and QPDFObjectHandle::getArrayAsVector to allow retrieval of
dictionary objects as maps and array objects as vectors.

• Add functions qpdf_get_info_key and qpdf_set_info_key to the C API for manipulating string fields of the
document's /Info dictionary.

• Add functions qpdf_init_write_memory, qpdf_get_buffer_length, and qpdf_get_buffer to the C API for writing
PDF files to a memory buffer instead of a file.

2.2.4: June 25, 2011

• Fix installation and compilation issues; no functionality changes.

Release Notes

34

2.2.3: April 30, 2011

• Handle some damaged streams with incorrect characters following the stream keyword.

• Improve handling of inline images when normalizing content streams.

• Enhance error recovery to properly handle files that use object 0 as a regular object, which is specifically
disallowed by the spec.

2.2.2: October 4, 2010

• Add new function qpdf_read_memory to the C API to call QPDF::processMemoryFile. This was an omission
in qpdf 2.2.1.

2.2.1: October 1, 2010

• Add new method QPDF::setOutputStreams to replace std::cout and std::cerr with other streams for generation
of diagnostic messages and error messages. This can be useful for GUIs or other applications that want to
capture any output generated by the library to present to the user in some other way. Note that QPDF does
not write to std::cout (or the specified output stream) except where explicitly mentioned in QPDF.hh, and
that the only use of the error stream is for warnings. Note also that output of warnings is suppressed when
setSuppressWarnings(true) is called.

• Add new method QPDF::processMemoryFile for operating on PDF files that are loaded into memory rather
than in a file on disk.

• Give a warning but otherwise ignore empty PDF objects by treating them as null. Empty object are not permitted
by the PDF specification but have been known to appear in some actual PDF files.

• Handle inline image filter abbreviations when the appear as stream filter abbreviations. The PDF specification
does not allow use of stream filter abbreviations in this way, but Adobe Reader and some other PDF readers
accept them since they sometimes appear incorrectly in actual PDF files.

• Implement miscellaneous enhancements to PointerHolder and Buffer to support other changes.

2.2.0: August 14, 2010

• Add new methods to QPDFObjectHandle (newStream and replaceStreamData for creating new streams and
replacing stream data. This makes it possible to perform a wide range of operations that were not previously
possible.

• Add new helper method in QPDFObjectHandle (addPageContents) for appending or prepending new content
streams to a page. This method makes it possible to manipulate content streams without having to be concerned
whether a page's contents are a single stream or an array of streams.

• Add new method in QPDFObjectHandle: replaceOrRemoveKey, which replaces a dictionary key with a
given value unless the value is null, in which case it removes the key instead.

• Add new method in QPDFObjectHandle: getRawStreamData, which returns the raw (unfiltered) stream data
into a buffer. This complements the getStreamData method, which returns the filtered (uncompressed) stream
data and can only be used when the stream's data is filterable.

• Provide two new examples: pdf-double-page-size and pdf-invert-images that illustrate the newly added
interfaces.

• Fix a memory leak that would cause loss of a few bytes for every object involved in a cycle of object references.
Thanks to Jian Ma for calling my attention to the leak.

Release Notes

35

2.1.5: April 25, 2010

• Remove restriction of file identifier strings to 16 bytes. This unnecessary restriction was preventing qpdf from
being able to encrypt or decrypt files with identifier strings that were not exactly 16 bytes long. The specification
imposes no such restriction.

2.1.4: April 18, 2010

• Apply the same padding calculation fix from version 2.1.2 to the main cross reference stream as well.

• Since qpdf --check only performs limited checks, clarify the output to make it clear that there still may be
errors that qpdf can't check. This should make it less surprising to people when another PDF reader is unable
to read a file that qpdf thinks is okay.

2.1.3: March 27, 2010

• Fix bug that could cause a failure when rewriting PDF files that contain object streams with unreferenced objects
that in turn reference indirect scalars.

• Don't complain about (invalid) AES streams that aren't a multiple of 16 bytes. Instead, pad them before
decrypting.

2.1.2: January 24, 2010

• Fix bug in padding around first half cross reference stream in linearized files. The bug could cause an assertion
failure when linearizing certain unlucky files.

2.1.1: December 14, 2009

• No changes in functionality; insert missing include in an internal library header file to support gcc 4.4, and
update test suite to ignore broken Adobe Reader installations.

2.1: October 30, 2009

• This is the first version of qpdf to include Windows support. On Windows, it is possible to build a DLL.
Additionally, a partial C-language API has been introduced, which makes it possible to call qpdf functions
from non-C++ environments. I am very grateful to Zarko Gagic (http://delphi.about.com/) for tirelessly testing
numerous pre-release versions of this DLL and providing many excellent suggestions on improving the
interface.

For programming to the C interface, please see the header file qpdf/qpdf-c.h and the example examples/pdf-
linearize.c.

• Zarko Gajic has written a Delphi wrapper for qpdf, which can be downloaded from qpdf's download side.
Zarko's Delphi wrapper is released with the same licensing terms as qpdf itself and comes with this disclaimer:
“Delphi wrapper unit qpdf.pas created by Zarko Gajic (http://delphi.about.com/). Use at your own risk and for
whatever purpose you want. No support is provided. Sample code is provided.”

• Support has been added for AES encryption and crypt filters. Although qpdf does not presently support files
that use PKI-based encryption, with the addition of AES and crypt filters, qpdf is now be able to open most
encrypted files created with newer versions of Acrobat or other PDF creation software. Note that I have not
been able to get very many files encrypted in this way, so it's possible there could still be some cases that qpdf
can't handle. Please report them if you find them.

• Many error messages have been improved to include more information in hopes of making qpdf a more useful
tool for PDF experts to use in manually recovering damaged PDF files.

http://delphi.about.com/

http://delphi.about.com/

Release Notes

36

• Attempt to avoid compressing metadata streams if possible. This is consistent with other PDF creation
applications.

• Provide new command-line options for AES encrypt, cleartext metadata, and setting the minimum and forced
PDF versions of output files.

• Add additional methods to the QPDF object for querying the document's permissions. Although qpdf does
not enforce these permissions, it does make them available so that applications that use qpdf can enforce
permissions.

• The --check option to qpdf has been extended to include some additional information.

• There have been a handful of non-compatible API changes. For details, see Appendix B, Upgrading from 2.0
to 2.1, page 37.

2.0.6: May 3, 2009

• Do not attempt to uncompress streams that have decode parameters we don't recognize. Earlier versions of qpdf
would have rejected files with such streams.

2.0.5: March 10, 2009

• Improve error handling in the LZW decoder, and fix a small error introduced in the previous version with regard
to handling full tables. The LZW decoder has been more strongly verified in this release.

2.0.4: February 21, 2009

• Include proper support for LZW streams encoded without the “early code change” flag. Special thanks to Atom
Smasher who reported the problem and provided an input file compressed in this way, which I did not previously
have.

• Implement some improvements to file recovery logic.

2.0.3: February 15, 2009

• Compile cleanly with gcc 4.4.

• Handle strings encoded as UTF-16BE properly.

2.0.2: June 30, 2008

• Update test suite to work properly with a non-bash /bin/sh and with Perl 5.10. No changes were made to the
actual qpdf source code itself for this release.

2.0.1: May 6, 2008

• No changes in functionality or interface. This release includes fixes to the source code so that qpdf compiles
properly and passes its test suite on a broader range of platforms. See ChangeLog in the source distribution
for details.

2.0: April 29, 2008

• First public release.

37

Appendix B. Upgrading from 2.0 to 2.1
Although, as a general rule, we like to avoid introducing source-level incompatibilities in qpdf's interface, there were a
few non-compatible changes made in this version. A considerable amount of source code that uses qpdf will probably
compile without any changes, but in some cases, you may have to update your code. The changes are enumerated here.
There are also some new interfaces; for those, please refer to the header files.

• QPDF's exception handling mechanism now uses std::logic_error for internal errors and std::runtime_error
for runtime errors in favor of the now removed QEXC classes used in previous versions. The QEXC exception
classes predated the addition of the <stdexcept> header file to the C++ standard library. Most of the exceptions
thrown by the qpdf library itself are still of type QPDFExc which is now derived from std::runtime_error.
Programs that caught an instance of std::exception and displayed it by calling the what() method will not need
to be changed.

• The QPDFExc class now internally represents various fields of the error condition and provides interfaces for
querying them. Among the fields is a numeric error code that can help applications act differently on (a small number
of) different error conditions. See QPDFExc.hh for details.

• Warnings can be retrieved from qpdf as instances of QPDFExc instead of strings.

• The nested QPDF::EncryptionData class's constructor takes an additional argument. This class is primarily
intended to be used by QPDFWriter. There's not really anything useful an end-user application could do with it. It
probably shouldn't really be part of the public interface to begin with. Likewise, some of the methods for computing
internal encryption dictionary parameters have changed to support /R=4 encryption.

• The method QPDF::getUserPassword has been removed since it didn't do what people would think it did. There
are now two new methods: QPDF::getPaddedUserPassword and QPDF::getTrimmedUserPassword. The first one
does what the old QPDF::getUserPassword method used to do, which is to return the password with possible binary
padding as specified by the PDF specification. The second one returns a human-readable password string.

• The enumerated types that used to be nested in QPDFWriter have moved to top-level enumerated types and are
now defined in the file qpdf/Constants.h. This enables them to be shared by both the C and C++ interfaces.

38

Appendix C. Upgrading to 3.0
For the most part, the API for qpdf version 3.0 is backward compatible with versions 2.1 and later. There are two
exceptions:

• The method QPDFObjectHandle::replaceStreamData that uses a StreamDataProvider to provide the stream
data no longer takes a length parameter. While it would have been easy enough to keep the parameter for backward
compatibility, in this case, the parameter was removed since this provides the user an opportunity to simplify the
calling code. This method was introduced in version 2.2. At the time, the length parameter was required in order
to ensure that calls to the stream data provider returned the same length for a specific stream every time they were
invoked. In particular, the linearization code depends on this. Instead, qpdf 3.0 and newer check for that constraint
explicitly. The first time the stream data provider is called for a specific stream, the actual length is saved, and
subsequent calls are required to return the same number of bytes. This means the calling code no longer has to
compute the length in advance, which can be a significant simplification. If your code fails to compile because of
the extra argument and you don't want to make other changes to your code, just omit the argument.

• Many methods take long long instead of other integer types. Most if not all existing code should compile fine
with this change since such parameters had always previously been smaller types. This change was required to
support files larger than two gigabytes in size.

39

Appendix D. Upgrading to 4.0
While version 4.0 includes a few non-compatible API changes, it is very unlikely that anyone's code would have
used any of those parts of the API since they generally required information that would only be available inside the
library. In the unlikely event that you should run into trouble, please see the ChangeLog. See also Appendix A, Release
Notes, page 28 for a complete list of the non-compatible API changes made in this version.

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-05.Pdf

Original page 5

qpdf-7.1.0/qpdf/qtest/qpdf/good9.out

/QTest is direct and has type string (6)
/QTest is a string with value ¡Hola!
unparse: (¡Hola!)
unparseResolved: (¡Hola!)
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.7-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/obj0-check.out

WARNING: obj0.pdf: file is damaged
WARNING: obj0.pdf (object 1 0, file position 77): expected n n obj
WARNING: obj0.pdf: Attempting to reconstruct cross-reference table
checking obj0.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized

qpdf-7.1.0/qpdf/qtest/qpdf/good2.out

/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/lin3.out

WARNING: end of first page section (/E) mismatch: /E = 3978; computed = 3785..3786
WARNING: page 1: shared object 107: in computed list but not hint table
WARNING: page 1: shared object 109: in computed list but not hint table
WARNING: page 2: shared object 107: in computed list but not hint table
WARNING: page 2: shared object 109: in computed list but not hint table
WARNING: page 3: shared object 107: in computed list but not hint table
WARNING: page 3: shared object 109: in computed list but not hint table
WARNING: page 4: shared object 107: in computed list but not hint table
WARNING: page 4: shared object 109: in computed list but not hint table
WARNING: page 5: shared object 107: in computed list but not hint table
WARNING: page 5: shared object 109: in computed list but not hint table
WARNING: page 6: shared object 107: in computed list but not hint table
WARNING: page 6: shared object 109: in computed list but not hint table
WARNING: page 7: shared object 107: in computed list but not hint table
WARNING: page 7: shared object 109: in computed list but not hint table
WARNING: page 8: shared object 107: in computed list but not hint table
WARNING: page 8: shared object 109: in computed list but not hint table
WARNING: page 9: shared object 107: in computed list but not hint table
WARNING: page 9: shared object 109: in computed list but not hint table
WARNING: page 10: shared object 107: in computed list but not hint table
WARNING: page 10: shared object 109: in computed list but not hint table
WARNING: page 11: shared object 107: in computed list but not hint table
WARNING: page 11: shared object 109: in computed list but not hint table
WARNING: page 12: shared object 107: in computed list but not hint table
WARNING: page 12: shared object 109: in computed list but not hint table
WARNING: page 13: shared object 107: in computed list but not hint table
WARNING: page 13: shared object 109: in computed list but not hint table
WARNING: page 14: shared object 107: in computed list but not hint table
WARNING: page 14: shared object 109: in computed list but not hint table
WARNING: page 15: shared object 107: in computed list but not hint table
WARNING: page 15: shared object 109: in computed list but not hint table
WARNING: page 16: shared object 107: in computed list but not hint table
WARNING: page 16: shared object 109: in computed list but not hint table
WARNING: page 17: shared object 107: in computed list but not hint table
WARNING: page 17: shared object 109: in computed list but not hint table
WARNING: page 18: shared object 107: in computed list but not hint table
WARNING: page 18: shared object 109: in computed list but not hint table
WARNING: page 19: shared object 107: in computed list but not hint table
WARNING: page 19: shared object 109: in computed list but not hint table
WARNING: page 20: shared object 107: in computed list but not hint table
WARNING: page 20: shared object 109: in computed list but not hint table
WARNING: page 21: shared object 107: in computed list but not hint table
WARNING: page 21: shared object 109: in computed list but not hint table
WARNING: page 22: shared object 107: in computed list but not hint table
WARNING: page 22: shared object 109: in computed list but not hint table
WARNING: page 23: shared object 107: in computed list but not hint table
WARNING: page 23: shared object 109: in computed list but not hint table
WARNING: page 24: shared object 107: in computed list but not hint table
WARNING: page 24: shared object 109: in computed list but not hint table
WARNING: page 25: shared object 107: in computed list but not hint table
WARNING: page 25: shared object 109: in computed list but not hint table
WARNING: page 26: shared object 107: in computed list but not hint table
WARNING: page 26: shared object 109: in computed list but not hint table
WARNING: page 27: shared object 107: in computed list but not hint table
WARNING: page 27: shared object 109: in computed list but not hint table
WARNING: page 28: shared object 107: in computed list but not hint table
WARNING: page 28: shared object 109: in computed list but not hint table
WARNING: page 29: shared object 107: in computed list but not hint table
WARNING: page 29: shared object 109: in computed list but not hint table
WARNING: incorrect offset in outlines table: hint table = 1627; computed = 1547
WARNING: incorrect length in outlines table: hint table = 1988; computed = 1936
lin3.pdf: linearization data:

file_size: 16937
first_page_object: 93
first_page_end: 3978
npages: 30
xref_zero_offset: 14999
first_page: 0
H_offset: 1142
H_length: 210

Page Offsets Hint Table

min_nobjects: 3
first_page_offset: 1352
nbits_delta_nobjects: 5
min_page_length: 339
nbits_delta_page_length: 12
min_content_offset: 0
nbits_delta_content_offset: 0
min_content_length: 0
nbits_delta_content_length: 12
nbits_nshared_objects: 0
nbits_shared_identifier: 5
nbits_shared_numerator: 0
shared_denominator: 8
Page 0:
 nobjects: 17
 length: 2434
 content_offset: 0
 content_length: 2095
 nshared_objects: 0
Page 1:
 nobjects: 3
 length: 339
 content_offset: 0
 content_length: 0
 nshared_objects: 0
Page 2:
 nobjects: 3
 length: 339
 content_offset: 0
 content_length: 0
 nshared_objects: 0
Page 3:
 nobjects: 3
 length: 339
 content_offset: 0
 content_length: 0
 nshared_objects: 0
Page 4:
 nobjects: 3
 length: 344
 content_offset: 0
 content_length: 5
 nshared_objects: 0
Page 5:
 nobjects: 3
 length: 344
 content_offset: 0
 content_length: 5
 nshared_objects: 0
Page 6:
 nobjects: 3
 length: 344
 content_offset: 0
 content_length: 5
 nshared_objects: 0
Page 7:
 nobjects: 3
 length: 344
 content_offset: 0
 content_length: 5
 nshared_objects: 0
Page 8:
 nobjects: 3
 length: 344
 content_offset: 0
 content_length: 5
 nshared_objects: 0
Page 9:
 nobjects: 3
 length: 344
 content_offset: 0
 content_length: 5
 nshared_objects: 0
Page 10:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 11:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 12:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 13:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 14:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 15:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 16:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 17:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 18:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 19:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 20:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 21:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 22:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 23:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 24:
 nobjects: 3
 length: 344
 content_offset: 0
 content_length: 5
 nshared_objects: 0
Page 25:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 26:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 27:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 28:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 29:
 nobjects: 3
 length: 345
 content_offset: 0
 content_length: 6
 nshared_objects: 0

Shared Objects Hint Table

first_shared_obj: 0
first_shared_offset: 16
nshared_first_page: 17
nshared_total: 17
nbits_nobjects: 0
min_group_length: 21
nbits_delta_group_length: 8
Shared Object 0:
 group length: 195
Shared Object 1:
 group length: 80
Shared Object 2:
 group length: 189
Shared Object 3:
 group length: 141
Shared Object 4:
 group length: 167
Shared Object 5:
 group length: 174
Shared Object 6:
 group length: 163
Shared Object 7:
 group length: 160
Shared Object 8:
 group length: 183
Shared Object 9:
 group length: 202
Shared Object 10:
 group length: 149
Shared Object 11:
 group length: 164
Shared Object 12:
 group length: 164
Shared Object 13:
 group length: 132
Shared Object 14:
 group length: 116
Shared Object 15:
 group length: 21
Shared Object 16:
 group length: 34

Outlines Hint Table

first_object: 94
first_object_offset: 1627
nobjects: 12
group_length: 1988

qpdf-7.1.0/qpdf/qtest/qpdf/add-contents.pdf

Baked

Potato

Mashed

qpdf-7.1.0/qpdf/qtest/qpdf/bad3.out

bad3.pdf (file position 542): xref not found

qpdf-7.1.0/qpdf/qtest/qpdf/c-r6.out

checking a.pdf
PDF Version: 1.7 extension level 8
R = 6
P = -2052
User password = user4
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: not allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
stream encryption method: AESv3
string encryption method: AESv3
file encryption method: AESv3
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad5.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/good12.out

qpdf-7.1.0/qpdf/qtest/qpdf/copied-encryption.out

R = 4
P = -20
User password = user
extract for accessibility: allowed
extract for any purpose: not allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
stream encryption method: AESv2
string encryption method: AESv2
file encryption method: AESv2

qpdf-7.1.0/qpdf/qtest/qpdf/show-page-1.out

<< /Contents 7 0 R /MediaBox [0 0 612 792] /Parent 4 0 R /Resources << /ProcSet [/PDF /ImageC] /XObject << /Im1 8 0 R /Im2 9 0 R >> >> /Type /Page >>

qpdf-7.1.0/qpdf/qtest/qpdf/08_split-exp.zdf

Original page 8

qpdf-7.1.0/qpdf/qtest/qpdf/good17-not-qdf.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.10.c-check

version: 1.5
linearized: 0
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.12-ogen.c-check

version: 1.5
linearized: 0
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.1-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.1.check

checking a.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.7-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-force-1.8.5.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/bad30-recover.out

qpdf-7.1.0/qpdf/qtest/qpdf/large_file.out

page 1 of 200
page 2 of 200
page 3 of 200
page 4 of 200
page 5 of 200
page 6 of 200
page 7 of 200
page 8 of 200
page 9 of 200
page 10 of 200
page 11 of 200
page 12 of 200
page 13 of 200
page 14 of 200
page 15 of 200
page 16 of 200
page 17 of 200
page 18 of 200
page 19 of 200
page 20 of 200
page 21 of 200
page 22 of 200
page 23 of 200
page 24 of 200
page 25 of 200
page 26 of 200
page 27 of 200
page 28 of 200
page 29 of 200
page 30 of 200
page 31 of 200
page 32 of 200
page 33 of 200
page 34 of 200
page 35 of 200
page 36 of 200
page 37 of 200
page 38 of 200
page 39 of 200
page 40 of 200
page 41 of 200
page 42 of 200
page 43 of 200
page 44 of 200
page 45 of 200
page 46 of 200
page 47 of 200
page 48 of 200
page 49 of 200
page 50 of 200
page 51 of 200
page 52 of 200
page 53 of 200
page 54 of 200
page 55 of 200
page 56 of 200
page 57 of 200
page 58 of 200
page 59 of 200
page 60 of 200
page 61 of 200
page 62 of 200
page 63 of 200
page 64 of 200
page 65 of 200
page 66 of 200
page 67 of 200
page 68 of 200
page 69 of 200
page 70 of 200
page 71 of 200
page 72 of 200
page 73 of 200
page 74 of 200
page 75 of 200
page 76 of 200
page 77 of 200
page 78 of 200
page 79 of 200
page 80 of 200
page 81 of 200
page 82 of 200
page 83 of 200
page 84 of 200
page 85 of 200
page 86 of 200
page 87 of 200
page 88 of 200
page 89 of 200
page 90 of 200
page 91 of 200
page 92 of 200
page 93 of 200
page 94 of 200
page 95 of 200
page 96 of 200
page 97 of 200
page 98 of 200
page 99 of 200
page 100 of 200
page 101 of 200
page 102 of 200
page 103 of 200
page 104 of 200
page 105 of 200
page 106 of 200
page 107 of 200
page 108 of 200
page 109 of 200
page 110 of 200
page 111 of 200
page 112 of 200
page 113 of 200
page 114 of 200
page 115 of 200
page 116 of 200
page 117 of 200
page 118 of 200
page 119 of 200
page 120 of 200
page 121 of 200
page 122 of 200
page 123 of 200
page 124 of 200
page 125 of 200
page 126 of 200
page 127 of 200
page 128 of 200
page 129 of 200
page 130 of 200
page 131 of 200
page 132 of 200
page 133 of 200
page 134 of 200
page 135 of 200
page 136 of 200
page 137 of 200
page 138 of 200
page 139 of 200
page 140 of 200
page 141 of 200
page 142 of 200
page 143 of 200
page 144 of 200
page 145 of 200
page 146 of 200
page 147 of 200
page 148 of 200
page 149 of 200
page 150 of 200
page 151 of 200
page 152 of 200
page 153 of 200
page 154 of 200
page 155 of 200
page 156 of 200
page 157 of 200
page 158 of 200
page 159 of 200
page 160 of 200
page 161 of 200
page 162 of 200
page 163 of 200
page 164 of 200
page 165 of 200
page 166 of 200
page 167 of 200
page 168 of 200
page 169 of 200
page 170 of 200
page 171 of 200
page 172 of 200
page 173 of 200
page 174 of 200
page 175 of 200
page 176 of 200
page 177 of 200
page 178 of 200
page 179 of 200
page 180 of 200
page 181 of 200
page 182 of 200
page 183 of 200
page 184 of 200
page 185 of 200
page 186 of 200
page 187 of 200
page 188 of 200
page 189 of 200
page 190 of 200
page 191 of 200
page 192 of 200
page 193 of 200
page 194 of 200
page 195 of 200
page 196 of 200
page 197 of 200
page 198 of 200
page 199 of 200
page 200 of 200

qpdf-7.1.0/qpdf/qtest/qpdf/copy-foreign-objects-errors.out

logic error: QPDF::copyForeign called with object from this QPDF
logic error: QPDF::copyForeign called with direct object handle
test 28 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad8.out

bad8.pdf (file position 543): xref not found

qpdf-7.1.0/qpdf/qtest/qpdf/06_split-exp.zdf

Original page 6

qpdf-7.1.0/qpdf/qtest/qpdf/indirect-decode-parms.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.3-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.9-ogen.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad19-recover.out

WARNING: bad19.pdf: file is damaged
WARNING: bad19.pdf (trailer, file position 753): unexpected >
WARNING: bad19.pdf: Attempting to reconstruct cross-reference table
bad19.pdf (trailer, file position 753): unexpected >

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp.zdf_05

Original page 5

qpdf-7.1.0/qpdf/qtest/qpdf/bad6-recover.out

/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.8.check

checking a.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.preserve.exp

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-min-1.8.0.out

version: 1.8
extension level: 0
null
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad35-recover.out

WARNING: bad35.pdf (object 1 0, file position 521): supposed object stream 1 has wrong type
bad35.pdf (file position 521): unable to find /Root dictionary

qpdf-7.1.0/qpdf/qtest/qpdf/tokenize-content-streams.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/eof-reading-token.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/c-r5-key-user.out

checking c-r5-in.pdf
PDF Version: 1.7 extension level 3
R = 5
P = -2052
User password = user3
Encryption key = 35ea16a48b6a3045133b69ac0906c2e8fb0a2cc97903ae17b51a5786ebdba020
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: not allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
stream encryption method: AESv3
string encryption method: AESv3
file encryption method: AESv3
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad11-recover.out

WARNING: bad11.pdf: file is damaged
WARNING: bad11.pdf (trailer, file position 905): /Prev key in trailer dictionary is not an integer
WARNING: bad11.pdf: Attempting to reconstruct cross-reference table
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-min-1.3.out

version: 1.7
extension level: 2
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 2 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/test4-1.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/misc-2.pdf

0020013 6
0006

0020015 8
0006; grayscale image

0020016 9
0006 0007

0020017 10
0006 0007

qpdf-7.1.0/qpdf/qtest/qpdf/lin7.out

WARNING: end of first page section (/E) mismatch: /E = 1865; computed = 1655..1656
WARNING: page 1: shared object 170: in computed list but not hint table
WARNING: page 1: shared object 172: in computed list but not hint table
WARNING: page 2: shared object 170: in computed list but not hint table
WARNING: page 2: shared object 172: in computed list but not hint table
WARNING: page 3: shared object 170: in computed list but not hint table
WARNING: page 3: shared object 172: in computed list but not hint table
WARNING: page 4: shared object 170: in computed list but not hint table
WARNING: page 4: shared object 172: in computed list but not hint table
WARNING: page 5: shared object 170: in computed list but not hint table
WARNING: page 5: shared object 172: in computed list but not hint table
WARNING: page 6: shared object 170: in computed list but not hint table
WARNING: page 6: shared object 172: in computed list but not hint table
WARNING: page 7: shared object 170: in computed list but not hint table
WARNING: page 7: shared object 172: in computed list but not hint table
WARNING: page 8: shared object 170: in computed list but not hint table
WARNING: page 8: shared object 172: in computed list but not hint table
WARNING: page 9: shared object 170: in computed list but not hint table
WARNING: page 9: shared object 172: in computed list but not hint table
WARNING: page 10: shared object 170: in computed list but not hint table
WARNING: page 10: shared object 172: in computed list but not hint table
WARNING: page 11: shared object 170: in computed list but not hint table
WARNING: page 11: shared object 172: in computed list but not hint table
WARNING: page 12: shared object 170: in computed list but not hint table
WARNING: page 12: shared object 172: in computed list but not hint table
WARNING: page 13: shared object 170: in computed list but not hint table
WARNING: page 13: shared object 172: in computed list but not hint table
WARNING: page 14: shared object 170: in computed list but not hint table
WARNING: page 14: shared object 172: in computed list but not hint table
WARNING: page 15: shared object 170: in computed list but not hint table
WARNING: page 15: shared object 172: in computed list but not hint table
WARNING: page 16: shared object 170: in computed list but not hint table
WARNING: page 16: shared object 172: in computed list but not hint table
WARNING: page 17: shared object 170: in computed list but not hint table
WARNING: page 17: shared object 172: in computed list but not hint table
WARNING: page 18: shared object 170: in computed list but not hint table
WARNING: page 18: shared object 172: in computed list but not hint table
WARNING: page 19: shared object 170: in computed list but not hint table
WARNING: page 19: shared object 172: in computed list but not hint table
WARNING: page 20: shared object 170: in computed list but not hint table
WARNING: page 20: shared object 172: in computed list but not hint table
WARNING: page 21: shared object 170: in computed list but not hint table
WARNING: page 21: shared object 172: in computed list but not hint table
WARNING: page 22: shared object 170: in computed list but not hint table
WARNING: page 22: shared object 172: in computed list but not hint table
WARNING: page 23: shared object 170: in computed list but not hint table
WARNING: page 23: shared object 172: in computed list but not hint table
WARNING: page 24: shared object 170: in computed list but not hint table
WARNING: page 24: shared object 172: in computed list but not hint table
WARNING: page 25: shared object 170: in computed list but not hint table
WARNING: page 25: shared object 172: in computed list but not hint table
WARNING: page 26: shared object 170: in computed list but not hint table
WARNING: page 26: shared object 172: in computed list but not hint table
WARNING: page 27: shared object 170: in computed list but not hint table
WARNING: page 27: shared object 172: in computed list but not hint table
WARNING: page 28: shared object 170: in computed list but not hint table
WARNING: page 28: shared object 172: in computed list but not hint table
WARNING: page 29: shared object 170: in computed list but not hint table
WARNING: page 29: shared object 172: in computed list but not hint table
lin7.pdf: linearization data:

file_size: 27408
first_page_object: 168
first_page_end: 1865
npages: 30
xref_zero_offset: 23969
first_page: 0
H_offset: 905
H_length: 235

Page Offsets Hint Table

min_nobjects: 3
first_page_offset: 1140
nbits_delta_nobjects: 3
min_page_length: 356
nbits_delta_page_length: 8
min_content_offset: 0
nbits_delta_content_offset: 0
min_content_length: 0
nbits_delta_content_length: 8
nbits_nshared_objects: 0
nbits_shared_identifier: 3
nbits_shared_numerator: 0
shared_denominator: 8
Page 0:
 nobjects: 5
 length: 516
 content_offset: 0
 content_length: 160
 nshared_objects: 0
Page 1:
 nobjects: 3
 length: 356
 content_offset: 0
 content_length: 0
 nshared_objects: 0
Page 2:
 nobjects: 3
 length: 356
 content_offset: 0
 content_length: 0
 nshared_objects: 0
Page 3:
 nobjects: 3
 length: 356
 content_offset: 0
 content_length: 0
 nshared_objects: 0
Page 4:
 nobjects: 3
 length: 361
 content_offset: 0
 content_length: 5
 nshared_objects: 0
Page 5:
 nobjects: 3
 length: 361
 content_offset: 0
 content_length: 5
 nshared_objects: 0
Page 6:
 nobjects: 3
 length: 361
 content_offset: 0
 content_length: 5
 nshared_objects: 0
Page 7:
 nobjects: 3
 length: 361
 content_offset: 0
 content_length: 5
 nshared_objects: 0
Page 8:
 nobjects: 3
 length: 361
 content_offset: 0
 content_length: 5
 nshared_objects: 0
Page 9:
 nobjects: 3
 length: 361
 content_offset: 0
 content_length: 5
 nshared_objects: 0
Page 10:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 11:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 12:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 13:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 14:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 15:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 16:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 17:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 18:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 19:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 20:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 21:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 22:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 23:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 24:
 nobjects: 3
 length: 361
 content_offset: 0
 content_length: 5
 nshared_objects: 0
Page 25:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 26:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 27:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 28:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 29:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 6
 nshared_objects: 0

Shared Objects Hint Table

first_shared_obj: 0
first_shared_offset: 16
nshared_first_page: 5
nshared_total: 5
nbits_nobjects: 0
min_group_length: 21
nbits_delta_group_length: 8
Shared Object 0:
 group length: 213
Shared Object 1:
 group length: 132
Shared Object 2:
 group length: 116
Shared Object 3:
 group length: 21
Shared Object 4:
 group length: 34

Outlines Hint Table

first_object: 88
first_object_offset: 12129
nobjects: 12
group_length: 2030

qpdf-7.1.0/qpdf/qtest/qpdf/c-uncompressed-streams.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-force-1.8.0.out

version: 1.8
extension level: 0
null
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/issue-100.out

WARNING: issue-100.pdf: file is damaged
WARNING: issue-100.pdf (file position 736): xref not found
WARNING: issue-100.pdf: Attempting to reconstruct cross-reference table
WARNING: issue-100.pdf (file position 268): unknown token while reading object; treating as string
WARNING: issue-100.pdf (file position 286): unknown token while reading object; treating as string
WARNING: issue-100.pdf (file position 289): unknown token while reading object; treating as string
WARNING: issue-100.pdf (file position 294): unknown token while reading object; treating as string
WARNING: issue-100.pdf (file position 297): unknown token while reading object; treating as string
WARNING: issue-100.pdf (file position 304): unknown token while reading object; treating as string
WARNING: issue-100.pdf (file position 308): unexpected)
WARNING: issue-100.pdf (object 5 0, file position 418): /Length key in stream dictionary is not an integer
WARNING: issue-100.pdf (object 5 0, file position 489): attempting to recover stream length
WARNING: issue-100.pdf (object 5 0, file position 489): recovered stream length: 12
WARNING: issue-100.pdf (trailer, file position 953): expected dictionary key but found non-name object; inserting key /QPDFFake1
WARNING: issue-100.pdf (trailer, file position 953): dictionary ended prematurely; using null as value for last key
issue-100.pdf (file position 1138): unable to find /Root dictionary

qpdf-7.1.0/qpdf/qtest/qpdf/c-ignore-xref-streams.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.4.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-force-1.3.out

version: 1.3
extension level: 0
null
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/misc-3.out

page 1:
 images:
 content:
 4 0 R
 6 0 R
end page 1
QStrings:
No Special Characters
These: ¿÷¢þ and no more
πωτατω
treble clef: 𝄠; sixteenth note: 𝅘𝅥𝅮
QNumbers:
1.000
3.142
test 5 done

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.11.c-check

version: 1.5
linearized: 1
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.8.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.11-ogen.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad17.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/bad36-recover.out

WARNING: bad36.pdf (trailer, file position 764): unknown token while reading object; treating as string
WARNING: bad36.pdf (trailer, file position 715): expected dictionary key but found non-name object; inserting key /QPDFFake2
WARNING: bad36.pdf (trailer, file position 715): dictionary ended prematurely; using null as value for last key
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.4-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/enc-base.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isis 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/bad-data.out

WARNING: bad-data.pdf (file position 319): error decoding stream data for object 4 0: LZWDecoder: bad code received
WARNING: bad-data.pdf (file position 319): stream will be re-processed without filtering to avoid data loss
qpdf: operation succeeded with warnings; resulting file may have some problems

qpdf-7.1.0/qpdf/qtest/qpdf/page_api_1-out.pdf

New page 0

New page 1

Original page 1

Original page 2

Original page 3

New page 5

New page 6

Original page 4

Original page 6

Original page 7

Original page 8

New page 11

New page 12

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.6.check

checking a.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/unreferenced-indirect-scalar.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.5.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.1-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.3.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.3.check

checking a.pdf
PDF Version: 1.2
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad24-recover.out

WARNING: bad24.pdf (object 4 0, file position 385): expected endstream
WARNING: bad24.pdf (object 4 0, file position 341): attempting to recover stream length
WARNING: bad24.pdf (object 4 0, file position 341): recovered stream length: 54
/QTest is indirect and has type stream (10)
/QTest is a stream. Dictionary: << /Length 44 >>
Raw stream data:
BT
 /F1 24 Tf
 72 720 Td
 (Potato) Tj
ET
enxstream

Uncompressed stream data:
BT
 /F1 24 Tf
 72 720 Td
 (Potato) Tj
ET
enxstream

End of stream data
unparse: 4 0 R
unparseResolved: 4 0 R
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/leading-junk.out

checking leading-junk.pdf
PDF Version: 1.4
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.11.c-check

version: 1.5
linearized: 1
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/bad23.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.11-ogen.c-check

version: 1.5
linearized: 1
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/test-32.out

file: a.pdf
linearized: no
newline: no
file: b.pdf
linearized: yes
newline: no
file: c.pdf
linearized: no
newline: yes
file: d.pdf
linearized: yes
newline: yes
test 32 done

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.generate.exp

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.12.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.10-ogen.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-07.Pdf

Original page 7

qpdf-7.1.0/qpdf/qtest/qpdf/bad8-recover.out

WARNING: bad8.pdf: file is damaged
WARNING: bad8.pdf (file position 543): xref not found
WARNING: bad8.pdf: Attempting to reconstruct cross-reference table
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-force-1.8.out

version: 1.8
extension level: 0
null
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.disable.exp

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/metadata-crypt-filter.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isis 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/bad3-recover.out

WARNING: bad3.pdf: file is damaged
WARNING: bad3.pdf (file position 542): xref not found
WARNING: bad3.pdf: Attempting to reconstruct cross-reference table
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/issue-148.out

WARNING: issue-148.pdf: can't find PDF header
WARNING: issue-148.pdf (xref stream: object 8 0, file position 26): stream dictionary lacks /Length key
WARNING: issue-148.pdf (xref stream: object 8 0, file position 73): attempting to recover stream length
WARNING: issue-148.pdf (xref stream: object 8 0, file position 73): recovered stream length: 2
WARNING: issue-148.pdf (xref stream: object 8 0, file position 85): expected endobj
WARNING: issue-148.pdf (file position 73): error decoding stream data for object 8 0: stream inflate: inflate: data: incorrect header check
WARNING: issue-148.pdf: file is damaged
WARNING: issue-148.pdf (file position 73): getStreamData called on unfilterable stream
WARNING: issue-148.pdf: Attempting to reconstruct cross-reference table
issue-148.pdf: unable to find trailer dictionary while recovering damaged file

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-min-1.6.out

version: 1.6
extension level: 0
null
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/eof-reading-token.out

checking eof-reading-token.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
WARNING: object stream 12 (file position 5): EOF while reading token

qpdf-7.1.0/qpdf/qtest/qpdf/enc-XI-long-password.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/copy-foreign-objects-out3.pdf

Potato

Original page 3

Original page 2

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.9.c-check

version: 1.5
linearized: 1
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/bad31.out

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.7.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/bad23-recover.out

WARNING: bad23.pdf (object 4 0, file position 314): /Length key in stream dictionary is not an integer
WARNING: bad23.pdf (object 4 0, file position 341): attempting to recover stream length
WARNING: bad23.pdf (object 4 0, file position 341): recovered stream length: 44
/QTest is indirect and has type stream (10)
/QTest is a stream. Dictionary: << /Length () >>
Raw stream data:
BT
 /F1 24 Tf
 72 720 Td
 (Potato) Tj
ET

Uncompressed stream data:
BT
 /F1 24 Tf
 72 720 Td
 (Potato) Tj
ET

End of stream data
unparse: 4 0 R
unparseResolved: 4 0 R
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/invalid-id-xref.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.11-ogen.c-check

version: 1.5
linearized: 1
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-force-1.7.3.out

version: 1.7
extension level: 3
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 3 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad29.out

bad29.pdf (trailer, file position 742): null character not allowed in name token

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.1.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-force-1.8.0.out

version: 1.8
extension level: 0
<< /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/show-xref-by-id-filtered.out

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.8.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-min-1.3.out

version: 1.3
extension level: 0
null
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-min-1.8.0.out

version: 1.8
extension level: 0
<< /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-min-1.8.2.out

version: 1.8
extension level: 2
<< /ADBE << /BaseVersion /1.8 /ExtensionLevel 2 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad21.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/content-stream-errors.out

checking content-stream-errors.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
page 1: content stream objects 7 0 (content, file position 52): parse error while reading object
page 3: content stream objects 15 0 (stream data, file position 117): EOF found while reading inline image
page 4: content stream objects 19 0 (content, file position 53): parse error while reading object

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.9.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/shallow_array.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/override-compressed-object.out

(orig-1)
(override-2)
(override-3)
(orig-4)
test 38 done

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.7.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.preserve.exp

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/issue-141b.out

WARNING: issue-141b.pdf: can't find PDF header
WARNING: issue-141b.pdf: file is damaged
WARNING: issue-141b.pdf (file position 7): xref not found
WARNING: issue-141b.pdf: Attempting to reconstruct cross-reference table
issue-141b.pdf: unable to find trailer dictionary while recovering damaged file

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-force-1.7.1.out

version: 1.7
extension level: 1
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 1 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.8-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.4.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/test4-1.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/good10.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-min-1.8.out

version: 1.8
extension level: 0
<< /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/zero-offset.out

checking zero-offset.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
WARNING: zero-offset.pdf (object 6 0): object has offset 0

qpdf-7.1.0/qpdf/qtest/qpdf/issue-146.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-min-1.7.1.out

version: 1.7
extension level: 2
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 2 /URL (http://something.adobe.com) >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/page-no-content.out

page 1: 3 0 R
 content:
 6 0 R
page 2: 4 0 R
 content:
page 3: 5 0 R
 content:
 9 0 R

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-force-1.8.2.out

version: 1.8
extension level: 2
<< /ADBE << /BaseVersion /1.8 /ExtensionLevel 2 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.8.c-check

version: 1.2
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/override-compressed-object.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.2.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad7.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/issue-117.out

WARNING: issue-117.pdf: file is damaged
WARNING: issue-117.pdf (file position 3526): xref not found
WARNING: issue-117.pdf: Attempting to reconstruct cross-reference table
WARNING: issue-117.pdf (file position 66): loop detected resolving object 2 0
WARNING: issue-117.pdf (object 2 0, file position 22): /Length key in stream dictionary is not an integer
WARNING: issue-117.pdf (object 2 0, file position 67): attempting to recover stream length
WARNING: issue-117.pdf (object 2 0, file position 67): recovered stream length: 91
attempt to make a stream into a direct object

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-force-1.6.out

version: 1.6
extension level: 0
<< /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/replaced-stream-data-flate.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/04_split-exp.zdf

Original page 4

qpdf-7.1.0/qpdf/qtest/qpdf/bad26.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-force-1.7.2.out

version: 1.7
extension level: 2
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 2 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.5.check

checking a.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/a-11-split-exp.zdf

qpdf-7.1.0/qpdf/qtest/qpdf/issue-99b.out

WARNING: issue-99b.pdf: file is damaged
WARNING: issue-99b.pdf (object 1 0, file position 9): object with ID 0
WARNING: issue-99b.pdf: Attempting to reconstruct cross-reference table
WARNING: issue-99b.pdf: object 1 0 not found in file after regenerating cross reference table
issue-99b.pdf (file position 757): unable to find /Root dictionary

qpdf-7.1.0/qpdf/qtest/qpdf/bad-jpeg-check.out

checking bad-jpeg.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
WARNING: bad-jpeg.pdf (file position 735): error decoding stream data for object 6 0: Not a JPEG file: starts with 0x77 0x77
WARNING: bad-jpeg.pdf (file position 735): stream will be re-processed without filtering to avoid data loss

qpdf-7.1.0/qpdf/qtest/qpdf/good4.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-force-1.8.out

version: 1.8
extension level: 0
null
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/linearization-bounds-1.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/delete-and-reuse-check.out

checking delete-and-reuse.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-min-1.6.out

version: 1.7
extension level: 2
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 2 /URL (http://something.adobe.com) >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-force-1.8.0.out

version: 1.8
extension level: 0
null
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/no-pages-types.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/show-page-1-content-raw.out

qpdf-7.1.0/qpdf/qtest/qpdf/show-page-1-content-raw.out

q222 0 0 240 28.5 96 cm/Im1 DoQq185 0 0 200 313.5 296 cm/Im2 DoQ

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.5-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.6.c-check

version: 1.2
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.11-ogen.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/large_file-check-ostream-linearized.out

PDF Version: 1.5
File is not encrypted
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-force-1.7.3.out

version: 1.7
extension level: 3
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 3 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-force-1.7.2.out

version: 1.7
extension level: 2
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 2 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-min-1.7.2.out

version: 1.7
extension level: 2
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 2 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/issue-143.out

WARNING: issue-143.pdf: can't find PDF header
WARNING: issue-143.pdf (xref stream: object 3 0, file position 654): stream keyword not followed by proper line terminator
WARNING: issue-143.pdf (xref stream: object 3 0, file position 607): stream dictionary lacks /Length key
WARNING: issue-143.pdf (xref stream: object 3 0, file position 654): attempting to recover stream length
WARNING: issue-143.pdf (xref stream: object 3 0, file position 654): recovered stream length: 36
WARNING: issue-143.pdf: file is damaged
WARNING: issue-143.pdf (object 1 0, file position 48): expected n n obj
WARNING: issue-143.pdf: Attempting to reconstruct cross-reference table
WARNING: issue-143.pdf (file position 24): expected dictionary key but found non-name object; inserting key /QPDFFake1
WARNING: issue-143.pdf (file position 24): expected dictionary key but found non-name object; inserting key /QPDFFake2
WARNING: issue-143.pdf (file position 24): expected dictionary key but found non-name object; inserting key /QPDFFake3
WARNING: issue-143.pdf (file position 24): expected dictionary key but found non-name object; inserting key /QPDFFake4
WARNING: issue-143.pdf (object 1 0, file position 21): stream dictionary lacks /Length key
WARNING: issue-143.pdf (object 1 0, file position 84): attempting to recover stream length
WARNING: issue-143.pdf (object 1 0, file position 84): recovered stream length: 606
WARNING: object stream 1 (file position 33): expected dictionary key but found non-name object; inserting key /QPDFFake1
qpdf: operation succeeded with warnings; resulting file may have some problems

qpdf-7.1.0/qpdf/qtest/qpdf/bad8.pdf

Salad

qpdf-7.1.0/qpdf/qtest/qpdf/enc-XI-attachments-base.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

This is the first attachment.

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.4.check

checking a.pdf
PDF Version: 1.2
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-force-1.8.out

version: 1.8
extension level: 0
<< /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/pclm-in.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/stream-line-enders.out

WARNING: stream-line-enders.pdf (object 5 0, file position 384): stream keyword followed by carriage return only
WARNING: stream-line-enders.pdf (object 6 0, file position 443): stream keyword not followed by proper line terminator
WARNING: stream-line-enders.pdf (object 7 0, file position 503): stream keyword not followed by proper line terminator
qpdf: operation succeeded with warnings; resulting file may have some problems

qpdf-7.1.0/qpdf/qtest/qpdf/good8.out

/QTest is indirect and has type real (5)
/QTest is a real number with value 3.14159
unparse: 7 0 R
unparseResolved: 3.14159
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/good13.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/large_file-check-linearized.out

PDF Version: 1.3
File is not encrypted
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad-token-startxref.out

1/0: uncompressed; offset = 9
2/0: uncompressed; offset = 63
3/0: uncompressed; offset = 135
4/0: uncompressed; offset = 307
5/0: uncompressed; offset = 403
6/0: uncompressed; offset = 438

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.5.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/no-pages-types.out

checking no-pages-types.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/issue-120.out

WARNING: issue-120.pdf (file position 85): loop detected resolving object 3 0
WARNING: issue-120.pdf (object 6 0, file position 85): supposed object stream 3 is not a stream
qpdf: operation succeeded with warnings; resulting file may have some problems

qpdf-7.1.0/qpdf/qtest/qpdf/short-id-check.out

checking a.pdf
PDF Version: 1.3
R = 2
P = -4
User password =
Encryption key = 897d768fbd
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/issue-118.out

WARNING: issue-118.pdf: can't find PDF header
WARNING: issue-118.pdf (file position 732): loop detected resolving object 2 0
WARNING: issue-118.pdf (xref stream: object 8 0, file position 732): supposed object stream 2 is not a stream
issue-118.pdf (file position 732): unable to find /Root dictionary

qpdf-7.1.0/qpdf/qtest/qpdf/fix2.qdf.out

.........Potato Salad

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.4.c-check

version: 1.3
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.6-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-min-1.8.5.out

version: 1.8
extension level: 5
<< /ADBE << /BaseVersion /1.8 /ExtensionLevel 5 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.7-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/append-page-content-good.qdf

Potato 0 new

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

qpdf-7.1.0/qpdf/qtest/qpdf/bad15.out

WARNING: bad15.pdf (trailer, file position 753): treating unexpected array close token as null
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 0 done

qpdf-7.1.0/qpdf/qtest/qpdf/deterministic-id-in.pdf

QPDF Manual

For QPDF Version 5.1.3, May 24, 2015

Jay Berkenbilt

QPDF Manual: For QPDF Version 5.1.3, May 24, 2015
Jay Berkenbilt
Copyright © 2005–2014 Jay Berkenbilt

iii

Table of Contents
General Information .. iv
1. What is QPDF? ... 1
2. Building and Installing QPDF .. 2

2.1. System Requirements ... 2
2.2. Build Instructions .. 2

3. Running QPDF ... 4
3.1. Basic Invocation ... 4
3.2. Basic Options ... 4
3.3. Encryption Options ... 5
3.4. Page Selection Options .. 6
3.5. Advanced Transformation Options ... 8
3.6. Testing, Inspection, and Debugging Options .. 10

4. QDF Mode ... 12
5. Using the QPDF Library ... 14
6. Design and Library Notes ... 15

6.1. Introduction .. 15
6.2. Design Goals .. 15
6.3. Casting Policy .. 17
6.4. Encryption ... 18
6.5. Random Number Generation ... 19
6.6. Adding and Removing Pages ... 19
6.7. Reserving Object Numbers ... 19
6.8. Copying Objects From Other PDF Files .. 20
6.9. Writing PDF Files ... 20
6.10. Filtered Streams .. 21

7. Linearization ... 22
7.1. Basic Strategy for Linearization ... 22
7.2. Preparing For Linearization ... 22
7.3. Optimization ... 22
7.4. Writing Linearized Files ... 23
7.5. Calculating Linearization Data ... 23
7.6. Known Issues with Linearization ... 23
7.7. Debugging Note .. 24

8. Object and Cross-Reference Streams ... 25
8.1. Object Streams .. 25
8.2. Cross-Reference Streams .. 25

8.2.1. Cross-Reference Stream Data .. 26
8.3. Implications for Linearized Files .. 26
8.4. Implementation Notes .. 27

A. Release Notes ... 28
B. Upgrading from 2.0 to 2.1 .. 37
C. Upgrading to 3.0 ... 38
D. Upgrading to 4.0 ... 39

iv

General Information
QPDF is a program that does structural, content-preserving transformations on PDF files. QPDF's website is located
at http://qpdf.sourceforge.net/. QPDF's source code is hosted on github at https://github.com/qpdf/qpdf.

QPDF has been released under the terms of Version 2.0 of the Artistic License [http://www.opensource.org/licenses/
artistic-license-2.0.php], a copy of which appears in the file Artistic-2.0 in the source distribution.

QPDF was originally created in 2001 and modified periodically between 2001 and 2005 during my employment at
Apex CoVantage [http://www.apexcovantage.com]. Upon my departure from Apex, the company graciously allowed
me to take ownership of the software and continue maintaining as an open source project, a decision for which I am
very grateful. I have made considerable enhancements to it since that time. I feel fortunate to have worked for people
who would make such a decision. This work would not have been possible without their support.

http://qpdf.sourceforge.net/

https://github.com/qpdf/qpdf

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.apexcovantage.com

http://www.apexcovantage.com

1

Chapter 1. What is QPDF?
QPDF is a program that does structural, content-preserving transformations on PDF files. It could have been called
something like pdf-to-pdf. It also provides many useful capabilities to developers of PDF-producing software or for
people who just want to look at the innards of a PDF file to learn more about how they work.

With QPDF, it is possible to copy objects from one PDF file into another and to manipulate the list of pages in a PDF
file. This makes it possible to merge and split PDF files. The QPDF library also makes it possible for you to create
PDF files from scratch. In this mode, you are responsible for supplying all the contents of the file, while the QPDF
library takes care off all the syntactical representation of the objects, creation of cross references tables and, if you
use them, object streams, encryption, linearization, and other syntactic details. You are still responsible for generating
PDF content on your own.

QPDF has been designed with very few external dependencies, and it is intentionally very lightweight. QPDF is not a
PDF content creation library, a PDF viewer, or a program capable of converting PDF into other formats. In particular,
QPDF knows nothing about the semantics of PDF content streams. If you are looking for something that can do that,
you should look elsewhere. However, once you have a valid PDF file, QPDF can be used to transform that file in ways
perhaps your original PDF creation can't handle. For example, many programs generate simple PDF files but can't
password-protect them, web-optimize them, or perform other transformations of that type.

2

Chapter 2. Building and Installing
QPDF
This chapter describes how to build and install qpdf. Please see also the README and INSTALL files in the source
distribution.

2.1. System Requirements
The qpdf package has relatively few external dependencies. In order to build qpdf, the following packages are required:

• zlib: http://www.zlib.net/

• pcre: http://www.pcre.org/

• gnu make 3.81 or newer: http://www.gnu.org/software/make

• perl version 5.8 or newer: http://www.perl.org/; required for fix-qdf and the test suite.

• GNU diffutils (any version): http://www.gnu.org/software/diffutils/ is required to run the test suite. Note that this is
the version of diff present on virtually all GNU/Linux systems. This is required because the test suite uses diff -u.

• A C++ compiler that works well with STL and has the long long type. Most modern C++ compilers should fit
the bill fine. QPDF is tested with gcc and Microsoft Visual C++.

Part of qpdf's test suite does comparisons of the contents PDF files by converting them images and comparing the
images. The image comparison tests are disabled by default. Those tests are not required for determining correctness of
a qpdf build if you have not modified the code since the test suite also contains expected output files that are compared
literally. The image comparison tests provide an extra check to make sure that any content transformations don't break
the rendering of pages. Transformations that affect the content streams themselves are off by default and are only
provided to help developers look into the contents of PDF files. If you are making deep changes to the library that cause
changes in the contents of the files that qpdf generates, then you should enable the image comparison tests. Enable
them by running configure with the --enable-test-compare-images flag. If you enable this, the following additional
requirements are required by the test suite. Note that in no case are these items required to use qpdf.

• libtiff: http://www.remotesensing.org/libtiff/

• GhostScript version 8.60 or newer: http://www.ghostscript.com

If you do not enable this, then you do not need to have tiff and ghostscript.

If Adobe Reader is installed as acroread, some additional test cases will be enabled. These test cases simply verify
that Adobe Reader can open the files that qpdf creates. They require version 8.0 or newer to pass. However, in order
to avoid having qpdf depend on non-free (as in liberty) software, the test suite will still pass without Adobe reader,
and the test suite still exercises the full functionality of the software.

Pre-built documentation is distributed with qpdf, so you should generally not need to rebuild the documentation.
In order to build the documentation from its docbook sources, you need the docbook XML style sheets (http://
downloads.sourceforge.net/docbook/). To build the PDF version of the documentation, you need Apache fop (http://
xml.apache.org/fop/) version 0.94 or higher.

2.2. Build Instructions
Building qpdf on UNIX is generally just a matter of running

http://www.zlib.net/

http://www.pcre.org/

http://www.gnu.org/software/make

http://www.perl.org/

http://www.gnu.org/software/diffutils/

http://www.remotesensing.org/libtiff/

http://www.ghostscript.com

http://downloads.sourceforge.net/docbook/

http://downloads.sourceforge.net/docbook/

http://xml.apache.org/fop/

http://xml.apache.org/fop/

Building and Installing QPDF

3

./configure
make

You can also run make check to run the test suite and make install to install. Please run ./configure --help for
options on what can be configured. You can also set the value of DESTDIR during installation to install to a temporary
location, as is common with many open source packages. Please see also the README and INSTALL files in the
source distribution.

Building on Windows is a little bit more complicated. For details, please see README-windows.txt in the source
distribution. You can also download a binary distribution for Windows. There is a port of qpdf to Visual C++ version 6
in the contrib area generously contributed by Jian Ma. This is also discussed in more detail in README-windows.txt.

There are some other things you can do with the build. Although qpdf uses autoconf, it does not use automake but
instead uses a hand-crafted non-recursive Makefile that requires gnu make. If you're really interested, please read the
comments in the top-level Makefile.

4

Chapter 3. Running QPDF
This chapter describes how to run the qpdf program from the command line.

3.1. Basic Invocation
When running qpdf, the basic invocation is as follows:

qpdf [options] infilename [outfilename]

This converts PDF file infilename to PDF file outfilename. The output file is functionally identical to the input file but
may have been structurally reorganized. Also, orphaned objects will be removed from the file. Many transformations
are available as controlled by the options below. In place of infilename, the parameter --empty may be specified. This
causes qpdf to use a dummy input file that contains zero pages. The only normal use case for using --empty would be if
you were going to add pages from another source, as discussed in Section 3.4, “Page Selection Options”, page 6.

outfilename does not have to be seekable, even when generating linearized files. Specifying “--” as outfilename
means to write to standard output. However, you can't specify the same file as both the input and the output because
qpdf reads data from the input file as it writes to the output file.

Most options require an output file, but some testing or inspection commands do not. These are specifically noted.

3.2. Basic Options
The following options are the most common ones and perform commonly needed transformations.

--password=password
Specifies a password for accessing encrypted files.

--linearize
Causes generation of a linearized (web-optimized) output file.

--copy-encryption=file
Encrypt the file using the same encryption parameters, including user and owner password, as the specified file.
Use --encrypt-file-password to specify a password if one is needed to open this file. Note that copying the
encryption parameters from a file also copies the first half of /ID from the file since this is part of the encryption
parameters.

--encrypt-file-password=password
If the file specified with --copy-encryption requires a password, specify the password using this option. Note
that only one of the user or owner password is required. Both passwords will be preserved since QPDF does
not distinguish between the two passwords. It is possible to preserve encryption parameters, including the owner
password, from a file even if you don't know the file's owner password.

--encrypt options --
Causes generation an encrypted output file. Please see Section 3.3, “Encryption Options”, page 5 for details
on how to specify encryption parameters.

--decrypt
Removes any encryption on the file. A password must be supplied if the file is password protected.

--pages options --
Select specific pages from one or more input files. See Section 3.4, “Page Selection Options”, page 6 for
details on how to do page selection (splitting and merging).

Running QPDF

5

Password-protected files may be opened by specifying a password. By default, qpdf will preserve any encryption data
associated with a file. If --decrypt is specified, qpdf will attempt to remove any encryption information. If --encrypt
is specified, qpdf will replace the document's encryption parameters with whatever is specified.

Note that qpdf does not obey encryption restrictions already imposed on the file. Doing so would be meaningless since
qpdf can be used to remove encryption from the file entirely. This functionality is not intended to be used for bypassing
copyright restrictions or other restrictions placed on files by their producers.

In all cases where qpdf allows specification of a password, care must be taken if the password contains characters
that fall outside of the 7-bit US-ASCII character range to ensure that the exact correct byte sequence is provided. It
is possible that a future version of qpdf may handle this more gracefully. For example, if a password was encrypted
using a password that was encoded in ISO-8859-1 and your terminal is configured to use UTF-8, the password you
supply may not work properly. There are various approaches to handling this. For example, if you are using Linux and
have the iconv executable (part of the ICU package) installed, you could pass --password=`echo password | iconv
-t iso-8859-1` to qpdf where password is a password specified in your terminal's locale. A detailed discussion of
this is out of scope for this manual, but just be aware of this issue if you have trouble with a password that contains
8-bit characters.

3.3. Encryption Options
To change the encryption parameters of a file, use the --encrypt flag. The syntax is

--encrypt user-password owner-password key-length [restrictions] --

Note that “--” terminates parsing of encryption flags and must be present even if no restrictions are present.

Either or both of the user password and the owner password may be empty strings.

The value for key-length may be 40, 128, or 256. The restriction flags are dependent upon key length. When no
additional restrictions are given, the default is to be fully permissive.

If key-length is 40, the following restriction options are available:

--print=[yn]
Determines whether or not to allow printing.

--modify=[yn]
Determines whether or not to allow document modification.

--extract=[yn]
Determines whether or not to allow text/image extraction.

--annotate=[yn]
Determines whether or not to allow comments and form fill-in and signing.

If key-length is 128, the following restriction options are available:

--accessibility=[yn]
Determines whether or not to allow accessibility to visually impaired.

--extract=[yn]
Determines whether or not to allow text/graphic extraction.

--print=print-opt
Controls printing access. print-opt may be one of the following:

Running QPDF

6

• full: allow full printing

• low: allow low-resolution printing only

• none: disallow printing

--modify=modify-opt
Controls modify access. modify-opt may be one of the following, each of which implies all the options that
follow it:

• all: allow full document modification

• annotate: allow comment authoring and form operations

• form: allow form field fill-in and signing

• assembly: allow document assembly only

• none: allow no modifications

--cleartext-metadata
If specified, any metadata stream in the document will be left unencrypted even if the rest of the document is
encrypted. This also forces the PDF version to be at least 1.5.

--use-aes=[yn]
If --use-aes=y is specified, AES encryption will be used instead of RC4 encryption. This forces the PDF version
to be at least 1.6.

--force-V4
Use of this option forces the /V and /R parameters in the document's encryption dictionary to be set to the value
4. As qpdf will automatically do this when required, there is no reason to ever use this option. It exists primarily
for use in testing qpdf itself. This option also forces the PDF version to be at least 1.5.

If key-length is 256, the minimum PDF version is 1.7 with extension level 8, and the AES-based encryption format
used is the PDF 2.0 encryption method supported by Acrobat X. the same options are available as with 128 bits with
the following exceptions:

--use-aes
This option is not available with 256-bit keys. AES is always used with 256-bit encryption keys.

--force-V4
This option is not available with 256 keys.

--force-R5
If specified, qpdf sets the minimum version to 1.7 at extension level 3 and writes the deprecated encryption format
used by Acrobat version IX. This option should not be used in practice to generate PDF files that will be in general
use, but it can be useful to generate files if you are trying to test proper support in another application for PDF
files encrypted in this way.

The default for each permission option is to be fully permissive.

3.4. Page Selection Options
Starting with qpdf 3.0, it is possible to split and merge PDF files by selecting pages from one or more input files.
Whatever file is given as the primary input file is used as the starting point, but its pages are replaced with pages as
specified.

Running QPDF

7

--pages input-file [--password=password] [page-range] [...] --

Multiple input files may be specified. Each one is given as the name of the input file, an optional password (if required
to open the file), and the range of pages. Note that “--” terminates parsing of page selection flags.

For each file that pages should be taken from, specify the file, a password needed to open the file (if any), and a page
range. The password needs to be given only once per file. If any of the input files are the same as the primary input
file or the file used to copy encryption parameters (if specified), you do not need to repeat the password here. The
same file can be repeated multiple times. If a file that is repeated has a password, the password only has to be given
the first time. All non-page data (info, outlines, page numbers, etc.) are taken from the primary input file. To discard
these, use --empty as the primary input.

Starting with qpdf 5.0.0, it is possible to omit the page range. If qpdf sees a value in the place where it expects a page
range and that value is not a valid range but is a valid file name, qpdf will implicitly use the range 1-z, meaning that
it will include all pages in the file. This makes it possible to easily combine all pages in a set of files with a command
like qpdf --empty out.pdf --pages *.pdf --.

It is not presently possible to specify the same page from the same file directly more than once, but you can make this
work by specifying two different paths to the same file (such as by putting ./ somewhere in the path). This can also be
used if you want to repeat a page from one of the input files in the output file. This may be made more convenient in
a future version of qpdf if there is enough demand for this feature.

The page range is a set of numbers separated by commas, ranges of numbers separated dashes, or combinations of
those. The character “z” represents the last page. Pages can appear in any order. Ranges can appear with a high number
followed by a low number, which causes the pages to appear in reverse. Repeating a number will cause an error, but
you can use the workaround discussed above should you really want to include the same page twice.

Example page ranges:

• 1,3,5-9,15-12: pages 1, 2, 3, 5, 6, 7, 8, 9, 15, 14, 13, and 12.

• z-1: all pages in the document in reverse

Note that qpdf doesn't presently do anything special about other constructs in a PDF file that may know about pages,
so semantics of splitting and merging vary across features. For example, the document's outlines (bookmarks) point
to actual page objects, so if you select some pages and not others, bookmarks that point to pages that are in the output
file will work, and remaining bookmarks will not work. On the other hand, page labels (page numbers specified in the
file) are just sequential, so page labels will be messed up in the output file. A future version of qpdf may do a better
job at handling these issues. (Note that the qpdf library already contains all of the APIs required in order to implement
this in your own application if you need it.) In the mean time, you can always use --empty as the primary input file to
avoid copying all of that from the first file. For example, to take pages 1 through 5 from a infile.pdf while preserving
all metadata associated with that file, you could use

qpdf infile.pdf --pages infile.pdf 1-5 -- outfile.pdf

If you wanted pages 1 through 5 from infile.pdf but you wanted the rest of the metadata to be dropped, you could
instead run

qpdf --empty --pages infile.pdf 1-5 -- outfile.pdf

If you wanted to take pages 1–5 from file1.pdf and pages 11–15 from file2.pdf in reverse, you would run

qpdf file1.pdf --pages file1.pdf 1-5 file2.pdf 15-11 -- outfile.pdf

Running QPDF

8

If, for some reason, you wanted to take the first page of an encrypted file called encrypted.pdf with password pass
and repeat it twice in an output file, and if you wanted to drop metadata (like page numbers and outlines) but preserve
encryption, you would use

qpdf --empty --copy-encryption=encrypted.pdf --encryption-file-password=pass
--pages encrypted.pdf --password=pass 1 ./encrypted.pdf --password=pass 1 --
outfile.pdf

Note that we had to specify the password all three times because giving a password as --encryption-file-password
doesn't count for page selection, and as far as qpdf is concerned, encrypted.pdf and ./encrypted.pdf are separated files.
These are all corner cases that most users should hopefully never have to be bothered with.

3.5. Advanced Transformation Options
These transformation options control fine points of how qpdf creates the output file. Mostly these are of use only to
people who are very familiar with the PDF file format or who are PDF developers. The following options are available:

--stream-data=option
Controls transformation of stream data. The value of option may be one of the following:

• compress: recompress stream data when possible (default)

• preserve: leave all stream data as is

• uncompress: uncompress stream data when possible

--normalize-content=[yn]
Enables or disables normalization of content streams.

--suppress-recovery
Prevents qpdf from attempting to recover damaged files.

--object-streams=mode
Controls handling of object streams. The value of mode may be one of the following:

• preserve: preserve original object streams (default)

• disable: don't write any object streams

• generate: use object streams wherever possible

--ignore-xref-streams
Tells qpdf to ignore any cross-reference streams.

--qdf
Turns on QDF mode. For additional information on QDF, please see Chapter 4, QDF Mode, page 12.

--min-version=version
Forces the PDF version of the output file to be at least version. In other words, if the input file has a lower
version than the specified version, the specified version will be used. If the input file has a higher version, the
input file's original version will be used. It is seldom necessary to use this option since qpdf will automatically
increase the version as needed when adding features that require newer PDF readers.

The version number may be expressed in the form major.minor.extension-level, in which case the
version is interpreted as major.minor at extension level extension-level. For example, version 1.7.8
represents version 1.7 at extension level 8. Note that minimal syntax checking is done on the command line.

Running QPDF

9

--force-version=version
This option forces the PDF version to be the exact version specified even when the file may have content that
is not supported in that version. The version number is interpreted in the same way as with --min-version so
that extension levels can be set. In some cases, forcing the output file's PDF version to be lower than that of the
input file will cause qpdf to disable certain features of the document. Specifically, 256-bit keys are disabled if
the version is less than 1.7 with extension level 8 (except R5 is disabled if less than 1.7 with extension level 3),
AES encryption is disabled if the version is less than 1.6, cleartext metadata and object streams are disabled if less
than 1.5, 128-bit encryption keys are disabled if less than 1.4, and all encryption is disabled if less than 1.3. Even
with these precautions, qpdf won't be able to do things like eliminate use of newer image compression schemes,
transparency groups, or other features that may have been added in more recent versions of PDF.

As a general rule, with the exception of big structural things like the use of object streams or AES encryption,
PDF viewers are supposed to ignore features in files that they don't support from newer versions. This means that
forcing the version to a lower version may make it possible to open your PDF file with an older version, though
bear in mind that some of the original document's functionality may be lost.

By default, when a stream is encoded using non-lossy filters that qpdf understands and is not already compressed
using a good compression scheme, qpdf will uncompress and recompress streams. Assuming proper filter implements,
this is safe and generally results in smaller files. This behavior may also be explicitly requested with --stream-
data=compress.

When --stream-data=preserve is specified, qpdf will never attempt to change the filtering of any stream data.

When --stream-data=uncompress is specified, qpdf will attempt to remove any non-lossy filters that it supports. This
includes /FlateDecode, /LZWDecode, /ASCII85Decode, and /ASCIIHexDecode. This can be very useful
for inspecting the contents of various streams.

When --normalize-content=y is specified, qpdf will attempt to normalize whitespace and newlines in page content
streams. This is generally safe but could, in some cases, cause damage to the content streams. This option is intended
for people who wish to study PDF content streams or to debug PDF content. You should not use this for “production”
PDF files.

Ordinarily, qpdf will attempt to recover from certain types of errors in PDF files. These include errors in the cross-
reference table, certain types of object numbering errors, and certain types of stream length errors. Sometimes, qpdf
may think it has recovered but may not have actually recovered, so care should be taken when using this option as
some data loss is possible. The --suppress-recovery option will prevent qpdf from attempting recovery. In this case,
it will fail on the first error that it encounters.

Object streams, also known as compressed objects, were introduced into the PDF specification at version 1.5,
corresponding to Acrobat 6. Some older PDF viewers may not support files with object streams. qpdf can be used to
transform files with object streams to files without object streams or vice versa. As mentioned above, there are three
object stream modes: preserve, disable, and generate.

In preserve mode, the relationship to objects and the streams that contain them is preserved from the original file. In
disable mode, all objects are written as regular, uncompressed objects. The resulting file should be readable by older
PDF viewers. (Of course, the content of the files may include features not supported by older viewers, but at least
the structure will be supported.) In generate mode, qpdf will create its own object streams. This will usually result in
more compact PDF files, though they may not be readable by older viewers. In this mode, qpdf will also make sure
the PDF version number in the header is at least 1.5.

Ordinarily, qpdf reads cross-reference streams when they are present in a PDF file. If --ignore-xref-streams is
specified, qpdf will ignore any cross-reference streams for hybrid PDF files. The purpose of hybrid files is to make
some content available to viewers that are not aware of cross-reference streams. It is almost never desirable to ignore
them. The only time when you might want to use this feature is if you are testing creation of hybrid PDF files and wish
to see how a PDF consumer that doesn't understand object and cross-reference streams would interpret such a file.

Running QPDF

10

The --qdf flag turns on QDF mode, which changes some of the defaults described above. Specifically, in QDF mode,
by default, stream data is uncompressed, content streams are normalized, and encryption is removed. These defaults
can still be overridden by specifying the appropriate options as described above. Additionally, in QDF mode, stream
lengths are stored as indirect objects, objects are laid out in a less efficient but more readable fashion, and the documents
are interspersed with comments that make it easier for the user to find things and also make it possible for fix-qdf to
work properly. QDF mode is intended for people, mostly developers, who wish to inspect or modify PDF files in a
text editor. For details, please see Chapter 4, QDF Mode, page 12.

3.6. Testing, Inspection, and Debugging
Options
These options can be useful for digging into PDF files or for use in automated test suites for software that uses the qpdf
library. When any of the options in this section are specified, no output file should be given. The following options
are available:

--static-id
Causes generation of a fixed value for /ID. This is intended for testing only. Never use it for production files.

--static-aes-iv
Causes use of a static initialization vector for AES-CBC. This is intended for testing only so that output files
can be reproducible. Never use it for production files. This option in particular is not secure since it significantly
weakens the encryption.

--no-original-object-ids
Suppresses inclusion of original object ID comments in QDF files. This can be useful when generating QDF files
for test purposes, particularly when comparing them to determine whether two PDF files have identical content.

--show-encryption
Shows document encryption parameters. Also shows the document's user password if the owner password is given.

--check-linearization
Checks file integrity and linearization status.

--show-linearization
Checks and displays all data in the linearization hint tables.

--show-xref
Shows the contents of the cross-reference table in a human-readable form. This is especially useful for files with
cross-reference streams which are stored in a binary format.

--show-object=obj[,gen]
Show the contents of the given object. This is especially useful for inspecting objects that are inside of object
streams (also known as “compressed objects”).

--raw-stream-data
When used along with the --show-object option, if the object is a stream, shows the raw stream data instead of
object's contents.

--filtered-stream-data
When used along with the --show-object option, if the object is a stream, shows the filtered stream data instead
of object's contents. If the stream is filtered using filters that qpdf does not support, an error will be issued.

--show-npages
Prints the number of pages in the input file on a line by itself. Since the number of pages appears by itself on a
line, this option can be useful for scripting if you need to know the number of pages in a file.

Running QPDF

11

--show-pages
Shows the object and generation number for each page dictionary object and for each content stream associated
with the page. Having this information makes it more convenient to inspect objects from a particular page.

--with-images
When used along with --show-pages, also shows the object and generation numbers for the image objects on each
page. (At present, information about images in shared resource dictionaries are not output by this command. This
is discussed in a comment in the source code.)

--check
Checks file structure and well as encryption, linearization, and encoding of stream data. A file for which --check
reports no errors may still have errors in stream data content but should otherwise be structurally sound. If --check
any errors, qpdf will exit with a status of 2. There are some recoverable conditions that --check detects. These
are issued as warnings instead of errors. If qpdf finds no errors but finds warnings, it will exit with a status of
3 (as of version 2.0.4).

The --raw-stream-data and --filtered-stream-data options are ignored unless --show-object is given. Either of these
options will cause the stream data to be written to standard output. In order to avoid commingling of stream data with
other output, it is recommend that these objects not be combined with other test/inspection options.

If --filtered-stream-data is given and --normalize-content=y is also given, qpdf will attempt to normalize the stream
data as if it is a page content stream. This attempt will be made even if it is not a page content stream, in which case
it will produce unusable results.

12

Chapter 4. QDF Mode
In QDF mode, qpdf creates PDF files in what we call QDF form. A PDF file in QDF form, sometimes called a QDF
file, is a completely valid PDF file that has %QDF-1.0 as its third line (after the pdf header and binary characters)
and has certain other characteristics. The purpose of QDF form is to make it possible to edit PDF files, with some
restrictions, in an ordinary text editor. This can be very useful for experimenting with different PDF constructs or for
making one-off edits to PDF files (though there are other reasons why this may not always work).

It is ordinarily very difficult to edit PDF files in a text editor for two reasons: most meaningful data in PDF files is
compressed, and PDF files are full of offset and length information that makes it hard to add or remove data. A QDF
file is organized in a manner such that, if edits are kept within certain constraints, the fix-qdf program, distributed with
qpdf, is able to restore edited files to a correct state. The fix-qdf program takes no command-line arguments. It reads
a possibly edited QDF file from standard input and writes a repaired file to standard output.

The following attributes characterize a QDF file:

• All objects appear in numerical order in the PDF file, including when objects appear in object streams.

• Objects are printed in an easy-to-read format, and all line endings are normalized to UNIX line endings.

• Unless specifically overridden, streams appear uncompressed (when qpdf supports the filters and they are
compressed with a non-lossy compression scheme), and most content streams are normalized (line endings are
converted to just a UNIX-style linefeeds).

• All streams lengths are represented as indirect objects, and the stream length object is always the next object after
the stream. If the stream data does not end with a newline, an extra newline is inserted, and a special comment
appears after the stream indicating that this has been done.

• If the PDF file contains object streams, if object stream n contains k objects, those objects are numbered from n
+1 through n+k, and the object number/offset pairs appear on a separate line for each object. Additionally, each
object in the object stream is preceded by a comment indicating its object number and index. This makes it very
easy to find objects in object streams.

• All beginnings of objects, stream tokens, endstream tokens, and endobj tokens appear on lines by themselves.
A blank line follows every endobj token.

• If there is a cross-reference stream, it is unfiltered.

• Page dictionaries and page content streams are marked with special comments that make them easy to find.

• Comments precede each object indicating the object number of the corresponding object in the original file.

When editing a QDF file, any edits can be made as long as the above constraints are maintained. This means that you
can freely edit a page's content without worrying about messing up the QDF file. It is also possible to add new objects
so long as those objects are added after the last object in the file or subsequent objects are renumbered. If a QDF file
has object streams in it, you can always add the new objects before the xref stream and then change the number of the
xref stream, since nothing generally ever references it by number.

It is not generally practical to remove objects from QDF files without messing up object numbering, but if you remove
all references to an object, you can run qpdf on the file (after running fix-qdf), and qpdf will omit the now-orphaned
object.

When fix-qdf is run, it goes through the file and recomputes the following parts of the file:

• the /N, /W, and /First keys of all object stream dictionaries

QDF Mode

13

• the pairs of numbers representing object numbers and offsets of objects in object streams

• all stream lengths

• the cross-reference table or cross-reference stream

• the offset to the cross-reference table or cross-reference stream following the startxref token

14

Chapter 5. Using the QPDF Library
The source tree for the qpdf package has an examples directory that contains a few example programs. The qpdf/
qpdf.cc source file also serves as a useful example since it exercises almost all of the qpdf library's public interface.
The best source of documentation on the library itself is reading comments in include/qpdf/QPDF.hh, include/qpdf/
QDFWriter.hh, and include/qpdf/QPDFObjectHandle.hh.

All header files are installed in the include/qpdf directory. It is recommend that you use #include <qpdf/
QPDF.hh> rather than adding include/qpdf to your include path.

When linking against the qpdf static library, you may also need to specify -lpcre -lz on your link command. If
your system understands how to read libtool .la files, this may not be necessary.

The qpdf library is safe to use in a multithreaded program, but no individual QPDF object instance (including QPDF,
QPDFObjectHandle, or QPDFWriter) can be used in more than one thread at a time. Multiple threads may
simultaneously work with different instances of these and all other QPDF objects.

15

Chapter 6. Design and Library Notes

6.1. Introduction
This section was written prior to the implementation of the qpdf package and was subsequently modified to reflect the
implementation. In some cases, for purposes of explanation, it may differ slightly from the actual implementation. As
always, the source code and test suite are authoritative. Even if there are some errors, this document should serve as
a road map to understanding how this code works.

In general, one should adhere strictly to a specification when writing but be liberal in reading. This way, the product
of our software will be accepted by the widest range of other programs, and we will accept the widest range of input
files. This library attempts to conform to that philosophy whenever possible but also aims to provide strict checking
for people who want to validate PDF files. If you don't want to see warnings and are trying to write something
that is tolerant, you can call setSuppressWarnings(true). If you want to fail on the first error, you can call
setAttemptRecovery(false). The default behavior is to generating warnings for recoverable problems. Note
that recovery will not always produce the desired results even if it is able to get through the file. Unlike most other PDF
files that produce generic warnings such as “This file is damaged,”, qpdf generally issues a detailed error message that
would be most useful to a PDF developer. This is by design as there seems to be a shortage of PDF validation tools
out there. (This was, in fact, one of the major motivations behind the initial creation of qpdf.)

6.2. Design Goals
The QPDF package includes support for reading and rewriting PDF files. It aims to hide from the user details involving
object locations, modified (appended) PDF files, the directness/indirectness of objects, and stream filters including
encryption. It does not aim to hide knowledge of the object hierarchy or content stream contents. Put another way, a
user of the qpdf library is expected to have knowledge about how PDF files work, but is not expected to have to keep
track of bookkeeping details such as file positions.

A user of the library never has to care whether an object is direct or indirect. All access to objects deals with this
transparently. All memory management details are also handled by the library.

The PointerHolder object is used internally by the library to deal with memory management. This is basically a
smart pointer object very similar in spirit to the Boost library's shared_ptr object, but predating it by several years.
This library also makes use of a technique for giving fine-grained access to methods in one class to other classes by
using public subclasses with friends and only private members that in turn call private methods of the containing class.
See QPDFObjectHandle::Factory as an example.

The top-level qpdf class is QPDF. A QPDF object represents a PDF file. The library provides methods for both
accessing and mutating PDF files.

QPDFObject is the basic PDF Object class. It is an abstract base class from which are derived classes for each type
of PDF object. Clients do not interact with Objects directly but instead interact with QPDFObjectHandle.

QPDFObjectHandle contains PointerHolder<QPDFObject> and includes accessor methods that are type-safe
proxies to the methods of the derived object classes as well as methods for querying object types. They can be passed
around by value, copied, stored in containers, etc. with very low overhead. Instances of QPDFObjectHandle always
contain a reference back to the QPDF object from which they were created. A QPDFObjectHandle may be direct
or indirect. If indirect, the QPDFObject the PointerHolder initially points to is a null pointer. In this case, the
first attempt to access the underlying QPDFObject will result in the QPDFObject being resolved via a call to the
referenced QPDF instance. This makes it essentially impossible to make coding errors in which certain things will
work for some PDF files and not for others based on which objects are direct and which objects are indirect.

Design and Library Notes

16

Instances of QPDFObjectHandle can be directly created and modified using static factory methods in the
QPDFObjectHandle class. There are factory methods for each type of object as well as a convenience method
QPDFObjectHandle::parse that creates an object from a string representation of the object. Existing instances of
QPDFObjectHandle can also be modified in several ways. See comments in QPDFObjectHandle.hh for details.

When the QPDF class creates a new object, it dynamically allocates the appropriate type of QPDFObject and
immediately hands the pointer to an instance of QPDFObjectHandle. The parser reads a token from the current
file position. If the token is a not either a dictionary or array opener, an object is immediately constructed from
the single token and the parser returns. Otherwise, the parser is invoked recursively in a special mode in which it
accumulates objects until it finds a balancing closer. During this process, the “R” keyword is recognized and an indirect
QPDFObjectHandle may be constructed.

The QPDF::resolve() method, which is used to resolve an indirect object, may be invoked from the
QPDFObjectHandle class. It first checks a cache to see whether this object has already been read. If not, it reads the
object from the PDF file and caches it. It the returns the resulting QPDFObjectHandle. The calling object handle
then replaces its PointerHolder<QDFObject> with the one from the newly returned QPDFObjectHandle. In this
way, only a single copy of any direct object need exist and clients can access objects transparently without knowing
caring whether they are direct or indirect objects. Additionally, no object is ever read from the file more than once. That
means that only the portions of the PDF file that are actually needed are ever read from the input file, thus allowing
the qpdf package to take advantage of this important design goal of PDF files.

If the requested object is inside of an object stream, the object stream itself is first read into memory. Then the tokenizer
reads objects from the memory stream based on the offset information stored in the stream. Those individual objects
are cached, after which the temporary buffer holding the object stream contents are discarded. In this way, the first
time an object in an object stream is requested, all objects in the stream are cached.

An instance of QPDF is constructed by using the class's default constructor. If desired, the QPDF object may be
configured with various methods that change its default behavior. Then the QPDF::processFile() method is passed
the name of a PDF file, which permanently associates the file with that QPDF object. A password may also be given
for access to password-protected files. QPDF does not enforce encryption parameters and will treat user and owner
passwords equivalently. Either password may be used to access an encrypted file. 1 QPDF will allow recovery of a
user password given an owner password. The input PDF file must be seekable. (Output files written by QPDFWriter
need not be seekable, even when creating linearized files.) During construction, QPDF validates the PDF file's header,
and then reads the cross reference tables and trailer dictionaries. The QPDF class keeps only the first trailer dictionary
though it does read all of them so it can check the /Prev key. QPDF class users may request the root object and
the trailer dictionary specifically. The cross reference table is kept private. Objects may then be requested by number
of by walking the object tree.

When a PDF file has a cross-reference stream instead of a cross-reference table and trailer, requesting the document's
trailer dictionary returns the stream dictionary from the cross-reference stream instead.

There are some convenience routines for very common operations such as walking the page tree and returning a vector
of all page objects. For full details, please see the header file QPDF.hh.

The following example should clarify how QPDF processes a simple file.

• Client constructs QPDF pdf and calls pdf.processFile("a.pdf");.

• The QPDF class checks the beginning of a.pdf for %!PDF-1.[0-9]+. It then reads the cross reference table
mentioned at the end of the file, ensuring that it is looking before the last %%EOF. After getting to trailer
keyword, it invokes the parser.

1 As pointed out earlier, the intention is not for qpdf to be used to bypass security on files. but as any open source PDF consumer may be easily
modified to bypass basic PDF document security, and qpdf offers may transformations that can do this as well, there seems to be little point in the
added complexity of conditionally enforcing document security.

Design and Library Notes

17

• The parser sees “<<”, so it calls itself recursively in dictionary creation mode.

• In dictionary creation mode, the parser keeps accumulating objects until it encounters “>>”. Each object that is
read is pushed onto a stack. If “R” is read, the last two objects on the stack are inspected. If they are integers,
they are popped off the stack and their values are used to construct an indirect object handle which is then pushed
onto the stack. When “>>” is finally read, the stack is converted into a QPDF_Dictionary which is placed in a
QPDFObjectHandle and returned.

• The resulting dictionary is saved as the trailer dictionary.

• The /Prev key is searched. If present, QPDF seeks to that point and repeats except that the new trailer dictionary
is not saved. If /Prev is not present, the initial parsing process is complete.

If there is an encryption dictionary, the document's encryption parameters are initialized.

• The client requests root object. The QPDF class gets the value of root key from trailer dictionary and returns it. It
is an unresolved indirect QPDFObjectHandle.

• The client requests the /Pages key from root QPDFObjectHandle. The QPDFObjectHandle notices that it
is indirect so it asks QPDF to resolve it. QPDF looks in the object cache for an object with the root dictionary's
object ID and generation number. Upon not seeing it, it checks the cross reference table, gets the offset, and reads
the object present at that offset. It stores the result in the object cache and returns the cached result. The calling
QPDFObjectHandle replaces its object pointer with the one from the resolved QPDFObjectHandle, verifies
that it a valid dictionary object, and returns the (unresolved indirect) QPDFObject handle to the top of the Pages
hierarchy.

As the client continues to request objects, the same process is followed for each new requested object.

6.3. Casting Policy
This section describes the casting policy followed by qpdf's implementation. This is no concern to qpdf's end users
and largely of no concern to people writing code that uses qpdf, but it could be of interest to people who are porting
qpdf to a new platform or who are making modifications to the code.

The C++ code in qpdf is free of old-style casts except where unavoidable (e.g. where the old-style cast is in a macro
provided by a third-party header file). When there is a need for a cast, it is handled, in order of preference, by rewriting
the code to avoid the need for a cast, calling const_cast, calling static_cast, calling reinterpret_cast, or calling some
combination of the above. As a last resort, a compiler-specific #pragma may be used to suppress a warning that we
don't want to fix. Examples may include suppressing warnings about the use of old-style casts in code that is shared
between C and C++ code.

The casting policy explicitly prohibits casting between integer sizes for no purpose other than to quiet a compiler
warning when there is no reasonable chance of a problem resulting. The reason for this exclusion is that the practice
of adding these additional casts precludes future use of additional compiler warnings as a tool for making future
improvements to this aspect of the code, and it also damages the readability of the code.

There are a few significant areas where casting is common in the qpdf sources or where casting would be required to
quiet higher levels of compiler warnings but is omitted at present:

• char vs. unsigned char. For historical reasons, there are a lot of places in qpdf's internals that deal with
unsigned char, which means that a lot of casting is required to interoperate with standard library calls and
std::string. In retrospect, qpdf should have probably used regular (signed) char and char* everywhere and
just cast to unsigned char when needed, but it's too late to make that change now. There are reinterpret_cast
calls to go between char* and unsigned char*, and there are static_cast calls to go between char and
unsigned char. These should always be safe.

Design and Library Notes

18

• Non-const unsigned char* used in the Pipeline interface. The pipeline interface has a write call that uses
unsigned char* without a const qualifier. The main reason for this is to support pipelines that make calls to
third-party libraries, such as zlib, that don't include const in their interfaces. Unfortunately, there are many places
in the code where it is desirable to have const char* with pipelines. None of the pipeline implementations in
qpdf currently modify the data passed to write, and doing so would be counter to the intent of Pipeline, but there
is nothing in the code to prevent this from being done. There are places in the code where const_cast is used to
remove the const-ness of pointers going into Pipelines. This could theoretically be unsafe, but there is adequate
testing to assert that it is safe and will remain safe in qpdf's code.

• size_t vs. qpdf_offset_t. This is pretty much unavoidable since sizes are unsigned types and offsets are
signed types. Whenever it is necessary to seek by an amount given by a size_t, it becomes necessary to mix and
match between size_t and qpdf_offset_t. Additionally, qpdf sometimes treats memory buffers like files (as
with BufferInputSource, and those seek interfaces have to be consistent with file-based input sources. Neither
gcc nor MSVC give warnings for this case by default, but both have warning flags that can enable this. (MSVC:
/W14267 or /W3, which also enables some additional warnings that we ignore; gcc: -Wconversion -Wsign-
conversion). This could matter for files whose sizes are larger than 263 bytes, but it is reasonable to expect that a
world where such files are common would also have larger size_t and qpdf_offset_t types in it. On most
64-bit systems at the time of this writing (the release of version 4.1.0 of qpdf), both size_t and qpdf_offset_t
are 64-bit integer types, while on many current 32-bit systems, size_t is a 32-bit type while qpdf_offset_t is
a 64-bit type. I am not aware of any cases where 32-bit systems that have size_t smaller than qpdf_offset_t
could run into problems. Although I can't conclusively rule out the possibility of such problems existing, I suspect
any cases would be pretty contrived. In the event that someone should produce a file that qpdf can't handle because
of what is suspected to be issues involving the handling of size_t vs. qpdf_offset_t (such files may behave
properly on 64-bit systems but not on 32-bit systems because they have very large embedded files or streams, for
example), the above mentioned warning flags could be enabled and all those implicit conversions could be carefully
scrutinized. (I have already gone through that exercise once in adding support for files larger than 4 GB in size.) I
continue to be committed to supporting large files on 32-bit systems, but I would not go to any lengths to support
corner cases involving large embedded files or large streams that work on 64-bit systems but not on 32-bit systems
because of size_t being too small. It is reasonable to assume that anyone working with such files would be using
a 64-bit system anyway since many 32-bit applications would have similar difficulties.

• size_t vs. int or long. There are some cases where size_t and int or long or size_t and unsigned
int or unsigned long are used interchangeably. These cases occur when working with very small amounts of
memory, such as with the bit readers (where we're working with just a few bytes at a time), some cases of strlen, and
a few other cases. I have scrutinized all of these cases and determined them to be safe, but there is no mechanism in
the code to ensure that new unsafe conversions between int and size_t aren't introduced short of good testing
and strong awareness of the issues. Again, if any such bugs are suspected in the future, enabling the additional
warning flags and scrutinizing the warnings would be in order.

To be clear, I believe qpdf to be well-behaved with respect to sizes and offsets, and qpdf's test suite includes actual
generation and full processing of files larger than 4 GB in size. The issues raised here are largely academic and should
not in any way be interpreted to mean that qpdf has practical problems involving sloppiness with integer types. I also
believe that appropriate measures have been taken in the code to avoid problems with signed vs. unsigned integers
from resulting in memory overwrites or other issues with potential security implications, though there are never any
absolute guarantees.

6.4. Encryption
Encryption is supported transparently by qpdf. When opening a PDF file, if an encryption dictionary exists, the QPDF
object processes this dictionary using the password (if any) provided. The primary decryption key is computed and
cached. No further access is made to the encryption dictionary after that time. When an object is read from a file, the
object ID and generation of the object in which it is contained is always known. Using this information along with
the stored encryption key, all stream and string objects are transparently decrypted. Raw encrypted objects are never
stored in memory. This way, nothing in the library ever has to know or care whether it is reading an encrypted file.

Design and Library Notes

19

An interface is also provided for writing encrypted streams and strings given an encryption key. This is used by
QPDFWriter when it rewrites encrypted files.

When copying encrypted files, unless otherwise directed, qpdf will preserve any encryption in force in the original
file. qpdf can do this with either the user or the owner password. There is no difference in capability based on which
password is used. When 40 or 128 bit encryption keys are used, the user password can be recovered with the owner
password. With 256 keys, the user and owner passwords are used independently to encrypt the actual encryption key,
so while either can be used, the owner password can no longer be used to recover the user password.

Starting with version 4.0.0, qpdf can read files that are not encrypted but that contain encrypted attachments, but it
cannot write such files. qpdf also requires the password to be specified in order to open the file, not just to extract
attachments, since once the file is open, all decryption is handled transparently. When copying files like this while
preserving encryption, qpdf will apply the file's encryption to everything in the file, not just to the attachments. When
decrypting the file, qpdf will decrypt the attachments. In general, when copying PDF files with multiple encryption
formats, qpdf will choose the newest format. The only exception to this is that clear-text metadata will be preserved
as clear-text if it is that way in the original file.

6.5. Random Number Generation
QPDF generates random numbers to support generation of encrypted data. Versions prior to 5.0.1 used random or rand
from stdlib to generate random numbers. Version 5.0.1, if available, used operating system-provided secure random
number generation instead, enabling use of stdlib random number generation only if enabled by a compile-time option.
Starting in version 5.1.0, use of insecure random numbers was disabled unless enabled at compile time. Starting in
version 5.1.0, it is also possible for you to disable use of OS-provided secure random numbers. This is especially
useful on Windows if you want to avoid a dependency on Microsoft's cryptography API. In this case, you must provide
your own random data provider. Regardless of how you compile qpdf, starting in version 5.1.0, it is possible for you
to provide your own random data provider at runtime. This would enable you to use some software-based secure
pseudorandom number generator and to avoid use of whatever the operating system provides. For details on how to
do this, please refer to the top-level README file in the source distribution and to comments in QUtil.hh.

6.6. Adding and Removing Pages
While qpdf's API has supported adding and modifying objects for some time, version 3.0 introduces specific methods
for adding and removing pages. These are largely convenience routines that handle two tricky issues: pushing
inheritable resources from the /Pages tree down to individual pages and manipulation of the /Pages tree itself. For
details, see addPage and surrounding methods in QPDF.hh.

6.7. Reserving Object Numbers
Version 3.0 of qpdf introduced the concept of reserved objects. These are seldom needed for ordinary operations, but
there are cases in which you may want to add a series of indirect objects with references to each other to a QPDF object.
This causes a problem because you can't determine the object ID that a new indirect object will have until you add it to
the QPDF object with QPDF::makeIndirectObject. The only way to add two mutually referential objects to a QPDF
object prior to version 3.0 would be to add the new objects first and then make them refer to each other after adding
them. Now it is possible to create a reserved object using QPDFObjectHandle::newReserved. This is an indirect object
that stays “unresolved” even if it is queried for its type. So now, if you want to create a set of mutually referential
objects, you can create reservations for each one of them and use those reservations to construct the references. When
finished, you can call QPDF::replaceReserved to replace the reserved objects with the real ones. This functionality
will never be needed by most applications, but it is used internally by QPDF when copying objects from other PDF
files, as discussed in Section 6.8, “Copying Objects From Other PDF Files”, page 20. For an example of how to
use reserved objects, search for newReserved in test_driver.cc in qpdf's sources.

Design and Library Notes

20

6.8. Copying Objects From Other PDF Files
Version 3.0 of qpdf introduced the ability to copy objects into a QPDF object from a different QPDF object, which
we refer to as foreign objects. This allows arbitrary merging of PDF files. The qpdf command-line tool provides
limited support for basic page selection, including merging in pages from other files, but the library's API makes
it possible to implement arbitrarily complex merging operations. The main method for copying foreign objects is
QPDF::copyForeignObject. This takes an indirect object from another QPDF and copies it recursively into this object
while preserving all object structure, including circular references. This means you can add a direct object that you
create from scratch to a QPDF object with QPDF::makeIndirectObject, and you can add an indirect object from
another file with QPDF::copyForeignObject. The fact that QPDF::makeIndirectObject does not automatically detect
a foreign object and copy it is an explicit design decision. Copying a foreign object seems like a sufficiently significant
thing to do that it should be done explicitly.

The other way to copy foreign objects is by passing a page from one QPDF to another by calling QPDF::addPage.
In contrast to QPDF::makeIndirectObject, this method automatically distinguishes between indirect objects in the
current file, foreign objects, and direct objects.

6.9. Writing PDF Files
The qpdf library supports file writing of QPDF objects to PDF files through the QPDFWriter class. The
QPDFWriter class has two writing modes: one for non-linearized files, and one for linearized files. See Chapter 7,
Linearization, page 22 for a description of linearization is implemented. This section describes how we write non-
linearized files including the creation of QDF files (see Chapter 4, QDF Mode, page 12.

This outline was written prior to implementation and is not exactly accurate, but it provides a correct “notional” idea
of how writing works. Look at the code in QPDFWriter for exact details.

• Initialize state:

• next object number = 1

• object queue = empty

• renumber table: old object id/generation to new id/0 = empty

• xref table: new id -> offset = empty

• Create a QPDF object from a file.

• Write header for new PDF file.

• Request the trailer dictionary.

• For each value that is an indirect object, grab the next object number (via an operation that returns and increments
the number). Map object to new number in renumber table. Push object onto queue.

• While there are more objects on the queue:

• Pop queue.

• Look up object's new number n in the renumbering table.

• Store current offset into xref table.

• Write n 0 obj.

Design and Library Notes

21

• If object is null, whether direct or indirect, write out null, thus eliminating unresolvable indirect object references.

• If the object is a stream stream, write stream contents, piped through any filters as required, to a memory buffer.
Use this buffer to determine the stream length.

• If object is not a stream, array, or dictionary, write out its contents.

• If object is an array or dictionary (including stream), traverse its elements (for array) or values (for dictionaries),
handling recursive dictionaries and arrays, looking for indirect objects. When an indirect object is found, if it is
not resolvable, ignore. (This case is handled when writing it out.) Otherwise, look it up in the renumbering table.
If not found, grab the next available object number, assign to the referenced object in the renumbering table, and
push the referenced object onto the queue. As a special case, when writing out a stream dictionary, replace length,
filters, and decode parameters as required.

Write out dictionary or array, replacing any unresolvable indirect object references with null (pdf spec says
reference to non-existent object is legal and resolves to null) and any resolvable ones with references to the
renumbered objects.

• If the object is a stream, write stream\n, the stream contents (from the memory buffer), and \nendstream\n.

• When done, write endobj.

Once we have finished the queue, all referenced objects will have been written out and all deleted objects or
unreferenced objects will have been skipped. The new cross-reference table will contain an offset for every new object
number from 1 up to the number of objects written. This can be used to write out a new xref table. Finally we can
write out the trailer dictionary with appropriately computed /ID (see spec, 8.3, File Identifiers), the cross reference
table offset, and %%EOF.

6.10. Filtered Streams
Support for streams is implemented through the Pipeline interface which was designed for this package.

When reading streams, create a series of Pipeline objects. The Pipeline abstract base requires implementation write()
and finish() and provides an implementation of getNext(). Each pipeline object, upon receiving data, does whatever it
is going to do and then writes the data (possibly modified) to its successor. Alternatively, a pipeline may be an end-
of-the-line pipeline that does something like store its output to a file or a memory buffer ignoring a successor. For
additional details, look at Pipeline.hh.

QPDF can read raw or filtered streams. When reading a filtered stream, the QPDF class creates a Pipeline object for
one of each appropriate filter object and chains them together. The last filter should write to whatever type of output
is required. The QPDF class has an interface to write raw or filtered stream contents to a given pipeline.

22

Chapter 7. Linearization
This chapter describes how QPDF and QPDFWriter implement creation and processing of linearized PDFS.

7.1. Basic Strategy for Linearization
To avoid the incestuous problem of having the qpdf library validate its own linearized files, we have a special linearized
file checking mode which can be invoked via qpdf --check-linearization (or qpdf --check). This mode reads the
linearization parameter dictionary and the hint streams and validates that object ordering, parameters, and hint stream
contents are correct. The validation code was first tested against linearized files created by external tools (Acrobat and
pdlin) and then used to validate files created by QPDFWriter itself.

7.2. Preparing For Linearization
Before creating a linearized PDF file from any other PDF file, the PDF file must be altered such that all page attributes
are propagated down to the page level (and not inherited from parents in the /Pages tree). We also have to know
which objects refer to which other objects, being concerned with page boundaries and a few other cases. We refer to
this part of preparing the PDF file as optimization, discussed in Section 7.3, “Optimization”, page 22. Note the, in
this context, the term optimization is a qpdf term, and the term linearization is a term from the PDF specification. Do
not be confused by the fact that many applications refer to linearization as optimization or web optimization.

When creating linearized PDF files from optimized PDF files, there are really only a few issues that need to be dealt
with:

• Creation of hints tables

• Placing objects in the correct order

• Filling in offsets and byte sizes

7.3. Optimization
In order to perform various operations such as linearization and splitting files into pages, it is necessary to know which
objects are referenced by which pages, page thumbnails, and root and trailer dictionary keys. It is also necessary to
ensure that all page-level attributes appear directly at the page level and are not inherited from parents in the pages tree.

We refer to the process of enforcing these constraints as optimization. As mentioned above, note that some applications
refer to linearization as optimization. Although this optimization was initially motivated by the need to create linearized
files, we are using these terms separately.

PDF file optimization is implemented in the QPDF_optimization.cc source file. That file is richly commented and
serves as the primary reference for the optimization process.

After optimization has been completed, the private member variables obj_user_to_objects and object_to_obj_users in
QPDF have been populated. Any object that has more than one value in the object_to_obj_users table is shared. Any
object that has exactly one value in the object_to_obj_users table is private. To find all the private objects in a page or
a trailer or root dictionary key, one merely has make this determination for each element in the obj_user_to_objects
table for the given page or key.

Note that pages and thumbnails have different object user types, so the above test on a page will not include objects
referenced by the page's thumbnail dictionary and nothing else.

Linearization

23

7.4. Writing Linearized Files
We will create files with only primary hint streams. We will never write overflow hint streams. (As of PDF version 1.4,
Acrobat doesn't either, and they are never necessary.) The hint streams contain offset information to objects that point
to where they would be if the hint stream were not present. This means that we have to calculate all object positions
before we can generate and write the hint table. This means that we have to generate the file in two passes. To make
this reliable, QPDFWriter in linearization mode invokes exactly the same code twice to write the file to a pipeline.

In the first pass, the target pipeline is a count pipeline chained to a discard pipeline. The count pipeline simply passes
its data through to the next pipeline in the chain but can return the number of bytes passed through it at any intermediate
point. The discard pipeline is an end of line pipeline that just throws its data away. The hint stream is not written and
dummy values with adequate padding are stored in the first cross reference table, linearization parameter dictionary,
and /Prev key of the first trailer dictionary. All the offset, length, object renumbering information, and anything else
we need for the second pass is stored.

At the end of the first pass, this information is passed to the QPDF class which constructs a compressed hint stream
in a memory buffer and returns it. QPDFWriter uses this information to write a complete hint stream object into a
memory buffer. At this point, the length of the hint stream is known.

In the second pass, the end of the pipeline chain is a regular file instead of a discard pipeline, and we have known values
for all the offsets and lengths that we didn't have in the first pass. We have to adjust offsets that appear after the start of
the hint stream by the length of the hint stream, which is known. Anything that is of variable length is padded, with the
padding code surrounding any writing code that differs in the two passes. This ensures that changes to the way things
are represented never results in offsets that were gathered during the first pass becoming incorrect for the second pass.

Using this strategy, we can write linearized files to a non-seekable output stream with only a single pass to disk or
wherever the output is going.

7.5. Calculating Linearization Data
Once a file is optimized, we have information about which objects access which other objects. We can then process
these tables to decide which part (as described in “Linearized PDF Document Structure” in the PDF specification)
each object is contained within. This tells us the exact order in which objects are written. The QPDFWriter class
asks for this information and enqueues objects for writing in the proper order. It also turns on a check that causes an
exception to be thrown if an object is encountered that has not already been queued. (This could happen only if there
were a bug in the traversal code used to calculate the linearization data.)

7.6. Known Issues with Linearization
There are a handful of known issues with this linearization code. These issues do not appear to impact the behavior of
linearized files which still work as intended: it is possible for a web browser to begin to display them before they are
fully downloaded. In fact, it seems that various other programs that create linearized files have many of these same
issues. These items make reference to terminology used in the linearization appendix of the PDF specification.

• Thread Dictionary information keys appear in part 4 with the rest of Threads instead of in part 9. Objects in part
9 are not grouped together functionally.

• We are not calculating numerators for shared object positions within content streams or interleaving them within
content streams.

• We generate only page offset, shared object, and outline hint tables. It would be relatively easy to add some additional
tables. We gather most of the information needed to create thumbnail hint tables. There are comments in the code
about this.

Linearization

24

7.7. Debugging Note
The qpdf --show-linearization command can show the complete contents of linearization hint streams. To look at the
raw data, you can extract the filtered contents of the linearization hint tables using qpdf --show-object=n --filtered-
stream-data. Then, to convert this into a bit stream (since linearization tables are bit streams written without regard
to byte boundaries), you can pipe the resulting data through the following perl code:

use bytes;
binmode STDIN;
undef $/;
my $a = <STDIN>;
my @ch = split(//, $a);
map { printf("%08b", ord($_)) } @ch;
print "\n";

25

Chapter 8. Object and Cross-Reference
Streams
This chapter provides information about the implementation of object stream and cross-reference stream support in
qpdf.

8.1. Object Streams
Object streams can contain any regular object except the following:

• stream objects

• objects with generation > 0

• the encryption dictionary

• objects containing the /Length of another stream

In addition, Adobe reader (at least as of version 8.0.0) appears to not be able to handle having the document catalog
appear in an object stream if the file is encrypted, though this is not specifically disallowed by the specification.

There are additional restrictions for linearized files. See Section 8.3, “Implications for Linearized Files”, page 26for
details.

The PDF specification refers to objects in object streams as “compressed objects” regardless of whether the object
stream is compressed.

The generation number of every object in an object stream must be zero. It is possible to delete and replace an object
in an object stream with a regular object.

The object stream dictionary has the following keys:

• /N: number of objects

• /First: byte offset of first object

• /Extends: indirect reference to stream that this extends

Stream collections are formed with /Extends. They must form a directed acyclic graph. These can be used for
semantic information and are not meaningful to the PDF document's syntactic structure. Although qpdf preserves
stream collections, it never generates them and doesn't make use of this information in any way.

The specification recommends limiting the number of objects in object stream for efficiency in reading and decoding.
Acrobat 6 uses no more than 100 objects per object stream for linearized files and no more 200 objects per stream for
non-linearized files. QPDFWriter, in object stream generation mode, never puts more than 100 objects in an object
stream.

Object stream contents consists of N pairs of integers, each of which is the object number and the byte offset of the
object relative to the first object in the stream, followed by the objects themselves, concatenated.

8.2. Cross-Reference Streams
For non-hybrid files, the value following startxref is the byte offset to the xref stream rather than the word xref.

Object and Cross-Reference Streams

26

For hybrid files (files containing both xref tables and cross-reference streams), the xref table's trailer dictionary contains
the key /XRefStm whose value is the byte offset to a cross-reference stream that supplements the xref table. A
PDF 1.5-compliant application should read the xref table first. Then it should replace any object that it has already
seen with any defined in the xref stream. Then it should follow any /Prev pointer in the original xref table's trailer
dictionary. The specification is not clear about what should be done, if anything, with a /Prev pointer in the xref
stream referenced by an xref table. The QPDF class ignores it, which is probably reasonable since, if this case were
to appear for any sensible PDF file, the previous xref table would probably have a corresponding /XRefStm pointer
of its own. For example, if a hybrid file were appended, the appended section would have its own xref table and /
XRefStm. The appended xref table would point to the previous xref table which would point the /XRefStm, meaning
that the new /XRefStm doesn't have to point to it.

Since xref streams must be read very early, they may not be encrypted, and the may not contain indirect objects for
keys required to read them, which are these:

• /Type: value /XRef

• /Size: value n+1: where n is highest object number (same as /Size in the trailer dictionary)

• /Index (optional): value [n count ...] used to determine which objects' information is stored in this stream.
The default is [0 /Size].

• /Prev: value offset: byte offset of previous xref stream (same as /Prev in the trailer dictionary)

• /W [...]: sizes of each field in the xref table

The other fields in the xref stream, which may be indirect if desired, are the union of those from the xref table's trailer
dictionary.

8.2.1. Cross-Reference Stream Data
The stream data is binary and encoded in big-endian byte order. Entries are concatenated, and each entry has a length
equal to the total of the entries in /W above. Each entry consists of one or more fields, the first of which is the type of
the field. The number of bytes for each field is given by /W above. A 0 in /W indicates that the field is omitted and
has the default value. The default value for the field type is “1”. All other default values are “0”.

PDF 1.5 has three field types:

• 0: for free objects. Format: 0 obj next-generation, same as the free table in a traditional cross-reference table

• 1: regular non-compressed object. Format: 1 offset generation

• 2: for objects in object streams. Format: 2 object-stream-number index, the number of object stream
containing the object and the index within the object stream of the object.

It seems standard to have the first entry in the table be 0 0 0 instead of 0 0 ffff if there are no deleted objects.

8.3. Implications for Linearized Files
For linearized files, the linearization dictionary, document catalog, and page objects may not be contained in object
streams.

Objects stored within object streams are given the highest range of object numbers within the main and first-page
cross-reference sections.

It is okay to use cross-reference streams in place of regular xref tables. There are on special considerations.

Object and Cross-Reference Streams

27

Hint data refers to object streams themselves, not the objects in the streams. Shared object references should also be
made to the object streams. There are no reference in any hint tables to the object numbers of compressed objects
(objects within object streams).

When numbering objects, all shared objects within both the first and second halves of the linearized files must be
numbered consecutively after all normal uncompressed objects in that half.

8.4. Implementation Notes
There are three modes for writing object streams: disable, preserve, and generate. In disable mode, we do not generate
any object streams, and we also generate an xref table rather than xref streams. This can be used to generate PDF
files that are viewable with older readers. In preserve mode, we write object streams such that written object streams
contain the same objects and /Extends relationships as in the original file. This is equal to disable if the file has no
object streams. In generate, we create object streams ourselves by grouping objects that are allowed in object streams
together in sets of no more than 100 objects. We also ensure that the PDF version is at least 1.5 in generate mode, but
we preserve the version header in the other modes. The default is preserve.

We do not support creation of hybrid files. When we write files, even in preserve mode, we will lose any xref tables
and merge any appended sections.

28

Appendix A. Release Notes
For a detailed list of changes, please see the file ChangeLog in the source distribution.

5.1.3: May 24, 2015

• Bug fix: fix-qdf was not properly handling files that contained object streams with more than 255 objects in
them.

• Bug fix: qpdf was not properly initializing Microsoft's secure crypto provider on fresh Windows installations
that had not had any keys created yet.

• Fix a few errors found by Gynvael Coldwind and Mateusz Jurczyk of the Google Security Team. Please see
the ChangeLog for details.

• Properly handle pages that have no contents at all. There were many cases in which qpdf handled this fine, but
a few methods blindly obtained page contents with handling the possibility that there were no contents.

• Make qpdf more robust for a few more kinds of problems that may occur in invalid PDF files.

5.1.2: June 7, 2014

• Bug fix: linearizing files could create a corrupted output file under extremely unlikely file size circumstances.
See ChangeLog for details. The odds of getting hit by this are very low, though one person did.

• Bug fix: qpdf would fail to write files that had streams with decode parameters referencing other streams.

• New example program: pdf-split-pages: efficiently split PDF files into individual pages. The example program
does this more efficiently than using qpdf --pages to do it.

• Packaging fix: Visual C++ binaries did not support Windows XP. This has been rectified by updating the
compilers used to generate the release binaries.

5.1.1: January 14, 2014

• Performance fix: copying foreign objects could be very slow with certain types of files. This was most likely
to be visible during page splitting and was due to traversing the same objects multiple times in some cases.

5.1.0: December 17, 2013

• Added runtime option (QUtil::setRandomDataProvider) to supply your own random data provider. You can
use this if you want to avoid using the OS-provided secure random number generation facility or stdlib's less
secure version. See comments in include/qpdf/QUtil.hh for details.

• Fixed image comparison tests to not create 12-bit-per-pixel images since some versions of tiffcmp have bugs
in comparing them in some cases. This increases the disk space required by the image comparison tests, which
are off by default anyway.

• Introduce a number of small fixes for compilation on the latest clang in MacOS and the latest Visual C++ in
Windows.

• Be able to handle broken files that end the xref table header with a space instead of a newline.

5.0.1: October 18, 2013

• Thanks to a detailed review by Florian Weimer and the Red Hat Product Security Team, this release includes a
number of non-user-visible security hardening changes. Please see the ChangeLog file in the source distribution
for the complete list.

Release Notes

29

• When available, operating system-specific secure random number generation is used for generating
initialization vectors and other random values used during encryption or file creation. For the Windows build,
this results in an added dependency on Microsoft's cryptography API. To disable the OS-specific cryptography
and use the old version, pass the --enable-insecure-random option to ./configure.

• The qpdf command-line tool now issues a warning when -accessibility=n is specified for newer encryption
versions stating that the option is ignored. qpdf, per the spec, has always ignored this flag, but it previously
did so silently. This warning is issued only by the command-line tool, not by the library. The library's handling
of this flag is unchanged.

5.0.0: July 10, 2013

• Bug fix: previous versions of qpdf would lose objects with generation != 0 when generating object streams.
Fixing this required changes to the public API.

• Removed methods from public API that were only supposed to be called by QPDFWriter and couldn't
realistically be called anywhere else. See ChangeLog for details.

• New QPDFObjGen class added to represent an object ID/generation pair. QPDFObjectHandle::getObjGen() is
now preferred over QPDFObjectHandle::getObjectID() and QPDFObjectHandle::getGeneration() as it makes
it less likely for people to accidentally write code that ignores the generation number. See QPDF.hh and
QPDFObjectHandle.hh for additional notes.

• Add --show-npages command-line option to the qpdf command to show the number of pages in a file.

• Allow omission of the page range within --pages for the qpdf command. When omitted, the page range is
implicitly taken to be all the pages in the file.

• Various enhancements were made to support different types of broken files or broken readers. Details can be
found in ChangeLog.

4.1.0: April 14, 2013

• Note to people including qpdf in distributions: the .la files generated by libtool are now installed by qpdf's make
install target. Before, they were not installed. This means that if your distribution does not want to include .la
files, you must remove them as part of your packaging process.

• Major enhancement: API enhancements have been made to support parsing of content streams. This
enhancement includes the following changes:

• QPDFObjectHandle::parseContentStream method parses objects in a content stream and calls handlers in a
callback class. The example examples/pdf-parse-content.cc illustrates how this may be used.

• QPDFObjectHandle can now represent operators and inline images, object types that may only appear
in content streams.

• Method QPDFObjectHandle::getTypeCode() returns an enumerated type value representing the underlying
object type. Method QPDFObjectHandle::getTypeName() returns a text string describing the name of
the type of a QPDFObjectHandle object. These methods can be used for more efficient parsing and
debugging/diagnostic messages.

• qpdf --check now parses all pages' content streams in addition to doing other checks. While there are still many
types of errors that cannot be detected, syntactic errors in content streams will now be reported.

• Minor compilation enhancements have been made to facilitate easier for support for a broader range of compilers
and compiler versions.

Release Notes

30

• Warning flags have been moved into a separate variable in autoconf.mk

• The configure flag --enable-werror work for Microsoft compilers

• All MSVC CRT security warnings have been resolved.

• All C-style casts in C++ Code have been replaced by C++ casts, and many casts that had been included
to suppress higher warning levels for some compilers have been removed, primarily for clarity. Places
where integer type coercion occurs have been scrutinized. A new casting policy has been documented in the
manual. This is of concern mainly to people porting qpdf to new platforms or compilers. It is not visible to
programmers writing code that uses the library

• Some internal limits have been removed in code that converts numbers to strings. This is largely invisible to
users, but it does trigger a bug in some older versions of mingw-w64's C++ library. See README-windows.txt
in the source distribution if you think this may affect you. The copy of the DLL distributed with qpdf's binary
distribution is not affected by this problem.

• The RPM spec file previously included with qpdf has been removed. This is because virtually all Linux
distributions include qpdf now that it is a dependency of CUPS filters.

• A few bug fixes are included:

• Overridden compressed objects are properly handled. Before, there were certain constructs that could cause
qpdf to see old versions of some objects. The most usual manifestation of this was loss of filled in form
values for certain files.

• Installation no longer uses GNU/Linux-specific versions of some commands, so make install works on
Solaris with native tools.

• The 64-bit mingw Windows binary package no longer includes a 32-bit DLL.

4.0.1: January 17, 2013

• Fix detection of binary attachments in test suite to avoid false test failures on some platforms.

• Add clarifying comment in QPDF.hh to methods that return the user password explaining that it is no longer
possible with newer encryption formats to recover the user password knowing the owner password. In earlier
encryption formats, the user password was encrypted in the file using the owner password. In newer encryption
formats, a separate encryption key is used on the file, and that key is independently encrypted using both the
user password and the owner password.

4.0.0: December 31, 2012

• Major enhancement: support has been added for newer encryption schemes supported by version X of Adobe
Acrobat. This includes use of 127-character passwords, 256-bit encryption keys, and the encryption scheme
specified in ISO 32000-2, the PDF 2.0 specification. This scheme can be chosen from the command line by
specifying use of 256-bit keys. qpdf also supports the deprecated encryption method used by Acrobat IX. This
encryption style has known security weaknesses and should not be used in practice. However, such files exist “in
the wild,” so support for this scheme is still useful. New methods QPDFWriter::setR6EncryptionParameters
(for the PDF 2.0 scheme) and QPDFWriter::setR5EncryptionParameters (for the deprecated scheme) have
been added to enable these new encryption schemes. Corresponding functions have been added to the C API
as well.

• Full support for Adobe extension levels in PDF version information. Starting with PDF version 1.7,
corresponding to ISO 32000, Adobe adds new functionality by increasing the extension level rather

Release Notes

31

than increasing the version. This support includes addition of the QPDF::getExtensionLevel method for
retrieving the document's extension level, addition of versions of QPDFWriter::setMinimumPDFVersion
and QPDFWriter::forcePDFVersion that accept an extension level, and extended syntax for specifying
forced and minimum versions on the command line as described in Section 3.5, “Advanced Transformation
Options”, page 8. Corresponding functions have been added to the C API as well.

• Minor fixes to prevent qpdf from referencing objects in the file that are not referenced in the file's overall
structure. Most files don't have any such objects, but some files have contain unreferenced objects with errors,
so these fixes prevent qpdf from needlessly rejecting or complaining about such objects.

• Add new generalized methods for reading and writing files from/to programmer-defined sources. The
method QPDF::processInputSource allows the programmer to use any input source for the input file, and
QPDFWriter::setOutputPipeline allows the programmer to write the output file through any pipeline. These
methods would make it possible to perform any number of specialized operations, such as accessing external
storage systems, creating bindings for qpdf in other programming languages that have their own I/O systems,
etc.

• Add new method QPDF::getEncryptionKey for retrieving the underlying encryption key used in the file.

• This release includes a small handful of non-compatible API changes. While effort is made to avoid such
changes, all the non-compatible API changes in this version were to parts of the API that would likely never
be used outside the library itself. In all cases, the altered methods or structures were parts of the QPDF that
were public to enable them to be called from either QPDFWriter or were part of validation code that was over-
zealous in reporting problems in parts of the file that would not ordinarily be referenced. In no case did any of
the removed methods do anything worse that falsely report error conditions in files that were broken in ways
that didn't matter. The following public parts of the QPDF class were changed in a non-compatible way:

• Updated nested QPDF::EncryptionData class to add fields needed by the newer encryption formats,
member variables changed to private so that future changes will not require breaking backward compatibility.

• Added additional parameters to compute_data_key, which is used by QPDFWriter to compute the
encryption key used to encrypt a specific object.

• Removed the method flattenScalarReferences. This method was previously used prior to writing a new PDF
file, but it has the undesired side effect of causing qpdf to read objects in the file that were not referenced.
Some otherwise files have unreferenced objects with errors in them, so this could cause qpdf to reject files
that would be accepted by virtually all other PDF readers. In fact, qpdf relied on only a very small part of
what flattenScalarReferences did, so only this part has been preserved, and it is now done directly inside
QPDFWriter.

• Removed the method decodeStreams. This method was used by the --check option of the qpdf command-line
tool to force all streams in the file to be decoded, but it also suffered from the problem of opening otherwise
unreferenced streams and thus could report false positive. The --check option now causes qpdf to go through
all the motions of writing a new file based on the original one, so it will always reference and check exactly
those parts of a file that any ordinary viewer would check.

• Removed the method trimTrailerForWrite. This method was used by QPDFWriter to modify the original
QPDF object by removing fields from the trailer dictionary that wouldn't apply to the newly written file.
This functionality, though generally harmless, was a poor implementation and has been replaced by having
QPDFWriter filter these out when copying the trailer rather than modifying the original QPDF object. (Note
that qpdf never modifies the original file itself.)

• Allow the PDF header to appear anywhere in the first 1024 bytes of the file. This is consistent with what other
readers do.

• Fix the pkg-config files to list zlib and pcre in Requires.private to better support static linking using pkg-config.

Release Notes

32

3.0.2: September 6, 2012

• Bug fix: QPDFWriter::setOutputMemory did not work when not used with QPDFWriter::setStaticID, which
made it pretty much useless. This has been fixed.

• New API call QPDFWriter::setExtraHeaderText inserts additional text near the header of the PDF file. The
intended use case is to insert comments that may be consumed by a downstream application, though other use
cases may exist.

3.0.1: August 11, 2012

• Version 3.0.0 included addition of files for pkg-config, but this was not mentioned in the release notes. The
release notes for 3.0.0 were updated to mention this.

• Bug fix: if an object stream ended with a scalar object not followed by space, qpdf would incorrectly report that
it encountered a premature EOF. This bug has been in qpdf since version 2.0.

3.0.0: August 2, 2012

• Acknowledgment: I would like to express gratitude for the contributions of Tobias Hoffmann toward the release
of qpdf version 3.0. He is responsible for most of the implementation and design of the new API for manipulating
pages, and contributed code and ideas for many of the improvements made in version 3.0. Without his work,
this release would certainly not have happened as soon as it did, if at all.

• Non-compatible API change: The version of QPDFObjectHandle::replaceStreamData that uses a
StreamDataProvider no longer requires (or accepts) a length parameter. See Appendix C, Upgrading to
3.0, page 38 for an explanation. While care is taken to avoid non-compatible API changes in general, an
exception was made this time because the new interface offers an opportunity to significantly simplify calling
code.

• Support has been added for large files. The test suite verifies support for files larger than 4 gigabytes, and
manual testing has verified support for files larger than 10 gigabytes. Large file support is available for both
32-bit and 64-bit platforms as long as the compiler and underlying platforms support it.

• Support for page selection (splitting and merging PDF files) has been added to the qpdf command-line tool.
See Section 3.4, “Page Selection Options”, page 6.

• Options have been added to the qpdf command-line tool for copying encryption parameters from another file.
See Section 3.2, “Basic Options”, page 4.

• New methods have been added to the QPDF object for adding and removing pages. See Section 6.6, “Adding
and Removing Pages”, page 19.

• New methods have been added to the QPDF object for copying objects from other PDF files. See Section 6.8,
“Copying Objects From Other PDF Files”, page 20

• A new method QPDFObjectHandle::parse has been added for constructing QPDFObjectHandle objects
from a string description.

• Methods have been added to QPDFWriter to allow writing to an already open stdio FILE* addition to writing
to standard output or a named file. Methods have been added to QPDF to be able to process a file from an
already open stdio FILE*. This makes it possible to read and write PDF from secure temporary files that have
been unlinked prior to being fully read or written.

• The QPDF::emptyPDF can be used to allow creation of PDF files from scratch. The example examples/pdf-
create.cc illustrates how it can be used.

Release Notes

33

• Several methods to take PointerHolder<Buffer> can now also accept std::string arguments.

• Many new convenience methods have been added to the library, most in QPDFObjectHandle. See
ChangeLog for a full list.

• When building on a platform that supports ELF shared libraries (such as Linux), symbol versions are enabled
by default. They can be disabled by passing --disable-ld-version-script to ./configure.

• The file libqpdf.pc is now installed to support pkg-config.

• Image comparison tests are off by default now since they are not needed to verify a correct build or port of
qpdf. They are needed only when changing the actual PDF output generated by qpdf. You should enable them
if you are making deep changes to qpdf itself. See README for details.

• Large file tests are off by default but can be turned on with ./configure or by setting an environment variable
before running the test suite. See README for details.

• When qpdf's test suite fails, failures are not printed to the terminal anymore by default. Instead, find them in
build/qtest.log. For packagers who are building with an autobuilder, you can add the --enable-show-failed-
test-output option to ./configure to restore the old behavior.

2.3.1: December 28, 2011

• Fix thread-safety problem resulting from non-thread-safe use of the PCRE library.

• Made a few minor documentation fixes.

• Add workaround for a bug that appears in some versions of ghostscript to the test suite

• Fix minor build issue for Visual C++ 2010.

2.3.0: August 11, 2011

• Bug fix: when preserving existing encryption on encrypted files with cleartext metadata, older qpdf versions
would generate password-protected files with no valid password. This operation now works. This bug only
affected files created by copying existing encryption parameters; explicit encryption with specification of
cleartext metadata worked before and continues to work.

• Enhance QPDFWriter with a new constructor that allows you to delay the specification of the output file.
When using this constructor, you may now call QPDFWriter::setOutputFilename to specify the output file,
or you may use QPDFWriter::setOutputMemory to cause QPDFWriter to write the resulting PDF file to a
memory buffer. You may then use QPDFWriter::getBuffer to retrieve the memory buffer.

• Add new API call QPDF::replaceObject for replacing objects by object ID

• Add new API call QPDF::swapObjects for swapping two objects by object ID

• Add QPDFObjectHandle::getDictAsMap and QPDFObjectHandle::getArrayAsVector to allow retrieval of
dictionary objects as maps and array objects as vectors.

• Add functions qpdf_get_info_key and qpdf_set_info_key to the C API for manipulating string fields of the
document's /Info dictionary.

• Add functions qpdf_init_write_memory, qpdf_get_buffer_length, and qpdf_get_buffer to the C API for writing
PDF files to a memory buffer instead of a file.

2.2.4: June 25, 2011

• Fix installation and compilation issues; no functionality changes.

Release Notes

34

2.2.3: April 30, 2011

• Handle some damaged streams with incorrect characters following the stream keyword.

• Improve handling of inline images when normalizing content streams.

• Enhance error recovery to properly handle files that use object 0 as a regular object, which is specifically
disallowed by the spec.

2.2.2: October 4, 2010

• Add new function qpdf_read_memory to the C API to call QPDF::processMemoryFile. This was an omission
in qpdf 2.2.1.

2.2.1: October 1, 2010

• Add new method QPDF::setOutputStreams to replace std::cout and std::cerr with other streams for generation
of diagnostic messages and error messages. This can be useful for GUIs or other applications that want to
capture any output generated by the library to present to the user in some other way. Note that QPDF does
not write to std::cout (or the specified output stream) except where explicitly mentioned in QPDF.hh, and
that the only use of the error stream is for warnings. Note also that output of warnings is suppressed when
setSuppressWarnings(true) is called.

• Add new method QPDF::processMemoryFile for operating on PDF files that are loaded into memory rather
than in a file on disk.

• Give a warning but otherwise ignore empty PDF objects by treating them as null. Empty object are not permitted
by the PDF specification but have been known to appear in some actual PDF files.

• Handle inline image filter abbreviations when the appear as stream filter abbreviations. The PDF specification
does not allow use of stream filter abbreviations in this way, but Adobe Reader and some other PDF readers
accept them since they sometimes appear incorrectly in actual PDF files.

• Implement miscellaneous enhancements to PointerHolder and Buffer to support other changes.

2.2.0: August 14, 2010

• Add new methods to QPDFObjectHandle (newStream and replaceStreamData for creating new streams and
replacing stream data. This makes it possible to perform a wide range of operations that were not previously
possible.

• Add new helper method in QPDFObjectHandle (addPageContents) for appending or prepending new content
streams to a page. This method makes it possible to manipulate content streams without having to be concerned
whether a page's contents are a single stream or an array of streams.

• Add new method in QPDFObjectHandle: replaceOrRemoveKey, which replaces a dictionary key with a
given value unless the value is null, in which case it removes the key instead.

• Add new method in QPDFObjectHandle: getRawStreamData, which returns the raw (unfiltered) stream data
into a buffer. This complements the getStreamData method, which returns the filtered (uncompressed) stream
data and can only be used when the stream's data is filterable.

• Provide two new examples: pdf-double-page-size and pdf-invert-images that illustrate the newly added
interfaces.

• Fix a memory leak that would cause loss of a few bytes for every object involved in a cycle of object references.
Thanks to Jian Ma for calling my attention to the leak.

Release Notes

35

2.1.5: April 25, 2010

• Remove restriction of file identifier strings to 16 bytes. This unnecessary restriction was preventing qpdf from
being able to encrypt or decrypt files with identifier strings that were not exactly 16 bytes long. The specification
imposes no such restriction.

2.1.4: April 18, 2010

• Apply the same padding calculation fix from version 2.1.2 to the main cross reference stream as well.

• Since qpdf --check only performs limited checks, clarify the output to make it clear that there still may be
errors that qpdf can't check. This should make it less surprising to people when another PDF reader is unable
to read a file that qpdf thinks is okay.

2.1.3: March 27, 2010

• Fix bug that could cause a failure when rewriting PDF files that contain object streams with unreferenced objects
that in turn reference indirect scalars.

• Don't complain about (invalid) AES streams that aren't a multiple of 16 bytes. Instead, pad them before
decrypting.

2.1.2: January 24, 2010

• Fix bug in padding around first half cross reference stream in linearized files. The bug could cause an assertion
failure when linearizing certain unlucky files.

2.1.1: December 14, 2009

• No changes in functionality; insert missing include in an internal library header file to support gcc 4.4, and
update test suite to ignore broken Adobe Reader installations.

2.1: October 30, 2009

• This is the first version of qpdf to include Windows support. On Windows, it is possible to build a DLL.
Additionally, a partial C-language API has been introduced, which makes it possible to call qpdf functions
from non-C++ environments. I am very grateful to Zarko Gagic (http://delphi.about.com/) for tirelessly testing
numerous pre-release versions of this DLL and providing many excellent suggestions on improving the
interface.

For programming to the C interface, please see the header file qpdf/qpdf-c.h and the example examples/pdf-
linearize.c.

• Zarko Gajic has written a Delphi wrapper for qpdf, which can be downloaded from qpdf's download side.
Zarko's Delphi wrapper is released with the same licensing terms as qpdf itself and comes with this disclaimer:
“Delphi wrapper unit qpdf.pas created by Zarko Gajic (http://delphi.about.com/). Use at your own risk and for
whatever purpose you want. No support is provided. Sample code is provided.”

• Support has been added for AES encryption and crypt filters. Although qpdf does not presently support files
that use PKI-based encryption, with the addition of AES and crypt filters, qpdf is now be able to open most
encrypted files created with newer versions of Acrobat or other PDF creation software. Note that I have not
been able to get very many files encrypted in this way, so it's possible there could still be some cases that qpdf
can't handle. Please report them if you find them.

• Many error messages have been improved to include more information in hopes of making qpdf a more useful
tool for PDF experts to use in manually recovering damaged PDF files.

http://delphi.about.com/

http://delphi.about.com/

Release Notes

36

• Attempt to avoid compressing metadata streams if possible. This is consistent with other PDF creation
applications.

• Provide new command-line options for AES encrypt, cleartext metadata, and setting the minimum and forced
PDF versions of output files.

• Add additional methods to the QPDF object for querying the document's permissions. Although qpdf does
not enforce these permissions, it does make them available so that applications that use qpdf can enforce
permissions.

• The --check option to qpdf has been extended to include some additional information.

• There have been a handful of non-compatible API changes. For details, see Appendix B, Upgrading from 2.0
to 2.1, page 37.

2.0.6: May 3, 2009

• Do not attempt to uncompress streams that have decode parameters we don't recognize. Earlier versions of qpdf
would have rejected files with such streams.

2.0.5: March 10, 2009

• Improve error handling in the LZW decoder, and fix a small error introduced in the previous version with regard
to handling full tables. The LZW decoder has been more strongly verified in this release.

2.0.4: February 21, 2009

• Include proper support for LZW streams encoded without the “early code change” flag. Special thanks to Atom
Smasher who reported the problem and provided an input file compressed in this way, which I did not previously
have.

• Implement some improvements to file recovery logic.

2.0.3: February 15, 2009

• Compile cleanly with gcc 4.4.

• Handle strings encoded as UTF-16BE properly.

2.0.2: June 30, 2008

• Update test suite to work properly with a non-bash /bin/sh and with Perl 5.10. No changes were made to the
actual qpdf source code itself for this release.

2.0.1: May 6, 2008

• No changes in functionality or interface. This release includes fixes to the source code so that qpdf compiles
properly and passes its test suite on a broader range of platforms. See ChangeLog in the source distribution
for details.

2.0: April 29, 2008

• First public release.

37

Appendix B. Upgrading from 2.0 to 2.1
Although, as a general rule, we like to avoid introducing source-level incompatibilities in qpdf's interface, there were a
few non-compatible changes made in this version. A considerable amount of source code that uses qpdf will probably
compile without any changes, but in some cases, you may have to update your code. The changes are enumerated here.
There are also some new interfaces; for those, please refer to the header files.

• QPDF's exception handling mechanism now uses std::logic_error for internal errors and std::runtime_error
for runtime errors in favor of the now removed QEXC classes used in previous versions. The QEXC exception
classes predated the addition of the <stdexcept> header file to the C++ standard library. Most of the exceptions
thrown by the qpdf library itself are still of type QPDFExc which is now derived from std::runtime_error.
Programs that caught an instance of std::exception and displayed it by calling the what() method will not need
to be changed.

• The QPDFExc class now internally represents various fields of the error condition and provides interfaces for
querying them. Among the fields is a numeric error code that can help applications act differently on (a small number
of) different error conditions. See QPDFExc.hh for details.

• Warnings can be retrieved from qpdf as instances of QPDFExc instead of strings.

• The nested QPDF::EncryptionData class's constructor takes an additional argument. This class is primarily
intended to be used by QPDFWriter. There's not really anything useful an end-user application could do with it. It
probably shouldn't really be part of the public interface to begin with. Likewise, some of the methods for computing
internal encryption dictionary parameters have changed to support /R=4 encryption.

• The method QPDF::getUserPassword has been removed since it didn't do what people would think it did. There
are now two new methods: QPDF::getPaddedUserPassword and QPDF::getTrimmedUserPassword. The first one
does what the old QPDF::getUserPassword method used to do, which is to return the password with possible binary
padding as specified by the PDF specification. The second one returns a human-readable password string.

• The enumerated types that used to be nested in QPDFWriter have moved to top-level enumerated types and are
now defined in the file qpdf/Constants.h. This enables them to be shared by both the C and C++ interfaces.

38

Appendix C. Upgrading to 3.0
For the most part, the API for qpdf version 3.0 is backward compatible with versions 2.1 and later. There are two
exceptions:

• The method QPDFObjectHandle::replaceStreamData that uses a StreamDataProvider to provide the stream
data no longer takes a length parameter. While it would have been easy enough to keep the parameter for backward
compatibility, in this case, the parameter was removed since this provides the user an opportunity to simplify the
calling code. This method was introduced in version 2.2. At the time, the length parameter was required in order
to ensure that calls to the stream data provider returned the same length for a specific stream every time they were
invoked. In particular, the linearization code depends on this. Instead, qpdf 3.0 and newer check for that constraint
explicitly. The first time the stream data provider is called for a specific stream, the actual length is saved, and
subsequent calls are required to return the same number of bytes. This means the calling code no longer has to
compute the length in advance, which can be a significant simplification. If your code fails to compile because of
the extra argument and you don't want to make other changes to your code, just omit the argument.

• Many methods take long long instead of other integer types. Most if not all existing code should compile fine
with this change since such parameters had always previously been smaller types. This change was required to
support files larger than two gigabytes in size.

39

Appendix D. Upgrading to 4.0
While version 4.0 includes a few non-compatible API changes, it is very unlikely that anyone's code would have
used any of those parts of the API since they generally required information that would only be available inside the
library. In the unlikely event that you should run into trouble, please see the ChangeLog. See also Appendix A, Release
Notes, page 28 for a complete list of the non-compatible API changes made in this version.

qpdf-7.1.0/qpdf/qtest/qpdf/bad6.pdf

Sandwiches

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.1.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/unreferenced-preserved.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.1.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/append-page-content-damaged.qdf

Potato 0 new

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-force-1.8.2.out

version: 1.8
extension level: 2
<< /ADBE << /BaseVersion /1.8 /ExtensionLevel 2 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.11.c-check

version: 1.4
linearized: 1
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.6-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/bad5.out

bad5.pdf (xref table, file position 591): invalid xref entry (obj=2)

qpdf-7.1.0/qpdf/qtest/qpdf/good7.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/diff-encrypted

#!/bin/sh
lines=$(expr 0 + $(diff "$1" "$2" | egrep '^[<>]' | egrep -v '(Date|InstanceID)' | wc -l))
if ["$lines" = "0"]; then
 echo okay
else
 diff -a -U 0 "$1" "$2"
fi

qpdf-7.1.0/qpdf/qtest/qpdf/good21.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/xref-errors.out

WARNING: xref-errors.pdf (xref table, file position 585): accepting invalid xref table entry
WARNING: xref-errors.pdf (xref table, file position 606): accepting invalid xref table entry
WARNING: xref-errors.pdf (xref table, file position 627): accepting invalid xref table entry
WARNING: xref-errors.pdf (xref table, file position 648): accepting invalid xref table entry
WARNING: xref-errors.pdf (xref table, file position 667): accepting invalid xref table entry
checking xref-errors.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
1/0: uncompressed; offset = 9
2/0: uncompressed; offset = 63
3/0: uncompressed; offset = 135
4/0: uncompressed; offset = 307
5/0: uncompressed; offset = 403
6/0: uncompressed; offset = 438

qpdf-7.1.0/qpdf/qtest/qpdf/bad22-recover.out

WARNING: bad22.pdf (object 4 0, file position 314): stream dictionary lacks /Length key
WARNING: bad22.pdf (object 4 0, file position 341): attempting to recover stream length
WARNING: bad22.pdf (object 4 0, file position 341): recovered stream length: 44
/QTest is indirect and has type stream (10)
/QTest is a stream. Dictionary: << /Qength 44 >>
Raw stream data:
BT
 /F1 24 Tf
 72 720 Td
 (Potato) Tj
ET

Uncompressed stream data:
BT
 /F1 24 Tf
 72 720 Td
 (Potato) Tj
ET

End of stream data
unparse: 4 0 R
unparseResolved: 4 0 R
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad22.out

WARNING: bad22.pdf (object 4 0, file position 314): stream dictionary lacks /Length key
/QTest is implicit
/QTest is indirect and has type null (2)
/QTest is null
unparse: 4 0 R
unparseResolved: null
test 0 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-min-1.8.out

version: 1.8
extension level: 0
null
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-force-1.3.out

version: 1.3
extension level: 0
null
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/issue-146.out

WARNING: issue-146.pdf: file is damaged
WARNING: issue-146.pdf: can't find startxref
WARNING: issue-146.pdf: Attempting to reconstruct cross-reference table
WARNING: issue-146.pdf (trailer, file position 20728): unknown token while reading object; treating as string
issue-146.pdf (trailer, file position 20732): EOF while reading token

qpdf-7.1.0/qpdf/qtest/qpdf/c-r5-key-owner.out

checking c-r5-in.pdf
PDF Version: 1.7 extension level 3
R = 5
P = -2052
User password =
Encryption key = 35ea16a48b6a3045133b69ac0906c2e8fb0a2cc97903ae17b51a5786ebdba020
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: not allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
stream encryption method: AESv3
string encryption method: AESv3
file encryption method: AESv3
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-min-1.8.out

version: 1.8
extension level: 0
<< /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.10.check

checking a.pdf
PDF Version: 1.5
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/V4.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isis 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/bad17.out

WARNING: bad17.pdf (trailer, file position 715): dictionary ended prematurely; using null as value for last key
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 0 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-force-1.7.1.out

version: 1.7
extension level: 1
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 1 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/V5R6.out

checking a.pdf
PDF Version: 1.7 extension level 8
R = 6
P = -4
User password = user
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
stream encryption method: AESv3
string encryption method: AESv3
file encryption method: AESv3
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/good18.qdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

qpdf-7.1.0/qpdf/qtest/qpdf/eof-terminates-literal.out

checking eof-terminates-literal.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/bad21.out

bad21.pdf (trailer, file position 742): invalid name token

qpdf-7.1.0/qpdf/qtest/qpdf/copy-foreign-objects-out2.pdf

Potato

Original page 2

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.5.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/c-info1.out

Info key /Author: (null)
Info key /Producer: (null)
Info key /Creator: (null)
Info key /Author: Mr. Potato Head
Info key /Producer: QPDF library
Info key /Creator: (null)

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.1-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.6-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/eof-in-inline-image.out

operator: BT
name: /F1
integer: 24
operator: Tf
integer: 72
integer: 720
operator: Td
string: (Potato)
operator: Tj
operator: ET
operator: BI
name: /CS
name: /G
name: /W
integer: 1
name: /H
integer: 1
name: /BPC
integer: 8
name: /F
name: /Fl
name: /DP
dictionary: << /Columns 1 /Predictor 15 >>
operator: ID
content stream objects 4 0 (stream data, file position 139): EOF found while reading inline image

qpdf-7.1.0/qpdf/qtest/qpdf/good14.out

-- stream 0 --
A %here is a comment
B % here is another with CR
A B

one
two
three lines
(string with \r\nCRNL)
 and another
 indentation
(\001B%DEF)<01>
<8a8b>
(ab)
<8c><dd>) >
<610062> (MOO)
-- stream 1 --
This stream does end with a newline.
// tests:
// bad tokens preserved
// comments
// indentation
// CR/NL inside string literal -- changed to \r or \n, newline follows
// whitespace in hexstring (removed)
// strings normalized
// newlines normalized
// names normalized
// trailing space (preserved)
// final newline added

/bad#name

/good name
/bad#00name
-- stream 2 --
(This stream ends with a \001 bad token
-- stream 3 --
<AB X
test 3 done

qpdf-7.1.0/qpdf/qtest/qpdf/issue-149.out

WARNING: issue-149.pdf: reported number of objects (11) inconsistent with actual number of objects (7)
qpdf: operation succeeded with warnings; resulting file may have some problems

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-min-1.7.3.out

version: 1.7
extension level: 3
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 3 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad12.out

WARNING: bad12.pdf: reported number of objects (9) inconsistent with actual number of objects (8)
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 0 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-min-1.6.out

version: 1.7
extension level: 2
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 2 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/good15.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/bad27.out

WARNING: bad27.pdf (object 4 0, file position 307): expected n n obj
/QTest is implicit
/QTest is indirect and has type null (2)
/QTest is null
unparse: 4 0 R
unparseResolved: null
test 0 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-force-1.7.1.out

version: 1.7
extension level: 1
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 1 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.8.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.7.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.1-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.2.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted1.out

D:20080424174457
Apex PDFWriter
<36451bd39d753b7c1d10922c28e6665aa4f3353fb0348b536893e3b1db5c579b>
<c5fcd68fff42090ae5db77f3c6d7992e0122456a91bae5134273a6db134c87c4>
q
185 0 0 200 213.5 296 cm
/Im2 Do
Q
test 2 done

qpdf-7.1.0/qpdf/qtest/qpdf/issue-150.out

WARNING: issue-150.pdf: can't find PDF header
overflow/underflow converting 9900000000000000000 to 64-bit integer

qpdf-7.1.0/qpdf/qtest/qpdf/p1-a.pdf

A

qpdf-7.1.0/qpdf/qtest/qpdf/show-page-1-content-normalized.out

q
222 0 0 240 28.5 96 cm
/Im1 Do
Q
q
185 0 0 200 313.5 296 cm
/Im2 Do
Q

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-4

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.12.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/good6.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/page-labels-and-outlines.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/good16.out

/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.8-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/issue-148.pdf

0.0

qpdf-7.1.0/qpdf/qtest/qpdf/unreferenced-objects.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.2.check

checking a.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-force-1.8.out

version: 1.8
extension level: 0
<< /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad1.out

WARNING: bad1.pdf: can't find PDF header
bad1.pdf: can't find startxref

qpdf-7.1.0/qpdf/qtest/qpdf/xref-with-short-size.pdf

a

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.1-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp.zdf_01

Original page 1

qpdf-7.1.0/qpdf/qtest/qpdf/split-content-stream-errors.out

checking split-content-stream-errors.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
WARNING: split-content-stream-errors.pdf (file position 557): error decoding stream data for object 6 0: LZWDecoder: bad code received
WARNING: split-content-stream-errors.pdf (file position 557): stream will be re-processed without filtering to avoid data loss
WARNING: content stream: ignoring non-stream while parsing content streams
WARNING: split-content-stream-errors.pdf (file position 557): error decoding stream data for object 6 0: LZWDecoder: bad code received
WARNING: content stream (content stream object 6 0): errors while decoding content stream

qpdf-7.1.0/qpdf/qtest/qpdf/V4-clearmeta.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isis 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/bad35.out

WARNING: bad35.pdf (object 1 0, file position 521): supposed object stream 1 has wrong type
bad35.pdf (file position 521): unable to find /Root dictionary

qpdf-7.1.0/qpdf/qtest/qpdf/enc-XI-R6,V5,U=view,attachments,cleartext-metadata.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-08.Pdf

Original page 8

qpdf-7.1.0/qpdf/qtest/qpdf/enc-R3,V2,U=view,O=master.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.7.check

checking a.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-force-1.8.5.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/bad22.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-group-06-10.pdf

Original page 6

Original page 7

Original page 8

Original page 9

Original page 10

qpdf-7.1.0/qpdf/qtest/qpdf/bad34.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/good9.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/unfilterable-with-crypt-after.out

<< /DL 30 /DecodeParms [null] /Filter [/ZlateDecode] /Length 39 /Params << /CheckSum <c4f73a3ba2b5fef86a4085d6f006eacd> /CreationDate (D:20121229172641-05'00') /ModDate (D:20121229172600) /Size 30 >> /Subtype /text#2fplain >>attachment1.txt:
This is the first attachment.
--END--
test 36 done

qpdf-7.1.0/qpdf/qtest/qpdf/fax-decode-parms.out

checking fax-decode-parms.pdf
PDF Version: 1.4
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.8-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/linearization-bounds-2.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.1-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/linearization-bounds-2.out

checking linearization-bounds-2.pdf
PDF Version: 1.3
File is not encrypted
File is linearized
WARNING: linearization-bounds-2.pdf (linearization hint stream: object 62 0, file position 1282): expected endstream
WARNING: linearization-bounds-2.pdf (linearization hint stream: object 62 0, file position 1183): attempting to recover stream length
WARNING: linearization-bounds-2.pdf (linearization hint stream: object 62 0, file position 1183): recovered stream length: 106
linearization-bounds-2.pdf (linearization hint table, file position 1183): /S (shared object) offset is out of bounds

qpdf-7.1.0/qpdf/qtest/qpdf/bad33.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/damaged-stream-c-check.out

warning: damaged-stream.pdf (file position 426): error decoding stream data for object 5 0: LZWDecoder: bad code received
 code: 5
 file: damaged-stream.pdf
 pos : 426
 text: error decoding stream data for object 5 0: LZWDecoder: bad code received
warning: damaged-stream.pdf (file position 426): stream will be re-processed without filtering to avoid data loss
 code: 5
 file: damaged-stream.pdf
 pos : 426
 text: stream will be re-processed without filtering to avoid data loss

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.1-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/extra-header-lin-newline.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-force-1.8.5.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/large_file_xref_reconstruct.out

WARNING: a.pdf: file is damaged
WARNING: a.pdf: can't find startxref
WARNING: a.pdf: Attempting to reconstruct cross-reference table
page 1 of 200
page 2 of 200
page 3 of 200
page 4 of 200
page 5 of 200
page 6 of 200
page 7 of 200
page 8 of 200
page 9 of 200
page 10 of 200
page 11 of 200
page 12 of 200
page 13 of 200
page 14 of 200
page 15 of 200
page 16 of 200
page 17 of 200
page 18 of 200
page 19 of 200
page 20 of 200
page 21 of 200
page 22 of 200
page 23 of 200
page 24 of 200
page 25 of 200
page 26 of 200
page 27 of 200
page 28 of 200
page 29 of 200
page 30 of 200
page 31 of 200
page 32 of 200
page 33 of 200
page 34 of 200
page 35 of 200
page 36 of 200
page 37 of 200
page 38 of 200
page 39 of 200
page 40 of 200
page 41 of 200
page 42 of 200
page 43 of 200
page 44 of 200
page 45 of 200
page 46 of 200
page 47 of 200
page 48 of 200
page 49 of 200
page 50 of 200
page 51 of 200
page 52 of 200
page 53 of 200
page 54 of 200
page 55 of 200
page 56 of 200
page 57 of 200
page 58 of 200
page 59 of 200
page 60 of 200
page 61 of 200
page 62 of 200
page 63 of 200
page 64 of 200
page 65 of 200
page 66 of 200
page 67 of 200
page 68 of 200
page 69 of 200
page 70 of 200
page 71 of 200
page 72 of 200
page 73 of 200
page 74 of 200
page 75 of 200
page 76 of 200
page 77 of 200
page 78 of 200
page 79 of 200
page 80 of 200
page 81 of 200
page 82 of 200
page 83 of 200
page 84 of 200
page 85 of 200
page 86 of 200
page 87 of 200
page 88 of 200
page 89 of 200
page 90 of 200
page 91 of 200
page 92 of 200
page 93 of 200
page 94 of 200
page 95 of 200
page 96 of 200
page 97 of 200
page 98 of 200
page 99 of 200
page 100 of 200
page 101 of 200
page 102 of 200
page 103 of 200
page 104 of 200
page 105 of 200
page 106 of 200
page 107 of 200
page 108 of 200
page 109 of 200
page 110 of 200
page 111 of 200
page 112 of 200
page 113 of 200
page 114 of 200
page 115 of 200
page 116 of 200
page 117 of 200
page 118 of 200
page 119 of 200
page 120 of 200
page 121 of 200
page 122 of 200
page 123 of 200
page 124 of 200
page 125 of 200
page 126 of 200
page 127 of 200
page 128 of 200
page 129 of 200
page 130 of 200
page 131 of 200
page 132 of 200
page 133 of 200
page 134 of 200
page 135 of 200
page 136 of 200
page 137 of 200
page 138 of 200
page 139 of 200
page 140 of 200
page 141 of 200
page 142 of 200
page 143 of 200
page 144 of 200
page 145 of 200
page 146 of 200
page 147 of 200
page 148 of 200
page 149 of 200
page 150 of 200
page 151 of 200
page 152 of 200
page 153 of 200
page 154 of 200
page 155 of 200
page 156 of 200
page 157 of 200
page 158 of 200
page 159 of 200
page 160 of 200
page 161 of 200
page 162 of 200
page 163 of 200
page 164 of 200
page 165 of 200
page 166 of 200
page 167 of 200
page 168 of 200
page 169 of 200
page 170 of 200
page 171 of 200
page 172 of 200
page 173 of 200
page 174 of 200
page 175 of 200
page 176 of 200
page 177 of 200
page 178 of 200
page 179 of 200
page 180 of 200
page 181 of 200
page 182 of 200
page 183 of 200
page 184 of 200
page 185 of 200
page 186 of 200
page 187 of 200
page 188 of 200
page 189 of 200
page 190 of 200
page 191 of 200
page 192 of 200
page 193 of 200
page 194 of 200
page 195 of 200
page 196 of 200
page 197 of 200
page 198 of 200
page 199 of 200
page 200 of 200

qpdf-7.1.0/qpdf/qtest/qpdf/bad3.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/test14.out

caught logic error as expected
old dict: 1
old dict: 1
new dict: 2
swapped array: /Array
array and dictionary contents are correct
test 14 done

qpdf-7.1.0/qpdf/qtest/qpdf/V4-encryption.out

R = 4
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
stream encryption method: RC4
string encryption method: RC4
file encryption method: RC4

qpdf-7.1.0/qpdf/qtest/qpdf/misc-1.out

page 1:
 images:
 /Im1: 5100 x 6600
 content:
 5 0 R
end page 1
page 2:
 images:
 /Im2: 5100 x 6600
 /Im3: 305 x 305
 /Im4: 305 x 305
 content:
 11 0 R
end page 2
test 5 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad14-recover.out

WARNING: bad14.pdf (trailer, file position 753): treating unexpected brace token as null
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/terminate-parsing.out

name: /potato
test suite: terminating parsing
real: 0.1
integer: 0
integer: 0
real: 0.1
integer: 0
integer: 0
operator: cm
operator: q
integer: 0
real: 1.1999
real: -1.1999
integer: 0
real: 121.19
real: 150.009
operator: cm
operator: BI
name: /CS
name: /G
name: /W
integer: 1
name: /H
integer: 1
name: /BPC
integer: 8
name: /F
name: /Fl
name: /DP
dictionary: << /Columns 1 /Predictor 15 >>
operator: ID
inline-image: 789c63fc0f0001030101
operator: EI
operator: Q
operator: q
integer: 0
real: 35.997
real: -128.389
integer: 0
real: 431.964
real: 7269.02
operator: cm
operator: BI
name: /CS
name: /G
name: /W
integer: 30
name: /H
integer: 107
name: /BPC
integer: 8
name: /F
name: /Fl
name: /DP
dictionary: << /Columns 30 /Predictor 15 >>
operator: ID
inline-image: 789cedd1a11100300800b1b2ffd06503148283bc8dfcf8af2a306ee352eff2e06318638c31c63b3801627b620a
operator: EI
operator: Q
operator: q
integer: 0
real: 38.3968
real: -93.5922
integer: 0
real: 431.964
real: 7567.79
operator: cm
operator: BI
name: /CS
name: /G
name: /W
integer: 32
name: /H
integer: 78
name: /BPC
integer: 8
name: /F
name: /Fl
name: /DP
dictionary: << /Columns 32 /Predictor 15 >>
operator: ID
inline-image: 789c63fccf801f308e2a185530aa60882a20203faa605401890a0643aa1e5530aa6054010d140000bdd03c13
operator: EI
operator: Q
-EOF-
test 37 done

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-min-1.7.2.out

version: 1.7
extension level: 2
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 2 /URL (http://something.adobe.com) >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad-xref-entry.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-09.Pdf

Original page 9

qpdf-7.1.0/qpdf/qtest/qpdf/bad32.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/shallow_stream.out

attempt to make a shallow copy of a stream

qpdf-7.1.0/qpdf/qtest/qpdf/bad4-recover.out

WARNING: bad4.pdf: file is damaged
WARNING: bad4.pdf (xref table, file position 547): xref syntax invalid
WARNING: bad4.pdf: Attempting to reconstruct cross-reference table
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.2-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/issue-141a.pdf

0009 0 obj<</Type/XRef/Size 0/W[0 0 0]>>stream
endstream
endobj
startxref
3
%%EOF

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.8-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.5-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.2.c-check

version: 1.3
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/issue-117.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-min-1.7.3.out

version: 1.7
extension level: 3
<< /ADBE << /BaseVersion /1.7 /ExtensionLevel 3 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/good1.out

/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/good5.out

/QTest is indirect and has type boolean (3)
/QTest is Boolean with value true
unparse: 7 0 R
unparseResolved: true
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad5-recover.out

WARNING: bad5.pdf: file is damaged
WARNING: bad5.pdf (xref table, file position 591): invalid xref entry (obj=2)
WARNING: bad5.pdf: Attempting to reconstruct cross-reference table
/QTest is implicit
/QTest is direct and has type null (2)
/QTest is null
unparse: null
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.9-ogen.c-check

version: 1.5
linearized: 1
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/unreferenced-dropped.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/lin6.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.5.c-check

version: 1.2
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/pages-loop.pdf

Potato

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/xref-with-short-size-new.out

1/0: uncompressed; offset = 15
2/0: compressed; stream = 1, index = 0
3/0: compressed; stream = 1, index = 1
4/0: compressed; stream = 1, index = 2
5/0: compressed; stream = 1, index = 3
6/0: compressed; stream = 1, index = 4
7/0: compressed; stream = 1, index = 5
8/0: compressed; stream = 1, index = 6
9/0: compressed; stream = 1, index = 7
10/0: compressed; stream = 1, index = 8
11/0: uncompressed; offset = 674
12/0: uncompressed; offset = 801
13/0: uncompressed; offset = 16194

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-force-1.8.5.out

version: 1.8
extension level: 5
<< /ADBE << /BaseVersion /1.8 /ExtensionLevel 5 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/rotated.pdf

Original page 1

Original page 2

O
ri

gi
na

l p
ag

e
3

O
riginal page 4

Original page 5

Original page 6

Original page 7

Original page 8

Original page 9

Original page 10

Original page 11

Original page 12

Original page 13

O
riginal page 14

Original page 15

O
ri

gi
na

l p
ag

e
16

O
riginal page 17

O
ri

gi
na

l p
ag

e
18

Original page 19

Original page 20

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.9.c-check

version: 1.2
linearized: 1
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.12.c-check

version: 1.5
linearized: 0
encrypted: 1
user password:
extract for accessibility: 1
extract for any purpose: 1
print low resolution: 1
print high resolution: 1
modify document assembly: 1
modify forms: 1
modify annotations: 1
modify other: 1
modify anything: 1

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.5.c-check

version: 1.3
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-other-min-1.8.2.out

version: 1.8
extension level: 2
<< /ADBE << /BaseVersion /1.8 /ExtensionLevel 2 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/show-page-1-content-filtered.out

q222 0 0 240 28.5 96 cm/Im1 DoQq185 0 0 200 313.5 296 cm/Im2 DoQ

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-none-force-1.8.5.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/bad28.out

WARNING: bad28.pdf (object 4 0, file position 395): expected endobj
/QTest is indirect and has type stream (10)
/QTest is a stream. Dictionary: << /Length 44 >>
Raw stream data:
BT
 /F1 24 Tf
 72 720 Td
 (Potato) Tj
ET

Uncompressed stream data:
BT
 /F1 24 Tf
 72 720 Td
 (Potato) Tj
ET

End of stream data
unparse: 4 0 R
unparseResolved: 4 0 R
test 0 done

qpdf-7.1.0/qpdf/qtest/qpdf/gen1.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/c-write-warnings.out

warning: bad33.pdf: file is damaged
 code: 5
 file: bad33.pdf
 pos : 0
 text: file is damaged
warning: bad33.pdf (file position 1771): xref not found
 code: 5
 file: bad33.pdf
 pos : 1771
 text: xref not found
warning: bad33.pdf: Attempting to reconstruct cross-reference table
 code: 5
 file: bad33.pdf
 pos : 0
 text: Attempting to reconstruct cross-reference table
warning: bad33.pdf (file position 629): stream filter type is not name or array
 code: 5
 file: bad33.pdf
 pos : 629
 text: stream filter type is not name or array

qpdf-7.1.0/qpdf/qtest/qpdf/good3.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/11_split-exp.zdf

Original page 11

qpdf-7.1.0/qpdf/qtest/qpdf/xref-with-short-size-recover.out

WARNING: xref-with-short-size.pdf (xref stream, file position 16227): Cross-reference stream data has the wrong size; expected = 52; actual = 56
qpdf: operation succeeded with warnings; resulting file may have some problems

qpdf-7.1.0/qpdf/qtest/qpdf/broken-decode-parms-no-filter.out

checking broken-decode-parms-no-filter.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.11.check

checking a.pdf
PDF Version: 1.4
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/test8.out

exception: stream data provider for 7 0 provided 29 bytes instead of expected 28 bytes
test 8 done

qpdf-7.1.0/qpdf/qtest/qpdf/bad4.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/terminate-parsing.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/bad1.pdf

oops

qpdf-7.1.0/qpdf/qtest/qpdf/good20.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/lin6.out

WARNING: end of first page section (/E) mismatch: /E = 2897; computed = 5005..5007
WARNING: object count mismatch for page 0: hint table = 19; computed = 16
WARNING: page 0 has shared identifier entries
WARNING: page 0: shared object 93: in hint table but not computed list
WARNING: object count mismatch for page 1: hint table = 3; computed = 2
WARNING: page 1: shared object 98: in hint table but not computed list
WARNING: page 1: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 2: hint table = 3; computed = 2
WARNING: page 2: shared object 98: in hint table but not computed list
WARNING: page 2: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 3: hint table = 3; computed = 2
WARNING: page 3: shared object 98: in hint table but not computed list
WARNING: page 3: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 4: hint table = 3; computed = 2
WARNING: page 4: shared object 98: in hint table but not computed list
WARNING: page 4: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 5: hint table = 3; computed = 2
WARNING: page 5: shared object 98: in hint table but not computed list
WARNING: page 5: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 6: hint table = 3; computed = 2
WARNING: page 6: shared object 98: in hint table but not computed list
WARNING: page 6: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 7: hint table = 3; computed = 2
WARNING: page 7: shared object 98: in hint table but not computed list
WARNING: page 7: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 8: hint table = 3; computed = 2
WARNING: page 8: shared object 98: in hint table but not computed list
WARNING: page 8: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 9: hint table = 3; computed = 2
WARNING: page 9: shared object 98: in hint table but not computed list
WARNING: page 9: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 10: hint table = 3; computed = 2
WARNING: page 10: shared object 98: in hint table but not computed list
WARNING: page 10: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 11: hint table = 3; computed = 2
WARNING: page 11: shared object 98: in hint table but not computed list
WARNING: page 11: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 12: hint table = 3; computed = 2
WARNING: page 12: shared object 98: in hint table but not computed list
WARNING: page 12: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 13: hint table = 3; computed = 2
WARNING: page 13: shared object 98: in hint table but not computed list
WARNING: page 13: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 14: hint table = 3; computed = 2
WARNING: page 14: shared object 98: in hint table but not computed list
WARNING: page 14: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 15: hint table = 3; computed = 2
WARNING: page 15: shared object 98: in hint table but not computed list
WARNING: page 15: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 16: hint table = 3; computed = 2
WARNING: page 16: shared object 98: in hint table but not computed list
WARNING: page 16: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 17: hint table = 3; computed = 2
WARNING: page 17: shared object 98: in hint table but not computed list
WARNING: page 17: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 18: hint table = 3; computed = 2
WARNING: page 18: shared object 98: in hint table but not computed list
WARNING: page 18: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 19: hint table = 3; computed = 2
WARNING: page 19: shared object 98: in hint table but not computed list
WARNING: page 19: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 20: hint table = 3; computed = 2
WARNING: page 20: shared object 98: in hint table but not computed list
WARNING: page 20: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 21: hint table = 3; computed = 2
WARNING: page 21: shared object 98: in hint table but not computed list
WARNING: page 21: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 22: hint table = 3; computed = 2
WARNING: page 22: shared object 98: in hint table but not computed list
WARNING: page 22: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 23: hint table = 3; computed = 2
WARNING: page 23: shared object 98: in hint table but not computed list
WARNING: page 23: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 24: hint table = 3; computed = 2
WARNING: page 24: shared object 98: in hint table but not computed list
WARNING: page 24: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 25: hint table = 3; computed = 2
WARNING: page 25: shared object 98: in hint table but not computed list
WARNING: page 25: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 26: hint table = 3; computed = 2
WARNING: page 26: shared object 98: in hint table but not computed list
WARNING: page 26: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 27: hint table = 3; computed = 2
WARNING: page 27: shared object 98: in hint table but not computed list
WARNING: page 27: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 28: hint table = 3; computed = 2
WARNING: page 28: shared object 98: in hint table but not computed list
WARNING: page 28: shared object 99: in hint table but not computed list
WARNING: object count mismatch for page 29: hint table = 3; computed = 2
WARNING: page 29: shared object 98: in hint table but not computed list
WARNING: page 29: shared object 99: in hint table but not computed list
lin6.pdf: linearization data:

file_size: 24824
first_page_object: 93
first_page_end: 2897
npages: 30
xref_zero_offset: 22877
first_page: 0
H_offset: 1291
H_length: 232

Page Offsets Hint Table

min_nobjects: 3
first_page_offset: 1523
nbits_delta_nobjects: 5
min_page_length: 580
nbits_delta_page_length: 12
min_content_offset: 0
nbits_delta_content_offset: 0
min_content_length: 0
nbits_delta_content_length: 12
nbits_nshared_objects: 3
nbits_shared_identifier: 3
nbits_shared_numerator: 4
shared_denominator: 8
Page 0:
 nobjects: 19
 length: 3484
 content_offset: 0
 content_length: 2904
 nshared_objects: 4
 identifier 0: 0
 numerator 0: 0
 identifier 1: 0
 numerator 1: 0
 identifier 2: 0
 numerator 2: 0
 identifier 3: 0
 numerator 3: 0
Page 1:
 nobjects: 3
 length: 580
 content_offset: 0
 content_length: 0
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 2:
 nobjects: 3
 length: 580
 content_offset: 0
 content_length: 0
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 3:
 nobjects: 3
 length: 584
 content_offset: 0
 content_length: 4
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 4:
 nobjects: 3
 length: 591
 content_offset: 0
 content_length: 11
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 5:
 nobjects: 3
 length: 583
 content_offset: 0
 content_length: 3
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 6:
 nobjects: 3
 length: 589
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 7:
 nobjects: 3
 length: 583
 content_offset: 0
 content_length: 3
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 8:
 nobjects: 3
 length: 591
 content_offset: 0
 content_length: 11
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 9:
 nobjects: 3
 length: 584
 content_offset: 0
 content_length: 4
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 10:
 nobjects: 3
 length: 589
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 11:
 nobjects: 3
 length: 588
 content_offset: 0
 content_length: 8
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 12:
 nobjects: 3
 length: 590
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 13:
 nobjects: 3
 length: 590
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 14:
 nobjects: 3
 length: 590
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 15:
 nobjects: 3
 length: 589
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 16:
 nobjects: 3
 length: 590
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 17:
 nobjects: 3
 length: 589
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 18:
 nobjects: 3
 length: 590
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 19:
 nobjects: 3
 length: 589
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 20:
 nobjects: 3
 length: 589
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 21:
 nobjects: 3
 length: 588
 content_offset: 0
 content_length: 8
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 22:
 nobjects: 3
 length: 590
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 23:
 nobjects: 3
 length: 590
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 24:
 nobjects: 3
 length: 589
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 25:
 nobjects: 3
 length: 589
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 26:
 nobjects: 3
 length: 590
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 27:
 nobjects: 3
 length: 589
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 28:
 nobjects: 3
 length: 590
 content_offset: 0
 content_length: 10
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0
Page 29:
 nobjects: 3
 length: 589
 content_offset: 0
 content_length: 9
 nshared_objects: 4
 identifier 0: 2
 numerator 0: 0
 identifier 1: 3
 numerator 1: 0
 identifier 2: 5
 numerator 2: 0
 identifier 3: 6
 numerator 3: 0

Shared Objects Hint Table

first_shared_obj: 0
first_shared_offset: 0
nshared_first_page: 19
nshared_total: 19
nbits_nobjects: 0
min_group_length: 34
nbits_delta_group_length: 10
Shared Object 0:
 group length: 209
Shared Object 1:
 group length: 133
Shared Object 2:
 group length: 117
Shared Object 3:
 group length: 34
Shared Object 4:
 group length: 247
Shared Object 5:
 group length: 54
Shared Object 6:
 group length: 580
Shared Object 7:
 group length: 85
Shared Object 8:
 group length: 197
Shared Object 9:
 group length: 147
Shared Object 10:
 group length: 173
Shared Object 11:
 group length: 296
Shared Object 12:
 group length: 168
Shared Object 13:
 group length: 165
Shared Object 14:
 group length: 187
Shared Object 15:
 group length: 206
Shared Object 16:
 group length: 152
Shared Object 17:
 group length: 167
Shared Object 18:
 group length: 167

Outlines Hint Table

first_object: 100
first_object_offset: 2897
nobjects: 12
group_length: 2110

qpdf-7.1.0/qpdf/qtest/qpdf/good19.qdf

Salad

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.12.check

checking a.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/lin-delete-and-reuse.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/bad27-recover.out

WARNING: bad27.pdf: file is damaged
WARNING: bad27.pdf (object 4 0, file position 307): expected n n obj
WARNING: bad27.pdf: Attempting to reconstruct cross-reference table
WARNING: bad27.pdf: object 4 0 not found in file after regenerating cross reference table
/QTest is implicit
/QTest is indirect and has type null (2)
/QTest is null
unparse: 4 0 R
unparseResolved: null
test 1 done

qpdf-7.1.0/qpdf/qtest/qpdf/lin5.out

WARNING: end of first page section (/E) mismatch: /E = 4213; computed = 4004..4005
WARNING: page 1: shared object 170: in computed list but not hint table
WARNING: page 1: shared object 172: in computed list but not hint table
WARNING: page 2: shared object 170: in computed list but not hint table
WARNING: page 2: shared object 172: in computed list but not hint table
WARNING: page 3: shared object 170: in computed list but not hint table
WARNING: page 3: shared object 172: in computed list but not hint table
WARNING: page 4: shared object 170: in computed list but not hint table
WARNING: page 4: shared object 172: in computed list but not hint table
WARNING: page 5: shared object 170: in computed list but not hint table
WARNING: page 5: shared object 172: in computed list but not hint table
WARNING: page 6: shared object 170: in computed list but not hint table
WARNING: page 6: shared object 172: in computed list but not hint table
WARNING: page 7: shared object 170: in computed list but not hint table
WARNING: page 7: shared object 172: in computed list but not hint table
WARNING: page 8: shared object 170: in computed list but not hint table
WARNING: page 8: shared object 172: in computed list but not hint table
WARNING: page 9: shared object 170: in computed list but not hint table
WARNING: page 9: shared object 172: in computed list but not hint table
WARNING: page 10: shared object 170: in computed list but not hint table
WARNING: page 10: shared object 172: in computed list but not hint table
WARNING: page 11: shared object 170: in computed list but not hint table
WARNING: page 11: shared object 172: in computed list but not hint table
WARNING: page 12: shared object 170: in computed list but not hint table
WARNING: page 12: shared object 172: in computed list but not hint table
WARNING: page 13: shared object 170: in computed list but not hint table
WARNING: page 13: shared object 172: in computed list but not hint table
WARNING: page 14: shared object 170: in computed list but not hint table
WARNING: page 14: shared object 172: in computed list but not hint table
WARNING: page 15: shared object 170: in computed list but not hint table
WARNING: page 15: shared object 172: in computed list but not hint table
WARNING: page 16: shared object 170: in computed list but not hint table
WARNING: page 16: shared object 172: in computed list but not hint table
WARNING: page 17: shared object 170: in computed list but not hint table
WARNING: page 17: shared object 172: in computed list but not hint table
WARNING: page 18: shared object 170: in computed list but not hint table
WARNING: page 18: shared object 172: in computed list but not hint table
WARNING: page 19: shared object 170: in computed list but not hint table
WARNING: page 19: shared object 172: in computed list but not hint table
WARNING: page 20: shared object 170: in computed list but not hint table
WARNING: page 20: shared object 172: in computed list but not hint table
WARNING: page 21: shared object 170: in computed list but not hint table
WARNING: page 21: shared object 172: in computed list but not hint table
WARNING: page 22: shared object 170: in computed list but not hint table
WARNING: page 22: shared object 172: in computed list but not hint table
WARNING: page 23: shared object 170: in computed list but not hint table
WARNING: page 23: shared object 172: in computed list but not hint table
WARNING: page 24: shared object 170: in computed list but not hint table
WARNING: page 24: shared object 172: in computed list but not hint table
WARNING: page 25: shared object 170: in computed list but not hint table
WARNING: page 25: shared object 172: in computed list but not hint table
WARNING: page 26: shared object 170: in computed list but not hint table
WARNING: page 26: shared object 172: in computed list but not hint table
WARNING: page 27: shared object 170: in computed list but not hint table
WARNING: page 27: shared object 172: in computed list but not hint table
WARNING: page 28: shared object 170: in computed list but not hint table
WARNING: page 28: shared object 172: in computed list but not hint table
WARNING: page 29: shared object 170: in computed list but not hint table
WARNING: page 29: shared object 172: in computed list but not hint table
WARNING: incorrect offset in outlines table: hint table = 1710; computed = 1627
WARNING: incorrect length in outlines table: hint table = 2124; computed = 2075
lin5.pdf: linearization data:

file_size: 27464
first_page_object: 156
first_page_end: 4213
npages: 30
xref_zero_offset: 24265
first_page: 0
H_offset: 1149
H_length: 266

Page Offsets Hint Table

min_nobjects: 3
first_page_offset: 1415
nbits_delta_nobjects: 5
min_page_length: 355
nbits_delta_page_length: 12
min_content_offset: 0
nbits_delta_content_offset: 0
min_content_length: 0
nbits_delta_content_length: 12
nbits_nshared_objects: 0
nbits_shared_identifier: 5
nbits_shared_numerator: 0
shared_denominator: 8
Page 0:
 nobjects: 17
 length: 2590
 content_offset: 0
 content_length: 2235
 nshared_objects: 0
Page 1:
 nobjects: 3
 length: 355
 content_offset: 0
 content_length: 0
 nshared_objects: 0
Page 2:
 nobjects: 3
 length: 355
 content_offset: 0
 content_length: 0
 nshared_objects: 0
Page 3:
 nobjects: 3
 length: 355
 content_offset: 0
 content_length: 0
 nshared_objects: 0
Page 4:
 nobjects: 3
 length: 360
 content_offset: 0
 content_length: 5
 nshared_objects: 0
Page 5:
 nobjects: 3
 length: 360
 content_offset: 0
 content_length: 5
 nshared_objects: 0
Page 6:
 nobjects: 3
 length: 361
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 7:
 nobjects: 3
 length: 361
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 8:
 nobjects: 3
 length: 361
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 9:
 nobjects: 3
 length: 361
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 10:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 11:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 12:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 13:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 14:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 15:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 16:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 17:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 18:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 19:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 20:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 21:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 22:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 23:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 24:
 nobjects: 3
 length: 361
 content_offset: 0
 content_length: 6
 nshared_objects: 0
Page 25:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 26:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 27:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 28:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0
Page 29:
 nobjects: 3
 length: 362
 content_offset: 0
 content_length: 7
 nshared_objects: 0

Shared Objects Hint Table

first_shared_obj: 0
first_shared_offset: 16
nshared_first_page: 17
nshared_total: 17
nbits_nobjects: 0
min_group_length: 21
nbits_delta_group_length: 9
Shared Object 0:
 group length: 212
Shared Object 1:
 group length: 83
Shared Object 2:
 group length: 194
Shared Object 3:
 group length: 144
Shared Object 4:
 group length: 170
Shared Object 5:
 group length: 292
Shared Object 6:
 group length: 165
Shared Object 7:
 group length: 163
Shared Object 8:
 group length: 184
Shared Object 9:
 group length: 203
Shared Object 10:
 group length: 149
Shared Object 11:
 group length: 164
Shared Object 12:
 group length: 164
Shared Object 13:
 group length: 132
Shared Object 14:
 group length: 116
Shared Object 15:
 group length: 21
Shared Object 16:
 group length: 34

Outlines Hint Table

first_object: 157
first_object_offset: 1710
nobjects: 12
group_length: 2124

qpdf-7.1.0/qpdf/qtest/qpdf/object-stream.8.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/image-streams.pdf

/DeviceCMYK with filter null

/DeviceCMYK with filter /DCTDecode

/DeviceCMYK with filter /RunLengthDecode

/DeviceRGB with filter null

/DeviceRGB with filter /DCTDecode

/DeviceRGB with filter /RunLengthDecode

/DeviceGray with filter null

/DeviceGray with filter /DCTDecode

/DeviceGray with filter /RunLengthDecode

qpdf-7.1.0/qpdf/qtest/qpdf/test4-2.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.7-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/show-xref.out

1/0: uncompressed; offset = 15
2/0: uncompressed; offset = 64
3/0: compressed; stream = 2, index = 0
4/0: compressed; stream = 2, index = 1
5/0: compressed; stream = 2, index = 2
6/0: compressed; stream = 2, index = 3
7/0: uncompressed; offset = 390
8/0: uncompressed; offset = 521
9/0: uncompressed; offset = 39802
10/0: uncompressed; offset = 49559
11/0: uncompressed; offset = 49672
12/0: uncompressed; offset = 49880

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-min-1.8.out

version: 1.8
extension level: 0
null
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/stream-data.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/c-r2.pdf

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.5.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/lin-special.11.check

checking a.pdf
PDF Version: 1.4
R = 3
P = -4
User password =
extract for accessibility: allowed
extract for any purpose: allowed
print low resolution: allowed
print high resolution: allowed
modify document assembly: allowed
modify forms: allowed
modify annotations: allowed
modify other: allowed
modify anything: allowed
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.2-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/good12.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/enc-R3,V2,O=master.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isis 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/c-no-original-object-ids.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/bad28.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/a-09-split-exp.zdf

qpdf-7.1.0/qpdf/qtest/qpdf/extensions-adbe-other-min-1.8.5.out

version: 1.8
extension level: 5
<< /ADBE << /BaseVersion /1.8 /ExtensionLevel 5 >> /Potato << /BaseVersion /3.14159 /ExtensionLevel 16059 >> >>
test 34 done

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-06.Pdf

Original page 6

qpdf-7.1.0/qpdf/qtest/qpdf/a-02-split-exp.zdf

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.5-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/extra-header-lin-no-newline.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/append-page-content-damaged-check.out

WARNING: append-page-content-damaged.pdf: file is damaged
WARNING: append-page-content-damaged.pdf: can't find startxref
WARNING: append-page-content-damaged.pdf: Attempting to reconstruct cross-reference table
checking append-page-content-damaged.pdf
PDF Version: 1.3
File is not encrypted
File is not linearized

qpdf-7.1.0/qpdf/qtest/qpdf/inline-images.12-ogen.c-check

version: 1.5
linearized: 0
encrypted: 0

qpdf-7.1.0/qpdf/qtest/qpdf/good20.qdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/hybrid-xref.1-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/a-05-split-exp.zdf

qpdf-7.1.0/qpdf/qtest/qpdf/split-exp-02.Pdf

Original page 2

qpdf-7.1.0/qpdf/qtest/qpdf/good17-not-recompressed.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/good18.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/qpdf/qtest/qpdf/encrypted-with-images.3-ogen.check

checking a.pdf
PDF Version: 1.5
File is not encrypted
File is not linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/qpdf/qtest/qpdf/good5.pdf

Potato

qpdf-7.1.0/qpdf/qtest/qpdf/p1-b.pdf

B

qpdf-7.1.0/qpdf/qtest/qpdf.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;
use Cwd;
use Digest::MD5;
use File::Basename;
use File::Copy;
use File::Spec;

chdir("qpdf") or die "chdir testdir failed: $!\n";

require TestDriver;

cleanup();

my $devNull = File::Spec->devnull();
my $td = new TestDriver('qpdf');

my $compare_images = 1;
if ((exists $ENV{'QPDF_SKIP_TEST_COMPARE_IMAGES'}) &&
 ($ENV{'QPDF_SKIP_TEST_COMPARE_IMAGES'} eq '1'))
{
 $compare_images = 0;
}
my $large_file_test_path = $ENV{'QPDF_LARGE_FILE_TEST_PATH'} || undef;
if (defined($large_file_test_path))
{
 $large_file_test_path = File::Spec->rel2abs($large_file_test_path);
 $large_file_test_path =~ s!\\!/!g;
}

my $have_acroread = 0;

if ($compare_images)
{
 # check for working acroread
 if (system("acroread -toPostScript -pairs good1.pdf a.ps" .
 " >$devNull 2>&1") == 0)
 {
	$have_acroread = 1;
 }
}

These variables are used to store the total number of tests in the
test suite. NOTE: qtest's requirement to indicate the number of
tests serves as a check that the test suite is operating properly.
Do not calculate these values as a side effect of running the tests.
That defeats the purpose. However, since this test suite consists
of several separate series of tests, many of which iterate over
static lists of things, we calculate the numbers as we go in terms
of static values.

This should be set to the number of times we called compare_pdfs.
This has to be kept separate because the number of test cases
compare_pdfs generates depends on the value of $compare_images.
my $n_compare_pdfs = 0;

This should be set to the number of times we call acroread.
my $n_acroread = 0;

Each section of tests should increment this number by the number of
tests they generate excluding calls to acroread or compare_pdfs,
which are tracked separately by $n_compare_pdfs and $n_acroread.
my $n_tests = 0;

Call show_ntests after each block of test cases. In show_ntests,
you can turn on printing of the expected number of test cases. This
is useful for tracking down problems in the number of test cases.

show_ntests();

$n_compare_pdfs += 5;

Check compare_pdfs to make sure that it works properly. Each call
to compare_pdfs is worth three test cases.
compare_pdfs("p1-a-p2-b.pdf", "p1-a-p2-b.pdf");
compare_pdfs("p1-a.pdf", "p1-a.pdf");
compare_pdfs("p1-a.pdf", "p1-b.pdf", 1);
compare_pdfs("p1-a.pdf", "p1-a-p2-b.pdf", 1);
compare_pdfs("p1-a-p2-a.pdf", "p1-a-p2-b.pdf", 1);
flush_tiff_cache();

show_ntests();

$td->notify("--- Stream Replacement Tests ---");
$n_tests += 8;

$td->runtest("replace stream data",
	 {$td->COMMAND => "test_driver 7 qstream.pdf"},
	 {$td->STRING => "test 7 done\n", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "replaced-stream-data.pdf"});
$td->runtest("replace stream data compressed",
	 {$td->COMMAND => "test_driver 8 qstream.pdf"},
	 {$td->FILE => "test8.out", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "replaced-stream-data-flate.pdf"});
$td->runtest("new streams",
	 {$td->COMMAND => "test_driver 9 minimal.pdf"},
	 {$td->FILE => "test9.out", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("new stream",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "new-streams.pdf"});
$td->runtest("add page contents",
	 {$td->COMMAND => "test_driver 10 minimal.pdf"},
	 {$td->STRING => "test 10 done\n", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("new stream",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "add-contents.pdf"});

show_ntests();

$td->notify("--- Extensions Dictionary Tests ---");
my @ext_inputs = ('minimal.pdf', 'extensions-adbe.pdf',
 'extensions-other.pdf', 'extensions-adbe-other.pdf');
my @new_versions = ('1.3', '1.6', '1.7.1', '1.7.2', '1.7.3',
 '1.8', '1.8.0', '1.8.2', '1.8.5');
$n_tests += (4 * @new_versions + 3) * @ext_inputs;
foreach my $input (@ext_inputs)
{
 my $base = $input;
 $base =~ s/\.pdf$//;
 if ($base eq 'minimal')
 {
 $base = 'extensions-none';
 }
 foreach my $version (@new_versions)
 {
 foreach my $op (qw(min force))
 {
 $td->runtest("$input: $op version to $version",
 {$td->COMMAND =>
 "qpdf --static-id" .
 " --$op-version=$version $input a.pdf"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
 $td->runtest("check version information ($op $version)",
 {$td->COMMAND => "test_driver 34 a.pdf"},
 {$td->FILE => "$base-$op-$version.out",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
 if (($op eq 'force') && ($version eq '1.8.5'))
 {
 # Look at the actual file for a few cases to make sure
 # qdf and non-qdf output are okay
 $td->runtest("check file",
 {$td->FILE => "a.pdf"},
 {$td->FILE => "$base-$op-$version.pdf"});
 $td->runtest("$input: $op version to $version",
 {$td->COMMAND =>
 "qpdf --qdf --static-id" .
 " --$op-version=$version $input a.qdf"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
 $td->runtest("check file",
 {$td->FILE => "a.qdf"},
 {$td->FILE => "$base-$op-$version.qdf"});
 }
 }
 }
}
show_ntests();

$td->notify("--- Page API Tests ---");
$n_tests += 9;

$td->runtest("basic page API",
	 {$td->COMMAND => "test_driver 15 page_api_1.pdf"},
	 {$td->STRING => "test 15 done\n", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "page_api_1-out.pdf"});
$td->runtest("manual page manipulation",
	 {$td->COMMAND => "test_driver 16 page_api_1.pdf"},
	 {$td->STRING => "test 16 done\n", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "page_api_1-out2.pdf"});
$td->runtest("duplicate page",
	 {$td->COMMAND => "test_driver 17 page_api_2.pdf"},
	 {$td->FILE => "page_api_2.out", $td->EXIT_STATUS => 2},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("delete and re-add a page",
	 {$td->COMMAND => "test_driver 18 page_api_1.pdf"},
	 {$td->STRING => "test 18 done\n", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "page_api_1-out3.pdf"});
$td->runtest("duplicate page",
	 {$td->COMMAND => "test_driver 19 page_api_1.pdf"},
	 {$td->FILE => "page_api_1.out", $td->EXIT_STATUS => 2},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("remove page we don't have",
	 {$td->COMMAND => "test_driver 22 page_api_1.pdf"},
	 {$td->FILE => "page_api_1.out2", $td->EXIT_STATUS => 2},
	 $td->NORMALIZE_NEWLINES);
show_ntests();

$td->notify("--- Files for specific bugs ---");
The number is the github issue number in which the bug was reported.
my @bug_tests = (
 ["51", "resolve loop", 3],
 ["99", "object 0", 2],
 ["99b", "object 0", 2],
 ["100", "xref reconstruction loop", 2],
 ["101", "resolve for exception text", 2],
 ["117", "other infinite loop", 2],
 ["118", "other infinite loop", 2],
 ["119", "other infinite loop", 3],
 ["120", "other infinite loop", 3],
 ["106", "zlib data error", 3],
 ["141a", "/W entry size 0", 2],
 ["141b", "/W entry size 0", 2],
 ["143", "self-referential ostream", 3],
 ["146", "very deeply nested array", 2],
 ["147", "previously caused memory error", 2],
 ["148", "free memory on bad flate", 2],
 ["149", "xref prev pointer loop", 3],
 ["150", "integer overflow", 2],
);
$n_tests += scalar(@bug_tests);
foreach my $d (@bug_tests)
{
 my ($n, $description, $exit_status) = @$d;
 $td->runtest($description,
 {$td->COMMAND => "qpdf issue-$n.pdf a.pdf"},
 {$td->FILE => "issue-$n.out",
 $td->EXIT_STATUS => $exit_status},
 $td->NORMALIZE_NEWLINES);
}
show_ntests();

$td->notify("--- Miscellaneous Tests ---");
$n_tests += 87;

$td->runtest("qpdf version",
	 {$td->COMMAND => "qpdf --version"},
	 {$td->REGEXP => "qpdf version \\S+\n.*", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("C API: qpdf version",
	 {$td->COMMAND => "qpdf-ctest --version"},
	 {$td->REGEXP => "qpdf-ctest version \\S+\n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

foreach (my $i = 1; $i <= 3; ++$i)
{
 $td->runtest("misc tests",
		 {$td->COMMAND => "test_driver 5 misc-$i.pdf"},
		 {$td->FILE => "misc-$i.out", $td->EXIT_STATUS => 0},
		 $td->NORMALIZE_NEWLINES);
}

$td->runtest("get stream data",
	 {$td->COMMAND => "test_driver 11 stream-data.pdf"},
	 {$td->FILE => "test11.out", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

Make sure we ignore decode parameters that we don't understand
$td->runtest("unknown decode parameters",
	 {$td->COMMAND => "qpdf --check fax-decode-parms.pdf"},
	 {$td->FILE => "fax-decode-parms.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

Handle xref stream with more entries than reported (bug 2872265)
$td->runtest("xref with short size",
	 {$td->COMMAND => "qpdf --show-xref xref-with-short-size.pdf"},
	 {$td->FILE => "xref-with-short-size.out",
	 $td->EXIT_STATUS => 3},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("recover xref with short size",
	 {$td->COMMAND => "qpdf xref-with-short-size.pdf a.pdf"},
	 {$td->FILE => "xref-with-short-size-recover.out",
	 $td->EXIT_STATUS => 3},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("show new xref stream",
	 {$td->COMMAND => "qpdf --show-xref a.pdf"},
	 {$td->FILE => "xref-with-short-size-new.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

Handle file with object stream containing an unreferenced object
that in turn contains an indirect scalar (bug 2974522).
$td->runtest("unreferenced indirect scalar",
	 {$td->COMMAND =>
		 "qpdf --qdf --static-id --object-streams=preserve" .
		 " unreferenced-indirect-scalar.pdf a.qdf"},
	 {$td->STRING => "",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
	 {$td->FILE => "a.qdf"},
	 {$td->FILE => "unreferenced-indirect-scalar.out"});

Encrypt files whose /ID strings are other than 32 bytes long (bug
2991412).
foreach my $file (qw(short-id long-id))
{
 $td->runtest("encrypt $file.pdf",
		 {$td->COMMAND =>
		 "qpdf --encrypt '' pass 40 -- $file.pdf a.pdf"},
		 {$td->STRING => "",
		 $td->EXIT_STATUS => 0},
		 $td->NORMALIZE_NEWLINES);

 $td->runtest("check $file.pdf",
		 {$td->COMMAND => "qpdf --check --show-encryption-key a.pdf"},
		 {$td->FILE => "$file-check.out",
		 $td->EXIT_STATUS => 0},
		 $td->NORMALIZE_NEWLINES);
}

Handle file with invalid xref table and object 0 as a regular object
(bug 3159950).
$td->runtest("check obj0.pdf",
	 {$td->COMMAND => "qpdf --check obj0.pdf"},
	 {$td->FILE => "obj0-check.out",
	 $td->EXIT_STATUS => 3},
	 $td->NORMALIZE_NEWLINES);

Min/Force version
$td->runtest("set min version",
	 {$td->COMMAND => "qpdf --verbose --min-version=1.6 good1.pdf a.pdf"},
	 {$td->STRING => "qpdf: wrote file a.pdf\n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check version",
	 {$td->COMMAND => "qpdf --check a.pdf"},
	 {$td->FILE => "min-version.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("force version",
	 {$td->COMMAND => "qpdf --force-version=1.4 a.pdf b.pdf"},
	 {$td->STRING => "",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check version",
	 {$td->COMMAND => "qpdf --check b.pdf"},
	 {$td->FILE => "forced-version.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
unlink "a.pdf", "b.pdf" or die;
$td->runtest("C API: min/force versions",
	 {$td->COMMAND => "qpdf-ctest 14 object-stream.pdf '' a.pdf b.pdf"},
	 {$td->STRING => "",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("C check version 1",
	 {$td->COMMAND => "qpdf-ctest 1 a.pdf '' ''"},
	 {$td->FILE => "c-min-version.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("C check version 2",
	 {$td->COMMAND => "qpdf --check b.pdf"},
	 {$td->FILE => "forced-version.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

Stream filter abbreviations from table H.1
$td->runtest("stream filter abbreviations",
	 {$td->COMMAND => "qpdf --static-id filter-abbreviation.pdf a.pdf"},
	 {$td->STRING => "",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "filter-abbreviation.out"});

$td->runtest("empty object",
	 {$td->COMMAND => "qpdf -show-object=7,0 empty-object.pdf"},
	 {$td->FILE => "empty-object.out",
	 $td->EXIT_STATUS => 3},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("error/output redirection to null",
	 {$td->COMMAND => "test_driver 12 linearized-and-warnings.pdf"},
	 {$td->FILE => "linearized-and-warnings-1.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("error/output redirection to strings",
	 {$td->COMMAND => "test_driver 13 linearized-and-warnings.pdf"},
	 {$td->FILE => "linearized-and-warnings-2.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("odd terminators for stream keyword",
	 {$td->COMMAND =>
		 "qpdf --qdf --static-id" .
		 " stream-line-enders.pdf a.qdf"},
	 {$td->FILE => "stream-line-enders.out",
	 $td->EXIT_STATUS => 3},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
	 {$td->FILE => "a.qdf"},
	 {$td->FILE => "stream-line-enders.qdf"});

$td->runtest("swap and replace",
	 {$td->COMMAND => "test_driver 14 test14-in.pdf"},
	 {$td->FILE => "test14.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "test14-out.pdf"});
Test 14 also exercises writing to memory without static ID.
$td->runtest("check non-static ID version",
 {$td->COMMAND => "sh ./diff-ignore-ID-version a.pdf b.pdf"},
 {$td->STRING => "okay\n", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);

$td->runtest("C API info key functions",
	 {$td->COMMAND => "qpdf-ctest 16 minimal.pdf '' a.pdf"},
	 {$td->FILE => "c-info1.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "c-info-out.pdf"});
unlink "a.pdf" or die;

$td->runtest("C API info key functions",
	 {$td->COMMAND => "qpdf-ctest 16 c-info2-in.pdf '' a.pdf"},
	 {$td->FILE => "c-info2.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "c-info-out.pdf"});
unlink "a.pdf" or die;

$td->runtest("shallow copy an array",
	 {$td->COMMAND => "test_driver 20 shallow_array.pdf"},
	 {$td->STRING => "test 20 done\n", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "shallow_array-out.pdf"});
$td->runtest("shallow copy a stream",
	 {$td->COMMAND => "test_driver 21 shallow_array.pdf"},
	 {$td->FILE => "shallow_stream.out", $td->EXIT_STATUS => 2},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("warn for unknown key in Pages",
 {$td->COMMAND => "test_driver 23 lin-special.pdf"},
 {$td->FILE => "pages-warning.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("reserved objects",
 {$td->COMMAND => "test_driver 24 minimal.pdf"},
 {$td->FILE => "reserved-objects.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
 {$td->FILE => "a.pdf"},
 {$td->FILE => "reserved-objects.pdf"});
$td->runtest("detect foreign object in write",
 {$td->COMMAND => "test_driver 29" .
 " copy-foreign-objects-in.pdf minimal.pdf"},
 {$td->FILE => "foreign-in-write.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("parse objects from string",
 {$td->COMMAND => "test_driver 31 minimal.pdf"}, # file not used
 {$td->FILE => "parse-object.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("EOF terminating literal tokens",
 {$td->COMMAND => "qpdf --check eof-terminates-literal.pdf"},
 {$td->FILE => "eof-terminates-literal.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("EOF reading token",
 {$td->COMMAND => "qpdf --check eof-reading-token.pdf"},
 {$td->FILE => "eof-reading-token.out", $td->EXIT_STATUS => 3},
 $td->NORMALIZE_NEWLINES);
$td->runtest("extra header text",
 {$td->COMMAND => "test_driver 32 minimal.pdf"},
 {$td->FILE => "test-32.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
 {$td->FILE => "a.pdf"},
 {$td->FILE => "extra-header-no-newline.pdf"});
$td->runtest("check output",
 {$td->FILE => "b.pdf"},
 {$td->FILE => "extra-header-lin-no-newline.pdf"});
$td->runtest("check output",
 {$td->FILE => "c.pdf"},
 {$td->FILE => "extra-header-newline.pdf"});
$td->runtest("check output",
 {$td->FILE => "d.pdf"},
 {$td->FILE => "extra-header-lin-newline.pdf"});
$td->runtest("output to custom pipeline",
 {$td->COMMAND => "test_driver 33 minimal.pdf"},
 {$td->STRING => "test 33 done\n", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
 {$td->FILE => "a.pdf"},
 {$td->FILE => "custom-pipeline.pdf"});
$td->runtest("object with zero offset",
 {$td->COMMAND => "qpdf --check zero-offset.pdf"},
 {$td->FILE => "zero-offset.out", $td->EXIT_STATUS => 3},
 $td->NORMALIZE_NEWLINES);
leading-junk also has a space instead of a newline after xref
$td->runtest("check file with leading junk",
 {$td->COMMAND => "qpdf --check leading-junk.pdf"},
 {$td->FILE => "leading-junk.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("EOF inside inline image",
 {$td->COMMAND => "test_driver 37 eof-in-inline-image.pdf"},
 {$td->FILE => "eof-in-inline-image.out",
 $td->EXIT_STATUS => 2},
 $td->NORMALIZE_NEWLINES);
$td->runtest("tokenize content streams",
 {$td->COMMAND => "test_driver 37 tokenize-content-streams.pdf"},
 {$td->FILE => "tokenize-content-streams.out",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("terminate parsing",
 {$td->COMMAND => "test_driver 37 terminate-parsing.pdf"},
 {$td->FILE => "terminate-parsing.out",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("content stream errors",
 {$td->COMMAND => "qpdf --check content-stream-errors.pdf"},
 {$td->FILE => "content-stream-errors.out",
 $td->EXIT_STATUS => 2},
 $td->NORMALIZE_NEWLINES);

The file override-compressed-object.pdf contains an object stream
with four strings in it. The file is then appended. The appended
section overrides one of the four strings with a string in another
object stream and another one in an uncompressed object. The other
two strings are left alone. The test case exercises that all four
objects have the correct value.
$td->runtest("overridden compressed objects",
 {$td->COMMAND => "test_driver 38 override-compressed-object.pdf"},
 {$td->FILE => "override-compressed-object.out",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);

$td->runtest("generate object streams for gen > 0",
 {$td->COMMAND => "qpdf --qdf --static-id" .
		 " --object-streams=generate gen1.pdf a.pdf"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check file",
 {$td->FILE => "a.pdf"},
 {$td->FILE => "gen1.qdf"});

A user provided a file that was missing /ID in its trailer even
though it is encrypted and also has a space instead of a newline
after its xref keyword. This file has those same properties.
$td->runtest("check broken file",
 {$td->COMMAND => "qpdf --check invalid-id-xref.pdf"},
 {$td->FILE => "invalid-id-xref.out", $td->EXIT_STATUS => 3},
 $td->NORMALIZE_NEWLINES);

$td->runtest("show number of pages",
 {$td->COMMAND =>
 "qpdf --show-npages 20-pages.pdf --password=user"},
 {$td->STRING => "20\n", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("ignore broken decode parms with no filters",
 {$td->COMMAND => "qpdf --check broken-decode-parms-no-filter.pdf"},
 {$td->FILE => "broken-decode-parms-no-filter.out",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("bounds check linearization data 1",
 {$td->COMMAND => "qpdf --check linearization-bounds-1.pdf"},
 {$td->FILE => "linearization-bounds-1.out",
 $td->EXIT_STATUS => 2},
 $td->NORMALIZE_NEWLINES);
$td->runtest("bounds check linearization data 2",
 {$td->COMMAND => "qpdf --check linearization-bounds-2.pdf"},
 {$td->FILE => "linearization-bounds-2.out",
 $td->EXIT_STATUS => 2},
 $td->NORMALIZE_NEWLINES);
Throws logic error, not bad_alloc
$td->runtest("sanity check array size",
 {$td->COMMAND =>
 "qpdf --check linearization-large-vector-alloc.pdf"},
 {$td->FILE => "linearization-large-vector-alloc.out",
 $td->EXIT_STATUS => 2},
 $td->NORMALIZE_NEWLINES);

$td->runtest("stream with indirect decode parms",
 {$td->COMMAND =>
 "qpdf --static-id indirect-decode-parms.pdf a.pdf"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check file",
 {$td->FILE => "a.pdf"},
 {$td->FILE => "indirect-decode-parms-out.pdf"});

$td->runtest("handle page no with contents",
 {$td->COMMAND => "qpdf --show-pages page-no-content.pdf"},
 {$td->FILE => "page-no-content.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("no type key for page nodes",
 {$td->COMMAND => "qpdf --check no-pages-types.pdf"},
 {$td->FILE => "no-pages-types.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("ensure arguments to R are direct",
 {$td->COMMAND => "qpdf --check indirect-r-arg.pdf"},
 {$td->FILE => "indirect-r-arg.out", $td->EXIT_STATUS => 3},
 $td->NORMALIZE_NEWLINES);
$td->runtest("detect loops in pages structure",
 {$td->COMMAND => "qpdf --check pages-loop.pdf"},
 {$td->FILE => "pages-loop.out", $td->EXIT_STATUS => 2},
 $td->NORMALIZE_NEWLINES);
$td->runtest("no trailing space in xref table",
 {$td->COMMAND => "qpdf --check no-space-in-xref.pdf"},
 {$td->FILE => "no-space-in-xref.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);

An array is split across multiple content streams starting object
42. This was reported in github issue 73. The file is modified from
that example.
$td->runtest("parse split content stream",
 {$td->COMMAND => "qpdf --check split-content-stream.pdf"},
 {$td->FILE => "split-content-stream.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("split content stream errors",
 {$td->COMMAND => "qpdf --check split-content-stream-errors.pdf"},
 {$td->FILE => "split-content-stream-errors.out",
 $td->EXIT_STATUS => 3},
 $td->NORMALIZE_NEWLINES);

Demonstrate show-xref after check and not after check to illustrate
that it can dump the real xref or the recovered xref.
$td->runtest("dump bad xref",
 {$td->COMMAND => "qpdf --show-xref bad-xref-entry.pdf"},
 {$td->FILE => "bad-xref-entry.out",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
Test @file here too.
open(F, ">args") or die;
print F "--check\n";
print F "--show-xref\n";
close(F);
$td->runtest("dump corrected bad xref",
 {$td->COMMAND => "qpdf \@args bad-xref-entry.pdf"},
 {$td->FILE => "bad-xref-entry-corrected.out",
 $td->EXIT_STATUS => 3},
 $td->NORMALIZE_NEWLINES);
unlink "args";

$td->runtest("don't overwrite self",
 {$td->COMMAND => "(echo a.pdf; echo a.pdf) | qpdf \@-"},
 {$td->REGEXP => "input file and output file are the same.*",
 $td->EXIT_STATUS => 2});

$td->runtest("combine show and --pages",
 {$td->COMMAND =>
 "qpdf --empty --pages minimal.pdf -- --show-pages"},
 {$td->FILE => "show-pages-pages.out",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);

$td->runtest("ignore bad token",
 {$td->COMMAND =>
 "qpdf --show-xref bad-token-startxref.pdf"},
 {$td->FILE => "bad-token-startxref.out",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);

$td->runtest("recoverable xref errors",
 {$td->COMMAND =>
 "qpdf --check --show-xref xref-errors.pdf"},
 {$td->FILE => "xref-errors.out",
 $td->EXIT_STATUS => 3},
 $td->NORMALIZE_NEWLINES);

A file was emailed privately with issue 96. short-O-U.pdf was
created by copying encryption parameters from that file. It exhibits
the same behavior as the original file.
$td->runtest("short /O or /U",
 {$td->COMMAND =>
 "qpdf --password=19723102477 --check short-O-U.pdf"},
 {$td->FILE => "short-O-U.out",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);

$td->runtest("stream with tiff predictor",
 {$td->COMMAND => "qpdf --check tiff-predictor.pdf"},
 {$td->FILE => "tiff-predictor.out",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);

show_ntests();

$td->notify("--- Newline before endstream ---");
$n_tests += 10;

From issue 133, http://verapdf.org/software/ is an open source
package that can verify PDF/A compliance. This could potentially be
useful for manual or automated verification that qpdf doesn't break
PDF/A compliance should that ever be desired.

foreach my $d (
 ['--qdf', 'qdf', 'qdf'],
 ['--newline-before-endstream', 'newline', 'nl'],
 ['--qdf --newline-before-endstream', 'newline and qdf', 'nl-qdf'],
)
{
 my ($flags, $description, $suffix) = @$d;
 $td->runtest("newline before endstream: $description",
 {$td->COMMAND => "qpdf --static-id --stream-data=preserve" .
 " $flags streams-with-newlines.pdf a.pdf"},
 {$td->STRING => "", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
 $td->runtest("check output",
 {$td->FILE => "a.pdf"},
 {$td->FILE => "newline-before-endstream-$suffix.pdf"});
 if ($flags =~ /qdf/)
 {
 $td->runtest("fix-qdf",
 {$td->COMMAND => "fix-qdf a.pdf"},
 {$td->FILE => "a.pdf", $td->EXIT_STATUS => 0});
 }
}

$td->runtest("newline before endstream (C)",
 {$td->COMMAND =>
 "qpdf-ctest 22 streams-with-newlines.pdf '' a.pdf"},
 {$td->STRING => "", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
 {$td->FILE => "a.pdf"},
 {$td->FILE => "newline-before-endstream-nl.pdf"});

show_ntests();

$td->notify("--- Split Pages ---");
sp = split-pages
my @sp_cases = (
 [11, '%d at beginning', '', '%d_split-out.zdf'],
 [11, '%d at end', '--qdf', 'split-out.zdf_%d'],
 [11, '%d in middle', '--encrypt u o 128 --', 'a-%d-split-out.zdf'],
 [11, 'pdf extension', '', 'split-out.Pdf'],
 [4, 'fallback', '--pages 11-pages.pdf 1-3 minimal.pdf --', 'split-out'],
);
$n_tests += 5;
for (@sp_cases)
{
 $n_tests += 1 + $_->[0];
}

$td->runtest("split page group > 1",
 {$td->COMMAND => "qpdf --static-id --split-pages=5 11-pages.pdf" .
 " --verbose split-out-group.pdf"},
 {$td->FILE => "split-pages-group.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
foreach my $f ('01-05', '06-10', '11-11')
{
 $td->runtest("checkout group $f",
 {$td->FILE => "split-out-group-$f.pdf"},
 {$td->FILE => "split-exp-group-$f.pdf"});
}

$td->runtest("no split-pages to stdout",
 {$td->COMMAND => "qpdf --split-pages 11-pages.pdf -"},
 {$td->FILE => "split-pages-stdout.out", $td->EXIT_STATUS => 2},
 $td->NORMALIZE_NEWLINES);

foreach my $d (@sp_cases)
{
 my ($n, $description, $xargs, $out) = @$d;
 $td->runtest("split pages " . $description,
 {$td->COMMAND =>
 "qpdf --static-id --split-pages 11-pages.pdf" .
 " $xargs $out"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
 my $pattern = $out;
 my $nlen = length($n);
 if ($pattern =~ m/\%d/)
 {
 $pattern =~ s/\%d/\%0${nlen}d/;
 }
 elsif ($pattern =~ m/\.pdf$/i)
 {
 $pattern =~ s/(\.pdf$)/-%0${nlen}d$1/i;
 }
 else
 {
 $pattern .= "-%0${nlen}d";
 }
 for (my $i = 1; $i <= $n; ++$i)
 {
 my $actual = sprintf($pattern, $i);
 my $expected = $actual;
 $expected =~ s/split-out/split-exp/;
 $td->runtest("checkout output page $i",
 {$td->FILE => $actual},
 {$td->FILE => $expected});
 }
}

show_ntests();

$td->notify("--- Rotate Pages ---");
$n_tests += 2;
XXX do absolute, positive, and negative on ranges that include
inherited and non-inherited.
Pages 11-15 inherit /Rotate 90
Pages 1 and 2 have explicit /Rotate 270
Pages 16 and 17 have explicit /Rotate 180

$td->runtest("page rotation",
 {$td->COMMAND => "qpdf --static-id to-rotate.pdf a.pdf" .
 " --rotate=+90:1,4,11,16" .
 " --rotate=180:2,5,12-13" .
 " --rotate=-90:3,15,17,18"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check output",
 {$td->FILE => "a.pdf"},
 {$td->FILE => "rotated.pdf"});

show_ntests();

$td->notify("--- Numeric range parsing tests ---");
my @nrange_tests = (
 [",5",
 "qpdf: error at * in numeric range *,5: unexpected separator",
 2],
 ["4,,5",
 "qpdf: error at * in numeric range 4,*,5: unexpected separator",
 2],
 ["4,5,",
 "qpdf: error at * in numeric range 4,5,*: number expected",
 2],
 ["z1,",
 "qpdf: error at * in numeric range z*1,: digit not expected",
 2],
 ["1z,",
 "qpdf: error at * in numeric range 1*z,: z not expected",
 2],
 ["1-5?",
 "qpdf: error at * in numeric range 1-5*?: unexpected character",
 2],
 ["1-30",
 "qpdf: error in numeric range 1-30: number 30 out of range",
 2],
 ["1-10,0,5",
 "qpdf: error in numeric range 1-10,0,5: number 0 out of range",
 2],
 ["1-10,1234,5",
 "qpdf: error in numeric range 1-10,1234,5: number 1234 out of range",
 2],
 ["1,3,5-10,z-13,13,9,z,2",
 "numeric range 1,3,5-10,z-13,13,9,z,2" .
 " -> 1 3 5 6 7 8 9 10 15 14 13 13 9 15 2",
 0],
);
$n_tests += scalar(@nrange_tests);
foreach my $d (@nrange_tests)
{
 my ($range, $output, $status) = @$d;
 $td->runtest("numeric range $range",
 {$td->COMMAND => ['qpdf', '-- test-numrange=' . $range],
 $td->FILTER => "grep 'numeric range'"},
 {$td->STRING => $output . "\n", $td->EXIT_STATUS => $status},
 $td->NORMALIZE_NEWLINES);
}

show_ntests();

$td->notify("--- Merging and Splitting ---");
$n_tests += 8;

Select pages from the same file multiple times including selecting
twice from an encrypted file and specifying the password only the
first time. The file 20-pages.pdf is specified with two different
paths to duplicate a page.
my $pages_options = "--pages page-labels-and-outlines.pdf 1,3,5-7,z" .
 " 20-pages.pdf --password=user z-15" .
 " page-labels-and-outlines.pdf 12" .
 " 20-pages.pdf 10" .
 " ./20-pages.pdf --password=owner 10" .
 " minimal.pdf 1 --";

$td->runtest("merge three files",
 {$td->COMMAND => "qpdf page-labels-and-outlines.pdf a.pdf" .
 " $pages_options --static-id"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
Manually verified about this file: make sure that outline entries
that pointed to pages that were preserved still work in the copy,
and verify that all pages are as expected. page-labels-and-outlines
as well as 20-pages have text on page n (from 1) that shows its page
position from 0, so page 1 says it's page 0.
$td->runtest("check output",
 {$td->FILE => "a.pdf"},
 {$td->FILE => "merge-three-files-1.pdf"});
Select the same pages but add them to an empty file
$td->runtest("merge three files",
 {$td->COMMAND => "qpdf --empty a.pdf" .
 " $pages_options --static-id"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
Manually verified about this file: it has the same pages but does
not contain outlines, page labels, or other things from the original
file.
$td->runtest("check output",
 {$td->FILE => "a.pdf"},
 {$td->FILE => "merge-three-files-2.pdf"});
$td->runtest("avoid respecification of password",
 {$td->COMMAND =>
 "qpdf --empty a.pdf --copy-encryption=20-pages.pdf" .
 " --encryption-file-password=user" .
 " --pages 20-pages.pdf 1,z -- --static-id"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check output",
 {$td->FILE => "a.pdf"},
 {$td->FILE => "pages-copy-encryption.pdf"});
$td->runtest("merge with implicit ranges",
 {$td->COMMAND =>
 "qpdf --empty a.pdf" .
 " --pages minimal.pdf 20-pages.pdf --password=user" .
 " page-labels-and-outlines.pdf --" .
 " --static-id"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check output",
 {$td->FILE => "a.pdf"},
 {$td->FILE => "merge-implicit-ranges.pdf"});
show_ntests();

$td->notify("--- PDF From Scratch ---");
$n_tests += 2;

$td->runtest("basic qpdf from scratch",
	 {$td->COMMAND => "pdf_from_scratch 0"},
	 {$td->STRING => "test 0 done\n", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "from-scratch-0.pdf"});
show_ntests();

$td->notify("--- PCLm ---");
$n_tests += 2;

$td->runtest("write as PCLm",
	 {$td->COMMAND => "test_driver 40 pclm-in.pdf a.pdf"},
	 {$td->STRING => "test 40 done\n", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "pclm-out.pdf"});

show_ntests();

$td->notify("--- Precheck streams ---");
$n_tests += 2;

$td->runtest("bad stream",
	 {$td->COMMAND => "qpdf --static-id bad-data.pdf a.pdf"},
	 {$td->FILE => "bad-data.out", $td->EXIT_STATUS => 3},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "bad-data-out.pdf"});

show_ntests();

$td->notify("--- Decode levels ---");
$n_tests += 14;

image-streams.pdf is the output of examples/pdf-create.
examples/pdf-create validates the actual image data.
foreach my $l (qw(none generalized specialized all))
{
 $td->runtest("image-streams: $l",
 {$td->COMMAND =>
 "qpdf image-streams.pdf --compress-streams=n" .
 " --decode-level=$l a.pdf"},
 {$td->STRING => "", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
 $td->runtest("check image-streams: $l",
 {$td->COMMAND => "test_driver 39 a.pdf"},
 {$td->FILE => "image-streams-$l.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
}

C API
$td->runtest("image-streams: C",
 {$td->COMMAND => "qpdf-ctest 20 image-streams.pdf '' a.pdf"},
 {$td->STRING => "", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("check image-streams: C",
 {$td->COMMAND => "test_driver 39 a.pdf"},
 {$td->FILE => "image-streams-specialized.out",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);

Bad JPEG data
$td->runtest("check finds bad jpeg data",
 {$td->COMMAND => "qpdf --check bad-jpeg.pdf"},
 {$td->FILE => "bad-jpeg-check.out",
 $td->EXIT_STATUS => 3},
 $td->NORMALIZE_NEWLINES);
$td->runtest("precheck detects bad jpeg data",
 {$td->COMMAND => "qpdf --static-id --decode-level=all" .
 " bad-jpeg.pdf a.pdf"},
 {$td->FILE => "bad-jpeg.out", $td->EXIT_STATUS => 3},
 $td->NORMALIZE_NEWLINES);
$td->runtest("check file",
 {$td->FILE => "a.pdf"},
 {$td->FILE => "bad-jpeg-out.pdf"});
$td->runtest("get data",
 {$td->COMMAND => "qpdf --show-object=6" .
 " --filtered-stream-data bad-jpeg.pdf"},
 {$td->FILE => "bad-jpeg-show.out", $td->EXIT_STATUS => 3},
 $td->NORMALIZE_NEWLINES);

show_ntests();

$td->notify("--- Preserve unreferenced objects ---");
$n_tests += 6;

$td->runtest("drop unused objects",
	 {$td->COMMAND => "qpdf --static-id unreferenced-objects.pdf a.pdf"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "unreferenced-dropped.pdf"});
$td->runtest("keep unused objects",
	 {$td->COMMAND => "qpdf --static-id --preserve-unreferenced" .
 " unreferenced-objects.pdf a.pdf"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "unreferenced-preserved.pdf"});
$td->runtest("keep unused objects (C)",
	 {$td->COMMAND =>
 "qpdf-ctest 21 unreferenced-objects.pdf '' a.pdf"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "unreferenced-preserved.pdf"});
show_ntests();

$td->notify("--- Copy Foreign Objects ---");
$n_tests += 7;

foreach my $d ([25, 1], [26, 2], [27, 3])
{
 my ($testn, $outn) = @$d;
 $td->runtest("copy objects $outn",
 {$td->COMMAND => "test_driver $testn" .
 " copy-foreign-objects-in.pdf minimal.pdf"},
 {$td->STRING => "test $testn done\n", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
 $td->runtest("check output",
 {$td->FILE => "a.pdf"},
 {$td->FILE => "copy-foreign-objects-out$outn.pdf"});
}
$td->runtest("copy objects error",
 {$td->COMMAND => "test_driver 28" .
 " copy-foreign-objects-in.pdf minimal.pdf"},
 {$td->FILE => "copy-foreign-objects-errors.out",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
show_ntests();

$td->notify("--- Error Condition Tests ---");
$n_tests incremented after initialization of badfiles below.

my @badfiles = ("not a PDF file", 			# 1
		"no startxref",				# 2
		"bad primary xref offset",		# 3
		"invalid xref syntax",			# 4
		"invalid xref entry",			# 5
		"free table inconsistency",		# 6
		"no trailer dictionary",		# 7
		"bad secondary xref",			# 8
		"no /Size in trailer",			# 9
		"/Size not integer",			# 10
		"/Prev not integer",			# 11
		"/Size inconsistency",			# 12
		"bad {",				# 13
		"bad }",				# 14
		"bad]",				# 15
		"bad >>",				# 16
		"odd number of dictionary items",	# 17
		"bad)",				# 18
		"bad >",				# 19
		"invalid hexstring character",		# 20
		"invalid name token",			# 21
		"no /Length for stream dictionary",	# 22
		"/Length not integer",			# 23
		"expected endstream",			# 24
		"bad obj declaration (objid)",		# 25
		"bad obj declaration (generation)",	# 26
		"bad obj declaration (obj)",		# 27
		"expected endobj",			# 28
		"null in name",				# 29
		"invalid stream /Filter",		# 30
		"unknown stream /Filter",		# 31
		"obj/gen mismatch",			# 32
		"invalid stream /Filter and xref",	# 33
		"obj/gen in wrong place",		# 34
		"object stream of wrong type",		# 35
 "bad dictionary key", # 36
);

$n_tests += @badfiles + 3;

Test 6 contains errors in the free table consistency, but we no
longer have any consistency check for this since it is not important
neither Acrobat nor other PDF viewers really care. Tests 12 and 28
have error conditions that used to be fatal but are now considered
non-fatal.
my %badtest_overrides = ();
for(6, 12..15, 17, 22..28, 30..32, 34, 36)
{
 $badtest_overrides{$_} = 0;
}

for (my $i = 1; $i <= scalar(@badfiles); ++$i)
{
 my $status = $badtest_overrides{$i};
 $status = 2 unless defined $status;
 $td->runtest($badfiles[$i-1],
		 {$td->COMMAND => "test_driver 0 bad$i.pdf"},
		 {$td->FILE => "bad$i.out",
		 $td->EXIT_STATUS => $status},
		 $td->NORMALIZE_NEWLINES);
}

$td->runtest("C API: errors",
	 {$td->COMMAND => "qpdf-ctest 2 bad1.pdf '' a.pdf"},
	 {$td->FILE => "c-read-errors.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("C API: warnings writing",
	 {$td->COMMAND => "qpdf-ctest 2 bad33.pdf '' a.pdf"},
	 {$td->FILE => "c-write-warnings.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("C API: no recovery",
	 {$td->COMMAND => "qpdf-ctest 10 bad33.pdf '' a.pdf"},
	 {$td->FILE => "c-no-recovery.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

show_ntests();

$td->notify("--- Recovery Tests ---");
$n_tests += @badfiles + 6;

Recovery tests. These are mostly after-the-fact -- when recovery
was implemented, some degree of recovery was possible on many of the
files. Mostly the recovery does not actually repair the error,
though in some cases it may. Acrobat Reader would not be able to
recover any of these files any better.
my %recover_failures = ();
for (1, 7, 16, 18..21, 29, 35)
{
 $recover_failures{$_} = 1;
}
for (my $i = 1; $i <= scalar(@badfiles); ++$i)
{
 my $status = 0;
 if (exists $recover_failures{$i})
 {
	$status = 2;
 }
 $td->runtest("recover " . $badfiles[$i-1],
		 {$td->COMMAND => "test_driver 1 bad$i.pdf"},
		 {$td->FILE => "bad$i-recover.out",
		 $td->EXIT_STATUS => $status},
		 $td->NORMALIZE_NEWLINES);
}

See if we can recover the cross reference table on a file that has
been appended to even when it deletes and reuses objects. We can't
completely do it in the case of deleted objects, but we can get
mostly there.
$td->runtest("good replaced page contents",
	 {$td->COMMAND =>
		 "qpdf --static-id -qdf --no-original-object-ids" .
		 " append-page-content.pdf a.pdf"},
	 {$td->STRING => "",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "append-page-content-good.qdf"});
$td->runtest("damaged replaced page contents",
	 {$td->COMMAND =>
		 "qpdf --static-id -qdf --no-original-object-ids" .
		 " append-page-content-damaged.pdf a.pdf"},
	 {$td->FILE => "append-page-content-damaged.out",
	 $td->EXIT_STATUS => 3},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "append-page-content-damaged.qdf"});
$td->runtest("run check on damaged file",
	 {$td->COMMAND => "qpdf --check append-page-content-damaged.pdf"},
	 {$td->FILE => "append-page-content-damaged-check.out",
	 $td->EXIT_STATUS => 3},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check with C API",
	 {$td->COMMAND =>
		 "qpdf-ctest 1 append-page-content-damaged.pdf '' ''"},
	 {$td->FILE => "append-page-content-damaged-c-check.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

show_ntests();

$td->notify("--- Basic Parsing Tests ---");
$n_tests incremented below after initialization of @goodfiles.

my @goodfiles = ("implicit null",			# 1
		 "direct null",				# 2
		 "unresolved null",			# 3
		 "indirect null",			# 4
		 "indirect bool, real",			# 5
		 "direct bool",				# 6
		 "integer",				# 7
		 "real, ASCIIHexDecode",		# 8
		 "string",				# 9
		 "array",				# 10
		 "dictionary",				# 11
		 "stream",				# 12
		 "nesting, strings, names",		# 13
		 "tokenizing pipeline",			# 14
		 "name",				# 15
		 "object-stream",			# 16
		 "hybrid xref",				# 17
		 "hybrid xref old mode",		# 18
		 "xref with prev",			# 19
		 "lots of compressible objects",	# 20
		 "pound in name", # 21
);

$n_tests += (3 * @goodfiles) + 6;

my %goodtest_overrides = ('14' => 3);
my %goodtest_flags =
 ('18' => '-ignore-xref-streams',
 '20' => '-object-streams=generate',
);
for (my $i = 1; $i <= scalar(@goodfiles); ++$i)
{
 my $n = $goodtest_overrides{$i} || 1;
 $td->runtest("$goodfiles[$i-1]",
		 {$td->COMMAND => "test_driver $n good$i.pdf"},
		 {$td->FILE => "good$i.out",
		 $td->EXIT_STATUS => 0},
		 $td->NORMALIZE_NEWLINES);
 my $xflags = $goodtest_flags{$i} || '';
 check_pdf("create qdf",
	 "qpdf --static-id -qdf $xflags good$i.pdf",
	 "good$i.qdf", 0);
}

check_pdf("no normalization",
	 "qpdf -qdf --static-id --normalize-content=n good7.pdf",
	 "good7-not-normalized.qdf",
	 0);

check_pdf("no qdf",
	 "qpdf --static-id good17.pdf",
	 "good17-not-qdf.pdf",
	 0);

check_pdf("no recompression",
	 "qpdf --static-id --stream-data=preserve good17.pdf",
	 "good17-not-recompressed.pdf",
	 0);

show_ntests();

$td->notify("--- C API Tests ---");

my @capi = (
 [2, 'no options'],
 [3, 'normalized content'],
 [4, 'ignore xref streams'],
 [5, 'linearized'],
 [6, 'object streams'],
 [7, 'qdf'],
 [8, 'no original object ids'],
 [9, 'uncompressed streams'],
);
$n_tests += (2 * @capi) + 3;
foreach my $d (@capi)
{
 my ($n, $description) = @$d;
 my $outfile = $description;
 $outfile =~ s/ /-/g;
 $outfile = "c-$outfile.pdf";
 $td->runtest($description,
		 {$td->COMMAND => "qpdf-ctest $n hybrid-xref.pdf '' a.pdf"},
		 {$td->STRING => "", $td->EXIT_STATUS => 0});
 $td->runtest("check $description",
		 {$td->FILE => "a.pdf"},
		 {$td->FILE => $outfile});
}
$td->runtest("write to bad file name",
	 {$td->COMMAND => "qpdf-ctest 2 hybrid-xref.pdf '' /:a:/:b:"},
	 {$td->REGEXP => "error: open /:a:/:b:: .*",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("write damaged to bad file name",
	 {$td->COMMAND => "qpdf-ctest 2 append-page-content-damaged.pdf" .
		 " '' /:a:/:b:"},
	 {$td->REGEXP =>
		 "warning:(?s:.*)\n" .
		 "error: open /:a:/:b:: .*",
		 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("write damaged",
	 {$td->COMMAND => "qpdf-ctest 2 append-page-content-damaged.pdf" .
		 " '' a.pdf"},
	 {$td->FILE => "c-write-damaged.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

show_ntests();

$td->notify("--- Deterministic ID Tests ---");
$n_tests += 11;
foreach my $d ('nn', 'ny', 'yn', 'yy')
{
 my $linearize = ($d =~ m/^y/);
 my $ostream = ($d =~ m/y$/);
 $td->runtest("deterministic ID: linearize/ostream=$d",
 {$td->COMMAND =>
 "qpdf -deterministic-id" .
 ($linearize ? " -linearize" : "") .
 " -object-streams=" . ($ostream ? "generate" : "disable") .
 " deterministic-id-in.pdf a.pdf"},
 {$td->STRING => "",
 $td->EXIT_STATUS => 0});
 $td->runtest("compare files",
 {$td->FILE => "a.pdf"},
 {$td->FILE => "deterministic-id-$d.pdf"});
}

$td->runtest("deterministic ID with encryption",
 {$td->COMMAND => "qpdf -deterministic-id encrypted-with-images.pdf a.pdf"},
 {$td->STRING => "INTERNAL ERROR: QPDFWriter::generateID" .
 " has no data for deterministic ID." .
 " This may happen if deterministic ID and" .
 " file encryption are requested together.\n",
 $td->EXIT_STATUS => 2},
 $td->NORMALIZE_NEWLINES);
$td->runtest("deterministic ID (C API)",
 {$td->COMMAND =>
 "qpdf-ctest 19 deterministic-id-in.pdf '' a.pdf"},
 {$td->STRING => "",
 $td->EXIT_STATUS => 0});
$td->runtest("compare files",
 {$td->FILE => "a.pdf"},
 {$td->FILE => "deterministic-id-nn.pdf"});

$td->notify("--- Object Stream Tests ---");
$n_tests += (36 * 4) + (12 * 2);
$n_compare_pdfs += 36;

for (my $n = 16; $n <= 19; ++$n)
{
 my $in = "good$n.pdf";
 foreach my $flags ('-object-streams=disable',
		 '-object-streams=preserve',
		 '-object-streams=generate')
 {
	foreach my $qdf ('-qdf', '', '-encrypt "" x 128 --')
	{
	 # 4 tests + 1 compare_pdfs * 36 cases
	 # 2 additional tests * 12 cases
	 $td->runtest("object stream mode",
			 {$td->COMMAND =>
			 "qpdf --static-id $flags $qdf $in a.pdf"},
			 {$td->STRING => "",
			 $td->EXIT_STATUS => 0});
	 compare_pdfs("good$n.pdf", "a.pdf");
	 if ($qdf eq '-qdf')
	 {
		$td->runtest("fix-qdf identity check",
			 {$td->COMMAND => "fix-qdf a.pdf >| b.pdf"},
			 {$td->STRING => "", $td->EXIT_STATUS => 0});
		$td->runtest("compare files",
			 {$td->FILE => "a.pdf"},
			 {$td->FILE => "b.pdf"});
	 }
	 $td->runtest("convert to qdf",
			 {$td->COMMAND =>
			 "qpdf --static-id --no-original-object-ids" .
			 " -qdf -decrypt" .
			 " -object-streams=disable $in a.qdf"},
			 {$td->STRING => "",
			 $td->EXIT_STATUS => 0});
	 $td->runtest("convert output to qdf",
			 {$td->COMMAND =>
			 "qpdf --static-id --no-original-object-ids" .
			 " -qdf -object-streams=disable a.pdf b.qdf"},
			 {$td->STRING => "",
			 $td->EXIT_STATUS => 0});
	 $td->runtest("compare files",
			 {$td->FILE => "a.qdf"},
			 {$td->FILE => "b.qdf"});
	}
 }
 flush_tiff_cache();
}

show_ntests();

$td->notify("--- Specific File Tests ---");
$n_tests += 2;

Special PDF files that caused problems at some point

$td->runtest("damaged stream",
	 {$td->COMMAND => "qpdf --check damaged-stream.pdf"},
	 {$td->FILE => "damaged-stream.out", $td->EXIT_STATUS => 3},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("damaged stream (C)",
	 {$td->COMMAND => "qpdf-ctest 2 damaged-stream.pdf '' a.pdf"},
	 {$td->FILE => "damaged-stream-c-check.out", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

show_ntests();

$td->notify("--- Mutability Tests ---");
$n_tests += 4;

$td->runtest("no normalization",
	 {$td->COMMAND => "test_driver 4 test4-1.pdf"},
	 {$td->FILE => "test4-1.qdf",
	 $td->EXIT_STATUS => 0});

$td->runtest("object ordering",
	 {$td->COMMAND => "test_driver 4 test4-4.pdf"},
	 {$td->FILE => "test4-4.qdf",
	 $td->EXIT_STATUS => 0});

$td->runtest("loop detected",
	 {$td->COMMAND => "test_driver 4 test4-2.pdf"},
	 {$td->FILE => "test4-2.out",
	 $td->EXIT_STATUS => 2},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("stream detected",
	 {$td->COMMAND => "test_driver 4 test4-3.pdf"},
	 {$td->FILE => "test4-3.out",
	 $td->EXIT_STATUS => 2},
	 $td->NORMALIZE_NEWLINES);

show_ntests();

$td->notify("--- Extraction Tests ---");
$n_tests += 11;

$td->runtest("show xref",
	 {$td->COMMAND => "qpdf encrypted-with-images.pdf" .
		 " --show-xref"},
	 {$td->FILE => "show-xref.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("show pages",
	 {$td->COMMAND => "qpdf encrypted-with-images.pdf" .
		 " --show-pages"},
	 {$td->FILE => "show-pages.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("show-pages-images",
	 {$td->COMMAND => "qpdf encrypted-with-images.pdf" .
		 " --show-pages --with-images"},
	 {$td->FILE => "show-pages-images.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("show-page-1",
	 {$td->COMMAND => "qpdf encrypted-with-images.pdf" .
		 " --show-object=5,0"},
	 {$td->FILE => "show-page-1.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("show-page-1-content-raw",
	 {$td->COMMAND => "qpdf encrypted-with-images.pdf" .
		 " --show-object=7 --raw-stream-data"},
	 {$td->FILE => "show-page-1-content-raw.out",
	 $td->EXIT_STATUS => 0});

$td->runtest("show-page-1-content-filtered",
	 {$td->COMMAND => "qpdf encrypted-with-images.pdf" .
		 " --show-object=7 --filtered-stream-data"},
	 {$td->FILE => "show-page-1-content-filtered.out",
	 $td->EXIT_STATUS => 0});

$td->runtest("show-page-1-content-normalized",
	 {$td->COMMAND => "qpdf encrypted-with-images.pdf" .
		 " --show-object=7,0 --filtered-stream-data --normalize-content=y"},
	 {$td->FILE => "show-page-1-content-normalized.out",
	 $td->EXIT_STATUS => 0});

$td->runtest("show-page-1-image",
	 {$td->COMMAND => "qpdf encrypted-with-images.pdf" .
		 " --show-object=8 --raw-stream-data"},
	 {$td->FILE => "show-page-1-image.out",
	 $td->EXIT_STATUS => 0});

$td->runtest("unfilterable stream data",
	 {$td->COMMAND => "qpdf unfilterable.pdf" .
		 " --show-object=4 --filtered-stream-data"},
	 {$td->FILE => "show-unfilterable.out",
	 $td->EXIT_STATUS => 2},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("show-xref-by-id",
	 {$td->COMMAND => "qpdf encrypted-with-images.pdf" .
		 " --show-object=12"},
	 {$td->FILE => "show-xref-by-id.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("show-xref-by-id-filtered",
	 {$td->COMMAND => "qpdf encrypted-with-images.pdf" .
		 " --show-object=12 --filtered-stream-data"},
	 {$td->FILE => "show-xref-by-id-filtered.out",
	 $td->EXIT_STATUS => 0});

show_ntests();

$td->notify("--- Clear-text Metadata Tests ---");
$n_tests += 58;

args: file, exp_encrypted, exp_cleartext
check_metadata("compressed-metadata.pdf", 0, 0);
check_metadata("enc-base.pdf", 0, 1);

foreach my $f (qw(compressed-metadata.pdf enc-base.pdf))
{
 foreach my $w (qw(compress preserve))
 {
	$td->runtest("$w streams ($f)",
		 {$td->COMMAND => "qpdf --stream-data=$w $f a.pdf"},
		 {$td->STRING => "", $td->EXIT_STATUS => 0});
	check_metadata("a.pdf", 0, 1);
	$td->runtest("encrypt normally",
		 {$td->COMMAND =>
			 "qpdf --encrypt '' '' 128 -- a.pdf b.pdf"},
		 {$td->STRING => "", $td->EXIT_STATUS => 0});
	check_metadata("b.pdf", 1, 0);
	unlink "b.pdf";
	$td->runtest("encrypt V4",
		 {$td->COMMAND =>
			 "qpdf --encrypt '' '' 128 --force-V4 -- a.pdf b.pdf"},
		 {$td->STRING => "", $td->EXIT_STATUS => 0});
	check_metadata("b.pdf", 1, 0);
	unlink "b.pdf";
	$td->runtest("encrypt with cleartext metadata",
		 {$td->COMMAND =>
			 "qpdf --encrypt '' '' 128 --cleartext-metadata --" .
			 " a.pdf b.pdf"},
		 {$td->STRING => "", $td->EXIT_STATUS => 0});
	check_metadata("b.pdf", 1, 1);
	$td->runtest("preserve encryption",
		 {$td->COMMAND => "qpdf b.pdf c.pdf"},
		 {$td->STRING => "", $td->EXIT_STATUS => 0});
	check_metadata("c.pdf", 1, 1);
	unlink "b.pdf", "c.pdf";
	$td->runtest("encrypt with aes and cleartext metadata",
		 {$td->COMMAND =>
			 "qpdf --encrypt '' '' 128" .
			 " --cleartext-metadata --use-aes=y -- a.pdf b.pdf"},
		 {$td->STRING => "", $td->EXIT_STATUS => 0});
	check_metadata("b.pdf", 1, 1);
	$td->runtest("preserve encryption",
		 {$td->COMMAND => "qpdf b.pdf c.pdf"},
		 {$td->STRING => "", $td->EXIT_STATUS => 0});
	check_metadata("c.pdf", 1, 1);
	unlink "b.pdf", "c.pdf";
 }
}

show_ntests();

$td->notify("--- Linearization Tests ---");
$n_tests incremented after initialization of @linearized_files and
@to_linearize.

*'ed files were linearized with Pdlin.
my @linearized_files =
 ('lin0',			# not linearized
 'lin1',			# * outlines, page labels, pdlin
 'lin2',			# * lin1 with null and newline
 'lin3',			# same file saved with acrobat
 'lin4',			# * lin1 with no /PageMode
 'lin5',			# lin3 with embedded thumbnails
 'lin6',			# * lin5 with pdlin
 'lin7',			# lin5 with /PageMode /UseThumbs
 'lin8',			# * lin7 with pdlin
 'lin9',			# * shared objects, indirect null
 'badlin1',			# parameter dictionary errors
);

my @to_linearize =
 ('lin-special',		# lots of weird cases -- see file comments
 'delete-and-reuse',	# deleted, reused objects
 'lin-delete-and-reuse',	# linearized, then delete and reuse
 'object-stream',		# contains object streams
 'hybrid-xref',	 # contains both xref tables and streams
 'gen1', # has objects with generation > 0
 'direct-outlines', # /Outlines is a direct object
 @linearized_files,		# we should be able to relinearize
);

$n_tests += @linearized_files + 6;
$n_tests += (3 * @to_linearize * 5) + 6;

foreach my $base (@linearized_files)
{
 $td->runtest("dump linearization: $base",
		 {$td->COMMAND => "qpdf --show-linearization $base.pdf"},
		 {$td->FILE => "$base.out",
		 $td->EXIT_STATUS => 0},
		 $td->NORMALIZE_NEWLINES);
}

Check normal modified and linearized modified files, making sure
that their qdf files are identical. The next two tests have the
same expected output files and different input files.
check_pdf("modified",
	 "qpdf --static-id --qdf --no-original-object-ids" .
	 " delete-and-reuse.pdf", "delete-and-reuse.qdf",
	 0);
check_pdf("linearized and modified",
	 "qpdf --static-id --qdf --no-original-object-ids" .
	 " lin-delete-and-reuse.pdf", "delete-and-reuse.qdf", # same output
	 0);

$td->runtest("check linearized and modified",
	 {$td->COMMAND => "qpdf --check lin-delete-and-reuse.pdf"},
	 {$td->FILE => "lin-delete-and-reuse-check.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check multiple modifications",
	 {$td->COMMAND => "qpdf --check delete-and-reuse.pdf"},
	 {$td->FILE => "delete-and-reuse-check.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

foreach my $base (@to_linearize)
{
 foreach my $omode (qw(disable preserve generate))
 {
	my $oarg = "-object-streams=$omode";
 my $sdarg = "";
 if (($base eq 'lin-special') || ($base eq 'object-stream'))
 {
 $sdarg = "--stream-data=uncompress";
 }
	$td->runtest("linearize $base ($omode)",
		 {$td->COMMAND =>
			 "qpdf -linearize $oarg $sdarg" .
 " --static-id $base.pdf a.pdf"},
		 {$td->STRING => "",
		 $td->EXIT_STATUS => 0});
	$td->runtest("check linearization",
		 {$td->COMMAND => "qpdf --check-linearization a.pdf"},
		 {$td->STRING => "a.pdf: no linearization errors\n",
		 $td->EXIT_STATUS => 0},
		 $td->NORMALIZE_NEWLINES);
	# Relinearizing twice should produce identical results. We
	# have to do it twice because, if objects changed ordering
	# during the original linearization, the hint tables won't
	# exactly match. This is because object identifiers are
	# inserted into the hint table in their original order since
	# we don't yet have renumbering information when we compute
	# the table values.
	$td->runtest("relinearize $base 1",
		 {$td->COMMAND =>
			 "qpdf -linearize $sdarg --static-id a.pdf b.pdf"},
		 {$td->STRING => "",
		 $td->EXIT_STATUS => 0});
	$td->runtest("relinearize $base 2",
		 {$td->COMMAND =>
			 "qpdf -linearize $sdarg --static-id b.pdf c.pdf"},
		 {$td->STRING => "",
		 $td->EXIT_STATUS => 0});
	$td->runtest("compare files ($omode)",
		 {$td->FILE => "b.pdf"},
		 {$td->FILE => "c.pdf"});
	if (($base eq 'lin-special') || ($base eq 'object-stream'))
	{
	 $td->runtest("check $base ($omode)",
			 {$td->FILE => "a.pdf"},
			 {$td->FILE => "$base.$omode.exp"});
	}
 }
}

show_ntests();

$td->notify("--- Encryption Tests ---");
$n_tests incremented below

The enc-file.pdf files were encrypted using Acrobat 5.0, not the
qpdf library. The files are decrypted using qpdf, then re-encrypted
using qpdf with specific flags. The /P value is checked. The
resulting files were saved and manually checked with Acrobat 5.0 to
ensure that the security settings were as intended.

The enc-XI-file.pdf files were treated the same way but with Acrobat
XI instead of Acrobat 5.0. They were used to create test files with
newer encryption formats.

Values: basename, password, encryption flags, /P Encrypt key,
extract-for-accessibility, extract-for-any-purpose,
print-low-res, print-high-res, modify-assembly, modify-forms,
modify-annotate, modify-other, modify-all
my @encrypted_files =
 (['base', ''],
 ['R3,V2', '',
 '-accessibility=n -extract=n -print=full -modify=all', -532,
 0, 0, 1, 1, 1, 1, 1, 1, 1],
 ['R3,V2,U=view', 'view',
 '-accessibility=y -extract=n -print=none -modify=none', -3392,
 1, 0, 0, 0, 0, 0, 0, 0, 0],
 ['R3,V2,O=master', 'master',
 '-accessibility=n -extract=y -print=none -modify=annotate', -2576,
 0, 1, 0, 0, 1, 1, 1, 0, 0],
 ['R3,V2,O=master', '',
 '-accessibility=n -extract=n -print=none -modify=form', -2624,
 0, 0, 0, 0, 1, 1, 0, 0, 0],
 ['R3,V2,U=view,O=master', 'view',
 '-accessibility=n -extract=n -print=none -modify=assembly', -2880,
 0, 0, 0, 0, 1, 0, 0, 0, 0],
 ['R3,V2,U=view,O=master', 'master',
 '-accessibility=n -print=low', -2564,
 0, 1, 1, 0, 1, 1, 1, 1, 1],
 ['R2,V1', '',
 '-print=n -modify=n -extract=n -annotate=n', -64,
 0, 0, 0, 0, 0, 0, 0, 0, 0],
 ['R2,V1,U=view', 'view',
 '-print=y -modify=n -extract=n -annotate=n', -60,
 0, 0, 1, 1, 0, 0, 0, 0, 0],
 ['R2,V1,O=master', 'master',
 '-print=n -modify=y -extract=n -annotate=n', -56,
 0, 0, 0, 0, 1, 0, 0, 1, 0],
 ['R2,V1,O=master', '',
 '-print=n -modify=n -extract=y -annotate=n', -48,
 1, 1, 0, 0, 0, 0, 0, 0, 0],
 ['R2,V1,U=view,O=master', 'view',
 '-print=n -modify=n -extract=n -annotate=y', -32,
 0, 0, 0, 0, 0, 1, 1, 0, 0],
 ['R2,V1,U=view,O=master', 'master',
 '', -4,
 1, 1, 1, 1, 1, 1, 1, 1, 1],
 ['long-password', 'asdf asdf asdf asdf asdf asdf qwer'],
 ['long-password', 'asdf asdf asdf asdf asdf asdf qw'],
 ['XI-base', ''],
 ['XI-R6,V5,O=master', '',
 '-extract=n -print=none -modify=assembly', -2368,
 1, 0, 0, 0, 1, 0, 0, 0, 0],
 ['XI-R6,V5,O=master', 'master',
 '-extract=n -print=none -modify=assembly', -2368,
 1, 0, 0, 0, 1, 0, 0, 0, 0],
 ['XI-R6,V5,U=view,O=master', 'view',
 '-print=low', -2052,
 1, 1, 1, 0, 1, 1, 1, 1, 1],
 ['XI-R6,V5,U=view,O=master', 'master',
 '-print=low', -2052,
 1, 1, 1, 0, 1, 1, 1, 1, 1],
 ['XI-R6,V5,U=view,O=master', 'master',
 '-accessibility=n', -4, # -accessibility=n has no effect
 1, 1, 1, 1, 1, 1, 1, 1, 1],
 ['XI-long-password', 'qwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnm'],
 ['XI-long-password', 'qwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcv'],
);

$n_tests += 5 + (2 * (@encrypted_files)) + (6 * (@encrypted_files - 6)) + 9;

$td->runtest("encrypted file",
	 {$td->COMMAND => "test_driver 2 encrypted-with-images.pdf"},
	 {$td->FILE => "encrypted1.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("preserve encryption",
	 {$td->COMMAND => "qpdf encrypted-with-images.pdf encrypted-with-images.enc"},
	 {$td->STRING => "",
	 $td->EXIT_STATUS => 0});
$td->runtest("recheck encrypted file",
	 {$td->COMMAND => "test_driver 2 encrypted-with-images.enc"},
	 {$td->FILE => "encrypted1.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

Test that long passwords that are one character too short fail. We
test the truncation cases in the loop below by using passwords
longer than the supported length.
$td->runtest("significant password characters (V < 5)",
 {$td->COMMAND => "qpdf --check enc-long-password.pdf" .
 " --password='asdf asdf asdf asdf asdf asdf q'"},
 {$td->REGEXP => ".*invalid password.*", $td->EXIT_STATUS => 2});
$td->runtest("significant password characters (V = 5)",
 {$td->COMMAND => "qpdf --check enc-XI-long-password.pdf" .
 " --password=qwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxc"},
 {$td->REGEXP => ".*invalid password.*", $td->EXIT_STATUS => 2});

my $enc_base = undef;
foreach my $d (@encrypted_files)
{
 my ($file, $pass, $xeflags, $P,
	$accessible, $extract, $printlow, $printhigh,
	$modifyassembly, $modifyform, $modifyannot,
	$modifyother, $modifyall) = @$d;

 my $f = sub { $_[0] ? "allowed" : "not allowed" };
 my $enc_details =
	"extract for accessibility: " . &$f($accessible) . "\n" .
	"extract for any purpose: " . &$f($extract) . "\n" .
	"print low resolution: " . &$f($printlow) . "\n" .
	"print high resolution: " . &$f($printhigh) . "\n" .
	"modify document assembly: " . &$f($modifyassembly) . "\n" .
	"modify forms: " . &$f($modifyform) . "\n" .
	"modify annotations: " . &$f($modifyannot) . "\n" .
	"modify other: " . &$f($modifyother) . "\n" .
	"modify anything: " . &$f($modifyall) . "\n";
 if ($file =~ m/XI-/)
 {
 $enc_details .=
 "stream encryption method: AESv3\n" .
 "string encryption method: AESv3\n" .
 "file encryption method: AESv3\n";
 }

 # Test writing to stdout
 $td->runtest("decrypt $file",
		 {$td->COMMAND =>
		 "qpdf --static-id -qdf --object-streams=disable" .
 " --no-original-object-ids" .
		 " --password=\"$pass\" enc-$file.pdf -" .
		 " > $file.enc"},
		 {$td->STRING => "",
		 $td->EXIT_STATUS => 0});
 if ($file =~ m/base$/)
 {
 $enc_base = $file;
	$td->runtest("check ID",
		 {$td->COMMAND => "perl check-ID.pl $file.enc"},
		 {$td->STRING => "ID okay\n",
		 $td->EXIT_STATUS => 0},
		 $td->NORMALIZE_NEWLINES);
 }
 else
 {
	$td->runtest("check against base",
		 {$td->COMMAND =>
 "sh ./diff-encrypted $enc_base.enc $file.enc"},
		 {$td->STRING => "okay\n",
		 $td->EXIT_STATUS => 0},
		 $td->NORMALIZE_NEWLINES);
 }
 if ($file =~ m/^(?:XI-)?R(\d),V(\d)(?:,U=(\w+))?(?:,O=(\w+))?$/)
 {
	my $R = $1;
	my $V = $2;
	my $upass = $3 || "";
	my $opass = $4 || "";
	my $bits = (($V == 5) ? 256 : ($V == 2) ? 128 : 40);

	my $eflags = "-encrypt \"$upass\" \"$opass\" $bits $xeflags --";
 if (($pass ne $upass) && ($V >= 5))
 {
 # V >= 5 can no longer recover user password with owner
 # password.
 $upass = "";
 }
 my $accessibility_warning = "";
 if (($R > 3) && ($eflags =~ /accessibility=n/))
 {
 $accessibility_warning =
 "qpdf: -accessibility=n is ignored" .
 " for modern encryption formats\n";
 }
	$td->runtest("encrypt $file",
		 {$td->COMMAND =>
			 "qpdf --static-id --no-original-object-ids -qdf" .
			 " $eflags $file.enc $file.enc2"},
		 {$td->STRING => $accessibility_warning,
		 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
	$td->runtest("check /P",
		 {$td->COMMAND =>
			 "qpdf --show-encryption --password=\"$pass\"" .
			 " $file.enc2"},
		 {$td->STRING => "R = $R\nP = $P\n" .
			 "User password = $upass\n$enc_details",
			 $td->EXIT_STATUS => 0},
		 $td->NORMALIZE_NEWLINES);
	$td->runtest("decrypt again",
		 {$td->COMMAND =>
			 "qpdf --static-id --no-original-object-ids -qdf" .
			 " --password=\"$pass\"" .
			 " $file.enc2 $file.enc3"},
		 {$td->STRING => "",
		 $td->EXIT_STATUS => 0});
	$td->runtest("compare",
		 {$td->FILE => "$file.enc"},
		 {$td->FILE => "$file.enc3"});
	$td->runtest("preserve encryption",
		 {$td->COMMAND =>
			 "qpdf --static-id --password=\"$pass\"" .
			 " $file.enc2 $file.enc4"},
		 {$td->STRING => "",
		 $td->EXIT_STATUS => 0});
	$td->runtest("check /P",
		 {$td->COMMAND =>
			 "qpdf --show-encryption --password=\"$pass\"" .
			 " $file.enc4"},
		 {$td->STRING => "R = $R\nP = $P\n" .
			 "User password = $upass\n$enc_details",
			 $td->EXIT_STATUS => 0},
		 $td->NORMALIZE_NEWLINES);
 }
}

$td->runtest("non-encrypted",
	 {$td->COMMAND => "qpdf --show-encryption enc-base.pdf"},
	 {$td->STRING => "File is not encrypted\n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("invalid password",
	 {$td->COMMAND => "qpdf -qdf --password=quack" .
		 " enc-R2,V1,U=view.pdf a.qdf"},
	 {$td->STRING => "enc-R2,V1,U=view.pdf: invalid password\n",
	 $td->EXIT_STATUS => 2},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("C API: invalid password",
	 {$td->COMMAND => "qpdf-ctest 2 enc-R2,V1,U=view.pdf '' a.qdf"},
	 {$td->FILE => "c-invalid-password.out", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

my @cenc = (
 [11, 'hybrid-xref.pdf', "''", 'r2', "", ""],
 [12, 'hybrid-xref.pdf', "''", 'r3', "", ""],
 [15, 'hybrid-xref.pdf', "''", 'r4', "", ""],
 [17, 'hybrid-xref.pdf', "''", 'r5', "", "owner3"],
 [18, 'hybrid-xref.pdf', "''", 'r6', "", "user4"],
 [13, 'c-r2.pdf', 'user1', 'decrypt with user',
 "user password: user1\n", ""],
 [13, 'c-r3.pdf', 'owner2', 'decrypt with owner',
 "user password: user2\n", ""],
 [13, 'c-r5-in.pdf', 'user3', 'decrypt R5 with user',
 "user password: user3\n", ""],
 [13, 'c-r6-in.pdf', 'owner4', 'decrypt R6 with owner',
 "user password: \n", ""],
);
$n_tests += 2 * @cenc;

foreach my $d (@cenc)
{
 my ($n, $infile, $pass, $description, $output, $checkpass) = @$d;
 my $outfile = $description;
 $outfile =~ s/ /-/g;
 my $pdf_outfile = "c-$outfile.pdf";
 my $check_outfile = "c-$outfile.out";
 $td->runtest("C API encryption: $description",
		 {$td->COMMAND => "qpdf-ctest $n $infile $pass a.pdf"},
		 {$td->STRING => $output, $td->EXIT_STATUS => 0},
		 $td->NORMALIZE_NEWLINES);
 if (-f $pdf_outfile)
 {
 $td->runtest("check $description content",
 {$td->FILE => "a.pdf"},
 {$td->FILE => $pdf_outfile});
 }
 else
 {
 # QPDF doesn't provide any way to make the random bits in
 # /Perms static, so we have no way to predictably create a
 # /V=5 encrypted file. It's not worth adding this...the test
 # suite is adequate without having a statically predictable
 # file.
 $td->runtest("check $description",
 {$td->COMMAND =>
 "qpdf --check a.pdf --password=$checkpass"},
 {$td->FILE => $check_outfile, $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
 }
}

Test combinations of linearization and encryption. Note that we do
content checks on encrypted and linearized files in various
combinations below. Here we are just making sure that they are
linearized and/or encrypted as desired.

$td->runtest("linearize encrypted file",
	 {$td->COMMAND => "qpdf --linearize encrypted-with-images.pdf a.pdf"},
	 {$td->STRING => "",
	 $td->EXIT_STATUS => 0});
$td->runtest("check encryption",
	 {$td->COMMAND => "qpdf --show-encryption a.pdf",
	 $td->FILTER => "grep -v allowed"},
	 {$td->STRING => "R = 3\nP = -4\nUser password = \n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check linearization",
	 {$td->COMMAND => "qpdf --check-linearization a.pdf"},
	 {$td->STRING => "a.pdf: no linearization errors\n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("linearize and encrypt file",
	 {$td->COMMAND =>
		 "qpdf --linearize --encrypt user owner 128 --use-aes=y --" .
		 " lin-special.pdf a.pdf"},
	 {$td->STRING => "",
	 $td->EXIT_STATUS => 0});
$td->runtest("check encryption",
	 {$td->COMMAND => "qpdf --show-encryption --password=owner a.pdf",
	 $td->FILTER => "grep -v allowed | grep -v method"},
	 {$td->STRING => "R = 4\nP = -4\nUser password = user\n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("check linearization",
	 {$td->COMMAND => "qpdf --check-linearization" .
		 " --password=user a.pdf"},
	 {$td->STRING => "a.pdf: no linearization errors\n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

Test AES encryption in various ways.
$n_tests += 18;
$td->runtest("encrypt with AES",
	 {$td->COMMAND => "qpdf --encrypt '' '' 128 --use-aes=y --" .
		 " enc-base.pdf a.pdf"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check encryption",
	 {$td->COMMAND => "qpdf --show-encryption a.pdf",
	 $td->FILTER => "grep -v allowed | grep -v method"},
	 {$td->STRING => "R = 4\nP = -4\nUser password = \n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("convert original to qdf",
	 {$td->COMMAND => "qpdf --static-id --no-original-object-ids" .
		 " --qdf --min-version=1.6 enc-base.pdf a.qdf"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("convert encrypted to qdf",
	 {$td->COMMAND => "qpdf --static-id --no-original-object-ids" .
		 " --qdf a.pdf b.qdf"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("compare files",
	 {$td->FILE => 'a.qdf'},
	 {$td->FILE => 'b.qdf'});
$td->runtest("linearize with AES and object streams",
	 {$td->COMMAND => "qpdf --encrypt '' '' 128 --use-aes=y --" .
		 " --linearize --object-streams=generate enc-base.pdf a.pdf"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check encryption",
	 {$td->COMMAND => "qpdf --show-encryption a.pdf",
	 $td->FILTER => "grep -v allowed | grep -v method"},
	 {$td->STRING => "R = 4\nP = -4\nUser password = \n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("linearize original",
	 {$td->COMMAND => "qpdf --linearize --object-streams=generate" .
		 " enc-base.pdf b.pdf"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("convert linearized original to qdf",
	 {$td->COMMAND => "qpdf --static-id --no-original-object-ids" .
		 " --qdf --object-streams=generate --min-version=1.6" .
		 " b.pdf a.qdf"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("convert encrypted to qdf",
	 {$td->COMMAND => "qpdf --static-id --no-original-object-ids" .
		 " --qdf --object-streams=generate a.pdf b.qdf"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("compare files",
	 {$td->FILE => 'a.qdf'},
	 {$td->FILE => 'b.qdf'});
$td->runtest("force version on aes encrypted",
	 {$td->COMMAND => "qpdf --force-version=1.4 a.pdf b.pdf"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check",
	 {$td->COMMAND => "qpdf --check b.pdf"},
	 {$td->FILE => "aes-forced-check.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("make sure there is no xref stream",
	 {$td->COMMAND => "grep /ObjStm b.pdf | wc -l"},
	 {$td->REGEXP => "\\s*0\\s*", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("encrypt with V=5,R=5",
 {$td->COMMAND =>
 "qpdf --encrypt user owner 256 --force-R5 -- " .
 "minimal.pdf a.pdf"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check encryption",
	 {$td->COMMAND => "qpdf --check a.pdf --password=owner"},
	 {$td->FILE => "V5R5.out", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);
$td->runtest("encrypt with V=5,R=6",
 {$td->COMMAND =>
 "qpdf --encrypt user owner 256 -- " .
 "minimal.pdf a.pdf"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check encryption",
	 {$td->COMMAND => "qpdf --check a.pdf --password=user"},
	 {$td->FILE => "V5R6.out", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

Look at some actual V4 files
$n_tests += 14;
foreach my $d (['--force-V4', 'V4'],
	 ['--cleartext-metadata', 'V4-clearmeta'],
	 ['--use-aes=y', 'V4-aes'],
	 ['--cleartext-metadata --use-aes=y', 'V4-aes-clearmeta'])
{
 my ($args, $out) = @$d;
 $td->runtest("encrypt $args",
		 {$td->COMMAND => "qpdf --static-aes-iv --static-id" .
		 " --encrypt '' '' 128 $args -- enc-base.pdf a.pdf"},
		 {$td->STRING => "", $td->EXIT_STATUS => 0});
 $td->runtest("check output",
		 {$td->FILE => "a.pdf"},
		 {$td->FILE => "$out.pdf"});
 $td->runtest("show encryption",
		 {$td->COMMAND => "qpdf --show-encryption a.pdf"},
		 {$td->FILE => "$out-encryption.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
}
Crypt Filter
$td->runtest("decrypt with crypt filter",
	 {$td->COMMAND => "qpdf --decrypt --static-id" .
		 " metadata-crypt-filter.pdf a.pdf"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check output",
	 {$td->FILE => 'a.pdf'},
	 {$td->FILE => 'decrypted-crypt-filter.pdf'});

Copy encryption parameters
$n_tests += 10;
$td->runtest("create reference qdf",
 {$td->COMMAND =>
 "qpdf --qdf --no-original-object-ids minimal.pdf a.qdf"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("create encrypted file",
	 {$td->COMMAND =>
		 "qpdf --encrypt user owner 128 --use-aes=y --extract=n --" .
 " minimal.pdf a.pdf"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("copy encryption parameters",
 {$td->COMMAND => "test_driver 30 minimal.pdf a.pdf"},
 {$td->STRING => "test 30 done\n", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("check output encryption",
	 {$td->COMMAND => "qpdf --show-encryption b.pdf --password=owner"},
	 {$td->FILE => "copied-encryption.out",
	 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("convert to qdf",
 {$td->COMMAND =>
 "qpdf --qdf b.pdf b.qdf" .
 " --password=owner --no-original-object-ids"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("compare qdf",
 {$td->COMMAND => "sh ./diff-ignore-ID-version a.qdf b.qdf"},
 {$td->STRING => "okay\n", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("copy encryption with qpdf",
 {$td->COMMAND =>
 "qpdf --copy-encryption=a.pdf".
 " --encryption-file-password=user" .
 " minimal.pdf c.pdf"},
 {$td->STRING => "", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("check output encryption",
	 {$td->COMMAND => "qpdf --show-encryption c.pdf --password=owner"},
	 {$td->FILE => "copied-encryption.out",
	 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
$td->runtest("convert to qdf",
 {$td->COMMAND =>
 "qpdf --qdf c.pdf c.qdf" .
 " --password=owner --no-original-object-ids"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("compare qdf",
 {$td->COMMAND => "sh ./diff-ignore-ID-version a.qdf c.qdf"},
 {$td->STRING => "okay\n", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);

Files with attachments
my @attachments = (
 'enc-XI-attachments-base.pdf',
 'enc-XI-R6,V5,U=attachment,encrypted-attachments.pdf',
 'enc-XI-R6,V5,U=view,attachments,cleartext-metadata.pdf');
$n_tests += 4 * @attachments + 3;
foreach my $f (@attachments)
{
 my $pass = '';
 my $tpass = '';
 if ($f =~ m/U=([^,\.]+)/)
 {
 $pass = "--password=$1";
 $tpass = $1;
 }
 $td->runtest("decrypt $f",
 {$td->COMMAND => "qpdf --decrypt $pass $f a.pdf"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
 $td->runtest("extract attachments",
 {$td->COMMAND => "test_driver 35 a.pdf"},
 {$td->FILE => "attachments.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
 $td->runtest("copy $f",
 {$td->COMMAND => "qpdf $pass $f a.pdf"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
 $td->runtest("extract attachments",
 {$td->COMMAND => "test_driver 35 a.pdf $tpass"},
 {$td->FILE => "attachments.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
}
$td->runtest("unfilterable with crypt",
 {$td->COMMAND =>
 "test_driver 36 unfilterable-with-crypt.pdf attachment"},
 {$td->FILE => "unfilterable-with-crypt-before.out",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
unlink "a.pdf";
$td->runtest("decrypt file",
 {$td->COMMAND => "qpdf -decrypt --password=attachment" .
 " unfilterable-with-crypt.pdf a.pdf"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("copy of unfilterable with crypt",
 {$td->COMMAND =>
 "test_driver 36 a.pdf attachment"},
 {$td->FILE => "unfilterable-with-crypt-after.out",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);

Raw encryption key
my @enc_key = (['user', '--password=user3'],
 ['owner', '--password=owner3'],
 ['hex', '--password-is-hex-key --password=35ea16a48b6a3045133b69ac0906c2e8fb0a2cc97903ae17b51a5786ebdba020']);
$n_tests += scalar(@enc_key);
foreach my $d (@enc_key)
{
 my ($description, $pass) = @$d;
 $td->runtest("use/show encryption key ($description)",
 {$td->COMMAND =>
 "qpdf --check --show-encryption-key c-r5-in.pdf $pass"},
 {$td->FILE => "c-r5-key-$description.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
}

show_ntests();

$td->notify("--- Content Preservation Tests ---");
$n_tests incremented below

my @files = ("encrypted-with-images.pdf", # encrypted
	 "inline-images.pdf",
	 "lin-special.pdf",
	 "object-stream.pdf",
	 "hybrid-xref.pdf");
my @flags = (["-qdf",						# 1
	 "qdf"],
	 ["-qdf --normalize-content=n",			# 2
	 "qdf not normalized"],
	 ["-qdf --stream-data=preserve",			# 3
	 "qdf not uncompressed"],
	 ["-qdf --stream-data=preserve --normalize-content=n", # 4
	 "qdf not normalized or uncompressed"],
	 ["--stream-data=uncompress",			# 5
	 "uncompresed"],
	 ["--normalize-content=y",				# 6
	 "normalized"],
	 ["--stream-data=uncompress --normalize-content=y",	# 7
	 "uncompressed and normalized"],
	 ["-decrypt",					# 8
	 "decrypted"],
	 ["-linearize",					# 9
	 "linearized"],
	 ["-encrypt \"\" owner 128 --",			# 10
	 "encrypted"],
	 ["-linearize -encrypt \"\" o 128 --",		# 11
	 "linearized and encrypted"],
	 ["",						# 12
	 "no arguments"],
);

$n_tests += 1 + (@files * @flags * 2 * 3);
$n_compare_pdfs += 1 + (@files * @flags * 2);
$n_acroread += (@files * @flags * 2);

foreach my $file (@files)
{
 my $base = basename($file, '.pdf');

 foreach my $o (qw(disable generate))
 {
	my $n = 0;
	my $oflags = "--object-streams=$o";
	my $odescrip = "os:" . substr($o, 0, 1);
	my $osuf = ($o eq 'generate' ? "-ogen" : "");
	foreach my $d (@flags)
	{
	 my ($flags, $fdescrip) = @$d;
	 ++$n;
	 system("rm -f *.pnm");

	 $td->runtest("$file ($odescrip $fdescrip)",
			 {$td->COMMAND => "qpdf $flags $oflags $file a.pdf"},
			 {$td->STRING => "",
			 $td->EXIT_STATUS => 0});

	 $td->runtest("check status",
			 {$td->COMMAND => "qpdf --check a.pdf"},
			 {$td->FILE => "$base.nosuf.check",
			 $td->EXIT_STATUS => 0},
			 $td->NORMALIZE_NEWLINES);

	 $td->runtest("check with C API",
			 {$td->COMMAND => [qw(qpdf-ctest 1 a.pdf), "", ""]},
			 {$td->FILE => "$base.nosuf.c-check",
			 $td->EXIT_STATUS => 0},
			 $td->NORMALIZE_NEWLINES);

	 compare_pdfs($file, "a.pdf");

	 if ($have_acroread)
	 {
		# These tests require Adobe Reader > 7.x to work with
		# encrypted files.
		$td->runtest("check with Adobe Reader",
			 {$td->COMMAND =>
				 "acroread -toPostScript -pairs a.pdf 1.ps"},
			 {$td->STRING => "",
			 $td->EXIT_STATUS => 0});
	 }
	}
	flush_tiff_cache();
 }
}

$td->runtest("convert inline-images to qdf",
	 {$td->COMMAND => "qpdf --static-id --no-original-object-ids" .
		 " --qdf inline-images.pdf a.pdf"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});

compare_pdfs("inline-images.pdf", "a.pdf");

show_ntests();

$td->notify("--- PNG filtering Tests ---");
$n_tests += 2;
$n_compare_pdfs += 1;

The PDF file was submitted on bug #83 on github. All the PNG filters
are exercised. The test suite does not exercise PNG predictors with
LZW because I don't have a way to create such a file, but it's very
likely that it will work since the handling of the PNG filters is
separate from the regular decompression.
$td->runtest("decode png-filtering",
	 {$td->COMMAND => "qpdf --static-id" .
 " --compress-streams=n --decode-level=generalized" .
		 " png-filters.pdf a.pdf"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "png-filters-decoded.pdf"});
compare_pdfs("png-filters.pdf", "a.pdf");

show_ntests();

$td->notify("--- fix-qdf Tests ---");
$n_tests += 5;

for (my $n = 1; $n <= 2; ++$n)
{
 $td->runtest("fix-qdf $n",
		 {$td->COMMAND => "fix-qdf fix$n.qdf"},
		 {$td->FILE => "fix$n.qdf.out",
		 $td->EXIT_STATUS => 0});

 $td->runtest("identity fix-qdf $n",
		 {$td->COMMAND => "fix-qdf fix$n.qdf.out"},
		 {$td->FILE => "fix$n.qdf.out",
		 $td->EXIT_STATUS => 0});
}
$td->runtest("fix-qdf with big object stream", # > 255 objects in a stream
 {$td->COMMAND => "fix-qdf big-ostream.pdf"},
 {$td->FILE => "big-ostream.pdf",
 $td->EXIT_STATUS => 0});

show_ntests();

$td->notify("--- Large File Tests ---");
my $nlarge = 1;
if (defined $large_file_test_path)
{
 $nlarge = 2;
}
else
{
 $td->notify("--- Skipping tests on actual large files ---");
}
$n_tests += $nlarge * 13;
for (my $large = 0; $large < $nlarge; ++$large)
{
 if ($large)
 {
 $td->notify("--- Running tests on actual large files ---");
 }
 else
 {
 $td->notify("--- Running large file tests on small files ---");
 }
 my $size = ($large ? "large" : "small");
 my $file = $large ? "$large_file_test_path/a.pdf" : "a.pdf";
 $td->runtest("write test file",
 {$td->COMMAND => "test_large_file write $size '$file'"},
 {$td->FILE => "large_file.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
 $td->runtest("read test file",
 {$td->COMMAND => "test_large_file read $size '$file'"},
 {$td->FILE => "large_file.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
 $td->runtest("check",
 {$td->COMMAND => "qpdf --suppress-recovery --check '$file'",
 $td->FILTER => "grep -v checking"},
 {$td->FILE => "large_file-check-normal.out",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);

 for my $ostream (0, 1)
 {
 for my $linearize (0, 1)
 {
 if (($ostream == 0) && ($linearize == 0))
 {
 # Original file has no object streams and is not linearized.
 next;
 }
 my $args = "";
 my $omode = $ostream ? "generate" : "disable";
 my $lin = $linearize ? "--linearize" : "";
 my $newfile = "$file-new";

 $td->runtest("transform: ostream=$ostream, linearize=$linearize",
 {$td->COMMAND =>
 "qpdf --stream-data=preserve" .
 " --object-streams=$omode" .
 " $lin '$file' '$newfile'"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
 $td->runtest("read test file",
 {$td->COMMAND =>
 "test_large_file read $size '$newfile'"},
 {$td->FILE => "large_file.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
 my $check_out =
 ($linearize
 ? ($ostream
 ? "large_file-check-ostream-linearized.out"
 : "large_file-check-linearized.out")
 : ($ostream
 ? "large_file-check-ostream.out"
 : "large_file-check-normal.out"));
 $td->runtest("check: ostream=$ostream, linearize=$linearize",
 {$td->COMMAND =>
 "qpdf --suppress-recovery --check '$newfile'",
 $td->FILTER => "grep -v checking"},
 {$td->FILE => $check_out, $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
 unlink $newfile;
 }
 }

 # Clobber xref
 open(F, "+<$file") or die;
 seek(F, -50, 2);
 my $pos = tell F;
 my $buf;
 read(F, $buf, 50);
 die unless $buf =~ m/^(.*startxref\n)\d+/s;
 $pos += length($1);
 seek(F, $pos, 0) or die;
 print F "oops" or die;
 close(F);

 my $cmd = +{$td->COMMAND => "test_large_file read $size '$file'"};
 if ($large)
 {
 $cmd->{$td->FILTER} = "sed -e 's,$large_file_test_path/,,'";
 }
 $td->runtest("reconstruct xref table",
 $cmd,
 {$td->FILE => "large_file_xref_reconstruct.out",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
 unlink $file;
}

cleanup();

See comments at beginning about calculation of number of tests. We
do it strictly based on static values, not as a by-product of
running the test suite.
$td->report(calc_ntests());

sub calc_ntests
{
 my $result = $n_tests;
 if ($have_acroread)
 {
	$result += $n_acroread;
 }
 if ($compare_images)
 {
	$result += 3 * ($n_compare_pdfs);
 }
 $result;
}

sub show_ntests
{
 if (0)
 {
	$td->emphasize("tests so far: ". calc_ntests());
 }
}

sub check_pdf
{
 my ($description, $command, $output, $status) = @_;
 unlink "a.pdf";
 $td->runtest($description,
		 {$td->COMMAND => "$command a.pdf"},
		 {$td->STRING => "",
		 $td->EXIT_STATUS => $status});
 $td->runtest("check output",
		 {$td->FILE => "a.pdf"},
		 {$td->FILE => $output});
}

sub flush_tiff_cache
{
 system("rm -rf tiff-cache");
}

sub compare_pdfs
{
 return unless $compare_images;

 my ($f1, $f2, $exp) = @_;

 $exp = 0 unless defined $exp;

 system("rm -rf tif1 tif2");

 mkdir "tiff-cache", 0777 unless -d "tiff-cache";

 my $md5_1 = get_md5_checksum($f1);
 my $md5_2 = get_md5_checksum($f2);

 mkdir "tif1", 0777 or die;
 mkdir "tif2", 0777 or die;

 if (-f "tiff-cache/$md5_1.tif")
 {
	$td->runtest("get cached original file image",
		 {$td->COMMAND => "cp tiff-cache/$md5_1.tif tif1/a.tif"},
		 {$td->STRING => "",
		 $td->EXIT_STATUS => 0});
 }
 else
 {
 # We discard gs's stderr since it has sometimes been known to
 # complain about files that are not bad. In particular, gs
 # 9.04 can't handle empty xref sections such as those found in
 # the hybrid xref cases. We don't really care whether gs
 # complains or not as long as it creates correct images. If
 # it doesn't create correct images, the test will fail, and we
 # can run manually to see the error message. If it does, then
 # we don't care about the warning.
	$td->runtest("convert original file to image",
		 {$td->COMMAND =>
			 "(cd tif1;" .
			 " gs 2>$devNull -q -dNOPAUSE -sDEVICE=tiff24nc" .
			 " -sOutputFile=a.tif - < ../$f1)"},
		 {$td->STRING => "",
		 $td->EXIT_STATUS => 0});
	copy("tif1/a.tif", "tiff-cache/$md5_1.tif");
 }

 if (-f "tiff-cache/$md5_2.tif")
 {
	$td->runtest("get cached new file image",
		 {$td->COMMAND => "cp tiff-cache/$md5_2.tif tif2/a.tif"},
		 {$td->STRING => "",
		 $td->EXIT_STATUS => 0});
 }
 else
 {
	$td->runtest("convert new file to image",
		 {$td->COMMAND =>
			 "(cd tif2;" .
			 " gs 2>$devNull -q -dNOPAUSE -sDEVICE=tiff24nc" .
			 " -sOutputFile=a.tif - < ../$f2)"},
		 {$td->STRING => "",
		 $td->EXIT_STATUS => 0});
	copy("tif2/a.tif", "tiff-cache/$md5_2.tif");
 }

 $td->runtest("compare images",
		 {$td->COMMAND => "tiffcmp -t tif1/a.tif tif2/a.tif"},
		 {$td->REGEXP => ".*",
		 $td->EXIT_STATUS => $exp});

 system("rm -rf tif1 tif2");
}

sub check_metadata
{
 my ($file, $exp_encrypted, $exp_cleartext) = @_;
 my $out = "encrypted=$exp_encrypted; cleartext=$exp_cleartext\n" .
	"test 6 done\n";
 $td->runtest("check metadata: $file",
		 {$td->COMMAND => "test_driver 6 $file"},
		 {$td->STRING => $out, $td->EXIT_STATUS => 0},
		 $td->NORMALIZE_NEWLINES);
}

sub get_md5_checksum
{
 my $file = shift;
 open(F, "<$file") or fatal("can't open $file: $!");
 binmode F;
 my $digest = Digest::MD5->new->addfile(*F)->hexdigest;
 close(F);
 $digest;
}

sub cleanup
{
 system("rm -rf *.ps *.pnm ?.pdf ?.qdf *.enc* tif1 tif2 tiff-cache");
 system("rm -rf *split-out*");
}

qpdf-7.1.0/qpdf/pdf_from_scratch.cc

#include <qpdf/QPDF.hh>

#include <qpdf/QUtil.hh>
#include <qpdf/QTC.hh>
#include <qpdf/QPDFWriter.hh>
#include <qpdf/QPDFObjectHandle.hh>
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>

static char const* whoami = 0;

void usage()
{
 std::cerr << "Usage: " << whoami << " n" << std::endl;
 exit(2);
}

static QPDFObjectHandle createPageContents(QPDF& pdf, std::string const& text)
{
 std::string contents = "BT /F1 15 Tf 72 720 Td (" + text + ") Tj ET\n";
 return QPDFObjectHandle::newStream(&pdf, contents);
}

QPDFObjectHandle newName(std::string const& name)
{
 return QPDFObjectHandle::newName(name);
}

void runtest(int n)
{
 QPDF pdf;
 pdf.emptyPDF();
 if (n == 0)
 {
 // Create a minimal PDF from scratch.

 QPDFObjectHandle font = pdf.makeIndirectObject(
 QPDFObjectHandle::parse("<<"
 " /Type /Font"
 " /Subtype /Type1"
 " /Name /F1"
 " /BaseFont /Helvetica"
 " /Encoding /WinAnsiEncoding"
 ">>"));

 QPDFObjectHandle procset = pdf.makeIndirectObject(
 QPDFObjectHandle::parse("[/PDF /Text]"));

 QPDFObjectHandle contents = createPageContents(pdf, "First Page");

 QPDFObjectHandle mediabox = QPDFObjectHandle::parse("[0 0 612 792]");

 QPDFObjectHandle rfont = QPDFObjectHandle::newDictionary();
 rfont.replaceKey("/F1", font);

 QPDFObjectHandle resources = QPDFObjectHandle::newDictionary();
 resources.replaceKey("/ProcSet", procset);
 resources.replaceKey("/Font", rfont);

 QPDFObjectHandle page = pdf.makeIndirectObject(
 QPDFObjectHandle::newDictionary());
 page.replaceKey("/Type", newName("/Page"));
 page.replaceKey("/MediaBox", mediabox);
 page.replaceKey("/Contents", contents);
 page.replaceKey("/Resources", resources);

 pdf.addPage(page, true);

	QPDFWriter w(pdf, "a.pdf");
	w.setStaticID(true);
	w.setStreamDataMode(qpdf_s_preserve);
	w.write();
 }
 else
 {
	throw std::runtime_error(std::string("invalid test ") +
				 QUtil::int_to_string(n));
 }

 std::cout << "test " << n << " done" << std::endl;
}

int main(int argc, char* argv[])
{
 QUtil::setLineBuf(stdout);
 if ((whoami = strrchr(argv[0], '/')) == NULL)
 {
	whoami = argv[0];
 }
 else
 {
	++whoami;
 }
 // For libtool's sake....
 if (strncmp(whoami, "lt-", 3) == 0)
 {
	whoami += 3;
 }

 if (argc != 2)
 {
	usage();
 }

 try
 {
	int n = QUtil::string_to_int(argv[1]);
	runtest(n);
 }
 catch (std::exception& e)
 {
	std::cerr << e.what() << std::endl;
	exit(2);
 }

 return 0;
}

qpdf-7.1.0/qpdf/qpdf.testcov

ignored-scope: libtests
QPDF err expected endobj 0
QPDF err wrong objid/generation 0
QPDF check objid 1
QPDF check generation 1
QPDF check obj 1
QPDF hint table length indirect 0
QPDF hint table length direct 0
QPDF P absent in lindict 0
QPDF P present in lindict 0
QPDF expected n n obj 0
QPDF /L mismatch 0
QPDF err /T mismatch 0
QPDF err /O mismatch 0
QPDF opt direct pages resource 1
QPDF opt inheritable keys 0
QPDF opt no inheritable keys 0
QPDF opt erase empty key ancestor 0
QPDF opt resource inherited 0
QPDF opt page resource hides ancestor 0
QPDF opt key ancestors depth > 1 0
QPDF opt loop detected 0
QPDF categorize pagemode present 1
QPDF categorize pagemode outlines 1
QPDF warn /E mismatch 0
QPDF lin outlines in part 1
QPDF lin nshared_total > nshared_first_page 1
QPDF lin part 8 empty 1
QPDF lin check shared past first page 0
QPDFWriter flatten array null 0
main QTest implicit 0
main QTest indirect 1
main QTest null 0
main QTest bool 1
main QTest int 0
main QTest real 0
main QTest name 0
main QTest string 0
main QTest array 0
main QTest array indirect 1
main QTest dictionary 0
main QTest dictionary indirect 1
main QTest stream 0
QPDFWriter write to stdout 0
QPDFWriter write to file 0
QPDF lin write nshared_total > nshared_first_page 1
QPDFWriter encrypted hint stream 0
QPDF opt inherited scalar 0
QPDF xref reused object 0
QPDF xref gen > 0 1
QPDF xref size mismatch 0
QPDF not a pdf file 0
QPDF can't find startxref 0
QPDF invalid xref 0
QPDF invalid xref entry 0
QPDF missing trailer 0
QPDF trailer lacks size 0
QPDF trailer size not integer 0
QPDF trailer prev not integer 0
QPDFObjectHandle bad brace 0
QPDFObjectHandle bad array close 0
QPDF stream without length 0
QPDF stream length not integer 0
QPDF missing endstream 0
QPDFObjectHandle bad dictionary close 0
QPDF can't find xref 0
QPDF_Tokenizer bad) 0
QPDF_Tokenizer bad > 0
QPDF_Tokenizer bad (0
QPDF_Tokenizer null in name 0
QPDF_Tokenizer bad name 0
QPDF_Stream invalid filter 0
QPDF UseOutlines but no Outlines 0
QPDFObjectHandle clone bool 0
QPDFObjectHandle clone null 0
QPDFObjectHandle clone integer 0
QPDFObjectHandle clone real 0
QPDFObjectHandle clone name 0
QPDFObjectHandle clone string 0
QPDFObjectHandle clone array 0
QPDFObjectHandle clone dictionary 0
QPDFObjectHandle makeDirect loop 0
QPDFObjectHandle ERR clone stream 0
QPDFTokenizer allow pound anywhere in name 0
QPDF indirect last obj from xref 1
QPDF default for xref stream field 0 0
QPDF prev key in xref stream dictionary 0
QPDF prev key in trailer dictionary 0
QPDF found xref stream 0
QPDF ignoring XRefStm in trailer 0
QPDF xref deleted object 0
QPDF_Stream PNG filter 0
QPDF xref /Index is null 0
QPDF xref /Index is array 1
QPDFWriter copy Extends 0
QPDFWriter encrypt object stream 0
QPDFWriter uncompressing page dictionary 0
QPDFWriter uncompressing root 0
QPDFWriter compressing uncompressed stream 0
QPDF exclude indirect length 0
QPDFWriter generate >1 ostream 0
QPDF exclude encryption dictionary 0
QPDF loop detected traversing objects 0
QPDF reconstructed xref table 0
QPDF recovered in readObjectAtOffset 0
QPDF recovered stream length 0
QPDF found wrong endstream in recovery 0
QPDFObjectHandle indirect to unknown 0
QPDF_Stream pipeStreamData with null pipeline 0
QPDFWriter not recompressing /FlateDecode 0
QPDF_encryption xref stream from encrypted file 0
qpdf unable to filter 0
QPDF_String non-trivial UTF-16 0
QPDF xref overwrite object 0
QPDF decoding error warning 0
qpdf-c called qpdf_init 0
qpdf-c called qpdf_cleanup 0
qpdf-c called qpdf_more_warnings 0
qpdf-c qpdf_get_error returned error 0
qpdf-c qpdf_next_warning returned warning 0
qpdf-c called qpdf_set_suppress_warnings 0
qpdf-c called qpdf_set_ignore_xref_streams 0
qpdf-c called qpdf_set_attempt_recovery 0
qpdf-c called qpdf_read 2
qpdf-c called qpdf_get_pdf_version 0
qpdf-c called qpdf_get_user_password 0
qpdf-c called qpdf_is_linearized 0
qpdf-c called qpdf_is_encrypted 0
qpdf-c called qpdf_init_write 3
qpdf-c called qpdf_set_object_stream_mode 0
qpdf-c called qpdf_set_stream_data_mode 0
qpdf-c called qpdf_set_content_normalization 0
qpdf-c called qpdf_set_qdf_mode 0
qpdf-c called qpdf_set_static_ID 0
qpdf-c called qpdf_set_suppress_original_object_IDs 0
qpdf-c called qpdf_set_preserve_encryption 0
qpdf-c called qpdf_set_r2_encryption_parameters 0
qpdf-c called qpdf_set_r3_encryption_parameters 0
qpdf-c called qpdf_set_linearization 0
qpdf-c called qpdf_write 1
qpdf-c called qpdf_allow_accessibility 0
qpdf-c called qpdf_allow_extract_all 0
qpdf-c called qpdf_allow_print_low_res 0
qpdf-c called qpdf_allow_print_high_res 0
qpdf-c called qpdf_allow_modify_assembly 0
qpdf-c called qpdf_allow_modify_form 0
qpdf-c called qpdf_allow_modify_annotation 0
qpdf-c called qpdf_allow_modify_other 0
qpdf-c called qpdf_allow_modify_all 0
QPDFWriter increasing minimum version 1
QPDFWriter using forced PDF version 0
qpdf-c called qpdf_set_minimum_pdf_version 0
qpdf-c called qpdf_force_pdf_version 0
qpdf-c called qpdf_init_write multiple times 0
QPDF_encryption rc4 decode string 0
QPDF_encryption rc4 decode stream 0
QPDFWriter not compressing metadata 0
QPDF_encryption CFM V2 0
QPDF_encryption CFM AESV2 0
QPDF_encryption aes decode string 0
QPDF_encryption cleartext metadata 0
QPDF_encryption aes decode stream 0
QPDFWriter forcing object stream disable 0
QPDFWriter forced version disabled encryption 0
qpdf-c called qpdf_set_r4_encryption_parameters 0
qpdf-c called qpdf_set_static_aes_IV 0
QPDF_encryption stream crypt filter 0
QPDF ERR object stream with wrong type 0
QPDF object gone after xref reconstruction 0
qpdf-c called qpdf_has_error 0
qpdf-c called qpdf_get_qpdf_version 0
QPDF_Stream pipe original stream data 0
QPDF_Stream pipe replaced stream data 0
QPDF_Stream pipe use stream provider 0
QPDF_Stream provider length mismatch 0
QPDFObjectHandle newStream 0
QPDFObjectHandle newStream with data 0
QPDF_Stream pipe no stream data 0
QPDFObjectHandle prepend page contents 0
QPDFObjectHandle append page contents 0
QPDF_Stream getRawStreamData 0
QPDF_Stream getStreamData 0
QPDF_Stream expand filter abbreviation 0
qpdf-c called qpdf_read_memory 0
Pl_QPDFTokenizer found EI 0
QPDF stream without newline 0
QPDF stream with CR only 0
QPDF stream with CRNL 0
QPDF stream with NL only 0
QPDF replaceObject called with indirect object 0
QPDFWriter copy encrypt metadata 1
qpdf-c get_info_key 1
qpdf-c set_info_key to value 0
qpdf-c set_info_key to null 0
qpdf-c set-info-key use existing info 0
qpdf-c add info to trailer 0
qpdf-c called qpdf_init_write_memory 0
exercise processFile(name) 0
exercise processFile(FILE*) 0
exercise processMemoryFile 0
QPDF duplicate page reference 0
QPDF remove page 2
QPDF insert page 2
QPDF updateAllPagesCache 0
QPDF insert non-indirect page 0
QPDF insert indirect page 0
QPDFObjectHandle ERR shallow copy stream 0
QPDFObjectHandle shallow copy array 0
QPDFObjectHandle shallow copy dictionary 0
QPDFObjectHandle shallow copy scalar 0
QPDFObjectHandle newStream with string 0
QPDF unknown key not inherited 0
QPDF_Stream provider length not provided 0
QPDF_Stream unknown stream length 0
QPDF replaceReserved 0
QPDF copyForeign direct 0
QPDF copyForeign not foreign 0
QPDF copy indirect 0
QPDF loop reserving objects 0
QPDF replace indirect 0
QPDF replace array 0
QPDF replace dictionary 0
QPDF replace stream 0
QPDF reserve array 0
QPDF reserve dictionary 0
QPDF reserve stream 0
QPDF not crossing page boundary 0
QPDF replace foreign indirect with null 0
QPDF not copying pages object 0
QPDF insert foreign page 0
QPDFWriter foreign object 0
QPDFWriter copy use_aes 1
QPDFObjectHandle indirect without context 0
QPDFObjectHandle trailing data in parse 0
qpdf pages encryption password 0
QPDF_Tokenizer EOF reading token 1
QPDF_Tokenizer EOF reading appendable token 0
QPDFWriter extra header text no newline 0
QPDFWriter extra header text add newline 0
QPDF bogus 0 offset 0
QPDF global offset 0
QPDFWriter make stream key direct 0
QPDFWriter copy V5 0
QPDFWriter increasing extension level 0
QPDFWriter make Extensions direct 0
QPDFWriter make ADBE direct 1
QPDFWriter preserve Extensions 0
QPDFWriter create Extensions 1
QPDFWriter remove ADBE 0
QPDFWriter remove existing Extensions 0
QPDFWriter preserve ADBE 0
QPDF_encryption skip 0x28 0
QPDF_encrypt crypt array 0
QPDF_encryption CFM AESV3 0
QPDFWriter remove Crypt 0
qpdf-c called qpdf_get_pdf_extension_level 0
qpdf-c called qpdf_set_r5_encryption_parameters 0
qpdf-c called qpdf_set_r6_encryption_parameters 0
QPDFObjectHandle EOF in inline image 0
QPDFObjectHandle inline image token 0
QPDF not caching overridden objstm object 0
QPDFWriter original obj non-zero gen 0
QPDF_optimization indirect outlines 0
QPDF xref space 2
qpdf pages range omitted at end 0
qpdf pages range omitted in middle 0
qpdf npages 0
QPDF already reserved object 0
QPDFWriter standard deterministic ID 1
QPDFWriter linearized deterministic ID 1
QPDFWriter deterministic with no data 0
qpdf-c called qpdf_set_deterministic_ID 0
QPDFObjectHandle indirect with 0 objid 0
QPDF object id 0 0
QPDF recursion loop in resolve 0
QPDFObjectHandle treat word as string 0
QPDFObjectHandle found fake 1
QPDFObjectHandle no val for last key 0
QPDF resolve failure to null 0
QPDFWriter preserve unreferenced standard 0
QPDFObjectHandle non-stream in parsecontent 0
QPDFObjectHandle errors in parsecontent 0
QPDF stream with non-space 0
qpdf same file error 0
qpdf read args from stdin 0
qpdf read args from file 0
qpdf split-pages %d 0
qpdf split-pages .pdf 0
qpdf split-pages other 0
QPDFTokenizer allowing bad token 0
QPDF ignore first space in xref entry 0
QPDF ignore first extra space in xref entry 0
QPDF ignore second extra space in xref entry 0
QPDF ignore length error xref entry 0
QPDF_encryption pad short parameter 0
QPDFWriter ignore self-referential object stream 0
QPDFObjectHandle found old angle 1
QPDF_Stream special filters 3
QPDFTokenizer block long token 0
qpdf-c called qpdf_set_decode_level 0
qpdf-c called qpdf_set_compress_streams 0
qpdf-c called qpdf_set_preserve_unreferenced_objects 0
qpdf-c called qpdf_set_newline_before_endstream 0
QPDF_Stream TIFF predictor 0

qpdf-7.1.0/qpdf/test_large_file.cc

qpdf-7.1.0/qpdf/test_large_file.cc

// NOTE: This test program doesn't do anything special to enable large

// file support. This is important since it verifies that programs

// don't have to do anything special -- all the work is done

// internally by the library as long as they don't do their own file

// I/O.

#include <qpdf/QPDF.hh>

#include <qpdf/QPDFWriter.hh>

#include <qpdf/QPDFObjectHandle.hh>

#include <qpdf/QUtil.hh>

#include <iostream>

#include <string.h>

#include <stdlib.h>

#include <assert.h>

// Run "test_large_file write small a.pdf" to get a PDF file that you

// can look at in a reader.

// This program reads and writes specially crafted files for testing

// large file support. In write mode, write a file of npages pages

// where each page contains unique text and a unique image. The image

// is a binary representation of the page number. The image contains

// horizontal stripes with light stripes representing 1, dark stripes

// representing 0, and the high bit on top. In read mode, read the

// file back checking to make sure all the image data and page

// contents are as expected.

// Running this is small mode produces a small file that is easy to

// look at in any viewer. Since there is no question about proper

// functionality for small files, writing and reading the small file

// allows the qpdf library to test this test program. Writing and

// reading the large file then allows us to verify large file support

// with confidence.

static char const* whoami = 0;

// Height should be a multiple of 10

static int const nstripes = 10;

static int const stripesize_large = 500;

static int const stripesize_small = 5;

static int const npages = 200;

// initialized in main

int stripesize = 0;

int width = 0;

int height = 0;

static unsigned char* buf = 0;

static inline unsigned char get_pixel_color(int n, size_t row)

{

 return (n & (1 << (nstripes - 1 - row))) ? '\xc0' : '\x40';

}

class ImageChecker: public Pipeline

{

 public:

 ImageChecker(int n);

 virtual ~ImageChecker();

 virtual void write(unsigned char* data, size_t len);

 virtual void finish();

 private:

 int n;

 size_t offset;

 bool okay;

};

ImageChecker::ImageChecker(int n) :

 Pipeline("image checker", 0),

 n(n),

 offset(0),

 okay(true)

{

}

ImageChecker::~ImageChecker()

{

}

void

ImageChecker::write(unsigned char* data, size_t len)

{

 for (size_t i = 0; i < len; ++i)

 {

 size_t y = (this->offset + i) / width / stripesize;

 unsigned char color = get_pixel_color(n, y);

 if (data[i] != color)

 {

 okay = false;

 }

 }

 this->offset += len;

}

void

ImageChecker::finish()

{

 if (! okay)

 {

 std::cout << "errors found checking image data for page " << n

 << std::endl;

 }

}

class ImageProvider: public QPDFObjectHandle::StreamDataProvider

{

 public:

 ImageProvider(int n);

 virtual ~ImageProvider();

 virtual void provideStreamData(int objid, int generation,

 Pipeline* pipeline);

 private:

 int n;

};

ImageProvider::ImageProvider(int n) :

 n(n)

{

}

ImageProvider::~ImageProvider()

{

}

void

ImageProvider::provideStreamData(int objid, int generation,

 Pipeline* pipeline)

{

 if (buf == 0)

 {

 buf = new unsigned char[width * stripesize];

 }

 std::cout << "page " << n << " of " << npages << std::endl;

 for (int y = 0; y < nstripes; ++y)

 {

 unsigned char color = get_pixel_color(n, y);

 memset(buf, color, width * stripesize);

 pipeline->write(buf, width * stripesize);

 }

 pipeline->finish();

}

void usage()

{

 std::cerr << "Usage: " << whoami << " {read|write} {large|small} outfile"

 << std::endl;

 exit(2);

}

static void set_parameters(bool large)

{

 stripesize = large ? stripesize_large : stripesize_small;

 height = nstripes * stripesize;

 width = height;

}

std::string generate_page_contents(int pageno)

{

 std::string contents =

 "BT /F1 24 Tf 72 720 Td (page " + QUtil::int_to_string(pageno) +

 ") Tj ET\n"

 "q 468 0 0 468 72 72 cm /Im1 Do Q\n";

 return contents;

}

static QPDFObjectHandle create_page_contents(QPDF& pdf, int pageno)

{

 return QPDFObjectHandle::newStream(&pdf, generate_page_contents(pageno));

}

QPDFObjectHandle newName(std::string const& name)

{

 return QPDFObjectHandle::newName(name);

}

QPDFObjectHandle newInteger(int val)

{

 return QPDFObjectHandle::newInteger(val);

}

static void create_pdf(char const* filename)

{

 QPDF pdf;

 pdf.emptyPDF();

 QPDFObjectHandle font = pdf.makeIndirectObject(

 QPDFObjectHandle::newDictionary());

 font.replaceKey("/Type", newName("/Font"));

 font.replaceKey("/Subtype", newName("/Type1"));

 font.replaceKey("/Name", newName("/F1"));

 font.replaceKey("/BaseFont", newName("/Helvetica"));

 font.replaceKey("/Encoding", newName("/WinAnsiEncoding"));

 QPDFObjectHandle procset =

 pdf.makeIndirectObject(QPDFObjectHandle::newArray());

 procset.appendItem(newName("/PDF"));

 procset.appendItem(newName("/Text"));

 procset.appendItem(newName("/ImageC"));

 QPDFObjectHandle rfont = QPDFObjectHandle::newDictionary();

 rfont.replaceKey("/F1", font);

 QPDFObjectHandle mediabox = QPDFObjectHandle::newArray();

 mediabox.appendItem(newInteger(0));

 mediabox.appendItem(newInteger(0));

 mediabox.appendItem(newInteger(612));

 mediabox.appendItem(newInteger(792));

 for (int pageno = 1; pageno <= npages; ++pageno)

 {

 QPDFObjectHandle image = QPDFObjectHandle::newStream(&pdf);

 QPDFObjectHandle image_dict = image.getDict();

 image_dict.replaceKey("/Type", newName("/XObject"));

 image_dict.replaceKey("/Subtype", newName("/Image"));

 image_dict.replaceKey("/ColorSpace", newName("/DeviceGray"));

 image_dict.replaceKey("/BitsPerComponent", newInteger(8));

 image_dict.replaceKey("/Width", newInteger(width));

 image_dict.replaceKey("/Height", newInteger(height));

 ImageProvider* p = new ImageProvider(pageno);

 PointerHolder<QPDFObjectHandle::StreamDataProvider> provider(p);

 image.replaceStreamData(provider,

 QPDFObjectHandle::newNull(),

 QPDFObjectHandle::newNull());

 QPDFObjectHandle xobject = QPDFObjectHandle::newDictionary();

 xobject.replaceKey("/Im1", image);

 QPDFObjectHandle resources = QPDFObjectHandle::newDictionary();

 resources.replaceKey("/ProcSet", procset);

 resources.replaceKey("/Font", rfont);

 resources.replaceKey("/XObject", xobject);

 QPDFObjectHandle contents = create_page_contents(pdf, pageno);

 QPDFObjectHandle page = pdf.makeIndirectObject(

 QPDFObjectHandle::newDictionary());

 page.replaceKey("/Type", newName("/Page"));

 page.replaceKey("/MediaBox", mediabox);

 page.replaceKey("/Contents", contents);

 page.replaceKey("/Resources", resources);

 pdf.addPage(page, false);

 }

 QPDFWriter w(pdf, filename);

 w.setStaticID(true); // for testing only

 w.setStreamDataMode(qpdf_s_preserve);

 w.setObjectStreamMode(qpdf_o_disable);

 w.write();

}

static void check_page_contents(int pageno, QPDFObjectHandle page)

{

 PointerHolder<Buffer> buf =

 page.getKey("/Contents").getStreamData();

 std::string actual_contents =

 std::string(reinterpret_cast<char *>(buf->getBuffer()),

 buf->getSize());

 std::string expected_contents = generate_page_contents(pageno);

 if (expected_contents != actual_contents)

 {

 std::cout << "page contents wrong for page " << pageno << std::endl

 << "ACTUAL: " << actual_contents

 << "EXPECTED: " << expected_contents

 << "----\n";

 }

}

static void check_image(int pageno, QPDFObjectHandle page)

{

 QPDFObjectHandle image =

 page.getKey("/Resources").getKey("/XObject").getKey("/Im1");

 ImageChecker ic(pageno);

 image.pipeStreamData(&ic, 0, qpdf_dl_specialized);

}

static void check_pdf(char const* filename)

{

 QPDF pdf;

 pdf.processFile(filename);

 std::vector<QPDFObjectHandle> const& pages = pdf.getAllPages();

 assert(pages.size() == static_cast<size_t>(npages));

 for (int i = 0; i < npages; ++i)

 {

 int pageno = i + 1;

 std::cout << "page " << pageno << " of " << npages << std::endl;

 check_page_contents(pageno, pages.at(i));

 check_image(pageno, pages.at(i));

 }

}

int main(int argc, char* argv[])

{

 whoami = QUtil::getWhoami(argv[0]);

 QUtil::setLineBuf(stdout);

 // For libtool's sake....

 if (strncmp(whoami, "lt-", 3) == 0)

 {

 whoami += 3;

 }

 if (argc != 4)

 {

 usage();

 }

 char const* operation = argv[1];

 char const* size = argv[2];

 char const* filename = argv[3];

 bool op_write = false;

 bool size_large = false;

 if (strcmp(operation, "write") == 0)

 {

 op_write = true;

 }

 else if (strcmp(operation, "read") == 0)

 {

 op_write = false;

 }

 else

 {

 usage();

 }

 if (strcmp(size, "large") == 0)

 {

 size_large = true;

 }

 else if (strcmp(size, "small") == 0)

 {

 size_large = false;

 }

 else

 {

 usage();

 }

 set_parameters(size_large);

 try

 {

 if (op_write)

 {

 create_pdf(filename);

 }

 else

 {

 check_pdf(filename);

 }

 }

 catch (std::exception& e)

 {

 std::cerr << e.what() << std::endl;

 exit(2);

 }

 delete [] buf;

 return 0;

}

qpdf-7.1.0/qpdf/test_driver.cc

qpdf-7.1.0/qpdf/test_driver.cc

// This program tests miscellaneous functionality in the qpdf library

// that we don't want to pollute the qpdf program with.

#include <qpdf/QPDF.hh>

#include <qpdf/QUtil.hh>

#include <qpdf/QTC.hh>

#include <qpdf/Pl_StdioFile.hh>

#include <qpdf/Pl_Buffer.hh>

#include <qpdf/Pl_Flate.hh>

#include <qpdf/QPDFWriter.hh>

#include <iostream>

#include <sstream>

#include <algorithm>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <assert.h>

#include <map>

static char const* whoami = 0;

void usage()

{

 std::cerr << "Usage: " << whoami << " n filename1 [arg2]"

 << std::endl;

 exit(2);

}

class Provider: public QPDFObjectHandle::StreamDataProvider

{

 public:

 Provider(PointerHolder<Buffer> b) :

 b(b),

 bad_length(false)

 {

 }

 virtual ~Provider()

 {

 }

 virtual void provideStreamData(int objid, int generation,

 Pipeline* p)

 {

 p->write(b->getBuffer(), b->getSize());

 if (this->bad_length)

 {

 unsigned char ch = ' ';

 p->write(&ch, 1);

 }

 p->finish();

 }

 void badLength(bool v)

 {

 this->bad_length = v;

 }

 private:

 PointerHolder<Buffer> b;

 bool bad_length;

};

class ParserCallbacks: public QPDFObjectHandle::ParserCallbacks

{

 public:

 virtual ~ParserCallbacks()

 {

 }

 virtual void handleObject(QPDFObjectHandle);

 virtual void handleEOF();

};

void

ParserCallbacks::handleObject(QPDFObjectHandle obj)

{

 if (obj.isName() && (obj.getName() == "/Abort"))

 {

 std::cout << "test suite: terminating parsing" << std::endl;

 terminateParsing();

 }

 std::cout << obj.getTypeName() << ": ";

 if (obj.isInlineImage())

 {

 // Exercise getTypeCode

 assert(obj.getTypeCode() == QPDFObject::ot_inlineimage);

 std::cout << QUtil::hex_encode(obj.getInlineImageValue()) << std::endl;

 }

 else

 {

 std::cout << obj.unparse() << std::endl;

 }

}

void

ParserCallbacks::handleEOF()

{

 std::cout << "-EOF-" << std::endl;

}

static std::string getPageContents(QPDFObjectHandle page)

{

 PointerHolder<Buffer> b1 =

 page.getKey("/Contents").getStreamData();

 return std::string(

 reinterpret_cast<char *>(b1->getBuffer()), b1->getSize()) + "\0";

}

static void checkPageContents(QPDFObjectHandle page,

 std::string const& wanted_string)

{

 std::string contents = getPageContents(page);

 if (contents.find(wanted_string) == std::string::npos)

 {

 std::cout << "didn't find " << wanted_string << " in "

 << contents << std::endl;

 }

}

static QPDFObjectHandle createPageContents(QPDF& pdf, std::string const& text)

{

 std::string contents = "BT /F1 15 Tf 72 720 Td (" + text + ") Tj ET\n";

 return QPDFObjectHandle::newStream(&pdf, contents);

}

void runtest(int n, char const* filename1, char const* arg2)

{

 // Most tests here are crafted to work on specific files. Look at

 // the test suite to see how the test is invoked to find the file

 // that the test is supposed to operate on.

 if (n == 0)

 {

 // Throw in some random test cases that don't fit anywhere

 // else. This is in addition to whatever else is going on in

 // test 0.

 // The code to trim user passwords looks for 0x28 (which is

 // "(") since it marks the beginning of the padding. Exercise

 // the code to make sure it skips over 0x28 characters that

 // aren't part of padding.

 std::string password(

 "1234567890123456789012(45678\x28\xbf\x4e\x5e");

 assert(password.length() == 32);

 QPDF::trim_user_password(password);

 assert(password == "1234567890123456789012(45678");

 QPDFObjectHandle uninitialized;

 assert(uninitialized.getTypeCode() == QPDFObject::ot_uninitialized);

 assert(strcmp(uninitialized.getTypeName(), "uninitialized") == 0);

 }

 QPDF pdf;

 PointerHolder<char> file_buf;

 FILE* filep = 0;

 if (n == 0)

 {

 pdf.setAttemptRecovery(false);

 }

 if (((n == 35) || (n == 36)) && (arg2 != 0))

 {

 // arg2 is password

 pdf.processFile(filename1, arg2);

 }

 else if (n % 2 == 0)

 {

 if (n % 4 == 0)

 {

 QTC::TC("qpdf", "exercise processFile(name)");

 pdf.processFile(filename1);

 }

 else

 {

 QTC::TC("qpdf", "exercise processFile(FILE*)");

 filep = QUtil::safe_fopen(filename1, "rb");

 pdf.processFile(filename1, filep, false);

 }

 }

 else

 {

 QTC::TC("qpdf", "exercise processMemoryFile");

 FILE* f = QUtil::safe_fopen(filename1, "rb");

 fseek(f, 0, SEEK_END);

 size_t size = QUtil::tell(f);

 fseek(f, 0, SEEK_SET);

 file_buf = PointerHolder<char>(true, new char[size]);

 char* buf_p = file_buf.getPointer();

 size_t bytes_read = 0;

 size_t len = 0;

 while ((len = fread(buf_p + bytes_read, 1, size - bytes_read, f)) > 0)

 {

 bytes_read += len;

 }

 if (bytes_read != size)

 {

 if (ferror(f))

 {

 throw std::runtime_error(

 std::string("failure reading file ") + filename1 +

 " into memory: read " +

 QUtil::int_to_string(bytes_read) + "; wanted " +

 QUtil::int_to_string(size));

 }

 else

 {

 throw std::logic_error(

 std::string("premature eof reading file ") + filename1 +

 " into memory: read " +

 QUtil::int_to_string(bytes_read) + "; wanted " +

 QUtil::int_to_string(size));

 }

 }

 fclose(f);

 pdf.processMemoryFile(filename1, buf_p, size);

 }

 if ((n == 0) || (n == 1))

 {

 QPDFObjectHandle trailer = pdf.getTrailer();

 QPDFObjectHandle qtest = trailer.getKey("/QTest");

 if (! trailer.hasKey("/QTest"))

 {

 // This will always happen when /QTest is null because

 // hasKey returns false for null keys regardless of

 // whether the key exists or not. That way there's never

 // any difference between a key that is present and null

 // and a key that is absent.

 QTC::TC("qpdf", "main QTest implicit");

 std::cout << "/QTest is implicit" << std::endl;

 }

 QTC::TC("qpdf", "main QTest indirect",

 qtest.isIndirect() ? 1 : 0);

 std::cout << "/QTest is "

 << (qtest.isIndirect() ? "in" : "")

 << "direct and has type "

 << qtest.getTypeName()

 << " (" << qtest.getTypeCode() << ")" << std::endl;

 if (qtest.isNull())

 {

 QTC::TC("qpdf", "main QTest null");

 std::cout << "/QTest is null" << std::endl;

 }

 else if (qtest.isBool())

 {

 QTC::TC("qpdf", "main QTest bool",

 qtest.getBoolValue() ? 1 : 0);

 std::cout << "/QTest is Boolean with value "

 << (qtest.getBoolValue() ? "true" : "false")

 << std::endl;

 }

 else if (qtest.isInteger())

 {

 QTC::TC("qpdf", "main QTest int");

 std::cout << "/QTest is an integer with value "

 << qtest.getIntValue() << std::endl;

 }

 else if (qtest.isReal())

 {

 QTC::TC("qpdf", "main QTest real");

 std::cout << "/QTest is a real number with value "

 << qtest.getRealValue() << std::endl;

 }

 else if (qtest.isName())

 {

 QTC::TC("qpdf", "main QTest name");

 std::cout << "/QTest is a name with value "

 << qtest.getName() << std::endl;

 }

 else if (qtest.isString())

 {

 QTC::TC("qpdf", "main QTest string");

 std::cout << "/QTest is a string with value "

 << qtest.getStringValue() << std::endl;

 }

 else if (qtest.isArray())

 {

 QTC::TC("qpdf", "main QTest array");

 int n = qtest.getArrayNItems();

 std::cout << "/QTest is an array with "

 << n << " items" << std::endl;

 for (int i = 0; i < n; ++i)

 {

 QTC::TC("qpdf", "main QTest array indirect",

 qtest.getArrayItem(i).isIndirect() ? 1 : 0);

 std::cout << " item " << i << " is "

 << (qtest.getArrayItem(i).isIndirect() ? "in" : "")

 << "direct" << std::endl;

 }

 }

 else if (qtest.isDictionary())

 {

 QTC::TC("qpdf", "main QTest dictionary");

 std::cout << "/QTest is a dictionary" << std::endl;

 std::set<std::string> keys = qtest.getKeys();

 for (std::set<std::string>::iterator iter = keys.begin();

 iter != keys.end(); ++iter)

 {

 QTC::TC("qpdf", "main QTest dictionary indirect",

 (qtest.getKey(*iter).isIndirect() ? 1 : 0));

 std::cout << " " << *iter << " is "

 << (qtest.getKey(*iter).isIndirect() ? "in" : "")

 << "direct" << std::endl;

 }

 }

 else if (qtest.isStream())

 {

 QTC::TC("qpdf", "main QTest stream");

 std::cout << "/QTest is a stream. Dictionary: "

 << qtest.getDict().unparse() << std::endl;

 std::cout << "Raw stream data:" << std::endl;

 std::cout.flush();

 QUtil::binary_stdout();

 PointerHolder<Pl_StdioFile> out = new Pl_StdioFile("raw", stdout);

 qtest.pipeStreamData(out.getPointer(), 0, qpdf_dl_none);

 std::cout << std::endl << "Uncompressed stream data:" << std::endl;

 if (qtest.pipeStreamData(0, 0, qpdf_dl_all))

 {

 std::cout.flush();

 QUtil::binary_stdout();

 out = new Pl_StdioFile("filtered", stdout);

 qtest.pipeStreamData(out.getPointer(), 0, qpdf_dl_all);

 std::cout << std::endl << "End of stream data" << std::endl;

 }

 else

 {

 std::cout << "Stream data is not filterable." << std::endl;

 }

 }

 else

 {

 // Should not happen!

 std::cout << "/QTest is an unknown object" << std::endl;

 }

 std::cout << "unparse: " << qtest.unparse() << std::endl

 << "unparseResolved: " << qtest.unparseResolved()

 << std::endl;

 }

 else if (n == 2)

 {

 // Encrypted file. This test case is designed for a specific

 // PDF file.

 QPDFObjectHandle trailer = pdf.getTrailer();

 std::cout << trailer.getKey("/Info").

 getKey("/CreationDate").getStringValue() << std::endl;

 std::cout << trailer.getKey("/Info").

 getKey("/Producer").getStringValue() << std::endl;

 QPDFObjectHandle encrypt = trailer.getKey("/Encrypt");

 std::cout << encrypt.getKey("/O").unparse() << std::endl;

 std::cout << encrypt.getKey("/U").unparse() << std::endl;

 QPDFObjectHandle root = pdf.getRoot();

 QPDFObjectHandle pages = root.getKey("/Pages");

 QPDFObjectHandle kids = pages.getKey("/Kids");

 QPDFObjectHandle page = kids.getArrayItem(1); // second page

 QPDFObjectHandle contents = page.getKey("/Contents");

 QUtil::binary_stdout();

 PointerHolder<Pl_StdioFile> out = new Pl_StdioFile("filtered", stdout);

 contents.pipeStreamData(out.getPointer(), 0, qpdf_dl_generalized);

 }

 else if (n == 3)

 {

 QPDFObjectHandle streams = pdf.getTrailer().getKey("/QStreams");

 for (int i = 0; i < streams.getArrayNItems(); ++i)

 {

 QPDFObjectHandle stream = streams.getArrayItem(i);

 std::cout << "-- stream " << i << " --" << std::endl;

 std::cout.flush();

 QUtil::binary_stdout();

 PointerHolder<Pl_StdioFile> out =

 new Pl_StdioFile("tokenized stream", stdout);

 stream.pipeStreamData(out.getPointer(),

 qpdf_ef_normalize, qpdf_dl_generalized);

 }

 }

 else if (n == 4)

 {

 // Mutability testing: Make /QTest direct recursively, then

 // copy to /Info. Also make some other mutations so we can

 // tell the difference and ensure that the original /QTest

 // isn't effected.

 QPDFObjectHandle trailer = pdf.getTrailer();

 QPDFObjectHandle qtest = trailer.getKey("/QTest");

 qtest.makeDirect();

 qtest.removeKey("/Subject");

 qtest.replaceKey("/Author",

 QPDFObjectHandle::newString("Mr. Potato Head"));

 // qtest.A and qtest.B.A were originally the same object.

 // They no longer are after makeDirect(). Mutate one of them

 // and ensure the other is not changed. These test cases are

 // crafted around a specific set of input files.

 QPDFObjectHandle A = qtest.getKey("/A");

 if (A.getArrayItem(0).getIntValue() == 1)

 {

 // Test mutators

 A.setArrayItem(1, QPDFObjectHandle::newInteger(5)); // 1 5 3

 A.insertItem(2, QPDFObjectHandle::newInteger(10)); // 1 5 10 3

 A.appendItem(QPDFObjectHandle::newInteger(12)); // 1 5 10 3 12

 A.eraseItem(3); // 1 5 10 12

 A.insertItem(4, QPDFObjectHandle::newInteger(6)); // 1 5 10 12 6

 A.insertItem(0, QPDFObjectHandle::newInteger(9)); // 9 1 5 10 12 6

 }

 else

 {

 std::vector<QPDFObjectHandle> items;

 items.push_back(QPDFObjectHandle::newInteger(14));

 items.push_back(QPDFObjectHandle::newInteger(15));

 items.push_back(QPDFObjectHandle::newInteger(9));

 A.setArrayFromVector(items);

 }

 trailer.replaceKey("/Info", pdf.makeIndirectObject(qtest));

 QPDFWriter w(pdf, 0);

 w.setQDFMode(true);

 w.setStaticID(true);

 w.write();

 // Prevent "done" message from getting appended

 exit(0);

 }

 else if (n == 5)

 {

 std::vector<QPDFObjectHandle> pages = pdf.getAllPages();

 int pageno = 0;

 for (std::vector<QPDFObjectHandle>::iterator iter = pages.begin();

 iter != pages.end(); ++iter)

 {

 QPDFObjectHandle& page = *iter;

 ++pageno;

 std::cout << "page " << pageno << ":" << std::endl;

 std::cout << " images:" << std::endl;

 std::map<std::string, QPDFObjectHandle> images =

 page.getPageImages();

 for (std::map<std::string, QPDFObjectHandle>::iterator iter =

 images.begin(); iter != images.end(); ++iter)

 {

 std::string const& name = (*iter).first;

 QPDFObjectHandle image = (*iter).second;

 QPDFObjectHandle dict = image.getDict();

 int width = dict.getKey("/Width").getIntValue();

 int height = dict.getKey("/Height").getIntValue();

 std::cout << " " << name

 << ": " << width << " x " << height

 << std::endl;

 }

 std::cout << " content:" << std::endl;

 std::vector<QPDFObjectHandle> content = page.getPageContents();

 for (std::vector<QPDFObjectHandle>::iterator iter = content.begin();

 iter != content.end(); ++iter)

 {

 std::cout << " " << (*iter).unparse() << std::endl;

 }

 std::cout << "end page " << pageno << std::endl;

 }

 QPDFObjectHandle root = pdf.getRoot();

 QPDFObjectHandle qstrings = root.getKey("/QStrings");

 if (qstrings.isArray())

 {

 std::cout << "QStrings:" << std::endl;

 int n = qstrings.getArrayNItems();

 for (int i = 0; i < n; ++i)

 {

 std::cout << qstrings.getArrayItem(i).getUTF8Value()

 << std::endl;

 }

 }

 QPDFObjectHandle qnumbers = root.getKey("/QNumbers");

 if (qnumbers.isArray())

 {

 std::cout << "QNumbers:" << std::endl;

 int n = qnumbers.getArrayNItems();

 for (int i = 0; i < n; ++i)

 {

 std::cout << QUtil::double_to_string(

 qnumbers.getArrayItem(i).getNumericValue(), 3)

 << std::endl;

 }

 }

 }

 else if (n == 6)

 {

 QPDFObjectHandle root = pdf.getRoot();

 QPDFObjectHandle metadata = root.getKey("/Metadata");

 if (! metadata.isStream())

 {

 throw std::logic_error("test 6 run on file with no metadata");

 }

 Pl_Buffer bufpl("buffer");

 metadata.pipeStreamData(&bufpl, 0, qpdf_dl_none);

 Buffer* buf = bufpl.getBuffer();

 unsigned char const* data = buf->getBuffer();

 bool cleartext = false;

 if ((buf->getSize() > 9) &&

 (strncmp(reinterpret_cast<char const*>(data),

 "<?xpacket", 9) == 0))

 {

 cleartext = true;

 }

 delete buf;

 std::cout << "encrypted="

 << (pdf.isEncrypted() ? 1 : 0)

 << "; cleartext="

 << (cleartext ? 1 : 0)

 << std::endl;

 }

 else if (n == 7)

 {

 QPDFObjectHandle root = pdf.getRoot();

 QPDFObjectHandle qstream = root.getKey("/QStream");

 if (! qstream.isStream())

 {

 throw std::logic_error("test 7 run on file with no QStream");

 }

 qstream.replaceStreamData(

 "new data for stream\n",

 QPDFObjectHandle::newNull(), QPDFObjectHandle::newNull());

 QPDFWriter w(pdf, "a.pdf");

 w.setStaticID(true);

 w.setStreamDataMode(qpdf_s_preserve);

 w.write();

 }

 else if (n == 8)

 {

 QPDFObjectHandle root = pdf.getRoot();

 QPDFObjectHandle qstream = root.getKey("/QStream");

 if (! qstream.isStream())

 {

 throw std::logic_error("test 7 run on file with no QStream");

 }

 Pl_Buffer p1("buffer");

 Pl_Flate p2("compress", &p1, Pl_Flate::a_deflate);

 p2.write(QUtil::unsigned_char_pointer("new data for stream\n"),

 20); // no null!

 p2.finish();

 PointerHolder<Buffer> b = p1.getBuffer();

 // This is a bogus way to use StreamDataProvider, but it does

 // adequately test its functionality.

 Provider* provider = new Provider(b);

 PointerHolder<QPDFObjectHandle::StreamDataProvider> p = provider;

 qstream.replaceStreamData(

 p, QPDFObjectHandle::newName("/FlateDecode"),

 QPDFObjectHandle::newNull());

 provider->badLength(false);

 QPDFWriter w(pdf, "a.pdf");

 w.setStaticID(true);

 // Linearize to force the provider to be called multiple times.

 w.setLinearization(true);

 w.setStreamDataMode(qpdf_s_preserve);

 w.write();

 // Every time a provider pipes stream data, it has to provide

 // the same amount of data.

 provider->badLength(true);

 try

 {

 qstream.getStreamData();

 std::cout << "oops -- getStreamData didn't throw" << std::endl;

 }

 catch (std::exception const& e)

 {

 std::cout << "exception: " << e.what() << std::endl;

 }

 }

 else if (n == 9)

 {

 QPDFObjectHandle root = pdf.getRoot();

 // Explicitly exercise the Buffer version of newStream

 PointerHolder<Buffer> buf = new Buffer(20);

 unsigned char* bp = buf->getBuffer();

 memcpy(bp, "data for new stream\n", 20); // no null!

 QPDFObjectHandle qstream = QPDFObjectHandle::newStream(

 &pdf, buf);

 QPDFObjectHandle rstream = QPDFObjectHandle::newStream(&pdf);

 try

 {

 rstream.getStreamData();

 std::cout << "oops -- getStreamData didn't throw" << std::endl;

 }

 catch (std::logic_error const& e)

 {

 std::cout << "exception: " << e.what() << std::endl;

 }

 rstream.replaceStreamData(

 "data for other stream\n",

 QPDFObjectHandle::newNull(), QPDFObjectHandle::newNull());

 root.replaceKey("/QStream", qstream);

 root.replaceKey("/RStream", rstream);

 QPDFWriter w(pdf, "a.pdf");

 w.setStaticID(true);

 w.setStreamDataMode(qpdf_s_preserve);

 w.write();

 }

 else if (n == 10)

 {

 std::vector<QPDFObjectHandle> pages = pdf.getAllPages();

 pages.at(0).addPageContents(

 QPDFObjectHandle::newStream(

 &pdf, "BT /F1 12 Tf 72 620 Td (Baked) Tj ET\n"), true);

 pages.at(0).addPageContents(

 QPDFObjectHandle::newStream(

 &pdf, "BT /F1 18 Tf 72 520 Td (Mashed) Tj ET\n"), false);

 QPDFWriter w(pdf, "a.pdf");

 w.setStaticID(true);

 w.setStreamDataMode(qpdf_s_preserve);

 w.write();

 }

 else if (n == 11)

 {

 QPDFObjectHandle root = pdf.getRoot();

 QPDFObjectHandle qstream = root.getKey("/QStream");

 PointerHolder<Buffer> b1 = qstream.getStreamData();

 PointerHolder<Buffer> b2 = qstream.getRawStreamData();

 if ((b1->getSize() == 7) &&

 (memcmp(b1->getBuffer(), "potato\n", 7) == 0))

 {

 std::cout << "filtered stream data okay" << std::endl;

 }

 if ((b2->getSize() == 15) &&

 (memcmp(b2->getBuffer(), "706F7461746F0A\n", 15) == 0))

 {

 std::cout << "raw stream data okay" << std::endl;

 }

 }

 else if (n == 12)

 {

 pdf.setOutputStreams(0, 0);

 pdf.showLinearizationData();

 }

 else if (n == 13)

 {

 std::ostringstream out;

 std::ostringstream err;

 pdf.setOutputStreams(&out, &err);

 pdf.showLinearizationData();

 std::cout << "---output---" << std::endl

 << out.str()

 << "---error---" << std::endl

 << err.str();

 }

 else if (n == 14)

 {

 // Exercise swap and replace. This test case is designed for

 // a specific file.

 std::vector<QPDFObjectHandle> pages = pdf.getAllPages();

 if (pages.size() != 4)

 {

 throw std::logic_error("test " + QUtil::int_to_string(n) +

 " not called 4-page file");

 }

 // Swap pages 2 and 3

 pdf.swapObjects(pages.at(1).getObjGen(), pages.at(2).getObjGen());

 // Replace object and swap objects

 QPDFObjectHandle trailer = pdf.getTrailer();

 QPDFObjectHandle qdict = trailer.getKey("/QDict");

 QPDFObjectHandle qarray = trailer.getKey("/QArray");

 // Force qdict but not qarray to resolve

 qdict.isDictionary();

 QPDFObjectHandle new_dict = QPDFObjectHandle::newDictionary();

 new_dict.replaceKey("/NewDict", QPDFObjectHandle::newInteger(2));

 try

 {

 // Do it wrong first...

 pdf.replaceObject(qdict.getObjGen(), qdict);

 }

 catch (std::logic_error)

 {

 std::cout << "caught logic error as expected" << std::endl;

 }

 pdf.replaceObject(qdict.getObjGen(), new_dict);

 // Now qdict still points to the old dictionary

 std::cout << "old dict: " << qdict.getKey("/Dict").getIntValue()

 << std::endl;

 // Swap dict and array

 pdf.swapObjects(qdict.getObjGen(), qarray.getObjGen());

 // Now qarray will resolve to new object but qdict is still

 // the old object

 std::cout << "old dict: " << qdict.getKey("/Dict").getIntValue()

 << std::endl;

 std::cout << "new dict: " << qarray.getKey("/NewDict").getIntValue()

 << std::endl;

 // Reread qdict, now pointing to an array

 qdict = pdf.getObjectByObjGen(qdict.getObjGen());

 std::cout << "swapped array: " << qdict.getArrayItem(0).getName()

 << std::endl;

 // Exercise getAsMap and getAsArray

 std::vector<QPDFObjectHandle> array_elements =

 qdict.getArrayAsVector();

 std::map<std::string, QPDFObjectHandle> dict_items =

 qarray.getDictAsMap();

 if ((array_elements.size() == 1) &&

 (array_elements.at(0).getName() == "/Array") &&

 (dict_items.size() == 1) &&

 (dict_items["/NewDict"].getIntValue() == 2))

 {

 std::cout << "array and dictionary contents are correct"

 << std::endl;

 }

 // Exercise writing to memory buffer

 for (int i = 0; i < 2; ++i)

 {

 QPDFWriter w(pdf);

 w.setOutputMemory();

 // Exercise setOutputMemory with and without static ID

 w.setStaticID(i == 0);

 w.setStreamDataMode(qpdf_s_preserve);

 w.write();

 Buffer* b = w.getBuffer();

 std::string const filename = (i == 0 ? "a.pdf" : "b.pdf");

 FILE* f = QUtil::safe_fopen(filename.c_str(), "wb");

 fwrite(b->getBuffer(), b->getSize(), 1, f);

 fclose(f);

 delete b;

 }

 }

 else if (n == 15)

 {

 std::vector<QPDFObjectHandle> const& pages = pdf.getAllPages();

 // Reference to original page numbers for this test case are

 // numbered from 0.

 // Remove pages from various places, checking to make sure

 // that our pages reference is getting updated.

 assert(pages.size() == 10);

 pdf.removePage(pages.back()); // original page 9

 assert(pages.size() == 9);

 pdf.removePage(*pages.begin()); // original page 0

 assert(pages.size() == 8);

 checkPageContents(pages.at(4), "Original page 5");

 pdf.removePage(pages.at(4)); // original page 5

 assert(pages.size() == 7);

 checkPageContents(pages.at(4), "Original page 6");

 checkPageContents(pages.at(0), "Original page 1");

 checkPageContents(pages.at(6), "Original page 8");

 // Insert pages

 // Create some content streams.

 std::vector<QPDFObjectHandle> contents;

 contents.push_back(createPageContents(pdf, "New page 1"));

 contents.push_back(createPageContents(pdf, "New page 0"));

 contents.push_back(createPageContents(pdf, "New page 5"));

 contents.push_back(createPageContents(pdf, "New page 6"));

 contents.push_back(createPageContents(pdf, "New page 11"));

 contents.push_back(createPageContents(pdf, "New page 12"));

 // Create some page objects. Start with an existing

 // dictionary and modify it. Using the results of

 // getDictAsMap to create a new dictionary effectively creates

 // a shallow copy.

 QPDFObjectHandle page_template = pages.at(0);

 std::vector<QPDFObjectHandle> new_pages;

 for (std::vector<QPDFObjectHandle>::iterator iter = contents.begin();

 iter != contents.end(); ++iter)

 {

 // We will retain indirect object references to other

 // indirect objects other than page content.

 QPDFObjectHandle page = page_template.shallowCopy();

 page.replaceKey("/Contents", *iter);

 if (iter == contents.begin())

 {

 // leave direct

 new_pages.push_back(page);

 }

 else

 {

 new_pages.push_back(pdf.makeIndirectObject(page));

 }

 }

 // Now insert the pages

 pdf.addPage(new_pages.at(0), true);

 checkPageContents(pages.at(0), "New page 1");

 pdf.addPageAt(new_pages.at(1), true, pages.at(0));

 assert(pages.at(0).getObjGen() == new_pages.at(1).getObjGen());

 pdf.addPageAt(new_pages.at(2), true, pages.at(5));

 assert(pages.at(5).getObjGen() == new_pages.at(2).getObjGen());

 pdf.addPageAt(new_pages.at(3), false, pages.at(5));

 assert(pages.at(6).getObjGen() == new_pages.at(3).getObjGen());

 assert(pages.size() == 11);

 pdf.addPage(new_pages.at(4), false);

 assert(pages.at(11).getObjGen() == new_pages.at(4).getObjGen());

 pdf.addPageAt(new_pages.at(5), false, pages.back());

 assert(pages.size() == 13);

 checkPageContents(pages.at(0), "New page 0");

 checkPageContents(pages.at(1), "New page 1");

 checkPageContents(pages.at(5), "New page 5");

 checkPageContents(pages.at(6), "New page 6");

 checkPageContents(pages.at(11), "New page 11");

 checkPageContents(pages.at(12), "New page 12");

 // Exercise writing to FILE*

 FILE* out = QUtil::safe_fopen("a.pdf", "wb");

 QPDFWriter w(pdf, "FILE* a.pdf", out, true);

 w.setStaticID(true);

 w.setStreamDataMode(qpdf_s_preserve);

 w.write();

 }

 else if (n == 16)

 {

 // Insert a page manually and then update the cache.

 std::vector<QPDFObjectHandle> const& all_pages = pdf.getAllPages();

 QPDFObjectHandle contents = createPageContents(pdf, "New page 10");

 QPDFObjectHandle page =

 pdf.makeIndirectObject(

 QPDFObjectHandle(all_pages.at(0)).shallowCopy());

 page.replaceKey("/Contents", contents);

 // Insert the page manually.

 QPDFObjectHandle root = pdf.getRoot();

 QPDFObjectHandle pages = root.getKey("/Pages");

 QPDFObjectHandle kids = pages.getKey("/Kids");

 page.replaceKey("/Parent", pages);

 pages.replaceKey(

 "/Count",

 QPDFObjectHandle::newInteger(1 + all_pages.size()));

 kids.appendItem(page);

 assert(all_pages.size() == 10);

 pdf.updateAllPagesCache();

 assert(all_pages.size() == 11);

 assert(all_pages.back().getObjGen() == page.getObjGen());

 QPDFWriter w(pdf, "a.pdf");

 w.setStaticID(true);

 w.setStreamDataMode(qpdf_s_preserve);

 w.write();

 }

 else if (n == 17)

 {

 // The input file to this test case is broken to exercise an

 // error condition.

 std::vector<QPDFObjectHandle> const& pages = pdf.getAllPages();

 pdf.removePage(pages.at(0));

 std::cout << "you can't see this" << std::endl;

 }

 else if (n == 18)

 {

 // Remove a page and re-insert it in the same file.

 std::vector<QPDFObjectHandle> const& pages = pdf.getAllPages();

 // Remove pages from various places, checking to make sure

 // that our pages reference is getting updated.

 assert(pages.size() == 10);

 QPDFObjectHandle page5 = pages.at(5);

 pdf.removePage(page5);

 pdf.addPage(page5, false);

 assert(pages.size() == 10);

 assert(pages.back().getObjGen() == page5.getObjGen());

 QPDFWriter w(pdf, "a.pdf");

 w.setStaticID(true);

 w.setStreamDataMode(qpdf_s_preserve);

 w.write();

 }

 else if (n == 19)

 {

 // Remove a page and re-insert it in the same file.

 std::vector<QPDFObjectHandle> const& pages = pdf.getAllPages();

 // Try to insert a page that's already there.

 pdf.addPage(pages.at(5), false);

 std::cout << "you can't see this" << std::endl;

 }

 else if (n == 20)

 {

 // Shallow copy an array

 QPDFObjectHandle trailer = pdf.getTrailer();

 QPDFObjectHandle qtest = trailer.getKey("/QTest");

 QPDFObjectHandle copy = qtest.shallowCopy();

 // Append shallow copy of a scalar

 copy.appendItem(trailer.getKey("/Size").shallowCopy());

 trailer.replaceKey("/QTest2", copy);

 QPDFWriter w(pdf, "a.pdf");

 w.setStaticID(true);

 w.setStreamDataMode(qpdf_s_preserve);

 w.write();

 }

 else if (n == 21)

 {

 // Try to shallow copy a stream

 std::vector<QPDFObjectHandle> const& pages = pdf.getAllPages();

 QPDFObjectHandle page = pages.at(0);

 QPDFObjectHandle contents = page.getKey("/Contents");

 contents.shallowCopy();

 std::cout << "you can't see this" << std::endl;

 }

 else if (n == 22)

 {

 // Try to remove a page we don't have

 std::vector<QPDFObjectHandle> const& pages = pdf.getAllPages();

 QPDFObjectHandle page = pages.at(0);

 pdf.removePage(page);

 pdf.removePage(page);

 std::cout << "you can't see this" << std::endl;

 }

 else if (n == 23)

 {

 std::vector<QPDFObjectHandle> const& pages = pdf.getAllPages();

 pdf.removePage(pages.back());

 }

 else if (n == 24)

 {

 // Test behavior of reserved objects

 QPDFObjectHandle res1 = QPDFObjectHandle::newReserved(&pdf);

 QPDFObjectHandle res2 = QPDFObjectHandle::newReserved(&pdf);

 QPDFObjectHandle trailer = pdf.getTrailer();

 trailer.replaceKey("Array1", res1);

 trailer.replaceKey("Array2", res2);

 QPDFObjectHandle array1 = QPDFObjectHandle::newArray();

 QPDFObjectHandle array2 = QPDFObjectHandle::newArray();

 array1.appendItem(res2);

 array1.appendItem(QPDFObjectHandle::newInteger(1));

 array2.appendItem(res1);

 array2.appendItem(QPDFObjectHandle::newInteger(2));

 // Make sure trying to ask questions about a reserved object

 // doesn't break it.

 if (res1.isArray())

 {

 std::cout << "oops -- res1 is an array" << std::endl;

 }

 if (res1.isReserved())

 {

 std::cout << "res1 is still reserved after checking if array"

 << std::endl;

 }

 pdf.replaceReserved(res1, array1);

 if (res1.isReserved())

 {

 std::cout << "oops -- res1 is still reserved" << std::endl;

 }

 else

 {

 std::cout << "res1 is no longer reserved" << std::endl;

 }

 res1.assertArray();

 std::cout << "res1 is an array" << std::endl;

 try

 {

 res2.unparseResolved();

 std::cout << "oops -- didn't throw" << std::endl;

 }

 catch (std::logic_error e)

 {

 std::cout << "logic error: " << e.what() << std::endl;

 }

 try

 {

 res2.makeDirect();

 std::cout << "oops -- didn't throw" << std::endl;

 }

 catch (std::logic_error e)

 {

 std::cout << "logic error: " << e.what() << std::endl;

 }

 pdf.replaceReserved(res2, array2);

 res2.assertArray();

 std::cout << "res2 is an array" << std::endl;

 // Verify that the previously added reserved keys can be

 // dereferenced properly now

 int i1 = res1.getArrayItem(0).getArrayItem(1).getIntValue();

 int i2 = res2.getArrayItem(0).getArrayItem(1).getIntValue();

 if ((i1 == 2) && (i2 == 1))

 {

 std::cout << "circular access and lazy resolution worked" << std::endl;

 }

 QPDFWriter w(pdf, "a.pdf");

 w.setStaticID(true);

 w.setStreamDataMode(qpdf_s_preserve);

 w.write();

 }

 else if (n == 25)

 {

 // The copy object tests are designed to work with a specific

 // file. Look at the test suite for the file, and look at the

 // file for comments about the file's structure.

 // Copy qtest without crossing page boundaries. Should get O1

 // and O2 and their streams but not O3 or any other pages.

 assert(arg2 != 0);

 QPDF newpdf;

 newpdf.processFile(arg2);

 QPDFObjectHandle qtest = pdf.getTrailer().getKey("/QTest");

 newpdf.getTrailer().replaceKey(

 "/QTest", newpdf.copyForeignObject(qtest));

 QPDFWriter w(newpdf, "a.pdf");

 w.setStaticID(true);

 w.setStreamDataMode(qpdf_s_preserve);

 w.write();

 }

 else if (n == 26)

 {

 // Copy the O3 page using addPage. Copy qtest without

 // crossing page boundaries. In addition to previous results,

 // should get page O3 but no other pages including the page

 // that O3 points to. Also, inherited object will have been

 // pushed down and will be preserved.

 assert(arg2 != 0);

 QPDF newpdf;

 newpdf.processFile(arg2);

 QPDFObjectHandle qtest = pdf.getTrailer().getKey("/QTest");

 QPDFObjectHandle O3 = qtest.getKey("/O3");

 newpdf.addPage(O3, false);

 newpdf.getTrailer().replaceKey(

 "/QTest", newpdf.copyForeignObject(qtest));

 QPDFWriter w(newpdf, "a.pdf");

 w.setStaticID(true);

 w.setStreamDataMode(qpdf_s_preserve);

 w.write();

 }

 else if (n == 27)

 {

 // Copy O3 and the page O3 refers to before copying qtest.

 // Should get qtest plus only the O3 page and the page that O3

 // points to. Inherited objects should be preserved.

 assert(arg2 != 0);

 QPDF newpdf;

 newpdf.processFile(arg2);

 QPDFObjectHandle qtest = pdf.getTrailer().getKey("/QTest");

 QPDFObjectHandle O3 = qtest.getKey("/O3");

 newpdf.addPage(O3.getKey("/OtherPage"), false);

 newpdf.addPage(O3, false);

 newpdf.getTrailer().replaceKey(

 "/QTest", newpdf.copyForeignObject(qtest));

 QPDFWriter w(newpdf, "a.pdf");

 w.setStaticID(true);

 w.setStreamDataMode(qpdf_s_preserve);

 w.write();

 }

 else if (n == 28)

 {

 // Copy foreign object errors

 try

 {

 pdf.copyForeignObject(pdf.getTrailer().getKey("/QTest"));

 std::cout << "oops -- didn't throw" << std::endl;

 }

 catch (std::logic_error e)

 {

 std::cout << "logic error: " << e.what() << std::endl;

 }

 try

 {

 pdf.copyForeignObject(QPDFObjectHandle::newInteger(1));

 std::cout << "oops -- didn't throw" << std::endl;

 }

 catch (std::logic_error e)

 {

 std::cout << "logic error: " << e.what() << std::endl;

 }

 }

 else if (n == 29)

 {

 // Detect mixed objects in QPDFWriter

 assert(arg2 != 0);

 QPDF other;

 other.processFile(arg2);

 // Should use copyForeignObject instead

 other.getTrailer().replaceKey(

 "/QTest", pdf.getTrailer().getKey("/QTest"));

 try

 {

 QPDFWriter w(other, "a.pdf");

 w.write();

 std::cout << "oops -- didn't throw" << std::endl;

 }

 catch (std::logic_error e)

 {

 std::cout << "logic error: " << e.what() << std::endl;

 }

 }

 else if (n == 30)

 {

 assert(arg2 != 0);

 QPDF encrypted;

 encrypted.processFile(arg2, "user");

 QPDFWriter w(pdf, "b.pdf");

 w.setStreamDataMode(qpdf_s_preserve);

 w.copyEncryptionParameters(encrypted);

 w.write();

 // Make sure the contents are actually the same

 QPDF final;

 final.processFile("b.pdf", "user");

 std::vector<QPDFObjectHandle> pages = pdf.getAllPages();

 std::string orig_contents = getPageContents(pages.at(0));

 pages = final.getAllPages();

 std::string new_contents = getPageContents(pages.at(0));

 if (orig_contents != new_contents)

 {

 std::cout << "oops -- page contents don't match" << std::endl

 << "original:\n" << orig_contents

 << "new:\n" << new_contents

 << std::endl;

 }

 }

 else if (n == 31)

 {

 // Test object parsing from a string. The input file is not used.

 QPDFObjectHandle o1 =

 QPDFObjectHandle::parse(

 "[/name 16059 3.14159 false\n"

 " << /key true /other [(string1) (string2)] >> null]");

 std::cout << o1.unparse() << std::endl;

 QPDFObjectHandle o2 = QPDFObjectHandle::parse(" 12345 \f ");

 assert(o2.isInteger() && (o2.getIntValue() == 12345));

 try

 {

 QPDFObjectHandle::parse("[1 0 R]", "indirect test");

 std::cout << "oops -- didn't throw" << std::endl;

 }

 catch (std::logic_error e)

 {

 std::cout << "logic error parsing indirect: " << e.what()

 << std::endl;

 }

 try

 {

 QPDFObjectHandle::parse("0 trailing", "trailing test");

 std::cout << "oops -- didn't throw" << std::endl;

 }

 catch (std::runtime_error e)

 {

 std::cout << "trailing data: " << e.what()

 << std::endl;

 }

 }

 else if (n == 32)

 {

 // Extra header text

 char const* filenames[] = {"a.pdf", "b.pdf", "c.pdf", "d.pdf"};

 for (int i = 0; i < 4; ++i)

 {

 bool linearized = ((i & 1) != 0);

 bool newline = ((i & 2) != 0);

 QPDFWriter w(pdf, filenames[i]);

 w.setStaticID(true);

 std::cout

 << "file: " << filenames[i] << std::endl

 << "linearized: " << (linearized ? "yes" : "no") << std::endl

 << "newline: " << (newline ? "yes" : "no") << std::endl;

 w.setLinearization(linearized);

 w.setExtraHeaderText(newline

 ? "%% Comment with newline\n"

 : "%% Comment\n% No newline");

 w.write();

 }

 }

 else if (n == 33)

 {

 // Test writing to a custom pipeline

 Pl_Buffer p("buffer");

 QPDFWriter w(pdf);

 w.setStaticID(true);

 w.setOutputPipeline(&p);

 w.write();

 PointerHolder<Buffer> b = p.getBuffer();

 FILE* f = QUtil::safe_fopen("a.pdf", "wb");

 fwrite(b->getBuffer(), b->getSize(), 1, f);

 fclose(f);

 }

 else if (n == 34)

 {

 // Look at Extensions dictionary

 std::cout << "version: " << pdf.getPDFVersion() << std::endl

 << "extension level: " << pdf.getExtensionLevel() << std::endl

 << pdf.getRoot().getKey("/Extensions").unparse() << std::endl;

 }

 else if (n == 35)

 {

 // Extract attachments

 std::map<std::string, PointerHolder<Buffer> > attachments;

 QPDFObjectHandle root = pdf.getRoot();

 QPDFObjectHandle names = root.getKey("/Names");

 QPDFObjectHandle embeddedFiles = names.getKey("/EmbeddedFiles");

 names = embeddedFiles.getKey("/Names");

 for (int i = 0; i < names.getArrayNItems(); ++i)

 {

 QPDFObjectHandle item = names.getArrayItem(i);

 if (item.isDictionary() &&

 item.getKey("/Type").isName() &&

 (item.getKey("/Type").getName() == "/Filespec") &&

 item.getKey("/EF").isDictionary() &&

 item.getKey("/EF").getKey("/F").isStream())

 {

 std::string filename = item.getKey("/F").getStringValue();

 QPDFObjectHandle stream = item.getKey("/EF").getKey("/F");

 attachments[filename] = stream.getStreamData();

 }

 }

 for (std::map<std::string, PointerHolder<Buffer> >::iterator iter =

 attachments.begin(); iter != attachments.end(); ++iter)

 {

 std::string const& filename = (*iter).first;

 std::string data = std::string(

 reinterpret_cast<char const*>((*iter).second->getBuffer()),

 (*iter).second->getSize());

 bool is_binary = false;

 for (size_t i = 0; i < data.size(); ++i)

 {

 if ((data.at(i) < 0) || (data.at(i) > 126))

 {

 is_binary = true;

 break;

 }

 }

 if (is_binary)

 {

 std::string t;

 for (size_t i = 0;

 i < std::min(data.size(), static_cast<size_t>(20));

 ++i)

 {

 if ((data.at(i) >= 32) && (data.at(i) <= 126))

 {

 t += data.at(i);

 }

 else

 {

 t += ".";

 }

 }

 t += " (" + QUtil::int_to_string(data.size()) + " bytes)";

 data = t;

 }

 std::cout << filename << ":\n" << data << "--END--\n";

 }

 }

 else if (n == 36)

 {

 // Extract raw unfilterable attachment

 QPDFObjectHandle root = pdf.getRoot();

 QPDFObjectHandle names = root.getKey("/Names");

 QPDFObjectHandle embeddedFiles = names.getKey("/EmbeddedFiles");

 names = embeddedFiles.getKey("/Names");

 for (int i = 0; i < names.getArrayNItems(); ++i)

 {

 QPDFObjectHandle item = names.getArrayItem(i);

 if (item.isDictionary() &&

 item.getKey("/Type").isName() &&

 (item.getKey("/Type").getName() == "/Filespec") &&

 item.getKey("/EF").isDictionary() &&

 item.getKey("/EF").getKey("/F").isStream() &&

 (item.getKey("/F").getStringValue() == "attachment1.txt"))

 {

 std::string filename = item.getKey("/F").getStringValue();

 QPDFObjectHandle stream = item.getKey("/EF").getKey("/F");

 Pl_Buffer p1("buffer");

 Pl_Flate p2("compress", &p1, Pl_Flate::a_inflate);

 stream.pipeStreamData(&p2, 0, qpdf_dl_none);

 PointerHolder<Buffer> buf = p1.getBuffer();

 std::string data = std::string(

 reinterpret_cast<char const*>(buf->getBuffer()),

 buf->getSize());

 std::cout << stream.getDict().unparse()

 << filename << ":\n" << data << "--END--\n";

 }

 }

 }

 else if (n == 37)

 {

 // Parse content streams of all pages

 std::vector<QPDFObjectHandle> pages = pdf.getAllPages();

 for (std::vector<QPDFObjectHandle>::iterator iter = pages.begin();

 iter != pages.end(); ++iter)

 {

 QPDFObjectHandle page = *iter;

 QPDFObjectHandle contents = page.getKey("/Contents");

 ParserCallbacks cb;

 QPDFObjectHandle::parseContentStream(contents, &cb);

 }

 }

 else if (n == 38)

 {

 // Designed for override-compressed-object.pdf

 QPDFObjectHandle qtest = pdf.getRoot().getKey("/QTest");

 for (int i = 0; i < qtest.getArrayNItems(); ++i)

 {

 std::cout << qtest.getArrayItem(i).unparseResolved() << std::endl;

 }

 }

 else if (n == 39)

 {

 // Display image filter and color set for each image on each page

 std::vector<QPDFObjectHandle> pages = pdf.getAllPages();

 int pageno = 0;

 for (std::vector<QPDFObjectHandle>::iterator p_iter =

 pages.begin();

 p_iter != pages.end(); ++p_iter)

 {

 std::cout << "page " << ++pageno << std::endl;

 std::map<std::string, QPDFObjectHandle> images =

 (*p_iter).getPageImages();

 for (std::map<std::string, QPDFObjectHandle>::iterator i_iter =

 images.begin(); i_iter != images.end(); ++i_iter)

 {

 QPDFObjectHandle image_dict = (*i_iter).second.getDict();

 std::cout << "filter: "

 << image_dict.getKey("/Filter").unparseResolved()

 << ", color space: "

 << image_dict.getKey("/ColorSpace").unparseResolved()

 << std::endl;

 }

 }

 }

 else if (n == 40)

 {

 // Write PCLm. This requires specially crafted PDF files. This

 // feature was implemented by Sahil Arora

 // <sahilarora.535@gmail.com> as part of a Google Summer of

 // Code project in 2017.

 assert(arg2 != 0);

 QPDFWriter w(pdf, arg2);

 w.setPCLm(true);

 w.setStaticID(true);

 w.write();

 }

 else

 {

 throw std::runtime_error(std::string("invalid test ") +

 QUtil::int_to_string(n));

 }

 if (filep)

 {

 fclose(filep);

 }

 std::cout << "test " << n << " done" << std::endl;

}

int main(int argc, char* argv[])

{

 QUtil::setLineBuf(stdout);

 if ((whoami = strrchr(argv[0], '/')) == NULL)

 {

 whoami = argv[0];

 }

 else

 {

 ++whoami;

 }

 // For libtool's sake....

 if (strncmp(whoami, "lt-", 3) == 0)

 {

 whoami += 3;

 }

 if ((argc < 3) || (argc > 4))

 {

 usage();

 }

 try

 {

 int n = QUtil::string_to_int(argv[1]);

 char const* filename1 = argv[2];

 char const* arg2 = argv[3];

 runtest(n, filename1, arg2);

 }

 catch (std::exception& e)

 {

 std::cerr << e.what() << std::endl;

 exit(2);

 }

 return 0;

}

qpdf-7.1.0/qpdf/fix-qdf

#!/usr/bin/env perl

require 5.008_001;
use warnings;
use strict;
use File::Basename;

my $whoami = basename($0);
my $dirname = dirname($0);

if ((@ARGV == 1) && ($ARGV[0] eq '--version'))
{
 exec "$dirname/qpdf", '--version';
 exit 2;
}

my $offset = 0;
my $last_offset = 0;

my $file = shift(@ARGV);
if (defined $file)
{
 open(F, "<$file") or die "$whoami: can't open $file: $!\n";
}
else
{
 $file = 'stdin';
 open(F, "<&STDIN") or die "$whoami: can't dup stdin: $!\n";
}
binmode F;
binmode STDOUT;

my $line = get_line();
if (! ((defined $line) && ($line =~ m/^%PDF-1\.\d+\b/)))
{
 die "$whoami: $file: not a pdf file\n";
}
print $line;
$line = get_line();
die "$whoami: $file: premature EOF\n" unless defined $line;
print $line;
$line = get_line();
if (! ((defined $line) && ($line =~ m/^%QDF-1.\d+\b/)))
{
 die "$whoami: $file: not a qdf file\n";
}
print $line;

my $last_obj = 0;
my @xref = ();

my $stream_start = 0;
my $stream_length = 0;
my $xref_offset = 0;
my $xref_f1_nbytes = 0;
my $xref_f2_nbytes = 0;
my $xref_size = 0;

my $cur_state = 0;
my $st_top = ++$cur_state;
my $st_in_obj = ++$cur_state;
my $st_in_stream = ++$cur_state;
my $st_after_stream = ++$cur_state;
my $st_in_ostream_dict = ++$cur_state;
my $st_in_ostream_offsets = ++$cur_state;
my $st_in_ostream_outer = ++$cur_state;
my $st_in_ostream_obj = ++$cur_state;
my $st_in_xref_stream_dict = ++$cur_state;
my $st_in_length = ++$cur_state;
my $st_at_xref = ++$cur_state;
my $st_before_trailer = ++$cur_state;
my $st_in_trailer = ++$cur_state;
my $st_done = ++$cur_state;

my @ostream = ();
my @ostream_offsets = ();
my @ostream_discarded = ();
my $ostream_idx = 0;
my $ostream_id = 0;
my $ostream_extends = "";

my $state = $st_top;
while (defined($line = get_line()))
{
 if ($state == $st_top)
 {
	if ($line =~ m/^(\d+) 0 obj$/)
	{
	 check_obj_id($1);
	 $state = $st_in_obj;
	}
	elsif ($line =~ m/^xref$/)
	{
	 $xref_offset = $last_offset;
	 $state = $st_at_xref;
	}
	print $line;
 }
 elsif ($state == $st_in_obj)
 {
	print $line;
	if ($line =~ m/^stream$/)
	{
	 $state = $st_in_stream;
	 $stream_start = $offset;
	}
	elsif ($line =~ m/^endobj$/)
	{
	 $state = $st_top;
	}
	elsif ($line =~ m,/Type /ObjStm,)
	{
	 $state = $st_in_ostream_dict;
	 $ostream_id = $last_obj;
	}
	elsif ($line =~ m,/Type /XRef,)
	{
	 $xref_offset = $xref[-1][1];
	 $xref_f1_nbytes = 0;
	 my $t = $xref_offset;
	 while ($t)
	 {
		$t >>= 8;
		++$xref_f1_nbytes;
	 }
 # Figure out how many bytes we need for ostream index.
 # Make sure we get at least 1 byte even if there are no
 # object streams.
 my $max_objects = 1;
 foreach my $e (@xref)
 {
 my ($type, $f1, $f2) = @$e;
 if ((defined $f2) && ($f2 > $max_objects))
 {
 $max_objects = $f2;
 }
 }
 while ($max_objects)
 {
 $max_objects >>=8;
 ++$xref_f2_nbytes;
 }
	 my $esize = 1 + $xref_f1_nbytes + $xref_f2_nbytes;
	 $xref_size = 1 + @xref;
	 my $length = $xref_size * $esize;
	 print " /Length $length\n";
	 print " /W [1 $xref_f1_nbytes $xref_f2_nbytes]\n";
	 $state = $st_in_xref_stream_dict;
	}
 }
 elsif ($state == $st_in_ostream_dict)
 {
	if ($line =~ m/^stream/)
	{
	 $state = $st_in_ostream_offsets;
	}
	else
	{
	 push(@ostream_discarded, $line);
	 if ($line =~ m,/Extends (\d+ 0 R),)
	 {
		$ostream_extends = $1;
	 }
	}
	# discard line
 }
 elsif ($state == $st_in_ostream_offsets)
 {
	if ($line =~ m/^\%\% Object stream: object (\d+)/)
	{
	 check_obj_id($1);
	 $stream_start = $last_offset;
	 $state = $st_in_ostream_outer;
	 push(@ostream, $line);
	}
	else
	{
	 push(@ostream_discarded, $line);
	}
	# discard line
 }
 elsif ($state == $st_in_ostream_outer)
 {
	adjust_ostream_xref();
	push(@ostream_offsets, $last_offset - $stream_start);
	$state = $st_in_ostream_obj;
	push(@ostream, $line);
 }
 elsif ($state == $st_in_ostream_obj)
 {
	push(@ostream, $line);
	if ($line =~ m/^\%\% Object stream: object (\d+)/)
	{
	 check_obj_id($1);
	 $state = $st_in_ostream_outer;
	}
	elsif ($line =~ m/^endstream/)
	{
	 $stream_length = $last_offset - $stream_start;
	 write_ostream();
	 $state = $st_in_obj;
	}
 }
 elsif ($state == $st_in_xref_stream_dict)
 {
	if ($line =~ m,/(Length|W) ,)
	{
	 # already printed
	}
	elsif ($line =~ m,/Size ,)
	{
	 my $size = 1 + @xref;
	 print " /Size $xref_size\n";
	}
	else
	{
	 print $line;
	}
	if ($line =~ m/^stream\n/)
	{
	 my $pack = "(C C$xref_f1_nbytes C$xref_f2_nbytes)";
	 print pack($pack, 0, 0, 0);
	 foreach my $x (@xref)
	 {
		my ($type, $f1, $f2) = @$x;
		$f2 = 0 unless defined $f2;
 my @f1 = ();
 my @f2 = ();
 foreach my $d ([\@f1, $f1, $xref_f1_nbytes],
 [\@f2, $f2, $xref_f2_nbytes])
 {
 my ($fa, $f, $nbytes) = @$d;
 for (my $i = 0; $i < $nbytes; ++$i)
 {
 unshift(@$fa, $f & 0xff);
 $f >>= 8;
 }
 }
		print pack($pack, $type, @f1, @f2);
	 }
	 print "\nendstream\nendobj\n\n";
	 print "startxref\n$xref_offset\n\%\%EOF\n";
	 $state = $st_done;
	}
 }
 elsif ($state == $st_in_stream)
 {
	if ($line =~ m/^endstream$/)
	{
	 $stream_length = $last_offset - $stream_start;
	 $state = $st_after_stream;
	}
	print $line;
 }
 elsif ($state == $st_after_stream)
 {
	if ($line =~ m/^\%QDF: ignore_newline$/)
	{
	 --$stream_length;
	}
	elsif ($line =~ m/^(\d+) 0 obj$/)
	{
	 check_obj_id($1);
	 $state = $st_in_length;
	}
	print $line;
 }
 elsif ($state == $st_in_length)
 {
	if ($line !~ m/^\d+$/)
	{
	 die "$file:$.: expected integer\n";
	}
	my $new = "$stream_length\n";
	$offset -= length($line);
	$offset += length($new);
	print $new;
	$state = $st_top;
 }
 elsif ($state == $st_at_xref)
 {
	my $n = scalar(@xref);
	print "0 ", $n+1, "\n0000000000 65535 f \n";
	for (@xref)
	{
	 my ($type, $f1, $f2) = @$_;
	 printf("%010d 00000 n \n", $f1);
	}
	$state = $st_before_trailer;
 }
 elsif ($state == $st_before_trailer)
 {
	if ($line =~ m/^trailer <</)
	{
	 print $line;
	 $state = $st_in_trailer;
	}
	# no output
 }
 elsif ($state == $st_in_trailer)
 {
	if ($line =~ m/^ \/Size \d+$/)
	{
	 print " /Size ", scalar(@xref) + 1, "\n";
	}
	else
	{
	 print $line;
	}
	if ($line =~ m/^>>$/)
	{
	 print "startxref\n$xref_offset\n\%\%EOF\n";
	 $state = $st_done;
	}
 }
 elsif ($state == $st_done)
 {
	# ignore
 }
}

die "$whoami: $file: premature EOF\n" unless $state == $st_done;

sub get_line
{
 my $line = scalar(<F>);
 if (defined $line)
 {
	$last_offset = $offset;
	$offset += length($line);
 }
 $line;
}

sub check_obj_id
{
 my $cur_obj = shift;
 if ($cur_obj != $last_obj + 1)
 {
	die "$file:$.: expected object ", $last_obj + 1, "\n";
 }
 $last_obj = $cur_obj;
 push(@xref, [1, $last_offset]);
}

sub adjust_ostream_xref
{
 pop(@xref);
 push(@xref, [2, $ostream_id, $ostream_idx++]);
}

sub write_ostream
{
 my $first = $ostream_offsets[0];
 my $onum = $ostream_id;
 my $offsets = "";
 my $n = scalar(@ostream_offsets);
 for (@ostream_offsets)
 {
	$_ -= $first;
	++$onum;
	$offsets .= "$onum $_\n";
 }
 my $offset_adjust = length($offsets);
 $first += length($offsets);
 $stream_length += length($offsets);
 my $dict_data = "";
 $dict_data .= " /Length $stream_length\n";
 $dict_data .= " /N $n\n";
 $dict_data .= " /First $first\n";
 if ($ostream_extends)
 {
	$dict_data .= " /Extends $ostream_extends\n";
 }
 $dict_data .= ">>\n";
 $offset_adjust += length($dict_data);
 print $dict_data;
 print "stream\n";
 print $offsets;
 foreach (@ostream)
 {
	print $_;
 }

 for (@ostream_discarded)
 {
	$offset -= length($_);
 }
 $offset += $offset_adjust;

 $ostream_idx = 0;
 $ostream_id = 0;
 @ostream = ();
 @ostream_offsets = ();
 @ostream_discarded = ();
 $ostream_extends = "";
}

qpdf-7.1.0/manual/common.xsl

 0pt

qpdf-7.1.0/manual/build.mk

INDOC = manual/qpdf-manual
OUTDOC = manual/$(OUTPUT_DIR)/qpdf-manual

TARGETS_manual := doc/qpdf.1 doc/fix-qdf.1 doc/zlib-flate.1
ifeq ($(BUILD_HTML),1)
TARGETS_manual += doc/qpdf-manual.html
endif
ifeq ($(BUILD_PDF),1)
TARGETS_manual += doc/qpdf-manual.pdf
endif

VALIDATE=manual/$(OUTPUT_DIR)/validate

ifeq ($(VALIDATE_DOC),1)

$(VALIDATE): $(INDOC).xml
	$(XMLLINT) --noout --dtdvalid $(DOCBOOKX_DTD) $<
	touch $(VALIDATE)

else

$(VALIDATE):
	touch $(VALIDATE)

endif

$(OUTDOC).pdf: $(OUTDOC).fo qpdf/build/qpdf
	$(FOP) $< -pdf $@.tmp
	qpdf/build/qpdf --linearize $@.tmp $@

$(OUTDOC).html: $(INDOC).xml manual/html.xsl $(VALIDATE)
	$(XSLTPROC) --output $@ manual/html.xsl $<

.PRECIOUS: $(OUTDOC).fo
$(OUTDOC).fo: $(INDOC).xml manual/print.xsl $(VALIDATE)
	$(XSLTPROC) --output $@ manual/print.xsl $<

doc/%.1: manual/%.1.in
	sed -e 's:@PACKAGE_VERSION@:$(PACKAGE_VERSION):g' \
	 -e 's:@docdir@:$(docdir):g' \
	 < $< > $@

doc/%: manual/$(OUTPUT_DIR)/%
	cp $< $@

qpdf-7.1.0/manual/Makefile

include ../make/proxy.mk

qpdf-7.1.0/manual/qpdf.1.in

\" This file is not processed by autoconf, but rather by build.mk in
\" the manual directory.
.TH QPDF "1" "April 2008" "qpdf version @PACKAGE_VERSION@" "User Commands"
.SH NAME
qpdf \- PDF transformation software
.SH SYNOPSIS
.B qpdf
[\fIoptions \fR] \fIinfilename [outfilename]\fR
.SH DESCRIPTION
The qpdf program is used to convert one PDF file to another equivalent
PDF file. It is capable of performing a variety of transformations
such as linearization (also known as web optimization or fast web
viewing), encryption, and decryption of PDF files. It also has many
options for inspecting or checking PDF files, some of which are
useful primarily to PDF developers.
.PP
For a summary of qpdf's options, please run
\fBqpdf --help\fR. A complete manual can be found in
@docdir@/qpdf-manual.html or @docdir@/qpdf-manual.pdf.

qpdf-7.1.0/manual/html.xsl.in

 stylesheet.css

qpdf-7.1.0/manual/README

This directory contains sources to the documentation. If you are
looking for pre-built documentation, please look in the "doc"
directory.

qpdf-7.1.0/manual/print.xsl.in

 #F0F0F0
 0.5pt
 solid
 #575757
 3pt

 #00c

qpdf-7.1.0/manual/zlib-flate.1.in

\" This file is not processed by autoconf, but rather by build.mk in
\" the manual directory.
.TH ZLIB-FLATE "1" "April 2008" "zlib-flate from qpdf version @PACKAGE_VERSION@" "User Commands"
.SH NAME
zlib-flate \- raw zlib compression program
.SH SYNOPSIS
.B zlib-flate
\fI-compress | -uncompress\fR
.SH DESCRIPTION
The zlib-flate program is part of the qpdf package.
.PP
The zlib-flate program reads from standard input and writes to
standard output either compressing or uncompressing its input using raw
zlib compression. It can be used to uncompress or compress raw PDF
streams or other data that is compressed with raw zlib compression.
This program is provided primarily as a debugging tool, though it
could be used for other purposes, such as being called from a script
that creates simple PDF files.
.PP
This program should not be used as a general purpose compression
tool. Use something like gzip(1) instead.
.PP
For details about qpdf, please see the qpdf manual, which can be found
in @docdir@/qpdf-manual.html or @docdir@/qpdf-manual.pdf.
.SH "SEE ALSO"
qpdf(1), gzip(1)

qpdf-7.1.0/manual/qpdf-manual.xml

 QPDF Manual
 For QPDF Version 7.1.0, January 14, 2018

 Jay Berkenbilt

 2005–2018
 Jay Berkenbilt

 General Information

 QPDF is a program that does structural, content-preserving
 transformations on PDF files. QPDF's website is located at http://qpdf.sourceforge.net/.
 QPDF's source code is hosted on github at https://github.com/qpdf/qpdf.

 QPDF is licensed under the Apache
 License, Version 2.0 (the "License"). Unless required by
 applicable law or agreed to in writing, software distributed under
 the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the specific language governing permissions and
 limitations under the License.

 Versions of qpdf prior to version 7 were released under the terms
 of the
 Artistic License, version 2.0. At your option, you may
 continue to consider qpdf to be licensed under those terms. The
 Apache License 2.0 permits everything that the Artistic License 2.0
 permits but is slightly less restrictive. Allowing the Artistic
 License to continue being used is primary to help people who may
 have to get specific approval to use qpdf in their products.

 QPDF is intentionally released with a permissive license. However,
 if there is some reason that the licensing terms don't work for
 your requirements, please feel free to contact the copyright holder
 to make other arrangements.

 QPDF was originally created in 2001 and modified periodically
 between 2001 and 2005 during my employment at Apex CoVantage. Upon my
 departure from Apex, the company graciously allowed me to take
 ownership of the software and continue maintaining as an open
 source project, a decision for which I am very grateful. I have
 made considerable enhancements to it since that time. I feel
 fortunate to have worked for people who would make such a decision.
 This work would not have been possible without their support.

 What is QPDF?

 QPDF is a program that does structural, content-preserving
 transformations on PDF files. It could have been called something
 like pdf-to-pdf. It also provides many useful
 capabilities to developers of PDF-producing software or for people
 who just want to look at the innards of a PDF file to learn more
 about how they work.

 With QPDF, it is possible to copy objects from one PDF file into
 another and to manipulate the list of pages in a PDF file. This
 makes it possible to merge and split PDF files. The QPDF library
 also makes it possible for you to create PDF files from scratch.
 In this mode, you are responsible for supplying all the contents of
 the file, while the QPDF library takes care off all the syntactical
 representation of the objects, creation of cross references tables
 and, if you use them, object streams, encryption, linearization,
 and other syntactic details. You are still responsible for
 generating PDF content on your own.

 QPDF has been designed with very few external dependencies, and it
 is intentionally very lightweight. QPDF is
 not a PDF content creation library, a PDF
 viewer, or a program capable of converting PDF into other formats.
 In particular, QPDF knows nothing about the semantics of PDF
 content streams. If you are looking for something that can do
 that, you should look elsewhere. However, once you have a valid
 PDF file, QPDF can be used to transform that file in ways perhaps
 your original PDF creation can't handle. For example, many
 programs generate simple PDF files but can't password-protect them,
 web-optimize them, or perform other transformations of that type.

 Building and Installing QPDF

 This chapter describes how to build and install qpdf. Please see
 also the README.md and
 INSTALL files in the source distribution.

 System Requirements

 The qpdf package has few external dependencies. In order to build
 qpdf, the following packages are required:

 zlib: http://www.zlib.net/

 jpeg: http://www.ijg.org/files/
 or https://libjpeg-turbo.org/

 gnu make 3.81 or newer: http://www.gnu.org/software/make

 perl version 5.8 or newer:
 http://www.perl.org/;
 required for fix-qdf and the test suite.

 GNU diffutils (any version): http://www.gnu.org/software/diffutils/
 is required to run the test suite. Note that this is the
 version of diff present on virtually all GNU/Linux systems.
 This is required because the test suite uses diff
 -u.

 A C++ compiler that works well with STL and has the long
 long type. Most modern C++ compilers should fit the bill
 fine. QPDF is tested with gcc, clang, and Microsoft Visual C++.

 Part of qpdf's test suite does comparisons of the contents PDF
 files by converting them images and comparing the images. The
 image comparison tests are disabled by default. Those tests are
 not required for determining correctness of a qpdf build if you
 have not modified the code since the test suite also contains
 expected output files that are compared literally. The image
 comparison tests provide an extra check to make sure that any
 content transformations don't break the rendering of pages.
 Transformations that affect the content streams themselves are off
 by default and are only provided to help developers look into the
 contents of PDF files. If you are making deep changes to the
 library that cause changes in the contents of the files that qpdf
 generates, then you should enable the image comparison tests.
 Enable them by running configure with the
 --enable-test-compare-images flag. If you enable
 this, the following additional requirements are required by the
 test suite. Note that in no case are these items required to use
 qpdf.

 libtiff: http://www.remotesensing.org/libtiff/

 GhostScript version 8.60 or newer: http://www.ghostscript.com

 If you do not enable this, then you do not need to have tiff and
 ghostscript.

 If Adobe Reader is installed as acroread, some
 additional test cases will be enabled. These test cases simply
 verify that Adobe Reader can open the files that qpdf creates.
 They require version 8.0 or newer to pass. However, in order to
 avoid having qpdf depend on non-free (as in liberty) software, the
 test suite will still pass without Adobe reader, and the test
 suite still exercises the full functionality of the software.

 Pre-built documentation is distributed with qpdf, so you should
 generally not need to rebuild the documentation. In order to
 build the documentation from its docbook sources, you need the
 docbook XML style sheets (http://downloads.sourceforge.net/docbook/).
 To build the PDF version of the documentation, you need Apache fop
 (http://xml.apache.org/fop/)
 version 0.94 or higher.

 Build Instructions

 Building qpdf on UNIX is generally just a matter of running

 ./configure
make

 You can also run make check to run the test
 suite and make install to install. Please run
 ./configure --help for options on what can be
 configured. You can also set the value of
 DESTDIR during installation to install to a
 temporary location, as is common with many open source packages.
 Please see also the README.md and
 INSTALL files in the source distribution.

 Building on Windows is a little bit more complicated. For
 details, please see README-windows.md in the
 source distribution. You can also download a binary distribution
 for Windows. There is a port of qpdf to Visual C++ version 6 in
 the contrib area generously contributed by
 Jian Ma. This is also discussed in more detail in
 README-windows.md.

 There are some other things you can do with the build. Although
 qpdf uses autoconf, it does not use
 automake but instead uses a
 hand-crafted non-recursive Makefile that requires gnu make. If
 you're really interested, please read the comments in the
 top-level Makefile.

 Running QPDF

 This chapter describes how to run the qpdf program from the command
 line.

 Basic Invocation

 When running qpdf, the basic invocation is as follows:

 qpdf [options] infilename [outfilename]

 This converts PDF file infilename to PDF file
 outfilename. The output file is functionally
 identical to the input file but may have been structurally
 reorganized. Also, orphaned objects will be removed from the
 file. Many transformations are available as controlled by the
 options below. In place of infilename, the
 parameter --empty may be specified. This causes
 qpdf to use a dummy input file that contains zero pages. The only
 normal use case for using --empty would be if you
 were going to add pages from another source, as discussed in .

 If @filename appears anywhere in the
 command-line, it will be read line by line, and each line will be
 treated as a command-line argument. The @- option
 allows arguments to be read from standard input. This allows qpdf
 to be invoked with an arbitrary number of arbitrarily long
 arguments. It is also very useful for avoiding having to pass
 passwords on the command line.

 outfilename does not have to be seekable, even
 when generating linearized files. Specifying
 “ -” as outfilename
 means to write to standard output. However, you can't specify the
 same file as both the input and the output because qpdf reads data
 from the input file as it writes to the output file. QPDF attempts
 to detect this case and fail without overwriting the output file.

 Most options require an output file, but some testing or
 inspection commands do not. These are specifically noted.

 Basic Options

 The following options are the most common ones and perform
 commonly needed transformations.

 --password=password

 Specifies a password for accessing encrypted files.

 --verbose

 Increase verbosity of output. For now, this just prints some
 indication of any file that it creates.

 --linearize

 Causes generation of a linearized (web-optimized) output file.

 --copy-encryption=file

 Encrypt the file using the same encryption parameters,
 including user and owner password, as the specified file. Use
 --encrypt-file-password to specify a password
 if one is needed to open this file. Note that copying the
 encryption parameters from a file also copies the first half
 of /ID from the file since this is part of
 the encryption parameters.

 --encrypt-file-password=password

 If the file specified with --copy-encryption
 requires a password, specify the password using this option.
 Note that only one of the user or owner password is required.
 Both passwords will be preserved since QPDF does not
 distinguish between the two passwords. It is possible to
 preserve encryption parameters, including the owner password,
 from a file even if you don't know the file's owner password.

 --encrypt options --

 Causes generation an encrypted output file. Please see for details on how to
 specify encryption parameters.

 --decrypt

 Removes any encryption on the file. A password must be
 supplied if the file is password protected.

 --password-is-hex-key

 Overrides the usual computation/retrieval of the PDF file's
 encryption key from user/owner password with an explicit
 specification of the encryption key. When this option is
 specified, the argument to the --password
 option is interpreted as a hexadecimal-encoded key value. This
 only applies to the password used to open the main input file.
 It does not apply to other files opened by
 --pages or other options or to files being
 written.

 Most users will never have a need for this option, and no
 standard viewers support this mode of operation, but it can be
 useful for forensic or investigatory purposes. For example, if
 a PDF file is encrypted with an unknown password, a
 brute-force attack using the key directly is sometimes more
 efficient than one using the password. Also, if a file is
 heavily damaged, it may be possible to derive the encryption
 key and recover parts of the file using it directly. To expose
 the encryption key used by an encrypted file that you can open
 normally, use the --show-encryption-key
 option.

 --rotate=[+|-]angle:page-range

 Apply rotation to specified pages. The
 page-range portion of the option value has
 the same format as page ranges in . The angle
 portion of the parameter may be either 90, 180, or 270. If
 preceded by + or -, the
 angle is added to or subtracted from the specified pages'
 original rotations. Otherwise the pages' rotations are set to
 the exact value. For example, the command qpdf in.pdf
 out.pdf --rotate=+90:2,4,6 --rotate=180:7-8 would
 rotate pages 2, 4, and 6 90 degrees clockwise from their
 original rotation and force the rotation of pages 7 through 9
 to 180 degrees regardless of their original rotation.

 --pages options --

 Select specific pages from one or more input files. See for details on how to do page
 selection (splitting and merging).

 --split-pages=[n]

 Write each group of n pages to a separate
 output file. If n is not specified, create
 single pages. Output file names are generated as follows:

 If the string %d appears in the output
 file name, it is replaced with a range of zero-padded page
 numbers starting from 1.

 Otherwise, if the output file name ends in
 .pdf (case insensitive), a zero-padded
 page range, preceded by a dash, is inserted before the file
 extension.

 Otherwise, the file name is appended with a zero-padded
 page range preceded by a dash.

 Page ranges are a single number in the case of single-page
 groups or two numbers separated by a dash otherwise.
 For example, if infile.pdf has 12 pages

 qpdf --split-pages infile.pdf %d-out
 would generate files 01-out through
 12-out

 qpdf --split-pages=2 infile.pdf
 outfile.pdf would generate files
 outfile-01-02.pdf through
 outfile-11-12.pdf

 qpdf --split-pages infile.pdf
 something.else would generate files
 something.else-01 through
 something.else-12

 Note that outlines, threads, and other global features of the
 original PDF file are not preserved. For each page of output,
 this option creates an empty PDF and copies a single page from
 the output into it. If you require the global data, you will
 have to run qpdf with the
 --pages option once for each file. Using
 --split-pages is much faster if you don't
 require the global data.

 Password-protected files may be opened by specifying a password.
 By default, qpdf will preserve any encryption data associated with
 a file. If --decrypt is specified, qpdf will
 attempt to remove any encryption information. If
 --encrypt is specified, qpdf will replace the
 document's encryption parameters with whatever is specified.

 Note that qpdf does not obey encryption restrictions already
 imposed on the file. Doing so would be meaningless since qpdf can
 be used to remove encryption from the file entirely. This
 functionality is not intended to be used for bypassing copyright
 restrictions or other restrictions placed on files by their
 producers.

 In all cases where qpdf allows specification of a password, care
 must be taken if the password contains characters that fall
 outside of the 7-bit US-ASCII character range to ensure that the
 exact correct byte sequence is provided. It is possible that a
 future version of qpdf may handle this more gracefully. For
 example, if a password was encrypted using a password that was
 encoded in ISO-8859-1 and your terminal is configured to use
 UTF-8, the password you supply may not work properly. There are
 various approaches to handling this. For example, if you are
 using Linux and have the iconv executable installed, you could
 pass --password=`echo password
 | iconv -t iso-8859-1` to qpdf where
 password is a password specified in
 your terminal's locale. A detailed discussion of this is out of
 scope for this manual, but just be aware of this issue if you have
 trouble with a password that contains 8-bit characters.

 Encryption Options

 To change the encryption parameters of a file, use the --encrypt
 flag. The syntax is

 --encrypt user-password owner-password key-length [restrictions] --

 Note that “ --” terminates parsing of
 encryption flags and must be present even if no restrictions are
 present.

 Either or both of the user password and the owner password may be
 empty strings.

 The value for
 key-length may be 40,
 128, or 256. The restriction flags are dependent upon key length.
 When no additional restrictions are given, the default is to be
 fully permissive.

 If key-length is 40,
 the following restriction options are available:

 --print=[yn]

 Determines whether or not to allow printing.

 --modify=[yn]

 Determines whether or not to allow document modification.

 --extract=[yn]

 Determines whether or not to allow text/image extraction.

 --annotate=[yn]

 Determines whether or not to allow comments and form fill-in
 and signing.

 If key-length is 128,
 the following restriction options are available:

 --accessibility=[yn]

 Determines whether or not to allow accessibility to visually
 impaired.

 --extract=[yn]

 Determines whether or not to allow text/graphic extraction.

 --print= print-opt

 Controls printing access.
 print-opt may be
 one of the following:

 full: allow full printing

 low: allow low-resolution printing only

 none: disallow printing

 --modify= modify-opt

 Controls modify access.
 modify-opt may be
 one of the following, each of which implies all the options
 that follow it:

 all: allow full document modification

 annotate: allow comment authoring and form operations

 form: allow form field fill-in and signing

 assembly: allow document assembly only

 none: allow no modifications

 --cleartext-metadata

 If specified, any metadata stream in the document will be left
 unencrypted even if the rest of the document is encrypted.
 This also forces the PDF version to be at least 1.5.

 --use-aes=[yn]

 If --use-aes=y is specified, AES encryption
 will be used instead of RC4 encryption. This forces the PDF
 version to be at least 1.6.

 --force-V4

 Use of this option forces the /V and
 /R parameters in the document's encryption
 dictionary to be set to the value 4. As
 qpdf will automatically do this when required, there is no
 reason to ever use this option. It exists primarily for use
 in testing qpdf itself. This option also forces the PDF
 version to be at least 1.5.

 If key-length is 256,
 the minimum PDF version is 1.7 with extension level 8, and the
 AES-based encryption format used is the PDF 2.0 encryption method
 supported by Acrobat X. the same options are available as with
 128 bits with the following exceptions:

 --use-aes

 This option is not available with 256-bit keys. AES is always
 used with 256-bit encryption keys.

 --force-V4

 This option is not available with 256 keys.

 --force-R5

 If specified, qpdf sets the minimum version to 1.7 at
 extension level 3 and writes the deprecated encryption format
 used by Acrobat version IX. This option should not be used in
 practice to generate PDF files that will be in general use,
 but it can be useful to generate files if you are trying to
 test proper support in another application for PDF files
 encrypted in this way.

 The default for each permission option is to be fully permissive.

 Page Selection Options

 Starting with qpdf 3.0, it is possible to split and merge PDF
 files by selecting pages from one or more input files. Whatever
 file is given as the primary input file is used as the starting
 point, but its pages are replaced with pages as specified.

 --pages input-file [--password=password] [page-range] [...] --

 Multiple input files may be specified. Each one is given as the
 name of the input file, an optional password (if required to open
 the file), and the range of pages. Note that
 “ --” terminates parsing of page
 selection flags.

 For each file that pages should be taken from, specify the file, a
 password needed to open the file (if any), and a page range. The
 password needs to be given only once per file. If any of the
 input files are the same as the primary input file or the file
 used to copy encryption parameters (if specified), you do not need
 to repeat the password here. The same file can be repeated
 multiple times. If a file that is repeated has a password, the
 password only has to be given the first time. All non-page data
 (info, outlines, page numbers, etc.) are taken from the primary
 input file. To discard these, use --empty as the
 primary input.

 Starting with qpdf 5.0.0, it is possible to omit the page range.
 If qpdf sees a value in the place where it expects a page range
 and that value is not a valid range but is a valid file name, qpdf
 will implicitly use the range 1-z, meaning that
 it will include all pages in the file. This makes it possible to
 easily combine all pages in a set of files with a command like
 qpdf --empty out.pdf --pages *.pdf --.

 It is not presently possible to specify the same page from the
 same file directly more than once, but you can make this work by
 specifying two different paths to the same file (such as by
 putting ./ somewhere in the path). This can
 also be used if you want to repeat a page from one of the input
 files in the output file. This may be made more convenient in a
 future version of qpdf if there is enough demand for this feature.

 The page range is a set of numbers separated by commas, ranges of
 numbers separated dashes, or combinations of those. The character
 “z” represents the last page. Pages can appear in any
 order. Ranges can appear with a high number followed by a low
 number, which causes the pages to appear in reverse. Repeating a
 number will cause an error, but you can use the workaround
 discussed above should you really want to include the same page
 twice.

 Example page ranges:

 1,3,5-9,15-12: pages 1, 3, 5, 6, 7, 8,
 9, 15, 14, 13, and 12 in that order.

 z-1: all pages in the document in reverse

 Note that qpdf doesn't presently do anything special about other
 constructs in a PDF file that may know about pages, so semantics
 of splitting and merging vary across features. For example, the
 document's outlines (bookmarks) point to actual page objects, so
 if you select some pages and not others, bookmarks that point to
 pages that are in the output file will work, and remaining
 bookmarks will not work. On the other hand, page labels (page
 numbers specified in the file) are just sequential, so page labels
 will be messed up in the output file. A future version of
 qpdf may do a better job at handling these
 issues. (Note that the qpdf library already contains all of the
 APIs required in order to implement this in your own application
 if you need it.) In the mean time, you can always use
 --empty as the primary input file to avoid
 copying all of that from the first file. For example, to take
 pages 1 through 5 from a infile.pdf while
 preserving all metadata associated with that file, you could use

 qpdf infile.pdf --pages infile.pdf 1-5 -- outfile.pdf

 If you wanted pages 1 through 5 from
 infile.pdf but you wanted the rest of the
 metadata to be dropped, you could instead run

 qpdf --empty --pages infile.pdf 1-5 -- outfile.pdf

 If you wanted to take pages 1–5 from
 file1.pdf and pages 11–15 from
 file2.pdf in reverse, you would run

 qpdf file1.pdf --pages file1.pdf 1-5 file2.pdf 15-11 -- outfile.pdf

 If, for some reason, you wanted to take the first page of an
 encrypted file called encrypted.pdf with
 password pass and repeat it twice in an output
 file, and if you wanted to drop metadata (like page numbers and
 outlines) but preserve encryption, you would use

 qpdf --empty --copy-encryption=encrypted.pdf --encryption-file-password=pass
--pages encrypted.pdf --password=pass 1 ./encrypted.pdf --password=pass 1 --
outfile.pdf

 Note that we had to specify the password all three times because
 giving a password as --encryption-file-password
 doesn't count for page selection, and as far as qpdf is concerned,
 encrypted.pdf and
 ./encrypted.pdf are separated files. These
 are all corner cases that most users should hopefully never have
 to be bothered with.

 Advanced Parsing Options

 These options control aspects of how qpdf reads PDF files. Mostly
 these are of use to people who are working with damaged files.
 There is little reason to use these options unless you are trying
 to solve specific problems. The following options are available:

 --suppress-recovery

 Prevents qpdf from attempting to recover damaged files.

 --ignore-xref-streams

 Tells qpdf to ignore any cross-reference streams.

 Ordinarily, qpdf will attempt to recover from certain types of
 errors in PDF files. These include errors in the cross-reference
 table, certain types of object numbering errors, and certain types
 of stream length errors. Sometimes, qpdf may think it has
 recovered but may not have actually recovered, so care should be
 taken when using this option as some data loss is possible. The
 --suppress-recovery option will prevent qpdf from
 attempting recovery. In this case, it will fail on the first
 error that it encounters.

 Ordinarily, qpdf reads cross-reference streams when they are
 present in a PDF file. If --ignore-xref-streams
 is specified, qpdf will ignore any cross-reference streams for
 hybrid PDF files. The purpose of hybrid files is to make some
 content available to viewers that are not aware of cross-reference
 streams. It is almost never desirable to ignore them. The only
 time when you might want to use this feature is if you are testing
 creation of hybrid PDF files and wish to see how a PDF consumer
 that doesn't understand object and cross-reference streams would
 interpret such a file.

 Advanced Transformation Options

 These transformation options control fine points of how qpdf
 creates the output file. Mostly these are of use only to people
 who are very familiar with the PDF file format or who are PDF
 developers. The following options are available:

 --compress-streams= [yn]

 By default, or with --compress-streams=y,
 qpdf will compress any stream with no other filters applied to
 it with the /FlateDecode filter when it
 writes it. To suppress this behavior and preserve uncompressed
 streams as uncompressed, use
 --compress-streams=n.

 --decode-level= option

 Controls which streams qpdf tries to decode. The default is
 generalized. The following options are
 available:

 none: do not attempt to decode any streams

 generalized: decode streams filtered with
 supported generalized filters: /LZWDecode,
 /FlateDecode,
 /ASCII85Decode, and
 /ASCIIHexDecode. We define generalized
 filters as those to be used for general-purpose compression
 or encoding, as opposed to filters specifically designed
 for image data.

 specialized: in addition to generalized,
 decode streams with supported non-lossy specialized
 filters; currently this is just /RunLengthDecode

 all: in addition to generalized and
 specialized, decode streams with supported lossy filters;
 currently this is just /DCTDecode (JPEG)

 --stream-data= option

 Controls transformation of stream data. This option predates
 the --compress-streams and
 --decode-level options. Those options can be
 used to achieve the same affect with more control. The value
 of option may be
 one of the following:

 compress: recompress stream data when
 possible (default); equivalent to
 --compress-streams=y
 --decode-level=generalized

 preserve: leave all stream data as is;
 equivalent to --compress-streams=n
 --decode-level=none

 uncompress: uncompress stream data
 compressed with generalized filters when possible;
 equivalent to --compress-streams=n
 --decode-level=generalized

 --normalize-content=[yn]

 Enables or disables normalization of content streams.

 --object-streams= mode

 Controls handling of object streams. The value of
 mode may be one of
 the following:

 preserve: preserve original object streams
 (default)

 disable: don't write any object streams

 generate: use object streams wherever
 possible

 --preserve-unreferenced

 Tells qpdf to preserve objects that are not referenced when
 writing the file. Ordinarily any object that is not referenced
 in a traversal of the document from the trailer dictionary
 will be discarded. This may be useful in working with some
 damaged files or inspecting files with known unreferenced
 objects.

 This flag is ignored for linearized files and has the effect
 of causing objects in the new file to be written in order by
 object ID from the original file. This does not mean that
 object numbers will be the same since qpdf may create stream
 lengths as direct or indirect differently from the original
 file, and the original file may have gaps in its numbering.

 --newline-before-endstream

 Tells qpdf to insert a newline before the
 endstream keyword, not counted in the
 length, after any stream content even if the last character of
 the stream was a newline. This may result in two newlines in
 some cases. This is a requirement of PDF/A. While qpdf doesn't
 specifically know how to generate PDF/A-compliant PDFs, this
 at least prevents it from removing compliance on already
 compliant files.

 --qdf

 Turns on QDF mode. For additional information on QDF, please
 see .

 --min-version= version

 Forces the PDF version of the output file to be at least
 version. In other words, if the
 input file has a lower version than the specified version, the
 specified version will be used. If the input file has a
 higher version, the input file's original version will be
 used. It is seldom necessary to use this option since qpdf
 will automatically increase the version as needed when adding
 features that require newer PDF readers.

 The version number may be expressed in the form
 major.minor.extension-level, in
 which case the version is interpreted as
 major.minor at extension level
 extension-level. For example,
 version 1.7.8 represents version 1.7 at
 extension level 8. Note that minimal syntax checking is done
 on the command line.

 --force-version= version

 This option forces the PDF version to be the exact version
 specified even when the file may have content that
 is not supported in that version. The version
 number is interpreted in the same way as with
 --min-version so that extension levels can be
 set. In some cases, forcing the output file's PDF version to
 be lower than that of the input file will cause qpdf to
 disable certain features of the document. Specifically,
 256-bit keys are disabled if the version is less than 1.7 with
 extension level 8 (except R5 is disabled if less than 1.7 with
 extension level 3), AES encryption is disabled if the version
 is less than 1.6, cleartext metadata and object streams are
 disabled if less than 1.5, 128-bit encryption keys are
 disabled if less than 1.4, and all encryption is disabled if
 less than 1.3. Even with these precautions, qpdf won't be
 able to do things like eliminate use of newer image
 compression schemes, transparency groups, or other features
 that may have been added in more recent versions of PDF.

 As a general rule, with the exception of big structural things
 like the use of object streams or AES encryption, PDF viewers
 are supposed to ignore features in files that they don't
 support from newer versions. This means that forcing the
 version to a lower version may make it possible to open your
 PDF file with an older version, though bear in mind that some
 of the original document's functionality may be lost.

 By default, when a stream is encoded using non-lossy filters that
 qpdf understands and is not already compressed using a good
 compression scheme, qpdf will uncompress and recompress streams.
 Assuming proper filter implements, this is safe and generally
 results in smaller files. This behavior may also be explicitly
 requested with --stream-data=compress.

 When --normalize-content=y is specified, qpdf
 will attempt to normalize whitespace and newlines in page content
 streams. This is generally safe but could, in some cases, cause
 damage to the content streams. This option is intended for people
 who wish to study PDF content streams or to debug PDF content.
 You should not use this for “production” PDF files.

 Object streams, also known as compressed objects, were introduced
 into the PDF specification at version 1.5, corresponding to
 Acrobat 6. Some older PDF viewers may not support files with
 object streams. qpdf can be used to transform files with object
 streams to files without object streams or vice versa. As
 mentioned above, there are three object stream modes:
 preserve, disable, and
 generate.

 In preserve mode, the relationship to objects and
 the streams that contain them is preserved from the original file.
 In disable mode, all objects are written as
 regular, uncompressed objects. The resulting file should be
 readable by older PDF viewers. (Of course, the content of the
 files may include features not supported by older viewers, but at
 least the structure will be supported.) In
 generate mode, qpdf will create its own object
 streams. This will usually result in more compact PDF files,
 though they may not be readable by older viewers. In this mode,
 qpdf will also make sure the PDF version number in the header is
 at least 1.5.

 The --qdf flag turns on QDF mode, which changes
 some of the defaults described above. Specifically, in QDF mode,
 by default, stream data is uncompressed, content streams are
 normalized, and encryption is removed. These defaults can still
 be overridden by specifying the appropriate options as described
 above. Additionally, in QDF mode, stream lengths are stored as
 indirect objects, objects are laid out in a less efficient but
 more readable fashion, and the documents are interspersed with
 comments that make it easier for the user to find things and also
 make it possible for fix-qdf to work properly.
 QDF mode is intended for people, mostly developers, who wish to
 inspect or modify PDF files in a text editor. For details, please
 see .

 Testing, Inspection, and Debugging Options

 These options can be useful for digging into PDF files or for use
 in automated test suites for software that uses the qpdf library.
 When any of the options in this section are specified, no output
 file should be given. The following options are available:

 --deterministic-id

 Causes generation of a deterministic value for /ID. This
 prevents use of timestamp and output file name information in
 the /ID generation. Instead, at some slight additional runtime
 cost, the /ID field is generated to include a digest of the
 significant parts of the content of the output PDF file. This
 means that a given qpdf operation should generate the same /ID
 each time it is run, which can be useful when caching results
 or for generation of some test data. Use of this flag is not
 compatible with creation of encrypted files.

 --static-id

 Causes generation of a fixed value for /ID. This is intended
 for testing only. Never use it for production files. If you
 are trying to get the same /ID each time for a given file and
 you are not generating encrypted files, consider using the
 --deterministic-id option.

 --static-aes-iv

 Causes use of a static initialization vector for AES-CBC.
 This is intended for testing only so that output files can be
 reproducible. Never use it for production files. This option
 in particular is not secure since it significantly weakens the
 encryption.

 --no-original-object-ids

 Suppresses inclusion of original object ID comments in QDF
 files. This can be useful when generating QDF files for test
 purposes, particularly when comparing them to determine
 whether two PDF files have identical content.

 --show-encryption

 Shows document encryption parameters. Also shows the
 document's user password if the owner password is given.

 --show-encryption-key

 When encryption information is being displayed, as when
 --check or --show-encryption
 is given, display the computed or retrieved encryption key as
 a hexadecimal string. This value is not ordinarily useful to
 users, but it can be used as the argument to
 --password if the
 --password-is-hex-key is specified. Note
 that, when PDF files are encrypted, passwords and other
 metadata are used only to compute an encryption key, and the
 encryption key is what is actually used for encryption. This
 enables retrieval of that key.

 --check-linearization

 Checks file integrity and linearization status.

 --show-linearization

 Checks and displays all data in the linearization hint tables.

 --show-xref

 Shows the contents of the cross-reference table in a
 human-readable form. This is especially useful for files with
 cross-reference streams which are stored in a binary format.

 --show-object=obj[,gen]

 Show the contents of the given object. This is especially
 useful for inspecting objects that are inside of object
 streams (also known as “compressed objects”).

 --raw-stream-data

 When used along with the --show-object
 option, if the object is a stream, shows the raw stream data
 instead of object's contents.

 --filtered-stream-data

 When used along with the --show-object
 option, if the object is a stream, shows the filtered stream
 data instead of object's contents. If the stream is filtered
 using filters that qpdf does not support, an error will be
 issued.

 --show-npages

 Prints the number of pages in the input file on a line by
 itself. Since the number of pages appears by itself on a
 line, this option can be useful for scripting if you need to
 know the number of pages in a file.

 --show-pages

 Shows the object and generation number for each page
 dictionary object and for each content stream associated with
 the page. Having this information makes it more convenient to
 inspect objects from a particular page.

 --with-images

 When used along with --show-pages, also shows
 the object and generation numbers for the image objects on
 each page. (At present, information about images in shared
 resource dictionaries are not output by this command. This is
 discussed in a comment in the source code.)

 --check

 Checks file structure and well as encryption, linearization,
 and encoding of stream data. A file for which
 --check reports no errors may still have
 errors in stream data content but should otherwise be
 structurally sound. If --check any errors,
 qpdf will exit with a status of 2. There are some recoverable
 conditions that --check detects. These are
 issued as warnings instead of errors. If qpdf finds no errors
 but finds warnings, it will exit with a status of 3 (as of
 version 2.0.4). When --check is combined
 with other options, checks are always performed before any
 other options are processed. For erroneous files,
 --check will cause qpdf to attempt to
 recover, after which other options are effectively operating
 on the recovered file. Combining --check with
 other options in this way can be useful for manually
 recovering severely damaged files.

 The --raw-stream-data and
 --filtered-stream-data options are ignored unless
 --show-object is given. Either of these options
 will cause the stream data to be written to standard output. In
 order to avoid commingling of stream data with other output, it is
 recommend that these objects not be combined with other
 test/inspection options.

 If --filtered-stream-data is given and
 --normalize-content=y is also given, qpdf will
 attempt to normalize the stream data as if it is a page content
 stream. This attempt will be made even if it is not a page
 content stream, in which case it will produce unusable results.

 QDF Mode

 In QDF mode, qpdf creates PDF files in what we call QDF
 form. A PDF file in QDF form, sometimes called a QDF
 file, is a completely valid PDF file that has
 %QDF-1.0 as its third line (after the pdf header
 and binary characters) and has certain other characteristics. The
 purpose of QDF form is to make it possible to edit PDF files, with
 some restrictions, in an ordinary text editor. This can be very
 useful for experimenting with different PDF constructs or for
 making one-off edits to PDF files (though there are other reasons
 why this may not always work).

 It is ordinarily very difficult to edit PDF files in a text editor
 for two reasons: most meaningful data in PDF files is compressed,
 and PDF files are full of offset and length information that makes
 it hard to add or remove data. A QDF file is organized in a manner
 such that, if edits are kept within certain constraints, the
 fix-qdf program, distributed with qpdf, is able
 to restore edited files to a correct state. The
 fix-qdf program takes no command-line
 arguments. It reads a possibly edited QDF file from standard input
 and writes a repaired file to standard output.

 The following attributes characterize a QDF file:

 All objects appear in numerical order in the PDF file, including
 when objects appear in object streams.

 Objects are printed in an easy-to-read format, and all line
 endings are normalized to UNIX line endings.

 Unless specifically overridden, streams appear uncompressed
 (when qpdf supports the filters and they are compressed with a
 non-lossy compression scheme), and most content streams are
 normalized (line endings are converted to just a UNIX-style
 linefeeds).

 All streams lengths are represented as indirect objects, and the
 stream length object is always the next object after the stream.
 If the stream data does not end with a newline, an extra newline
 is inserted, and a special comment appears after the stream
 indicating that this has been done.

 If the PDF file contains object streams, if object stream
 n contains k objects,
 those objects are numbered from n+1 through
 n+k, and the object number/offset pairs
 appear on a separate line for each object. Additionally, each
 object in the object stream is preceded by a comment indicating
 its object number and index. This makes it very easy to find
 objects in object streams.

 All beginnings of objects, stream tokens,
 endstream tokens, and
 endobj tokens appear on lines by themselves.
 A blank line follows every endobj token.

 If there is a cross-reference stream, it is unfiltered.

 Page dictionaries and page content streams are marked with
 special comments that make them easy to find.

 Comments precede each object indicating the object number of the
 corresponding object in the original file.

 When editing a QDF file, any edits can be made as long as the above
 constraints are maintained. This means that you can freely edit a
 page's content without worrying about messing up the QDF file. It
 is also possible to add new objects so long as those objects are
 added after the last object in the file or subsequent objects are
 renumbered. If a QDF file has object streams in it, you can always
 add the new objects before the xref stream and then change the
 number of the xref stream, since nothing generally ever references
 it by number.

 It is not generally practical to remove objects from QDF files
 without messing up object numbering, but if you remove all
 references to an object, you can run qpdf on the file (after
 running fix-qdf), and qpdf will omit the
 now-orphaned object.

 When fix-qdf is run, it goes through the file
 and recomputes the following parts of the file:

 the /N, /W, and
 /First keys of all object stream dictionaries

 the pairs of numbers representing object numbers and offsets of
 objects in object streams

 all stream lengths

 the cross-reference table or cross-reference stream

 the offset to the cross-reference table or cross-reference
 stream following the startxref token

 Using the QPDF Library

 The source tree for the qpdf package has an
 examples directory that contains a few
 example programs. The qpdf/qpdf.cc source
 file also serves as a useful example since it exercises almost all
 of the qpdf library's public interface. The best source of
 documentation on the library itself is reading comments in
 include/qpdf/QPDF.hh,
 include/qpdf/QPDFWriter.hh, and
 include/qpdf/QPDFObjectHandle.hh.

 All header files are installed in the include/qpdf directory. It
 is recommend that you use #include
 <qpdf/QPDF.hh> rather than adding
 include/qpdf to your include path.

 When linking against the qpdf static library, you may also need to
 specify -lz -ljpeg on your link command. If
 your system understands how to read libtool
 .la files, this may not be necessary.

 The qpdf library is safe to use in a multithreaded program, but no
 individual QPDF object instance (including
 QPDF, QPDFObjectHandle, or
 QPDFWriter) can be used in more than one thread at a
 time. Multiple threads may simultaneously work with different
 instances of these and all other QPDF objects.

 Design and Library Notes

 Introduction

 This section was written prior to the implementation of the qpdf
 package and was subsequently modified to reflect the
 implementation. In some cases, for purposes of explanation, it
 may differ slightly from the actual implementation. As always,
 the source code and test suite are authoritative. Even if there
 are some errors, this document should serve as a road map to
 understanding how this code works.

 In general, one should adhere strictly to a specification when
 writing but be liberal in reading. This way, the product of our
 software will be accepted by the widest range of other programs,
 and we will accept the widest range of input files. This library
 attempts to conform to that philosophy whenever possible but also
 aims to provide strict checking for people who want to validate
 PDF files. If you don't want to see warnings and are trying to
 write something that is tolerant, you can call
 setSuppressWarnings(true). If you want to fail
 on the first error, you can call
 setAttemptRecovery(false). The default
 behavior is to generating warnings for recoverable problems. Note
 that recovery will not always produce the desired results even if
 it is able to get through the file. Unlike most other PDF files
 that produce generic warnings such as “This file is
 damaged,”, qpdf generally issues a detailed error message
 that would be most useful to a PDF developer. This is by design
 as there seems to be a shortage of PDF validation tools out
 there. (This was, in fact, one of the major motivations behind
 the initial creation of qpdf.)

 Design Goals

 The QPDF package includes support for reading and rewriting PDF
 files. It aims to hide from the user details involving object
 locations, modified (appended) PDF files, the
 directness/indirectness of objects, and stream filters including
 encryption. It does not aim to hide knowledge of the object
 hierarchy or content stream contents. Put another way, a user of
 the qpdf library is expected to have knowledge about how PDF files
 work, but is not expected to have to keep track of bookkeeping
 details such as file positions.

 A user of the library never has to care whether an object is
 direct or indirect. All access to objects deals with this
 transparently. All memory management details are also handled by
 the library.

 The PointerHolder object is used internally
 by the library to deal with memory management. This is basically
 a smart pointer object very similar in spirit to the Boost
 library's shared_ptr object, but predating
 it by several years. This library also makes use of a technique
 for giving fine-grained access to methods in one class to other
 classes by using public subclasses with friends and only private
 members that in turn call private methods of the containing class.
 See QPDFObjectHandle::Factory as an
 example.

 The top-level qpdf class is QPDF. A
 QPDF object represents a PDF file. The
 library provides methods for both accessing and mutating PDF
 files.

 QPDFObject is the basic PDF Object class.
 It is an abstract base class from which are derived classes for
 each type of PDF object. Clients do not interact with Objects
 directly but instead interact with
 QPDFObjectHandle.

 QPDFObjectHandle contains
 PointerHolder<QPDFObject> and
 includes accessor methods that are type-safe proxies to the
 methods of the derived object classes as well as methods for
 querying object types. They can be passed around by value,
 copied, stored in containers, etc. with very low overhead.
 Instances of QPDFObjectHandle always
 contain a reference back to the QPDF object
 from which they were created. A
 QPDFObjectHandle may be direct or indirect.
 If indirect, the QPDFObject the
 PointerHolder initially points to is a null
 pointer. In this case, the first attempt to access the underlying
 QPDFObject will result in the
 QPDFObject being resolved via a call to the
 referenced QPDF instance. This makes it
 essentially impossible to make coding errors in which certain
 things will work for some PDF files and not for others based on
 which objects are direct and which objects are indirect.

 Instances of QPDFObjectHandle can be
 directly created and modified using static factory methods in the
 QPDFObjectHandle class. There are factory
 methods for each type of object as well as a convenience method
 QPDFObjectHandle::parse that creates an
 object from a string representation of the object. Existing
 instances of QPDFObjectHandle can also be
 modified in several ways. See comments in
 QPDFObjectHandle.hh for details.

 When the QPDF class creates a new object,
 it dynamically allocates the appropriate type of
 QPDFObject and immediately hands the
 pointer to an instance of QPDFObjectHandle.
 The parser reads a token from the current file position. If the
 token is a not either a dictionary or array opener, an object is
 immediately constructed from the single token and the parser
 returns. Otherwise, the parser is invoked recursively in a
 special mode in which it accumulates objects until it finds a
 balancing closer. During this process, the
 “ R

qpdf-7.1.0/manual/fix-qdf.1.in

\" This file is not processed by autoconf, but rather by build.mk in
\" the manual directory.
.TH FIX-QDF "1" "April 2008" "fix-qdf version @PACKAGE_VERSION@" "User Commands"
.SH NAME
fix-qdf \- repair PDF files in QDF form after editing
.SH SYNOPSIS
.B qpdf
< \fIinfilename\fR > \fIoutfilename\fR
.SH DESCRIPTION
The fix-qdf program is part of the qpdf package.
.PP
The fix-qdf program reads a PDF file in QDF form and writes out
the same file with stream lengths, cross-reference table entries, and
object stream offset tables regenerated.
.PP
For details about fix-qdf and about PDF files in QDF mode, please see
the qpdf manual, which can be found in @docdir@/qpdf-manual.html or
@docdir@/qpdf-manual.pdf.

qpdf-7.1.0/README-hardening.md

Avoiding `operator[]`

During a security review by Red Hat security team (specifically Florian Weimer), it was discovered that qpdf used `std::string` and `std::vector`'s `operator[]`, which has no bounds checking by design. Instead, using those objects' `at()` method is preferable since it does bounds checking. Florian has a tool that can detect all uses of these methods and report them. I have a short perl script that automatically corrects any such uses. The perl script is not intended to be general, but it could be reasonably general. The only known shortcut is that it might not work very well with some cases of nested `[]`'s like `a[b[c]]` or with cases where there are line breaks inside the brackets. For qpdf's coding style, it worked on all cases reported.

To use this, obtain htcondor-analyzer, run it, and respond to the report. Here's what I did.

```
sudo aptitude install libclang-dev llvm llvm-dev clang
cd /tmp
git clone https://github.com/fweimer/htcondor-analyzer
# HEAD = 5fa06fc68a9b0677e9de162279185d58ba1e8477 at this writing
cd htcondor-analyzer
make
```

In qpdf:

```
./autogen.sh
/tmp/htcondor-analyzer/create-db
CC=/tmp/htcondor-analyzer/cc CXX=/tmp/htcondor-analyzer/cxx ./configure --disable-shared --disable-werror
# to remove conftest.c
\rm htcondor-analyzer.sqlite
/tmp/htcondor-analyzer/create-db
```

Repeat until no more errors:

```
/tmp/fix-at.pl is shown below.
```

```
make
/tmp/htcondor-analyzer/report | grep std:: | grep qpdf >| /tmp/r
perl /tmp/fix-at.pl /tmp/r
# move all *.new over the original file.  patmv is my script.  Can
# also use a for loop.
patmv -f s/.new// **/*.new
```

/tmp/fix-at.pl:
```perl
#!/usr/bin/env perl
require 5.008;
use warnings;
use strict;
use File::Basename;

my $whoami = basename($0);

my %to_fix = ();
while (<>)
{
    chomp;
    die unless m/^([^:]+):(\d+):(\d+):\s*(.*)$/;
    my ($file, $line, $col, $message) = ($1, $2, $3, $4);
    if ($message !~ m/operator\[\]/)
    {
        warn "skipping $_\n";
        next;
    }
    push(@{$to_fix{$file}}, [$line, $col, $message]);
}
foreach my $file (sort keys %to_fix)
{
    open(F, "<$file") or die;
    my @lines = (<F>);
    close(F);
    my $last = "";
    my @data = reverse sort { ($a->[0] <=> $b->[0]) || ($a->[1] <=> $b->[1]) } @{$to_fix{$file}};
    foreach my $d (@data)
    {
        my ($line, $col) = @$d;
        next if $last eq "$line:$col";
        $last = "$line:$col";
        die if $line-- < 1;
        die if $col-- < 1;
        print $lines[$line];
        $lines[$line] =~ s/^(.{$col})([^\[]+)\[([^\]]+)\]/$1$2.at($3)/ or die "$file:$last\n";
        print $lines[$line];
    }
    open(F, ">$file.new") or die;
    foreach my $line (@lines)
    {
        print F $line;
    }
    close(F) or die;
}
```


qpdf-7.1.0/make/rules.mk

include make/$(BUILDRULES).mk

define firstelem
$(word 1,$(subst /, ,$(1)))
endef
SPC := $(subst /, ,/)
define lastelem
$(subst $(SPC),/,$(word $(words $(subst /, ,$(1))),$(subst /, ,$(1))))
endef
define objbase
$(patsubst %.$(2),%.$(3),$(firstelem)/$(OUTPUT_DIR)/$(lastelem))
endef

Usage: $(call src_to_obj,srcs)
define src_to_obj
$(foreach F,$(1),$(call objbase,$(F),cc,$(OBJ)))
endef

Usage: $(call c_src_to_obj,srcs)
define c_src_to_obj
$(foreach F,$(1),$(call objbase,$(F),c,$(OBJ)))
endef

Usage: $(call src_to_lobj,srcs)
define src_to_lobj
$(foreach F,$(1),$(call objbase,$(F),cc,$(LOBJ)))
endef

Usage: $(call c_src_to_lobj,srcs)
define c_src_to_lobj
$(foreach F,$(1),$(call objbase,$(F),c,$(LOBJ)))
endef

Usage: $(call obj_to_dep,objs)
define obj_to_dep
$(patsubst %.$(OBJ),%.dep,$(1))
endef

Usage: $(call lobj_to_dep,objs)
define lobj_to_dep
$(patsubst %.$(LOBJ),%.dep,$(1))
endef

Usage: $(call depflags,$(basename obj))
ifeq ($(GENDEPS),1)
depflags=-MD -MF $(1).dep -MP
else
depflags=
endif

Usage: $(call run_qtest,dir)
define run_qtest
	@echo running qtest-driver for $(1)
	@(cd $(1)/$(OUTPUT_DIR); \
 if TC_SRCS="$(foreach T,$(TC_SRCS_$(1)),../../$(T))" \
	 $(QTEST) -bindirs .:.. -datadir ../qtest -covdir ..; then \
	 true; \
	 else \
	 if test "$(SHOW_FAILED_TEST_OUTPUT)" = "1"; then \
	 cat -v qtest.log; \
	 fi; \
	 false; \
	 fi)
endef

qpdf-7.1.0/make/gcc-linux.mk

#
This file primarily exists for making it possible to test the build
system and external library support from Linux. However, its use is
strongly discouraged; use the (default) libtool rules for building
on Linux.
#

--- Required interface definitions ---

OBJ=o
LOBJ=o

Usage: $(call libname,base)
define libname
lib$(1).so
endef

Usage: $(call binname,base)
define binname
$(1)
endef

--- Required rule definitions ---

1 2
Usage: $(call compile,src,includes)
define compile
	$(CXX) $(CPPFLAGS) $(CXXFLAGS) \
		$(call depflags,$(basename $(call src_to_obj,$(1)))) \
		$(foreach I,$(2),-I$(I)) \
		-c $(1) -o $(call src_to_obj,$(1))
endef

1 2
Usage: $(call c_compile,src,includes)
define c_compile
	$(CC) $(CPPFLAGS) $(CFLAGS) \
		$(call depflags,$(basename $(call c_src_to_obj,$(1)))) \
		$(foreach I,$(2),-I$(I)) \
		-c $(1) -o $(call c_src_to_obj,$(1))
endef

define libcompile
	$(CXX) $(CPPFLAGS) $(CXXFLAGS) -fpic \
		$(call depflags,$(basename $(call src_to_lobj,$(1)))) \
		$(foreach I,$(2),-I$(I)) \
		-c $(1) -o $(call src_to_lobj,$(1))
endef
define c_libcompile
	$(CC) $(CPPFLAGS) $(CXXFLAGS) -fpic \
		$(call depflags,$(basename $(call c_src_to_lobj,$(1)))) \
		$(foreach I,$(2),-I$(I)) \
		-c $(1) -o $(call c_src_to_lobj,$(1))
endef

1 2
Usage: $(call makeslib,objs,library)
define makeslib
	$(RM) $2
	$(AR) cru $(2) $(1)
	$(RANLIB) $(2)
endef

1 2 3 4 5 6 7
Usage: $(call makelib,objs,library,ldflags,libs,current,revision,age)
define makelib
	$(RM) $(2) $(2).*
	major=$$(($(5) - $(7))); \
	versuffix=$$major.$(7).$(6); \
	$(CXX) $(CXXFLAGS) -shared -o $(2).$$versuffix $(1) \
		-Wl,--soname -Wl,`basename $(2)`.$$major \
		$(3) $(4) && \
	ln -s `basename $(2)`.$$versuffix $(2) && \
	ln -s `basename $(2)`.$$versuffix $(2).$$major
endef

1 2 3 4
Usage: $(call makebin,objs,binary,ldflags,libs)
define makebin
	$(CXX) $(CXXFLAGS) $(1) -o $(2) $(LDFLAGS) $(3) $(4)
endef

Install target

install: all
	@echo Automated installation is not supported for buildrules=$(BUILDRULES)

qpdf-7.1.0/make/libtool.mk

--- Required interface definitions ---

LIBTOOL needs bash
SHELL=/bin/bash

OBJ=o
LOBJ=lo

Usage: $(call libname,base)
define libname
lib$(1).la
endef

Usage: $(call binname,base)
define binname
$(1)
endef

--- Private definitions ---

ifeq ($(HAVE_LD_VERSION_SCRIPT), 1)
LD_VERSION_FLAGS=-Wl,--version-script=libqpdf.map
else
LD_VERSION_FLAGS=
endif

Usage: $(call libdepflags,$(basename obj))
Usage: $(call fixdeps,$(basename obj))
ifeq ($(GENDEPS),1)
libdepflags=-MD -MF $(1).tdep -MP
fixdeps=sed -e 's/\.o:/.lo:/' < $(1).tdep > $(1).dep

else
libdepflags=
fixdeps=
endif

--- Required rule definitions ---

1 2
Usage: $(call compile,src,includes)
define compile
	$(CXX) $(CXXFLAGS) \
		$(call depflags,$(basename $(call src_to_obj,$(1)))) \
		$(foreach I,$(2),-I$(I)) \
		$(CPPFLAGS) \
		-c $(1) -o $(call src_to_obj,$(1))
endef

1 2
Usage: $(call c_compile,src,includes)
define c_compile
	$(CC) $(CFLAGS) \
		$(call depflags,$(basename $(call c_src_to_obj,$(1)))) \
		$(foreach I,$(2),-I$(I)) \
		$(CPPFLAGS) \
		-c $(1) -o $(call c_src_to_obj,$(1))
endef

1 2
Usage: $(call libcompile,src,includes)
define libcompile
	$(LIBTOOL) --quiet --mode=compile \
		$(CXX) $(CXXFLAGS) \
		$(call libdepflags,$(basename $(call src_to_obj,$(1)))) \
		$(foreach I,$(2),-I$(I)) \
		$(CPPFLAGS) \
		-c $(1) -o $(call src_to_obj,$(1)); \
	$(call fixdeps,$(basename $(call src_to_obj,$(1))))
endef

1 2
Usage: $(call libcompile,src,includes)
define c_libcompile
	$(LIBTOOL) --quiet --mode=compile \
		$(CC) $(CFLAGS) \
		$(call libdepflags,$(basename $(call c_src_to_obj,$(1)))) \
		$(foreach I,$(2),-I$(I)) \
		$(CPPFLAGS) \
		-c $(1) -o $(call c_src_to_obj,$(1)); \
	$(call fixdeps,$(basename $(call src_to_obj,$(1))))
endef

1 2
Usage: $(call makeslib,objs,library)
define makeslib
	$(RM) $2
	$(AR) cru $(2) $(1)
	$(RANLIB) $(2)
endef

1 2 3 4 5 6 7
Usage: $(call makelib,objs,library,ldflags,libs,current,revision,age)
define makelib
	$(LIBTOOL) --mode=link \
		$(CXX) $(CXXFLAGS) $(LD_VERSION_FLAGS) \
		 -o $(2) $(1) $(4) $(3) \
		 -rpath $(libdir) -version-info $(5):$(6):$(7) -no-undefined
endef

1 2 3 4
Usage: $(call makebin,objs,binary,ldflags,libs)
define makebin
	$(LIBTOOL) --mode=link $(CXX) $(CXXFLAGS) $(1) -o $(2) $(4) $(3)
endef

Install target

install: all
	./mkinstalldirs $(DESTDIR)$(libdir)/pkgconfig
	./mkinstalldirs $(DESTDIR)$(bindir)
	./mkinstalldirs $(DESTDIR)$(includedir)/qpdf
	./mkinstalldirs $(DESTDIR)$(docdir)
	./mkinstalldirs $(DESTDIR)$(mandir)/man1
	$(LIBTOOL) --mode=install ./install-sh \
		libqpdf/$(OUTPUT_DIR)/libqpdf.la \
		$(DESTDIR)$(libdir)/libqpdf.la
	$(LIBTOOL) --finish $(DESTDIR)$(libdir)
	$(LIBTOOL) --mode=install ./install-sh \
		qpdf/$(OUTPUT_DIR)/qpdf \
		$(DESTDIR)$(bindir)/qpdf
	$(LIBTOOL) --mode=install ./install-sh \
		zlib-flate/$(OUTPUT_DIR)/zlib-flate \
		$(DESTDIR)$(bindir)/zlib-flate
	cp qpdf/fix-qdf $(DESTDIR)$(bindir)
	cp include/qpdf/*.h $(DESTDIR)$(includedir)/qpdf
	cp include/qpdf/*.hh $(DESTDIR)$(includedir)/qpdf
	cp doc/stylesheet.css $(DESTDIR)$(docdir)
	cp libqpdf.pc $(DESTDIR)$(libdir)/pkgconfig
	if [-f doc/qpdf-manual.html]; then \
		cp doc/qpdf-manual.html $(DESTDIR)$(docdir); \
	fi
	if [-f doc/qpdf-manual.pdf]; then \
		cp doc/qpdf-manual.pdf $(DESTDIR)$(docdir); \
	fi
	cp doc/*.1 $(DESTDIR)$(mandir)/man1

qpdf-7.1.0/make/proxy.mk

THIS=$(notdir $(abspath .))

all:
	$(MAKE) -C .. build_$(THIS)

check:
	$(MAKE) -C .. check_$(THIS)

clean:
	$(MAKE) -C .. clean_$(THIS)

qpdf-7.1.0/make/msvc.mk

--- Required interface definitions ---

OBJ=obj
LOBJ=obj

Usage: $(call libname,base)
define libname
$(1).lib
endef

Usage: $(call binname,base)
define binname
$(1).exe
endef

--- Local Changes ---

Filter out -g
CFLAGS := $(filter-out -g,$(CFLAGS))
CXXFLAGS := $(filter-out -g,$(CXXFLAGS))

clean::
	$(RM) *.pdb

--- Required rule definitions ---

1 2
Usage: $(call compile,src,includes)
define compile
	cl -nologo -O2 -Zi -Gy -EHsc -MD -TP -GR $(CPPFLAGS) $(CXXFLAGS) \
		$(foreach I,$(2),-I$(I)) \
		-c $(1) -Fo$(call src_to_obj,$(1))
endef

1 2
Usage: $(call c_compile,src,includes)
define c_compile
	cl -nologo -O2 -Zi -Gy -EHsc -MD $(CPPFLAGS) $(CFLAGS) \
		$(foreach I,$(2),-I$(I)) \
		-c $(1) -Fo$(call c_src_to_obj,$(1))
endef

1 2
Usage: $(call libcompile,src,includes)
define libcompile
	cl -nologo -O2 -Zi -Gy -EHsc -MD -TP -GR $(CPPFLAGS) $(CXXFLAGS) \
		-DDLL_EXPORT $(foreach I,$(2),-I$(I)) \
		-c $(1) -Fo$(call src_to_obj,$(1))
endef

1 2
Usage: $(call c_libcompile,src,includes)
define c_libcompile
	cl -nologo -O2 -Zi -Gy -EHsc -MD $(CPPFLAGS) $(CXXFLAGS) \
		-DDLL_EXPORT $(foreach I,$(2),-I$(I)) \
		-c $(1) -Fo$(call c_src_to_obj,$(1))
endef

1 2
Usage: $(call makeslib,objs,library)
define makeslib
	lib -nologo -OUT:$(2) $(1)
endef

1 2 3 4 5 6 7
Usage: $(call makelib,objs,library,ldflags,libs,current,revision,age)
define makelib
	cl -nologo -O2 -Zi -Gy -EHsc -MD -LD -Fe$(basename $(2))$(shell expr $(5) - $(7)).dll $(1) \
		-link -SUBSYSTEM:CONSOLE,5.01 -incremental:no \
		$(foreach L,$(subst -L,,$(3)),-LIBPATH:$(L)) \
		$(foreach L,$(subst -l,,$(4)),$(L).lib)
	if [-f $(basename $(2))$(shell expr $(5) - $(7)).dll.manifest]; then \
		mt.exe -nologo -manifest $(basename $(2))$(shell expr $(5) - $(7)).dll.manifest \
			-outputresource:$(basename $(2))$(shell expr $(5) - $(7)).dll\;2; \
	fi
	mv $(basename $(2))$(shell expr $(5) - $(7)).lib $(2)
endef

1 2 3 4
Usage: $(call makebin,objs,binary,ldflags,libs)
define makebin
	cl -nologo -O2 -Zi -Gy -EHsc -MD $(1) \
		-link -SUBSYSTEM:CONSOLE,5.01 -incremental:no -OUT:$(2) \
		$(foreach L,$(subst -L,,$(3)),-LIBPATH:$(L)) \
		$(foreach L,$(subst -l,,$(4)),$(L).lib)
	if [-f $(2).manifest]; then \
		mt.exe -nologo -manifest $(2).manifest \
			-outputresource:$(2)\;2; \
	fi
endef

Install target

INSTALL_DIR = install-msvc$(WINDOWS_WORDSIZE)
STATIC_LIB_NAME = qpdf.lib
include make/installwin.mk
install: installwin

qpdf-7.1.0/make/mingw.mk

--- Required interface definitions ---

OBJ=o
LOBJ=o

Usage: $(call libname,base)
define libname
lib$(1).a
endef

Usage: $(call binname,base)
define binname
$(1).exe
endef

--- Required rule definitions ---

1 2
Usage: $(call compile,src,includes)
define compile
	$(CXX) $(CPPFLAGS) $(CXXFLAGS) \
		$(call depflags,$(basename $(call src_to_obj,$(1)))) \
		$(foreach I,$(2),-I$(I)) \
		-c $(1) -o $(call src_to_obj,$(1))
endef

1 2
Usage: $(call c_compile,src,includes)
define c_compile
	$(CC) $(CPPFLAGS) $(CFLAGS) \
		$(call depflags,$(basename $(call src_to_obj,$(1)))) \
		$(foreach I,$(2),-I$(I)) \
		-c $(1) -o $(call c_src_to_obj,$(1))
endef

1 2
Usage: $(call libcompile,src,includes)
define libcompile
	$(CXX) $(CPPFLAGS) $(CXXFLAGS) -DDLL_EXPORT \
		$(call depflags,$(basename $(call src_to_obj,$(1)))) \
		$(foreach I,$(2),-I$(I)) \
		-c $(1) -o $(call src_to_obj,$(1))
endef

1 2
Usage: $(call c_libcompile,src,includes)
define c_libcompile
	$(CC) $(CPPFLAGS) $(CFLAGS) -DDLL_EXPORT \
		$(call depflags,$(basename $(call src_to_obj,$(1)))) \
		$(foreach I,$(2),-I$(I)) \
		-c $(1) -o $(call c_src_to_obj,$(1))
endef

1 2
Usage: $(call makeslib,objs,library)
define makeslib
	$(RM) $2
	$(AR) cru $(2) $(1)
	$(RANLIB) $(2)
endef

1 2 3 4 5 6 7
Usage: $(call makelib,objs,library,ldflags,libs,current,revision,age)
define makelib
	$(DLLTOOL) -l $(2) -D $$(basename `echo $(2) | sed -e 's,/lib\(.*\).a,/\1,'`$(shell expr $(5) - $(7)).dll) $(1); \
	$(CXX) -shared -o `echo $(2) | sed -e 's,/lib\(.*\).a,/\1,'`$(shell expr $(5) - $(7)).dll \
		$(1) $(3) $(4)
endef

1 2 3 4
Usage: $(call makebin,objs,binary,ldflags,libs)
define makebin
	$(CXX) $(CXXFLAGS) $(1) -o $(2) $(3) $(4)
endef

Install target

INSTALL_DIR = install-mingw$(WINDOWS_WORDSIZE)
STATIC_LIB_NAME = libqpdf.a
include make/installwin.mk
install: installwin
	$(STRIP) $(DEST)/bin/*.exe
	$(STRIP) $(DEST)/bin/*.dll

qpdf-7.1.0/make/installwin.mk

			DEST=$(INSTALL_DIR)/$(PACKAGE_TARNAME)-$(PACKAGE_VERSION)

			installwin: all

						$(RM) -r $(INSTALL_DIR)

						mkdir $(INSTALL_DIR)

						mkdir $(DEST)

						mkdir $(DEST)/bin

						mkdir $(DEST)/lib

						mkdir $(DEST)/include

						mkdir $(DEST)/include/qpdf

						mkdir $(DEST)/doc

						cp libqpdf/$(OUTPUT_DIR)/$(STATIC_LIB_NAME) $(DEST)/lib

						cp libqpdf/$(OUTPUT_DIR)/qpdf*.dll $(DEST)/bin

						perl copy_dlls libqpdf/$(OUTPUT_DIR)/qpdf*.dll $(DEST)/bin $(OBJDUMP) $(WINDOWS_WORDSIZE)

						cp qpdf/$(OUTPUT_DIR)/qpdf.exe $(DEST)/bin

						cp zlib-flate/$(OUTPUT_DIR)/zlib-flate.exe $(DEST)/bin

						cp qpdf/fix-qdf $(DEST)/bin

						cp include/qpdf/*.h $(DEST)/include/qpdf

						cp include/qpdf/*.hh $(DEST)/include/qpdf

						cp doc/stylesheet.css $(DEST)/doc

						cp doc/qpdf-manual.html $(DEST)/doc

						cp doc/qpdf-manual.pdf $(DEST)/doc

qpdf-7.1.0/autoconf.mk.in

PACKAGE_TARNAME=@PACKAGE_TARNAME@
PACKAGE_VERSION=@PACKAGE_VERSION@
LT_CURRENT=@LT_CURRENT@
LT_REVISION=@LT_REVISION@
LT_AGE=@LT_AGE@
top_builddir=@top_builddir@
prefix=@prefix@
exec_prefix=@exec_prefix@
bindir=@bindir@
libdir=@libdir@
includedir=@includedir@
datarootdir=@datarootdir@
mandir=@mandir@
docdir=@docdir@
htmldir=@htmldir@
pdfdir=@pdfdir
CC=@CC@
WFLAGS=@WFLAGS@
CXXWFLAGS=@CXXWFLAGS@
CFLAGS=@CFLAGS@ $(WFLAGS)
LDFLAGS=@LDFLAGS@
LIBS=@LIBS@
CPPFLAGS=@CPPFLAGS@
CXX=@CXX@
CXXFLAGS=@CXXFLAGS@ $(CXXWFLAGS) $(WFLAGS)
AR=@AR@
RANLIB=@RANLIB@
DLLTOOL=@DLLTOOL@
STRIP=@STRIP@
OBJDUMP=@OBJDUMP@
GENDEPS=@GENDEPS@
LIBTOOL=@LIBTOOL@
DOCBOOKX_DTD=@DOCBOOKX_DTD@
FOP=@FOP@
XSLTPROC=@XSLTPROC@
XMLLINT=@XMLLINT@
BUILD_HTML=@BUILD_HTML@
BUILD_PDF=@BUILD_PDF@
VALIDATE_DOC=@VALIDATE_DOC@
QPDF_SKIP_TEST_COMPARE_IMAGES=@QPDF_SKIP_TEST_COMPARE_IMAGES@
BUILDRULES=@BUILDRULES@
HAVE_LD_VERSION_SCRIPT=@HAVE_LD_VERSION_SCRIPT@
WINDOWS_WORDSIZE=@WINDOWS_WORDSIZE@
SHOW_FAILED_TEST_OUTPUT=@SHOW_FAILED_TEST_OUTPUT@
Allow environment variable to override
QPDF_LARGE_FILE_TEST_PATH?=@QPDF_LARGE_FILE_TEST_PATH@

qpdf-7.1.0/ChangeLog

2018-01-14 Jay Berkenbilt <ejb@ql.org>

	* 7.1.0: release

	* Allow raw encryption key to be specified in libary and command
	line with the QPDF::setPasswordIsHexKey method and
	--password-is-hex-key option. Allow encryption key to be displayed
	with --show-encryption-key option. Thanks to Didier Stevens
	<didier.stevens@gmail.com> for the idea and contribution of one
	implementation of this idea. See his blog post at
	https://blog.didierstevens.com/2017/12/28/cracking-encrypted-pdfs-part-3/
	for a discussion of using this for cracking encrypted PDFs. I hope
	that a future release of qpdf will include some additional
	recovery options that may also make use of this capability.

2018-01-13 Jay Berkenbilt <ejb@ql.org>

	* Fix lexical error: the PDF specification allows floating point
	numbers to end with ".". Fixes #165.

	* Fix link order in the build to avoid conflicts when building
	from source while an older version of qpdf is installed. Fixes #158.

	* Add support for TIFF predictor for LZW and Flate streams. Now
	all predictor functions are supported. Fixes #171.

2017-12-25 Jay Berkenbilt <ejb@ql.org>

	* Clarify documentation around options that control parsing but
	not output creation. Two options: --suppress-recovery and
	--ignore-xref-streams, were documented in the "Advanced
	Transformation Options" section of the manual and --help output
	even though they are not related to output. These are now
	described in a separate section called "Advanced Parsing Options."

	* Implement remaining PNG filters for decode. Prior versions could
	decode only the "up" filter. Now all PNG filters (sub, up,
	average, Paeth, optimal) are supported for decoding. Thanks to
	Tobias Hoffmann for providing a test PDF file that has images with
	all PNG filters along with different numbers of bits per sample
	and samples per pixel, and thanks to Casey Rojas for providing
	implementations of the remaining PNG filters.

	The implementation of the remaining PNG filters changed the
	interface to the private Pl_PNGFilter class, but this class's
	header file is not in the installation, and there is no public
	interface to the class. Within the library, the class is never
	allocated on the stack; it is only ever dynamically allocated. As
	such, this does not actually break binary compatibility of the
	library.

2017-09-15 Jay Berkenbilt <ejb@ql.org>

	* 7.0.0: release

2017-09-12 Jay Berkenbilt <ejb@ql.org>

	* Relicense qpdf under version 2.0 of the Apache License rather
	than version 2.0 of the Artistic License. Both are fine, but the
	Apache License is in more widespread use, and I like it a little
	better than Artistic-2.0. It is my intention that there be no
	change in what you can or can't do with qpdf. Versions of qpdf
	prior to version 7 were released under the terms of version 2.0 of
	the Artistic License. At your option, you may continue to consider
	qpdf to be licensed under those terms. Please see the manual for
	additional information.

	* Improve the error message that is issued when QPDFWriter
	encounters a stream that can't be decoded. In particular, mention
	that the stream will be copied without filtering to avoid data
	loss.

	* Add new methods to the C API to correspond to new additions to
	QPDFWriter:
	- qpdf_set_compress_streams
	- qpdf_set_decode_level
	- qpdf_set_preserve_unreferenced_objects
	- qpdf_set_newline_before_endstream

2017-08-25 Jay Berkenbilt <ejb@ql.org>

	* Re-implement parser iteratively to avoid stack overflow on very
	deeply nested arrays and dictionaries. Fixes #146.

	* Detect infinite loop while finding additional xref tables. Fixes
	#149.

2017-08-22 Jay Berkenbilt <ejb@ql.org>

	* 7.0.b1: release

	* Convert all README files to markdown. Names changed as follows:
	 - README --> README.md
	 - README.hardening --> README-hardening.md
	 - README.maintainer --> README-maintainer.md
	 - README-what-to-download.txt --> README-what-to-download.md
	 - README-windows.txt --> README-windows.md
	 The file README-windows-install.txt remains a text file.

2017-08-21 Jay Berkenbilt <ejb@ql.org>

	* Add support for writing PCLm files. Most of the work was done by
	Sahil Arora <sahilarora.535@gmail.com> as part of a Google Summer
	of Code project in 2017. PCLm support is useful only for clients
	that specifically know how to create PCLm files. Support in qpdf
	is just for ensuring that objects are written in the correct order
	and for including some additional material in the output that is
	required by the PCLm standard.

2017-08-19 Jay Berkenbilt <ejb@ql.org>

	* Remove --precheck-streams. This is enabled by default now
	without any efficiency cost. This feature was never released.

	* Update pdf-create example to illustrate use of additional image
	compression filters.

	* Add support for /RunLengthDecode and /DCTDecode:
	 - New pipeline types Pl_RunLength and Pl_DCT
	 - New command-line flags --compress-streams and --decode-level
	 to replace/enhance --stream-data
	 - New QPDFWriter::setCompressStreams and
 	 QPDFWriter::setDecodeLevel methods
	 Please see documentation, header files, and help messages for
	 details on these new features.

2017-08-12 Jay Berkenbilt <ejb@ql.org>

	* Add QPDFObjectHandle::rotatePage to apply rotation to a page
	object. Add --rotate option to qpdf to specify page rotation from
	the command line.

	* Provide --verbose option that causes qpdf to print an indication
	of what files it is writing.

	* Change --single-pages to --split-pages and make it take an
	optional argument specifying the number of pages per file.

2017-08-11 Jay Berkenbilt <ejb@ql.org>

	* Fix --newline-before-endstream to always add a newline before
	endstream even if the last character was already a newline. This
	is actually what's required by PDF/A. Fixes #133.

	* Handle encrypted files whose encryption parameters are too
	short. Fixes #96.

2017-08-10 Jay Berkenbilt <ejb@ql.org>

	* Remove dependency on libpcre.

	* Be more forgiving of certain types of errors in the xref table
	that don't interfere with interpreting the table.

	* Remove unused "tracing" parameter from PointerHolder's
	(T*, bool) constructor. This change breaks source code
	compatibility, but since this argument to PointerHolder has not
	used for a long time and the presence of a boolean parameter in
	the primary constructor makes it too easy to use that by mistake
	when trying to use PointerHolder for arrays, it seems like it's
	finally time to take it out. If you have a compile error because
	of this change, please check to see whether you intended to use
	the (bool, T*) version of the constructor instead. If not, just
	remove the second parameter.

2017-08-09 Jay Berkenbilt <ejb@ql.org>

	* When recovering stream length, find endobj without endstream as
	well as just looking for endstream. Be a little more lax about
	where we allow it to be found.

2017-08-05 Jay Berkenbilt <ejb@ql.org>

	* Add --single-pages option to cause output to be written to a
	separate file for each page rather than one big file.

	* Process --pages options earlier so that certain inspection
	options, like --show-pages, can show the state after the merging
	operations.

2017-08-02 Jay Berkenbilt <ejb@ql.org>

	* Fix off-by-one error in parsing pages options. Fixes #129.

2017-07-29 Jay Berkenbilt <ejb@ql.org>

	* Support @filename and @- in the qpdf command-line tool to read
	command-line arguments, one per line, from the named file. @-
	reads from standard input. Fixes #16.

	* Detect when input file and output file are the same and exit to
	avoid overwriting and losing input file. Fixes #29.

	* When passing multiple inspection arguments, run --check first,
	and defer exit until after all the checks have been run. This
	makes it possible to force operations such as --show-xref to be
	delayed until after recovery attempts have been made. For example,
	if you have a file with a syntactically valid xref table that has
	some offsets that are incorrect, running qpdf --check --show-xref
	on that file will first recover the xref and the dump the
	recovered xref, while just running qpdf --show-xref will show the
	xref table as present in the file. Fixes #42.

	* When recovering stream length, indicate the recovered length.
	Fixes #44.

	* Add --newline-before-endstream command-line option and
	setNewlineBeforeEndstream method to QPDFWriter. This forces qpdf
	to always add a newline before the endstream keyword. It is a
	necessary but not sufficient condition for PDF/A compliance. Fixes
	#103.

	* Handle zlib data errors when decoding streams. Fixes #106.

	* Improve handling of files where the "stream" keyword is not
	followed by proper line terminators. Fixes #104.

	* Fix content stream parsing to handle cases of structures within
	the stream split across stream boundaries. Fixes #73.

2017-07-28 Jay Berkenbilt <ejb@ql.org>

	* Add --preserve-unreferenced command-line option and
	setPreserveUnreferencedObjects method to QPDFWriter. This option
	causes QPDFWriter to write all objects from the input file to the
	output file regardless of whether the objects are referenced.
	Objects are written to the output file in numerical order from the
	input file. This option has no effect for linearized files.

2017-07-27 Jay Berkenbilt <ejb@ql.org>

	* Add --precheck-streams command-line option and setStreamPrecheck
	method to QPDFWriter to tell QPDFWriter to attempt decoding a
	stream fully before deciding whether to filter it or not.

	* Recover gracefully from streams that aren't filterable because
	the filter parameters are invalid in the stream dictionary or the
	dictionary itself is invalid.

	* Significantly improve recoverability from invalid qpdf objects.
	Most conditions in basic object parsing that used to cause qpdf to
	exit are now warnings. There are still many more opportunities for
	improvements of this sort beyond just object parsing.

2017-07-26 Jay Berkenbilt <ejb@ql.org>

	* Fixes to infinite loops below also fix problems reported in
	other issues and cover CVE-2017-11624, CVE-2017-11625,
	CVE-2017-11626, and CVE-2017-11627.

	* Don't attempt to interpret syntactic keywords (like R and
	endobj) found while parsing content streams.

	* Detect infinite loops while resolving objects. This could happen
	if something inside an object that had to be resolved during
	parsing, such as a stream length, recursively referenced the
	object being resolved.

	* CVE-2017-9208: Handle references to and appearance of object 0
	as a special case. Object 0 is not allowed, and qpdf was using it
	internally to represent direct objects.

	* CVE-2017-9209: Fix infinite loop caused by attempting to
	reconstruct the xref table while already in the process of
	reconstructing the xref table.

	* CVE-2017-9210: Fix infinite loop caused by attempting to unparse
	an object for inclusion in the text of an exception.

2015-11-10 Jay Berkenbilt <ejb@ql.org>

	* 6.0.0: release

	* No changes from 5.2.0. The 5.2.0 release broke binary
	compatibility and was withdrawn.

2015-10-31 Jay Berkenbilt <ejb@ql.org>

	* 5.2.0: release

	* libqpdf/QPDF.cc (read_xrefTable): Be tolerant of some malformed
	xref tables that don't have the required trailing space after each
	line.

2015-10-29 Jay Berkenbilt <ejb@ql.org>

	* Implement QPDFWriter::setDeterministicID and --deterministic-id
	commandline-flag to qpdf to request generation of a deterministic
	/ID for non-encrypted files.

2015-05-24 Jay Berkenbilt <ejb@ql.org>

	* 5.1.3: release

	* Bug fix: fix-qdf was not handling object streams with more than
	255 objects in them.

	* Handle Microsoft crypt provider initialization properly for case
	where no keys have been previously created, such as in a fresh
	Windows installation.

	* Include time.h in QUtil.hh for time_t

2015-02-21 Jay Berkenbilt <ejb@ql.org>

	* Detect loops in Pages structure. Thanks to Gynvael Coldwind and
	Mateusz Jurczyk of the Google Security Team for providing a sample
	file with this problem.

	* Prevent buffer overrun when converting a password to an
	encryption key. Thanks to Gynvael Coldwind and Mateusz Jurczyk of
	the Google Security Team for providing a sample file with this
	problem.

	* Ensure that arguments to "R" when parsing the file are direct
	objects before trying to resolve them. This prevents specially
	crafted files from causing qpdf to crash with a stack overflow.
	Thanks to Gynvael Coldwind and Mateusz Jurczyk of the Google
	Security Team for providing a sample file with this problem.

2014-12-01 Jay Berkenbilt <ejb@ql.org>

	* Some broken PDF files lack the required /Type key for /Page and
	/Pages nodes in the page dictionary. QPDF now uses other methods
	to figure out what kind of node it is looking at so that it can
	handle those files. Original reported at
	https://bugs.launchpad.net/ubuntu/+source/qpdf/+bug/1397413

2014-11-14 Jay Berkenbilt <ejb@ql.org>

	* Bug fix: QPDFObjectHandle::getPageContents() no longer throws an
	exception when called on a page that has no /Contents key in its
	dictionary. This is allowed by the spec, and some software
	packages generate files like this for pages that are blank in the
	original.

2014-06-07 Jay Berkenbilt <ejb@ql.org>

	* 5.1.2: release

	* MS Visual C++ build: explicitly target Windows 5.0.1 (XP)

	* New example program: pdf-split-pages: efficiently split PDF
	files into individual pages.

	* Bug fix: don't fail on files that contain streams where /Filter
	or /DecodeParms references a stream. Before, qpdf would try to
	convert these to direct objects, which would fail because of the
	stream.

2014-02-22 Jay Berkenbilt <ejb@ql.org>

	* Bug fix: if the last object in the first part of a linearized
	file had an offset that was below 65536 by less than the size of
	the hint stream, the xref stream was invalid and the resulting file
	is not usable. This is now fixed.

2014-01-14 Jay Berkenbilt <ejb@ql.org>

	* 5.1.1: release

2013-12-26 Jay Berkenbilt <ejb@ql.org>

	* Bug fix: when copying foreign objects (which occurs during page
	splitting among other cases), avoid traversing the same object
	more than once if it appears more than once in the same direct
	object. This bug is performance-only and does not affect the
	actual output.

2013-12-17 Jay Berkenbilt <ejb@ql.org>

	* 5.1.0: release

2013-12-16 Jay Berkenbilt <ejb@ql.org>

	* Document and make explicit that passing null to
	QUtil::setRandomDataProvider() resets the random data provider.

	* Provide QUtil::getRandomDataProvider().

2013-12-14 Jay Berkenbilt <ejb@ql.org>

	* Allow anyspace rather than just newline to follow xref header.
	This allows qpdf to read a wider range of damaged files.

2013-11-30 Jay Berkenbilt <ejb@ql.org>

	* Allow user-supplied random data provider to be used in place of
	OS-provided or insecure random number generation. See
	documentation for 5.1.0 for details.

	* Add configure option --enable-os-secure-random (enabled by
	default). Pass --disable-os-secure-random or define
	SKIP_OS_SECURE_RANDOM to avoid attempts to use the operating
	system-provided secure random number generation. This can be
	especially useful on Windows if you wish to avoid any dependency
	on Microsoft's cryptography system.

2013-11-29 Jay Berkenbilt <ejb@ql.org>

	* If NO_GET_ENVIRONMENT is #defined, for Windows only,
	QUtil::get_env will always return false. This was added to
	support a user who needs to avoid calling GetEnvironmentVariable
	from the Windows API. QUtil::get_env is not used for any
	functionality in qpdf and exists only to support the test suite
	including test coverage support with QTC (part of qtest).

	* Add /FS to msvc builds to allow parallel builds to work with
	Visual C++ 2013.

	* Add missing #include <algorithm> in some files that use std::min
	and std::max.

2013-11-21 Jay Berkenbilt <ejb@ql.org>

	* Change image comparison tests, which are disabled by default, to
	use tiff files with 8 bits per sample rather than 4. This works
	around a bug in tiffcmp but also increases time and disk space for
	image comparison tests.

2013-10-28 Jay Berkenbilt <ejb@ql.org>

	* Fix MacOS compilation errors by adding a missing #include
	<string> in a header file.

2013-10-18 Jay Berkenbilt <ejb@ql.org>

	* 5.0.1: release

	* Warn when -accessibility=n is specified with a modern encryption
	format (R > 3). Also, accept this flag (and ignore with warning)
	with 256-bit encryption. qpdf has always ignored the
	accessibility setting with R > 3, but it previously did so
	silently.

2013-10-05 Jay Berkenbilt <ejb@ql.org>

	* Replace operator[] in std::string and std::vector with "at" in
	order to get bounds checking. This reduces the chances that
	incorrect code will result in data exposure or buffer overruns.
	See README.hardening for additional notes.

	* Use cryptographically secure random number generation when
	available. See additional notes in README.

	* Replace some assert() calls with std::logic_error exceptions.
	Ideally there shouldn't be assert() calls outside of testing.
	This change may make a few more potential code errors in handling
	invalid data recoverable.

	* Security fix: In places where std::vector<T>(size_t) was used,
	either validate that the size parameter is sane or refactor code
	to avoid the need to pre-allocate the vector. This reduces the
	likelihood of allocating a lot of memory in response to invalid
	data in linearization hint streams.

	* Security fix: sanitize /W array in cross reference stream to
	avoid a potential integer overflow in a multiplication. It is
	unlikely that any exploits were possible from this bug as
	additional checks were also performed.

	* Security fix: avoid buffer overrun that could be caused by bogus
	data in linearization hint streams. The incorrect code could only
	be triggered when checking linearization data, which must be
	invoked explicitly. qpdf does not check linearization data when
	reading or writing linearized files, but the qpdf --check command
	does check linearization data.

	* Security fix: properly handle empty strings in
	QPDF_Name::normalizeName. The empty string is not a valid name
	and would never be parsed as a name, so there were no known
	conditions where this method could be called with an empty string.

	* Security fix: perform additional argument sanity checks when
	reading bit streams.

	* Security fix: in QUtil::toUTF8, change bounds checking to avoid
	having a pointer point temporarily outside the bounds of an
	array. Some compiler optimizations could have made the original
	code unsafe.

2013-07-10 Jay Berkenbilt <ejb@ql.org>

	* 5.0.0: release

	* 4.2.0 turned out to be binary incompatible on some platforms
	even though there were no changes to the public API. Therefore
	the 4.2.0 release has been withdrawn, and is being replaced with a
	5.0.0 release that acknowledges the ABI change and also removes
	some problematic methods from the public API.

	* Remove methods from public API that were only intended to be
	used by QPDFWriter and really didn't make sense to call from
	anywhere else as they required internal knowledge that only
	QPDFWriter had:
	 - QPDF::getLinearizedParts
	 - QPDF::generateHintStream
	 - QPDF::getObjectStreamData
	 - QPDF::getCompressibleObjGens
	 - QPDF::getCompressibleObjects

2013-07-07 Jay Berkenbilt <ejb@ql.org>

	* 4.2.0: release [withdrawn]

	* Ignore error case of a stream's decode parameters having invalid
	length when there are no stream filters.

	* qpdf: add --show-npages command-line option, which causes the
	number of pages in the input file to be printed on a line by
	itself.

	* qpdf: allow omission of range in --pages. If range is omitted
	such that an argument that is supposed to be a range is an invalid
	range and a valid file name, the range of 1-z is assumed. This
	makes it possible to merge a bunch of files with something like
	qpdf --empty out.pdf --pages *.pdf --

2013-06-15 Jay Berkenbilt <ejb@ql.org>

	* Handle some additional broken files with missing /ID in trailer
	for encrypted files and with space rather than newline after xref.

2013-06-14 Jay Berkenbilt <ejb@ql.org>

	* Detect and correct /Outlines dictionary being a direct object
	when linearizing files. This is not allowed by the spec but has
	been seen in the wild. Prior to this change, such a file would
	cause an internal error in the linearization code, which assumed
	/Outlines was indirect.

	* Add /Length key to crypt filter dictionary for encrypted files.
	This key is optional, but some version of MacOS reportedly fail to
	open encrypted PDF files without this key.

	* Bug fix: properly handle object stream generation when the
	original file has some compressible objects with generation != 0.

	* Add QPDF::getCompressibleObjGens() and deprecate
	QPDF::getCompressibleObjects(), which had a flaw in its logic.

	* Add new QPDFObjectHandle::getObjGen() method and indiciate in
	comments that its use is favored over getObjectID() and
	getGeneration() for most cases.

	* Add new QPDFObjGen object to represent an object ID/generation
	pair.

2013-04-14 Jay Berkenbilt <ejb@ql.org>

	* 4.1.0: release

2013-03-25 Jay Berkenbilt <ejb@ql.org>

	* manual/qpdf-manual.xml: Document the casting policy that is
	followed in qpdf's implementation.

2013-03-11 Jay Berkenbilt <ejb@ql.org>

	* When creating Windows binary distributions, make sure to only
	copy DLLs of the correct type. The ensures that the 32-bit
	distributions contain 32-bit DLLs and the 64-bit distributions
	contain 64-bit DLLs.

2013-03-07 Jay Berkenbilt <ejb@ql.org>

	* Use ./install-sh (already present) instead of "install -c" to
	install executables to fix portability problems against different
	UNIX variants.

2013-03-03 Jay Berkenbilt <ejb@ql.org>

	* Add protected terminateParsing method to
	QPDFObjectHandle::ParserCallbacks that implementor can call to
	terminate parsing of a content stream.

2013-02-28 Jay Berkenbilt <ejb@ql.org>

	* Favor fopen_s and strerror_s on MSVC to avoid CRT security
	warnings. This is useful for people who may want to use qpdf in
	an application that is Windows 8 certified.

	* New method QUtil::safe_fopen to wrap calls to fopen. This is
	less cumbersome than calling QUtil::fopen_wrapper.

	* Remove all calls to sprintf

	* New method QUtil::int_to_string_base to convert to octal or
	hexademical (or decimal) strings without using sprintf

2013-02-26 Jay Berkenbilt <ejb@ql.org>

	* Rewrite QUtil::int_to_string and QUtil::double_to_string to
	remove internal length limits but to remain backward compatible
	with the old versions for valid inputs.

2013-02-23 Jay Berkenbilt <ejb@ql.org>

	* Bug fix: properly handle overridden compressed objects. When
	caching objects from an object stream, only cache objects that,
	based on the xref table, would actually be resolved into this
	stream. Prior to this fix, if an object stream A contained an
	object B that was overridden by an appended section of the file,
	qpdf would cache the old value of B if any non-overridden member
	of A was accessed before B. This commit fixes that bug.

2013-01-31 Jay Berkenbilt <ejb@ql.org>

	* Do not remove libtool's .la file during the make install step.
	Note to packagers: if your distribution wants to you remove the
	.la file, you will have to do that yourself now.

2013-01-25 Jay Berkenbilt <ejb@ql.org>

	* New method QUtil::hex_encode to encode binary data as a
	hexadecimal string

	* qpdf --check was exiting with status 0 in some rare cases even
	when errors were found. It now always exits with one of the
	document error codes (0 for success, 2 for errors, 3 or warnings).

2013-01-24 Jay Berkenbilt <ejb@ql.org>

	* Make --enable-werror work for MSVC, and generally handle warning
	options better for that compiler. Warning flags for that compiler
	were previous hard-coded into the build with /WX enabled
	unconditionally.

	* Split warning flags into WFLAGS in autoconf.mk to make them
	easier to override. Before they were repeated in CFLAGS and
	CXXFLAGS and were commingled with other compiler flags.

	* qpdf --check now does syntactic checks all pages' content
	streams as well as checking overall document structure. Semantic
	errors are still not checked, and there are no plans to add
	semantic checks.

2013-01-22 Jay Berkenbilt <ejb@ql.org>

	* Add QPDFObjectHandle::getTypeCode(). This method returns a
	unique integer (enumerated type) value corresponding to the object
	type of the QPDFObjectHandle. It can be used as an alternative to
	the QPDFObjectHandle::is* methods for type testing, particularly
	where there is a desire to use a switch statement or optimize for
	performance when testing object types.

	* Add QPDFObjectHandle::getTypeName(). This method returns a
	string literal describing the object type. It is useful for
	testing and debugging.

2013-01-20 Jay Berkenbilt <ejb@ql.org>

	* Add QPDFObjectHandle::parseContentStream, which parses the
	objects in a content stream and calls handlers in a callback
	class. The example pdf-parse-content illustrates it use.

	* Add QPDF_Operator and QPDF_InlineImage types along with
	appropriate wrapper methods in QPDFObjectHandle. These new object
	types are to facilitate content stream parsing.

2013-01-17 Jay Berkenbilt <ejb@ql.org>

	* 4.0.1: release

	* Add clarifying comment in QPDF.hh for methods that return the
	user password to state that it is no longer possible with newer
	encryption formats to recover the user password knowing the owner
	password.

	* Fix detection of binary attachments in the test suite. This
	resolves false test failures on some platforms. No changes to the
	actual QPDF code were made.

2012-12-31 Jay Berkenbilt <ejb@ql.org>

	* 4.0.0: release

	* Add new methods qpdf_get_pdf_extension_level,
	qpdf_set_r5_encryption_parameters,
	qpdf_set_r6_encryption_parameters,
	qpdf_set_minimum_pdf_version_and_extension, and
	qpdf_force_pdf_version_and_extension to support new functionality
	from the C API.

2012-12-30 Jay Berkenbilt <ejb@ql.org>

	* Fix long-standing bug that could theoretically have resulted in
	possible misinterpretation of decode parameters in streams. As
	far as I can tell, it is extremely unlikely that files with the
	characteristics that would have triggered the bug actually exist
	in cases that qpdf versions prior to 4.0.0 could have read.
	Unencrypted files with encrypted attachments would have triggered
	this bug, but qpdf versions prior to 4.0.0 already refused to open
	such files.

	* Fix long-standing bug in which a stream that used a crypt
	filter and was otherwise not filterable by qpdf would be decrypted
	properly but would retain the crypt filter indication in the
	file. There are no known ways to create files like this, so it is
	unlikely that anyone ever hit this bug.

2012-12-29 Jay Berkenbilt <ejb@ql.org>

	* Add read/write support for both the deprecated Acrobat IX
	encryption format and the Acrobat X/PDF 2.0 encryption format
	using 256-bit AES keys. Using the Acrobat IX format (R=5) forces
	the version of the file to 1.7 with extension level 3. Using the
	PDF 2.0 format (R=6) forces it to 1.7 extension level 8.

	* Add new method QPDF::getEncryptionKey to return the actual
	encryption key used for encryption of data in the file. The key
	is returned as a std::string.

	* Non-compatible API change: change signature of
	QPDF::compute_data_key to take the R and V values from the
	encryption dictionary. There is no reason for any application
	code to call this method since handling of encryption is done
	automatically by the qpdf libary. It is used internally by
	QPDFWriter.

	* Support reading and decryption of files whose main text is not
	encrypted but whose attachments are. More generally, support the
	case of files and streams encrypted differently with some
	limitations, described in the documentation. This was not
	previously supported due to lack of test files, but I created test
	files using a trial version of Acrobat XI to fully implement this
	case.

	* Incorporate sha2 code from sphlib 3.0. See README for
	licensing. Create private pipeline class for computing hashes
	with sha256, sha384, and sha512.

	* Allow specification of initialization vector when using AES
	filtering. This is required to compute the hash used in /R=6 (PDF
	2.0) encryption.

2012-12-28 Jay Berkenbilt <ejb@ql.org>

	* Add random number generation functions to QUtil.

	* Fix old bug that could cause an infinite loop if user password
	recovery methods were called and a password contained the "("
	character (which happens to be the first byte of padding used by
	older PDF encryption formats). This bug was noticed while reading
	code and would not happen under ordinary usage patterns even if
	the password contained that character.

2012-12-27 Jay Berkenbilt <ejb@ql.org>

	* Add awareness of extension level to PDF Version methods for both
	reading and writing. This includes adding method
	QPDF::getExtensionLevel and new versions of
	QPDFWriter::setMinimumPDFVersion and QPDFWriter::forcePDFVersion
	that support extension levels. The qpdf command-line tool
	interprets version numbers of the form x.y.z as version x.y at
	extension level z.

	* Update AES classes to support use of 256-bit keys.

	* Non-compatible API change: Removed public method
	QPDF::flattenScalarReferences. Instead, just flatten the scalar
	references we actually need to flatten. Flattening scalar
	references was a wrong decision years ago and has occasionally
	caused other problems, among which were that it caused qpdf to
	visit otherwise unreferenced and possibly erroneous objects in the
	file when it didn't have to. There's no reason that any
	non-internal code would have had to call this.

	* Non-compatible API change: Removed public method
	QPDF::decodeStreams which was previously used by qpdf --check but
	is no longer used. The decodeStreams method could generate false
	positives since it would attempt to access all objects in the file
	including those that were not referenced. There's no reason that
	any non-internal code would have had to call this.

	* Non-compatible API change: Removed public method
	QPDF::trimTrailerForWrite, which was only intended for use by
	QPDFWriter and which is no longer used.

2012-12-26 Jay Berkenbilt <ejb@ql.org>

	* Add new fields to QPDF::EncryptionData to support newer
	encryption formats (V=5, R=5 and R=6)

	* Non-compatible API change: Change public nested class
	QPDF::EncryptionData to make all member fields private and to add
	method calls. This is a non-compatible API change, but changing
	EncryptionData is necessary to support newer encryption formats,
	and making this change will prevent the need from making a
	non-compatible change in the future if new fields are added. A
	public nested class should never have had public members to begin
	with.

2012-12-25 Jay Berkenbilt <ejb@ql.org>

	* Allow PDF header to appear anywhere in the first 1024 bytes of
	the file as recommended in the implementation notes of the Adobe
	version of the PDF spec.

2012-11-20 Jay Berkenbilt <ejb@ql.org>

	* Add zlib and libpcre to Requires.private in the pkg-config file
	to support static linking. Thanks Tobias Hoffmann for pointing
	out the omission.

	* Ignore (with warning) non-freed objects in the xref table whose
	offset is 0. Some PDF producers (incorrectly) do this. See
	https://bugs.linuxfoundation.org/show_bug.cgi?id=1081.

2012-09-23 Jay Berkenbilt <ejb@ql.org>

	* Add public methods QPDF::processInputSource and
	QPDFWriter::setOutputPipeline to allow users to read from custom
	input sources and to write to custom pipelines. This allows the
	maximum flexibility in sources for reading and writing PDF files.

2012-09-06 Jay Berkenbilt <ejb@ql.org>

	* 3.0.2: release

	* Add new method QPDFWriter::setExtraHeaderText to add extra text,
	such as application-specific comments, to near the beginning of a
	PDF file. For linearized files, this appears after the
	linearization parameter dictionary. For non-linearized files, it
	appears right after the PDF header and non-ASCII comment.

	* Make it possible to write the same QPDF object with two
	different QPDFWriter objects that have both called
	setLinearization(true) by making private method
	QPDF::calculateLinearizationData() properly initialize its state.

	* Bug fix: Writing after calling QPDFWriter::setOutputMemory()
	would cause a segmentation fault because of an internal field not
	being initialized, rendering that method useless. This has been
	corrected.

2012-08-11 Jay Berkenbilt <ejb@ql.org>

	* 3.0.1: release

	* Bug fix: let EOF terminate a literal token as well as
	whitespace or comments.

2012-07-31 Jay Berkenbilt <ejb@ql.org>

	* 3.0.0: release

2012-07-29 Jay Berkenbilt <ejb@ql.org>

	* 3.0.rc1: release

2012-07-25 Jay Berkenbilt <ejb@ql.org>

	* From Tobias: add QPDFObjectHandle::replaceStreamData that takes
	a std::string analogous to the QPDFObjectHandle::newStream that
	takes a string that was added earlier.

2012-07-21 Jay Berkenbilt <ejb@ql.org>

	* Change configure to have image comparison tests disabled by
	default. Update README and README.maintainer with information
	about running them.

	* Add --pages command-line option to qpdf to enable page-based
	merging and splitting.

	* Add new method QPDFObjectHandle::replaceDict to replace a
	stream's dictionary. Use with caution; see comments in
	QPDFObjectHandle.hh.

	* Add new method QPDFObjectHandle::parse for creation of
	QPDFObjectHandle objects from string representations of the
	objects. Thanks to Tobias Hoffmann for the idea.

2012-07-15 Jay Berkenbilt <ejb@ql.org>

	* add new QPDF::isEncrypted method that returns some additional
	information beyond other versions.

	* libqpdf/QPDFWriter.cc: fix copyEncryptionParameters to fix the
	minimum PDF version based on other file's encryption needs. This
	is a fix to code added on 2012-07-14 and did not impact previously
	released code.

	* libqpdf/QPDFWriter.cc (copyEncryptionParameters): Bug fix: qpdf
	was not preserving whether or not AES encryption was being used
	when copying encryption parameters. The file would still have
	been properly encrypted, but a file that started off encrypted
	with AES could have become encrypted with RC4.

2012-07-14 Jay Berkenbilt <ejb@ql.org>

	* QPDFWriter: add public copyEncryptionParameters to allow copying
	encryption parameters from another file.

	* QPDFWriter: detect if the user has inserted an indirect object
	from another QPDF object and throw an exception directing the user
	to copyForeignObject.

2012-07-11 Jay Berkenbilt <ejb@ql.org>

	* Added new APIs to copy objects from one QPDF to another. This
	includes letting QPDF::addPage() (and QPDF::addPageAt()) accept a
	page object from another QPDF and adding
	QPDF::copyForeignObject(). See QPDF.hh for details.

	* Add method QPDFObjectHandle::getOwningQPDF() to return the QPDF
	object associated with an indirect QPDFObjectHandle.

	* Add convenience methods to QPDFObjectHandle: assertIndirect(),
	isPageObject(), isPagesObject()

	* Cache when QPDF::pushInheritedAttributesToPage() has been called
	to avoid traversing the pages trees multiple times. This state is
	cleared by QPDF::updateAllPagesCache() and ignored by
	QPDF::flattenPagesTree().

2012-07-08 Jay Berkenbilt <ejb@ql.org>

	* Add QPDFObjectHandle::newReserved to create a reserved object
	and QPDF::replaceReserved to replace it with a real object.
	QPDFObjectHandle::newReserved reserves an object ID in a QPDF
	object and ensures that any references to it remain unresolved.
	When QPDF::replaceReserved is later called, previous references to
	the reserved object will properly resolve to the replaced object.

2012-07-07 Jay Berkenbilt <ejb@ql.org>

	* NOTE: BREAKING API CHANGE. Remove previously required length
	parameter from the version QPDFObjectHandle::replaceStreamData
	that uses a stream data provider. Prior to qpdf 3.0.0, you had to
	compute the stream length in advance so that qpdf could internally
	verify that the stream data had the same length every time the
	provider was invoked. Now this requirement is enforced a
	different way, and the length parameter is no longer required.
	Note that I take API-breaking changes very seriously and only did
	it in this case since the lack of need to know length in advance
	could significantly simplify people's code. If you were
	previously going to a lot of trouble to compute the length of the
	new stream data in advance, you now no longer have to do that.
	You can just drop the length parameter and remove any code that
	was previously computing the length. Thanks to Tobias Hoffmann
	for pointing out how annoying the original interface was.

2012-07-05 Jay Berkenbilt <ejb@ql.org>

	* Add QPDFWriter methods to write to an already open stdio FILE*.
	Implementation and idea area based on contributions from Tobias
	Hoffmann.

2012-07-04 Jay Berkenbilt <ejb@ql.org>

	* Accept changes from Tobias Hoffmann: add public method
	QPDF::pushInheritedAttributesToPage including warnings for
	non-inherited keys that may be discarded from /Pages by
	non-conformant PDF files when the /Pages tree is flattened.

2012-06-27 Jay Berkenbilt <ejb@ql.org>

	* Add Pl_Concatenate pipeline for stream concatenation also
	implemented by Tobias Hoffmann. Also added test code
	(libtests/concatenate.cc).

	* Add new methods implemented by Tobias Hoffmann:
	QPDFObjectHandle::newReal(double) and
	QPDFObjectHandle::newStream(QPDF*, std::string const&).

2012-06-26 Jay Berkenbilt <ejb@ql.org>

	* Minor changes so that support for PDF files larger than 4GB
	works well with 32-bit and 64-bit Linux and also with 32-bit and
	64-bit Windows with both MSVC and mingw.

	* Rework internal methods for doing recovery of the cross
	reference tables for much greater efficiency both in terms of time
	and memory usage.

2012-06-24 Jay Berkenbilt <ejb@ql.org>

	* Support PDF files larger than 4 GB. This involved many changes
	to the ABI to increase the size of integer types used in various
	places as well as increasing the amount of padding used when
	creating linearized files. Automated tests for large files are
	disabled by default. Run ./configure --help for information on
	enabling them. Running the tests requires 11 GB of free disk
	space and takes several minutes.

2012-06-22 Jay Berkenbilt <ejb@ql.org>

	* examples/pdf-create.cc: Provide an example of creating a PDF
	from scratch. This simple PDF has a single page with some text
	and an image.

	* Add empty QPDFObjectHandle factories for array and dictionary.
	With PDF-from-scratch capability, it is useful to be able to
	create empty arrays and dictionaries and add keys to them.
	Updated pdf_from_scratch.cc to use these interfaces.

2012-06-21 Jay Berkenbilt <ejb@ql.org>

	* Add QPDF::emptyPDF() to create an empty QPDF object suitable for
	adding pages and other objects to. pdf_from_scratch.cc is test
	code that exercises it.

	* make/libtool.mk: Place user-specified CPPFLAGS and LDFLAGS later
	in the compilation so that if a user installs things in a
	non-standard place that they have to tell the build about, earlier
	versions of qpdf installed there won't break the build. Thanks to
	Macports for reporting this. (Fixes bug 3468860.)

	* Instead of using off_t in the public APIs, use qpdf_offset_t
	instead. This is defined as long long in qpdf/Types.h. If your
	system doesn't support long long, you can redefine it.

	* Add pkg-config files

	* QPDFObjectHandle: add shallowCopy() method

	* QPDF: add new APIs for adding and removing pages. This includes
	addPage(), addPageAt(), and removePage(). Also a method
	updateAllPagesCache() is now available to force update of the
	internal pages cache if you should modify the pages structure
	manually.

	* QPDF: new processFile method that takes an open FILE*
	instead of a filename.

2012-06-20 Jay Berkenbilt <ejb@ql.org>

	* Add new array mutation routines to QPDFObjectHandle.
	Implemented by Tobias Hoffmann.

	* Rework APIs that use size_t, off_t, and primative integer types
	so that size_t is used for sizes of memory and off_t is used for
	file offsets. Also set _FILE_OFFSET_BITS so that large files can
	be supported on 32-bit UNIX/Linux platforms. The code assumes in
	places that sizeof(off_t) >= sizeof(size_t). This resulted in
	non-compatible ABI changes and hopefully clears the way for QPDF
	to work with files that are larger than 4 GiB in size.

	* Add support for versioned symbols on ELF platforms.

	* Various fixes for gcc 4.7

2011-04-06 Jay Berkenbilt <ejb@ql.org>

 * Fix PCRE to stop using deprecated (and now dropped) interfaces.

2011-12-28 Jay Berkenbilt <ejb@ql.org>

	* 2.3.1: release

	* include <stdint.h> if available to support MSVC 2010

	* Since PCRE is not necessarily thread safe, don't declare any
	PCRE objects to be static.

	* Disregard stderr output from ghostscript when using it to
	compare images in the test suite; see comments in qpdf.test for
	details.

	* Fixed a few documentation errors.

2011-08-11 Jay Berkenbilt <ejb@ql.org>

	* 2.3.0: release

	* include/qpdf/qpdf-c.h ("C"): add new methods
	qpdf_init_write_memory, qpdf_get_buffer_length, and
	qpdf_get_buffer to support writing to memory from the C API.

	* include/qpdf/qpdf-c.h ("C"): add new methods qpdf_get_info_key
	and qpdf_set_info_key for manipulating text fields of the /Info
	dictionary.

2011-08-10 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/QPDFWriter.cc (copyEncryptionParameters): preserve
	whether metadata is encryption. This fixes part of bug 3173659:
	the password becomes invalid if qpdf copies an encrypted file with
	cleartext-metadata.

	* include/qpdf/QPDFWriter.hh: add a new constructor that takes
	only a QPDF reference and leaves specification of output for
	later. Add methods setOutputFilename() to set the output to a
	filename or stdout, and setOutputMemory() to indicate that output
	should go to a memory buffer. Add method getBuffer() to retrieve
	the buffer used if output was saved to a memory buffer.

	* include/qpdf/QPDF.hh: add methods replaceObject() and
	swapObjects() to allow replacement of an object and swapping of
	two objects by object ID.

	* include/qpdf/QPDFObjectHandle.hh: add new methods getDictAsMap()
	and getArrayAsVector() for returning the elements of a dictionary
	or an array as a map or vector.

2011-06-25 Jay Berkenbilt <ejb@ql.org>

	* 2.2.4: release

2011-06-23 Jay Berkenbilt <ejb@ql.org>

	* make/libtool.mk (install): Do not strip executables and shared
	libraries during installation. Leave that up to the packager.

	* configure.ac: disable -Werror by default.

2011-05-07 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/QPDF_linearization.cc (isLinearized): remove unused
	offset variable, found by a gcc 4.6 warning.

2011-04-30 Jay Berkenbilt <ejb@ql.org>

	* 2.2.3: release

	* libqpdf/QPDF.cc (readObjectInternal): Accept the case of the
	stream keyword being followed by carriage return by itself. While
	this is not permitted by the specification, there are PDF files
	that do this, and other readers can read them.

	* libqpdf/Pl_QPDFTokenizer.cc (processChar): When an inline image
	is detected, suspend normalization only up to the end of the
	inline image rather than for the remainder of the content stream.
	(Fixes qpdf-Bugs 3152169.)

2011-01-31 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/QPDF.cc (readObjectAtOffset): use -1 rather than 0 when
	reading an object at a given to indicate that no object number is
	expected. This allows xref recovery to proceed even if a file
	uses the invalid object number 0 as a regular object.

	* libqpdf/QPDF_linearization.cc (isLinearized): use -1 rather than
	0 as a sentintel for not having found the first object in the
	file. Since -1 can never match the regular expression, this
	prevents an infinite loop when checking a file that starts with
	(erroneous) 0 0 obj. (Fixes qpdf-Bugs-3159950.)

2010-10-04 Jay Berkenbilt <ejb@ql.org>

	* 2.2.2: release

	* include/qpdf/qpdf-c.h: Add qpdf_read_memory to C API to call
	QPDF::processMemoryFile.

2010-10-01 Jay Berkenbilt <ejb@ql.org>

	* 2.2.1: release

	* include/qpdf/QPDF.hh: Add setOutputStreams method to allow
	redirection of library-generated output/error to alternative
	streams.

	* include/qpdf/QPDF.hh: Add processMemoryFile method for
	processing a PDF file from a memory buffer instead of a file.

2010-09-24 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/QPDF.cc: change private "file" method to be a
	PointerHolder<InputSource> to prepare qpdf for being able to work
	with PDF files loaded into memory in addition to working with
	files on disk.

	* include/qpdf/PointerHolder.hh: add operator* and operator->
	methods so that PointerHolder objects can be used like pointers.
	This is consistent with the smart pointer objects in the next
	revision of C++.

2010-09-05 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/QPDF.cc (readObjectInternal): Recognize empty objects
	and treat them as null.

	* libqpdf/QPDF_Stream.cc (filterable): Handle inline image filter
	abbreviations as stream filter abbreviations. Although this is
	not technically allowed by the PDF specification, table H.1 in the
	pre-ISO spec indicates that Adobe's readers accept them. Thanks
	to Jian Ma <stronghorse@tom.com> for bringing this to my
	attention.

2010-08-14 Jay Berkenbilt <ejb@ql.org>

	* 2.2.0: release

	* Rename README.windows to README-windows.txt and convert its line
	endings to Windows-style line endings. Also mention Jian Ma's VC6
	port in the manual and README-windows.txt.

2010-08-09 Jay Berkenbilt <ejb@ql.org>

	* Add QPDFObjectHandle::getRawStreamData to return raw
	(unfiltered) stream data.

2010-08-08 Jay Berkenbilt <ejb@ql.org>

	* 2.2.rc1: release

2010-08-05 Jay Berkenbilt <ejb@ql.org>

	* Add QPDFObjectHandle::addPageContents, a convenience routine for
	appending or prepending new streams to a page's content streams.
	The "pdf-double-page-size" example illustrates its use.

	* Add new methods to QPDFObjectHandle: replaceStreamData and
	newStream. These methods allow users of the qpdf library to add
	new streams and to replace data of existing streams. The
	"pdf-double-page-size" and "pdf-invert-images" examples illustrate
	their use.

2010-06-06 Jay Berkenbilt <ejb@ql.org>

	* Fix memory leak for QPDF objects whose underlying PDF objects
	contain circular references. Thanks to Jian Ma
	<stronghorse@tom.com> for calling my attention to the memory leak.

2010-04-25 Jay Berkenbilt <ejb@ql.org>

	* 2.1.5: release

	* libqpdf/QPDF_encryption.cc (compute_encryption_key): remove
	restrictions on length of file identifier string. (Fixes
	qpdf-Bugs-2991412.)

2010-04-18 Jay Berkenbilt <ejb@ql.org>

	* 2.1.4: release

	* libqpdf/QPDFWriter.cc (writeLinearized): the padding calculation
	fix in 2.1.2 was applied in only one place but it was needed in
	two places since there are actually two cross reference streams in
	a linearized file. The new padding calculation is now used for
	both streams. Hopefully this should put an end to linearization
	padding problems. (Fixes qpdf-Bugs-2979219.)

2010-04-10 Jay Berkenbilt <ejb@ql.org>

	* qpdf/qpdf.cc (main): Since qpdf --check only checks syntax and
	stream encoding without doing any semantic checks, make the output
	clearer when no errors around found. This is inspired by
	qpdf-Bugs-2983225.

2010-03-27 Jay Berkenbilt <ejb@ql.org>

	* 2.1.3: release

	* libqpdf/QPDF_optimization.cc (flattenScalarReferences): Flatten
	scalar references for unreferenced objects as well as those seen
	during traversal of the file. This matters when preserving object
	streams that contain unreferenced objects with indirect scalars.
	(Fixes qpdf-Bugs-2974522.) Updated TODO with a description of a
	possibly better fix involving removal of flattenScalarReferences.

	* libqpdf/Pl_AES_PDF.cc (finish): Don't complain if an AES input
	buffer is not a multiple of 16 bytes. Instead, just pad with
	nulls and hope for the best. PDF files have been encountered "in
	the wild" that contain AES buffers that aren't a multiple of 16
	bytes.

2010-01-24 Jay Berkenbilt <ejb@ql.org>

	* 2.1.2: release

	* libqpdf/QPDFWriter.cc: fix logic error in padding calculation.
	When writing linearized files with cross reference streams, the
	padding calculation failed to take differences in sizes of
	compressed data between pass 1 and pass 2 into consideration.

2009-12-14 Jay Berkenbilt <ejb@ql.org>

	* 2.1.1: release

	* qpdf/qtest/qpdf.test: improve test for acroread to make sure it
	actually works and is not just present in the path.

2009-12-13 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/qpdf/Pl_AES_PDF.hh: include <stdint.h>, if available, so
	we have valid definitions of uint32_t.

2009-10-30 Jay Berkenbilt <ejb@ql.org>

	* 2.1: release

	* libqpdf/QPDF.cc: be more forgiving of extraneous whitespace in
	the xref table and while recovering from error conditions.

2009-10-26 Jay Berkenbilt <ejb@ql.org>

	* Work around failure of PCRE test case; this test case exercises
	an aspect of PCRE that qpdf does not use, and the test fails with
	the version of PCRE on Red Hat Enterprise Linux 5, so we ignore
	failure on this particular test case.

	* Fix RPM .spec file to include "C" examples

2009-10-24 Jay Berkenbilt <ejb@ql.org>

	* 2.1.rc1: release

	* Provide interfaces for getting qpdf's own version number

2009-10-19 Jay Berkenbilt <ejb@ql.org>

	* include/qpdf/QPDF.hh (QPDF): getWarnings now returns a list of
	QPDFExc rather than a list of strings. This way, warnings may be
	inspected in more detail.

	* Include information about the last object read in most error
	messages. Most of the time, this will provide a good hint as to
	which object contains the error, but it's possible that the last
	object read may not necessarily be the one that has the error if
	the erroneous object was previously read and cached.

2009-10-18 Jay Berkenbilt <ejb@ql.org>

	* If forcing version, disable object stream creation and/or
	encryption if previous specifications are incompatible with new
	version. It is still possible that PDF content, compression
	schemes, etc., may be incompatible with the new version, but at
	least this way, older viewers will at least have a chance.

	* libqpdf/QPDFWriter.cc (unparseObject): avoid compressing
	Metadata streams if possible.

2009-10-13 Jay Berkenbilt <ejb@ql.org>

	* Upgrade embedded qtest to version 1.4, which allows the test
	suite to be run in Windows with MSYS and ActiveState Perl rather
	than requiring Cygwin perl.

2009-10-04 Jay Berkenbilt <ejb@ql.org>

	* Implement support AES encrypt and crypt filters. Implementation
	is not fully tested due to lack of test data but has been tested
	for several cases.

2009-10-04 Jay Berkenbilt <ejb@ql.org>

	* Add methods to QPDFWriter and corresponding command line
	arguments to qpdf to set the minimum output PDF version and also
	to force the version to a particular value.

	* libqpdf/QPDF.cc (processXRefStream): warn and ignore extra xref
	stream entries when stream is larger than reported size. This
	used to be a fatal error. (Fixes qpdf-Bugs-2872265.)

2009-09-27 Jay Berkenbilt <ejb@ql.org>

	* Add several methods to query permissions controlled by the
	encryption dictionary. Note that qpdf does not enforce these
	permissions even though it allows the user to query them.

	* The function QPDF::getUserPassword returned the user password
	with the required padding as specified by the PDF specification.
	This is seldom useful to users. This function has been replaced
	by QPDF::getPaddedUserPassword. Call the new
	QPDF::getTrimmedUserPassword to retreive the user password in a
	human-readable format.

	* qpdf/qpdf.cc (main): qpdf --check now prints the PDF version
	number in addition to its other output.

2009-09-26 Jay Berkenbilt <ejb@ql.org>

	* Removed all references to QEXC; now using std::runtime_error and
	std::logic_error and their subclasses for all exceptions.

2009-05-03 Jay Berkenbilt <ejb@ql.org>

	* 2.0.6: release

	* libqpdf/QPDF_Stream.cc (filterable): ignore /DecodeParms if it's
	not a type we recognize. (Fixes qpdf-Bugs-2779746.)

2009-03-10 Jay Berkenbilt <ejb@ql.org>

	* 2.0.5: release

2009-03-09 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/Pl_LZWDecoder.cc: adjust LZWDecoder full table
	detection, now having been able to adequately test boundary
	conditions both and with and without early code change. Also
	compared implementation with other LZW decoders.

2009-03-08 Jay Berkenbilt <ejb@ql.org>

	* qpdf/fix-qdf (write_ostream): Adjust offsets while writing
	object streams to account for changes in the length of the
	dictionary and offset tables.

	* qpdf/qpdf.cc (main): In check mode, in addition to checking
	structure of file, attempt to decode all stream data.

	* libqpdf/QPDFWriter.cc (QPDFWriter::writeObject): In QDF mode,
	write a comment to the QDF file before each object that indicates
	the object ID of the corresponding object from the original file.
	Add --no-original-object-ids flag to qpdf and
	setSuppressOriginalObjectIDs() method to QPDFWriter to turn this
	behavior off.

	* libqpdf/QPDF.cc (QPDF::pipeStreamData): Issue a warning instead
	of failing if there is a problem found while decoding stream.

	* qpdf/qpdf.cc: Exit with a status of 3 if warnings were found
	regardless of what mode we're in.

2009-02-21 Jay Berkenbilt <ejb@ql.org>

	* 2.0.4: release

2009-02-20 Jay Berkenbilt <ejb@ql.org>

	* Fix many typos in comments and strings.

	* qpdf/qpdf.cc: in --check mode, if there are warnings but no
	errors, exit with a status of 3.

	* libqpdf/QPDF.cc (QPDF::insertXrefEntry): when recovering the
	cross-reference table, have objects we encounter later in the file
	supersede those we found earlier. This improves the chances of
	being able to recover appended files with damaged cross-reference
	tables.

2009-02-19 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/Pl_LZWDecoder.cc: correct logic error for previously
	untested case of running the LZW decoder without the "early code
	change" flag. Thanks to a bug report from "Atom Smasher", I
	finally was able to obtain an input stream compressed in this way.

2009-02-15 Jay Berkenbilt <ejb@ql.org>

	* 2.0.3: release

2008-12-11 Jay Berkenbilt <ejb@ql.org>

	* qpdf/qpdf.cc (main): Accept -help and -version as well as --help
	and --version

2008-11-23 Jay Berkenbilt <ejb@ql.org>

	* Include stdio.h in a few files for proper compilation with (yet
	to be released) gcc 4.4

	* updated embedded qtest to version 1.3

	* libqpdf/QPDF_String.cc (QPDF_String::getUTF8Val): handle
	UTF-16BE properly rather than just treating the string as a string
	of 16-bit characters.

2008-06-30 Jay Berkenbilt <ejb@ql.org>

	* 2.0.2: release

	* updated embedded qtest to version 1.2 (includes previous
	changes)

2008-06-07 Jay Berkenbilt <ejb@ql.org>

	* qpdf/qtest/qpdf/diff-encrypted: change == to = so that the test
	suite passes when /bin/sh is not bash

2008-05-07 Jay Berkenbilt <ejb@ql.org>

	* qtest/bin/qtest-driver (run_test): increase timeout for qtest to
	be more tolerant of slow machines

2008-05-06 Jay Berkenbilt <ejb@ql.org>

	* 2.0.1: release

	* make/rules.mk: fix logic with .dep generation for .lo files so
	that dependencies work properly with libtool

2008-05-05 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/qpdf/MD5.hh: fix header to be 64-bit clean

	* configure.ac: add tests for sized integer types

2008-05-04 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/QPDF_encryption.cc: do not assume size_t is unsigned int

	* qpdf/qtest/qpdf.test: removed locale-specific tests. These were
	really to check bugs in perl 5.8.0 and are obsolete now. They
	also make the test suite fail in some environments that don't have
	all the locales fully configured.

	* various: updated several files for gcc 4.3 by adding missing
	includes (string.h, stdlib.h)

2008-04-26 Jay Berkenbilt <ejb@ql.org>

	* 2.0: initial public release

qpdf-7.1.0/examples/build.mk

BINS_examples = \
	pdf-bookmarks \
	pdf-mod-info \
	pdf-npages \
	pdf-double-page-size \
	pdf-invert-images \
	pdf-create \
	pdf-parse-content \
	pdf-split-pages
CBINS_examples = pdf-linearize

TARGETS_examples = $(foreach B,$(BINS_examples) $(CBINS_examples),examples/$(OUTPUT_DIR)/$(call binname,$(B)))

$(TARGETS_examples): $(TARGETS_qpdf)

INCLUDES_examples = include

TC_SRCS_examples = $(wildcard examples/*.cc)

$(foreach B,$(BINS_examples),$(eval \
 OBJS_$(B) = $(call src_to_obj,examples/$(B).cc)))

$(foreach B,$(CBINS_examples),$(eval \
 OBJS_$(B) = $(call c_src_to_obj,examples/$(B).c)))

ifeq ($(GENDEPS),1)
-include $(foreach B,$(BINS_examples) $(CBINS_examples),$(call obj_to_dep,$(OBJS_$(B))))
endif

$(foreach B,$(BINS_examples),$(eval \
 $(OBJS_$(B)): examples/$(OUTPUT_DIR)/%.$(OBJ): examples/$(B).cc ; \
	$(call compile,examples/$(B).cc,$(INCLUDES_examples))))

$(foreach B,$(CBINS_examples),$(eval \
 $(OBJS_$(B)): examples/$(OUTPUT_DIR)/%.$(OBJ): examples/$(B).c ; \
	$(call c_compile,examples/$(B).c,$(INCLUDES_examples))))

$(foreach B,$(BINS_examples) $(CBINS_examples),$(eval \
 examples/$(OUTPUT_DIR)/$(call binname,$(B)): $(OBJS_$(B)) ; \
	$(call makebin,$(OBJS_$(B)),$$@,$(LDFLAGS_libqpdf) $(LDFLAGS),$(LIBS_libqpdf) $(LIBS))))

qpdf-7.1.0/examples/pdf-parse-content.cc

#include <iostream>
#include <string.h>
#include <stdlib.h>

#include <qpdf/QPDF.hh>
#include <qpdf/QUtil.hh>

static char const* whoami = 0;

void usage()
{
 std::cerr << "Usage: " << whoami << " filename page-number" << std::endl
	 << "Prints a dump of the objects in the content streams"
 << " of the given page." << std::endl
 << "Pages are numbered from 1." << std::endl;
 exit(2);
}

class ParserCallbacks: public QPDFObjectHandle::ParserCallbacks
{
 public:
 virtual ~ParserCallbacks()
 {
 }

 virtual void handleObject(QPDFObjectHandle);
 virtual void handleEOF();
};

void
ParserCallbacks::handleObject(QPDFObjectHandle obj)
{
 std::cout << obj.getTypeName() << ": ";
 if (obj.isInlineImage())
 {
 std::cout << QUtil::hex_encode(obj.getInlineImageValue()) << std::endl;
 }
 else
 {
 std::cout << obj.unparse() << std::endl;
 }
}

void
ParserCallbacks::handleEOF()
{
 std::cout << "-EOF-" << std::endl;
}

int main(int argc, char* argv[])
{
 whoami = QUtil::getWhoami(argv[0]);

 // For libtool's sake....
 if (strncmp(whoami, "lt-", 3) == 0)
 {
	whoami += 3;
 }

 if (argc != 3)
 {
	usage();
 }
 char const* filename = argv[1];
 int pageno = QUtil::string_to_int(argv[2]);

 try
 {
	QPDF pdf;
	pdf.processFile(filename);
 std::vector<QPDFObjectHandle> pages = pdf.getAllPages();
 if ((pageno < 1) || (static_cast<size_t>(pageno) > pages.size()))
 {
 usage();
 }

 QPDFObjectHandle page = pages.at(pageno-1);
 QPDFObjectHandle contents = page.getKey("/Contents");
 ParserCallbacks cb;
 QPDFObjectHandle::parseContentStream(contents, &cb);
 }
 catch (std::exception& e)
 {
	std::cerr << whoami << ": " << e.what() << std::endl;
	exit(2);
 }

 return 0;
}

qpdf-7.1.0/examples/Makefile

include ../make/proxy.mk

qpdf-7.1.0/examples/pdf-invert-images.cc

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <qpdf/QPDF.hh>
#include <qpdf/QUtil.hh>
#include <qpdf/Buffer.hh>
#include <qpdf/QPDFWriter.hh>

static char const* whoami = 0;

void usage()
{
 std::cerr << "Usage: " << whoami << " infile.pdf outfile.pdf [in-password]"
	 << std::endl
	 << "Invert some images in infile.pdf;"
	 << " write output to outfile.pdf" << std::endl;
 exit(2);
}

// Derive a class from StreamDataProvider to provide updated stream
// data. The main purpose of using this object is to avoid having to
// allocate memory up front for the objects. A real application might
// use temporary files in order to avoid having to allocate all the
// memory. Here, we're not going to worry about that since the goal
// is really to show how to use this facility rather than to show the
// best possible way to write an image inverter. This class still
// illustrates dynamic creation of the new stream data.
class ImageInverter: public QPDFObjectHandle::StreamDataProvider
{
 public:
 virtual ~ImageInverter()
 {
 }
 virtual void provideStreamData(int objid, int generation,
				 Pipeline* pipeline);

 // Map [og] = image object
 std::map<QPDFObjGen, QPDFObjectHandle> image_objects;
 // Map [og] = image data
 std::map<QPDFObjGen, PointerHolder<Buffer> > image_data;
};

void
ImageInverter::provideStreamData(int objid, int generation,
				 Pipeline* pipeline)
{
 // Use the object and generation number supplied to look up the
 // image data. Then invert the image data and write the inverted
 // data to the pipeline.
 PointerHolder<Buffer> data =
 this->image_data[QPDFObjGen(objid, generation)];
 size_t size = data->getSize();
 unsigned char* buf = data->getBuffer();
 unsigned char ch;
 for (size_t i = 0; i < size; ++i)
 {
	ch = static_cast<unsigned char>(0xff) - buf[i];
	pipeline->write(&ch, 1);
 }
 pipeline->finish();
}

int main(int argc, char* argv[])
{
 whoami = QUtil::getWhoami(argv[0]);

 // For libtool's sake....
 if (strncmp(whoami, "lt-", 3) == 0)
 {
	whoami += 3;
 }

 // For test suite
 bool static_id = false;
 if ((argc > 1) && (strcmp(argv[1], " --static-id") == 0))
 {
 static_id = true;
 --argc;
 ++argv;
 }

 if (! ((argc == 3) || (argc == 4)))
 {
	usage();
 }

 char const* infilename = argv[1];
 char const* outfilename = argv[2];
 char const* password = (argc == 4) ? argv[3] : "";

 try
 {
	QPDF qpdf;
	qpdf.processFile(infilename, password);

	ImageInverter* inv = new ImageInverter;
	PointerHolder<QPDFObjectHandle::StreamDataProvider> p = inv;

	// For each page...
	std::vector<QPDFObjectHandle> pages = qpdf.getAllPages();
	for (std::vector<QPDFObjectHandle>::iterator iter = pages.begin();
	 iter != pages.end(); ++iter)
	{
	 QPDFObjectHandle& page = *iter;
	 // Get all images on the page.
	 std::map<std::string, QPDFObjectHandle> images =
		page.getPageImages();
	 for (std::map<std::string, QPDFObjectHandle>::iterator iter =
		 images.begin();
		 iter != images.end(); ++iter)
	 {
		QPDFObjectHandle& image = (*iter).second;
		QPDFObjectHandle image_dict = image.getDict();
		QPDFObjectHandle color_space =
		 image_dict.getKey("/ColorSpace");
		QPDFObjectHandle bits_per_component =
		 image_dict.getKey("/BitsPerComponent");

		// For our example, we can only work with images 8-bit
		// grayscale images that we can fully decode. Use
		// pipeStreamData with a null pipeline to determine
		// whether the image is filterable. Directly inspect
		// keys to determine the image type.
		if (image.pipeStreamData(0, qpdf_ef_compress,
 qpdf_dl_generalized) &&
		 color_space.isName() &&
		 bits_per_component.isInteger() &&
		 (color_space.getName() == "/DeviceGray") &&
		 (bits_per_component.getIntValue() == 8))
		{
		 // Store information about the images based on the
		 // object and generation number. Recall that a single
		 // image object may be used more than once.
		 QPDFObjGen og = image.getObjGen();
		 if (inv->image_objects.count(og) == 0)
		 {
			inv->image_objects[og] = image;
			inv->image_data[og] = image.getStreamData();

			// Register our stream data provider for this
			// stream. Future calls to getStreamData or
			// pipeStreamData will use the new
			// information. Provide null for both filter
			// and decode parameters. Note that this does
			// not mean the image data will be
			// uncompressed when we write the file. By
			// default, QPDFWriter will use /FlateDecode
			// for anything that is uncompressed or
			// filterable in the input QPDF object, so we
			// don't have to deal with it explicitly here.
			image.replaceStreamData(
			 p,
			 QPDFObjectHandle::newNull(),
			 QPDFObjectHandle::newNull());
		 }
		}
	 }
	}

	// Write out a new file
	QPDFWriter w(qpdf, outfilename);
	if (static_id)
	{
	 // For the test suite, uncompress streams and use static
	 // IDs.
	 w.setStaticID(true); // for testing only
	}
	w.write();
	std::cout << whoami << ": new file written to " << outfilename
		 << std::endl;
 }
 catch (std::exception &e)
 {
	std::cerr << whoami << " processing file " << infilename << ": "
		 << e.what() << std::endl;
	exit(2);
 }

 return 0;
}

qpdf-7.1.0/examples/qtest/mod-info/usage.out

Usage: pdf-mod-info -in in_file [-out out_file] [-key key [-val val]?]+
Modifies/Adds/Removes PDF /Info entries in the in_file
and stores the result in out_file
Special mode: pdf-mod-info --dump file
dumps all /Info entries to stdout

qpdf-7.1.0/examples/qtest/mod-info/dump.out

			Author:			Yours Truly

			ContentTemperature:			100F

			CreationDate:			D:20040212104653-05'00'

			Creator:			Adobe Acrobat 6.0

			FormerlyKnownAs:			target/branch/leaf/leaf.pdf

			Keywords:			40, 128, public, encryption, ignition, primarily prime

			ModDate:			D:20040212112832-05'00'

			Producer:			Adobe Acrobat 6.0 Image Conversion Plug-in

			Subject:			Of The Matter

			Title:			My New Car Title

			VeryImportantNote:			pordofor stands for portable document format

qpdf-7.1.0/examples/qtest/mod-info/files/2.qdf

abcdefghjk
mn opq
rstuvw xyz

qpdf-7.1.0/examples/qtest/mod-info/files/3.qdf

qpdf-7.1.0/examples/qtest/mod-info/files/empty-info.pdf

qpdf-7.1.0/examples/qtest/mod-info/files/no-info.pdf

qpdf-7.1.0/examples/qtest/mod-info/files/4.qdf

qpdf-7.1.0/examples/qtest/mod-info/files/source1.pdf

qpdf-7.1.0/examples/qtest/mod-info/files/source2.pdf

abcdefghjk
mn opq
rstuvw xyz

qpdf-7.1.0/examples/qtest/mod-info/files/1.qdf

qpdf-7.1.0/examples/qtest/create/create.out

all checks passed

qpdf-7.1.0/examples/qtest/npages/minimal.pdf

Potato

qpdf-7.1.0/examples/qtest/npages/bad

test

qpdf-7.1.0/examples/qtest/parse-content/input.pdf

Potato

qpdf-7.1.0/examples/qtest/parse-content/content.out

operator: BT
name: /F1
integer: 24
operator: Tf
integer: 72
integer: 720
operator: Td
string: (Potato)
operator: Tj
operator: ET
-EOF-

qpdf-7.1.0/examples/qtest/bookmarks.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

chdir("bookmarks");

require TestDriver;

my $td = new TestDriver('pdf-bookmarks');

foreach my $show ("", " -show-open")
{
 foreach my $style ("", " -lines", " -numbers")
 {
	my $out = "test.$show.$style.out";
	$out =~ s/ //g;
	$td->runtest("show:$show, style:$style",
		 {$td->COMMAND => "pdf-bookmarks $show $style 1.pdf"},
		 {$td->FILE => $out, $td->EXIT_STATUS => 0},
		 $td->NORMALIZE_NEWLINES);
 }
}
$td->runtest("no bookmarks",
	 {$td->COMMAND => "pdf-bookmarks 2.pdf"},
	 {$td->STRING => "2.pdf has no bookmarks\n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("bad",
	 {$td->COMMAND => "pdf-bookmarks 3.pdf"},
	 {$td->REGEXP => "pdf-bookmarks processing file 3.pdf: " .
		 ".*unable to find trailer.*",
		 $td->EXIT_STATUS => 2},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("encrypted, targets",
	 {$td->COMMAND => "pdf-bookmarks -show-targets 4.pdf user"},
	 {$td->FILE => "encrypted.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("bookmarks deleted",
	 {$td->COMMAND => "pdf-bookmarks 5.pdf user"},
	 {$td->STRING => "5.pdf has no bookmarks\n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->report(10);

qpdf-7.1.0/examples/qtest/create.test

#!/usr/bin/env perl
require 5.008;
use warnings;
use strict;

chdir("create") or die "chdir testdir failed: $!\n";

require TestDriver;

cleanup();

my $td = new TestDriver('create');

$td->runtest("create a simple PDF",
	 {$td->COMMAND => "pdf-create a.pdf"},
	 {$td->FILE => "create.out", $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);

cleanup();

$td->report(1);

sub cleanup
{
 unlink "a.pdf";
}

qpdf-7.1.0/examples/qtest/invert-images.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

chdir("invert-images") or die "chdir testdir failed: $!\n";

require TestDriver;

my $td = new TestDriver('invert-images');

cleanup();

$td->runtest("double page size",
	 {$td->COMMAND => ['pdf-invert-images', ' --static-id',
 'in.pdf', 'a.pdf']},
	 {$td->STRING =>
		 "pdf-invert-images: new file written to a.pdf\n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "out.pdf"});

cleanup();

$td->report(2);

sub cleanup
{
 unlink 'a.pdf';
}

qpdf-7.1.0/examples/qtest/linearize.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

chdir("linearize") or die "chdir testdir failed: $!\n";

require TestDriver;

cleanup();

my $td = new TestDriver('linearize');

my $qpdf = $ENV{'QPDF_BIN'} or die;

$td->runtest("linearize",
	 {$td->COMMAND => "pdf-linearize input.pdf '' a.pdf"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});

$td->runtest("check",
	 {$td->COMMAND => "$qpdf --check a.pdf"},
	 {$td->FILE => "check.out", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

cleanup();

$td->report(2);

sub cleanup
{
 unlink "a.pdf";
}

qpdf-7.1.0/examples/qtest/npages.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

chdir("npages");

require TestDriver;

my $td = new TestDriver('pdf-npages');

$td->runtest("normal",
	 {$td->COMMAND => "pdf-npages minimal.pdf"},
	 {$td->STRING => "1\n", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("error",
	 {$td->COMMAND => "pdf-npages bad"},
	 {$td->REGEXP => "pdf-npages: bad: unable to find trailer.*",
	 $td->EXIT_STATUS => 2},
	 $td->NORMALIZE_NEWLINES);

$td->report(2);

qpdf-7.1.0/examples/qtest/pdf-split-pages/in.pdf

Page 1

Page 2

qpdf-7.1.0/examples/qtest/pdf-split-pages/exp2.pdf

Page 2

qpdf-7.1.0/examples/qtest/pdf-split-pages/exp1.pdf

Page 1

qpdf-7.1.0/examples/qtest/double-page-size/out.pdf

Potato

Salad

qpdf-7.1.0/examples/qtest/double-page-size/in.pdf

Potato

Salad

qpdf-7.1.0/examples/qtest/invert-images/out.pdf

qpdf-7.1.0/examples/qtest/invert-images/in.pdf

qpdf-7.1.0/examples/qtest/mod-info.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;
use File::Copy;

chdir("mod-info");

require TestDriver;

my $td = new TestDriver('pdf-mod-info');

my $prg = "pdf-mod-info";
my $qpdf = $ENV{'QPDF_BIN'} or die;

cleanup();

$td->runtest("usage #1",
	 {$td->COMMAND => "$prg -in target.pdf"},
	 {$td->FILE => "usage.out",
	 $td->EXIT_STATUS => 2},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("usage #2",
	 {$td->COMMAND => "$prg -key abc -val def"},
	 {$td->FILE => "usage.out",
	 $td->EXIT_STATUS => 2},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("usage #3",
	 {$td->COMMAND => "$prg -key abc -val def abc"},
	 {$td->FILE => "usage.out",
	 $td->EXIT_STATUS => 2},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("usage #4",
	 {$td->COMMAND => "$prg -in source1.pdf -key date -val 01/01/01 -val 12/12/12"},
	 {$td->FILE => "usage.out",
	 $td->EXIT_STATUS => 2},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("dump #1",
	 {$td->COMMAND => "$prg --dump -in files/source1.pdf"},
	 {$td->FILE => "dump.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("dump #2",
	 {$td->COMMAND => "$prg --dump -in files/no-info.pdf"},
	 {$td->STRING => "",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("dump #3",
	 {$td->COMMAND => "$prg --dump -in files/empty-info.pdf"},
	 {$td->STRING => "",
	 $td->EXIT_STATUS => 0});

run_and_cmp("modify Subject",
	 "$prg -in files/source1.pdf -out out.pdf -key Subject " .
	 "-val \"Export Business\"",
	 "", "out.pdf", "files/1.qdf");

run_and_cmp("add Subject, remove Producer, modify CreationDate",
	 "$prg -in files/source2.pdf -out out.pdf -key Subject " .
	 "-val \"Tammlin\" -key Producer -key CreationDate -val 12/12",
	 "", "out.pdf", "files/2.qdf");

run_and_cmp("add Subject (empty-info file)",
	 "$prg -in files/empty-info.pdf -out out.pdf -key Subject " .
	 "-val Tammlin",
	 "", "out.pdf", "files/3.qdf");

copy("files/no-info.pdf", "no-info.pdf") or die "can't copy no-info: $!";
run_and_cmp("in-place Producer added (no-info file)",
	 "$prg -in no-info.pdf -key Producer -val \"Obivan Kinobi\"",
	 "", "no-info.pdf", "files/4.qdf");

cleanup();

$td->report(15);

sub cleanup
{
 unlink (<*.pdf>);
}

sub run_and_cmp
{
 my ($dsc, $cmd, $out, $fout, $fexp) = @_;
 $td->runtest($dsc,
		 {$td->COMMAND => "$cmd --static-id"},
		 {$td->STRING => $out,
		 $td->EXIT_STATUS => 0});
 $td->runtest("$dsc output",
		 {$td->COMMAND => "$qpdf --static-id" .
		 " --no-original-object-ids -qdf $fout -"},
		 {$td->FILE => $fexp,
		 $td->EXIT_STATUS => 0});
}

qpdf-7.1.0/examples/qtest/parse-content.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

chdir("parse-content");

require TestDriver;

my $td = new TestDriver('pdf-parse-content');

$td->runtest("parse content",
	 {$td->COMMAND => "pdf-parse-content input.pdf 1"},
	 {$td->FILE => "content.out", $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->report(1);

qpdf-7.1.0/examples/qtest/linearize/input.pdf

Potato

qpdf-7.1.0/examples/qtest/linearize/check.out

checking a.pdf
PDF Version: 1.3
File is not encrypted
File is linearized
No syntax or stream encoding errors found; the file may still contain
errors that qpdf cannot detect

qpdf-7.1.0/examples/qtest/pdf-split-pages.test

#!/usr/bin/env perl
require 5.008;
use warnings;
use strict;

chdir("pdf-split-pages");

require TestDriver;

my $td = new TestDriver('pdf-split-pages');

cleanup();

$td->runtest("split",
	 {$td->COMMAND => "pdf-split-pages ' --static-id' in.pdf out"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});

$td->runtest("check page 1",
	 {$td->FILE => "out1.pdf"},
	 {$td->FILE => "exp1.pdf"});

$td->runtest("check page 2",
	 {$td->FILE => "out2.pdf"},
	 {$td->FILE => "exp2.pdf"});

cleanup();

$td->report(3);

sub cleanup
{
 unlink (<out?.pdf>);
}

qpdf-7.1.0/examples/qtest/bookmarks/test..-numbers.out

1. Trepak 2 -> 15: /XYZ 66 756 3
2. Isis 1 -> 5: /XYZ null null null
2.1. Amanda 1.1 -> 11: /Fit
2.1.1. Isosicle 1.1.1 -> 12: /FitV 100
2.1.1.1. Isosicle 1.1.1.1 -> 18: /XYZ null null null
2.1.1.2. Isosicle 1.1.1.2 -> 19: /XYZ null null null
2.1.2. Isosicle 1.1.2 -> 12: /XYZ null null null
2.1.2.1. Isosicle 1.1.2.1 -> 22: /XYZ null null null
2.2. Sandy 1.2 -> 13: /FitH 792
2.2.1. Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770
2.2.2. Trepsicle 1.2.2 -> 0: /XYZ null null null

qpdf-7.1.0/examples/qtest/bookmarks/test..-lines.out

|
+-+ Trepak 2 -> 15: /XYZ 66 756 3
|
+-+ Isis 1 -> 5: /XYZ null null null
 |
 +-+ Amanda 1.1 -> 11: /Fit
 | |
 | +-+ Isosicle 1.1.1 -> 12: /FitV 100
 | | |
 | | +-+ Isosicle 1.1.1.1 -> 18: /XYZ null null null
 | | |
 | | +-+ Isosicle 1.1.1.2 -> 19: /XYZ null null null
 | |
 | +-+ Isosicle 1.1.2 -> 12: /XYZ null null null
 | |
 | +-+ Isosicle 1.1.2.1 -> 22: /XYZ null null null
 |
 +-+ Sandy 1.2 -> 13: /FitH 792
 |
 +-+ Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770
 |
 +-+ Trepsicle 1.2.2 -> 0: /XYZ null null null

qpdf-7.1.0/examples/qtest/bookmarks/5.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Isís 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

			Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/examples/qtest/bookmarks/test...out

Trepak 2 -> 15: /XYZ 66 756 3
Isis 1 -> 5: /XYZ null null null
Amanda 1.1 -> 11: /Fit
Isosicle 1.1.1 -> 12: /FitV 100
Isosicle 1.1.1.1 -> 18: /XYZ null null null
Isosicle 1.1.1.2 -> 19: /XYZ null null null
Isosicle 1.1.2 -> 12: /XYZ null null null
Isosicle 1.1.2.1 -> 22: /XYZ null null null
Sandy 1.2 -> 13: /FitH 792
Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770
Trepsicle 1.2.2 -> 0: /XYZ null null null

qpdf-7.1.0/examples/qtest/bookmarks/test.-show-open.-lines.out

|
+-+ () Trepak 2 -> 15: /XYZ 66 756 3
|
+-+ (v) Isis 1 -> 5: /XYZ null null null
 |
 +-+ (>) Amanda 1.1 -> 11: /Fit
 | |
 | +-+ (>) Isosicle 1.1.1 -> 12: /FitV 100
 | | |
 | | +-+ () Isosicle 1.1.1.1 -> 18: /XYZ null null null
 | | |
 | | +-+ () Isosicle 1.1.1.2 -> 19: /XYZ null null null
 | |
 | +-+ (v) Isosicle 1.1.2 -> 12: /XYZ null null null
 | |
 | +-+ () Isosicle 1.1.2.1 -> 22: /XYZ null null null
 |
 +-+ (v) Sandy 1.2 -> 13: /FitH 792
 |
 +-+ () Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770
 |
 +-+ () Trepsicle 1.2.2 -> 0: /XYZ null null null

qpdf-7.1.0/examples/qtest/bookmarks/test.-show-open..out

() Trepak 2 -> 15: /XYZ 66 756 3
(v) Isis 1 -> 5: /XYZ null null null
(>) Amanda 1.1 -> 11: /Fit
(>) Isosicle 1.1.1 -> 12: /FitV 100
() Isosicle 1.1.1.1 -> 18: /XYZ null null null
() Isosicle 1.1.1.2 -> 19: /XYZ null null null
(v) Isosicle 1.1.2 -> 12: /XYZ null null null
() Isosicle 1.1.2.1 -> 22: /XYZ null null null
(v) Sandy 1.2 -> 13: /FitH 792
() Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770
() Trepsicle 1.2.2 -> 0: /XYZ null null null

qpdf-7.1.0/examples/qtest/bookmarks/test.-show-open.-numbers.out

1. () Trepak 2 -> 15: /XYZ 66 756 3
2. (v) Isis 1 -> 5: /XYZ null null null
2.1. (>) Amanda 1.1 -> 11: /Fit
2.1.1. (>) Isosicle 1.1.1 -> 12: /FitV 100
2.1.1.1. () Isosicle 1.1.1.1 -> 18: /XYZ null null null
2.1.1.2. () Isosicle 1.1.1.2 -> 19: /XYZ null null null
2.1.2. (v) Isosicle 1.1.2 -> 12: /XYZ null null null
2.1.2.1. () Isosicle 1.1.2.1 -> 22: /XYZ null null null
2.2. (v) Sandy 1.2 -> 13: /FitH 792
2.2.1. () Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770
2.2.2. () Trepsicle 1.2.2 -> 0: /XYZ null null null

qpdf-7.1.0/examples/qtest/bookmarks/2.pdf

Potato

qpdf-7.1.0/examples/qtest/bookmarks/4.pdf

qpdf-7.1.0/examples/qtest/bookmarks/1.pdf

Potato 0

Potato 1

Potato 2

Potato 3

Potato 4

Potato 5

Potato 6

Potato 7

Potato 8

Potato 9

Potato 10

Potato 11

Potato 12

Potato 13

Potato 14

Potato 15

Potato 16

Potato 17

Potato 18

Potato 19

Potato 20

Potato 21

Potato 22

Potato 23

Potato 24

Potato 25

Potato 26

Potato 27

Potato 28

Potato 29

			Trepak 2 -> 15: /XYZ 66 756 3

			Isis 1 -> 5: /XYZ null null null

			Amanda 1.1 -> 11: /Fit

			Isosicle 1.1.1 -> 12: /FitV 100

			Isosicle 1.1.1.1 -> 18: /XYZ null null null

			Isosicle 1.1.1.2 -> 19: /XYZ null null null

			Isosicle 1.1.2 -> 12: /XYZ null null null

			Isosicle 1.1.2.1 -> 22: /XYZ null null null

			Sandy 1.2 -> 13: /FitH 792

			Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770

			Trepsicle 1.2.2 -> 0: /XYZ null null null

qpdf-7.1.0/examples/qtest/bookmarks/3.pdf

potato salad

qpdf-7.1.0/examples/qtest/bookmarks/encrypted.out

[-> 6] Isís 1 -> 5: /XYZ null null null
[-> 12] Amanda 1.1 -> 11: /Fit
[-> 13] Isosicle 1.1.1 -> 12: /FitV 100
[-> 19] Isosicle 1.1.1.1 -> 18: /XYZ null null null
[-> 20] Isosicle 1.1.1.2 -> 19: /XYZ null null null
[-> 13] Isosicle 1.1.2 -> 12: /XYZ null null null
[-> 23] Isosicle 1.1.2.1 -> 22: /XYZ null null null
[-> 14] Sandy ÷Σανδι÷ 1.2 -> 13: /FitH 792
[-> 2] Trepsichord 1.2.1 -> 1: /FitR 66 714 180 770
[-> 1] Trepsicle 1.2.2 -> 0: /XYZ null null null
[-> 16] Trepak 2 -> 15: /XYZ 66 756 3

qpdf-7.1.0/examples/qtest/double-page-size.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

chdir("double-page-size") or die "chdir testdir failed: $!\n";

require TestDriver;

my $td = new TestDriver('double-page-size');

cleanup();

$td->runtest("double page size",
	 {$td->COMMAND => ['pdf-double-page-size', ' --static-id',
 'in.pdf', 'a.pdf']},
	 {$td->STRING =>
		 "pdf-double-page-size: new file written to a.pdf\n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("check output",
	 {$td->FILE => "a.pdf"},
	 {$td->FILE => "out.pdf"});

cleanup();

$td->report(2);

sub cleanup
{
 unlink 'a.pdf';
}

qpdf-7.1.0/examples/examples.testcov

pdf-bookmarks lines 0
pdf-bookmarks numbers 0
pdf-bookmarks none 0
pdf-bookmarks has count 0
pdf-bookmarks no count 0
pdf-bookmarks open 0
pdf-bookmarks closed 0
pdf-bookmarks dest 0
pdf-bookmarks targets 0
pdf-mod-info --dump 0
pdf-mod-info no in file 0
pdf-mod-info in-place 0
pdf-mod-info -key 0
pdf-mod-info usage wrong val 0
pdf-mod-info -val 0
pdf-mod-info usage junk 0
pdf-mod-info no keys 0
pdf-mod-info has info 0
pdf-mod-info file no info 0

qpdf-7.1.0/examples/pdf-create.cc

qpdf-7.1.0/examples/pdf-create.cc

//

// This is an example of creating a PDF file from scratch. It

// illustrates use of several QPDF operations for creating objects and

// streams. It also serves as an illustration of how to use

// StreamDataProvider with different types of filters.

//

#include <qpdf/QPDF.hh>

#include <qpdf/QPDFWriter.hh>

#include <qpdf/QPDFObjectHandle.hh>

#include <qpdf/QUtil.hh>

#include <qpdf/Pl_Buffer.hh>

#include <qpdf/Pl_RunLength.hh>

#include <qpdf/Pl_DCT.hh>

#include <iostream>

#include <string.h>

#include <stdlib.h>

static char const* whoami = 0;

// This is a simple StreamDataProvider that writes image data for an

// orange square of the given width and height.

class ImageProvider: public QPDFObjectHandle::StreamDataProvider

{

 public:

 ImageProvider(std::string const& color_space,

 std::string const& filter);

 virtual ~ImageProvider();

 virtual void provideStreamData(int objid, int generation,

 Pipeline* pipeline);

 int getWidth() const;

 int getHeight() const;

 private:

 int width;

 int stripe_height;

 std::string color_space;

 std::string filter;

 int n_stripes;

 std::vector<std::string> stripes;

 J_COLOR_SPACE j_color_space;

};

ImageProvider::ImageProvider(std::string const& color_space,

 std::string const& filter) :

 width(400),

 stripe_height(80),

 color_space(color_space),

 filter(filter),

 n_stripes(6),

 j_color_space(JCS_UNKNOWN)

{

 if (color_space == "/DeviceCMYK")

 {

 j_color_space = JCS_CMYK;

 stripes.push_back(std::string("\xff\x00\x00\x00", 4));

 stripes.push_back(std::string("\x00\xff\x00\x00", 4));

 stripes.push_back(std::string("\x00\x00\xff\x00", 4));

 stripes.push_back(std::string("\xff\x00\xff\x00", 4));

 stripes.push_back(std::string("\xff\xff\x00\x00", 4));

 stripes.push_back(std::string("\x00\x00\x00\xff", 4));

 }

 else if (color_space == "/DeviceRGB")

 {

 j_color_space = JCS_RGB;

 stripes.push_back(std::string("\xff\x00\x00", 3));

 stripes.push_back(std::string("\x00\xff\x00", 3));

 stripes.push_back(std::string("\x00\x00\xff", 3));

 stripes.push_back(std::string("\xff\x00\xff", 3));

 stripes.push_back(std::string("\xff\xff\x00", 3));

 stripes.push_back(std::string("\x00\x00\x00", 3));

 }

 else if (color_space == "/DeviceGray")

 {

 j_color_space = JCS_GRAYSCALE;

 stripes.push_back(std::string("\xee", 1));

 stripes.push_back(std::string("\xcc", 1));

 stripes.push_back(std::string("\x99", 1));

 stripes.push_back(std::string("\x66", 1));

 stripes.push_back(std::string("\x33", 1));

 stripes.push_back(std::string("\x00", 1));

 }

}

ImageProvider::~ImageProvider()

{

}

int

ImageProvider::getWidth() const

{

 return width;

}

int

ImageProvider::getHeight() const

{

 return stripe_height * n_stripes;

}

void

ImageProvider::provideStreamData(int objid, int generation,

 Pipeline* pipeline)

{

 std::vector<PointerHolder<Pipeline> > to_delete;

 Pipeline* p = pipeline;

 if (filter == "/DCTDecode")

 {

 p = new Pl_DCT(

 "image encoder", pipeline,

 width, getHeight(), stripes[0].length(), j_color_space);

 to_delete.push_back(p);

 }

 else if (filter == "/RunLengthDecode")

 {

 p = new Pl_RunLength(

 "image encoder", pipeline, Pl_RunLength::a_encode);

 to_delete.push_back(p);

 }

 for (int i = 0; i < n_stripes; ++i)

 {

 for (int j = 0; j < width * stripe_height; ++j)

 {

 p->write(

 QUtil::unsigned_char_pointer(stripes[i].c_str()),

 stripes[i].length());

 }

 }

 p->finish();

}

void usage()

{

 std::cerr << "Usage: " << whoami << " filename" << std::endl

 << "Creates a simple PDF and writes it to filename" << std::endl;

 exit(2);

}

static QPDFObjectHandle createPageContents(QPDF& pdf, std::string const& text)

{

 // Create a stream that displays our image and the given text in

 // our font.

 std::string contents =

 "BT /F1 24 Tf 72 320 Td (" + text + ") Tj ET\n"

 "q 244 0 0 144 184 100 cm /Im1 Do Q\n";

 return QPDFObjectHandle::newStream(&pdf, contents);

}

QPDFObjectHandle newName(std::string const& name)

{

 return QPDFObjectHandle::newName(name);

}

QPDFObjectHandle newInteger(int val)

{

 return QPDFObjectHandle::newInteger(val);

}

void add_page(QPDF& pdf, QPDFObjectHandle font,

 std::string const& color_space,

 std::string const& filter)

{

 // Create a stream to encode our image. QPDFWriter will fill in

 // the length and will respect our filters based on stream data

 // mode. Since we are not specifying, QPDFWriter will compress

 // with /FlateDecode if we don't provide any other form of

 // compression.

 ImageProvider* p = new ImageProvider(color_space, filter);

 PointerHolder<QPDFObjectHandle::StreamDataProvider> provider(p);

 int width = p->getWidth();

 int height = p->getHeight();

 QPDFObjectHandle image = QPDFObjectHandle::newStream(&pdf);

 image.replaceDict(QPDFObjectHandle::parse(

 "<<"

 " /Type /XObject"

 " /Subtype /Image"

 " /BitsPerComponent 8"

 ">>"));

 QPDFObjectHandle image_dict = image.getDict();

 image_dict.replaceKey("/ColorSpace", newName(color_space));

 image_dict.replaceKey("/Width", newInteger(width));

 image_dict.replaceKey("/Height", newInteger(height));

 // Provide the stream data.

 image.replaceStreamData(provider,

 QPDFObjectHandle::parse(filter),

 QPDFObjectHandle::newNull());

 // Create direct objects as needed by the page dictionary.

 QPDFObjectHandle procset = QPDFObjectHandle::parse(

 "[/PDF /Text /ImageC]");

 QPDFObjectHandle rfont = QPDFObjectHandle::newDictionary();

 rfont.replaceKey("/F1", font);

 QPDFObjectHandle xobject = QPDFObjectHandle::newDictionary();

 xobject.replaceKey("/Im1", image);

 QPDFObjectHandle resources = QPDFObjectHandle::newDictionary();

 resources.replaceKey("/ProcSet", procset);

 resources.replaceKey("/Font", rfont);

 resources.replaceKey("/XObject", xobject);

 QPDFObjectHandle mediabox = QPDFObjectHandle::newArray();

 mediabox.appendItem(newInteger(0));

 mediabox.appendItem(newInteger(0));

 mediabox.appendItem(newInteger(612));

 mediabox.appendItem(newInteger(392));

 // Create the page content stream

 QPDFObjectHandle contents = createPageContents(

 pdf, color_space + " with filter " + filter);

 // Create the page dictionary

 QPDFObjectHandle page = pdf.makeIndirectObject(

 QPDFObjectHandle::newDictionary());

 page.replaceKey("/Type", newName("/Page"));

 page.replaceKey("/MediaBox", mediabox);

 page.replaceKey("/Contents", contents);

 page.replaceKey("/Resources", resources);

 // Add the page to the PDF file

 pdf.addPage(page, false);

}

static void check(char const* filename,

 std::vector<std::string> const& color_spaces,

 std::vector<std::string> const& filters)

{

 // Each stream is compressed the way it is supposed to be. We will

 // add additional tests in qpdf.test to exercise QPDFWriter more

 // fully. In this case, we want to make sure that we actually have

 // RunLengthDecode and DCTDecode where we are supposed to and

 // FlateDecode where we provided no filters.

 // Each image is correct. For non-lossy image compression, the

 // uncompressed image data should exactly match what ImageProvider

 // provided. For the DCTDecode data, allow for some fuzz to handle

 // jpeg compression as well as its variance on different systems.

 // These tests should use QPDFObjectHandle's stream data retrieval

 // methods, but don't try to fully exercise them here. That is

 // done elsewhere.

 size_t n_color_spaces = color_spaces.size();

 size_t n_filters = filters.size();

 QPDF pdf;

 pdf.processFile(filename);

 std::vector<QPDFObjectHandle> const& pages = pdf.getAllPages();

 if (n_color_spaces * n_filters != pages.size())

 {

 throw std::logic_error("incorrect number of pages");

 }

 size_t pageno = 1;

 bool errors = false;

 for (std::vector<QPDFObjectHandle>::const_iterator page_iter =

 pages.begin();

 page_iter != pages.end(); ++page_iter)

 {

 QPDFObjectHandle page = *page_iter;

 std::map<std::string, QPDFObjectHandle> images = page.getPageImages();

 if (images.size() != 1)

 {

 throw std::logic_error("incorrect number of images on page");

 }

 // Check filter and color space.

 std::string desired_color_space =

 color_spaces[(pageno - 1) / n_color_spaces];

 std::string desired_filter =

 filters[(pageno - 1) % n_filters];

 // In the default mode, QPDFWriter will compress with

 // /FlateDecode if no filters are provided.

 if (desired_filter == "null")

 {

 desired_filter = "/FlateDecode";

 }

 QPDFObjectHandle image = images.begin()->second;

 QPDFObjectHandle image_dict = image.getDict();

 QPDFObjectHandle color_space = image_dict.getKey("/ColorSpace");

 QPDFObjectHandle filter = image_dict.getKey("/Filter");

 bool this_errors = false;

 if (! (filter.isName() && (filter.getName() == desired_filter)))

 {

 this_errors = errors = true;

 std::cout << "page " << pageno << ": expected filter "

 << desired_filter << "; actual filter = "

 << filter.unparse() << std::endl;

 }

 if (! (color_space.isName() &&

 (color_space.getName() == desired_color_space)))

 {

 this_errors = errors = true;

 std::cout << "page " << pageno << ": expected color space "

 << desired_color_space << "; actual color space = "

 << color_space.unparse() << std::endl;

 }

 if (! this_errors)

 {

 // Check image data

 PointerHolder<Buffer> actual_data =

 image.getStreamData(qpdf_dl_all);

 ImageProvider* p = new ImageProvider(desired_color_space, "null");

 PointerHolder<QPDFObjectHandle::StreamDataProvider> provider(p);

 Pl_Buffer b_p("get image data");

 provider->provideStreamData(0, 0, &b_p);

 PointerHolder<Buffer> desired_data(b_p.getBuffer());

 if (desired_data->getSize() != actual_data->getSize())

 {

 std::cout << "page " << pageno

 << ": image data length mismatch" << std::endl;

 this_errors = errors = true;

 }

 else

 {

 // Compare bytes. For JPEG, allow a certain number of

 // the bytes to be off desired by more than a given

 // tolerance. Any of the samples may be a little off

 // because of lossy compression, and around sharp

 // edges, things can be quite off. For non-lossy

 // compression, do not allow any tolerance.

 unsigned char const* actual_bytes = actual_data->getBuffer();

 unsigned char const* desired_bytes = desired_data->getBuffer();

 size_t len = actual_data->getSize();

 unsigned int mismatches = 0;

 int tolerance = (

 desired_filter == "/DCTDecode" ? 10 : 0);

 unsigned int threshold = (

 desired_filter == "/DCTDecode" ? len / 40 : 0);

 for (size_t i = 0; i < len; ++i)

 {

 int delta = actual_bytes[i] - desired_bytes[i];

 if ((delta > tolerance) || (delta < -tolerance))

 {

 ++mismatches;

 }

 }

 if (mismatches > threshold)

 {

 std::cout << "page " << pageno

 << ": " << desired_color_space << ", "

 << desired_filter

 << ": mismatches: " << mismatches

 << " of " << len << std::endl;

 this_errors = errors = true;

 }

 }

 }

 ++pageno;

 }

 if (errors)

 {

 throw std::logic_error("errors found");

 }

 else

 {

 std::cout << "all checks passed" << std::endl;

 }

}

static void create_pdf(char const* filename)

{

 QPDF pdf;

 // Start with an empty PDF that has no pages or non-required objects.

 pdf.emptyPDF();

 // Add an indirect object to contain a font descriptor for the

 // built-in Helvetica font.

 QPDFObjectHandle font = pdf.makeIndirectObject(

 QPDFObjectHandle::parse(

 "<<"

 " /Type /Font"

 " /Subtype /Type1"

 " /Name /F1"

 " /BaseFont /Helvetica"

 " /Encoding /WinAnsiEncoding"

 ">>"));

 std::vector<std::string> color_spaces;

 color_spaces.push_back("/DeviceCMYK");

 color_spaces.push_back("/DeviceRGB");

 color_spaces.push_back("/DeviceGray");

 std::vector<std::string> filters;

 filters.push_back("null");

 filters.push_back("/DCTDecode");

 filters.push_back("/RunLengthDecode");

 for (std::vector<std::string>::iterator c_iter = color_spaces.begin();

 c_iter != color_spaces.end(); ++c_iter)

 {

 for (std::vector<std::string>::iterator f_iter = filters.begin();

 f_iter != filters.end(); ++f_iter)

 {

 add_page(pdf, font, *c_iter, *f_iter);

 }

 }

 QPDFWriter w(pdf, filename);

 w.write();

 // For test suite, verify that everything is the way it is

 // supposed to be.

 check(filename, color_spaces, filters);

}

int main(int argc, char* argv[])

{

 whoami = QUtil::getWhoami(argv[0]);

 // For libtool's sake....

 if (strncmp(whoami, "lt-", 3) == 0)

 {

 whoami += 3;

 }

 if (argc != 2)

 {

 usage();

 }

 char const* filename = argv[1];

 try

 {

 create_pdf(filename);

 }

 catch (std::exception& e)

 {

 std::cerr << e.what() << std::endl;

 exit(2);

 }

 return 0;

}

qpdf-7.1.0/examples/pdf-mod-info.cc

qpdf-7.1.0/examples/pdf-mod-info.cc

// Author: Vitaliy Pavlyuk

#include <qpdf/QPDF.hh>

#include <qpdf/QPDFWriter.hh>

#include <qpdf/QPDFObjectHandle.hh>

#include <qpdf/QUtil.hh>

#include <qpdf/QTC.hh>

#include <iostream>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#ifdef _WIN32

#include <windows.h>

#include <direct.h>

#include <io.h>

#else

#include <unistd.h>

#endif

static char const* version = "1.1";

static char const* whoami = 0;

void usage()

{

 std::cerr

 << "Usage: " << whoami

 << " -in in_file [-out out_file] [-key key [-val val]?]+\n"

 << "Modifies/Adds/Removes PDF /Info entries in the in_file\n"

 << "and stores the result in out_file\n"

 << "Special mode: " << whoami << " --dump file\n"

 << "dumps all /Info entries to stdout\n";

 exit(2);

}

void dumpInfoDict(QPDF& pdf,

 std::ostream& os = std::cout,

 std::string const& sep = ":\t")

{

 QPDFObjectHandle trailer = pdf.getTrailer();

 if (trailer.hasKey("/Info"))

 {

 QPDFObjectHandle info = trailer.getKey("/Info");

 std::set<std::string> keys = info.getKeys();

 for (std::set<std::string>::const_iterator it = keys.begin();

 keys.end() != it; ++it)

 {

 QPDFObjectHandle elt = info.getKey(*it);

 std::string val;

 if (false) {}

 else if (elt.isString())

 {

 val = elt.getStringValue();

 }

 else if (elt.isName())

 {

 val = elt.getName();

 }

 else // according to PDF Spec 1.5, shouldn't happen

 {

 val = elt.unparseResolved();

 }

 os << it->substr(1) << sep << val << std::endl; // skip '/'

 }

 }

}

void pdfDumpInfoDict(char const* fname)

{

 try

 {

 QPDF pdf;

 pdf.processFile(fname);

 dumpInfoDict(pdf);

 }

 catch (std::exception& e)

 {

 std::cerr << e.what() << std::endl;

 exit(2);

 }

}

int main(int argc, char* argv[])

{

 bool static_id = false;

 std::map<std::string, std::string> Keys;

 whoami = QUtil::getWhoami(argv[0]);

 // For libtool's sake....

 if (strncmp(whoami, "lt-", 3) == 0)

 {

 whoami += 3;

 }

 if ((argc == 2) && (! strcmp(argv[1], "--version")))

 {

 std::cout << whoami << " version " << version << std::endl;

 exit(0);

 }

 if ((argc == 4) && (! strcmp(argv[1], "--dump")) &&

 (strcmp(argv[2], "-in") == 0))

 {

 QTC::TC("examples", "pdf-mod-info --dump");

 pdfDumpInfoDict(argv[3]);

 exit(0);

 }

 char* fl_in = 0;

 char* fl_out = 0;

 std::string cur_key;

 for (int i = 1; i < argc; ++i)

 {

 if ((! strcmp(argv[i], "-in")) && (++i < argc))

 {

 fl_in = argv[i];

 }

 else if ((! strcmp(argv[i], "-out")) && (++i < argc))

 {

 fl_out = argv[i];

 }

 else if (! strcmp(argv[i], "--static-id")) // don't document

 {

 static_id = true; // this should be used in test suites only

 }

 else if ((! strcmp(argv[i], "-key")) && (++i < argc))

 {

 QTC::TC("examples", "pdf-mod-info -key");

 cur_key = argv[i];

 if (! ((cur_key.length() > 0) && (cur_key.at(0) == '/')))

 {

 cur_key = "/" + cur_key;

 }

 Keys[cur_key] = "";

 }

 else if ((! strcmp(argv[i], "-val")) && (++i < argc))

 {

 if (cur_key.empty())

 {

 QTC::TC("examples", "pdf-mod-info usage wrong val");

 usage();

 }

 QTC::TC("examples", "pdf-mod-info -val");

 Keys[cur_key] = argv[i];

 cur_key.clear();

 }

 else

 {

 QTC::TC("examples", "pdf-mod-info usage junk");

 usage();

 }

 }

 if (! fl_in)

 {

 QTC::TC("examples", "pdf-mod-info no in file");

 usage();

 }

 if (! fl_out)

 {

 QTC::TC("examples", "pdf-mod-info in-place");

 fl_out = fl_in;

 }

 if (Keys.size() == 0)

 {

 QTC::TC("examples", "pdf-mod-info no keys");

 usage();

 }

 std::string fl_tmp = fl_out;

 fl_tmp += ".tmp";

 try

 {

 QPDF file;

 file.processFile(fl_in);

 QPDFObjectHandle filetrailer = file.getTrailer();

 QPDFObjectHandle fileinfo;

 for (std::map<std::string, std::string>::const_iterator it =

 Keys.begin(); Keys.end() != it; ++it)

 {

 if (! fileinfo.isInitialized())

 {

 if (filetrailer.hasKey("/Info"))

 {

 QTC::TC("examples", "pdf-mod-info has info");

 fileinfo = filetrailer.getKey("/Info");

 }

 else

 {

 QTC::TC("examples", "pdf-mod-info file no info");

 fileinfo = QPDFObjectHandle::newDictionary();

 filetrailer.replaceKey("/Info", fileinfo);

 }

 }

 if (it->second == "")

 {

 fileinfo.removeKey(it->first);

 }

 else

 {

 QPDFObjectHandle elt = fileinfo.newString(it->second);

 elt.makeDirect();

 fileinfo.replaceKey(it->first, elt);

 }

 }

 QPDFWriter w(file, fl_tmp.c_str());

 w.setStreamDataMode(qpdf_s_preserve);

 w.setLinearization(true);

 w.setStaticID(static_id);

 w.write();

 }

 catch (std::exception& e)

 {

 std::cerr << e.what() << std::endl;

 exit(2);

 }

 try

 {

 (void) remove(fl_out);

 QUtil::os_wrapper("rename " + fl_tmp + " " + std::string(fl_out),

 rename(fl_tmp.c_str(), fl_out));

 }

 catch (std::exception& e)

 {

 std::cerr << e.what() << std::endl;

 exit(2);

 }

 return 0;

}

qpdf-7.1.0/examples/pdf-npages.cc

#include <iostream>
#include <string.h>
#include <stdlib.h>

#include <qpdf/QPDF.hh>
#include <qpdf/QUtil.hh>

static char const* whoami = 0;

void usage()
{
 std::cerr << "Usage: " << whoami << " filename" << std::endl
	 << "Prints the number of pages in filename" << std::endl;
 exit(2);
}

int main(int argc, char* argv[])
{
 whoami = QUtil::getWhoami(argv[0]);

 // For libtool's sake....
 if (strncmp(whoami, "lt-", 3) == 0)
 {
	whoami += 3;
 }

 if ((argc == 2) && (strcmp(argv[1], "--version") == 0))
 {
	std::cout << whoami << " version 1.3" << std::endl;
	exit(0);
 }

 if (argc != 2)
 {
	usage();
 }
 char const* filename = argv[1];

 try
 {
	QPDF pdf;
	pdf.processFile(filename);
	QPDFObjectHandle root = pdf.getRoot();
	QPDFObjectHandle pages = root.getKey("/Pages");
	QPDFObjectHandle count = pages.getKey("/Count");
	std::cout << count.getIntValue() << std::endl;
 }
 catch (std::exception& e)
 {
	std::cerr << whoami << ": " << e.what() << std::endl;
	exit(2);
 }

 return 0;
}

qpdf-7.1.0/examples/pdf-linearize.c

/*
 * This is an example program to linearize a PDF file using the C API.
 */

#include <qpdf/qpdf-c.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static char const* whoami = 0;

static void usage()
{
 fprintf(stderr, "Usage: %s infile infile-password outfile\n", whoami);
 exit(2);
}

int main(int argc, char* argv[])
{
 char* infile = NULL;
 char* password = NULL;
 char* outfile = NULL;
 qpdf_data qpdf = qpdf_init();
 int warnings = 0;
 int errors = 0;
 char* p = 0;

 if ((p = strrchr(argv[0], '/')) != NULL)
 {
	whoami = p + 1;
 }
 else if ((p = strrchr(argv[0], '\\')) != NULL)
 {
	whoami = p + 1;
 }
 else
 {
	whoami = argv[0];
 }

 if (argc != 4)
 {
	usage();
 }

 infile = argv[1];
 password = argv[2];
 outfile = argv[3];

 if (((qpdf_read(qpdf, infile, password) & QPDF_ERRORS) == 0) &&
	((qpdf_init_write(qpdf, outfile) & QPDF_ERRORS) == 0))
 {
 /* Use static ID for testing only. For production, a
 * non-static ID is used. See also
 * qpdf_set_deterministic_ID. */
	qpdf_set_static_ID(qpdf, QPDF_TRUE); /* for testing only */
	qpdf_set_linearization(qpdf, QPDF_TRUE);
	qpdf_write(qpdf);
 }
 while (qpdf_more_warnings(qpdf))
 {
	warnings = 1;
	printf("warning: %s\n",
	 qpdf_get_error_full_text(qpdf, qpdf_next_warning(qpdf)));
 }
 if (qpdf_has_error(qpdf))
 {
	errors = 1;
	printf("error: %s\n",
	 qpdf_get_error_full_text(qpdf, qpdf_get_error(qpdf)));
 }
 qpdf_cleanup(&qpdf);
 if (errors)
 {
	return 2;
 }
 else if (warnings)
 {
	return 3;
 }

 return 0;
}

qpdf-7.1.0/examples/pdf-double-page-size.cc

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <qpdf/QPDF.hh>
#include <qpdf/QUtil.hh>
#include <qpdf/Buffer.hh>
#include <qpdf/QPDFWriter.hh>

static char const* whoami = 0;

void usage()
{
 std::cerr << "Usage: " << whoami << " infile.pdf outfile.pdf [in-password]"
	 << std::endl
	 << "Double size of all pages in infile.pdf;"
	 << " write output to outfile.pdf" << std::endl;
 exit(2);
}

static void doubleBoxSize(QPDFObjectHandle& page, char const* box_name)
{
 // If there is a box of this name, replace it with a new box whose
 // elements are double the values of the original box.
 QPDFObjectHandle box = page.getKey(box_name);
 if (box.isNull())
 {
	return;
 }
 if (! (box.isArray() && (box.getArrayNItems() == 4)))
 {
	throw std::runtime_error(std::string("box ") + box_name +
				 " is not an array of four elements");
 }
 std::vector<QPDFObjectHandle> doubled;
 for (unsigned int i = 0; i < 4; ++i)
 {
	doubled.push_back(
	 QPDFObjectHandle::newReal(
 box.getArrayItem(i).getNumericValue() * 2.0, 2));
 }
 page.replaceKey(box_name, QPDFObjectHandle::newArray(doubled));
}

int main(int argc, char* argv[])
{
 whoami = QUtil::getWhoami(argv[0]);

 // For libtool's sake....
 if (strncmp(whoami, "lt-", 3) == 0)
 {
	whoami += 3;
 }

 // For test suite
 bool static_id = false;
 if ((argc > 1) && (strcmp(argv[1], " --static-id") == 0))
 {
 static_id = true;
 --argc;
 ++argv;
 }

 if (! ((argc == 3) || (argc == 4)))
 {
	usage();
 }

 char const* infilename = argv[1];
 char const* outfilename = argv[2];
 char const* password = (argc == 4) ? argv[3] : "";

 // Text to prepend to each page's contents
 std::string content = "2 0 0 2 0 0 cm\n";

 try
 {
	QPDF qpdf;
	qpdf.processFile(infilename, password);

	std::vector<QPDFObjectHandle> pages = qpdf.getAllPages();
	for (std::vector<QPDFObjectHandle>::iterator iter = pages.begin();
	 iter != pages.end(); ++iter)
	{
	 QPDFObjectHandle& page = *iter;

	 // Prepend the buffer to the page's contents
	 page.addPageContents(
 QPDFObjectHandle::newStream(&qpdf, content), true);

	 // Double the size of each of the content boxes
	 doubleBoxSize(page, "/MediaBox");
	 doubleBoxSize(page, "/CropBox");
	 doubleBoxSize(page, "/BleedBox");
	 doubleBoxSize(page, "/TrimBox");
	 doubleBoxSize(page, "/ArtBox");
	}

	// Write out a new file
	QPDFWriter w(qpdf, outfilename);
	if (static_id)
	{
	 // For the test suite, uncompress streams and use static
	 // IDs.
	 w.setStaticID(true); // for testing only
	 w.setStreamDataMode(qpdf_s_uncompress);
	}
	w.write();
	std::cout << whoami << ": new file written to " << outfilename
		 << std::endl;
 }
 catch (std::exception &e)
 {
	std::cerr << whoami << " processing file " << infilename << ": "
		 << e.what() << std::endl;
	exit(2);
 }

 return 0;
}

qpdf-7.1.0/examples/pdf-split-pages.cc

qpdf-7.1.0/examples/pdf-split-pages.cc

//

// This is a stand-alone example of splitting a PDF into individual

// pages. It does essentially the same thing that qpdf --split-pages

// does.

//

#include <qpdf/QPDF.hh>

#include <qpdf/QPDFWriter.hh>

#include <qpdf/QUtil.hh>

#include <string>

#include <iostream>

#include <cstdlib>

static char const* whoami = 0;

static bool static_id = false;

static void process(char const* whoami,

 char const* infile,

 std::string outprefix)

{

 QPDF inpdf;

 inpdf.processFile(infile);

 std::vector<QPDFObjectHandle> const& pages = inpdf.getAllPages();

 int pageno_len = QUtil::int_to_string(pages.size()).length();

 int pageno = 0;

 for (std::vector<QPDFObjectHandle>::const_iterator iter = pages.begin();

 iter != pages.end(); ++iter)

 {

 QPDFObjectHandle page = *iter;

 std::string outfile =

 outprefix + QUtil::int_to_string(++pageno, pageno_len) + ".pdf";

 QPDF outpdf;

 outpdf.emptyPDF();

 outpdf.addPage(page, false);

 QPDFWriter outpdfw(outpdf, outfile.c_str());

 if (static_id)

 {

 // For the test suite, uncompress streams and use static

 // IDs.

 outpdfw.setStaticID(true); // for testing only

 outpdfw.setStreamDataMode(qpdf_s_uncompress);

 }

 outpdfw.write();

 }

}

void usage()

{

 std::cerr << "Usage: " << whoami << " infile outprefix" << std::endl;

 exit(2);

}

int main(int argc, char* argv[])

{

 whoami = QUtil::getWhoami(argv[0]);

 // For libtool's sake....

 if (strncmp(whoami, "lt-", 3) == 0)

 {

 whoami += 3;

 }

 // For test suite

 if ((argc > 1) && (strcmp(argv[1], " --static-id") == 0))

 {

 static_id = true;

 --argc;

 ++argv;

 }

 if (argc != 3)

 {

 usage();

 }

 try

 {

 process(whoami, argv[1], argv[2]);

 }

 catch (std::exception e)

 {

 std::cerr << whoami << ": exception: " << e.what() << std::endl;

 return 2;

 }

 return 0;

}

qpdf-7.1.0/examples/pdf-bookmarks.cc

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <qpdf/QPDF.hh>
#include <qpdf/QUtil.hh>
#include <qpdf/QTC.hh>

static char const* whoami = 0;
static enum { st_none, st_numbers, st_lines } style = st_none;
static bool show_open = false;
static bool show_targets = false;
static std::map<QPDFObjGen, int> page_map;

void usage()
{
 std::cerr << "Usage: " << whoami << " [options] file.pdf [password]"
	 << std::endl
	 << "Options:" << std::endl
	 << " -numbers give bookmarks outline-style numbers"
	 << std::endl
	 << " -lines draw lines to show bookmark hierarchy"
	 << std::endl
	 << " -show-open indicate whether a bookmark is initially open"
	 << std::endl
	 << " -show-targets show target if possible"
	 << std::endl;
 exit(2);
}

void print_lines(std::vector<int>& numbers)
{
 for (unsigned int i = 0; i < numbers.size() - 1; ++i)
 {
	if (numbers.at(i))
	{
	 std::cout << "| ";
	}
	else
	{
	 std::cout << " ";
	}
 }
}

void generate_page_map(QPDF& qpdf)
{
 std::vector<QPDFObjectHandle> pages = qpdf.getAllPages();
 int n = 0;
 for (std::vector<QPDFObjectHandle>::iterator iter = pages.begin();
	 iter != pages.end(); ++iter)
 {
	QPDFObjectHandle& oh = *iter;
	page_map[oh.getObjGen()] = ++n;
 }
}

void extract_bookmarks(QPDFObjectHandle outlines, std::vector<int>& numbers)
{
 if (outlines.hasKey("/Title"))
 {
	// No default so gcc will warn on missing tag
	switch (style)
	{
	 case st_none:
	 QTC::TC("examples", "pdf-bookmarks none");
	 break;

	 case st_numbers:
	 QTC::TC("examples", "pdf-bookmarks numbers");
	 for (std::vector<int>::iterator iter = numbers.begin();
		 iter != numbers.end(); ++iter)
	 {
		std::cout << *iter << ".";
	 }
	 std::cout << " ";
	 break;

	 case st_lines:
	 QTC::TC("examples", "pdf-bookmarks lines");
	 print_lines(numbers);
	 std::cout << "|" << std::endl;
	 print_lines(numbers);
	 std::cout << "+-+ ";
	 break;
	}

	if (show_open)
	{
	 if (outlines.hasKey("/Count"))
	 {
		QTC::TC("examples", "pdf-bookmarks has count");
		int count = outlines.getKey("/Count").getIntValue();
		if (count > 0)
		{
		 // hierarchy is open at this point
		 QTC::TC("examples", "pdf-bookmarks open");
		 std::cout << "(v) ";
		}
		else
		{
		 QTC::TC("examples", "pdf-bookmarks closed");
		 std::cout << "(>) ";
		}
	 }
	 else
	 {
		QTC::TC("examples", "pdf-bookmarks no count");
		std::cout << "() ";
	 }
	}

	if (show_targets)
	{
	 QTC::TC("examples", "pdf-bookmarks targets");
	 std::string target = "unknown";
	 // Only explicit destinations supported for now
	 if (outlines.hasKey("/Dest"))
	 {
		QTC::TC("examples", "pdf-bookmarks dest");
		QPDFObjectHandle dest = outlines.getKey("/Dest");
		if ((dest.isArray()) && (dest.getArrayNItems() > 0))
		{
		 QPDFObjectHandle first = dest.getArrayItem(0);
		 QPDFObjGen og = first.getObjGen();
		 if (page_map.count(og))
		 {
			target = QUtil::int_to_string(page_map[og]);
		 }
		}

		std::cout << "[-> " << target << "] ";
	 }
	}

	std::cout << outlines.getKey("/Title").getUTF8Value() << std::endl;
 }

 if (outlines.hasKey("/First"))
 {
	numbers.push_back(0);
	QPDFObjectHandle child = outlines.getKey("/First");
	while (1)
	{
	 ++(numbers.back());
	 bool has_next = child.hasKey("/Next");
	 if ((style == st_lines) && (! has_next))
	 {
		numbers.back() = 0;
	 }
	 extract_bookmarks(child, numbers);
	 if (has_next)
	 {
		child = child.getKey("/Next");
	 }
	 else
	 {
		break;
	 }
	}
	numbers.pop_back();
 }
}

int main(int argc, char* argv[])
{
 whoami = QUtil::getWhoami(argv[0]);

 // For libtool's sake....
 if (strncmp(whoami, "lt-", 3) == 0)
 {
	whoami += 3;
 }

 if ((argc == 2) && (strcmp(argv[1], "--version") == 0))
 {
	std::cout << whoami << " version 1.5" << std::endl;
	exit(0);
 }

 int arg;
 for (arg = 1; arg < argc; ++arg)
 {
	if (argv[arg][0] == '-')
	{
	 if (strcmp(argv[arg], "-numbers") == 0)
	 {
		style = st_numbers;
	 }
	 else if (strcmp(argv[arg], "-lines") == 0)
	 {
		style = st_lines;
	 }
	 else if (strcmp(argv[arg], "-show-open") == 0)
	 {
		show_open = true;
	 }
	 else if (strcmp(argv[arg], "-show-targets") == 0)
	 {
		show_targets = true;
	 }
	 else
	 {
		usage();
	 }
	}
	else
	{
	 break;
	}
 }

 if (arg >= argc)
 {
	usage();
 }

 char const* filename = argv[arg++];
 char const* password = "";

 if (arg < argc)
 {
	password = argv[arg++];
 }
 if (arg != argc)
 {
	usage();
 }

 try
 {
	QPDF qpdf;
	qpdf.processFile(filename, password);

	QPDFObjectHandle root = qpdf.getRoot();
	if (root.hasKey("/Outlines"))
	{
	 std::vector<int> numbers;
	 if (show_targets)
	 {
		generate_page_map(qpdf);
	 }
	 extract_bookmarks(root.getKey("/Outlines"), numbers);
	}
	else
	{
	 std::cout << filename << " has no bookmarks" << std::endl;
	}
 }
 catch (std::exception &e)
 {
	std::cerr << whoami << " processing file " << filename << ": "
		 << e.what() << std::endl;
	exit(2);
 }

 return 0;
}

qpdf-7.1.0/INSTALL

These instructions based on the generic INSTALL file from automake
1.10. However, qpdf does not use automake, so not all of that file
applies.

Basic Installation
==================

Briefly, the shell commands `./configure; make; make install' should
configure, build, and install this package. The following
more-detailed instructions are generic; see the `README' file for
instructions specific to this package.

 The `configure' shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses
those values to create a `Makefile' in each directory of the package.
It may also create one or more `.h' files containing system-dependent
definitions. Finally, it creates a shell script `config.status' that
you can run in the future to recreate the current configuration, and a
file `config.log' containing compiler output (useful mainly for
debugging `configure').

 It can also use an optional file (typically called `config.cache'
and enabled with `--cache-file=config.cache' or simply `-C') that saves
the results of its tests to speed up reconfiguring. Caching is
disabled by default to prevent problems with accidental use of stale
cache files.

 If you need to do unusual things to compile the package, please try
to figure out how `configure' could check whether to do them, and mail
diffs or instructions to the address given in the `README' so they can
be considered for the next release. If you are using the cache, and at
some point `config.cache' contains results you don't want to keep, you
may remove or edit it.

 The file `configure.ac' (or `configure.in') is used to create
`configure' by a program called `autoconf'. You need `configure.ac' if
you want to change it or regenerate `configure' using a newer version
of `autoconf'.

The simplest way to compile this package is:

 1. `cd' to the directory containing the package's source code and type
 `./configure' to configure the package for your system.

 Running `configure' might take a while. While running, it prints
 some messages telling which features it is checking for.

 2. Type `make' to compile the package.

 3. Optionally, type `make check' to run any self-tests that come with
 the package.

 4. Type `make install' to install the programs and any data files and
 documentation.

 5. You can remove the program binaries and object files from the
 source code directory by typing `make clean'. To also remove the
 files that `configure' created (so you can compile the package for
 a different kind of computer), type `make distclean'. There is
 also a `make maintainer-clean' target, but that is intended mainly
 for the package's developers. If you use it, you may have to get
 all sorts of other programs in order to regenerate files that came
 with the distribution.

Compilers and Options
=====================

Some systems require unusual options for compilation or linking that the
`configure' script does not know about. Run `./configure --help' for
details on some of the pertinent environment variables.

 You can give `configure' initial values for configuration parameters
by setting variables in the command line or in the environment. Here
is an example:

 ./configure CC=c99 CFLAGS=-g LIBS=-lposix

Installation Names
==================

By default, `make install' installs the package's commands under
`/usr/local/bin', include files under `/usr/local/include', etc. You
can specify an installation prefix other than `/usr/local' by giving
`configure' the option `--prefix=PREFIX'.

 You can specify separate installation prefixes for
architecture-specific files and architecture-independent files. If you
pass the option `--exec-prefix=PREFIX' to `configure', the package uses
PREFIX as the prefix for installing programs and libraries.
Documentation and other data files still use the regular prefix.

 In addition, if you use an unusual directory layout you can give
options like `--bindir=DIR' to specify different values for particular
kinds of files. Run `configure --help' for a list of the directories
you can set and what kinds of files go in them.

 If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving `configure' the
option `--program-prefix=PREFIX' or `--program-suffix=SUFFIX'.

 You can also define the variable DESTDIR when you run make install
to install the package in a separate subdirectory. This is useful for
packaging.

Optional Features
=================

Some packages pay attention to `--enable-FEATURE' options to
`configure', where FEATURE indicates an optional part of the package.
They may also pay attention to `--with-PACKAGE' options, where PACKAGE
is something like `gnu-as' or `x' (for the X Window System). The
`README' should mention any `--enable-' and `--with-' options that the
package recognizes.

 For packages that use the X Window System, `configure' can usually
find the X include and library files automatically, but if it doesn't,
you can use the `configure' options `--x-includes=DIR' and
`--x-libraries=DIR' to specify their locations.

Specifying the System Type
==========================

There may be some features `configure' cannot figure out automatically,
but needs to determine by the type of machine the package will run on.
Usually, assuming the package is built to be run on the _same_
architectures, `configure' can figure that out, but if it prints a
message saying it cannot guess the machine type, give it the
`--build=TYPE' option. TYPE can either be a short name for the system
type, such as `sun4', or a canonical name which has the form:

 CPU-COMPANY-SYSTEM

where SYSTEM can have one of these forms:

 OS KERNEL-OS

 See the file `config.sub' for the possible values of each field. If
`config.sub' isn't included in this package, then this package doesn't
need to know the machine type.

 If you are _building_ compiler tools for cross-compiling, you should
use the option `--target=TYPE' to select the type of system they will
produce code for.

 If you want to _use_ a cross compiler, that generates code for a
platform different from the build platform, you should specify the
"host" platform (i.e., that on which the generated programs will
eventually be run) with `--host=TYPE'.

Sharing Defaults
================

If you want to set default values for `configure' scripts to share, you
can create a site shell script called `config.site' that gives default
values for variables like `CC', `cache_file', and `prefix'.
`configure' looks for `PREFIX/share/config.site' if it exists, then
`PREFIX/etc/config.site' if it exists. Or, you can set the
`CONFIG_SITE' environment variable to the location of the site script.
A warning: not all `configure' scripts look for a site script.

Defining Variables
==================

Variables not defined in a site shell script can be set in the
environment passed to `configure'. However, some packages may run
configure again during the build, and the customized values of these
variables may be lost. In order to avoid this problem, you should set
them in the `configure' command line, using `VAR=value'. For example:

 ./configure CC=/usr/local2/bin/gcc

causes the specified `gcc' to be used as the C compiler (unless it is
overridden in the site shell script).

Unfortunately, this technique does not work for `CONFIG_SHELL' due to
an Autoconf bug. Until the bug is fixed you can use this workaround:

 CONFIG_SHELL=/bin/bash /bin/bash ./configure CONFIG_SHELL=/bin/bash

`configure' Invocation
======================

`configure' recognizes the following options to control how it operates.

`--help'
`-h'
 Print a summary of the options to `configure', and exit.

`--version'
`-V'
 Print the version of Autoconf used to generate the `configure'
 script, and exit.

`--cache-file=FILE'
 Enable the cache: use and save the results of the tests in FILE,
 traditionally `config.cache'. FILE defaults to `/dev/null' to
 disable caching.

`--config-cache'
`-C'
 Alias for `--cache-file=config.cache'.

`--quiet'
`--silent'
`-q'
 Do not print messages saying which checks are being made. To
 suppress all normal output, redirect it to `/dev/null' (any error
 messages will still be shown).

`--srcdir=DIR'
 Look for the package's source code in directory DIR. Usually
 `configure' can determine that directory automatically.

`configure' also accepts some other, not widely useful, options. Run
`configure --help' for more details.

qpdf-7.1.0/include/qpdf/Constants.h

/* Copyright (c) 2005-2018 Jay Berkenbilt
 *
 * This file is part of qpdf.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * Versions of qpdf prior to version 7 were released under the terms
 * of version 2.0 of the Artistic License. At your option, you may
 * continue to consider qpdf to be licensed under those terms. Please
 * see the manual for additional information.
 */

#ifndef __QPDFCONSTANTS_H__
#define __QPDFCONSTANTS_H__

/* Keep this file 'C' compatible so it can be used from the C and C++
 * interfaces.
 */

/* Error Codes */

enum qpdf_error_code_e
{
 qpdf_e_success = 0,
 qpdf_e_internal,	 	/* logic/programming error -- indicates bug */
 qpdf_e_system,		/* I/O error, memory error, etc. */
 qpdf_e_unsupported,		/* PDF feature not (yet) supported by qpdf */
 qpdf_e_password,		/* incorrect password for encrypted file */
 qpdf_e_damaged_pdf,		/* syntax errors or other damage in PDF */
 qpdf_e_pages, /* erroneous or unsupported pages structure */
};

/* Write Parameters. See QPDFWriter.hh for details. */

enum qpdf_object_stream_e
{
 qpdf_o_disable = 0,		/* disable object streams */
 qpdf_o_preserve,		/* preserve object streams */
 qpdf_o_generate		/* generate object streams */
};
enum qpdf_stream_data_e
{
 qpdf_s_uncompress = 0,	/* uncompress stream data */
 qpdf_s_preserve,		/* preserve stream data compression */
 qpdf_s_compress		/* compress stream data */
};

/* Stream data flags */

/* See pipeStreamData in QPDFObjectHandle.hh for details on these flags. */
enum qpdf_stream_encode_flags_e
{
 qpdf_ef_compress = 1 << 0, /* compress uncompressed streams */
 qpdf_ef_normalize = 1 << 1, /* normalize content stream */
};
enum qpdf_stream_decode_level_e
{
 /* These must be in order from less to more decoding. */
 qpdf_dl_none = 0, /* preserve all stream filters */
 qpdf_dl_generalized, /* decode general-purpose filters */
 qpdf_dl_specialized, /* also decode other non-lossy filters */
 qpdf_dl_all /* also decode loss filters */
};

/* R3 Encryption Parameters */

enum qpdf_r3_print_e
{
 qpdf_r3p_full = 0,		/* allow all printing */
 qpdf_r3p_low,		/* allow only low-resolution printing */
 qpdf_r3p_none		/* allow no printing */
};
enum qpdf_r3_modify_e		/* Allowed changes: */
{
 qpdf_r3m_all = 0,		/* General editing, comments, forms */
 qpdf_r3m_annotate,	 /* Comments, form field fill-in, and signing */
 qpdf_r3m_form,		/* form field fill-in and signing */
 qpdf_r3m_assembly,		/* only document assembly */
 qpdf_r3m_none		/* no modifications */
};

#endif /* __QPDFCONSTANTS_H__ */

qpdf-7.1.0/include/qpdf/QPDFObjGen.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __QPDFOBJGEN_HH__
#define __QPDFOBJGEN_HH__

#include <qpdf/DLL.h>

// This class represents an object ID and generation pair. It is
// suitable to use as a key in a map or set.

class QPDFObjGen
{
 public:
 QPDF_DLL
 QPDFObjGen();
 QPDF_DLL
 QPDFObjGen(int obj, int gen);
 QPDF_DLL
 bool operator<(QPDFObjGen const&) const;
 QPDF_DLL
 bool operator==(QPDFObjGen const&) const;
 QPDF_DLL
 int getObj() const;
 QPDF_DLL
 int getGen() const;

 private:
 int obj;
 int gen;
};

#endif // __QPDFOBJGEN_HH__

qpdf-7.1.0/include/qpdf/QPDF.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __QPDF_HH__
#define __QPDF_HH__

#include <qpdf/DLL.h>
#include <qpdf/Types.h>

#include <stdio.h>
#include <string>
#include <map>
#include <list>
#include <iostream>

#include <qpdf/QPDFExc.hh>
#include <qpdf/QPDFObjGen.hh>
#include <qpdf/QPDFXRefEntry.hh>
#include <qpdf/QPDFObjectHandle.hh>
#include <qpdf/QPDFTokenizer.hh>
#include <qpdf/Buffer.hh>
#include <qpdf/InputSource.hh>

class QPDF_Stream;
class BitStream;
class BitWriter;

class QPDF
{
 public:
 // Get the current version of the QPDF software
 QPDF_DLL
 static std::string const& QPDFVersion();

 QPDF_DLL
 QPDF();
 QPDF_DLL
 ~QPDF();

 // Associate a file with a QPDF object and do initial parsing of
 // the file. PDF objects are not read until they are needed. A
 // QPDF object may be associated with only one file in its
 // lifetime. This method must be called before any methods that
 // potentially ask for information about the PDF file are called.
 // Prior to calling this, the only methods that are allowed are
 // those that set parameters. If the input file is not
 // encrypted,either a null password or an empty password can be
 // used. If the file is encrypted, either the user password or
 // the owner password may be supplied. The method
 // setPasswordIsHexKey may be called prior to calling this method
 // or any of the other process methods to force the password to be
 // interpreted as a raw encryption key. See comments on
 // setPasswordIsHexKey for more information.
 QPDF_DLL
 void processFile(char const* filename, char const* password = 0);

 // Parse a PDF from a stdio FILE*. The FILE must be open in
 // binary mode and must be seekable. It may be open read only.
 // This works exactly like processFile except that the PDF file is
 // read from an already opened FILE*. If close_file is true, the
 // file will be closed at the end. Otherwise, the caller is
 // responsible for closing the file.
 QPDF_DLL
 void processFile(char const* description, FILE* file,
 bool close_file, char const* password = 0);

 // Parse a PDF file loaded into a memory buffer. This works
 // exactly like processFile except that the PDF file is in memory
 // instead of on disk. The description appears in any warning or
 // error message in place of the file name.
 QPDF_DLL
 void processMemoryFile(char const* description,
			 char const* buf, size_t length,
			 char const* password = 0);

 // Parse a PDF file loaded from a custom InputSource. If you have
 // your own method of retrieving a PDF file, you can subclass
 // InputSource and use this method.
 QPDF_DLL
 void processInputSource(PointerHolder<InputSource>,
 char const* password = 0);

 // For certain forensic or investigatory purposes, it may
 // sometimes be useful to specify the encryption key directly,
 // even though regular PDF applications do not provide a way to do
 // this. calling setPasswordIsHexKey(true) before calling any of
 // the process methods will bypass the normal encryption key
 // computation or recovery mechanisms and interpret the bytes in
 // the password as a hex-encoded encryption key. Note that we
 // hex-encode the key because it may contain null bytes and
 // therefore can't be represented in a char const*.
 QPDF_DLL
 void setPasswordIsHexKey(bool);

 // Create a QPDF object for an empty PDF. This PDF has no pages
 // or objects other than a minimal trailer, a document catalog,
 // and a /Pages tree containing zero pages. Pages and other
 // objects can be added to the file in the normal way, and the
 // trailer and document catalog can be mutated. Calling this
 // method is equivalent to calling processFile on an equivalent
 // PDF file. See the pdf-create.cc example for a demonstration of
 // how to use this method to create a PDF file from scratch.
 QPDF_DLL
 void emptyPDF();

 // Parameter settings

 // By default, warning messages are issued to std::cerr and output
 // messages printed by certain check calls are issued to
 // std::cout. This method allows you to specify alternative
 // streams for this purpose. Note that no normal QPDF operations
 // generate output to std::cout, so for applications that just
 // wish to avoid creating output and don't call any check
 // functions, calling setSuppressWarnings(true) is sufficient.
 // Applications that wish to present check or warning information
 // to users may replace the output and error streams to capture
 // the output and errors for other use. A null value for either
 // stream will cause QPDF to use std::cout or std::cerr as
 // appropriate.
 QPDF_DLL
 void setOutputStreams(std::ostream* out_stream, std::ostream* err_stream);

 // If true, ignore any cross-reference streams in a hybrid file
 // (one that contains both cross-reference streams and
 // cross-reference tables). This can be useful for testing to
 // ensure that a hybrid file would work with an older reader.
 QPDF_DLL
 void setIgnoreXRefStreams(bool);

 // By default, any warnings are issued to std::cerr or the error
 // stream specified in a call to setOutputStreams as they are
 // encountered. If this is called with a true value, reporting of
 // warnings is suppressed. You may still retrieve warnings by
 // calling getWarnings.
 QPDF_DLL
 void setSuppressWarnings(bool);

 // By default, QPDF will try to recover if it finds certain types
 // of errors in PDF files. If turned off, it will throw an
 // exception on the first such problem it finds without attempting
 // recovery.
 QPDF_DLL
 void setAttemptRecovery(bool);

 // Other public methods

 // Return the list of warnings that have been issued so far and
 // clear the list. This method may be called even if processFile
 // throws an exception. Note that if setSuppressWarnings was not
 // called or was called with a false value, any warnings retrieved
 // here will have already been output.
 QPDF_DLL
 std::vector<QPDFExc> getWarnings();

 QPDF_DLL
 std::string getFilename() const;
 QPDF_DLL
 std::string getPDFVersion() const;
 QPDF_DLL
 int getExtensionLevel();
 QPDF_DLL
 QPDFObjectHandle getTrailer();
 QPDF_DLL
 QPDFObjectHandle getRoot();

 // Install this object handle as an indirect object and return an
 // indirect reference to it.
 QPDF_DLL
 QPDFObjectHandle makeIndirectObject(QPDFObjectHandle);

 // Retrieve an object by object ID and generation. Returns an
 // indirect reference to it.
 QPDF_DLL
 QPDFObjectHandle getObjectByObjGen(QPDFObjGen const&);
 QPDF_DLL
 QPDFObjectHandle getObjectByID(int objid, int generation);

 // Replace the object with the given object id with the given
 // object. The object handle passed in must be a direct object,
 // though it may contain references to other indirect objects
 // within it. Calling this method can have somewhat confusing
 // results. Any existing QPDFObjectHandle instances that point to
 // the old object and that have been resolved (which happens
 // automatically if you access them in any way) will continue to
 // point to the old object even though that object will no longer
 // be associated with the PDF file. Note that replacing an object
 // with QPDFObjectHandle::newNull() effectively removes the object
 // from the file since a non-existent object is treated as a null
 // object. To replace a reserved object, call replaceReserved
 // instead.
 QPDF_DLL
 void replaceObject(QPDFObjGen const& og, QPDFObjectHandle);
 QPDF_DLL
 void replaceObject(int objid, int generation, QPDFObjectHandle);

 // Swap two objects given by ID. Calling this method can have
 // confusing results. After swapping two objects, existing
 // QPDFObjectHandle instances that reference them will still
 // reference the same underlying objects, at which point those
 // existing QPDFObjectHandle instances will have incorrect
 // information about the object and generation number of those
 // objects. While this does not necessarily cause a problem, it
 // can certainly be confusing. It is therefore recommended that
 // you replace any existing QPDFObjectHandle instances that point
 // to the swapped objects with new ones, possibly by calling
 // getObjectByID.
 QPDF_DLL
 void swapObjects(QPDFObjGen const& og1, QPDFObjGen const& og2);
 QPDF_DLL
 void swapObjects(int objid1, int generation1,
		 int objid2, int generation2);

 // Replace a reserved object. This is a wrapper around
 // replaceObject but it guarantees that the underlying object is a
 // reserved object. After this call, reserved will be a reference
 // to replacement.
 QPDF_DLL
 void
 replaceReserved(QPDFObjectHandle reserved,
 QPDFObjectHandle replacement);

 // Copy an object from another QPDF to this one. Please note that
 // the QPDF object containing the object being copied must stick
 // around because it is still used to retrieve any stream data
 // referenced by the copied objects.
 //
 // The return value is an indirect reference to the copied object
 // in this file. This method is intended to be used to copy
 // non-page objects and will not copy page objects. To copy page
 // objects, pass the foreign page object directly to addPage (or
 // addPageAt). If you copy objects that contain references to
 // pages, you should copy the pages first using addPage(At).
 // Otherwise references to the pages that have not been copied
 // will be replaced with nulls.

 // When copying objects with this method, object structure will be
 // preserved, so all indirectly referenced indirect objects will
 // be copied as well. This includes any circular references that
 // may exist. The QPDF object keeps a record of what has already
 // been copied, so shared objects will not be copied multiple
 // times. This also means that if you mutate an object that has
 // already been copied and try to copy it again, it won't work
 // since the modified object will not be recopied. Therefore, you
 // should do all mutation on the original file that you are going
 // to do before you start copying its objects to a new file.
 QPDF_DLL
 QPDFObjectHandle copyForeignObject(QPDFObjectHandle foreign);

 // Encryption support

 enum encryption_method_e { e_none, e_unknown, e_rc4, e_aes, e_aesv3 };
 class EncryptionData
 {
 public:

	// This class holds data read from the encryption dictionary.
	EncryptionData(int V, int R, int Length_bytes, int P,
		 std::string const& O, std::string const& U,
 std::string const& OE, std::string const& UE,
 std::string const& Perms,
		 std::string const& id1, bool encrypt_metadata) :
	 V(V),
	 R(R),
	 Length_bytes(Length_bytes),
	 P(P),
	 O(O),
	 U(U),
 OE(OE),
 UE(UE),
 Perms(Perms),
	 id1(id1),
	 encrypt_metadata(encrypt_metadata)
	{
	}

	int getV() const;
	int getR() const;
	int getLengthBytes() const;
	int getP() const;
	std::string const& getO() const;
	std::string const& getU() const;
	std::string const& getOE() const;
	std::string const& getUE() const;
	std::string const& getPerms() const;
	std::string const& getId1() const;
	bool getEncryptMetadata() const;

 void setO(std::string const&);
 void setU(std::string const&);
 void setV5EncryptionParameters(std::string const& O,
 std::string const& OE,
 std::string const& U,
 std::string const& UE,
 std::string const& Perms);

 private:
 EncryptionData(EncryptionData const&);
 EncryptionData& operator=(EncryptionData const&);

	int V;
	int R;
	int Length_bytes;
	int P;
	std::string O;
	std::string U;
 std::string OE;
 std::string UE;
 std::string Perms;
	std::string id1;
	bool encrypt_metadata;
 };

 QPDF_DLL
 bool isEncrypted() const;

 QPDF_DLL
 bool isEncrypted(int& R, int& P);

 QPDF_DLL
 bool isEncrypted(int& R, int& P, int& V,
 encryption_method_e& stream_method,
 encryption_method_e& string_method,
 encryption_method_e& file_method);

 // Encryption permissions -- not enforced by QPDF
 QPDF_DLL
 bool allowAccessibility();
 QPDF_DLL
 bool allowExtractAll();
 QPDF_DLL
 bool allowPrintLowRes();
 QPDF_DLL
 bool allowPrintHighRes();
 QPDF_DLL
 bool allowModifyAssembly();
 QPDF_DLL
 bool allowModifyForm();
 QPDF_DLL
 bool allowModifyAnnotation();
 QPDF_DLL
 bool allowModifyOther();
 QPDF_DLL
 bool allowModifyAll();

 // Helper function to trim padding from user password. Calling
 // trim_user_password on the result of getPaddedUserPassword gives
 // getTrimmedUserPassword's result.
 QPDF_DLL
 static void trim_user_password(std::string& user_password);
 QPDF_DLL
 static std::string compute_data_key(
	std::string const& encryption_key, int objid, int generation,
	bool use_aes, int encryption_V, int encryption_R);
 QPDF_DLL
 static std::string compute_encryption_key(
	std::string const& password, EncryptionData const& data);

 QPDF_DLL
 static void compute_encryption_O_U(
	char const* user_password, char const* owner_password,
	int V, int R, int key_len, int P, bool encrypt_metadata,
	std::string const& id1,
	std::string& O, std::string& U);
 QPDF_DLL
 static void compute_encryption_parameters_V5(
	char const* user_password, char const* owner_password,
	int V, int R, int key_len, int P, bool encrypt_metadata,
	std::string const& id1,
 std::string& encryption_key,
	std::string& O, std::string& U,
 std::string& OE, std::string& UE, std::string& Perms);
 // Return the full user password as stored in the PDF file. For
 // files encrypted with 40-bit or 128-bit keys, the user password
 // can be recovered when the file is opened using the owner
 // password. This is not possible with newer encryption formats.
 // If you are attempting to recover the user password in a
 // user-presentable form, call getTrimmedUserPassword() instead.
 QPDF_DLL
 std::string const& getPaddedUserPassword() const;
 // Return human-readable form of user password subject to same
 // limitations as getPaddedUserPassword().
 QPDF_DLL
 std::string getTrimmedUserPassword() const;
 // Return the previously computed or retrieved encryption key for
 // this file
 QPDF_DLL
 std::string getEncryptionKey() const;

 // Linearization support

 // Returns true iff the file starts with a linearization parameter
 // dictionary. Does no additional validation.
 QPDF_DLL
 bool isLinearized();

 // Performs various sanity checks on a linearized file. Return
 // true if no errors or warnings. Otherwise, return false and
 // output errors and warnings to std::cout or the output stream
 // specified in a call to setOutputStreams.
 QPDF_DLL
 bool checkLinearization();

 // Calls checkLinearization() and, if possible, prints normalized
 // contents of some of the hints tables to std::cout or the output
 // stream specified in a call to setOutputStreams. Normalization
 // includes adding min values to delta values and adjusting
 // offsets based on the location and size of the primary hint
 // stream.
 QPDF_DLL
 void showLinearizationData();

 // Shows the contents of the cross-reference table
 QPDF_DLL
 void showXRefTable();

 // Returns a list of indirect objects for every object in the xref
 // table. Useful for discovering objects that are not otherwise
 // referenced.
 QPDF_DLL
 std::vector<QPDFObjectHandle> getAllObjects();

 // Optimization support -- see doc/optimization. Implemented in
 // QPDF_optimization.cc

 // The object_stream_data map maps from a "compressed" object to
 // the object stream that contains it. This enables optimize to
 // populate the object <-> user maps with only uncompressed
 // objects. If allow_changes is false, an exception will be
 // thrown if any changes are made during the optimization process.
 // This is available so that the test suite can make sure that a
 // linearized file is already optimized. When called in this way,
 // optimize() still populates the object <-> user maps
 QPDF_DLL
 void optimize(std::map<int, int> const& object_stream_data,
		 bool allow_changes = true);

 // Convenience routines for common functions. See also
 // QPDFObjectHandle.hh for additional convenience routines.

 // Page handling API

 // Traverse page tree return all /Page objects. Note that calls
 // to page manipulation APIs will change the internal vector that
 // this routine returns a pointer to. If you don't want that,
 // assign this to a regular vector rather than a const reference.
 QPDF_DLL
 std::vector<QPDFObjectHandle> const& getAllPages();

 // This method synchronizes QPDF's cache of the page structure
 // with the actual /Pages tree. If you restrict changes to the
 // /Pages tree, including addition, removal, or replacement of
 // pages or changes to any /Pages objects, to calls to these page
 // handling APIs, you never need to call this method. If you
 // modify /Pages structures directly, you must call this method
 // afterwards. This method updates the internal list of pages, so
 // after calling this method, any previous references returned by
 // getAllPages() will be valid again. It also resets any state
 // about having pushed inherited attributes in /Pages objects down
 // to the pages, so if you add any inheritable attributes to a
 // /Pages object, you should also call this method.
 QPDF_DLL
 void updateAllPagesCache();

 // The PDF /Pages tree allows inherited values. Working with
 // the pages of a pdf is much easier when the inheritance is
 // resolved by explicitly setting the values in each /Page.
 QPDF_DLL
 void pushInheritedAttributesToPage();

 // Add new page at the beginning or the end of the current pdf.
 // The newpage parameter may be either a direct object, an
 // indirect object from this QPDF, or an indirect object from
 // another QPDF. If it is a direct object, it will be made
 // indirect. If it is an indirect object from another QPDF, this
 // method will call pushInheritedAttributesToPage on the other
 // file and then copy the page to this QPDF using the same
 // underlying code as copyForeignObject.
 QPDF_DLL
 void addPage(QPDFObjectHandle newpage, bool first);

 // Add new page before or after refpage. See comments for addPage
 // for details about what newpage should be.
 QPDF_DLL
 void addPageAt(QPDFObjectHandle newpage, bool before,
 QPDFObjectHandle refpage);

 // Remove page from the pdf.
 QPDF_DLL
 void removePage(QPDFObjectHandle page);

 // Writer class is restricted to QPDFWriter so that only it can
 // call certain methods.
 class Writer
 {
 friend class QPDFWriter;
 private:

 static void getLinearizedParts(
 QPDF& qpdf,
 std::map<int, int> const& object_stream_data,
 std::vector<QPDFObjectHandle>& part4,
 std::vector<QPDFObjectHandle>& part6,
 std::vector<QPDFObjectHandle>& part7,
 std::vector<QPDFObjectHandle>& part8,
 std::vector<QPDFObjectHandle>& part9)
 {
 qpdf.getLinearizedParts(object_stream_data,
 part4, part6, part7, part8, part9);
 }

 static void generateHintStream(
 QPDF& qpdf,
 std::map<int, QPDFXRefEntry> const& xref,
 std::map<int, qpdf_offset_t> const& lengths,
 std::map<int, int> const& obj_renumber,
 PointerHolder<Buffer>& hint_stream,
 int& S, int& O)
 {
 return qpdf.generateHintStream(xref, lengths, obj_renumber,
 hint_stream, S, O);
 }

 static void getObjectStreamData(QPDF& qpdf, std::map<int, int>& omap)
 {
 qpdf.getObjectStreamData(omap);
 }

 static std::vector<QPDFObjGen> getCompressibleObjGens(QPDF& qpdf)
 {
 return qpdf.getCompressibleObjGens();
 }
 };

 // Resolver class is restricted to QPDFObjectHandle so that only
 // it can resolve indirect references.
 class Resolver
 {
	friend class QPDFObjectHandle;
 private:
	static PointerHolder<QPDFObject> resolve(
	 QPDF* qpdf, int objid, int generation)
	{
	 return qpdf->resolve(objid, generation);
	}
 };
 friend class Resolver;

 // Warner class allows QPDFObjectHandle to create warnings
 class Warner
 {
	friend class QPDFObjectHandle;
 friend class QPDF_Stream;
 private:
 static void warn(QPDF* qpdf, QPDFExc const& e)
 {
 qpdf->warn(e);
 }
 };
 friend class Warner;

 // Pipe class is restricted to QPDF_Stream
 class Pipe
 {
	friend class QPDF_Stream;
 private:
	static bool pipeStreamData(QPDF* qpdf, int objid, int generation,
				 qpdf_offset_t offset, size_t length,
				 QPDFObjectHandle dict,
				 Pipeline* pipeline,
 bool suppress_warnings,
 bool will_retry)
	{
	 return qpdf->pipeStreamData(
		objid, generation, offset, length, dict, pipeline,
 suppress_warnings, will_retry);
	}
 };
 friend class Pipe;

 private:
 static std::string qpdf_version;

 class ObjCache
 {
 public:
	ObjCache() :
	 end_before_space(0),
	 end_after_space(0)
	{
	}
	ObjCache(PointerHolder<QPDFObject> object,
		 qpdf_offset_t end_before_space,
		 qpdf_offset_t end_after_space) :
	 object(object),
	 end_before_space(end_before_space),
	 end_after_space(end_after_space)
	{
	}

	PointerHolder<QPDFObject> object;
	qpdf_offset_t end_before_space;
	qpdf_offset_t end_after_space;
 };

 class ObjCopier
 {
 public:
 std::map<QPDFObjGen, QPDFObjectHandle> object_map;
 std::vector<QPDFObjectHandle> to_copy;
 std::set<QPDFObjGen> visiting;
 };

 class CopiedStreamDataProvider: public QPDFObjectHandle::StreamDataProvider
 {
 public:
 virtual ~CopiedStreamDataProvider()
 {
 }
	virtual void provideStreamData(int objid, int generation,
				 Pipeline* pipeline);
 void registerForeignStream(QPDFObjGen const& local_og,
 QPDFObjectHandle foreign_stream);

 private:
 std::map<QPDFObjGen, QPDFObjectHandle> foreign_streams;
 };

 class StringDecrypter: public QPDFObjectHandle::StringDecrypter
 {
 friend class QPDF;

 public:
 StringDecrypter(QPDF* qpdf, int objid, int gen);
 virtual ~StringDecrypter()
 {
 }
 virtual void decryptString(std::string& val);

 private:
 QPDF* qpdf;
 int objid;
 int gen;
 };

 class ResolveRecorder
 {
 public:
 ResolveRecorder(QPDF* qpdf, QPDFObjGen const& og) :
 qpdf(qpdf),
 og(og)
 {
 qpdf->m->resolving.insert(og);
 }
 virtual ~ResolveRecorder()
 {
 this->qpdf->m->resolving.erase(og);
 }
 private:
 QPDF* qpdf;
 QPDFObjGen og;
 };
 friend class ResolveRecorder;

 void parse(char const* password);
 void warn(QPDFExc const& e);
 void setTrailer(QPDFObjectHandle obj);
 void read_xref(qpdf_offset_t offset);
 void reconstruct_xref(QPDFExc& e);
 bool parse_xrefFirst(std::string const& line,
 int& obj, int& num, int& bytes);
 bool parse_xrefEntry(std::string const& line,
 qpdf_offset_t& f1, int& f2, char& type);
 qpdf_offset_t read_xrefTable(qpdf_offset_t offset);
 qpdf_offset_t read_xrefStream(qpdf_offset_t offset);
 qpdf_offset_t processXRefStream(
 qpdf_offset_t offset, QPDFObjectHandle& xref_stream);
 void insertXrefEntry(int obj, int f0, qpdf_offset_t f1, int f2,
			 bool overwrite = false);
 void setLastObjectDescription(std::string const& description,
				 int objid, int generation);
 QPDFObjectHandle readObject(
	PointerHolder<InputSource>, std::string const& description,
	int objid, int generation, bool in_object_stream);
 size_t recoverStreamLength(
	PointerHolder<InputSource> input, int objid, int generation,
	qpdf_offset_t stream_offset);
 QPDFTokenizer::Token readToken(PointerHolder<InputSource>,
 bool allow_bad = false,
 size_t max_len = 0);

 QPDFObjectHandle readObjectAtOffset(
	bool attempt_recovery,
	qpdf_offset_t offset, std::string const& description,
	int exp_objid, int exp_generation,
	int& act_objid, int& act_generation);
 PointerHolder<QPDFObject> resolve(int objid, int generation);
 void resolveObjectsInStream(int obj_stream_number);
 void findAttachmentStreams();

 // Calls finish() on the pipeline when done but does not delete it
 bool pipeStreamData(int objid, int generation,
			qpdf_offset_t offset, size_t length,
			QPDFObjectHandle dict,
			Pipeline* pipeline,
 bool suppress_warnings,
 bool will_retry);

 // For QPDFWriter:

 // Get lists of all objects in order according to the part of a
 // linearized file that they belong to.
 void getLinearizedParts(
	std::map<int, int> const& object_stream_data,
	std::vector<QPDFObjectHandle>& part4,
	std::vector<QPDFObjectHandle>& part6,
	std::vector<QPDFObjectHandle>& part7,
	std::vector<QPDFObjectHandle>& part8,
	std::vector<QPDFObjectHandle>& part9);

 void generateHintStream(std::map<int, QPDFXRefEntry> const& xref,
			 std::map<int, qpdf_offset_t> const& lengths,
			 std::map<int, int> const& obj_renumber,
			 PointerHolder<Buffer>& hint_stream,
			 int& S, int& O);

 // Map object to object stream that contains it
 void getObjectStreamData(std::map<int, int>&);

 // Get a list of objects that would be permitted in an object
 // stream.
 std::vector<QPDFObjGen> getCompressibleObjGens();

 // methods to support page handling

 void getAllPagesInternal(QPDFObjectHandle cur_pages,
			 std::vector<QPDFObjectHandle>& result);
 void getAllPagesInternal2(QPDFObjectHandle cur_pages,
 std::vector<QPDFObjectHandle>& result,
 std::set<QPDFObjGen>& visited);
 void insertPage(QPDFObjectHandle newpage, int pos);
 int findPage(QPDFObjGen const& og);
 int findPage(QPDFObjectHandle& page);
 void flattenPagesTree();
 void insertPageobjToPage(QPDFObjectHandle const& obj, int pos,
 bool check_duplicate);

 // methods to support encryption -- implemented in QPDF_encryption.cc
 encryption_method_e interpretCF(QPDFObjectHandle);
 void initializeEncryption();
 std::string getKeyForObject(int objid, int generation, bool use_aes);
 void decryptString(std::string&, int objid, int generation);
 static std::string compute_encryption_key_from_password(
 std::string const& password, EncryptionData const& data);
 static std::string recover_encryption_key_with_password(
 std::string const& password, EncryptionData const& data);
 static std::string recover_encryption_key_with_password(
 std::string const& password, EncryptionData const& data,
 bool& perms_valid);
 void decryptStream(
	Pipeline*& pipeline, int objid, int generation,
	QPDFObjectHandle& stream_dict,
	std::vector<PointerHolder<Pipeline> >& heap);

 // Methods to support object copying
 QPDFObjectHandle copyForeignObject(
 QPDFObjectHandle foreign, bool allow_page);
 void reserveObjects(QPDFObjectHandle foreign, ObjCopier& obj_copier,
 bool top);
 QPDFObjectHandle replaceForeignIndirectObjects(
 QPDFObjectHandle foreign, ObjCopier& obj_copier, bool top);

 // Linearization Hint table structures.
 // Naming conventions:

 // HSomething is the Something Hint Table or table header
 // HSomethingEntry is an entry in the Something table

 // delta_something + min_something = something
 // nbits_something = number of bits required for something

 // something_offset is the pre-adjusted offset in the file. If >=
 // H0_offset, H0_length must be added to get an actual file
 // offset.

 // PDF 1.4: Table F.4
 struct HPageOffsetEntry
 {
	HPageOffsetEntry() :
	 delta_nobjects(0),
	 delta_page_length(0),
	 nshared_objects(0),
	 delta_content_offset(0),
	 delta_content_length(0)
	{
	}

	int delta_nobjects;			 // 1
	qpdf_offset_t delta_page_length; // 2
	int nshared_objects;			 // 3
	// vectors' sizes = nshared_objects
	std::vector<int> shared_identifiers;	 // 4
	std::vector<int> shared_numerators;	 // 5
	qpdf_offset_t delta_content_offset; // 6
 qpdf_offset_t delta_content_length; // 7
 };

 // PDF 1.4: Table F.3
 struct HPageOffset
 {
	HPageOffset() :
	 min_nobjects(0),
	 first_page_offset(0),
	 nbits_delta_nobjects(0),
	 min_page_length(0),
	 nbits_delta_page_length(0),
	 min_content_offset(0),
	 nbits_delta_content_offset(0),
	 min_content_length(0),
	 nbits_delta_content_length(0),
	 nbits_nshared_objects(0),
	 nbits_shared_identifier(0),
	 nbits_shared_numerator(0),
	 shared_denominator(0)
	{
	}

	int min_nobjects;			 // 1
	qpdf_offset_t first_page_offset; // 2
	int nbits_delta_nobjects;		 // 3
	int min_page_length;			 // 4
	int nbits_delta_page_length;		 // 5
	int min_content_offset;			 // 6
	int nbits_delta_content_offset;		 // 7
	int min_content_length;			 // 8
	int nbits_delta_content_length;		 // 9
	int nbits_nshared_objects;		 // 10
	int nbits_shared_identifier;		 // 11
	int nbits_shared_numerator;		 // 12
	int shared_denominator;			 // 13
	// vector size is npages
	std::vector<HPageOffsetEntry> entries;
 };

 // PDF 1.4: Table F.6
 struct HSharedObjectEntry
 {
	HSharedObjectEntry() :
	 delta_group_length(0),
	 signature_present(0),
	 nobjects_minus_one(0)
	{
	}

	// Item 3 is a 128-bit signature (unsupported by Acrobat)
	int delta_group_length;		 	 // 1
	int signature_present;			 // 2 -- always 0
	int nobjects_minus_one;			 // 4 -- always 0
 };

 // PDF 1.4: Table F.5
 struct HSharedObject
 {
	HSharedObject() :
	 first_shared_obj(0),
	 first_shared_offset(0),
	 nshared_first_page(0),
	 nshared_total(0),
	 nbits_nobjects(0),
	 min_group_length(0),
	 nbits_delta_group_length(0)
	{
	}

	int first_shared_obj;			 // 1
	qpdf_offset_t first_shared_offset; // 2
	int nshared_first_page;			 // 3
	int nshared_total;			 // 4
	int nbits_nobjects;			 // 5
	int min_group_length;			 // 6
	int nbits_delta_group_length;		 // 7
	// vector size is nshared_total
	std::vector<HSharedObjectEntry> entries;
 };

 // PDF 1.4: Table F.9
 struct HGeneric
 {
	HGeneric() :
	 first_object(0),
	 first_object_offset(0),
	 nobjects(0),
	 group_length(0)
	{
	}

	int first_object;			 // 1
	qpdf_offset_t first_object_offset; // 2
	int nobjects;				 // 3
	int group_length;			 // 4
 };

 // Other linearization data structures

 // Initialized from Linearization Parameter dictionary
 struct LinParameters
 {
	LinParameters() :
	 file_size(0),
	 first_page_object(0),
	 first_page_end(0),
	 npages(0),
	 xref_zero_offset(0),
	 first_page(0),
	 H_offset(0),
	 H_length(0)
	{
	}

	qpdf_offset_t file_size; // /L
	int first_page_object; // /O
	qpdf_offset_t first_page_end;	// /E
	int npages; // /N
	qpdf_offset_t xref_zero_offset;	// /T
	int first_page; // /P
 qpdf_offset_t H_offset;		// offset of primary hint stream
	qpdf_offset_t H_length;		// length of primary hint stream
 };

 // Computed hint table value data structures. These tables
 // contain the computed values on which the hint table values are
 // based. They exclude things like number of bits and store
 // actual values instead of mins and deltas. File offsets are
 // also absolute rather than being offset by the size of the
 // primary hint table. We populate the hint table structures from
 // these during writing and compare the hint table values with
 // these during validation. We ignore some values for various
 // reasons described in the code. Those values are omitted from
 // these structures. Note also that object numbers are object
 // numbers from the input file, not the output file.

 // Naming convention: CHSomething is analogous to HSomething
 // above. "CH" is computed hint.

 struct CHPageOffsetEntry
 {
	CHPageOffsetEntry() :
	 nobjects(0),
	 nshared_objects(0)
	{
	}

	int nobjects;
	int nshared_objects;
	// vectors' sizes = nshared_objects
	std::vector<int> shared_identifiers;
 };

 struct CHPageOffset
 {
	// vector size is npages
	std::vector<CHPageOffsetEntry> entries;
 };

 struct CHSharedObjectEntry
 {
	CHSharedObjectEntry(int object) :
	 object(object)
	{
	}

	int object;
 };

 // PDF 1.4: Table F.5
 struct CHSharedObject
 {
	CHSharedObject() :
	 first_shared_obj(0),
	 nshared_first_page(0),
	 nshared_total(0)
	{
	}

	int first_shared_obj;
	int nshared_first_page;
	int nshared_total;
	// vector size is nshared_total
	std::vector<CHSharedObjectEntry> entries;
 };

 // No need for CHGeneric -- HGeneric is fine as is.

 // Data structures to support optimization -- implemented in
 // QPDF_optimization.cc

 class ObjUser
 {
 public:
	enum user_e
	{
	 ou_bad,
	 ou_page,
	 ou_thumb,
	 ou_trailer_key,
	 ou_root_key,
	 ou_root
	};

	// type is set to ou_bad
	ObjUser();

	// type must be ou_root
	ObjUser(user_e type);

	// type must be one of ou_page or ou_thumb
	ObjUser(user_e type, int pageno);

	// type must be one of ou_trailer_key or ou_root_key
	ObjUser(user_e type, std::string const& key);

	bool operator<(ObjUser const&) const;

	user_e ou_type;
	int pageno;		// if ou_page;
	std::string key;	// if ou_trailer_key or ou_root_key
 };

 class PatternFinder: public InputSource::Finder
 {
 public:
 PatternFinder(QPDF& qpdf, bool (QPDF::*checker)()) :
 qpdf(qpdf),
 checker(checker)
 {
 }
 virtual ~PatternFinder()
 {
 }
 virtual bool check()
 {
 return (this->qpdf.*checker)();
 }

 private:
 QPDF& qpdf;
 bool (QPDF::*checker)();
 };

 // Methods to support pattern finding
 bool findHeader();
 bool findStartxref();
 bool findEndstream();

 // methods to support linearization checking -- implemented in
 // QPDF_linearization.cc
 void readLinearizationData();
 bool checkLinearizationInternal();
 void dumpLinearizationDataInternal();
 QPDFObjectHandle readHintStream(
 Pipeline&, qpdf_offset_t offset, size_t length);
 void readHPageOffset(BitStream);
 void readHSharedObject(BitStream);
 void readHGeneric(BitStream, HGeneric&);
 qpdf_offset_t maxEnd(ObjUser const& ou);
 qpdf_offset_t getLinearizationOffset(QPDFObjGen const&);
 QPDFObjectHandle getUncompressedObject(
	QPDFObjectHandle&, std::map<int, int> const& object_stream_data);
 int lengthNextN(int first_object, int n,
		 std::list<std::string>& errors);
 void checkHPageOffset(std::list<std::string>& errors,
			 std::list<std::string>& warnings,
			 std::vector<QPDFObjectHandle> const& pages,
			 std::map<int, int>& idx_to_obj);
 void checkHSharedObject(std::list<std::string>& warnings,
			 std::list<std::string>& errors,
			 std::vector<QPDFObjectHandle> const& pages,
			 std::map<int, int>& idx_to_obj);
 void checkHOutlines(std::list<std::string>& warnings);
 void dumpHPageOffset();
 void dumpHSharedObject();
 void dumpHGeneric(HGeneric&);
 int adjusted_offset(int offset);
 QPDFObjectHandle objGenToIndirect(QPDFObjGen const&);
 void calculateLinearizationData(
	std::map<int, int> const& object_stream_data);
 void pushOutlinesToPart(
	std::vector<QPDFObjectHandle>& part,
	std::set<QPDFObjGen>& lc_outlines,
	std::map<int, int> const& object_stream_data);
 int outputLengthNextN(
	int in_object, int n,
	std::map<int, qpdf_offset_t> const& lengths,
	std::map<int, int> const& obj_renumber);
 void calculateHPageOffset(
	std::map<int, QPDFXRefEntry> const& xref,
	std::map<int, qpdf_offset_t> const& lengths,
	std::map<int, int> const& obj_renumber);
 void calculateHSharedObject(
	std::map<int, QPDFXRefEntry> const& xref,
	std::map<int, qpdf_offset_t> const& lengths,
	std::map<int, int> const& obj_renumber);
 void calculateHOutline(
	std::map<int, QPDFXRefEntry> const& xref,
	std::map<int, qpdf_offset_t> const& lengths,
	std::map<int, int> const& obj_renumber);
 void writeHPageOffset(BitWriter&);
 void writeHSharedObject(BitWriter&);
 void writeHGeneric(BitWriter&, HGeneric&);

 // Methods to support optimization

 void pushInheritedAttributesToPage(bool allow_changes,
 bool warn_skipped_keys);
 void pushInheritedAttributesToPageInternal(
	QPDFObjectHandle,
	std::map<std::string, std::vector<QPDFObjectHandle> >&,
	std::vector<QPDFObjectHandle>& all_pages,
	bool allow_changes, bool warn_skipped_keys);
 void pushInheritedAttributesToPageInternal2(
	QPDFObjectHandle,
	std::map<std::string, std::vector<QPDFObjectHandle> >&,
	std::vector<QPDFObjectHandle>& all_pages,
	bool allow_changes, bool warn_skipped_keys,
 std::set<QPDFObjGen>& visited);
 void updateObjectMaps(ObjUser const& ou, QPDFObjectHandle oh);
 void updateObjectMapsInternal(ObjUser const& ou, QPDFObjectHandle oh,
				 std::set<QPDFObjGen>& visited, bool top);
 void filterCompressedObjects(std::map<int, int> const& object_stream_data);

 class Members
 {
 friend class QPDF;

 public:
 ~Members();

 private:
 Members();
 Members(Members const&);

 QPDFTokenizer tokenizer;
 PointerHolder<InputSource> file;
 std::string last_object_description;
 bool provided_password_is_hex_key;
 bool encrypted;
 bool encryption_initialized;
 bool ignore_xref_streams;
 bool suppress_warnings;
 std::ostream* out_stream;
 std::ostream* err_stream;
 bool attempt_recovery;
 int encryption_V;
 int encryption_R;
 bool encrypt_metadata;
 std::map<std::string, encryption_method_e> crypt_filters;
 encryption_method_e cf_stream;
 encryption_method_e cf_string;
 encryption_method_e cf_file;
 std::string provided_password;
 std::string user_password;
 std::string encryption_key;
 std::string cached_object_encryption_key;
 int cached_key_objid;
 int cached_key_generation;
 std::string pdf_version;
 std::map<QPDFObjGen, QPDFXRefEntry> xref_table;
 std::set<int> deleted_objects;
 std::map<QPDFObjGen, ObjCache> obj_cache;
 std::set<QPDFObjGen> resolving;
 QPDFObjectHandle trailer;
 std::vector<QPDFObjectHandle> all_pages;
 std::map<QPDFObjGen, int> pageobj_to_pages_pos;
 bool pushed_inherited_attributes_to_pages;
 std::vector<QPDFExc> warnings;
 std::map<QPDF*, ObjCopier> object_copiers;
 PointerHolder<QPDFObjectHandle::StreamDataProvider> copied_streams;
 // copied_stream_data_provider is owned by copied_streams
 CopiedStreamDataProvider* copied_stream_data_provider;
 std::set<QPDFObjGen> attachment_streams;
 bool reconstructed_xref;

 // Linearization data
 qpdf_offset_t first_xref_item_offset; // actual value from file
 bool uncompressed_after_compressed;

 // Linearization parameter dictionary and hint table data: may be
 // read from file or computed prior to writing a linearized file
 QPDFObjectHandle lindict;
 LinParameters linp;
 HPageOffset page_offset_hints;
 HSharedObject shared_object_hints;
 HGeneric outline_hints;

 // Computed linearization data: used to populate above tables
 // during writing and to compare with them during validation.
 // c_ means computed.
 LinParameters c_linp;
 CHPageOffset c_page_offset_data;
 CHSharedObject c_shared_object_data;
 HGeneric c_outline_data;

 // Object ordering data for linearized files: initialized by
 // calculateLinearizationData(). Part numbers refer to the PDF
 // 1.4 specification.
 std::vector<QPDFObjectHandle> part4;
 std::vector<QPDFObjectHandle> part6;
 std::vector<QPDFObjectHandle> part7;
 std::vector<QPDFObjectHandle> part8;
 std::vector<QPDFObjectHandle> part9;

 // Optimization data
 std::map<ObjUser, std::set<QPDFObjGen> > obj_user_to_objects;
 std::map<QPDFObjGen, std::set<ObjUser> > object_to_obj_users;
 };

 // Keep all member variables inside the Members object, which we
 // dynamically allocate. This makes it possible to add new private
 // members without breaking binary compatibility.
 PointerHolder<Members> m;
};

#endif // __QPDF_HH__

qpdf-7.1.0/include/qpdf/Types.h

/* Copyright (c) 2005-2018 Jay Berkenbilt
 *
 * This file is part of qpdf.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * Versions of qpdf prior to version 7 were released under the terms
 * of version 2.0 of the Artistic License. At your option, you may
 * continue to consider qpdf to be licensed under those terms. Please
 * see the manual for additional information.
 */

#ifndef __QPDFTYPES_H__
#define __QPDFTYPES_H__

/* Provide an offset type that should be as big as off_t on just about
 * any system. If your compiler doesn't support C99 (or at least the
 * "long long" type), then you may have to modify this definition.
 */

typedef long long int qpdf_offset_t;

#endif /* __QPDFTYPES_H__ */

qpdf-7.1.0/include/qpdf/Pl_StdioFile.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

// End-of-line pipeline that simply writes its data to a stdio FILE* object.

#ifndef __PL_STDIOFILE_HH__
#define __PL_STDIOFILE_HH__

#include <qpdf/Pipeline.hh>

#include <stdio.h>

//
// This pipeline is reusable.
//

class Pl_StdioFile: public Pipeline
{
 public:
 // f is externally maintained; this class just writes to and
 // flushes it. It does not close it.
 QPDF_DLL
 Pl_StdioFile(char const* identifier, FILE* f);
 QPDF_DLL
 virtual ~Pl_StdioFile();

 QPDF_DLL
 virtual void write(unsigned char* buf, size_t len);
 QPDF_DLL
 virtual void finish();

 private:
 FILE* file;
};

#endif // __PL_STDIOFILE_HH__

qpdf-7.1.0/include/qpdf/FileInputSource.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __QPDF_FILEINPUTSOURCE_HH__
#define __QPDF_FILEINPUTSOURCE_HH__

#include <qpdf/InputSource.hh>

class FileInputSource: public InputSource
{
 public:
 QPDF_DLL
 FileInputSource();
 QPDF_DLL
 void setFilename(char const* filename);
 QPDF_DLL
 void setFile(char const* description, FILE* filep, bool close_file);
 QPDF_DLL
 virtual ~FileInputSource();
 QPDF_DLL
 virtual qpdf_offset_t findAndSkipNextEOL();
 QPDF_DLL
 virtual std::string const& getName() const;
 QPDF_DLL
 virtual qpdf_offset_t tell();
 QPDF_DLL
 virtual void seek(qpdf_offset_t offset, int whence);
 QPDF_DLL
 virtual void rewind();
 QPDF_DLL
 virtual size_t read(char* buffer, size_t length);
 QPDF_DLL
 virtual void unreadCh(char ch);

 private:
 FileInputSource(FileInputSource const&);
 FileInputSource& operator=(FileInputSource const&);

 void destroy();

 bool close_file;
 std::string filename;
 FILE* file;
};

#endif // __QPDF_FILEINPUTSOURCE_HH__

qpdf-7.1.0/include/qpdf/Pl_Buffer.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __PL_BUFFER_HH__
#define __PL_BUFFER_HH__

// This pipeline accumulates the data passed to it into a memory
// buffer. Each subsequent use of this buffer appends to the data
// accumulated so far. getBuffer() may be called only after calling
// finish() and before calling any subsequent write(). At that point,
// a dynamically allocated Buffer object is returned and the internal
// buffer is reset. The caller is responsible for deleting the
// returned Buffer.
//
// For this pipeline, "next" may be null. If a next pointer is
// provided, this pipeline will also pass the data through to it.

#include <qpdf/Pipeline.hh>
#include <qpdf/PointerHolder.hh>
#include <qpdf/Buffer.hh>
#include <list>

class Pl_Buffer: public Pipeline
{
 public:
 QPDF_DLL
 Pl_Buffer(char const* identifier, Pipeline* next = 0);
 QPDF_DLL
 virtual ~Pl_Buffer();
 QPDF_DLL
 virtual void write(unsigned char*, size_t);
 QPDF_DLL
 virtual void finish();

 // Each call to getBuffer() resets this object -- see notes above.
 // The caller is responsible for deleting the returned Buffer
 // object.
 QPDF_DLL
 Buffer* getBuffer();

 private:
 bool ready;
 std::list<PointerHolder<Buffer> > data;
 size_t total_size;
};

#endif // __PL_BUFFER_HH__

qpdf-7.1.0/include/qpdf/PointerHolder.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __POINTERHOLDER_HH__
#define __POINTERHOLDER_HH__

// This class is basically boost::shared_pointer but predates that by
// several years.

// This class expects to be initialized with a dynamically allocated
// object pointer. It keeps a reference count and deletes this once
// the reference count goes to zero. PointerHolder objects are
// explicitly safe for use in STL containers.

// It is very important that a client who pulls the pointer out of
// this holder does not let the holder go out of scope until it is
// finished with the pointer. It is also important that exactly one
// instance of this object ever gets initialized with a given pointer.
// Otherwise, the pointer will be deleted twice, and before that, some
// objects will be left with a pointer to a deleted object. In other
// words, the only legitimate way for two PointerHolder objects to
// contain the same pointer is for one to be a copy of the other.
// Copy and assignment semantics are well-defined and essentially
// allow you to use PointerHolder as a means to get pass-by-reference
// semantics in a pass-by-value environment without having to worry
// about memory management details.

// Comparison (== and <) are defined and operate on the internally
// stored pointers, not on the data. This makes it possible to store
// PointerHolder objects in sorted lists or to find them in STL
// containers just as one would be able to store pointers. Comparing
// the underlying pointers provides a well-defined, if not
// particularly meaningful, ordering.

template <class T>
class PointerHolder
{
 private:
 class Data
 {
 public:
	Data(T* pointer, bool array) :
	 pointer(pointer),
	 array(array),
	 refcount(0)
	 {
	 }
	~Data()
	 {
		if (array)
		{
		 delete [] this->pointer;
		}
		else
		{
		 delete this->pointer;
		}
	 }
	T* pointer;
	bool array;
	int refcount;
 private:
	Data(Data const&);
	Data& operator=(Data const&);
 };

 public:
 PointerHolder(T* pointer = 0)
	{
	 this->init(new Data(pointer, false));
	}
 // Special constructor indicating to free memory with delete []
 // instead of delete
 PointerHolder(bool, T* pointer)
	{
	 this->init(new Data(pointer, true));
	}
 PointerHolder(PointerHolder const& rhs)
	{
	 this->copy(rhs);
	}
 PointerHolder& operator=(PointerHolder const& rhs)
	{
	 if (this != &rhs)
	 {
		this->destroy();
		this->copy(rhs);
	 }
	 return *this;
	}
 ~PointerHolder()
	{
	 this->destroy();
	}
 bool operator==(PointerHolder const& rhs) const
 {
	return this->data->pointer == rhs.data->pointer;
 }
 bool operator<(PointerHolder const& rhs) const
 {
	return this->data->pointer < rhs.data->pointer;
 }

 // NOTE: The pointer returned by getPointer turns into a pumpkin
 // when the last PointerHolder that contains it disappears.
 T* getPointer()
	{
	 return this->data->pointer;
	}
 T const* getPointer() const
	{
	 return this->data->pointer;
	}
 int getRefcount() const
	{
	 return this->data->refcount;
	}

 T const& operator*() const
 {
 return *this->data->pointer;
 }
 T& operator*()
 {
 return *this->data->pointer;
 }

 T const* operator->() const
 {
 return this->data->pointer;
 }
 T* operator->()
 {
 return this->data->pointer;
 }

 private:
 void init(Data* data)
	{
	 this->data = data;
	 {
		++this->data->refcount;
	 }
	}
 void copy(PointerHolder const& rhs)
	{
	 this->init(rhs.data);
	}
 void destroy()
	{
	 bool gone = false;
	 {
		if (--this->data->refcount == 0)
		{
		 gone = true;
		}
	 }
	 if (gone)
	 {
		delete this->data;
	 }
	}

 Data* data;
};

#endif // __POINTERHOLDER_HH__

qpdf-7.1.0/include/qpdf/DLL.h

/* Copyright (c) 2005-2018 Jay Berkenbilt
 *
 * This file is part of qpdf.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * Versions of qpdf prior to version 7 were released under the terms
 * of version 2.0 of the Artistic License. At your option, you may
 * continue to consider qpdf to be licensed under those terms. Please
 * see the manual for additional information.
 */

#ifndef __QPDF_DLL_HH__
#define __QPDF_DLL_HH__

#if defined(_WIN32) && defined(DLL_EXPORT)
define QPDF_DLL __declspec(dllexport)
#else
define QPDF_DLL
#endif

#endif /* __QPDF_DLL_HH__ */

qpdf-7.1.0/include/qpdf/QPDFObject.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __QPDFOBJECT_HH__
#define __QPDFOBJECT_HH__

#include <qpdf/DLL.h>

#include <string>

class QPDF;
class QPDFObjectHandle;

class QPDFObject
{
 public:

 // Objects derived from QPDFObject are accessible through
 // QPDFObjectHandle. Each object returns a unique type code that
 // has one of the values in the list below. As new object types
 // are added to qpdf, additional items may be added to the list,
 // so code that switches on these values should take that into
 // consideration.
 enum object_type_e {
 // Object types internal to qpdf
 ot_uninitialized,
 ot_reserved,
 // Object types that can occur in the main document
 ot_null,
 ot_boolean,
 ot_integer,
 ot_real,
 ot_string,
 ot_name,
 ot_array,
 ot_dictionary,
 ot_stream,
 // Additional object types that can occur in content streams
 ot_operator,
 ot_inlineimage,
 };

 virtual ~QPDFObject() {}
 virtual std::string unparse() = 0;

 // Return a unique type code for the object
 virtual object_type_e getTypeCode() const = 0;

 // Return a string literal that describes the type, useful for
 // debugging and testing
 virtual char const* getTypeName() const = 0;

 // Accessor to give specific access to non-public methods
 class ObjAccessor
 {
	friend class QPDF;
	friend class QPDFObjectHandle;
 private:
	static void releaseResolved(QPDFObject* o)
	{
	 if (o)
	 {
		o->releaseResolved();
	 }
	}
 };
 friend class ObjAccessor;

 protected:
 virtual void releaseResolved() {}
};

#endif // __QPDFOBJECT_HH__

qpdf-7.1.0/include/qpdf/Pl_Count.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __PL_COUNT_HH__
#define __PL_COUNT_HH__

// This pipeline is reusable; i.e., it is safe to call write() after
// calling finish().

#include <qpdf/Types.h>
#include <qpdf/Pipeline.hh>

class Pl_Count: public Pipeline
{
 public:
 QPDF_DLL
 Pl_Count(char const* identifier, Pipeline* next);
 QPDF_DLL
 virtual ~Pl_Count();
 QPDF_DLL
 virtual void write(unsigned char*, size_t);
 QPDF_DLL
 virtual void finish();
 // Returns the number of bytes written
 QPDF_DLL
 qpdf_offset_t getCount() const;
 // Returns the last character written, or '\0' if no characters
 // have been written (in which case getCount() returns 0)
 QPDF_DLL
 unsigned char getLastChar() const;

 private:
 qpdf_offset_t count;
 unsigned char last_char;
};

#endif // __PL_COUNT_HH__

qpdf-7.1.0/include/qpdf/QTC.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __QTC_HH__
#define __QTC_HH__

#include <qpdf/DLL.h>

namespace QTC
{
 QPDF_DLL
 void TC(char const* const scope, char const* const ccase, int n = 0);
};

#endif // __QTC_HH__

qpdf-7.1.0/include/qpdf/Pl_RunLength.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __PL_RUNLENGTH_HH__
#define __PL_RUNLENGTH_HH__

#include <qpdf/Pipeline.hh>

class Pl_RunLength: public Pipeline
{
 public:
 enum action_e { a_encode, a_decode };

 QPDF_DLL
 Pl_RunLength(char const* identifier, Pipeline* next,
 action_e action);
 QPDF_DLL
 virtual ~Pl_RunLength();

 QPDF_DLL
 virtual void write(unsigned char* data, size_t len);
 QPDF_DLL
 virtual void finish();

 private:
 void encode(unsigned char* data, size_t len);
 void decode(unsigned char* data, size_t len);
 void flush_encode();

 enum state_e { st_top, st_copying, st_run };

 action_e action;
 state_e state;
 unsigned char buf[128];
 unsigned int length;
};

#endif // __PL_RUNLENGTH_HH__

qpdf-7.1.0/include/qpdf/RandomDataProvider.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __RANDOMDATAPROVIDER_HH__
#define __RANDOMDATAPROVIDER_HH__

#include <string.h> // for size_t

class RandomDataProvider
{
 public:
 virtual ~RandomDataProvider()
 {
 }
 virtual void provideRandomData(unsigned char* data, size_t len) = 0;

 protected:
 RandomDataProvider()
 {
 }

 private:
 RandomDataProvider(RandomDataProvider const&);
 RandomDataProvider& operator=(RandomDataProvider const&);
};

#endif // __RANDOMDATAPROVIDER_HH__

qpdf-7.1.0/include/qpdf/Pl_Discard.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __PL_DISCARD_HH__
#define __PL_DISCARD_HH__

// This pipeline discards its output. It is an end-of-line pipeline
// (with no next).

// This pipeline is reusable; i.e., it is safe to call write() after
// calling finish().

#include <qpdf/Pipeline.hh>

class Pl_Discard: public Pipeline
{
 public:
 QPDF_DLL
 Pl_Discard();
 QPDF_DLL
 virtual ~Pl_Discard();
 QPDF_DLL
 virtual void write(unsigned char*, size_t);
 QPDF_DLL
 virtual void finish();
};

#endif // __PL_DISCARD_HH__

qpdf-7.1.0/include/qpdf/QPDFTokenizer.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __QPDFTOKENIZER_HH__
#define __QPDFTOKENIZER_HH__

#include <qpdf/DLL.h>

#include <qpdf/InputSource.hh>
#include <qpdf/PointerHolder.hh>
#include <string>
#include <stdio.h>

class QPDFTokenizer
{
 public:
 // Token type tt_eof is only returned of allowEOF() is called on
 // the tokenizer. tt_eof was introduced in QPDF version 4.1.
 enum token_type_e
 {
	tt_bad,
	tt_array_close,
	tt_array_open,
	tt_brace_close,
	tt_brace_open,
	tt_dict_close,
	tt_dict_open,
	tt_integer,
	tt_name,
	tt_real,
	tt_string,
	tt_null,
	tt_bool,
	tt_word,
 tt_eof,
 };

 class Token
 {
 public:
	Token() : type(tt_bad) {}

	Token(token_type_e type, std::string const& value) :
	 type(type),
	 value(value)
	{
	}

	Token(token_type_e type, std::string const& value,
	 std::string raw_value, std::string error_message) :
	 type(type),
	 value(value),
	 raw_value(raw_value),
	 error_message(error_message)
	{
	}
	token_type_e getType() const
	{
	 return this->type;
	}
	std::string const& getValue() const
	{
	 return this->value;
	}
	std::string const& getRawValue() const
	{
	 return this->raw_value;
	}
	std::string const& getErrorMessage() const
	{
	 return this->error_message;
	}
	bool operator==(Token const& rhs)
	{
	 // Ignore fields other than type and value
	 return ((this->type != tt_bad) &&
		 (this->type == rhs.type) &&
		 (this->value == rhs.value));
	}

 private:
	token_type_e type;
	std::string value;
	std::string raw_value;
	std::string error_message;
 };

 QPDF_DLL
 QPDFTokenizer();

 // PDF files with version < 1.2 allowed the pound character
 // anywhere in a name. Starting with version 1.2, the pound
 // character was allowed only when followed by two hexadecimal
 // digits. This method should be called when parsing a PDF file
 // whose version is older than 1.2.
 QPDF_DLL
 void allowPoundAnywhereInName();

 // If called, treat EOF as a separate token type instead of an
 // error. This was introduced in QPDF 4.1 to facilitate
 // tokenizing content streams.
 QPDF_DLL
 void allowEOF();

 // Mode of operation:

 // Keep presenting characters and calling getToken() until
 // getToken() returns true. When it does, be sure to check
 // unread_ch and to unread ch if it is true.

 // It these are called when a token is available, an exception
 // will be thrown.
 QPDF_DLL
 void presentCharacter(char ch);
 QPDF_DLL
 void presentEOF();

 // If a token is available, return true and initialize token with
 // the token, unread_char with whether or not we have to unread
 // the last character, and if unread_char, ch with the character
 // to unread.
 QPDF_DLL
 bool getToken(Token& token, bool& unread_char, char& ch);

 // This function returns true of the current character is between
 // tokens (i.e., white space that is not part of a string) or is
 // part of a comment. A tokenizing filter can call this to
 // determine whether to output the character.
 QPDF_DLL
 bool betweenTokens();

 // Read a token from an input source. Context describes the
 // context in which the token is being read and is used in the
 // exception thrown if there is an error.
 QPDF_DLL
 Token readToken(PointerHolder<InputSource> input,
 std::string const& context,
 bool allow_bad = false,
 size_t max_len = 0);

 private:
 void reset();
 void resolveLiteral();

 // Lexer state
 enum { st_top, st_in_comment, st_in_string, st_lt, st_gt,
	 st_literal, st_in_hexstring, st_token_ready } state;

 bool pound_special_in_name;
 bool allow_eof;

 // Current token accumulation
 token_type_e type;
 std::string val;
 std::string raw_val;
 std::string error_message;
 bool unread_char;
 char char_to_unread;

 // State for strings
 int string_depth;
 bool string_ignoring_newline;
 char bs_num_register[4];
 bool last_char_was_bs;
};

#endif // __QPDFTOKENIZER_HH__

qpdf-7.1.0/include/qpdf/qpdf-c.h

/* Copyright (c) 2005-2018 Jay Berkenbilt
 *
 * This file is part of qpdf.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * Versions of qpdf prior to version 7 were released under the terms
 * of version 2.0 of the Artistic License. At your option, you may
 * continue to consider qpdf to be licensed under those terms. Please
 * see the manual for additional information.
 */

#ifndef __QPDF_C_H__
#define __QPDF_C_H__

/*
 * This file defines a basic "C" API for qpdf. It provides access to
 * a subset of the QPDF library's capabilities to make them accessible
 * to callers who can't handle calling C++ functions or working with
 * C++ classes. This may be especially useful to Windows users who
 * are accessing the qpdf DLL directly or to other people programming
 * in non-C/C++ languages that can call C code but not C++ code.
 *
 * There are several things to keep in mind when using the C API.
 *
 * The C API is not as rich as the C++ API. For any operations
 * that involve actually manipulating PDF objects, you must use
 * the C++ API. The C API is primarily useful for doing basic
 * transformations on PDF files similar to what you might do with
 * the qpdf command-line tool.
 *
 * These functions store their state in a qpdf_data object.
 * Individual instances of qpdf_data are not thread-safe: although
 * you may access different qpdf_data objects from different
 * threads, you may not access one qpdf_data simultaneously from
 * multiple threads.
 *
 * All dynamic memory, except for that of the qpdf_data object
 * itself, is managed by the library. You must create a qpdf_data
 * object using qpdf_init and free it using qpdf_cleanup.
 *
 * Many functions return char*. In all cases, the char* values
 * returned are pointers to data inside the qpdf_data object. As
 * such, they are always freed by qpdf_cleanup. In most cases,
 * strings returned by functions here may be invalidated by
 * subsequent function calls, sometimes even to different
 * functions. If you want a string to last past the next qpdf
 * call or after a call to qpdf_cleanup, you should make a copy of
 * it.
 *
 * Many functions defined here merely set parameters and therefore
 * never return error conditions. Functions that may cause PDF
 * files to be read or written may return error conditions. Such
 * functions return an error code. If there were no errors or
 * warnings, they return QPDF_SUCCESS. If there were warnings,
 * the return value has the QPDF_WARNINGS bit set. If there
 * errors, the QPDF_ERRORS bit is set. In other words, if there
 * are both warnings and errors, then the return status will be
 * QPDF_WARNINGS | QPDF_ERRORS. You may also call the
 * qpdf_more_warnings and qpdf_more_errors functions to test
 * whether there are unseen warning or error conditions. By
 * default, warnings are written to stderr when detected, but this
 * behavior can be suppressed. In all cases, errors and warnings
 * may be retrieved by calling qpdf_next_warning and
 * qpdf_next_error. All exceptions thrown by the C++ interface
 * are caught and converted into error messages by the C
 * interface.
 *
 * Most functions defined here have obvious counterparts that are
 * methods to either QPDF or QPDFWriter. Please see comments in
 * QPDF.hh and QPDFWriter.hh for details on their use. In order
 * to avoid duplication of information, comments here focus
 * primarily on differences between the C and C++ API.
 */

#include <qpdf/DLL.h>
#include <qpdf/Types.h>
#include <qpdf/Constants.h>
#include <string.h>

#ifdef __cplusplus
extern "C" {
#endif

 typedef struct _qpdf_data* qpdf_data;
 typedef struct _qpdf_error* qpdf_error;

 /* Many functions return an integer error code. Codes are defined
 * below. See comments at the top of the file for details. Note
 * that the values below can be logically orred together.
 */
 typedef int QPDF_ERROR_CODE;
define QPDF_SUCCESS 0
define QPDF_WARNINGS 1 << 0
define QPDF_ERRORS 1 << 1

 typedef int QPDF_BOOL;
define QPDF_TRUE 1
define QPDF_FALSE 0

 /* Returns the version of the qpdf software */
 QPDF_DLL
 char const* qpdf_get_qpdf_version();

 /* Returns dynamically allocated qpdf_data pointer; must be freed
 * by calling qpdf_cleanup.
 */
 QPDF_DLL
 qpdf_data qpdf_init();

 /* Pass a pointer to the qpdf_data pointer created by qpdf_init to
 * clean up resources.
 */
 QPDF_DLL
 void qpdf_cleanup(qpdf_data* qpdf);

 /* ERROR REPORTING */

 /* Returns 1 if there is an error condition. The error condition
 * can be retrieved by a single call to qpdf_get_error.
 */
 QPDF_DLL
 QPDF_BOOL qpdf_has_error(qpdf_data qpdf);

 /* Returns the error condition, if any. The return value is a
 * pointer to data that will become invalid after the next call to
 * this function, qpdf_next_warning, or qpdf_destroy. After this
 * function is called, qpdf_has_error will return QPDF_FALSE until
 * the next error condition occurs. If there is no error
 * condition, this function returns a null pointer.
 */
 QPDF_DLL
 qpdf_error qpdf_get_error(qpdf_data qpdf);

 /* Returns 1 if there are any unretrieved warnings, and zero
 * otherwise.
 */
 QPDF_DLL
 QPDF_BOOL qpdf_more_warnings(qpdf_data qpdf);

 /* If there are any warnings, returns a pointer to the next
 * warning. Otherwise returns a null pointer.
 */
 QPDF_DLL
 qpdf_error qpdf_next_warning(qpdf_data qpdf);

 /* Extract fields of the error. */

 /* Use this function to get a full error message suitable for
 * showing to the user. */
 QPDF_DLL
 char const* qpdf_get_error_full_text(qpdf_data q, qpdf_error e);

 /* Use these functions to extract individual fields from the
 * error; see QPDFExc.hh for details. */
 QPDF_DLL
 enum qpdf_error_code_e qpdf_get_error_code(qpdf_data q, qpdf_error e);
 QPDF_DLL
 char const* qpdf_get_error_filename(qpdf_data q, qpdf_error e);
 QPDF_DLL
 unsigned long long qpdf_get_error_file_position(qpdf_data q, qpdf_error e);
 QPDF_DLL
 char const* qpdf_get_error_message_detail(qpdf_data q, qpdf_error e);

 /* By default, warnings are written to stderr. Passing true to
 * this function will prevent warnings from being written to
 * stderr. They will still be available by calls to
 * qpdf_next_warning.
 */
 QPDF_DLL
 void qpdf_set_suppress_warnings(qpdf_data qpdf, QPDF_BOOL value);

 /* READ FUNCTIONS */

 /* READ PARAMETER FUNCTIONS -- must be called before qpdf_read */

 QPDF_DLL
 void qpdf_set_ignore_xref_streams(qpdf_data qpdf, QPDF_BOOL value);

 QPDF_DLL
 void qpdf_set_attempt_recovery(qpdf_data qpdf, QPDF_BOOL value);

 /* Calling qpdf_read causes processFile to be called in the C++
 * API. Basic parsing is performed, but data from the file is
 * only read as needed. For files without passwords, pass a null
 * pointer as the password.
 */
 QPDF_DLL
 QPDF_ERROR_CODE qpdf_read(qpdf_data qpdf, char const* filename,
			 char const* password);

 /* Calling qpdf_read_memory causes processMemoryFile to be called
 * in the C++ API. Otherwise, it behaves in the same way as
 * qpdf_read. The description argument will be used in place of
 * the file name in any error or warning messages generated by the
 * library.
 */
 QPDF_DLL
 QPDF_ERROR_CODE qpdf_read_memory(qpdf_data qpdf,
				 char const* description,
				 char const* buffer,
				 unsigned long long size,
				 char const* password);

 /* Read functions below must be called after qpdf_read or
 * qpdf_read_memory. */

 /*
 * NOTE: Functions that return char* are returning a pointer to an
 * internal buffer that will be reused for each call to a function
 * that returns a char*. You must use or copy the value before
 * calling any other qpdf library functions.
 */

 /* Return the version of the PDF file. See warning above about
 * functions that return char*. */
 QPDF_DLL
 char const* qpdf_get_pdf_version(qpdf_data qpdf);

 /* Return the extension level of the PDF file. */
 QPDF_DLL
 int qpdf_get_pdf_extension_level(qpdf_data qpdf);

 /* Return the user password. If the file is opened using the
 * owner password, the user password may be retrieved using this
 * function. If the file is opened using the user password, this
 * function will return that user password. See warning above
 * about functions that return char*.
 */
 QPDF_DLL
 char const* qpdf_get_user_password(qpdf_data qpdf);

 /* Return the string value of a key in the document's Info
 * dictionary. The key parameter should include the leading
 * slash, e.g. "/Author". If the key is not present or has a
 * non-string value, a null pointer is returned. Otherwise, a
 * pointer to an internal buffer is returned. See warning above
 * about functions that return char*.
 */
 QPDF_DLL
 char const* qpdf_get_info_key(qpdf_data qpdf, char const* key);

 /* Set a value in the info dictionary, possibly replacing an
 * existing value. The key must include the leading slash
 * (e.g. "/Author"). Passing a null pointer as a value will
 * remove the key from the info dictionary. Otherwise, a copy
 * will be made of the string that is passed in.
 */
 QPDF_DLL
 void qpdf_set_info_key(qpdf_data qpdf, char const* key, char const* value);

 /* Indicate whether the input file is linearized. */
 QPDF_DLL
 QPDF_BOOL qpdf_is_linearized(qpdf_data qpdf);

 /* Indicate whether the input file is encrypted. */
 QPDF_DLL
 QPDF_BOOL qpdf_is_encrypted(qpdf_data qpdf);

 QPDF_DLL
 QPDF_BOOL qpdf_allow_accessibility(qpdf_data qpdf);
 QPDF_DLL
 QPDF_BOOL qpdf_allow_extract_all(qpdf_data qpdf);
 QPDF_DLL
 QPDF_BOOL qpdf_allow_print_low_res(qpdf_data qpdf);
 QPDF_DLL
 QPDF_BOOL qpdf_allow_print_high_res(qpdf_data qpdf);
 QPDF_DLL
 QPDF_BOOL qpdf_allow_modify_assembly(qpdf_data qpdf);
 QPDF_DLL
 QPDF_BOOL qpdf_allow_modify_form(qpdf_data qpdf);
 QPDF_DLL
 QPDF_BOOL qpdf_allow_modify_annotation(qpdf_data qpdf);
 QPDF_DLL
 QPDF_BOOL qpdf_allow_modify_other(qpdf_data qpdf);
 QPDF_DLL
 QPDF_BOOL qpdf_allow_modify_all(qpdf_data qpdf);

 /* WRITE FUNCTIONS */

 /* Set up for writing. No writing is actually performed until the
 * call to qpdf_write().
 */

 /* Supply the name of the file to be written and initialize the
 * qpdf_data object to handle writing operations. This function
 * also attempts to create the file. The PDF data is not written
 * until the call to qpdf_write. qpdf_init_write may be called
 * multiple times for the same qpdf_data object. When
 * qpdf_init_write is called, all information from previous calls
 * to functions that set write parameters (qpdf_set_linearization,
 * etc.) is lost, so any write parameter functions must be called
 * again.
 */
 QPDF_DLL
 QPDF_ERROR_CODE qpdf_init_write(qpdf_data qpdf, char const* filename);

 /* Initialize for writing but indicate that the PDF file should be
 * written to memory. Call qpdf_get_buffer_length and
 * qpdf_get_buffer to retrieve the resulting buffer. The memory
 * containing the PDF file will be destroyed when qpdf_cleanup is
 * called.
 */
 QPDF_DLL
 QPDF_ERROR_CODE qpdf_init_write_memory(qpdf_data qpdf);

 /* Retrieve the buffer used if the file was written to memory.
 * qpdf_get_buffer returns a null pointer if data was not written
 * to memory. The memory is freed when qpdf_cleanup is called or
 * if a subsequent call to qpdf_init_write or
 * qpdf_init_write_memory is called. */
 QPDF_DLL
 size_t qpdf_get_buffer_length(qpdf_data qpdf);
 QPDF_DLL
 unsigned char const* qpdf_get_buffer(qpdf_data qpdf);

 QPDF_DLL
 void qpdf_set_object_stream_mode(qpdf_data qpdf,
				 enum qpdf_object_stream_e mode);

 QPDF_DLL
 void qpdf_set_stream_data_mode(qpdf_data qpdf,
				 enum qpdf_stream_data_e mode);

 QPDF_DLL
 void qpdf_set_compress_streams(qpdf_data qpdf, QPDF_BOOL value);

 QPDF_DLL
 void qpdf_set_decode_level(qpdf_data qpdf,
 enum qpdf_stream_decode_level_e level);

 QPDF_DLL
 void qpdf_set_preserve_unreferenced_objects(
 qpdf_data qpdf, QPDF_BOOL value);

 QPDF_DLL
 void qpdf_set_newline_before_endstream(qpdf_data qpdf, QPDF_BOOL value);

 QPDF_DLL
 void qpdf_set_content_normalization(qpdf_data qpdf, QPDF_BOOL value);

 QPDF_DLL
 void qpdf_set_qdf_mode(qpdf_data qpdf, QPDF_BOOL value);

 QPDF_DLL
 void qpdf_set_deterministic_ID(qpdf_data qpdf, QPDF_BOOL value);

 /* Never use qpdf_set_static_ID except in test suites to suppress
 * generation of a random /ID. See also qpdf_set_deterministic_ID.
 */
 QPDF_DLL
 void qpdf_set_static_ID(qpdf_data qpdf, QPDF_BOOL value);

 /* Never use qpdf_set_static_aes_IV except in test suites to
 * create predictable AES encrypted output.
 */
 QPDF_DLL
 void qpdf_set_static_aes_IV(qpdf_data qpdf, QPDF_BOOL value);

 QPDF_DLL
 void qpdf_set_suppress_original_object_IDs(
	qpdf_data qpdf, QPDF_BOOL value);

 QPDF_DLL
 void qpdf_set_preserve_encryption(qpdf_data qpdf, QPDF_BOOL value);

 QPDF_DLL
 void qpdf_set_r2_encryption_parameters(
	qpdf_data qpdf, char const* user_password, char const* owner_password,
	QPDF_BOOL allow_print, QPDF_BOOL allow_modify,
	QPDF_BOOL allow_extract, QPDF_BOOL allow_annotate);

 QPDF_DLL
 void qpdf_set_r3_encryption_parameters(
	qpdf_data qpdf, char const* user_password, char const* owner_password,
	QPDF_BOOL allow_accessibility, QPDF_BOOL allow_extract,
	enum qpdf_r3_print_e print, enum qpdf_r3_modify_e modify);

 QPDF_DLL
 void qpdf_set_r4_encryption_parameters(
	qpdf_data qpdf, char const* user_password, char const* owner_password,
	QPDF_BOOL allow_accessibility, QPDF_BOOL allow_extract,
	enum qpdf_r3_print_e print, enum qpdf_r3_modify_e modify,
	QPDF_BOOL encrypt_metadata, QPDF_BOOL use_aes);

 QPDF_DLL
 void qpdf_set_r5_encryption_parameters(
	qpdf_data qpdf, char const* user_password, char const* owner_password,
	QPDF_BOOL allow_accessibility, QPDF_BOOL allow_extract,
	enum qpdf_r3_print_e print, enum qpdf_r3_modify_e modify,
	QPDF_BOOL encrypt_metadata);

 QPDF_DLL
 void qpdf_set_r6_encryption_parameters(
	qpdf_data qpdf, char const* user_password, char const* owner_password,
	QPDF_BOOL allow_accessibility, QPDF_BOOL allow_extract,
	enum qpdf_r3_print_e print, enum qpdf_r3_modify_e modify,
	QPDF_BOOL encrypt_metadata);

 QPDF_DLL
 void qpdf_set_linearization(qpdf_data qpdf, QPDF_BOOL value);

 QPDF_DLL
 void qpdf_set_minimum_pdf_version(qpdf_data qpdf, char const* version);

 QPDF_DLL
 void qpdf_set_minimum_pdf_version_and_extension(
 qpdf_data qpdf, char const* version, int extension_level);

 QPDF_DLL
 void qpdf_force_pdf_version(qpdf_data qpdf, char const* version);

 QPDF_DLL
 void qpdf_force_pdf_version_and_extension(
 qpdf_data qpdf, char const* version, int extension_level);

 /* Do actual write operation. */
 QPDF_DLL
 QPDF_ERROR_CODE qpdf_write(qpdf_data qpdf);

#ifdef __cplusplus
}
#endif

#endif /* __QPDF_C_H__ */

qpdf-7.1.0/include/qpdf/Pipeline.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

// Generalized Pipeline interface. By convention, subclasses of
// Pipeline are called Pl_Something.
//
// When an instance of Pipeline is created with a pointer to a next
// pipeline, that pipeline writes its data to the next one when it
// finishes with it. In order to make possible a usage style in which
// a pipeline may be passed to a function which may stick other
// pipelines in front of it, the allocator of a pipeline is
// responsible for its destruction. In other words, one pipeline
// object does not attempt to manage the memory of its successor.
//
// The client is required to call finish() before destroying a
// Pipeline in order to avoid loss of data. A Pipeline class should
// not throw an exception in the destructor if this hasn't been done
// though since doing so causes too much trouble when deleting
// pipelines during error conditions.
//
// Some pipelines are reusable (i.e., you can call write() after
// calling finish() and can call finish() multiple times) while others
// are not. It is up to the caller to use a pipeline according to its
// own restrictions.

#ifndef __PIPELINE_HH__
#define __PIPELINE_HH__

#include <qpdf/DLL.h>
#include <string>

class Pipeline
{
 public:
 QPDF_DLL
 Pipeline(char const* identifier, Pipeline* next);

 QPDF_DLL
 virtual ~Pipeline();

 // Subclasses should implement write and finish to do their jobs
 // and then, if they are not end-of-line pipelines, call
 // getNext()->write or getNext()->finish. It would be really nice
 // if write could take unsigned char const*, but this would make
 // it much more difficult to write pipelines around legacy
 // interfaces whose calls don't want pointers to const data. As a
 // rule, pipelines should generally not be modifying the data
 // passed to them. They should, instead, create new data to pass
 // downstream.
 QPDF_DLL
 virtual void write(unsigned char* data, size_t len) = 0;
 QPDF_DLL
 virtual void finish() = 0;

 protected:
 Pipeline* getNext(bool allow_null = false);
 std::string identifier;

 private:
 // Do not implement copy or assign
 Pipeline(Pipeline const&);
 Pipeline& operator=(Pipeline const&);

 Pipeline* next;
};

#endif // __PIPELINE_HH__

qpdf-7.1.0/include/qpdf/QUtil.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __QUTIL_HH__
#define __QUTIL_HH__

#include <qpdf/DLL.h>
#include <qpdf/Types.h>
#include <string>
#include <list>
#include <stdexcept>
#include <stdio.h>
#include <time.h>

class RandomDataProvider;

namespace QUtil
{
 // This is a collection of useful utility functions that don't
 // really go anywhere else.
 QPDF_DLL
 std::string int_to_string(long long, int length = 0);
 QPDF_DLL
 std::string int_to_string_base(long long, int base, int length = 0);
 QPDF_DLL
 std::string double_to_string(double, int decimal_places = 0);

 // These string to number methods throw std::runtime_error on
 // underflow/overflow.
 QPDF_DLL
 long long string_to_ll(char const* str);
 QPDF_DLL
 int string_to_int(char const* str);

 // Pipeline's write method wants unsigned char*, but we often have
 // some other type of string. These methods do combinations of
 // const_cast and reinterpret_cast to give us an unsigned char*.
 // They should only be used when it is known that it is safe.
 // None of the pipelines in qpdf modify the data passed to them,
 // so within qpdf, it should always be safe.
 QPDF_DLL
 unsigned char* unsigned_char_pointer(std::string const& str);
 QPDF_DLL
 unsigned char* unsigned_char_pointer(char const* str);

 // Throw std::runtime_error with a string formed by appending to
 // "description: " the standard string corresponding to the
 // current value of errno.
 QPDF_DLL
 void throw_system_error(std::string const& description);

 // The status argument is assumed to be the return value of a
 // standard library call that sets errno when it fails. If status
 // is -1, convert the current value of errno to a
 // std::runtime_error that includes the standard error string.
 // Otherwise, return status.
 QPDF_DLL
 int os_wrapper(std::string const& description, int status);

 // If the open fails, throws std::runtime_error. Otherwise, the
 // FILE* is returned.
 QPDF_DLL
 FILE* safe_fopen(char const* filename, char const* mode);

 // The FILE* argument is assumed to be the return of fopen. If
 // null, throw std::runtime_error. Otherwise, return the FILE*
 // argument.
 QPDF_DLL
 FILE* fopen_wrapper(std::string const&, FILE*);

 // Wrap around off_t versions of fseek and ftell if available
 QPDF_DLL
 int seek(FILE* stream, qpdf_offset_t offset, int whence);
 QPDF_DLL
 qpdf_offset_t tell(FILE* stream);

 QPDF_DLL
 bool same_file(char const* name1, char const* name2);

 QPDF_DLL
 char* copy_string(std::string const&);

 // Returns lower-case hex-encoded version of the string, treating
 // each character in the input string as unsigned. The output
 // string will be twice as long as the input string.
 QPDF_DLL
 std::string hex_encode(std::string const&);

 // Returns a string that is the result of decoding the input
 // string. The input string may consist of mixed case hexadecimal
 // digits. Any characters that are not hexadecimal digits will be
 // silently ignored. If there are an odd number of hexadecimal
 // digits, a trailing 0 will be assumed.
 QPDF_DLL
 std::string hex_decode(std::string const&);

 // Set stdin, stdout to binary mode
 QPDF_DLL
 void binary_stdout();
 QPDF_DLL
 void binary_stdin();
 // Set stdout to line buffered
 QPDF_DLL
 void setLineBuf(FILE*);

 // May modify argv0
 QPDF_DLL
 char* getWhoami(char* argv0);

 // Get the value of an environment variable in a portable fashion.
 // Returns true iff the variable is defined. If `value' is
 // non-null, initializes it with the value of the variable.
 QPDF_DLL
 bool get_env(std::string const& var, std::string* value = 0);

 QPDF_DLL
 time_t get_current_time();

 // Return a string containing the byte representation of the UTF-8
 // encoding for the unicode value passed in.
 QPDF_DLL
 std::string toUTF8(unsigned long uval);

 // If secure random number generation is supported on your
 // platform and qpdf was not compiled with insecure random number
 // generation, this returns a cryptographically secure random
 // number. Otherwise it falls back to random from stdlib and
 // calls srandom automatically the first time it is called.
 QPDF_DLL
 long random();

 // Wrapper around srandom from stdlib. Seeds the standard library
 // weak random number generator, which is not used if secure
 // random number generation is being used. You never need to call
 // this method as it is called automatically if needed.
 QPDF_DLL
 void srandom(unsigned int seed);

 // Initialize a buffer with random bytes. By default, qpdf tries
 // to use a secure random number source. It can be configured at
 // compile time to use an insecure random number source (from
 // stdlib). You can also call setRandomDataProvider with a
 // RandomDataProvider, in which case this method will get its
 // random bytes from that.

 QPDF_DLL
 void initializeWithRandomBytes(unsigned char* data, size_t len);

 // Supply a random data provider. If not supplied, depending on
 // compile time options, qpdf will either use the operating
 // system's secure random number source or an insecure random
 // source from stdlib. The caller is responsible for managing the
 // memory for the RandomDataProvider. This method modifies a
 // static variable. If you are providing your own random data
 // provider, you should call this at the beginning of your program
 // before creating any QPDF objects. Passing a null to this
 // method will reset the library back to whichever of the built-in
 // random data handlers is appropriate based on how qpdf was
 // compiled.
 QPDF_DLL
 void setRandomDataProvider(RandomDataProvider*);

 // This returns the random data provider that would be used the
 // next time qpdf needs random data. It will never return null.
 // If no random data provider has been provided and the library
 // was not compiled with any random data provider available, an
 // exception will be thrown.
 QPDF_DLL
 RandomDataProvider* getRandomDataProvider();

 QPDF_DLL
 std::list<std::string> read_lines_from_file(char const* filename);
 QPDF_DLL
 std::list<std::string> read_lines_from_file(std::istream&);

 QPDF_DLL
 int strcasecmp(char const *, char const *);

 // These routines help the tokenizer recognize certain character
 // classes without using ctype, which we avoid because of locale
 // considerations.
 QPDF_DLL
 bool is_hex_digit(char);

 QPDF_DLL
 bool is_space(char);

 QPDF_DLL
 bool is_digit(char);

 QPDF_DLL
 bool is_number(char const*);
};

#endif // __QUTIL_HH__

qpdf-7.1.0/include/qpdf/Pl_DCT.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __PL_DCT_HH__
#define __PL_DCT_HH__

#include <qpdf/Pipeline.hh>
#include <qpdf/Pl_Buffer.hh>
#include <jpeglib.h>

class Pl_DCT: public Pipeline
{
 public:
 // Constructor for decompressing image data
 QPDF_DLL
 Pl_DCT(char const* identifier, Pipeline* next);

 class CompressConfig
 {
 public:
 CompressConfig()
 {
 }
 virtual ~CompressConfig()
 {
 }
 virtual void apply(jpeg_compress_struct*) = 0;
 };

 // Constructor for compressing image data
 QPDF_DLL
 Pl_DCT(char const* identifier, Pipeline* next,
 JDIMENSION image_width,
 JDIMENSION image_height,
 int components,
 J_COLOR_SPACE color_space,
 CompressConfig* config_callback = 0);

 QPDF_DLL
 virtual ~Pl_DCT();

 QPDF_DLL
 virtual void write(unsigned char* data, size_t len);
 QPDF_DLL
 virtual void finish();

 private:
 void compress(void* cinfo, Buffer*);
 void decompress(void* cinfo, Buffer*);

 enum action_e { a_compress, a_decompress };

 action_e action;
 Pl_Buffer buf;

 // Used for compression
 JDIMENSION image_width;
 JDIMENSION image_height;
 int components;
 J_COLOR_SPACE color_space;

 CompressConfig* config_callback;

};

#endif // __PL_DCT_HH__

qpdf-7.1.0/include/qpdf/QPDFExc.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __QPDFEXC_HH__
#define __QPDFEXC_HH__

#include <qpdf/DLL.h>
#include <qpdf/Types.h>

#include <qpdf/Constants.h>
#include <string>
#include <stdexcept>

class QPDFExc: public std::runtime_error
{
 public:
 QPDF_DLL
 QPDFExc(qpdf_error_code_e error_code,
	 std::string const& filename,
	 std::string const& object,
	 qpdf_offset_t offset,
	 std::string const& message);
 QPDF_DLL
 virtual ~QPDFExc() throw ();

 // To get a complete error string, call what(), provided by
 // std::exception. The accessors below return the original values
 // used to create the exception. Only the error code and message
 // are guaranteed to have non-zero/empty values.

 // There is no lookup code that maps numeric error codes into
 // strings. The numeric error code is just another way to get at
 // the underlying issue, but it is more programmer-friendly than
 // trying to parse a string that is subject to change.

 QPDF_DLL
 qpdf_error_code_e getErrorCode() const;
 QPDF_DLL
 std::string const& getFilename() const;
 QPDF_DLL
 std::string const& getObject() const;
 QPDF_DLL
 qpdf_offset_t getFilePosition() const;
 QPDF_DLL
 std::string const& getMessageDetail() const;

 private:
 static std::string createWhat(std::string const& filename,
				 std::string const& object,
				 qpdf_offset_t offset,
				 std::string const& message);

 qpdf_error_code_e error_code;
 std::string filename;
 std::string object;
 qpdf_offset_t offset;
 std::string message;
};

#endif // __QPDFEXC_HH__

qpdf-7.1.0/include/qpdf/InputSource.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __QPDF_INPUTSOURCE_HH__
#define __QPDF_INPUTSOURCE_HH__

#include <qpdf/DLL.h>
#include <qpdf/Types.h>
#include <stdio.h>
#include <string>

class InputSource
{
 public:
 QPDF_DLL
 InputSource() :
 last_offset(0)
 {
 }
 QPDF_DLL
 virtual ~InputSource()
 {
 }

 class Finder
 {
 public:
 Finder()
 {
 }
 virtual ~Finder()
 {
 }

 virtual bool check() = 0;
 };

 QPDF_DLL
 void setLastOffset(qpdf_offset_t);
 QPDF_DLL
 qpdf_offset_t getLastOffset() const;
 QPDF_DLL
 std::string readLine(size_t max_line_length);

 // Find first or last occurrence of a sequence of characters
 // starting within the range defined by offset and len such that,
 // when the input source is positioned at the beginning of that
 // sequence, finder.check() returns true. If len is 0, the search
 // proceeds until EOF. If a qualifying pattern these methods
 // return true and leave the input source positioned wherever
 // check() left it at the end of the matching pattern.
 QPDF_DLL
 bool findFirst(char const* start_chars,
 qpdf_offset_t offset, size_t len,
 Finder& finder);
 QPDF_DLL
 bool findLast(char const* start_chars,
 qpdf_offset_t offset, size_t len,
 Finder& finder);

 virtual qpdf_offset_t findAndSkipNextEOL() = 0;
 virtual std::string const& getName() const = 0;
 virtual qpdf_offset_t tell() = 0;
 virtual void seek(qpdf_offset_t offset, int whence) = 0;
 virtual void rewind() = 0;
 virtual size_t read(char* buffer, size_t length) = 0;
 virtual void unreadCh(char ch) = 0;

 protected:
 qpdf_offset_t last_offset;
};

#endif // __QPDF_INPUTSOURCE_HH__

qpdf-7.1.0/include/qpdf/Buffer.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __BUFFER_HH__
#define __BUFFER_HH__

#include <qpdf/DLL.h>
#include <cstring> // for size_t

class Buffer
{
 public:
 QPDF_DLL
 Buffer();

 // Create a Buffer object whose memory is owned by the class and
 // will be freed when the Buffer object is destroyed.
 QPDF_DLL
 Buffer(size_t size);

 // Create a Buffer object whose memory is owned by the caller and
 // will not be freed when the Buffer is destroyed.
 QPDF_DLL
 Buffer(unsigned char* buf, size_t size);

 QPDF_DLL
 Buffer(Buffer const&);
 QPDF_DLL
 Buffer& operator=(Buffer const&);
 QPDF_DLL
 ~Buffer();
 QPDF_DLL
 size_t getSize() const;
 QPDF_DLL
 unsigned char const* getBuffer() const;
 QPDF_DLL
 unsigned char* getBuffer();

 private:
 void init(size_t size, unsigned char* buf, bool own_memory);
 void copy(Buffer const&);
 void destroy();

 bool own_memory;
 size_t size;
 unsigned char* buf;
};

#endif // __BUFFER_HH__

qpdf-7.1.0/include/qpdf/QPDFXRefEntry.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __QPDFXREFENTRY_HH__
#define __QPDFXREFENTRY_HH__

#include <qpdf/DLL.h>
#include <qpdf/Types.h>

class QPDFXRefEntry
{
 public:
 // Type constants are from the PDF spec section
 // "Cross-Reference Streams":
 // 0 = free entry; not used
 // 1 = "uncompressed"; field 1 = offset
 // 2 = "compressed"; field 1 = object stream number, field 2 = index

 QPDF_DLL
 QPDFXRefEntry();
 QPDF_DLL
 QPDFXRefEntry(int type, qpdf_offset_t field1, int field2);

 QPDF_DLL
 int getType() const;
 QPDF_DLL
 qpdf_offset_t getOffset() const; // only for type 1
 QPDF_DLL
 int getObjStreamNumber() const; // only for type 2
 QPDF_DLL
 int getObjStreamIndex() const;	// only for type 2

 private:
 int type;
 qpdf_offset_t field1;
 int field2;
};

#endif // __QPDFXREFENTRY_HH__

qpdf-7.1.0/include/qpdf/Pl_Concatenate.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __PL_CONCATENATE_HH__
#define __PL_CONCATENATE_HH__

// This pipeline will drop all regular finished calls rather than
// passing them onto next. To finish downstream streams, call
// manualFinish. This makes it possible to pipe multiple streams
// (e.g. with QPDFObjectHandle::pipeStreamData) to a downstream like
// Pl_Flate that can't handle multiple calls to finish().

#include <qpdf/Pipeline.hh>

class Pl_Concatenate: public Pipeline
{
 public:
 QPDF_DLL
 Pl_Concatenate(char const* identifier, Pipeline* next);
 QPDF_DLL
 virtual ~Pl_Concatenate();

 QPDF_DLL
 virtual void write(unsigned char* data, size_t len);

 QPDF_DLL
 virtual void finish();

 // At the very end, call manualFinish to actually finish the rest of
 // the pipeline.
 QPDF_DLL
 void manualFinish();
};

#endif // __PL_CONCATENATE_HH__

qpdf-7.1.0/include/qpdf/QPDFWriter.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

// This class implements a simple writer for saving QPDF objects to
// new PDF files. See comments through the header file for additional
// details.

#ifndef __QPDFWRITER_HH__
#define __QPDFWRITER_HH__

#include <qpdf/DLL.h>
#include <qpdf/Types.h>

#include <stdio.h>
#include <string>
#include <list>
#include <vector>
#include <set>
#include <map>

#include <qpdf/Constants.h>

#include <qpdf/QPDFObjectHandle.hh>
#include <qpdf/QPDFObjGen.hh>
#include <qpdf/QPDFXRefEntry.hh>

#include <qpdf/Pl_Buffer.hh>
#include <qpdf/PointerHolder.hh>
#include <qpdf/Pipeline.hh>
#include <qpdf/Buffer.hh>

class QPDF;
class Pl_Count;
class Pl_MD5;

class QPDFWriter
{
 public:
 // Construct a QPDFWriter object without specifying output. You
 // must call one of the output setting routines defined below.
 QPDF_DLL
 QPDFWriter(QPDF& pdf);

 // Create a QPDFWriter object that writes its output to a file or
 // to stdout. This is equivalent to using the previous
 // constructor and then calling setOutputFilename(). See
 // setOutputFilename() for details.
 QPDF_DLL
 QPDFWriter(QPDF& pdf, char const* filename);

 // Create a QPDFWriter object that writes its output to an already
 // open FILE*. This is equivalent to calling the first
 // constructor and then calling setOutputFile(). See
 // setOutputFile() for details.
 QPDF_DLL
 QPDFWriter(QPDF& pdf, char const* description, FILE* file, bool close_file);

 QPDF_DLL
 ~QPDFWriter();

 // Setting Output. Output may be set only one time. If you don't
 // use the filename version of the QPDFWriter constructor, you
 // must call exactly one of these methods.

 // Passing null as filename means write to stdout. QPDFWriter
 // will create a zero-length output file upon construction. If
 // write fails, the empty or partially written file will not be
 // deleted. This is by design: sometimes the partial file may be
 // useful for tracking down problems. If your application doesn't
 // want the partially written file to be left behind, you should
 // delete it the eventual call to write fails.
 QPDF_DLL
 void setOutputFilename(char const* filename);

 // Write to the given FILE*, which must be opened by the caller.
 // If close_file is true, QPDFWriter will close the file.
 // Otherwise, the caller must close the file. The file does not
 // need to be seekable; it will be written to in a single pass.
 // It must be open in binary mode.
 QPDF_DLL
 void setOutputFile(char const* description, FILE* file, bool close_file);

 // Indicate that QPDFWriter should create a memory buffer to
 // contain the final PDF file. Obtain the memory by calling
 // getBuffer().
 QPDF_DLL
 void setOutputMemory();

 // Return the buffer object containing the PDF file. If
 // setOutputMemory() has been called, this method may be called
 // exactly one time after write() has returned. The caller is
 // responsible for deleting the buffer when done.
 QPDF_DLL
 Buffer* getBuffer();

 // Supply your own pipeline object. Output will be written to
 // this pipeline, and QPDFWriter will call finish() on the
 // pipeline. It is the caller's responsibility to manage the
 // memory for the pipeline. The pipeline is never deleted by
 // QPDFWriter, which makes it possible for you to call additional
 // methods on the pipeline after the writing is finished.
 QPDF_DLL
 void setOutputPipeline(Pipeline*);

 // Setting Parameters

 // Set the value of object stream mode. In disable mode, we never
 // generate any object streams. In preserve mode, we preserve
 // object stream structure from the original file. In generate
 // mode, we generate our own object streams. In all cases, we
 // generate a conventional cross-reference table if there are no
 // object streams and a cross-reference stream if there are object
 // streams. The default is o_preserve.
 QPDF_DLL
 void setObjectStreamMode(qpdf_object_stream_e);

 // Set value of stream data mode. This is an older interface.
 // Instead of using this, prefer setCompressStreams() and
 // setDecodeLevel(). This method is retained for compatibility,
 // but it does not cover the full range of available
 // configurations. The mapping between this and the new methods is
 // as follows:
 //
 // qpdf_s_uncompress:
 // setCompressStreams(false)
 // setDecodeLevel(qpdf_dl_generalized)
 // qpdf_s_preserve:
 // setCompressStreams(false)
 // setDecodeLevel(qpdf_dl_none)
 // qpdf_s_compress:
 // setCompressStreams(true)
 // setDecodeLevel(qpdf_dl_generalized)
 //
 // The default is qpdf_s_compress.
 QPDF_DLL
 void setStreamDataMode(qpdf_stream_data_e);

 // If true, compress any uncompressed streams when writing them.
 // Metadata streams are a special case and are not compressed even
 // if this is true. This is true by default for QPDFWriter. If you
 // want QPDFWriter to leave uncompressed streams uncompressed,
 // pass false to this method.
 QPDF_DLL
 void setCompressStreams(bool);

 // When QPDFWriter encounters streams, this parameter controls the
 // behavior with respect to attempting to apply any filters to the
 // streams when copying to the output. The decode levels are as
 // follows:
 //
 // qpdf_dl_none: Do not attempt to apply any filters. Streams
 // remain as they appear in the original file. Note that
 // uncompressed streams may still be compressed on output. You can
 // disable that by calling setCompressStreams(false).
 //
 // qpdf_dl_generalized: This is the default. QPDFWriter will apply
 // LZWDecode, ASCII85Decode, ASCIIHexDecode, and FlateDecode
 // filters on the input. When combined with
 // setCompressStreams(true), which the default, the effect of this
 // is that streams filtered with these older and less efficient
 // filters will be recompressed with the Flate filter. As a
 // special case, if a stream is already compressed with
 // FlateDecode and setCompressStreams is enabled, the original
 // compressed data will be preserved.
 //
 // qpdf_dl_specialized: In addition to uncompressing the
 // generalized compression formats, supported non-lossy
 // compression will also be be decoded. At present, this includes
 // the RunLengthDecode filter.
 //
 // qpdf_dl_all: In addition to generalized and non-lossy
 // specialized filters, supported lossy compression filters will
 // be applied. At present, this includes DCTDecode (JPEG)
 // compression. Note that compressing the resulting data with
 // DCTDecode again will accumulate loss, so avoid multiple
 // compression and decompression cycles. This is mostly useful for
 // retrieving image data.
 QPDF_DLL
 void setDecodeLevel(qpdf_stream_decode_level_e);

 // Set value of content stream normalization. The default is
 // "false". If true, we attempt to normalize newlines inside of
 // content streams. Some constructs such as inline images may
 // thwart our efforts. There may be some cases where this can
 // damage the content stream. This flag should be used only for
 // debugging and experimenting with PDF content streams. Never
 // use it for production files.
 QPDF_DLL
 void setContentNormalization(bool);

 // Set QDF mode. QDF mode causes special "pretty printing" of
 // PDF objects, adds comments for easier perusing of files.
 // Resulting PDF files can be edited in a text editor and then run
 // through fix-qdf to update cross reference tables and stream
 // lengths.
 QPDF_DLL
 void setQDFMode(bool);

 // Preserve unreferenced objects. The default behavior is to
 // discard any object that is not visited during a traversal of
 // the object structure from the trailer.
 QPDF_DLL
 void setPreserveUnreferencedObjects(bool);

 // Always write a newline before the endstream keyword. This helps
 // with PDF/A compliance, though it is not sufficient for it.
 QPDF_DLL
 void setNewlineBeforeEndstream(bool);

 // Set the minimum PDF version. If the PDF version of the input
 // file (or previously set minimum version) is less than the
 // version passed to this method, the PDF version of the output
 // file will be set to this value. If the original PDF file's
 // version or previously set minimum version is already this
 // version or later, the original file's version will be used.
 // QPDFWriter automatically sets the minimum version to 1.4 when
 // R3 encryption parameters are used, and to 1.5 when object
 // streams are used.
 QPDF_DLL
 void setMinimumPDFVersion(std::string const&);
 QPDF_DLL
 void setMinimumPDFVersion(std::string const&, int extension_level);

 // Force the PDF version of the output file to be a given version.
 // Use of this function may create PDF files that will not work
 // properly with older PDF viewers. When a PDF version is set
 // using this function, qpdf will use this version even if the
 // file contains features that are not supported in that version
 // of PDF. In other words, you should only use this function if
 // you are sure the PDF file in question has no features of newer
 // versions of PDF or if you are willing to create files that old
 // viewers may try to open but not be able to properly interpret.
 // If any encryption has been applied to the document either
 // explicitly or by preserving the encryption of the source
 // document, forcing the PDF version to a value too low to support
 // that type of encryption will explicitly disable decryption.
 // Additionally, forcing to a version below 1.5 will disable
 // object streams.
 QPDF_DLL
 void forcePDFVersion(std::string const&);
 QPDF_DLL
 void forcePDFVersion(std::string const&, int extension_level);

 // Provide additional text to insert in the PDF file somewhere
 // near the beginning of the file. This can be used to add
 // comments to the beginning of a PDF file, for example, if those
 // comments are to be consumed by some other application. No
 // checks are performed to ensure that the text inserted here is
 // valid PDF. If you want to insert multiline comments, you will
 // need to include \n in the string yourself and start each line
 // with %. An extra newline will be appended if one is not
 // already present at the end of your text.
 QPDF_DLL
 void setExtraHeaderText(std::string const&);

 // Causes a deterministic /ID value to be generated. When this is
 // set, the current time and output file name are not used as part
 // of /ID generation. Instead, a digest of all significant parts
 // of the output file's contents is included in the /ID
 // calculation. Use of a deterministic /ID can be handy when it is
 // desirable for a repeat of the same qpdf operation on the same
 // inputs being written to the same outputs with the same
 // parameters to generate exactly the same results. This feature
 // is incompatible with encrypted files because, for encrypted
 // files, the /ID is generated before any part of the file is
 // written since it is an input to the encryption process.
 QPDF_DLL
 void setDeterministicID(bool);

 // Cause a static /ID value to be generated. Use only in test
 // suites. See also setDeterministicID.
 QPDF_DLL
 void setStaticID(bool);

 // Use a fixed initialization vector for AES-CBC encryption. This
 // is not secure. It should be used only in test suites for
 // creating predictable encrypted output.
 QPDF_DLL
 void setStaticAesIV(bool);

 // Suppress inclusion of comments indicating original object IDs
 // when writing QDF files. This can also be useful for testing,
 // particularly when using comparison of two qdf files to
 // determine whether two PDF files have identical content.
 QPDF_DLL
 void setSuppressOriginalObjectIDs(bool);

 // Preserve encryption. The default is true unless prefilering,
 // content normalization, or qdf mode has been selected in which
 // case encryption is never preserved. Encryption is also not
 // preserved if we explicitly set encryption parameters.
 QPDF_DLL
 void setPreserveEncryption(bool);

 // Copy encryption parameters from another QPDF object. If you
 // want to copy encryption from the object you are writing, call
 // setPreserveEncryption(true) instead.
 QPDF_DLL
 void copyEncryptionParameters(QPDF&);

 // Set up for encrypted output. User and owner password both must
 // be specified. Either or both may be the empty string. Note
 // that qpdf does not apply any special treatment to the empty
 // string, which makes it possible to create encrypted files with
 // empty owner passwords and non-empty user passwords or with the
 // same password for both user and owner. Some PDF reading
 // products don't handle such files very well. Enabling
 // encryption disables stream prefiltering and content
 // normalization. Note that setting R2 encryption parameters sets
 // the PDF version to at least 1.3, setting R3 encryption
 // parameters pushes the PDF version number to at least 1.4,
 // setting R4 parameters pushes the version to at least 1.5, or if
 // AES is used, 1.6, and setting R5 or R6 parameters pushes the
 // version to at least 1.7 with extension level 3.
 QPDF_DLL
 void setR2EncryptionParameters(
	char const* user_password, char const* owner_password,
	bool allow_print, bool allow_modify,
	bool allow_extract, bool allow_annotate);
 QPDF_DLL
 void setR3EncryptionParameters(
	char const* user_password, char const* owner_password,
	bool allow_accessibility, bool allow_extract,
	qpdf_r3_print_e print, qpdf_r3_modify_e modify);
 QPDF_DLL
 void setR4EncryptionParameters(
	char const* user_password, char const* owner_password,
	bool allow_accessibility, bool allow_extract,
	qpdf_r3_print_e print, qpdf_r3_modify_e modify,
	bool encrypt_metadata, bool use_aes);
 // R5 is deprecated. Do not use it for production use. Writing
 // R5 is supported by qpdf primarily to generate test files for
 // applications that may need to test R5 support.
 QPDF_DLL
 void setR5EncryptionParameters(
	char const* user_password, char const* owner_password,
	bool allow_accessibility, bool allow_extract,
	qpdf_r3_print_e print, qpdf_r3_modify_e modify,
	bool encrypt_metadata);
 QPDF_DLL
 void setR6EncryptionParameters(
	char const* user_password, char const* owner_password,
	bool allow_accessibility, bool allow_extract,
	qpdf_r3_print_e print, qpdf_r3_modify_e modify,
	bool encrypt_metadata_aes);

 // Create linearized output. Disables qdf mode, content
 // normalization, and stream prefiltering.
 QPDF_DLL
 void setLinearization(bool);

 // Create PCLm output. This is only useful for clients that know
 // how to create PCLm files. If a file is structured exactly as
 // PCLm requires, this call will tell QPDFWriter to write the PCLm
 // header, create certain unreferenced streams required by the
 // standard, and write the objects in the required order. Calling
 // this on an ordinary PDF serves no purpose. There is no
 // command-line argument that causes this method to be called.
 QPDF_DLL
 void setPCLm(bool);

 QPDF_DLL
 void write();

 private:
 // flags used by unparseObject
 static int const f_stream = 	1 << 0;
 static int const f_filtered =	1 << 1;
 static int const f_in_ostream = 1 << 2;

 enum trailer_e { t_normal, t_lin_first, t_lin_second };

 int bytesNeeded(unsigned long long n);
 void writeBinary(unsigned long long val, unsigned int bytes);
 void writeString(std::string const& str);
 void writeBuffer(PointerHolder<Buffer>&);
 void writeStringQDF(std::string const& str);
 void writeStringNoQDF(std::string const& str);
 void writePad(int nspaces);
 void assignCompressedObjectNumbers(QPDFObjGen const& og);
 void enqueueObject(QPDFObjectHandle object);
 void writeObjectStreamOffsets(
 std::vector<qpdf_offset_t>& offsets, int first_obj);
 void writeObjectStream(QPDFObjectHandle object);
 void writeObject(QPDFObjectHandle object, int object_stream_index = -1);
 void writeTrailer(trailer_e which, int size,
		 bool xref_stream, qpdf_offset_t prev,
 int linearization_pass);
 void unparseObject(QPDFObjectHandle object, int level,
		 unsigned int flags);
 void unparseObject(QPDFObjectHandle object, int level,
		 unsigned int flags,
		 // for stream dictionaries
		 size_t stream_length, bool compress);
 void unparseChild(QPDFObjectHandle child, int level, int flags);
 void initializeSpecialStreams();
 void preserveObjectStreams();
 void generateObjectStreams();
 void generateID();
 void interpretR3EncryptionParameters(
	std::set<int>& bits_to_clear,
	char const* user_password, char const* owner_password,
	bool allow_accessibility, bool allow_extract,
	qpdf_r3_print_e print, qpdf_r3_modify_e modify);
 void disableIncompatibleEncryption(int major, int minor,
 int extension_level);
 void parseVersion(std::string const& version, int& major, int& minor) const;
 int compareVersions(int major1, int minor1, int major2, int minor2) const;
 void setEncryptionParameters(
	char const* user_password, char const* owner_password,
	int V, int R, int key_len, std::set<int>& bits_to_clear);
 void setEncryptionParametersInternal(
	int V, int R, int key_len, long P,
	std::string const& O, std::string const& U,
	std::string const& OE, std::string const& UE, std::string const& Perms,
	std::string const& id1, std::string const& user_password,
 std::string const& encryption_key);
 void setDataKey(int objid);
 int openObject(int objid = 0);
 void closeObject(int objid);
 QPDFObjectHandle getTrimmedTrailer();
 void prepareFileForWrite();
 void enqueueObjectsStandard();
 void enqueueObjectsPCLm();
 void writeStandard();
 void writeLinearized();
 void enqueuePart(std::vector<QPDFObjectHandle>& part);
 void writeEncryptionDictionary();
 void writeHeader();
 void writeHintStream(int hint_id);
 qpdf_offset_t writeXRefTable(
 trailer_e which, int first, int last, int size);
 qpdf_offset_t writeXRefTable(
 trailer_e which, int first, int last, int size,
 // for linearization
 qpdf_offset_t prev,
 bool suppress_offsets,
 int hint_id,
 qpdf_offset_t hint_offset,
 qpdf_offset_t hint_length,
 int linearization_pass);
 qpdf_offset_t writeXRefStream(
 int objid, int max_id, qpdf_offset_t max_offset,
 trailer_e which, int first, int last, int size);
 qpdf_offset_t writeXRefStream(
 int objid, int max_id, qpdf_offset_t max_offset,
 trailer_e which, int first, int last, int size,
 // for linearization
 qpdf_offset_t prev,
 int hint_id,
 qpdf_offset_t hint_offset,
 qpdf_offset_t hint_length,
 bool skip_compression,
 int linearization_pass);
 int calculateXrefStreamPadding(int xref_bytes);

 // When filtering subsections, push additional pipelines to the
 // stack. When ready to switch, activate the pipeline stack.
 // Pipelines passed to pushPipeline are deleted when
 // clearPipelineStack is called.
 Pipeline* pushPipeline(Pipeline*);
 void activatePipelineStack();
 void initializePipelineStack(Pipeline *);

 // Calls finish on the current pipeline and pops the pipeline
 // stack until the top of stack is a previous active top of stack,
 // and restores the pipeline to that point. Deletes any pipelines
 // that it pops. If the bp argument is non-null and any of the
 // stack items are of type Pl_Buffer, the buffer is retrieved.
 void popPipelineStack(PointerHolder<Buffer>* bp = 0);

 void adjustAESStreamLength(size_t& length);
 void pushEncryptionFilter();
 void pushDiscardFilter();
 void pushMD5Pipeline();
 void computeDeterministicIDData();

 void discardGeneration(std::map<QPDFObjGen, int> const& in,
 std::map<int, int>& out);

 class Members
 {
 friend class QPDFWriter;

 public:
 ~Members();

 private:
 Members(QPDF& pdf);
 Members(Members const&);

 QPDF& pdf;
 char const* filename;
 FILE* file;
 bool close_file;
 Pl_Buffer* buffer_pipeline;
 Buffer* output_buffer;
 bool normalize_content_set;
 bool normalize_content;
 bool compress_streams;
 bool compress_streams_set;
 qpdf_stream_decode_level_e stream_decode_level;
 bool stream_decode_level_set;
 bool qdf_mode;
 bool preserve_unreferenced_objects;
 bool newline_before_endstream;
 bool static_id;
 bool suppress_original_object_ids;
 bool direct_stream_lengths;
 bool encrypted;
 bool preserve_encryption;
 bool linearized;
 bool pclm;
 qpdf_object_stream_e object_stream_mode;
 std::string encryption_key;
 bool encrypt_metadata;
 bool encrypt_use_aes;
 std::map<std::string, std::string> encryption_dictionary;
 int encryption_V;
 int encryption_R;

 std::string id1;		// for /ID key of
 std::string id2;		// trailer dictionary
 std::string final_pdf_version;
 int final_extension_level;
 std::string min_pdf_version;
 int min_extension_level;
 std::string forced_pdf_version;
 int forced_extension_level;
 std::string extra_header_text;
 int encryption_dict_objid;
 std::string cur_data_key;
 std::list<PointerHolder<Pipeline> > to_delete;
 Pl_Count* pipeline;
 std::list<QPDFObjectHandle> object_queue;
 std::map<QPDFObjGen, int> obj_renumber;
 std::map<int, QPDFXRefEntry> xref;
 std::map<int, qpdf_offset_t> lengths;
 int next_objid;
 int cur_stream_length_id;
 size_t cur_stream_length;
 bool added_newline;
 int max_ostream_index;
 std::set<QPDFObjGen> normalized_streams;
 std::map<QPDFObjGen, int> page_object_to_seq;
 std::map<QPDFObjGen, int> contents_to_page_seq;
 std::map<QPDFObjGen, int> object_to_object_stream;
 std::map<int, std::set<QPDFObjGen> > object_stream_to_objects;
 std::list<Pipeline*> pipeline_stack;
 bool deterministic_id;
 Pl_MD5* md5_pipeline;
 std::string deterministic_id_data;

 // For linearization only
 std::map<int, int> obj_renumber_no_gen;
 std::map<int, int> object_to_object_stream_no_gen;
 };

 // Keep all member variables inside the Members object, which we
 // dynamically allocate. This makes it possible to add new private
 // members without breaking binary compatibility.
 PointerHolder<Members> m;
};

#endif // __QPDFWRITER_HH__

qpdf-7.1.0/include/qpdf/BufferInputSource.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __QPDF_BUFFERINPUTSOURCE_HH__
#define __QPDF_BUFFERINPUTSOURCE_HH__

#include <qpdf/InputSource.hh>
#include <qpdf/Buffer.hh>

class BufferInputSource: public InputSource
{
 public:
 QPDF_DLL
 BufferInputSource(std::string const& description, Buffer* buf,
 bool own_memory = false);
 QPDF_DLL
 BufferInputSource(std::string const& description,
 std::string const& contents);
 QPDF_DLL
 virtual ~BufferInputSource();
 QPDF_DLL
 virtual qpdf_offset_t findAndSkipNextEOL();
 QPDF_DLL
 virtual std::string const& getName() const;
 QPDF_DLL
 virtual qpdf_offset_t tell();
 QPDF_DLL
 virtual void seek(qpdf_offset_t offset, int whence);
 QPDF_DLL
 virtual void rewind();
 QPDF_DLL
 virtual size_t read(char* buffer, size_t length);
 QPDF_DLL
 virtual void unreadCh(char ch);

 private:
 bool own_memory;
 std::string description;
 Buffer* buf;
 qpdf_offset_t cur_offset;
};

#endif // __QPDF_BUFFERINPUTSOURCE_HH__

qpdf-7.1.0/include/qpdf/Pl_Flate.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __PL_FLATE_HH__
#define __PL_FLATE_HH__

#include <qpdf/Pipeline.hh>

class Pl_Flate: public Pipeline
{
 public:
 static int const def_bufsize = 65536;

 enum action_e { a_inflate, a_deflate };

 QPDF_DLL
 Pl_Flate(char const* identifier, Pipeline* next,
	 action_e action, int out_bufsize = def_bufsize);
 QPDF_DLL
 virtual ~Pl_Flate();

 QPDF_DLL
 virtual void write(unsigned char* data, size_t len);
 QPDF_DLL
 virtual void finish();

 private:
 void handleData(unsigned char* data, int len, int flush);
 void checkError(char const* prefix, int error_code);

 unsigned char* outbuf;
 int out_bufsize;
 action_e action;
 bool initialized;
 void* zdata;
};

#endif // __PL_FLATE_HH__

qpdf-7.1.0/include/qpdf/QPDFObjectHandle.hh

// Copyright (c) 2005-2018 Jay Berkenbilt
//
// This file is part of qpdf.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Versions of qpdf prior to version 7 were released under the terms
// of version 2.0 of the Artistic License. At your option, you may
// continue to consider qpdf to be licensed under those terms. Please
// see the manual for additional information.

#ifndef __QPDFOBJECTHANDLE_HH__
#define __QPDFOBJECTHANDLE_HH__

#include <qpdf/DLL.h>
#include <qpdf/Types.h>
#include <qpdf/Constants.h>

#include <string>
#include <vector>
#include <set>
#include <map>

#include <qpdf/QPDFObjGen.hh>
#include <qpdf/PointerHolder.hh>
#include <qpdf/Buffer.hh>
#include <qpdf/InputSource.hh>

#include <qpdf/QPDFObject.hh>

class Pipeline;
class QPDF;
class QPDF_Dictionary;
class QPDF_Array;
class QPDFTokenizer;
class QPDFExc;

class QPDFObjectHandle
{
 public:
 // This class is used by replaceStreamData. It provides an
 // alternative way of associating stream data with a stream. See
 // comments on replaceStreamData and newStream for additional
 // details.
 class StreamDataProvider
 {
 public:
	QPDF_DLL
	virtual ~StreamDataProvider()
	{
	}
	// The implementation of this function must write stream data
	// to the given pipeline. The stream data must conform to
	// whatever filters are explicitly associated with the stream.
	// QPDFWriter may, in some cases, add compression, but if it
	// does, it will update the filters as needed. Every call to
	// provideStreamData for a given stream must write the same
	// data.The object ID and generation passed to this method are
	// those that belong to the stream on behalf of which the
	// provider is called. They may be ignored or used by the
	// implementation for indexing or other purposes. This
	// information is made available just to make it more
	// convenient to use a single StreamDataProvider object to
	// provide data for multiple streams.
	virtual void provideStreamData(int objid, int generation,
				 Pipeline* pipeline) = 0;
 };

 // This class is used by parse to decrypt strings when reading an
 // object that contains encrypted strings.
 class StringDecrypter
 {
 public:
 QPDF_DLL
 virtual ~StringDecrypter()
 {
 }
 virtual void decryptString(std::string& val) = 0;
 };

 // This class is used by parseContentStream. Callers must
 // instantiate a subclass of this with handlers defined to accept
 // QPDFObjectHandles that are parsed from the stream.
 class ParserCallbacks
 {
 public:
 QPDF_DLL
 virtual ~ParserCallbacks()
 {
 }
 virtual void handleObject(QPDFObjectHandle) = 0;
 virtual void handleEOF() = 0;

 protected:
 // Implementors may call this method during parsing to
 // terminate parsing early. This method throws an exception
 // that is caught by parseContentStream, so its effect is
 // immediate.
 QPDF_DLL
 void terminateParsing();
 };

 QPDF_DLL
 QPDFObjectHandle();
 QPDF_DLL
 bool isInitialized() const;

 // Return type code and type name of underlying object. These are
 // useful for doing rapid type tests (like switch statements) or
 // for testing and debugging.
 QPDF_DLL
 QPDFObject::object_type_e getTypeCode();
 QPDF_DLL
 char const* getTypeName();

 // Exactly one of these will return true for any object. Operator
 // and InlineImage are only allowed in content streams.
 QPDF_DLL
 bool isBool();
 QPDF_DLL
 bool isNull();
 QPDF_DLL
 bool isInteger();
 QPDF_DLL
 bool isReal();
 QPDF_DLL
 bool isName();
 QPDF_DLL
 bool isString();
 QPDF_DLL
 bool isOperator();
 QPDF_DLL
 bool isInlineImage();
 QPDF_DLL
 bool isArray();
 QPDF_DLL
 bool isDictionary();
 QPDF_DLL
 bool isStream();
 QPDF_DLL
 bool isReserved();

 // This returns true in addition to the query for the specific
 // type for indirect objects.
 QPDF_DLL
 bool isIndirect();

 // True for everything except array, dictionary, stream, word, and
 // inline image.
 QPDF_DLL
 bool isScalar();

 // Public factory methods

 // Construct an object of any type from a string representation of
 // the object. Throws QPDFExc with an empty filename and an
 // offset into the string if there is an error. Any indirect
 // object syntax (obj gen R) will cause a logic_error exception to
 // be thrown. If object_description is provided, it will appear
 // in the message of any QPDFExc exception thrown for invalid
 // syntax.
 QPDF_DLL
 static QPDFObjectHandle parse(std::string const& object_str,
 std::string const& object_description = "");

 // Construct an object as above by reading from the given
 // InputSource at its current position and using the tokenizer you
 // supply. Indirect objects and encrypted strings are permitted.
 // This method is intended to be called by QPDF for parsing
 // objects that are ready from the object's input stream.
 QPDF_DLL
 static QPDFObjectHandle parse(PointerHolder<InputSource> input,
 std::string const& object_description,
 QPDFTokenizer&, bool& empty,
 StringDecrypter* decrypter,
 QPDF* context);

 // Helpers for parsing content streams
 QPDF_DLL
 static void parseContentStream(QPDFObjectHandle stream_or_array,
 ParserCallbacks* callbacks);

 // Type-specific factories
 QPDF_DLL
 static QPDFObjectHandle newNull();
 QPDF_DLL
 static QPDFObjectHandle newBool(bool value);
 QPDF_DLL
 static QPDFObjectHandle newInteger(long long value);
 QPDF_DLL
 static QPDFObjectHandle newReal(std::string const& value);
 QPDF_DLL
 static QPDFObjectHandle newReal(double value, int decimal_places = 0);
 QPDF_DLL
 static QPDFObjectHandle newName(std::string const& name);
 QPDF_DLL
 static QPDFObjectHandle newString(std::string const& str);
 QPDF_DLL
 static QPDFObjectHandle newOperator(std::string const&);
 QPDF_DLL
 static QPDFObjectHandle newInlineImage(std::string const&);
 QPDF_DLL
 static QPDFObjectHandle newArray();
 QPDF_DLL
 static QPDFObjectHandle newArray(
	std::vector<QPDFObjectHandle> const& items);
 QPDF_DLL
 static QPDFObjectHandle newDictionary();
 QPDF_DLL
 static QPDFObjectHandle newDictionary(
	std::map<std::string, QPDFObjectHandle> const& items);

 // Create a new stream and associate it with the given qpdf
 // object. A subsequent call must be made to replaceStreamData()
 // to provide data for the stream. The stream's dictionary may be
 // retrieved by calling getDict(), and the resulting dictionary
 // may be modified. Alternatively, you can create a new
 // dictionary and call replaceDict to install it.
 QPDF_DLL
 static QPDFObjectHandle newStream(QPDF* qpdf);

 // Create a new stream and associate it with the given qpdf
 // object. Use the given buffer as the stream data. The stream
 // dictionary's /Length key will automatically be set to the size
 // of the data buffer. If additional keys are required, the
 // stream's dictionary may be retrieved by calling getDict(), and
 // the resulting dictionary may be modified. This method is just
 // a convenient wrapper around the newStream() and
 // replaceStreamData(). It is a convenience methods for streams
 // that require no parameters beyond the stream length. Note that
 // you don't have to deal with compression yourself if you use
 // QPDFWriter. By default, QPDFWriter will automatically compress
 // uncompressed stream data. Example programs are provided that
 // illustrate this.
 QPDF_DLL
 static QPDFObjectHandle newStream(QPDF* qpdf, PointerHolder<Buffer> data);

 // Create new stream with data from string. This method will
 // create a copy of the data rather than using the user-provided
 // buffer as in the PointerHolder<Buffer> version of newStream.
 QPDF_DLL
 static QPDFObjectHandle newStream(QPDF* qpdf, std::string const& data);

 // A reserved object is a special sentinel used for qpdf to
 // reserve a spot for an object that is going to be added to the
 // QPDF object. Normally you don't have to use this type since
 // you can just call QPDF::makeIndirectObject. However, in some
 // cases, if you have to create objects with circular references,
 // you may need to create a reserved object so that you can have a
 // reference to it and then replace the object later. Reserved
 // objects have the special property that they can't be resolved
 // to direct objects. This makes it possible to replace a
 // reserved object with a new object while preserving existing
 // references to them. When you are ready to replace a reserved
 // object with its replacement, use QPDF::replaceReserved for this
 // purpose rather than the more general QPDF::replaceObject. It
 // is an error to try to write a QPDF with QPDFWriter if it has
 // any reserved objects in it.
 QPDF_DLL
 static QPDFObjectHandle newReserved(QPDF* qpdf);

 // Accessor methods. If an accessor method that is valid for only
 // a particular object type is called on an object of the wrong
 // type, an exception is thrown.

 // Methods for bool objects
 QPDF_DLL
 bool getBoolValue();

 // Methods for integer objects
 QPDF_DLL
 long long getIntValue();

 // Methods for real objects
 QPDF_DLL
 std::string getRealValue();

 // Methods that work for both integer and real objects
 QPDF_DLL
 bool isNumber();
 QPDF_DLL
 double getNumericValue();

 // Methods for name objects; see also name and array objects
 QPDF_DLL
 std::string getName();

 // Methods for string objects
 QPDF_DLL
 std::string getStringValue();
 QPDF_DLL
 std::string getUTF8Value();

 // Methods for content stream objects
 QPDF_DLL
 std::string getOperatorValue();
 QPDF_DLL
 std::string getInlineImageValue();

 // Methods for array objects; see also name and array objects
 QPDF_DLL
 int getArrayNItems();
 QPDF_DLL
 QPDFObjectHandle getArrayItem(int n);
 QPDF_DLL
 std::vector<QPDFObjectHandle> getArrayAsVector();

 // Methods for dictionary objects
 QPDF_DLL
 bool hasKey(std::string const&);
 QPDF_DLL
 QPDFObjectHandle getKey(std::string const&);
 QPDF_DLL
 std::set<std::string> getKeys();
 QPDF_DLL
 std::map<std::string, QPDFObjectHandle> getDictAsMap();

 // Methods for name and array objects
 QPDF_DLL
 bool isOrHasName(std::string const&);

 // Return the QPDF object that owns an indirect object. Returns
 // null for a direct object.
 QPDF_DLL
 QPDF* getOwningQPDF();

 // Create a shallow copy of an object as a direct object. Since
 // this is a shallow copy, for dictionaries and arrays, any keys
 // or items that were indirect objects will still be indirect
 // objects that point to the same place.
 QPDF_DLL
 QPDFObjectHandle shallowCopy();

 // Mutator methods. Use with caution.

 // Recursively copy this object, making it direct. Throws an
 // exception if a loop is detected or any sub-object is a stream.
 QPDF_DLL
 void makeDirect();

 // Mutator methods for array objects
 QPDF_DLL
 void setArrayItem(int, QPDFObjectHandle const&);
 QPDF_DLL
 void setArrayFromVector(std::vector<QPDFObjectHandle> const& items);
 // Insert an item before the item at the given position ("at") so
 // that it has that position after insertion. If "at" is equal to
 // the size of the array, insert the item at the end.
 QPDF_DLL
 void insertItem(int at, QPDFObjectHandle const& item);
 QPDF_DLL
 void appendItem(QPDFObjectHandle const& item);
 // Remove the item at that position, reducing the size of the
 // array by one.
 QPDF_DLL
 void eraseItem(int at);

 // Mutator methods for dictionary objects

 // Replace value of key, adding it if it does not exist
 QPDF_DLL
 void replaceKey(std::string const& key, QPDFObjectHandle const&);
 // Remove key, doing nothing if key does not exist
 QPDF_DLL
 void removeKey(std::string const& key);
 // If the object is null, remove the key. Otherwise, replace it.
 QPDF_DLL
 void replaceOrRemoveKey(std::string const& key, QPDFObjectHandle);

 // Methods for stream objects
 QPDF_DLL
 QPDFObjectHandle getDict();

 // Returns filtered (uncompressed) stream data. Throws an
 // exception if the stream is filtered and we can't decode it.
 QPDF_DLL
 PointerHolder<Buffer> getStreamData(
 qpdf_stream_decode_level_e level = qpdf_dl_generalized);

 // Returns unfiltered (raw) stream data.
 QPDF_DLL
 PointerHolder<Buffer> getRawStreamData();

 // Write stream data through the given pipeline. A null pipeline
 // value may be used if all you want to do is determine whether a
 // stream is filterable and would be filtered based on the
 // provided flags. If flags is 0, write raw stream data and return
 // false. Otherwise, the flags alter the behavior in the following
 // way:
 //
 // encode_flags:
 //
 // qpdf_sf_compress -- compress data with /FlateDecode if no other
 // compression filters are applied.
 //
 // qpdf_sf_normalize -- tokenize as content stream and normalize tokens
 //
 // decode_level:
 //
 // qpdf_dl_none -- do not decode any streams.
 //
 // qpdf_dl_generalized -- decode supported general-purpose
 // filters. This includes /ASCIIHexDecode, /ASCII85Decode,
 // /LZWDecode, and /FlateDecode.
 //
 // qpdf_dl_specialized -- in addition to generalized filters, also
 // decode supported non-lossy specialized filters. This includes
 // /RunLengthDecode.
 //
 // qpdf_dl_all -- in addition to generalized and non-lossy
 // specialized filters, decode supported lossy filters. This
 // includes /DCTDecode.
 //
 // If, based on the flags and the filters and decode parameters,
 // we determine that we know how to apply all requested filters,
 // do so and return true if we are successful.
 //
 // In all cases, a return value of true means that filtered data
 // has been written successfully. If filtering is requested but
 // this method returns false, it means there was some error in the
 // filtering, in which case the resulting data is likely partially
 // filtered and/or incomplete and may not be consistent with the
 // configured filters. QPDFWriter handles this by attempting to
 // get the stream data without filtering, but callers should
 // consider a false return value when decode_level is not
 // qpdf_dl_none to be a potential loss of data. If you intend to
 // retry in that case, pass true as the value of will_retry. This
 // changes the warning issued by the library to indicate that the
 // operation will be retried without filtering to avoid data loss.
 QPDF_DLL
 bool pipeStreamData(Pipeline*,
 unsigned long encode_flags,
 qpdf_stream_decode_level_e decode_level,
 bool suppress_warnings = false);
 QPDF_DLL
 bool pipeStreamData(Pipeline*,
 unsigned long encode_flags,
 qpdf_stream_decode_level_e decode_level,
 bool suppress_warnings,
 bool will_retry);

 // Legacy pipeStreamData. This maps to the the flags-based
 // pipeStreamData as follows:
 // filter = false -> encode_flags = 0
 // filter = true -> decode_level = qpdf_dl_generalized
 // normalize = true -> encode_flags |= qpdf_sf_normalize
 // compress = true -> encode_flags |= qpdf_sf_compress
 QPDF_DLL
 bool pipeStreamData(Pipeline*, bool filter,
			bool normalize, bool compress);

 // Replace a stream's dictionary. The new dictionary must be
 // consistent with the stream's data. This is most appropriately
 // used when creating streams from scratch that will use a stream
 // data provider and therefore start with an empty dictionary. It
 // may be more convenient in this case than calling getDict and
 // modifying it for each key. The pdf-create example does this.
 QPDF_DLL
 void replaceDict(QPDFObjectHandle);

 // Replace this stream's stream data with the given data buffer,
 // and replace the /Filter and /DecodeParms keys in the stream
 // dictionary with the given values. (If either value is empty,
 // the corresponding key is removed.) The stream's /Length key is
 // replaced with the length of the data buffer. The stream is
 // interpreted as if the data read from the file, after any
 // decryption filters have been applied, is as presented.
 QPDF_DLL
 void replaceStreamData(PointerHolder<Buffer> data,
			 QPDFObjectHandle const& filter,
			 QPDFObjectHandle const& decode_parms);

 // Replace the stream's stream data with the given string.
 // This method will create a copy of the data rather than using
 // the user-provided buffer as in the PointerHolder<Buffer> version
 // of replaceStreamData.
 QPDF_DLL
 void replaceStreamData(std::string const& data,
			 QPDFObjectHandle const& filter,
			 QPDFObjectHandle const& decode_parms);

 // As above, replace this stream's stream data. Instead of
 // directly providing a buffer with the stream data, call the
 // given provider's provideStreamData method. See comments on the
 // StreamDataProvider class (defined above) for details on the
 // method. The data must be consistent with filter and
 // decode_parms as provided. Although it is more complex to use
 // this form of replaceStreamData than the one that takes a
 // buffer, it makes it possible to avoid allocating memory for the
 // stream data. Example programs are provided that use both forms
 // of replaceStreamData.

 // Note about stream length: for any given stream, the provider
 // must provide the same amount of data each time it is called.
 // This is critical for making linearization work properly.
 // Versions of qpdf before 3.0.0 required a length to be specified
 // here. Starting with version 3.0.0, this is no longer necessary
 // (or permitted). The first time the stream data provider is
 // invoked for a given stream, the actual length is stored.
 // Subsequent times, it is enforced that the length be the same as
 // the first time.

 // If you have gotten a compile error here while building code
 // that worked with older versions of qpdf, just omit the length
 // parameter. You can also simplify your code by not having to
 // compute the length in advance.
 QPDF_DLL
 void replaceStreamData(PointerHolder<StreamDataProvider> provider,
			 QPDFObjectHandle const& filter,
			 QPDFObjectHandle const& decode_parms);

 // Access object ID and generation. For direct objects, return
 // object ID 0.

 // NOTE: Be careful about calling getObjectID() and
 // getGeneration() directly as this can lead to the pattern of
 // depending on object ID or generation without the other. In
 // general, when keeping track of object IDs, it's better to use
 // QPDFObjGen instead.

 QPDF_DLL
 QPDFObjGen getObjGen() const;
 QPDF_DLL
 int getObjectID() const;
 QPDF_DLL
 int getGeneration() const;

 QPDF_DLL
 std::string unparse();
 QPDF_DLL
 std::string unparseResolved();

 // Convenience routines for commonly performed functions

 // Throws an exception if this is not a Page object. Returns an
 // empty map if there are no images or no resources. This
 // function does not presently support inherited resources. If
 // this is a significant concern, call
 // pushInheritedAttributesToPage() on the QPDF object that owns
 // this page. See comment in the source for details. Return
 // value is a map from XObject name to the image object, which is
 // always a stream.
 QPDF_DLL
 std::map<std::string, QPDFObjectHandle> getPageImages();

 // Returns a vector of stream objects representing the content
 // streams for the given page. This routine allows the caller to
 // not care whether there are one or more than one content streams
 // for a page. Throws an exception if this is not a Page object.
 QPDF_DLL
 std::vector<QPDFObjectHandle> getPageContents();

 // Add the given object as a new content stream for this page. If
 // parameter 'first' is true, add to the beginning. Otherwise,
 // add to the end. This routine automatically converts the page
 // contents to an array if it is a scalar, allowing the caller not
 // to care what the initial structure is. Throws an exception if
 // this is not a Page object.
 QPDF_DLL
 void addPageContents(QPDFObjectHandle contents, bool first);

 // Rotate a page. If relative is false, set the rotation of the
 // page to angle. Otherwise, add angle to the rotation of the
 // page. Angle must be a multiple of 90. Adding 90 to the rotation
 // rotates clockwise by 90 degrees.
 QPDF_DLL
 void rotatePage(int angle, bool relative);

 // Initializers for objects. This Factory class gives the QPDF
 // class specific permission to call factory methods without
 // making it a friend of the whole QPDFObjectHandle class.
 class Factory
 {
	friend class QPDF;
 private:
	static QPDFObjectHandle newIndirect(QPDF* qpdf,
					 int objid, int generation)
	{
	 return QPDFObjectHandle::newIndirect(qpdf, objid, generation);
	}
	// object must be dictionary object
	static QPDFObjectHandle newStream(
	 QPDF* qpdf, int objid, int generation,
	 QPDFObjectHandle stream_dict, qpdf_offset_t offset, size_t length)
	{
	 return QPDFObjectHandle::newStream(
		qpdf, objid, generation, stream_dict, offset, length);
	}
 };
 friend class Factory;

 // Accessor for raw underlying object -- only QPDF is allowed to
 // call this.
 class ObjAccessor
 {
	friend class QPDF;
 private:
	static PointerHolder<QPDFObject> getObject(QPDFObjectHandle& o)
	{
	 o.dereference();
	 return o.obj;
	}
 };
 friend class ObjAccessor;

 // Provide access to specific classes for recursive
 // releaseResolved().
 class ReleaseResolver
 {
	friend class QPDF_Dictionary;
	friend class QPDF_Array;
 friend class QPDF_Stream;
 private:
	static void releaseResolved(QPDFObjectHandle& o)
	{
	 o.releaseResolved();
	}
 };
 friend class ReleaseResolver;

 // Convenience routine: Throws if the assumption is violated.
 QPDF_DLL
 void assertInitialized() const;

 QPDF_DLL
 void assertNull();
 QPDF_DLL
 void assertBool();
 QPDF_DLL
 void assertInteger();
 QPDF_DLL
 void assertReal();
 QPDF_DLL
 void assertName();
 QPDF_DLL
 void assertString();
 QPDF_DLL
 void assertOperator();
 QPDF_DLL
 void assertInlineImage();
 QPDF_DLL
 void assertArray();
 QPDF_DLL
 void assertDictionary();
 QPDF_DLL
 void assertStream();
 QPDF_DLL
 void assertReserved();

 QPDF_DLL
 void assertIndirect();
 QPDF_DLL
 void assertScalar();
 QPDF_DLL
 void assertNumber();

 QPDF_DLL
 bool isPageObject();
 QPDF_DLL
 bool isPagesObject();
 QPDF_DLL
 void assertPageObject();

 private:
 QPDFObjectHandle(QPDF*, int objid, int generation);
 QPDFObjectHandle(QPDFObject*);

 enum parser_state_e
 {
 st_top,
 st_start,
 st_stop,
 st_eof,
 st_dictionary,
 st_array
 };

 // Private object factory methods
 static QPDFObjectHandle newIndirect(QPDF*, int objid, int generation);
 static QPDFObjectHandle newStream(
	QPDF* qpdf, int objid, int generation,
	QPDFObjectHandle stream_dict, qpdf_offset_t offset, size_t length);

 void assertType(char const* type_name, bool istype) const;
 void dereference();
 void makeDirectInternal(std::set<int>& visited);
 void releaseResolved();
 static QPDFObjectHandle parseInternal(
 PointerHolder<InputSource> input,
 std::string const& object_description,
 QPDFTokenizer& tokenizer, bool& empty,
 StringDecrypter* decrypter, QPDF* context,
 bool content_stream);
 static void parseContentStream_internal(
 PointerHolder<Buffer> stream_data,
 std::string const& description,
 ParserCallbacks* callbacks);

 // Other methods
 static void warn(QPDF*, QPDFExc const&);

 bool initialized;

 QPDF* qpdf;			// 0 for direct object
 int objid;			// 0 for direct object
 int generation;
 PointerHolder<QPDFObject> obj;
 bool reserved;
};

#endif // __QPDFOBJECTHANDLE_HH__

qpdf-7.1.0/README-windows-install.txt

This file is README-windows-install.txt in the source distribution and
README.txt in the Windows binary distribution.

QPDF is completely relocatable. To use qpdf.exe or the qpdf DLL, just
have the bin directory in your path. To compile with qpdf, just add
the lib directory to your library path and the include directory to
your include path. If you are going to use Pl_DCT in your code, you
will also need to have jpeg library development files in your build
environment. Detailed documentation may be found in the doc directory.

Enjoy!

qpdf-7.1.0/config.sub

#! /bin/sh
Configuration validation subroutine script.
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
2011, 2012 Free Software Foundation, Inc.

timestamp='2012-02-10'

This file is (in principle) common to ALL GNU software.
The presence of a machine in this file suggests that SOME GNU software
can handle that machine. It does not imply ALL GNU software can.
#
This file is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
#
As a special exception to the GNU General Public License, if you
distribute this file as part of a program that contains a
configuration script generated by Autoconf, you may include it under
the same distribution terms that you use for the rest of that program.

Please send patches to <config-patches@gnu.org>. Submit a context
diff and a properly formatted GNU ChangeLog entry.
#
Configuration subroutine to validate and canonicalize a configuration type.
Supply the specified configuration type as an argument.
If it is invalid, we print an error message on stderr and exit with code 1.
Otherwise, we print the canonical config type on stdout and succeed.

You can get the latest version of this script from:
http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD

This file is supposed to be the same for all GNU packages
and recognize all the CPU types, system types and aliases
that are meaningful with *any* GNU software.
Each package is responsible for reporting which valid configurations
it does not support. The user should be able to distinguish
a failure to support a valid configuration from a meaningless
configuration.

The goal of this file is to map all the various variations of a given
machine specification into a single specification in the form:
#	CPU_TYPE-MANUFACTURER-OPERATING_SYSTEM
or in some cases, the newer four-part form:
#	CPU_TYPE-MANUFACTURER-KERNEL-OPERATING_SYSTEM
It is wrong to echo any other type of specification.

me=`echo "$0" | sed -e 's,.*/,,'`

usage="\
Usage: $0 [OPTION] CPU-MFR-OPSYS
 $0 [OPTION] ALIAS

Canonicalize a configuration name.

Operation modes:
 -h, --help print this help, then exit
 -t, --time-stamp print date of last modification, then exit
 -v, --version print version number, then exit

Report bugs and patches to <config-patches@gnu.org>."

version="\
GNU config.sub ($timestamp)

Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE."

help="
Try \`$me --help' for more information."

Parse command line
while test $# -gt 0 ; do
 case $1 in
 --time-stamp | --time* | -t)
 echo "$timestamp" ; exit ;;
 --version | -v)
 echo "$version" ; exit ;;
 --help | --h* | -h)
 echo "$usage"; exit ;;
 --) # Stop option processing
 shift; break ;;
 -)	# Use stdin as input.
 break ;;
 -*)
 echo "$me: invalid option 1help"
 exit 1 ;;

 local)
 # First pass through any local machine types.
 echo $1
 exit ;;

 *)
 break ;;
 esac
done

case $# in
 0) echo "$me: missing argument$help" >&2
 exit 1;;
 1) ;;
 *) echo "$me: too many arguments$help" >&2
 exit 1;;
esac

Separate what the user gave into CPU-COMPANY and OS or KERNEL-OS (if any).
Here we must recognize all the valid KERNEL-OS combinations.
maybe_os=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\2/'`
case $maybe_os in
 nto-qnx* | linux-gnu* | linux-android* | linux-dietlibc | linux-newlib* | \
 linux-uclibc* | uclinux-uclibc* | uclinux-gnu* | kfreebsd*-gnu* | \
 knetbsd*-gnu* | netbsd*-gnu* | \
 kopensolaris*-gnu* | \
 storm-chaos* | os2-emx* | rtmk-nova*)
 os=-$maybe_os
 basic_machine=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\1/'`
 ;;
 android-linux)
 os=-linux-android
 basic_machine=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\1/'`-unknown
 ;;
 *)
 basic_machine=`echo $1 | sed 's/-[^-]*$//'`
 if [$basic_machine != $1]
 then os=`echo $1 | sed 's/.*-/-/'`
 else os=; fi
 ;;
esac

Let's recognize common machines as not being operating systems so
that things like config.sub decstation-3100 work. We also
recognize some manufacturers as not being operating systems, so we
can provide default operating systems below.
case $os in
	-sun*os*)
		# Prevent following clause from handling this invalid input.
		;;
	-dec* | -mips* | -sequent* | -encore* | -pc532* | -sgi* | -sony* | \
	-att* | -7300* | -3300* | -delta* | -motorola* | -sun[234]* | \
	-unicom* | -ibm* | -next | -hp | -isi* | -apollo | -altos* | \
	-convergent* | -ncr* | -news | -32* | -3600* | -3100* | -hitachi* |\
	-c[123]* | -convex* | -sun | -crds | -omron* | -dg | -ultra | -tti* | \
	-harris | -dolphin | -highlevel | -gould | -cbm | -ns | -masscomp | \
	-apple | -axis | -knuth | -cray | -microblaze)
		os=
		basic_machine=$1
		;;
	-bluegene*)
		os=-cnk
		;;
	-sim | -cisco | -oki | -wec | -winbond)
		os=
		basic_machine=$1
		;;
	-scout)
		;;
	-wrs)
		os=-vxworks
		basic_machine=$1
		;;
	-chorusos*)
		os=-chorusos
		basic_machine=$1
		;;
	-chorusrdb)
		os=-chorusrdb
		basic_machine=$1
		;;
	-hiux*)
		os=-hiuxwe2
		;;
	-sco6)
		os=-sco5v6
		basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
		;;
	-sco5)
		os=-sco3.2v5
		basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
		;;
	-sco4)
		os=-sco3.2v4
		basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
		;;
	-sco3.2.[4-9]*)
		os=`echo $os | sed -e 's/sco3.2./sco3.2v/'`
		basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
		;;
	-sco3.2v[4-9]*)
		# Don't forget version if it is 3.2v4 or newer.
		basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
		;;
	-sco5v6*)
		# Don't forget version if it is 3.2v4 or newer.
		basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
		;;
	-sco*)
		os=-sco3.2v2
		basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
		;;
	-udk*)
		basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
		;;
	-isc)
		os=-isc2.2
		basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
		;;
	-clix*)
		basic_machine=clipper-intergraph
		;;
	-isc*)
		basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
		;;
	-lynx*)
		os=-lynxos
		;;
	-ptx*)
		basic_machine=`echo $1 | sed -e 's/86-.*/86-sequent/'`
		;;
	-windowsnt*)
		os=`echo $os | sed -e 's/windowsnt/winnt/'`
		;;
	-psos*)
		os=-psos
		;;
	-mint | -mint[0-9]*)
		basic_machine=m68k-atari
		os=-mint
		;;
esac

Decode aliases for certain CPU-COMPANY combinations.
case $basic_machine in
	# Recognize the basic CPU types without company name.
	# Some are omitted here because they have special meanings below.
	1750a | 580 \
	| a29k \
	| aarch64 | aarch64_be \
	| alpha | alphaev[4-8] | alphaev56 | alphaev6[78] | alphapca5[67] \
	| alpha64 | alpha64ev[4-8] | alpha64ev56 | alpha64ev6[78] | alpha64pca5[67] \
	| am33_2.0 \
	| arc | arm | arm[bl]e | arme[lb] | armv[2345] | armv[345][lb] | avr | avr32 \
 | be32 | be64 \
	| bfin \
	| c4x | clipper \
	| d10v | d30v | dlx | dsp16xx \
	| epiphany \
	| fido | fr30 | frv \
	| h8300 | h8500 | hppa | hppa1.[01] | hppa2.0 | hppa2.0[nw] | hppa64 \
	| hexagon \
	| i370 | i860 | i960 | ia64 \
	| ip2k | iq2000 \
	| le32 | le64 \
	| lm32 \
	| m32c | m32r | m32rle | m68000 | m68k | m88k \
	| maxq | mb | microblaze | mcore | mep | metag \
	| mips | mipsbe | mipseb | mipsel | mipsle \
	| mips16 \
	| mips64 | mips64el \
	| mips64octeon | mips64octeonel \
	| mips64orion | mips64orionel \
	| mips64r5900 | mips64r5900el \
	| mips64vr | mips64vrel \
	| mips64vr4100 | mips64vr4100el \
	| mips64vr4300 | mips64vr4300el \
	| mips64vr5000 | mips64vr5000el \
	| mips64vr5900 | mips64vr5900el \
	| mipsisa32 | mipsisa32el \
	| mipsisa32r2 | mipsisa32r2el \
	| mipsisa64 | mipsisa64el \
	| mipsisa64r2 | mipsisa64r2el \
	| mipsisa64sb1 | mipsisa64sb1el \
	| mipsisa64sr71k | mipsisa64sr71kel \
	| mipstx39 | mipstx39el \
	| mn10200 | mn10300 \
	| moxie \
	| mt \
	| msp430 \
	| nds32 | nds32le | nds32be \
	| nios | nios2 \
	| ns16k | ns32k \
	| open8 \
	| or32 \
	| pdp10 | pdp11 | pj | pjl \
	| powerpc | powerpc64 | powerpc64le | powerpcle \
	| pyramid \
	| rl78 | rx \
	| score \
	| sh | sh[1234] | sh[24]a | sh[24]aeb | sh[23]e | sh[34]eb | sheb | shbe | shle | sh[1234]le | sh3ele \
	| sh64 | sh64le \
	| sparc | sparc64 | sparc64b | sparc64v | sparc86x | sparclet | sparclite \
	| sparcv8 | sparcv9 | sparcv9b | sparcv9v \
	| spu \
	| tahoe | tic4x | tic54x | tic55x | tic6x | tic80 | tron \
	| ubicom32 \
	| v850 | v850e | v850e1 | v850e2 | v850es | v850e2v3 \
	| we32k \
	| x86 | xc16x | xstormy16 | xtensa \
	| z8k | z80)
		basic_machine=$basic_machine-unknown
		;;
	c54x)
		basic_machine=tic54x-unknown
		;;
	c55x)
		basic_machine=tic55x-unknown
		;;
	c6x)
		basic_machine=tic6x-unknown
		;;
	m6811 | m68hc11 | m6812 | m68hc12 | m68hcs12x | picochip)
		basic_machine=$basic_machine-unknown
		os=-none
		;;
	m88110 | m680[12346]0 | m683?2 | m68360 | m5200 | v70 | w65 | z8k)
		;;
	ms1)
		basic_machine=mt-unknown
		;;

	strongarm | thumb | xscale)
		basic_machine=arm-unknown
		;;
	xgate)
		basic_machine=$basic_machine-unknown
		os=-none
		;;
	xscaleeb)
		basic_machine=armeb-unknown
		;;

	xscaleel)
		basic_machine=armel-unknown
		;;

	# We use `pc' rather than `unknown'
	# because (1) that's what they normally are, and
	# (2) the word "unknown" tends to confuse beginning users.
	i*86 | x86_64)
	 basic_machine=$basic_machine-pc
	 ;;
	# Object if more than one company name word.
	--*)
		echo Invalid configuration \`$1\': machine \`$basic_machine\' not recognized 1>&2
		exit 1
		;;
	# Recognize the basic CPU types with company name.
	580-* \
	| a29k-* \
	| aarch64-* | aarch64_be-* \
	| alpha-* | alphaev[4-8]-* | alphaev56-* | alphaev6[78]-* \
	| alpha64-* | alpha64ev[4-8]-* | alpha64ev56-* | alpha64ev6[78]-* \
	| alphapca5[67]-* | alpha64pca5[67]-* | arc-* \
	| arm-* | armbe-* | armle-* | armeb-* | armv*-* \
	| avr-* | avr32-* \
	| be32-* | be64-* \
	| bfin-* | bs2000-* \
	| c[123]* | c30-* | [cjt]90-* | c4x-* \
	| clipper-* | craynv-* | cydra-* \
	| d10v-* | d30v-* | dlx-* \
	| elxsi-* \
	| f30[01]-* | f700-* | fido-* | fr30-* | frv-* | fx80-* \
	| h8300-* | h8500-* \
	| hppa-* | hppa1.[01]-* | hppa2.0-* | hppa2.0[nw]-* | hppa64-* \
	| hexagon-* \
	| i*86-* | i860-* | i960-* | ia64-* \
	| ip2k-* | iq2000-* \
	| le32-* | le64-* \
	| lm32-* \
	| m32c-* | m32r-* | m32rle-* \
	| m68000-* | m680[012346]0-* | m68360-* | m683?2-* | m68k-* \
	| m88110-* | m88k-* | maxq-* | mcore-* | metag-* | microblaze-* \
	| mips-* | mipsbe-* | mipseb-* | mipsel-* | mipsle-* \
	| mips16-* \
	| mips64-* | mips64el-* \
	| mips64octeon-* | mips64octeonel-* \
	| mips64orion-* | mips64orionel-* \
	| mips64r5900-* | mips64r5900el-* \
	| mips64vr-* | mips64vrel-* \
	| mips64vr4100-* | mips64vr4100el-* \
	| mips64vr4300-* | mips64vr4300el-* \
	| mips64vr5000-* | mips64vr5000el-* \
	| mips64vr5900-* | mips64vr5900el-* \
	| mipsisa32-* | mipsisa32el-* \
	| mipsisa32r2-* | mipsisa32r2el-* \
	| mipsisa64-* | mipsisa64el-* \
	| mipsisa64r2-* | mipsisa64r2el-* \
	| mipsisa64sb1-* | mipsisa64sb1el-* \
	| mipsisa64sr71k-* | mipsisa64sr71kel-* \
	| mipstx39-* | mipstx39el-* \
	| mmix-* \
	| mt-* \
	| msp430-* \
	| nds32-* | nds32le-* | nds32be-* \
	| nios-* | nios2-* \
	| none-* | np1-* | ns16k-* | ns32k-* \
	| open8-* \
	| orion-* \
	| pdp10-* | pdp11-* | pj-* | pjl-* | pn-* | power-* \
	| powerpc-* | powerpc64-* | powerpc64le-* | powerpcle-* \
	| pyramid-* \
	| rl78-* | romp-* | rs6000-* | rx-* \
	| sh-* | sh[1234]-* | sh[24]a-* | sh[24]aeb-* | sh[23]e-* | sh[34]eb-* | sheb-* | shbe-* \
	| shle-* | sh[1234]le-* | sh3ele-* | sh64-* | sh64le-* \
	| sparc-* | sparc64-* | sparc64b-* | sparc64v-* | sparc86x-* | sparclet-* \
	| sparclite-* \
	| sparcv8-* | sparcv9-* | sparcv9b-* | sparcv9v-* | sv1-* | sx?-* \
	| tahoe-* \
	| tic30-* | tic4x-* | tic54x-* | tic55x-* | tic6x-* | tic80-* \
	| tile*-* \
	| tron-* \
	| ubicom32-* \
	| v850-* | v850e-* | v850e1-* | v850es-* | v850e2-* | v850e2v3-* \
	| vax-* \
	| we32k-* \
	| x86-* | x86_64-* | xc16x-* | xps100-* \
	| xstormy16-* | xtensa*-* \
	| ymp-* \
	| z8k-* | z80-*)
		;;
	# Recognize the basic CPU types without company name, with glob match.
	xtensa*)
		basic_machine=$basic_machine-unknown
		;;
	# Recognize the various machine names and aliases which stand
	# for a CPU type and a company and sometimes even an OS.
	386bsd)
		basic_machine=i386-unknown
		os=-bsd
		;;
	3b1 | 7300 | 7300-att | att-7300 | pc7300 | safari | unixpc)
		basic_machine=m68000-att
		;;
	3b*)
		basic_machine=we32k-att
		;;
	a29khif)
		basic_machine=a29k-amd
		os=-udi
		;;
	abacus)
		basic_machine=abacus-unknown
		;;
	adobe68k)
		basic_machine=m68010-adobe
		os=-scout
		;;
	alliant | fx80)
		basic_machine=fx80-alliant
		;;
	altos | altos3068)
		basic_machine=m68k-altos
		;;
	am29k)
		basic_machine=a29k-none
		os=-bsd
		;;
	amd64)
		basic_machine=x86_64-pc
		;;
	amd64-*)
		basic_machine=x86_64-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	amdahl)
		basic_machine=580-amdahl
		os=-sysv
		;;
	amiga | amiga-*)
		basic_machine=m68k-unknown
		;;
	amigaos | amigados)
		basic_machine=m68k-unknown
		os=-amigaos
		;;
	amigaunix | amix)
		basic_machine=m68k-unknown
		os=-sysv4
		;;
	apollo68)
		basic_machine=m68k-apollo
		os=-sysv
		;;
	apollo68bsd)
		basic_machine=m68k-apollo
		os=-bsd
		;;
	aros)
		basic_machine=i386-pc
		os=-aros
		;;
	aux)
		basic_machine=m68k-apple
		os=-aux
		;;
	balance)
		basic_machine=ns32k-sequent
		os=-dynix
		;;
	blackfin)
		basic_machine=bfin-unknown
		os=-linux
		;;
	blackfin-*)
		basic_machine=bfin-`echo $basic_machine | sed 's/^[^-]*-//'`
		os=-linux
		;;
	bluegene*)
		basic_machine=powerpc-ibm
		os=-cnk
		;;
	c54x-*)
		basic_machine=tic54x-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	c55x-*)
		basic_machine=tic55x-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	c6x-*)
		basic_machine=tic6x-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	c90)
		basic_machine=c90-cray
		os=-unicos
		;;
	cegcc)
		basic_machine=arm-unknown
		os=-cegcc
		;;
	convex-c1)
		basic_machine=c1-convex
		os=-bsd
		;;
	convex-c2)
		basic_machine=c2-convex
		os=-bsd
		;;
	convex-c32)
		basic_machine=c32-convex
		os=-bsd
		;;
	convex-c34)
		basic_machine=c34-convex
		os=-bsd
		;;
	convex-c38)
		basic_machine=c38-convex
		os=-bsd
		;;
	cray | j90)
		basic_machine=j90-cray
		os=-unicos
		;;
	craynv)
		basic_machine=craynv-cray
		os=-unicosmp
		;;
	cr16 | cr16-*)
		basic_machine=cr16-unknown
		os=-elf
		;;
	crds | unos)
		basic_machine=m68k-crds
		;;
	crisv32 | crisv32-* | etraxfs*)
		basic_machine=crisv32-axis
		;;
	cris | cris-* | etrax*)
		basic_machine=cris-axis
		;;
	crx)
		basic_machine=crx-unknown
		os=-elf
		;;
	da30 | da30-*)
		basic_machine=m68k-da30
		;;
	decstation | decstation-3100 | pmax | pmax-* | pmin | dec3100 | decstatn)
		basic_machine=mips-dec
		;;
	decsystem10* | dec10*)
		basic_machine=pdp10-dec
		os=-tops10
		;;
	decsystem20* | dec20*)
		basic_machine=pdp10-dec
		os=-tops20
		;;
	delta | 3300 | motorola-3300 | motorola-delta \
	 | 3300-motorola | delta-motorola)
		basic_machine=m68k-motorola
		;;
	delta88)
		basic_machine=m88k-motorola
		os=-sysv3
		;;
	dicos)
		basic_machine=i686-pc
		os=-dicos
		;;
	djgpp)
		basic_machine=i586-pc
		os=-msdosdjgpp
		;;
	dpx20 | dpx20-*)
		basic_machine=rs6000-bull
		os=-bosx
		;;
	dpx2* | dpx2*-bull)
		basic_machine=m68k-bull
		os=-sysv3
		;;
	ebmon29k)
		basic_machine=a29k-amd
		os=-ebmon
		;;
	elxsi)
		basic_machine=elxsi-elxsi
		os=-bsd
		;;
	encore | umax | mmax)
		basic_machine=ns32k-encore
		;;
	es1800 | OSE68k | ose68k | ose | OSE)
		basic_machine=m68k-ericsson
		os=-ose
		;;
	fx2800)
		basic_machine=i860-alliant
		;;
	genix)
		basic_machine=ns32k-ns
		;;
	gmicro)
		basic_machine=tron-gmicro
		os=-sysv
		;;
	go32)
		basic_machine=i386-pc
		os=-go32
		;;
	h3050r* | hiux*)
		basic_machine=hppa1.1-hitachi
		os=-hiuxwe2
		;;
	h8300hms)
		basic_machine=h8300-hitachi
		os=-hms
		;;
	h8300xray)
		basic_machine=h8300-hitachi
		os=-xray
		;;
	h8500hms)
		basic_machine=h8500-hitachi
		os=-hms
		;;
	harris)
		basic_machine=m88k-harris
		os=-sysv3
		;;
	hp300-*)
		basic_machine=m68k-hp
		;;
	hp300bsd)
		basic_machine=m68k-hp
		os=-bsd
		;;
	hp300hpux)
		basic_machine=m68k-hp
		os=-hpux
		;;
	hp3k9[0-9][0-9] | hp9[0-9][0-9])
		basic_machine=hppa1.0-hp
		;;
	hp9k2[0-9][0-9] | hp9k31[0-9])
		basic_machine=m68000-hp
		;;
	hp9k3[2-9][0-9])
		basic_machine=m68k-hp
		;;
	hp9k6[0-9][0-9] | hp6[0-9][0-9])
		basic_machine=hppa1.0-hp
		;;
	hp9k7[0-79][0-9] | hp7[0-79][0-9])
		basic_machine=hppa1.1-hp
		;;
	hp9k78[0-9] | hp78[0-9])
		# FIXME: really hppa2.0-hp
		basic_machine=hppa1.1-hp
		;;
	hp9k8[67]1 | hp8[67]1 | hp9k80[24] | hp80[24] | hp9k8[78]9 | hp8[78]9 | hp9k893 | hp893)
		# FIXME: really hppa2.0-hp
		basic_machine=hppa1.1-hp
		;;
	hp9k8[0-9][13679] | hp8[0-9][13679])
		basic_machine=hppa1.1-hp
		;;
	hp9k8[0-9][0-9] | hp8[0-9][0-9])
		basic_machine=hppa1.0-hp
		;;
	hppa-next)
		os=-nextstep3
		;;
	hppaosf)
		basic_machine=hppa1.1-hp
		os=-osf
		;;
	hppro)
		basic_machine=hppa1.1-hp
		os=-proelf
		;;
	i370-ibm* | ibm*)
		basic_machine=i370-ibm
		;;
	i*86v32)
		basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'`
		os=-sysv32
		;;
	i*86v4*)
		basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'`
		os=-sysv4
		;;
	i*86v)
		basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'`
		os=-sysv
		;;
	i*86sol2)
		basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'`
		os=-solaris2
		;;
	i386mach)
		basic_machine=i386-mach
		os=-mach
		;;
	i386-vsta | vsta)
		basic_machine=i386-unknown
		os=-vsta
		;;
	iris | iris4d)
		basic_machine=mips-sgi
		case $os in
		 -irix*)
			;;
		 *)
			os=-irix4
			;;
		esac
		;;
	isi68 | isi)
		basic_machine=m68k-isi
		os=-sysv
		;;
	m68knommu)
		basic_machine=m68k-unknown
		os=-linux
		;;
	m68knommu-*)
		basic_machine=m68k-`echo $basic_machine | sed 's/^[^-]*-//'`
		os=-linux
		;;
	m88k-omron*)
		basic_machine=m88k-omron
		;;
	magnum | m3230)
		basic_machine=mips-mips
		os=-sysv
		;;
	merlin)
		basic_machine=ns32k-utek
		os=-sysv
		;;
	microblaze)
		basic_machine=microblaze-xilinx
		;;
	mingw32)
		basic_machine=i386-pc
		os=-mingw32
		;;
	mingw32ce)
		basic_machine=arm-unknown
		os=-mingw32ce
		;;
	miniframe)
		basic_machine=m68000-convergent
		;;
	mint | -mint[0-9] | *MiNT | *MiNT[0-9]*)
		basic_machine=m68k-atari
		os=-mint
		;;
	mips3*-*)
		basic_machine=`echo $basic_machine | sed -e 's/mips3/mips64/'`
		;;
	mips3*)
		basic_machine=`echo $basic_machine | sed -e 's/mips3/mips64/'`-unknown
		;;
	monitor)
		basic_machine=m68k-rom68k
		os=-coff
		;;
	morphos)
		basic_machine=powerpc-unknown
		os=-morphos
		;;
	msdos)
		basic_machine=i386-pc
		os=-msdos
		;;
	ms1-*)
		basic_machine=`echo $basic_machine | sed -e 's/ms1-/mt-/'`
		;;
	msys)
		basic_machine=i386-pc
		os=-msys
		;;
	mvs)
		basic_machine=i370-ibm
		os=-mvs
		;;
	nacl)
		basic_machine=le32-unknown
		os=-nacl
		;;
	ncr3000)
		basic_machine=i486-ncr
		os=-sysv4
		;;
	netbsd386)
		basic_machine=i386-unknown
		os=-netbsd
		;;
	netwinder)
		basic_machine=armv4l-rebel
		os=-linux
		;;
	news | news700 | news800 | news900)
		basic_machine=m68k-sony
		os=-newsos
		;;
	news1000)
		basic_machine=m68030-sony
		os=-newsos
		;;
	news-3600 | risc-news)
		basic_machine=mips-sony
		os=-newsos
		;;
	necv70)
		basic_machine=v70-nec
		os=-sysv
		;;
	next | m*-next)
		basic_machine=m68k-next
		case $os in
		 -nextstep*)
			;;
		 -ns2*)
		 os=-nextstep2
			;;
		 *)
		 os=-nextstep3
			;;
		esac
		;;
	nh3000)
		basic_machine=m68k-harris
		os=-cxux
		;;
	nh[45]000)
		basic_machine=m88k-harris
		os=-cxux
		;;
	nindy960)
		basic_machine=i960-intel
		os=-nindy
		;;
	mon960)
		basic_machine=i960-intel
		os=-mon960
		;;
	nonstopux)
		basic_machine=mips-compaq
		os=-nonstopux
		;;
	np1)
		basic_machine=np1-gould
		;;
	neo-tandem)
		basic_machine=neo-tandem
		;;
	nse-tandem)
		basic_machine=nse-tandem
		;;
	nsr-tandem)
		basic_machine=nsr-tandem
		;;
	op50n-* | op60c-*)
		basic_machine=hppa1.1-oki
		os=-proelf
		;;
	openrisc | openrisc-*)
		basic_machine=or32-unknown
		;;
	os400)
		basic_machine=powerpc-ibm
		os=-os400
		;;
	OSE68000 | ose68000)
		basic_machine=m68000-ericsson
		os=-ose
		;;
	os68k)
		basic_machine=m68k-none
		os=-os68k
		;;
	pa-hitachi)
		basic_machine=hppa1.1-hitachi
		os=-hiuxwe2
		;;
	paragon)
		basic_machine=i860-intel
		os=-osf
		;;
	parisc)
		basic_machine=hppa-unknown
		os=-linux
		;;
	parisc-*)
		basic_machine=hppa-`echo $basic_machine | sed 's/^[^-]*-//'`
		os=-linux
		;;
	pbd)
		basic_machine=sparc-tti
		;;
	pbb)
		basic_machine=m68k-tti
		;;
	pc532 | pc532-*)
		basic_machine=ns32k-pc532
		;;
	pc98)
		basic_machine=i386-pc
		;;
	pc98-*)
		basic_machine=i386-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	pentium | p5 | k5 | k6 | nexgen | viac3)
		basic_machine=i586-pc
		;;
	pentiumpro | p6 | 6x86 | athlon | athlon_*)
		basic_machine=i686-pc
		;;
	pentiumii | pentium2 | pentiumiii | pentium3)
		basic_machine=i686-pc
		;;
	pentium4)
		basic_machine=i786-pc
		;;
	pentium-* | p5-* | k5-* | k6-* | nexgen-* | viac3-*)
		basic_machine=i586-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	pentiumpro-* | p6-* | 6x86-* | athlon-*)
		basic_machine=i686-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	pentiumii-* | pentium2-* | pentiumiii-* | pentium3-*)
		basic_machine=i686-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	pentium4-*)
		basic_machine=i786-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	pn)
		basic_machine=pn-gould
		;;
	power)	basic_machine=power-ibm
		;;
	ppc | ppcbe)	basic_machine=powerpc-unknown
		;;
	ppc-* | ppcbe-*)
		basic_machine=powerpc-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	ppcle | powerpclittle | ppc-le | powerpc-little)
		basic_machine=powerpcle-unknown
		;;
	ppcle-* | powerpclittle-*)
		basic_machine=powerpcle-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	ppc64)	basic_machine=powerpc64-unknown
		;;
	ppc64-*) basic_machine=powerpc64-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	ppc64le | powerpc64little | ppc64-le | powerpc64-little)
		basic_machine=powerpc64le-unknown
		;;
	ppc64le-* | powerpc64little-*)
		basic_machine=powerpc64le-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	ps2)
		basic_machine=i386-ibm
		;;
	pw32)
		basic_machine=i586-unknown
		os=-pw32
		;;
	rdos)
		basic_machine=i386-pc
		os=-rdos
		;;
	rom68k)
		basic_machine=m68k-rom68k
		os=-coff
		;;
	rm[46]00)
		basic_machine=mips-siemens
		;;
	rtpc | rtpc-*)
		basic_machine=romp-ibm
		;;
	s390 | s390-*)
		basic_machine=s390-ibm
		;;
	s390x | s390x-*)
		basic_machine=s390x-ibm
		;;
	sa29200)
		basic_machine=a29k-amd
		os=-udi
		;;
	sb1)
		basic_machine=mipsisa64sb1-unknown
		;;
	sb1el)
		basic_machine=mipsisa64sb1el-unknown
		;;
	sde)
		basic_machine=mipsisa32-sde
		os=-elf
		;;
	sei)
		basic_machine=mips-sei
		os=-seiux
		;;
	sequent)
		basic_machine=i386-sequent
		;;
	sh)
		basic_machine=sh-hitachi
		os=-hms
		;;
	sh5el)
		basic_machine=sh5le-unknown
		;;
	sh64)
		basic_machine=sh64-unknown
		;;
	sparclite-wrs | simso-wrs)
		basic_machine=sparclite-wrs
		os=-vxworks
		;;
	sps7)
		basic_machine=m68k-bull
		os=-sysv2
		;;
	spur)
		basic_machine=spur-unknown
		;;
	st2000)
		basic_machine=m68k-tandem
		;;
	stratus)
		basic_machine=i860-stratus
		os=-sysv4
		;;
	strongarm-* | thumb-*)
		basic_machine=arm-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	sun2)
		basic_machine=m68000-sun
		;;
	sun2os3)
		basic_machine=m68000-sun
		os=-sunos3
		;;
	sun2os4)
		basic_machine=m68000-sun
		os=-sunos4
		;;
	sun3os3)
		basic_machine=m68k-sun
		os=-sunos3
		;;
	sun3os4)
		basic_machine=m68k-sun
		os=-sunos4
		;;
	sun4os3)
		basic_machine=sparc-sun
		os=-sunos3
		;;
	sun4os4)
		basic_machine=sparc-sun
		os=-sunos4
		;;
	sun4sol2)
		basic_machine=sparc-sun
		os=-solaris2
		;;
	sun3 | sun3-*)
		basic_machine=m68k-sun
		;;
	sun4)
		basic_machine=sparc-sun
		;;
	sun386 | sun386i | roadrunner)
		basic_machine=i386-sun
		;;
	sv1)
		basic_machine=sv1-cray
		os=-unicos
		;;
	symmetry)
		basic_machine=i386-sequent
		os=-dynix
		;;
	t3e)
		basic_machine=alphaev5-cray
		os=-unicos
		;;
	t90)
		basic_machine=t90-cray
		os=-unicos
		;;
	tile*)
		basic_machine=$basic_machine-unknown
		os=-linux-gnu
		;;
	tx39)
		basic_machine=mipstx39-unknown
		;;
	tx39el)
		basic_machine=mipstx39el-unknown
		;;
	toad1)
		basic_machine=pdp10-xkl
		os=-tops20
		;;
	tower | tower-32)
		basic_machine=m68k-ncr
		;;
	tpf)
		basic_machine=s390x-ibm
		os=-tpf
		;;
	udi29k)
		basic_machine=a29k-amd
		os=-udi
		;;
	ultra3)
		basic_machine=a29k-nyu
		os=-sym1
		;;
	v810 | necv810)
		basic_machine=v810-nec
		os=-none
		;;
	vaxv)
		basic_machine=vax-dec
		os=-sysv
		;;
	vms)
		basic_machine=vax-dec
		os=-vms
		;;
	vpp*|vx|vx-*)
		basic_machine=f301-fujitsu
		;;
	vxworks960)
		basic_machine=i960-wrs
		os=-vxworks
		;;
	vxworks68)
		basic_machine=m68k-wrs
		os=-vxworks
		;;
	vxworks29k)
		basic_machine=a29k-wrs
		os=-vxworks
		;;
	w65*)
		basic_machine=w65-wdc
		os=-none
		;;
	w89k-*)
		basic_machine=hppa1.1-winbond
		os=-proelf
		;;
	xbox)
		basic_machine=i686-pc
		os=-mingw32
		;;
	xps | xps100)
		basic_machine=xps100-honeywell
		;;
	xscale-* | xscalee[bl]-*)
		basic_machine=`echo $basic_machine | sed 's/^xscale/arm/'`
		;;
	ymp)
		basic_machine=ymp-cray
		os=-unicos
		;;
	z8k-*-coff)
		basic_machine=z8k-unknown
		os=-sim
		;;
	z80-*-coff)
		basic_machine=z80-unknown
		os=-sim
		;;
	none)
		basic_machine=none-none
		os=-none
		;;

Here we handle the default manufacturer of certain CPU types. It is in
some cases the only manufacturer, in others, it is the most popular.
	w89k)
		basic_machine=hppa1.1-winbond
		;;
	op50n)
		basic_machine=hppa1.1-oki
		;;
	op60c)
		basic_machine=hppa1.1-oki
		;;
	romp)
		basic_machine=romp-ibm
		;;
	mmix)
		basic_machine=mmix-knuth
		;;
	rs6000)
		basic_machine=rs6000-ibm
		;;
	vax)
		basic_machine=vax-dec
		;;
	pdp10)
		# there are many clones, so DEC is not a safe bet
		basic_machine=pdp10-unknown
		;;
	pdp11)
		basic_machine=pdp11-dec
		;;
	we32k)
		basic_machine=we32k-att
		;;
	sh[1234] | sh[24]a | sh[24]aeb | sh[34]eb | sh[1234]le | sh[23]ele)
		basic_machine=sh-unknown
		;;
	sparc | sparcv8 | sparcv9 | sparcv9b | sparcv9v)
		basic_machine=sparc-sun
		;;
	cydra)
		basic_machine=cydra-cydrome
		;;
	orion)
		basic_machine=orion-highlevel
		;;
	orion105)
		basic_machine=clipper-highlevel
		;;
	mac | mpw | mac-mpw)
		basic_machine=m68k-apple
		;;
	pmac | pmac-mpw)
		basic_machine=powerpc-apple
		;;
	*-unknown)
		# Make sure to match an already-canonicalized machine name.
		;;
	*)
		echo Invalid configuration \`$1\': machine \`$basic_machine\' not recognized 1>&2
		exit 1
		;;
esac

Here we canonicalize certain aliases for manufacturers.
case $basic_machine in
	-digital)
		basic_machine=`echo $basic_machine | sed 's/digital.*/dec/'`
		;;
	-commodore)
		basic_machine=`echo $basic_machine | sed 's/commodore.*/cbm/'`
		;;
	*)
		;;
esac

Decode manufacturer-specific aliases for certain operating systems.

if [x"$os" != x""]
then
case $os in
	# First match some system type aliases
	# that might get confused with valid system types.
	# -solaris* is a basic system type, with this one exception.
	-auroraux)
		os=-auroraux
		;;
	-solaris1 | -solaris1.*)
		os=`echo $os | sed -e 's|solaris1|sunos4|'`
		;;
	-solaris)
		os=-solaris2
		;;
	-svr4*)
		os=-sysv4
		;;
	-unixware*)
		os=-sysv4.2uw
		;;
	-gnu/linux*)
		os=`echo $os | sed -e 's|gnu/linux|linux-gnu|'`
		;;
	# First accept the basic system types.
	# The portable systems comes first.
	# Each alternative MUST END IN A *, to match a version number.
	# -sysv* is not here because it comes later, after sysvr4.
	-gnu* | -bsd* | -mach* | -minix* | -genix* | -ultrix* | -irix* \
	 | -*vms* | -sco* | -esix* | -isc* | -aix* | -cnk* | -sunos | -sunos[34]*\
	 | -hpux* | -unos* | -osf* | -luna* | -dgux* | -auroraux* | -solaris* \
	 | -sym* | -kopensolaris* \
	 | -amigaos* | -amigados* | -msdos* | -newsos* | -unicos* | -aof* \
	 | -aos* | -aros* \
	 | -nindy* | -vxsim* | -vxworks* | -ebmon* | -hms* | -mvs* \
	 | -clix* | -riscos* | -uniplus* | -iris* | -rtu* | -xenix* \
	 | -hiux* | -386bsd* | -knetbsd* | -mirbsd* | -netbsd* \
	 | -openbsd* | -solidbsd* \
	 | -ekkobsd* | -kfreebsd* | -freebsd* | -riscix* | -lynxos* \
	 | -bosx* | -nextstep* | -cxux* | -aout* | -elf* | -oabi* \
	 | -ptx* | -coff* | -ecoff* | -winnt* | -domain* | -vsta* \
	 | -udi* | -eabi* | -lites* | -ieee* | -go32* | -aux* \
	 | -chorusos* | -chorusrdb* | -cegcc* \
	 | -cygwin* | -msys* | -pe* | -psos* | -moss* | -proelf* | -rtems* \
	 | -mingw32* | -linux-gnu* | -linux-android* \
	 | -linux-newlib* | -linux-uclibc* \
	 | -uxpv* | -beos* | -mpeix* | -udk* \
	 | -interix* | -uwin* | -mks* | -rhapsody* | -darwin* | -opened* \
	 | -openstep* | -oskit* | -conix* | -pw32* | -nonstopux* \
	 | -storm-chaos* | -tops10* | -tenex* | -tops20* | -its* \
	 | -os2* | -vos* | -palmos* | -uclinux* | -nucleus* \
	 | -morphos* | -superux* | -rtmk* | -rtmk-nova* | -windiss* \
	 | -powermax* | -dnix* | -nx6 | -nx7 | -sei* | -dragonfly* \
	 | -skyos* | -haiku* | -rdos* | -toppers* | -drops* | -es*)
	# Remember, each alternative MUST END IN *, to match a version number.
		;;
	-qnx*)
		case $basic_machine in
		 x86-* | i*86-*)
			;;
		 *)
			os=-nto$os
			;;
		esac
		;;
	-nto-qnx*)
		;;
	-nto*)
		os=`echo $os | sed -e 's|nto|nto-qnx|'`
		;;
	-sim | -es1800* | -hms* | -xray | -os68k* | -none* | -v88r* \
	 | -windows* | -osx | -abug | -netware* | -os9* | -beos* | -haiku* \
	 | -macos* | -mpw* | -magic* | -mmixware* | -mon960* | -lnews*)
		;;
	-mac*)
		os=`echo $os | sed -e 's|mac|macos|'`
		;;
	-linux-dietlibc)
		os=-linux-dietlibc
		;;
	-linux*)
		os=`echo $os | sed -e 's|linux|linux-gnu|'`
		;;
	-sunos5*)
		os=`echo $os | sed -e 's|sunos5|solaris2|'`
		;;
	-sunos6*)
		os=`echo $os | sed -e 's|sunos6|solaris3|'`
		;;
	-opened*)
		os=-openedition
		;;
	-os400*)
		os=-os400
		;;
	-wince*)
		os=-wince
		;;
	-osfrose*)
		os=-osfrose
		;;
	-osf*)
		os=-osf
		;;
	-utek*)
		os=-bsd
		;;
	-dynix*)
		os=-bsd
		;;
	-acis*)
		os=-aos
		;;
	-atheos*)
		os=-atheos
		;;
	-syllable*)
		os=-syllable
		;;
	-386bsd)
		os=-bsd
		;;
	-ctix* | -uts*)
		os=-sysv
		;;
	-nova*)
		os=-rtmk-nova
		;;
	-ns2)
		os=-nextstep2
		;;
	-nsk*)
		os=-nsk
		;;
	# Preserve the version number of sinix5.
	-sinix5.*)
		os=`echo $os | sed -e 's|sinix|sysv|'`
		;;
	-sinix*)
		os=-sysv4
		;;
	-tpf*)
		os=-tpf
		;;
	-triton*)
		os=-sysv3
		;;
	-oss*)
		os=-sysv3
		;;
	-svr4)
		os=-sysv4
		;;
	-svr3)
		os=-sysv3
		;;
	-sysvr4)
		os=-sysv4
		;;
	# This must come after -sysvr4.
	-sysv*)
		;;
	-ose*)
		os=-ose
		;;
	-es1800*)
		os=-ose
		;;
	-xenix)
		os=-xenix
		;;
	-*mint | -mint[0-9]* | -*MiNT | -MiNT[0-9]*)
		os=-mint
		;;
	-aros*)
		os=-aros
		;;
	-kaos*)
		os=-kaos
		;;
	-zvmoe)
		os=-zvmoe
		;;
	-dicos*)
		os=-dicos
		;;
	-nacl*)
		;;
	-none)
		;;
	*)
		# Get rid of the `-' at the beginning of $os.
		os=`echo $os | sed 's/[^-]*-//'`
		echo Invalid configuration \`$1\': system \`$os\' not recognized 1>&2
		exit 1
		;;
esac
else

Here we handle the default operating systems that come with various machines.
The value should be what the vendor currently ships out the door with their
machine or put another way, the most popular os provided with the machine.

Note that if you're going to try to match "-MANUFACTURER" here (say,
"-sun"), then you have to tell the case statement up towards the top
that MANUFACTURER isn't an operating system. Otherwise, code above
will signal an error saying that MANUFACTURER isn't an operating
system, and we'll never get to this point.

case $basic_machine in
	score-*)
		os=-elf
		;;
	spu-*)
		os=-elf
		;;
	*-acorn)
		os=-riscix1.2
		;;
	arm*-rebel)
		os=-linux
		;;
	arm*-semi)
		os=-aout
		;;
	c4x-* | tic4x-*)
		os=-coff
		;;
	tic54x-*)
		os=-coff
		;;
	tic55x-*)
		os=-coff
		;;
	tic6x-*)
		os=-coff
		;;
	# This must come before the *-dec entry.
	pdp10-*)
		os=-tops20
		;;
	pdp11-*)
		os=-none
		;;
	-dec | vax-)
		os=-ultrix4.2
		;;
	m68*-apollo)
		os=-domain
		;;
	i386-sun)
		os=-sunos4.0.2
		;;
	m68000-sun)
		os=-sunos3
		;;
	m68*-cisco)
		os=-aout
		;;
	mep-*)
		os=-elf
		;;
	mips*-cisco)
		os=-elf
		;;
	mips*-*)
		os=-elf
		;;
	or32-*)
		os=-coff
		;;
	*-tti)	# must be before sparc entry or we get the wrong os.
		os=-sysv3
		;;
	sparc-* | *-sun)
		os=-sunos4.1.1
		;;
	*-be)
		os=-beos
		;;
	*-haiku)
		os=-haiku
		;;
	*-ibm)
		os=-aix
		;;
	*-knuth)
		os=-mmixware
		;;
	*-wec)
		os=-proelf
		;;
	*-winbond)
		os=-proelf
		;;
	*-oki)
		os=-proelf
		;;
	*-hp)
		os=-hpux
		;;
	*-hitachi)
		os=-hiux
		;;
	i860-* | *-att | *-ncr | *-altos | *-motorola | *-convergent)
		os=-sysv
		;;
	*-cbm)
		os=-amigaos
		;;
	*-dg)
		os=-dgux
		;;
	*-dolphin)
		os=-sysv3
		;;
	m68k-ccur)
		os=-rtu
		;;
	m88k-omron*)
		os=-luna
		;;
	*-next)
		os=-nextstep
		;;
	*-sequent)
		os=-ptx
		;;
	*-crds)
		os=-unos
		;;
	*-ns)
		os=-genix
		;;
	i370-*)
		os=-mvs
		;;
	*-next)
		os=-nextstep3
		;;
	*-gould)
		os=-sysv
		;;
	*-highlevel)
		os=-bsd
		;;
	*-encore)
		os=-bsd
		;;
	*-sgi)
		os=-irix
		;;
	*-siemens)
		os=-sysv4
		;;
	*-masscomp)
		os=-rtu
		;;
	f30[01]-fujitsu | f700-fujitsu)
		os=-uxpv
		;;
	*-rom68k)
		os=-coff
		;;
	*-*bug)
		os=-coff
		;;
	*-apple)
		os=-macos
		;;
	-atari)
		os=-mint
		;;
	*)
		os=-none
		;;
esac
fi

Here we handle the case where we know the os, and the CPU type, but not the
manufacturer. We pick the logical manufacturer.
vendor=unknown
case $basic_machine in
	*-unknown)
		case $os in
			-riscix*)
				vendor=acorn
				;;
			-sunos*)
				vendor=sun
				;;
			-cnk*|-aix*)
				vendor=ibm
				;;
			-beos*)
				vendor=be
				;;
			-hpux*)
				vendor=hp
				;;
			-mpeix*)
				vendor=hp
				;;
			-hiux*)
				vendor=hitachi
				;;
			-unos*)
				vendor=crds
				;;
			-dgux*)
				vendor=dg
				;;
			-luna*)
				vendor=omron
				;;
			-genix*)
				vendor=ns
				;;
			-mvs* | -opened*)
				vendor=ibm
				;;
			-os400*)
				vendor=ibm
				;;
			-ptx*)
				vendor=sequent
				;;
			-tpf*)
				vendor=ibm
				;;
			-vxsim* | -vxworks* | -windiss*)
				vendor=wrs
				;;
			-aux*)
				vendor=apple
				;;
			-hms*)
				vendor=hitachi
				;;
			-mpw* | -macos*)
				vendor=apple
				;;
			-*mint | -mint[0-9]* | -*MiNT | -MiNT[0-9]*)
				vendor=atari
				;;
			-vos*)
				vendor=stratus
				;;
		esac
		basic_machine=`echo $basic_machine | sed "s/unknown/$vendor/"`
		;;
esac

echo $basic_machine$os
exit

Local variables:
eval: (add-hook 'write-file-hooks 'time-stamp)
time-stamp-start: "timestamp='"
time-stamp-format: "%:y-%02m-%02d"
time-stamp-end: "'"
End:

qpdf-7.1.0/libqpdf/QPDFTokenizer.cc

#include <qpdf/QPDFTokenizer.hh>

// DO NOT USE ctype -- it is locale dependent for some things, and
// it's not worth the risk of including it in case it may accidentally
// be used.

#include <qpdf/QTC.hh>
#include <qpdf/QPDFExc.hh>
#include <qpdf/QUtil.hh>

#include <stdexcept>
#include <string.h>
#include <cstdlib>

QPDFTokenizer::QPDFTokenizer() :
 pound_special_in_name(true),
 allow_eof(false)
{
 reset();
}

void
QPDFTokenizer::allowPoundAnywhereInName()
{
 QTC::TC("qpdf", "QPDFTokenizer allow pound anywhere in name");
 this->pound_special_in_name = false;
}

void
QPDFTokenizer::allowEOF()
{
 this->allow_eof = true;
}

void
QPDFTokenizer::reset()
{
 state = st_top;
 type = tt_bad;
 val = "";
 raw_val = "";
 error_message = "";
 unread_char = false;
 char_to_unread = '\0';
 string_depth = 0;
 string_ignoring_newline = false;
 last_char_was_bs = false;
}

void
QPDFTokenizer::resolveLiteral()
{
 if ((val.length() > 0) && (val.at(0) == '/'))
 {
 type = tt_name;
 // Deal with # in name token. Note: '/' by itself is a
 // valid name, so don't strip leading /. That way we
 // don't have to deal with the empty string as a name.
 std::string nval = "/";
 char const* valstr = val.c_str() + 1;
 for (char const* p = valstr; *p; ++p)
 {
 if ((*p == '#') && this->pound_special_in_name)
 {
 if (p[1] && p[2] &&
 QUtil::is_hex_digit(p[1]) && QUtil::is_hex_digit(p[2]))
 {
 char num[3];
 num[0] = p[1];
 num[1] = p[2];
 num[2] = '\0';
 char ch = static_cast<char>(strtol(num, 0, 16));
 if (ch == '\0')
 {
 type = tt_bad;
 QTC::TC("qpdf", "QPDF_Tokenizer null in name");
 error_message =
 "null character not allowed in name token";
 nval += "#00";
 }
 else
 {
 nval += ch;
 }
 p += 2;
 }
 else
 {
 QTC::TC("qpdf", "QPDF_Tokenizer bad name");
 type = tt_bad;
 error_message = "invalid name token";
 nval += *p;
 }
 }
 else
 {
 nval += *p;
 }
 }
 val = nval;
 }
 else if (QUtil::is_number(val.c_str()))
 {
 if (val.find('.') != std::string::npos)
 {
 type = tt_real;
 }
 else
 {
 type = tt_integer;
 }
 }
 else if ((val == "true") || (val == "false"))
 {
 type = tt_bool;
 }
 else if (val == "null")
 {
 type = tt_null;
 }
 else
 {
 // I don't really know what it is, so leave it as tt_word.
 // Lots of cases ($, #, etc.) other than actual words fall
 // into this category, but that's okay at least for now.
 type = tt_word;
 }
}

void
QPDFTokenizer::presentCharacter(char ch)
{
 if (state == st_token_ready)
 {
	throw std::logic_error(
	 "INTERNAL ERROR: QPDF tokenizer presented character "
	 "while token is waiting");
 }

 char orig_ch = ch;

 // State machine is implemented such that some characters may be
 // handled more than once. This happens whenever you have to use
 // the character that caused a state change in the new state.

 bool handled = true;
 if (state == st_top)
 {
	// Note: we specifically do not use ctype here. It is
	// locale-dependent.
	if (strchr(" \t\n\v\f\r", ch))
	{
	 // ignore
	}
	else if (ch == '%')
	{
	 // Discard comments
	 state = st_in_comment;
	}
	else if (ch == '(')
	{
	 string_depth = 1;
	 string_ignoring_newline = false;
	 memset(bs_num_register, '\0', sizeof(bs_num_register));
	 last_char_was_bs = false;
	 state = st_in_string;
	}
	else if (ch == '<')
	{
	 state = st_lt;
	}
	else if (ch == '>')
	{
	 state = st_gt;
	}
	else
	{
	 val += ch;
	 if (ch == ')')
	 {
		type = tt_bad;
		QTC::TC("qpdf", "QPDF_Tokenizer bad)");
		error_message = "unexpected)";
		state = st_token_ready;
	 }
	 else if (ch == '[')
	 {
		type = tt_array_open;
		state = st_token_ready;
	 }
	 else if (ch == ']')
	 {
		type = tt_array_close;
		state = st_token_ready;
	 }
	 else if (ch == '{')
	 {
		type = tt_brace_open;
		state = st_token_ready;
	 }
	 else if (ch == '}')
	 {
		type = tt_brace_close;
		state = st_token_ready;
	 }
	 else
	 {
		state = st_literal;
	 }
	}
 }
 else if (state == st_in_comment)
 {
	if ((ch == '\r') || (ch == '\n'))
	{
	 state = st_top;
	}
 }
 else if (state == st_lt)
 {
	if (ch == '<')
	{
	 val = "<<";
	 type = tt_dict_open;
	 state = st_token_ready;
	}
	else
	{
	 handled = false;
	 state = st_in_hexstring;
	}
 }
 else if (state == st_gt)
 {
	if (ch == '>')
	{
	 val = ">>";
	 type = tt_dict_close;
	 state = st_token_ready;
	}
	else
	{
	 val = ">";
	 type = tt_bad;
	 QTC::TC("qpdf", "QPDF_Tokenizer bad >");
	 error_message = "unexpected >";
	 unread_char = true;
	 char_to_unread = ch;
	 state = st_token_ready;
	}
 }
 else if (state == st_in_string)
 {
	if (string_ignoring_newline && (! ((ch == '\r') || (ch == '\n'))))
	{
	 string_ignoring_newline = false;
	}

	size_t bs_num_count = strlen(bs_num_register);
	bool ch_is_octal = ((ch >= '0') && (ch <= '7'));
	if ((bs_num_count == 3) || ((bs_num_count > 0) && (! ch_is_octal)))
	{
	 // We've accumulated \ddd. PDF Spec says to ignore
	 // high-order overflow.
	 val += static_cast<char>(strtol(bs_num_register, 0, 8));
	 memset(bs_num_register, '\0', sizeof(bs_num_register));
	 bs_num_count = 0;
	}

	if (string_ignoring_newline && ((ch == '\r') || (ch == '\n')))
	{
	 // ignore
	}
	else if (ch_is_octal && (last_char_was_bs || (bs_num_count > 0)))
	{
	 bs_num_register[bs_num_count++] = ch;
	}
	else if (last_char_was_bs)
	{
	 switch (ch)
	 {
	 case 'n':
		val += '\n';
		break;

	 case 'r':
		val += '\r';
		break;

	 case 't':
		val += '\t';
		break;

	 case 'b':
		val += '\b';
		break;

	 case 'f':
		val += '\f';
		break;

	 case '\r':
	 case '\n':
		string_ignoring_newline = true;
		break;

	 default:
		// PDF spec says backslash is ignored before anything else
		val += ch;
		break;
	 }
	}
	else if (ch == '\\')
	{
	 // last_char_was_bs is set/cleared below as appropriate
	 if (bs_num_count)
	 {
		throw std::logic_error(
		 "INTERNAL ERROR: QPDFTokenizer: bs_num_count != 0 "
		 "when ch == '\\'");
	 }
	}
	else if (ch == '(')
	{
	 val += ch;
	 ++string_depth;
	}
	else if ((ch == ')') && (--string_depth == 0))
	{
	 type = tt_string;
	 state = st_token_ready;
	}
	else
	{
	 val += ch;
	}

	last_char_was_bs = ((! last_char_was_bs) && (ch == '\\'));
 }
 else if (state == st_literal)
 {
	if (strchr(" \t\n\v\f\r()<>[]{}/%", ch) != 0)
	{
	 // A C-locale whitespace character or delimiter terminates
	 // token. It is important to unread the whitespace
	 // character even though it is ignored since it may be the
	 // newline after a stream keyword. Removing it here could
	 // make the stream-reading code break on some files,
	 // though not on any files in the test suite as of this
	 // writing.

	 type = tt_word;
	 unread_char = true;
	 char_to_unread = ch;
	 state = st_token_ready;
	}
	else
	{
	 val += ch;
	}
 }
 else
 {
	handled = false;
 }

 if (handled)
 {
	// okay
 }
 else if (state == st_in_hexstring)
 {
	if (ch == '>')
	{
	 type = tt_string;
	 state = st_token_ready;
	 if (val.length() % 2)
	 {
		// PDF spec says odd hexstrings have implicit
		// trailing 0.
		val += '0';
	 }
	 char num[3];
	 num[2] = '\0';
	 std::string nval;
	 for (unsigned int i = 0; i < val.length(); i += 2)
	 {
		num[0] = val.at(i);
		num[1] = val.at(i+1);
		char nch = static_cast<char>(strtol(num, 0, 16));
		nval += nch;
	 }
	 val = nval;
	}
	else if (QUtil::is_hex_digit(ch))
	{
	 val += ch;
	}
	else if (strchr(" \t\n\v\f\r", ch))
	{
	 // ignore
	}
	else
	{
	 type = tt_bad;
	 QTC::TC("qpdf", "QPDF_Tokenizer bad (");
	 error_message = std::string("invalid character (") +
		ch + ") in hexstring";
	 state = st_token_ready;
	}
 }
 else
 {
	throw std::logic_error(
	 "INTERNAL ERROR: invalid state while reading token");
 }

 if ((state == st_token_ready) && (type == tt_word))
 {
 resolveLiteral();
 }

 if (! (betweenTokens() || ((state == st_token_ready) && unread_char)))
 {
	this->raw_val += orig_ch;
 }
}

void
QPDFTokenizer::presentEOF()
{
 if (state == st_literal)
 {
 QTC::TC("qpdf", "QPDF_Tokenizer EOF reading appendable token");
 resolveLiteral();
 }
 else if (state != st_token_ready)
 {
 QTC::TC("qpdf", "QPDF_Tokenizer EOF reading token",
 this->allow_eof ? 1 : 0);
 if (this->allow_eof)
 {
 type = tt_eof;
 }
 else
 {
 type = tt_bad;
 error_message = "EOF while reading token";
 }
 }

 state = st_token_ready;
}

bool
QPDFTokenizer::getToken(Token& token, bool& unread_char, char& ch)
{
 bool ready = (this->state == st_token_ready);
 unread_char = this->unread_char;
 ch = this->char_to_unread;
 if (ready)
 {
	token = Token(type, val, raw_val, error_message);
	reset();
 }
 return ready;
}

bool
QPDFTokenizer::betweenTokens()
{
 return ((state == st_top) || (state == st_in_comment));
}

QPDFTokenizer::Token
QPDFTokenizer::readToken(PointerHolder<InputSource> input,
 std::string const& context,
 bool allow_bad,
 size_t max_len)
{
 qpdf_offset_t offset = input->tell();
 Token token;
 bool unread_char;
 char char_to_unread;
 bool presented_eof = false;
 while (! getToken(token, unread_char, char_to_unread))
 {
	char ch;
	if (input->read(&ch, 1) == 0)
	{
 if (! presented_eof)
 {
 presentEOF();
 presented_eof = true;
 }
 else
 {
 throw std::logic_error(
 "getToken returned false after presenting EOF");
 }
	}
	else
	{
	 if (QUtil::is_space(static_cast<unsigned char>(ch)) &&
		(input->getLastOffset() == offset))
	 {
		++offset;
	 }
	 presentCharacter(ch);
 if (max_len && (raw_val.length() >= max_len) &&
 (this->state != st_token_ready))
 {
 // terminate this token now
 QTC::TC("qpdf", "QPDFTokenizer block long token");
 this->type = tt_bad;
 this->state = st_token_ready;
 }
	}
 }

 if (unread_char)
 {
	input->unreadCh(char_to_unread);
 }

 input->setLastOffset(offset);

 if (token.getType() == tt_bad)
 {
 if (allow_bad)
 {
 QTC::TC("qpdf", "QPDFTokenizer allowing bad token");
 }
 else
 {
 throw QPDFExc(qpdf_e_damaged_pdf, input->getName(),
 context, offset, token.getErrorMessage());
 }
 }

 return token;
}

qpdf-7.1.0/libqpdf/sha2.c

/* $Id: sha2.c 227 2010-06-16 17:28:38Z tp $ */
/*
 * SHA-224 / SHA-256 implementation.
 *
 * ==========================(LICENSE BEGIN)============================
 *
 * Copyright (c) 2007-2010 Projet RNRT SAPHIR
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * ===========================(LICENSE END)=============================
 *
 * @author Thomas Pornin <thomas.pornin@cryptolog.com>
 */

#include <stddef.h>
#include <string.h>

#include "sph/sph_sha2.h"

#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_SHA2
#define SPH_SMALL_FOOTPRINT_SHA2 1
#endif

#define CH(X, Y, Z) ((((Y) ^ (Z)) & (X)) ^ (Z))
#define MAJ(X, Y, Z) (((Y) & (Z)) | (((Y) | (Z)) & (X)))

#define ROTR SPH_ROTR32

#define BSG2_0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define BSG2_1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define SSG2_0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SPH_T32((x) >> 3))
#define SSG2_1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SPH_T32((x) >> 10))

static const sph_u32 H224[8] = {
	SPH_C32(0xC1059ED8), SPH_C32(0x367CD507), SPH_C32(0x3070DD17),
	SPH_C32(0xF70E5939), SPH_C32(0xFFC00B31), SPH_C32(0x68581511),
	SPH_C32(0x64F98FA7), SPH_C32(0xBEFA4FA4)
};

static const sph_u32 H256[8] = {
	SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85), SPH_C32(0x3C6EF372),
	SPH_C32(0xA54FF53A), SPH_C32(0x510E527F), SPH_C32(0x9B05688C),
	SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19)
};

/*
 * The SHA2_ROUND_BODY defines the body for a SHA-224 / SHA-256
 * compression function implementation. The "in" parameter should
 * evaluate, when applied to a numerical input parameter from 0 to 15,
 * to an expression which yields the corresponding input block. The "r"
 * parameter should evaluate to an array or pointer expression
 * designating the array of 8 words which contains the input and output
 * of the compression function.
 */

#if SPH_SMALL_FOOTPRINT_SHA2

static const sph_u32 K[64] = {
	SPH_C32(0x428A2F98), SPH_C32(0x71374491),
	SPH_C32(0xB5C0FBCF), SPH_C32(0xE9B5DBA5),
	SPH_C32(0x3956C25B), SPH_C32(0x59F111F1),
	SPH_C32(0x923F82A4), SPH_C32(0xAB1C5ED5),
	SPH_C32(0xD807AA98), SPH_C32(0x12835B01),
	SPH_C32(0x243185BE), SPH_C32(0x550C7DC3),
	SPH_C32(0x72BE5D74), SPH_C32(0x80DEB1FE),
	SPH_C32(0x9BDC06A7), SPH_C32(0xC19BF174),
	SPH_C32(0xE49B69C1), SPH_C32(0xEFBE4786),
	SPH_C32(0x0FC19DC6), SPH_C32(0x240CA1CC),
	SPH_C32(0x2DE92C6F), SPH_C32(0x4A7484AA),
	SPH_C32(0x5CB0A9DC), SPH_C32(0x76F988DA),
	SPH_C32(0x983E5152), SPH_C32(0xA831C66D),
	SPH_C32(0xB00327C8), SPH_C32(0xBF597FC7),
	SPH_C32(0xC6E00BF3), SPH_C32(0xD5A79147),
	SPH_C32(0x06CA6351), SPH_C32(0x14292967),
	SPH_C32(0x27B70A85), SPH_C32(0x2E1B2138),
	SPH_C32(0x4D2C6DFC), SPH_C32(0x53380D13),
	SPH_C32(0x650A7354), SPH_C32(0x766A0ABB),
	SPH_C32(0x81C2C92E), SPH_C32(0x92722C85),
	SPH_C32(0xA2BFE8A1), SPH_C32(0xA81A664B),
	SPH_C32(0xC24B8B70), SPH_C32(0xC76C51A3),
	SPH_C32(0xD192E819), SPH_C32(0xD6990624),
	SPH_C32(0xF40E3585), SPH_C32(0x106AA070),
	SPH_C32(0x19A4C116), SPH_C32(0x1E376C08),
	SPH_C32(0x2748774C), SPH_C32(0x34B0BCB5),
	SPH_C32(0x391C0CB3), SPH_C32(0x4ED8AA4A),
	SPH_C32(0x5B9CCA4F), SPH_C32(0x682E6FF3),
	SPH_C32(0x748F82EE), SPH_C32(0x78A5636F),
	SPH_C32(0x84C87814), SPH_C32(0x8CC70208),
	SPH_C32(0x90BEFFFA), SPH_C32(0xA4506CEB),
	SPH_C32(0xBEF9A3F7), SPH_C32(0xC67178F2)
};

#define SHA2_MEXP1(in, pc) do { \
		W[pc] = in(pc); \
	} while (0)

#define SHA2_MEXP2(in, pc) do { \
		W[(pc) & 0x0F] = SPH_T32(SSG2_1(W[((pc) - 2) & 0x0F]) \
			+ W[((pc) - 7) & 0x0F] \
			+ SSG2_0(W[((pc) - 15) & 0x0F]) + W[(pc) & 0x0F]); \
	} while (0)

#define SHA2_STEPn(n, a, b, c, d, e, f, g, h, in, pc) do { \
		sph_u32 t1, t2; \
		SHA2_MEXP ## n(in, pc); \
		t1 = SPH_T32(h + BSG2_1(e) + CH(e, f, g) \
			+ K[pcount + (pc)] + W[(pc) & 0x0F]); \
		t2 = SPH_T32(BSG2_0(a) + MAJ(a, b, c)); \
		d = SPH_T32(d + t1); \
		h = SPH_T32(t1 + t2); \
	} while (0)

#define SHA2_STEP1(a, b, c, d, e, f, g, h, in, pc) \
	SHA2_STEPn(1, a, b, c, d, e, f, g, h, in, pc)
#define SHA2_STEP2(a, b, c, d, e, f, g, h, in, pc) \
	SHA2_STEPn(2, a, b, c, d, e, f, g, h, in, pc)

#define SHA2_ROUND_BODY(in, r) do { \
		sph_u32 A, B, C, D, E, F, G, H; \
		sph_u32 W[16]; \
		unsigned pcount; \
 \
		A = (r)[0]; \
		B = (r)[1]; \
		C = (r)[2]; \
		D = (r)[3]; \
		E = (r)[4]; \
		F = (r)[5]; \
		G = (r)[6]; \
		H = (r)[7]; \
		pcount = 0; \
		SHA2_STEP1(A, B, C, D, E, F, G, H, in, 0); \
		SHA2_STEP1(H, A, B, C, D, E, F, G, in, 1); \
		SHA2_STEP1(G, H, A, B, C, D, E, F, in, 2); \
		SHA2_STEP1(F, G, H, A, B, C, D, E, in, 3); \
		SHA2_STEP1(E, F, G, H, A, B, C, D, in, 4); \
		SHA2_STEP1(D, E, F, G, H, A, B, C, in, 5); \
		SHA2_STEP1(C, D, E, F, G, H, A, B, in, 6); \
		SHA2_STEP1(B, C, D, E, F, G, H, A, in, 7); \
		SHA2_STEP1(A, B, C, D, E, F, G, H, in, 8); \
		SHA2_STEP1(H, A, B, C, D, E, F, G, in, 9); \
		SHA2_STEP1(G, H, A, B, C, D, E, F, in, 10); \
		SHA2_STEP1(F, G, H, A, B, C, D, E, in, 11); \
		SHA2_STEP1(E, F, G, H, A, B, C, D, in, 12); \
		SHA2_STEP1(D, E, F, G, H, A, B, C, in, 13); \
		SHA2_STEP1(C, D, E, F, G, H, A, B, in, 14); \
		SHA2_STEP1(B, C, D, E, F, G, H, A, in, 15); \
		for (pcount = 16; pcount < 64; pcount += 16) { \
			SHA2_STEP2(A, B, C, D, E, F, G, H, in, 0); \
			SHA2_STEP2(H, A, B, C, D, E, F, G, in, 1); \
			SHA2_STEP2(G, H, A, B, C, D, E, F, in, 2); \
			SHA2_STEP2(F, G, H, A, B, C, D, E, in, 3); \
			SHA2_STEP2(E, F, G, H, A, B, C, D, in, 4); \
			SHA2_STEP2(D, E, F, G, H, A, B, C, in, 5); \
			SHA2_STEP2(C, D, E, F, G, H, A, B, in, 6); \
			SHA2_STEP2(B, C, D, E, F, G, H, A, in, 7); \
			SHA2_STEP2(A, B, C, D, E, F, G, H, in, 8); \
			SHA2_STEP2(H, A, B, C, D, E, F, G, in, 9); \
			SHA2_STEP2(G, H, A, B, C, D, E, F, in, 10); \
			SHA2_STEP2(F, G, H, A, B, C, D, E, in, 11); \
			SHA2_STEP2(E, F, G, H, A, B, C, D, in, 12); \
			SHA2_STEP2(D, E, F, G, H, A, B, C, in, 13); \
			SHA2_STEP2(C, D, E, F, G, H, A, B, in, 14); \
			SHA2_STEP2(B, C, D, E, F, G, H, A, in, 15); \
		} \
		(r)[0] = SPH_T32((r)[0] + A); \
		(r)[1] = SPH_T32((r)[1] + B); \
		(r)[2] = SPH_T32((r)[2] + C); \
		(r)[3] = SPH_T32((r)[3] + D); \
		(r)[4] = SPH_T32((r)[4] + E); \
		(r)[5] = SPH_T32((r)[5] + F); \
		(r)[6] = SPH_T32((r)[6] + G); \
		(r)[7] = SPH_T32((r)[7] + H); \
	} while (0)

#else

#define SHA2_ROUND_BODY(in, r) do { \
		sph_u32 A, B, C, D, E, F, G, H, T1, T2; \
		sph_u32 W00, W01, W02, W03, W04, W05, W06, W07; \
		sph_u32 W08, W09, W10, W11, W12, W13, W14, W15; \
 \
		A = (r)[0]; \
		B = (r)[1]; \
		C = (r)[2]; \
		D = (r)[3]; \
		E = (r)[4]; \
		F = (r)[5]; \
		G = (r)[6]; \
		H = (r)[7]; \
		W00 = in(0); \
		T1 = SPH_T32(H + BSG2_1(E) + CH(E, F, G) \
			+ SPH_C32(0x428A2F98) + W00); \
		T2 = SPH_T32(BSG2_0(A) + MAJ(A, B, C)); \
		D = SPH_T32(D + T1); \
		H = SPH_T32(T1 + T2); \
		W01 = in(1); \
		T1 = SPH_T32(G + BSG2_1(D) + CH(D, E, F) \
			+ SPH_C32(0x71374491) + W01); \
		T2 = SPH_T32(BSG2_0(H) + MAJ(H, A, B)); \
		C = SPH_T32(C + T1); \
		G = SPH_T32(T1 + T2); \
		W02 = in(2); \
		T1 = SPH_T32(F + BSG2_1(C) + CH(C, D, E) \
			+ SPH_C32(0xB5C0FBCF) + W02); \
		T2 = SPH_T32(BSG2_0(G) + MAJ(G, H, A)); \
		B = SPH_T32(B + T1); \
		F = SPH_T32(T1 + T2); \
		W03 = in(3); \
		T1 = SPH_T32(E + BSG2_1(B) + CH(B, C, D) \
			+ SPH_C32(0xE9B5DBA5) + W03); \
		T2 = SPH_T32(BSG2_0(F) + MAJ(F, G, H)); \
		A = SPH_T32(A + T1); \
		E = SPH_T32(T1 + T2); \
		W04 = in(4); \
		T1 = SPH_T32(D + BSG2_1(A) + CH(A, B, C) \
			+ SPH_C32(0x3956C25B) + W04); \
		T2 = SPH_T32(BSG2_0(E) + MAJ(E, F, G)); \
		H = SPH_T32(H + T1); \
		D = SPH_T32(T1 + T2); \
		W05 = in(5); \
		T1 = SPH_T32(C + BSG2_1(H) + CH(H, A, B) \
			+ SPH_C32(0x59F111F1) + W05); \
		T2 = SPH_T32(BSG2_0(D) + MAJ(D, E, F)); \
		G = SPH_T32(G + T1); \
		C = SPH_T32(T1 + T2); \
		W06 = in(6); \
		T1 = SPH_T32(B + BSG2_1(G) + CH(G, H, A) \
			+ SPH_C32(0x923F82A4) + W06); \
		T2 = SPH_T32(BSG2_0(C) + MAJ(C, D, E)); \
		F = SPH_T32(F + T1); \
		B = SPH_T32(T1 + T2); \
		W07 = in(7); \
		T1 = SPH_T32(A + BSG2_1(F) + CH(F, G, H) \
			+ SPH_C32(0xAB1C5ED5) + W07); \
		T2 = SPH_T32(BSG2_0(B) + MAJ(B, C, D)); \
		E = SPH_T32(E + T1); \
		A = SPH_T32(T1 + T2); \
		W08 = in(8); \
		T1 = SPH_T32(H + BSG2_1(E) + CH(E, F, G) \
			+ SPH_C32(0xD807AA98) + W08); \
		T2 = SPH_T32(BSG2_0(A) + MAJ(A, B, C)); \
		D = SPH_T32(D + T1); \
		H = SPH_T32(T1 + T2); \
		W09 = in(9); \
		T1 = SPH_T32(G + BSG2_1(D) + CH(D, E, F) \
			+ SPH_C32(0x12835B01) + W09); \
		T2 = SPH_T32(BSG2_0(H) + MAJ(H, A, B)); \
		C = SPH_T32(C + T1); \
		G = SPH_T32(T1 + T2); \
		W10 = in(10); \
		T1 = SPH_T32(F + BSG2_1(C) + CH(C, D, E) \
			+ SPH_C32(0x243185BE) + W10); \
		T2 = SPH_T32(BSG2_0(G) + MAJ(G, H, A)); \
		B = SPH_T32(B + T1); \
		F = SPH_T32(T1 + T2); \
		W11 = in(11); \
		T1 = SPH_T32(E + BSG2_1(B) + CH(B, C, D) \
			+ SPH_C32(0x550C7DC3) + W11); \
		T2 = SPH_T32(BSG2_0(F) + MAJ(F, G, H)); \
		A = SPH_T32(A + T1); \
		E = SPH_T32(T1 + T2); \
		W12 = in(12); \
		T1 = SPH_T32(D + BSG2_1(A) + CH(A, B, C) \
			+ SPH_C32(0x72BE5D74) + W12); \
		T2 = SPH_T32(BSG2_0(E) + MAJ(E, F, G)); \
		H = SPH_T32(H + T1); \
		D = SPH_T32(T1 + T2); \
		W13 = in(13); \
		T1 = SPH_T32(C + BSG2_1(H) + CH(H, A, B) \
			+ SPH_C32(0x80DEB1FE) + W13); \
		T2 = SPH_T32(BSG2_0(D) + MAJ(D, E, F)); \
		G = SPH_T32(G + T1); \
		C = SPH_T32(T1 + T2); \
		W14 = in(14); \
		T1 = SPH_T32(B + BSG2_1(G) + CH(G, H, A) \
			+ SPH_C32(0x9BDC06A7) + W14); \
		T2 = SPH_T32(BSG2_0(C) + MAJ(C, D, E)); \
		F = SPH_T32(F + T1); \
		B = SPH_T32(T1 + T2); \
		W15 = in(15); \
		T1 = SPH_T32(A + BSG2_1(F) + CH(F, G, H) \
			+ SPH_C32(0xC19BF174) + W15); \
		T2 = SPH_T32(BSG2_0(B) + MAJ(B, C, D)); \
		E = SPH_T32(E + T1); \
		A = SPH_T32(T1 + T2); \
		W00 = SPH_T32(SSG2_1(W14) + W09 + SSG2_0(W01) + W00); \
		T1 = SPH_T32(H + BSG2_1(E) + CH(E, F, G) \
			+ SPH_C32(0xE49B69C1) + W00); \
		T2 = SPH_T32(BSG2_0(A) + MAJ(A, B, C)); \
		D = SPH_T32(D + T1); \
		H = SPH_T32(T1 + T2); \
		W01 = SPH_T32(SSG2_1(W15) + W10 + SSG2_0(W02) + W01); \
		T1 = SPH_T32(G + BSG2_1(D) + CH(D, E, F) \
			+ SPH_C32(0xEFBE4786) + W01); \
		T2 = SPH_T32(BSG2_0(H) + MAJ(H, A, B)); \
		C = SPH_T32(C + T1); \
		G = SPH_T32(T1 + T2); \
		W02 = SPH_T32(SSG2_1(W00) + W11 + SSG2_0(W03) + W02); \
		T1 = SPH_T32(F + BSG2_1(C) + CH(C, D, E) \
			+ SPH_C32(0x0FC19DC6) + W02); \
		T2 = SPH_T32(BSG2_0(G) + MAJ(G, H, A)); \
		B = SPH_T32(B + T1); \
		F = SPH_T32(T1 + T2); \
		W03 = SPH_T32(SSG2_1(W01) + W12 + SSG2_0(W04) + W03); \
		T1 = SPH_T32(E + BSG2_1(B) + CH(B, C, D) \
			+ SPH_C32(0x240CA1CC) + W03); \
		T2 = SPH_T32(BSG2_0(F) + MAJ(F, G, H)); \
		A = SPH_T32(A + T1); \
		E = SPH_T32(T1 + T2); \
		W04 = SPH_T32(SSG2_1(W02) + W13 + SSG2_0(W05) + W04); \
		T1 = SPH_T32(D + BSG2_1(A) + CH(A, B, C) \
			+ SPH_C32(0x2DE92C6F) + W04); \
		T2 = SPH_T32(BSG2_0(E) + MAJ(E, F, G)); \
		H = SPH_T32(H + T1); \
		D = SPH_T32(T1 + T2); \
		W05 = SPH_T32(SSG2_1(W03) + W14 + SSG2_0(W06) + W05); \
		T1 = SPH_T32(C + BSG2_1(H) + CH(H, A, B) \
			+ SPH_C32(0x4A7484AA) + W05); \
		T2 = SPH_T32(BSG2_0(D) + MAJ(D, E, F)); \
		G = SPH_T32(G + T1); \
		C = SPH_T32(T1 + T2); \
		W06 = SPH_T32(SSG2_1(W04) + W15 + SSG2_0(W07) + W06); \
		T1 = SPH_T32(B + BSG2_1(G) + CH(G, H, A) \
			+ SPH_C32(0x5CB0A9DC) + W06); \
		T2 = SPH_T32(BSG2_0(C) + MAJ(C, D, E)); \
		F = SPH_T32(F + T1); \
		B = SPH_T32(T1 + T2); \
		W07 = SPH_T32(SSG2_1(W05) + W00 + SSG2_0(W08) + W07); \
		T1 = SPH_T32(A + BSG2_1(F) + CH(F, G, H) \
			+ SPH_C32(0x76F988DA) + W07); \
		T2 = SPH_T32(BSG2_0(B) + MAJ(B, C, D)); \
		E = SPH_T32(E + T1); \
		A = SPH_T32(T1 + T2); \
		W08 = SPH_T32(SSG2_1(W06) + W01 + SSG2_0(W09) + W08); \
		T1 = SPH_T32(H + BSG2_1(E) + CH(E, F, G) \
			+ SPH_C32(0x983E5152) + W08); \
		T2 = SPH_T32(BSG2_0(A) + MAJ(A, B, C)); \
		D = SPH_T32(D + T1); \
		H = SPH_T32(T1 + T2); \
		W09 = SPH_T32(SSG2_1(W07) + W02 + SSG2_0(W10) + W09); \
		T1 = SPH_T32(G + BSG2_1(D) + CH(D, E, F) \
			+ SPH_C32(0xA831C66D) + W09); \
		T2 = SPH_T32(BSG2_0(H) + MAJ(H, A, B)); \
		C = SPH_T32(C + T1); \
		G = SPH_T32(T1 + T2); \
		W10 = SPH_T32(SSG2_1(W08) + W03 + SSG2_0(W11) + W10); \
		T1 = SPH_T32(F + BSG2_1(C) + CH(C, D, E) \
			+ SPH_C32(0xB00327C8) + W10); \
		T2 = SPH_T32(BSG2_0(G) + MAJ(G, H, A)); \
		B = SPH_T32(B + T1); \
		F = SPH_T32(T1 + T2); \
		W11 = SPH_T32(SSG2_1(W09) + W04 + SSG2_0(W12) + W11); \
		T1 = SPH_T32(E + BSG2_1(B) + CH(B, C, D) \
			+ SPH_C32(0xBF597FC7) + W11); \
		T2 = SPH_T32(BSG2_0(F) + MAJ(F, G, H)); \
		A = SPH_T32(A + T1); \
		E = SPH_T32(T1 + T2); \
		W12 = SPH_T32(SSG2_1(W10) + W05 + SSG2_0(W13) + W12); \
		T1 = SPH_T32(D + BSG2_1(A) + CH(A, B, C) \
			+ SPH_C32(0xC6E00BF3) + W12); \
		T2 = SPH_T32(BSG2_0(E) + MAJ(E, F, G)); \
		H = SPH_T32(H + T1); \
		D = SPH_T32(T1 + T2); \
		W13 = SPH_T32(SSG2_1(W11) + W06 + SSG2_0(W14) + W13); \
		T1 = SPH_T32(C + BSG2_1(H) + CH(H, A, B) \
			+ SPH_C32(0xD5A79147) + W13); \
		T2 = SPH_T32(BSG2_0(D) + MAJ(D, E, F)); \
		G = SPH_T32(G + T1); \
		C = SPH_T32(T1 + T2); \
		W14 = SPH_T32(SSG2_1(W12) + W07 + SSG2_0(W15) + W14); \
		T1 = SPH_T32(B + BSG2_1(G) + CH(G, H, A) \
			+ SPH_C32(0x06CA6351) + W14); \
		T2 = SPH_T32(BSG2_0(C) + MAJ(C, D, E)); \
		F = SPH_T32(F + T1); \
		B = SPH_T32(T1 + T2); \
		W15 = SPH_T32(SSG2_1(W13) + W08 + SSG2_0(W00) + W15); \
		T1 = SPH_T32(A + BSG2_1(F) + CH(F, G, H) \
			+ SPH_C32(0x14292967) + W15); \
		T2 = SPH_T32(BSG2_0(B) + MAJ(B, C, D)); \
		E = SPH_T32(E + T1); \
		A = SPH_T32(T1 + T2); \
		W00 = SPH_T32(SSG2_1(W14) + W09 + SSG2_0(W01) + W00); \
		T1 = SPH_T32(H + BSG2_1(E) + CH(E, F, G) \
			+ SPH_C32(0x27B70A85) + W00); \
		T2 = SPH_T32(BSG2_0(A) + MAJ(A, B, C)); \
		D = SPH_T32(D + T1); \
		H = SPH_T32(T1 + T2); \
		W01 = SPH_T32(SSG2_1(W15) + W10 + SSG2_0(W02) + W01); \
		T1 = SPH_T32(G + BSG2_1(D) + CH(D, E, F) \
			+ SPH_C32(0x2E1B2138) + W01); \
		T2 = SPH_T32(BSG2_0(H) + MAJ(H, A, B)); \
		C = SPH_T32(C + T1); \
		G = SPH_T32(T1 + T2); \
		W02 = SPH_T32(SSG2_1(W00) + W11 + SSG2_0(W03) + W02); \
		T1 = SPH_T32(F + BSG2_1(C) + CH(C, D, E) \
			+ SPH_C32(0x4D2C6DFC) + W02); \
		T2 = SPH_T32(BSG2_0(G) + MAJ(G, H, A)); \
		B = SPH_T32(B + T1); \
		F = SPH_T32(T1 + T2); \
		W03 = SPH_T32(SSG2_1(W01) + W12 + SSG2_0(W04) + W03); \
		T1 = SPH_T32(E + BSG2_1(B) + CH(B, C, D) \
			+ SPH_C32(0x53380D13) + W03); \
		T2 = SPH_T32(BSG2_0(F) + MAJ(F, G, H)); \
		A = SPH_T32(A + T1); \
		E = SPH_T32(T1 + T2); \
		W04 = SPH_T32(SSG2_1(W02) + W13 + SSG2_0(W05) + W04); \
		T1 = SPH_T32(D + BSG2_1(A) + CH(A, B, C) \
			+ SPH_C32(0x650A7354) + W04); \
		T2 = SPH_T32(BSG2_0(E) + MAJ(E, F, G)); \
		H = SPH_T32(H + T1); \
		D = SPH_T32(T1 + T2); \
		W05 = SPH_T32(SSG2_1(W03) + W14 + SSG2_0(W06) + W05); \
		T1 = SPH_T32(C + BSG2_1(H) + CH(H, A, B) \
			+ SPH_C32(0x766A0ABB) + W05); \
		T2 = SPH_T32(BSG2_0(D) + MAJ(D, E, F)); \
		G = SPH_T32(G + T1); \
		C = SPH_T32(T1 + T2); \
		W06 = SPH_T32(SSG2_1(W04) + W15 + SSG2_0(W07) + W06); \
		T1 = SPH_T32(B + BSG2_1(G) + CH(G, H, A) \
			+ SPH_C32(0x81C2C92E) + W06); \
		T2 = SPH_T32(BSG2_0(C) + MAJ(C, D, E)); \
		F = SPH_T32(F + T1); \
		B = SPH_T32(T1 + T2); \
		W07 = SPH_T32(SSG2_1(W05) + W00 + SSG2_0(W08) + W07); \
		T1 = SPH_T32(A + BSG2_1(F) + CH(F, G, H) \
			+ SPH_C32(0x92722C85) + W07); \
		T2 = SPH_T32(BSG2_0(B) + MAJ(B, C, D)); \
		E = SPH_T32(E + T1); \
		A = SPH_T32(T1 + T2); \
		W08 = SPH_T32(SSG2_1(W06) + W01 + SSG2_0(W09) + W08); \
		T1 = SPH_T32(H + BSG2_1(E) + CH(E, F, G) \
			+ SPH_C32(0xA2BFE8A1) + W08); \
		T2 = SPH_T32(BSG2_0(A) + MAJ(A, B, C)); \
		D = SPH_T32(D + T1); \
		H = SPH_T32(T1 + T2); \
		W09 = SPH_T32(SSG2_1(W07) + W02 + SSG2_0(W10) + W09); \
		T1 = SPH_T32(G + BSG2_1(D) + CH(D, E, F) \
			+ SPH_C32(0xA81A664B) + W09); \
		T2 = SPH_T32(BSG2_0(H) + MAJ(H, A, B)); \
		C = SPH_T32(C + T1); \
		G = SPH_T32(T1 + T2); \
		W10 = SPH_T32(SSG2_1(W08) + W03 + SSG2_0(W11) + W10); \
		T1 = SPH_T32(F + BSG2_1(C) + CH(C, D, E) \
			+ SPH_C32(0xC24B8B70) + W10); \
		T2 = SPH_T32(BSG2_0(G) + MAJ(G, H, A)); \
		B = SPH_T32(B + T1); \
		F = SPH_T32(T1 + T2); \
		W11 = SPH_T32(SSG2_1(W09) + W04 + SSG2_0(W12) + W11); \
		T1 = SPH_T32(E + BSG2_1(B) + CH(B, C, D) \
			+ SPH_C32(0xC76C51A3) + W11); \
		T2 = SPH_T32(BSG2_0(F) + MAJ(F, G, H)); \
		A = SPH_T32(A + T1); \
		E = SPH_T32(T1 + T2); \
		W12 = SPH_T32(SSG2_1(W10) + W05 + SSG2_0(W13) + W12); \
		T1 = SPH_T32(D + BSG2_1(A) + CH(A, B, C) \
			+ SPH_C32(0xD192E819) + W12); \
		T2 = SPH_T32(BSG2_0(E) + MAJ(E, F, G)); \
		H = SPH_T32(H + T1); \
		D = SPH_T32(T1 + T2); \
		W13 = SPH_T32(SSG2_1(W11) + W06 + SSG2_0(W14) + W13); \
		T1 = SPH_T32(C + BSG2_1(H) + CH(H, A, B) \
			+ SPH_C32(0xD6990624) + W13); \
		T2 = SPH_T32(BSG2_0(D) + MAJ(D, E, F)); \
		G = SPH_T32(G + T1); \
		C = SPH_T32(T1 + T2); \
		W14 = SPH_T32(SSG2_1(W12) + W07 + SSG2_0(W15) + W14); \
		T1 = SPH_T32(B + BSG2_1(G) + CH(G, H, A) \
			+ SPH_C32(0xF40E3585) + W14); \
		T2 = SPH_T32(BSG2_0(C) + MAJ(C, D, E)); \
		F = SPH_T32(F + T1); \
		B = SPH_T32(T1 + T2); \
		W15 = SPH_T32(SSG2_1(W13) + W08 + SSG2_0(W00) + W15); \
		T1 = SPH_T32(A + BSG2_1(F) + CH(F, G, H) \
			+ SPH_C32(0x106AA070) + W15); \
		T2 = SPH_T32(BSG2_0(B) + MAJ(B, C, D)); \
		E = SPH_T32(E + T1); \
		A = SPH_T32(T1 + T2); \
		W00 = SPH_T32(SSG2_1(W14) + W09 + SSG2_0(W01) + W00); \
		T1 = SPH_T32(H + BSG2_1(E) + CH(E, F, G) \
			+ SPH_C32(0x19A4C116) + W00); \
		T2 = SPH_T32(BSG2_0(A) + MAJ(A, B, C)); \
		D = SPH_T32(D + T1); \
		H = SPH_T32(T1 + T2); \
		W01 = SPH_T32(SSG2_1(W15) + W10 + SSG2_0(W02) + W01); \
		T1 = SPH_T32(G + BSG2_1(D) + CH(D, E, F) \
			+ SPH_C32(0x1E376C08) + W01); \
		T2 = SPH_T32(BSG2_0(H) + MAJ(H, A, B)); \
		C = SPH_T32(C + T1); \
		G = SPH_T32(T1 + T2); \
		W02 = SPH_T32(SSG2_1(W00) + W11 + SSG2_0(W03) + W02); \
		T1 = SPH_T32(F + BSG2_1(C) + CH(C, D, E) \
			+ SPH_C32(0x2748774C) + W02); \
		T2 = SPH_T32(BSG2_0(G) + MAJ(G, H, A)); \
		B = SPH_T32(B + T1); \
		F = SPH_T32(T1 + T2); \
		W03 = SPH_T32(SSG2_1(W01) + W12 + SSG2_0(W04) + W03); \
		T1 = SPH_T32(E + BSG2_1(B) + CH(B, C, D) \
			+ SPH_C32(0x34B0BCB5) + W03); \
		T2 = SPH_T32(BSG2_0(F) + MAJ(F, G, H)); \
		A = SPH_T32(A + T1); \
		E = SPH_T32(T1 + T2); \
		W04 = SPH_T32(SSG2_1(W02) + W13 + SSG2_0(W05) + W04); \
		T1 = SPH_T32(D + BSG2_1(A) + CH(A, B, C) \
			+ SPH_C32(0x391C0CB3) + W04); \
		T2 = SPH_T32(BSG2_0(E) + MAJ(E, F, G)); \
		H = SPH_T32(H + T1); \
		D = SPH_T32(T1 + T2); \
		W05 = SPH_T32(SSG2_1(W03) + W14 + SSG2_0(W06) + W05); \
		T1 = SPH_T32(C + BSG2_1(H) + CH(H, A, B) \
			+ SPH_C32(0x4ED8AA4A) + W05); \
		T2 = SPH_T32(BSG2_0(D) + MAJ(D, E, F)); \
		G = SPH_T32(G + T1); \
		C = SPH_T32(T1 + T2); \
		W06 = SPH_T32(SSG2_1(W04) + W15 + SSG2_0(W07) + W06); \
		T1 = SPH_T32(B + BSG2_1(G) + CH(G, H, A) \
			+ SPH_C32(0x5B9CCA4F) + W06); \
		T2 = SPH_T32(BSG2_0(C) + MAJ(C, D, E)); \
		F = SPH_T32(F + T1); \
		B = SPH_T32(T1 + T2); \
		W07 = SPH_T32(SSG2_1(W05) + W00 + SSG2_0(W08) + W07); \
		T1 = SPH_T32(A + BSG2_1(F) + CH(F, G, H) \
			+ SPH_C32(0x682E6FF3) + W07); \
		T2 = SPH_T32(BSG2_0(B) + MAJ(B, C, D)); \
		E = SPH_T32(E + T1); \
		A = SPH_T32(T1 + T2); \
		W08 = SPH_T32(SSG2_1(W06) + W01 + SSG2_0(W09) + W08); \
		T1 = SPH_T32(H + BSG2_1(E) + CH(E, F, G) \
			+ SPH_C32(0x748F82EE) + W08); \
		T2 = SPH_T32(BSG2_0(A) + MAJ(A, B, C)); \
		D = SPH_T32(D + T1); \
		H = SPH_T32(T1 + T2); \
		W09 = SPH_T32(SSG2_1(W07) + W02 + SSG2_0(W10) + W09); \
		T1 = SPH_T32(G + BSG2_1(D) + CH(D, E, F) \
			+ SPH_C32(0x78A5636F) + W09); \
		T2 = SPH_T32(BSG2_0(H) + MAJ(H, A, B)); \
		C = SPH_T32(C + T1); \
		G = SPH_T32(T1 + T2); \
		W10 = SPH_T32(SSG2_1(W08) + W03 + SSG2_0(W11) + W10); \
		T1 = SPH_T32(F + BSG2_1(C) + CH(C, D, E) \
			+ SPH_C32(0x84C87814) + W10); \
		T2 = SPH_T32(BSG2_0(G) + MAJ(G, H, A)); \
		B = SPH_T32(B + T1); \
		F = SPH_T32(T1 + T2); \
		W11 = SPH_T32(SSG2_1(W09) + W04 + SSG2_0(W12) + W11); \
		T1 = SPH_T32(E + BSG2_1(B) + CH(B, C, D) \
			+ SPH_C32(0x8CC70208) + W11); \
		T2 = SPH_T32(BSG2_0(F) + MAJ(F, G, H)); \
		A = SPH_T32(A + T1); \
		E = SPH_T32(T1 + T2); \
		W12 = SPH_T32(SSG2_1(W10) + W05 + SSG2_0(W13) + W12); \
		T1 = SPH_T32(D + BSG2_1(A) + CH(A, B, C) \
			+ SPH_C32(0x90BEFFFA) + W12); \
		T2 = SPH_T32(BSG2_0(E) + MAJ(E, F, G)); \
		H = SPH_T32(H + T1); \
		D = SPH_T32(T1 + T2); \
		W13 = SPH_T32(SSG2_1(W11) + W06 + SSG2_0(W14) + W13); \
		T1 = SPH_T32(C + BSG2_1(H) + CH(H, A, B) \
			+ SPH_C32(0xA4506CEB) + W13); \
		T2 = SPH_T32(BSG2_0(D) + MAJ(D, E, F)); \
		G = SPH_T32(G + T1); \
		C = SPH_T32(T1 + T2); \
		W14 = SPH_T32(SSG2_1(W12) + W07 + SSG2_0(W15) + W14); \
		T1 = SPH_T32(B + BSG2_1(G) + CH(G, H, A) \
			+ SPH_C32(0xBEF9A3F7) + W14); \
		T2 = SPH_T32(BSG2_0(C) + MAJ(C, D, E)); \
		F = SPH_T32(F + T1); \
		B = SPH_T32(T1 + T2); \
		W15 = SPH_T32(SSG2_1(W13) + W08 + SSG2_0(W00) + W15); \
		T1 = SPH_T32(A + BSG2_1(F) + CH(F, G, H) \
			+ SPH_C32(0xC67178F2) + W15); \
		T2 = SPH_T32(BSG2_0(B) + MAJ(B, C, D)); \
		E = SPH_T32(E + T1); \
		A = SPH_T32(T1 + T2); \
		(r)[0] = SPH_T32((r)[0] + A); \
		(r)[1] = SPH_T32((r)[1] + B); \
		(r)[2] = SPH_T32((r)[2] + C); \
		(r)[3] = SPH_T32((r)[3] + D); \
		(r)[4] = SPH_T32((r)[4] + E); \
		(r)[5] = SPH_T32((r)[5] + F); \
		(r)[6] = SPH_T32((r)[6] + G); \
		(r)[7] = SPH_T32((r)[7] + H); \
	} while (0)

#endif

/*
 * One round of SHA-224 / SHA-256. The data must be aligned for 32-bit access.
 */
static void
sha2_round(const unsigned char *data, sph_u32 r[8])
{
#define SHA2_IN(x) sph_dec32be_aligned(data + (4 * (x)))
	SHA2_ROUND_BODY(SHA2_IN, r);
#undef SHA2_IN
}

/* see sph_sha2.h */
void
sph_sha224_init(void *cc)
{
	sph_sha224_context *sc;

	sc = cc;
	memcpy(sc->val, H224, sizeof H224);
#if SPH_64
	sc->count = 0;
#else
	sc->count_high = sc->count_low = 0;
#endif
}

/* see sph_sha2.h */
void
sph_sha256_init(void *cc)
{
	sph_sha256_context *sc;

	sc = cc;
	memcpy(sc->val, H256, sizeof H256);
#if SPH_64
	sc->count = 0;
#else
	sc->count_high = sc->count_low = 0;
#endif
}

#define RFUN sha2_round
#define HASH sha224
#define BE32 1
#include "sph/md_helper.c"

/* see sph_sha2.h */
void
sph_sha224_close(void *cc, void *dst)
{
	sha224_close(cc, dst, 7);
	sph_sha224_init(cc);
}

/* see sph_sha2.h */
void
sph_sha224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
	sha224_addbits_and_close(cc, ub, n, dst, 7);
	sph_sha224_init(cc);
}

/* see sph_sha2.h */
void
sph_sha256_close(void *cc, void *dst)
{
	sha224_close(cc, dst, 8);
	sph_sha256_init(cc);
}

/* see sph_sha2.h */
void
sph_sha256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
	sha224_addbits_and_close(cc, ub, n, dst, 8);
	sph_sha256_init(cc);
}

/* see sph_sha2.h */
void
sph_sha224_comp(const sph_u32 msg[16], sph_u32 val[8])
{
#define SHA2_IN(x) msg[x]
	SHA2_ROUND_BODY(SHA2_IN, val);
#undef SHA2_IN
}

qpdf-7.1.0/libqpdf/sha2big.c

/* $Id: sha2big.c 216 2010-06-08 09:46:57Z tp $ */
/*
 * SHA-384 / SHA-512 implementation.
 *
 * ==========================(LICENSE BEGIN)============================
 *
 * Copyright (c) 2007-2010 Projet RNRT SAPHIR
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * ===========================(LICENSE END)=============================
 *
 * @author Thomas Pornin <thomas.pornin@cryptolog.com>
 */

#include <stddef.h>
#include <string.h>

#include "sph/sph_sha2.h"

#if SPH_64

#define CH(X, Y, Z) ((((Y) ^ (Z)) & (X)) ^ (Z))
#define MAJ(X, Y, Z) (((X) & (Y)) | (((X) | (Y)) & (Z)))

#define ROTR64 SPH_ROTR64

#define BSG5_0(x) (ROTR64(x, 28) ^ ROTR64(x, 34) ^ ROTR64(x, 39))
#define BSG5_1(x) (ROTR64(x, 14) ^ ROTR64(x, 18) ^ ROTR64(x, 41))
#define SSG5_0(x) (ROTR64(x, 1) ^ ROTR64(x, 8) ^ SPH_T64((x) >> 7))
#define SSG5_1(x) (ROTR64(x, 19) ^ ROTR64(x, 61) ^ SPH_T64((x) >> 6))

static const sph_u64 K512[80] = {
	SPH_C64(0x428A2F98D728AE22), SPH_C64(0x7137449123EF65CD),
	SPH_C64(0xB5C0FBCFEC4D3B2F), SPH_C64(0xE9B5DBA58189DBBC),
	SPH_C64(0x3956C25BF348B538), SPH_C64(0x59F111F1B605D019),
	SPH_C64(0x923F82A4AF194F9B), SPH_C64(0xAB1C5ED5DA6D8118),
	SPH_C64(0xD807AA98A3030242), SPH_C64(0x12835B0145706FBE),
	SPH_C64(0x243185BE4EE4B28C), SPH_C64(0x550C7DC3D5FFB4E2),
	SPH_C64(0x72BE5D74F27B896F), SPH_C64(0x80DEB1FE3B1696B1),
	SPH_C64(0x9BDC06A725C71235), SPH_C64(0xC19BF174CF692694),
	SPH_C64(0xE49B69C19EF14AD2), SPH_C64(0xEFBE4786384F25E3),
	SPH_C64(0x0FC19DC68B8CD5B5), SPH_C64(0x240CA1CC77AC9C65),
	SPH_C64(0x2DE92C6F592B0275), SPH_C64(0x4A7484AA6EA6E483),
	SPH_C64(0x5CB0A9DCBD41FBD4), SPH_C64(0x76F988DA831153B5),
	SPH_C64(0x983E5152EE66DFAB), SPH_C64(0xA831C66D2DB43210),
	SPH_C64(0xB00327C898FB213F), SPH_C64(0xBF597FC7BEEF0EE4),
	SPH_C64(0xC6E00BF33DA88FC2), SPH_C64(0xD5A79147930AA725),
	SPH_C64(0x06CA6351E003826F), SPH_C64(0x142929670A0E6E70),
	SPH_C64(0x27B70A8546D22FFC), SPH_C64(0x2E1B21385C26C926),
	SPH_C64(0x4D2C6DFC5AC42AED), SPH_C64(0x53380D139D95B3DF),
	SPH_C64(0x650A73548BAF63DE), SPH_C64(0x766A0ABB3C77B2A8),
	SPH_C64(0x81C2C92E47EDAEE6), SPH_C64(0x92722C851482353B),
	SPH_C64(0xA2BFE8A14CF10364), SPH_C64(0xA81A664BBC423001),
	SPH_C64(0xC24B8B70D0F89791), SPH_C64(0xC76C51A30654BE30),
	SPH_C64(0xD192E819D6EF5218), SPH_C64(0xD69906245565A910),
	SPH_C64(0xF40E35855771202A), SPH_C64(0x106AA07032BBD1B8),
	SPH_C64(0x19A4C116B8D2D0C8), SPH_C64(0x1E376C085141AB53),
	SPH_C64(0x2748774CDF8EEB99), SPH_C64(0x34B0BCB5E19B48A8),
	SPH_C64(0x391C0CB3C5C95A63), SPH_C64(0x4ED8AA4AE3418ACB),
	SPH_C64(0x5B9CCA4F7763E373), SPH_C64(0x682E6FF3D6B2B8A3),
	SPH_C64(0x748F82EE5DEFB2FC), SPH_C64(0x78A5636F43172F60),
	SPH_C64(0x84C87814A1F0AB72), SPH_C64(0x8CC702081A6439EC),
	SPH_C64(0x90BEFFFA23631E28), SPH_C64(0xA4506CEBDE82BDE9),
	SPH_C64(0xBEF9A3F7B2C67915), SPH_C64(0xC67178F2E372532B),
	SPH_C64(0xCA273ECEEA26619C), SPH_C64(0xD186B8C721C0C207),
	SPH_C64(0xEADA7DD6CDE0EB1E), SPH_C64(0xF57D4F7FEE6ED178),
	SPH_C64(0x06F067AA72176FBA), SPH_C64(0x0A637DC5A2C898A6),
	SPH_C64(0x113F9804BEF90DAE), SPH_C64(0x1B710B35131C471B),
	SPH_C64(0x28DB77F523047D84), SPH_C64(0x32CAAB7B40C72493),
	SPH_C64(0x3C9EBE0A15C9BEBC), SPH_C64(0x431D67C49C100D4C),
	SPH_C64(0x4CC5D4BECB3E42B6), SPH_C64(0x597F299CFC657E2A),
	SPH_C64(0x5FCB6FAB3AD6FAEC), SPH_C64(0x6C44198C4A475817)
};

static const sph_u64 H384[8] = {
	SPH_C64(0xCBBB9D5DC1059ED8), SPH_C64(0x629A292A367CD507),
	SPH_C64(0x9159015A3070DD17), SPH_C64(0x152FECD8F70E5939),
	SPH_C64(0x67332667FFC00B31), SPH_C64(0x8EB44A8768581511),
	SPH_C64(0xDB0C2E0D64F98FA7), SPH_C64(0x47B5481DBEFA4FA4)
};

static const sph_u64 H512[8] = {
	SPH_C64(0x6A09E667F3BCC908), SPH_C64(0xBB67AE8584CAA73B),
	SPH_C64(0x3C6EF372FE94F82B), SPH_C64(0xA54FF53A5F1D36F1),
	SPH_C64(0x510E527FADE682D1), SPH_C64(0x9B05688C2B3E6C1F),
	SPH_C64(0x1F83D9ABFB41BD6B), SPH_C64(0x5BE0CD19137E2179)
};

/*
 * This macro defines the body for a SHA-384 / SHA-512 compression function
 * implementation. The "in" parameter should evaluate, when applied to a
 * numerical input parameter from 0 to 15, to an expression which yields
 * the corresponding input block. The "r" parameter should evaluate to
 * an array or pointer expression designating the array of 8 words which
 * contains the input and output of the compression function.
 *
 * SHA-512 is hard for the compiler. If the loop is completely unrolled,
 * then the code will be quite huge (possibly more than 100 kB), and the
 * performance will be degraded due to cache misses on the code. We
 * unroll only eight steps, which avoids all needless copies when
 * 64-bit registers are swapped.
 */

#define SHA3_STEP(A, B, C, D, E, F, G, H, i) do { \
		sph_u64 T1, T2; \
		T1 = SPH_T64(H + BSG5_1(E) + CH(E, F, G) + K512[i] + W[i]); \
		T2 = SPH_T64(BSG5_0(A) + MAJ(A, B, C)); \
		D = SPH_T64(D + T1); \
		H = SPH_T64(T1 + T2); \
	} while (0)

#define SHA3_ROUND_BODY(in, r) do { \
		int i; \
		sph_u64 A, B, C, D, E, F, G, H; \
		sph_u64 W[80]; \
 \
 		for (i = 0; i < 16; i ++) \
			W[i] = in(i); \
		for (i = 16; i < 80; i ++) \
 			W[i] = SPH_T64(SSG5_1(W[i - 2]) + W[i - 7] \
				+ SSG5_0(W[i - 15]) + W[i - 16]); \
		A = (r)[0]; \
		B = (r)[1]; \
		C = (r)[2]; \
		D = (r)[3]; \
		E = (r)[4]; \
		F = (r)[5]; \
		G = (r)[6]; \
		H = (r)[7]; \
		for (i = 0; i < 80; i += 8) { \
			SHA3_STEP(A, B, C, D, E, F, G, H, i + 0); \
			SHA3_STEP(H, A, B, C, D, E, F, G, i + 1); \
			SHA3_STEP(G, H, A, B, C, D, E, F, i + 2); \
			SHA3_STEP(F, G, H, A, B, C, D, E, i + 3); \
			SHA3_STEP(E, F, G, H, A, B, C, D, i + 4); \
			SHA3_STEP(D, E, F, G, H, A, B, C, i + 5); \
			SHA3_STEP(C, D, E, F, G, H, A, B, i + 6); \
			SHA3_STEP(B, C, D, E, F, G, H, A, i + 7); \
		} \
		(r)[0] = SPH_T64((r)[0] + A); \
		(r)[1] = SPH_T64((r)[1] + B); \
		(r)[2] = SPH_T64((r)[2] + C); \
		(r)[3] = SPH_T64((r)[3] + D); \
		(r)[4] = SPH_T64((r)[4] + E); \
		(r)[5] = SPH_T64((r)[5] + F); \
		(r)[6] = SPH_T64((r)[6] + G); \
		(r)[7] = SPH_T64((r)[7] + H); \
	} while (0)

/*
 * One round of SHA-384 / SHA-512. The data must be aligned for 64-bit access.
 */
static void
sha3_round(const unsigned char *data, sph_u64 r[8])
{
#define SHA3_IN(x) sph_dec64be_aligned(data + (8 * (x)))
	SHA3_ROUND_BODY(SHA3_IN, r);
#undef SHA3_IN
}

/* see sph_sha3.h */
void
sph_sha384_init(void *cc)
{
	sph_sha384_context *sc;

	sc = cc;
	memcpy(sc->val, H384, sizeof H384);
	sc->count = 0;
}

/* see sph_sha3.h */
void
sph_sha512_init(void *cc)
{
	sph_sha512_context *sc;

	sc = cc;
	memcpy(sc->val, H512, sizeof H512);
	sc->count = 0;
}

#define RFUN sha3_round
#define HASH sha384
#define BE64 1
#include "sph/md_helper.c"

/* see sph_sha3.h */
void
sph_sha384_close(void *cc, void *dst)
{
	sha384_close(cc, dst, 6);
	sph_sha384_init(cc);
}

/* see sph_sha3.h */
void
sph_sha384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
	sha384_addbits_and_close(cc, ub, n, dst, 6);
	sph_sha384_init(cc);
}

/* see sph_sha3.h */
void
sph_sha512_close(void *cc, void *dst)
{
	sha384_close(cc, dst, 8);
	sph_sha512_init(cc);
}

/* see sph_sha3.h */
void
sph_sha512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
	sha384_addbits_and_close(cc, ub, n, dst, 8);
	sph_sha512_init(cc);
}

/* see sph_sha3.h */
void
sph_sha384_comp(const sph_u64 msg[16], sph_u64 val[8])
{
#define SHA3_IN(x) msg[x]
	SHA3_ROUND_BODY(SHA3_IN, val);
#undef SHA3_IN
}

#endif

qpdf-7.1.0/libqpdf/Pl_DCT.cc

#include <qpdf/Pl_DCT.hh>

#include <qpdf/QUtil.hh>
#include <qpdf/QTC.hh>
#include <setjmp.h>
#include <string>
#include <stdexcept>
#include <cstdlib>

#if BITS_IN_JSAMPLE != 8
error "qpdf does not support libjpeg built with BITS_IN_JSAMPLE != 8"
#endif

struct qpdf_jpeg_error_mgr
{
 struct jpeg_error_mgr pub;
 jmp_buf jmpbuf;
 std::string msg;
};

static void
error_handler(j_common_ptr cinfo)
{
 qpdf_jpeg_error_mgr* jerr =
 reinterpret_cast<qpdf_jpeg_error_mgr*>(cinfo->err);
 char buf[JMSG_LENGTH_MAX];
 (*cinfo->err->format_message)(cinfo, buf);
 jerr->msg = buf;
 longjmp(jerr->jmpbuf, 1);
}

Pl_DCT::Pl_DCT(char const* identifier, Pipeline* next) :
 Pipeline(identifier, next),
 action(a_decompress),
 buf("DCT compressed image")
{
}

Pl_DCT::Pl_DCT(char const* identifier, Pipeline* next,
 JDIMENSION image_width,
 JDIMENSION image_height,
 int components,
 J_COLOR_SPACE color_space,
 CompressConfig* config_callback) :
 Pipeline(identifier, next),
 action(a_compress),
 buf("DCT uncompressed image"),
 image_width(image_width),
 image_height(image_height),
 components(components),
 color_space(color_space),
 config_callback(config_callback)
{
}

Pl_DCT::~Pl_DCT()
{
}

void
Pl_DCT::write(unsigned char* data, size_t len)
{
 this->buf.write(data, len);
}

void
Pl_DCT::finish()
{
 this->buf.finish();

 // Using a PointerHolder<Buffer> here and passing it into compress
 // and decompress causes a memory leak with setjmp/longjmp. Just
 // use a pointer and delete it.
 Buffer* b = this->buf.getBuffer();
 if (b->getSize() == 0)
 {
 // Special case: empty data will never succeed and probably
 // means we're calling finish a second time from an exception
 // handler.
 delete b;
 this->getNext()->finish();
 return;
 }

 struct jpeg_compress_struct cinfo_compress;
 struct jpeg_decompress_struct cinfo_decompress;
 struct qpdf_jpeg_error_mgr jerr;

 cinfo_compress.err = jpeg_std_error(&(jerr.pub));
 cinfo_decompress.err = jpeg_std_error(&(jerr.pub));
 jerr.pub.error_exit = error_handler;

 bool error = false;
 // The jpeg library is a "C" library, so we use setjmp and longjmp
 // for exception handling.
 if (setjmp(jerr.jmpbuf) == 0)
 {
 try
 {
 if (this->action == a_compress)
 {
 compress(reinterpret_cast<void*>(&cinfo_compress), b);
 }
 else
 {
 decompress(reinterpret_cast<void*>(&cinfo_decompress), b);
 }
 }
 catch (std::exception& e)
 {
 // Convert an exception back to a longjmp so we can ensure
 // that the right cleanup happens. This will get converted
 // back to an exception.
 jerr.msg = e.what();
 longjmp(jerr.jmpbuf, 1);
 }
 }
 else
 {
 error = true;
 }
 delete b;

 if (this->action == a_compress)
 {
 jpeg_destroy_compress(&cinfo_compress);
 }
 if (this->action == a_decompress)
 {
 jpeg_destroy_decompress(&cinfo_decompress);
 }
 if (error)
 {
 throw std::runtime_error(jerr.msg);
 }
}

struct dct_pipeline_dest
{
 struct jpeg_destination_mgr pub; /* public fields */
 unsigned char* buffer;
 size_t size;
 Pipeline* next;
};

static void
init_pipeline_destination(j_compress_ptr)
{
}

static boolean
empty_pipeline_output_buffer(j_compress_ptr cinfo)
{
 QTC::TC("libtests", "Pl_DCT empty_pipeline_output_buffer");
 dct_pipeline_dest* dest =
 reinterpret_cast<dct_pipeline_dest*>(cinfo->dest);
 dest->next->write(dest->buffer, dest->size);
 dest->pub.next_output_byte = dest->buffer;
 dest->pub.free_in_buffer = dest->size;
 return TRUE;
}

static void
term_pipeline_destination(j_compress_ptr cinfo)
{
 QTC::TC("libtests", "Pl_DCT term_pipeline_destination");
 dct_pipeline_dest* dest =
 reinterpret_cast<dct_pipeline_dest*>(cinfo->dest);
 dest->next->write(dest->buffer, dest->size - dest->pub.free_in_buffer);
}

static void
jpeg_pipeline_dest(j_compress_ptr cinfo,
 unsigned char* outbuffer, size_t size,
 Pipeline* next)
{
 cinfo->dest = static_cast<struct jpeg_destination_mgr *>(
 (*cinfo->mem->alloc_small)(reinterpret_cast<j_common_ptr>(cinfo),
 JPOOL_PERMANENT,
 sizeof(dct_pipeline_dest)));
 dct_pipeline_dest* dest =
 reinterpret_cast<dct_pipeline_dest*>(cinfo->dest);
 dest->pub.init_destination = init_pipeline_destination;
 dest->pub.empty_output_buffer = empty_pipeline_output_buffer;
 dest->pub.term_destination = term_pipeline_destination;
 dest->pub.next_output_byte = dest->buffer = outbuffer;
 dest->pub.free_in_buffer = dest->size = size;
 dest->next = next;
}

static void
init_buffer_source(j_decompress_ptr)
{
}

static boolean
fill_buffer_input_buffer(j_decompress_ptr)
{
 // The whole JPEG data is expected to reside in the supplied memory
 // buffer, so any request for more data beyond the given buffer size
 // is treated as an error.
 throw std::runtime_error("invalid jpeg data reading from buffer");
 return TRUE;
}

static void
skip_buffer_input_data(j_decompress_ptr cinfo, long num_bytes)
{
 if (num_bytes < 0)
 {
 throw std::runtime_error(
 "reading jpeg: jpeg library requested"
 " skipping a negative number of bytes");
 }
 size_t to_skip = static_cast<size_t>(num_bytes);
 if ((to_skip > 0) && (to_skip <= cinfo->src->bytes_in_buffer))
 {
 cinfo->src->next_input_byte += to_skip;
 cinfo->src->bytes_in_buffer -= to_skip;
 }
 else if (to_skip != 0)
 {
 cinfo->src->next_input_byte += cinfo->src->bytes_in_buffer;
 cinfo->src->bytes_in_buffer = 0;
 }
}

static void
term_buffer_source(j_decompress_ptr)
{
}

static void
jpeg_buffer_src(j_decompress_ptr cinfo, Buffer* buffer)
{
 cinfo->src = reinterpret_cast<jpeg_source_mgr *>(
 (*cinfo->mem->alloc_small)(reinterpret_cast<j_common_ptr>(cinfo),
 JPOOL_PERMANENT,
 sizeof(jpeg_source_mgr)));

 jpeg_source_mgr* src = cinfo->src;
 src->init_source = init_buffer_source;
 src->fill_input_buffer = fill_buffer_input_buffer;
 src->skip_input_data = skip_buffer_input_data;
 src->resync_to_restart = jpeg_resync_to_restart; /* use default method */
 src->term_source = term_buffer_source;
 src->bytes_in_buffer = buffer->getSize();
 src->next_input_byte = buffer->getBuffer();
}

void
Pl_DCT::compress(void* cinfo_p, Buffer* b)
{
 struct jpeg_compress_struct* cinfo =
 reinterpret_cast<jpeg_compress_struct*>(cinfo_p);

#if ((defined(__GNUC__) && ((__GNUC__ * 100) + __GNUC_MINOR__) >= 406) || \
 defined(__clang__))
pragma GCC diagnostic push
pragma GCC diagnostic ignored "-Wold-style-cast"
#endif
 jpeg_create_compress(cinfo);
#if ((defined(__GNUC__) && ((__GNUC__ * 100) + __GNUC_MINOR__) >= 406) || \
 defined(__clang__))
pragma GCC diagnostic pop
#endif
 static int const BUF_SIZE = 65536;
 PointerHolder<unsigned char> outbuffer_ph(
 true, new unsigned char[BUF_SIZE]);
 unsigned char* outbuffer = outbuffer_ph.getPointer();
 jpeg_pipeline_dest(cinfo, outbuffer, BUF_SIZE, this->getNext());

 cinfo->image_width = this->image_width;
 cinfo->image_height = this->image_height;
 cinfo->input_components = this->components;
 cinfo->in_color_space = this->color_space;
 jpeg_set_defaults(cinfo);
 if (this->config_callback)
 {
 this->config_callback->apply(cinfo);
 }

 jpeg_start_compress(cinfo, TRUE);

 int width = cinfo->image_width * cinfo->input_components;
 size_t expected_size =
 cinfo->image_height * cinfo->image_width * cinfo->input_components;
 if (b->getSize() != expected_size)
 {
 throw std::runtime_error(
 "Pl_DCT: image buffer size = " +
 QUtil::int_to_string(b->getSize()) + "; expected size = " +
 QUtil::int_to_string(expected_size));
 }
 JSAMPROW row_pointer[1];
 unsigned char* buffer = b->getBuffer();
 while (cinfo->next_scanline < cinfo->image_height)
 {
 // We already verified that the buffer is big enough.
 row_pointer[0] = &buffer[cinfo->next_scanline * width];
 (void) jpeg_write_scanlines(cinfo, row_pointer, 1);
 }
 jpeg_finish_compress(cinfo);
 this->getNext()->finish();
}

void
Pl_DCT::decompress(void* cinfo_p, Buffer* b)
{
 struct jpeg_decompress_struct* cinfo =
 reinterpret_cast<jpeg_decompress_struct*>(cinfo_p);

#if ((defined(__GNUC__) && ((__GNUC__ * 100) + __GNUC_MINOR__) >= 406) || \
 defined(__clang__))
pragma GCC diagnostic push
pragma GCC diagnostic ignored "-Wold-style-cast"
#endif
 jpeg_create_decompress(cinfo);
#if ((defined(__GNUC__) && ((__GNUC__ * 100) + __GNUC_MINOR__) >= 406) || \
 defined(__clang__))
pragma GCC diagnostic pop
#endif
 jpeg_buffer_src(cinfo, b);

 (void) jpeg_read_header(cinfo, TRUE);
 (void) jpeg_calc_output_dimensions(cinfo);

 int width = cinfo->output_width * cinfo->output_components;
 JSAMPARRAY buffer = (*cinfo->mem->alloc_sarray)
 (reinterpret_cast<j_common_ptr>(cinfo), JPOOL_IMAGE, width, 1);

 (void) jpeg_start_decompress(cinfo);
 while (cinfo->output_scanline < cinfo->output_height)
 {
 (void) jpeg_read_scanlines(cinfo, buffer, 1);
 this->getNext()->write(reinterpret_cast<unsigned char*>(buffer[0]),
 width * sizeof(buffer[0][0]));
 }
 (void) jpeg_finish_decompress(cinfo);
 this->getNext()->finish();
}

qpdf-7.1.0/libqpdf/QPDF_Name.cc

#include <qpdf/QPDF_Name.hh>

#include <string.h>
#include <stdio.h>
#include <qpdf/QUtil.hh>

QPDF_Name::QPDF_Name(std::string const& name) :
 name(name)
{
}

QPDF_Name::~QPDF_Name()
{
}

std::string
QPDF_Name::normalizeName(std::string const& name)
{
 if (name.empty())
 {
	return name;
 }
 std::string result;
 result += name.at(0);
 for (unsigned int i = 1; i < name.length(); ++i)
 {
	char ch = name.at(i);
	// Don't use locale/ctype here; follow PDF spec guidelines.
	if (strchr("#()<>[]{}/%", ch) || (ch < 33) || (ch > 126))
	{
 result += "#" + QUtil::hex_encode(std::string(&ch, 1));
	}
	else
	{
	 result += ch;
	}
 }
 return result;
}

std::string
QPDF_Name::unparse()
{
 return normalizeName(this->name);
}

QPDFObject::object_type_e
QPDF_Name::getTypeCode() const
{
 return QPDFObject::ot_name;
}

char const*
QPDF_Name::getTypeName() const
{
 return "name";
}

std::string
QPDF_Name::getName() const
{
 return this->name;
}

qpdf-7.1.0/libqpdf/QPDFObjGen.cc

#include <qpdf/QPDFObjGen.hh>

QPDFObjGen::QPDFObjGen() :
 obj(0),
 gen(0)
{
}

QPDFObjGen::QPDFObjGen(int o, int g) :
 obj(o),
 gen(g)
{
}

bool
QPDFObjGen::operator<(QPDFObjGen const& rhs) const
{
 return ((this->obj < rhs.obj) ||
	 ((this->obj == rhs.obj) && (this->gen < rhs.gen)));
}

bool
QPDFObjGen::operator==(QPDFObjGen const& rhs) const
{
 return ((this->obj == rhs.obj) && (this->gen == rhs.gen));
}

int
QPDFObjGen::getObj() const
{
 return this->obj;
}

int
QPDFObjGen::getGen() const
{
 return this->gen;
}

qpdf-7.1.0/libqpdf/InsecureRandomDataProvider.cc

#include <qpdf/InsecureRandomDataProvider.hh>

#include <qpdf/qpdf-config.h>
#include <qpdf/QUtil.hh>
#include <stdlib.h>

InsecureRandomDataProvider::InsecureRandomDataProvider() :
 seeded_random(false)
{
}

InsecureRandomDataProvider::~InsecureRandomDataProvider()
{
}

void
InsecureRandomDataProvider::provideRandomData(unsigned char* data, size_t len)
{
 for (size_t i = 0; i < len; ++i)
 {
 data[i] = static_cast<unsigned char>((this->random() & 0xff0) >> 4);
 }
}

long
InsecureRandomDataProvider::random()
{
 if (! this->seeded_random)
 {
	// Seed the random number generator with something simple, but
	// just to be interesting, don't use the unmodified current
	// time. It would be better if this were a more secure seed.
 QUtil::srandom(QUtil::get_current_time() ^ 0xcccc);
	this->seeded_random = true;
 }

ifdef HAVE_RANDOM
 return ::random();
else
 return rand();
endif
}

RandomDataProvider*
InsecureRandomDataProvider::getInstance()
{
 static InsecureRandomDataProvider instance;
 return &instance;
}

qpdf-7.1.0/libqpdf/Pl_Discard.cc

#include <qpdf/Pl_Discard.hh>

// Exercised in md5 test suite

Pl_Discard::Pl_Discard() :
 Pipeline("discard", 0)
{
}

Pl_Discard::~Pl_Discard()
{
}

void
Pl_Discard::write(unsigned char* buf, size_t len)
{
}

void
Pl_Discard::finish()
{
}

qpdf-7.1.0/libqpdf/QPDF_Dictionary.cc

#include <qpdf/QPDF_Dictionary.hh>

#include <qpdf/QPDF_Null.hh>
#include <qpdf/QPDF_Name.hh>

QPDF_Dictionary::QPDF_Dictionary(
 std::map<std::string, QPDFObjectHandle> const& items) :
 items(items)
{
}

QPDF_Dictionary::~QPDF_Dictionary()
{
}

void
QPDF_Dictionary::releaseResolved()
{
 for (std::map<std::string, QPDFObjectHandle>::iterator iter =
	 this->items.begin();
	 iter != this->items.end(); ++iter)
 {
	QPDFObjectHandle::ReleaseResolver::releaseResolved((*iter).second);
 }
}

std::string
QPDF_Dictionary::unparse()
{
 std::string result = "<< ";
 for (std::map<std::string, QPDFObjectHandle>::iterator iter =
	 this->items.begin();
	 iter != this->items.end(); ++iter)
 {
	result += QPDF_Name::normalizeName((*iter).first) +
	 " " + (*iter).second.unparse() + " ";
 }
 result += ">>";
 return result;
}

QPDFObject::object_type_e
QPDF_Dictionary::getTypeCode() const
{
 return QPDFObject::ot_dictionary;
}

char const*
QPDF_Dictionary::getTypeName() const
{
 return "dictionary";
}

bool
QPDF_Dictionary::hasKey(std::string const& key)
{
 return ((this->items.count(key) > 0) &&
	 (! this->items[key].isNull()));
}

QPDFObjectHandle
QPDF_Dictionary::getKey(std::string const& key)
{
 // PDF spec says fetching a non-existent key from a dictionary
 // returns the null object.
 if (this->items.count(key))
 {
	// May be a null object
	return (*(this->items.find(key))).second;
 }
 else
 {
	return QPDFObjectHandle::newNull();
 }
}

std::set<std::string>
QPDF_Dictionary::getKeys()
{
 std::set<std::string> result;
 for (std::map<std::string, QPDFObjectHandle>::const_iterator iter =
	 this->items.begin();
	 iter != this->items.end(); ++iter)
 {
	if (hasKey((*iter).first))
	{
	 result.insert((*iter).first);
	}
 }
 return result;
}

std::map<std::string, QPDFObjectHandle> const&
QPDF_Dictionary::getAsMap() const
{

 return this->items;
}

void
QPDF_Dictionary::replaceKey(std::string const& key,
			 QPDFObjectHandle const& value)
{
 // add or replace value
 this->items[key] = value;
}

void
QPDF_Dictionary::removeKey(std::string const& key)
{
 // no-op if key does not exist
 this->items.erase(key);
}

void
QPDF_Dictionary::replaceOrRemoveKey(std::string const& key,
				 QPDFObjectHandle value)
{
 if (value.isNull())
 {
	removeKey(key);
 }
 else
 {
	replaceKey(key, value);
 }
}

qpdf-7.1.0/libqpdf/build.mk

			TARGETS_libqpdf = libqpdf/$(OUTPUT_DIR)/$(call libname,qpdf)

			

			INCLUDES_libqpdf = include libqpdf

			LDFLAGS_libqpdf = -Llibqpdf/$(OUTPUT_DIR)

			LIBS_libqpdf = -lqpdf

			

			SRCS_libqpdf = \

						libqpdf/BitStream.cc \

						libqpdf/BitWriter.cc \

						libqpdf/Buffer.cc \

						libqpdf/BufferInputSource.cc \

						libqpdf/FileInputSource.cc \

						libqpdf/InputSource.cc \

						libqpdf/InsecureRandomDataProvider.cc \

						libqpdf/MD5.cc \

						libqpdf/OffsetInputSource.cc \

						libqpdf/Pipeline.cc \

						libqpdf/Pl_AES_PDF.cc \

						libqpdf/Pl_ASCII85Decoder.cc \

						libqpdf/Pl_ASCIIHexDecoder.cc \

						libqpdf/Pl_Buffer.cc \

						libqpdf/Pl_Concatenate.cc \

						libqpdf/Pl_Count.cc \

						libqpdf/Pl_DCT.cc \

						libqpdf/Pl_Discard.cc \

						libqpdf/Pl_Flate.cc \

						libqpdf/Pl_LZWDecoder.cc \

						libqpdf/Pl_MD5.cc \

						libqpdf/Pl_PNGFilter.cc \

						libqpdf/Pl_QPDFTokenizer.cc \

						libqpdf/Pl_RC4.cc \

						libqpdf/Pl_RunLength.cc \

						libqpdf/Pl_SHA2.cc \

						libqpdf/Pl_StdioFile.cc \

						libqpdf/Pl_TIFFPredictor.cc \

						libqpdf/QPDF.cc \

						libqpdf/QPDFExc.cc \

						libqpdf/QPDFObjGen.cc \

						libqpdf/QPDFObject.cc \

						libqpdf/QPDFObjectHandle.cc \

						libqpdf/QPDFTokenizer.cc \

						libqpdf/QPDFWriter.cc \

						libqpdf/QPDFXRefEntry.cc \

						libqpdf/QPDF_Array.cc \

						libqpdf/QPDF_Bool.cc \

						libqpdf/QPDF_Dictionary.cc \

						libqpdf/QPDF_InlineImage.cc \

						libqpdf/QPDF_Integer.cc \

						libqpdf/QPDF_Name.cc \

						libqpdf/QPDF_Null.cc \

						libqpdf/QPDF_Operator.cc \

						libqpdf/QPDF_Real.cc \

						libqpdf/QPDF_Reserved.cc \

						libqpdf/QPDF_Stream.cc \

						libqpdf/QPDF_String.cc \

						libqpdf/QPDF_encryption.cc \

						libqpdf/QPDF_linearization.cc \

						libqpdf/QPDF_optimization.cc \

						libqpdf/QPDF_pages.cc \

						libqpdf/QTC.cc \

						libqpdf/QUtil.cc \

						libqpdf/RC4.cc \

						libqpdf/SecureRandomDataProvider.cc \

						libqpdf/qpdf-c.cc \

						libqpdf/rijndael.cc \

						libqpdf/sha2.c \

						libqpdf/sha2big.c

			

			# -----

			

			CCSRCS_libqpdf = $(filter %.cc,$(SRCS_libqpdf))

			CSRCS_libqpdf = $(filter %.c,$(SRCS_libqpdf))

			

			CCOBJS_libqpdf = $(call src_to_lobj,$(CCSRCS_libqpdf))

			COBJS_libqpdf = $(call c_src_to_lobj,$(CSRCS_libqpdf))

			OBJS_libqpdf = $(CCOBJS_libqpdf) $(COBJS_libqpdf)

			

			ifeq ($(GENDEPS),1)

			-include $(call lobj_to_dep,$(OBJS_libqpdf))

			endif

			

			$(CCOBJS_libqpdf): libqpdf/$(OUTPUT_DIR)/%.$(LOBJ): libqpdf/%.cc

						$(call libcompile,$<,$(INCLUDES_libqpdf))

			$(COBJS_libqpdf): libqpdf/$(OUTPUT_DIR)/%.$(LOBJ): libqpdf/%.c

						$(call c_libcompile,$<,$(INCLUDES_libqpdf))

			

			$(TARGETS_libqpdf): $(OBJS_libqpdf)

						$(call makelib,$(OBJS_libqpdf),$@,$(LDFLAGS),$(LIBS),$(LT_CURRENT),$(LT_REVISION),$(LT_AGE))

qpdf-7.1.0/libqpdf/SecureRandomDataProvider.cc

#include <qpdf/SecureRandomDataProvider.hh>

#include <qpdf/qpdf-config.h>
#include <qpdf/QUtil.hh>
#ifdef _WIN32
include <windows.h>
include <direct.h>
include <io.h>
ifndef SKIP_OS_SECURE_RANDOM
include <wincrypt.h>
endif
#endif

SecureRandomDataProvider::SecureRandomDataProvider()
{
}

SecureRandomDataProvider::~SecureRandomDataProvider()
{
}

#ifdef SKIP_OS_SECURE_RANDOM

void
SecureRandomDataProvider::provideRandomData(unsigned char* data, size_t len)
{
 throw std::logic_error("SecureRandomDataProvider::provideRandomData called when support was not compiled in");
}

RandomDataProvider*
SecureRandomDataProvider::getInstance()
{
 return 0;
}

#else

#ifdef _WIN32

class WindowsCryptProvider
{
 public:
 WindowsCryptProvider()
 {
 if (!CryptAcquireContext(&crypt_prov,
 "Container",
 NULL,
 PROV_RSA_FULL,
 0))
 {
#if ((defined(__GNUC__) && ((__GNUC__ * 100) + __GNUC_MINOR__) >= 406) || \
 defined(__clang__))
pragma GCC diagnostic push
pragma GCC diagnostic ignored "-Wold-style-cast"
pragma GCC diagnostic ignored "-Wsign-compare"
#endif
 if (GetLastError() == NTE_BAD_KEYSET)
#if ((defined(__GNUC__) && ((__GNUC__ * 100) + __GNUC_MINOR__) >= 406) || \
 defined(__clang__))
pragma GCC diagnostic pop
#endif
 {
 if (! CryptAcquireContext(&crypt_prov,
 "Container",
 NULL,
 PROV_RSA_FULL,
 CRYPT_NEWKEYSET))
 {
 throw std::runtime_error(
 "unable to acquire crypt context with new keyset");
 }
 }
 else
 {
 throw std::runtime_error("unable to acquire crypt context");
 }
 }
 }
 ~WindowsCryptProvider()
 {
 // Ignore error
 CryptReleaseContext(crypt_prov, 0);
 }

 HCRYPTPROV crypt_prov;
};
#endif

void
SecureRandomDataProvider::provideRandomData(unsigned char* data, size_t len)
{
#if defined(_WIN32)

 // Optimization: make the WindowsCryptProvider static as long as
 // it can be done in a thread-safe fashion.
 WindowsCryptProvider c;
 if (! CryptGenRandom(c.crypt_prov, len, reinterpret_cast<BYTE*>(data)))
 {
 throw std::runtime_error("unable to generate secure random data");
 }

#elif defined(RANDOM_DEVICE)

 // Optimization: wrap the file open and close in a class so that
 // the file is closed in a destructor, then make this static to
 // keep the file handle open. Only do this if it can be done in a
 // thread-safe fashion.
 FILE* f = QUtil::safe_fopen(RANDOM_DEVICE, "rb");
 size_t fr = fread(data, 1, len, f);
 fclose(f);
 if (fr != len)
 {
 throw std::runtime_error(
 "unable to read " +
 QUtil::int_to_string(len) +
 " bytes from " + std::string(RANDOM_DEVICE));
 }

#else

error "Don't know how to generate secure random numbers on this platform. See random number generation in the top-level README.md"

#endif
}

RandomDataProvider*
SecureRandomDataProvider::getInstance()
{
 static SecureRandomDataProvider instance;
 return &instance;
}

#endif

qpdf-7.1.0/libqpdf/QPDF_Array.cc

#include <qpdf/QPDF_Array.hh>
#include <stdexcept>

QPDF_Array::QPDF_Array(std::vector<QPDFObjectHandle> const& items) :
 items(items)
{
}

QPDF_Array::~QPDF_Array()
{
}

void
QPDF_Array::releaseResolved()
{
 for (std::vector<QPDFObjectHandle>::iterator iter = this->items.begin();
	 iter != this->items.end(); ++iter)
 {
	QPDFObjectHandle::ReleaseResolver::releaseResolved(*iter);
 }
}

std::string
QPDF_Array::unparse()
{
 std::string result = "[";
 for (std::vector<QPDFObjectHandle>::iterator iter = this->items.begin();
	 iter != this->items.end(); ++iter)
 {
	result += (*iter).unparse();
	result += " ";
 }
 result += "]";
 return result;
}

QPDFObject::object_type_e
QPDF_Array::getTypeCode() const
{
 return QPDFObject::ot_array;
}

char const*
QPDF_Array::getTypeName() const
{
 return "array";
}

int
QPDF_Array::getNItems() const
{
 return this->items.size();
}

QPDFObjectHandle
QPDF_Array::getItem(int n) const
{
 if ((n < 0) || (n >= static_cast<int>(this->items.size())))
 {
	throw std::logic_error(
	 "INTERNAL ERROR: bounds error accessing QPDF_Array element");
 }
 return this->items.at(n);
}

std::vector<QPDFObjectHandle> const&
QPDF_Array::getAsVector() const
{
 return this->items;
}

void
QPDF_Array::setItem(int n, QPDFObjectHandle const& oh)
{
 // Call getItem for bounds checking
 (void) getItem(n);
 this->items.at(n) = oh;
}

void
QPDF_Array::setFromVector(std::vector<QPDFObjectHandle> const& items)
{
 this->items = items;
}

void
QPDF_Array::insertItem(int at, QPDFObjectHandle const& item)
{
 // As special case, also allow insert beyond the end
 if ((at < 0) || (at > static_cast<int>(this->items.size())))
 {
	throw std::logic_error(
	 "INTERNAL ERROR: bounds error accessing QPDF_Array element");
 }
 this->items.insert(this->items.begin() + at, item);
}

void
QPDF_Array::appendItem(QPDFObjectHandle const& item)
{
 this->items.push_back(item);
}

void
QPDF_Array::eraseItem(int at)
{
 // Call getItem for bounds checking
 (void) getItem(at);
 this->items.erase(this->items.begin() + at);
}

qpdf-7.1.0/libqpdf/Pl_TIFFPredictor.cc

#include <qpdf/Pl_TIFFPredictor.hh>
#include <qpdf/QTC.hh>
#include <qpdf/BitStream.hh>
#include <qpdf/BitWriter.hh>
#include <stdexcept>
#include <vector>
#include <string.h>
#include <limits.h>

Pl_TIFFPredictor::Pl_TIFFPredictor(char const* identifier, Pipeline* next,
 action_e action, unsigned int columns,
 unsigned int samples_per_pixel,
 unsigned int bits_per_sample) :
 Pipeline(identifier, next),
 action(action),
 columns(columns),
 samples_per_pixel(samples_per_pixel),
 bits_per_sample(bits_per_sample),
 cur_row(0),
 pos(0)
{
 if (samples_per_pixel < 1)
 {
 throw std::runtime_error(
 "TIFFPredictor created with invalid samples_per_pixel");
 }
 if ((bits_per_sample < 1) ||
 (bits_per_sample > (8 * (sizeof(unsigned long long)))))
 {
 throw std::runtime_error(
 "TIFFPredictor created with invalid bits_per_sample");
 }
 unsigned long long bpr =
 ((columns * bits_per_sample * samples_per_pixel) + 7) / 8;
 if ((bpr == 0) || (bpr > (UINT_MAX - 1)))
 {
 throw std::runtime_error(
 "TIFFPredictor created with invalid columns value");
 }
 this->bytes_per_row = bpr & UINT_MAX;
 this->cur_row = new unsigned char[this->bytes_per_row];
 memset(this->cur_row, 0, this->bytes_per_row);
}

Pl_TIFFPredictor::~Pl_TIFFPredictor()
{
 delete [] cur_row;
}

void
Pl_TIFFPredictor::write(unsigned char* data, size_t len)
{
 size_t left = this->bytes_per_row - this->pos;
 size_t offset = 0;
 while (len >= left)
 {
	// finish off current row
	memcpy(this->cur_row + this->pos, data + offset, left);
	offset += left;
	len -= left;

	processRow();

	// Prepare for next row
	memset(this->cur_row, 0, this->bytes_per_row);
	left = this->bytes_per_row;
	this->pos = 0;
 }
 if (len)
 {
	memcpy(this->cur_row + this->pos, data + offset, len);
 }
 this->pos += len;
}

void
Pl_TIFFPredictor::processRow()
{
 QTC::TC("libtests", "Pl_TIFFPredictor processRow",
 (action == a_decode ? 0 : 1));
 BitWriter bw(this->getNext());
 BitStream in(this->cur_row, this->bytes_per_row);
 std::vector<long long> prev;
 for (unsigned int i = 0; i < this->samples_per_pixel; ++i)
 {
 long long sample = in.getBitsSigned(this->bits_per_sample);
 bw.writeBitsSigned(sample, this->bits_per_sample);
 prev.push_back(sample);
 }
 for (unsigned int col = 1; col < this->columns; ++col)
 {
 for (unsigned int i = 0; i < this->samples_per_pixel; ++i)
 {
 long long sample = in.getBitsSigned(this->bits_per_sample);
 long long new_sample = sample;
 if (action == a_encode)
 {
 new_sample -= prev[i];
 prev[i] = sample;
 }
 else
 {
 new_sample += prev[i];
 prev[i] = new_sample;
 }
 bw.writeBitsSigned(new_sample, this->bits_per_sample);
 }
 }
 bw.flush();
}

void
Pl_TIFFPredictor::finish()
{
 if (this->pos)
 {
	// write partial row
	processRow();
 }
 this->pos = 0;
 memset(this->cur_row, 0, this->bytes_per_row);
 getNext()->finish();
}

qpdf-7.1.0/libqpdf/Makefile

include ../make/proxy.mk

qpdf-7.1.0/libqpdf/QPDFObjectHandle.cc

#include <qpdf/QPDFObjectHandle.hh>

#include <qpdf/QPDF.hh>
#include <qpdf/QPDF_Bool.hh>
#include <qpdf/QPDF_Null.hh>
#include <qpdf/QPDF_Integer.hh>
#include <qpdf/QPDF_Real.hh>
#include <qpdf/QPDF_Name.hh>
#include <qpdf/QPDF_String.hh>
#include <qpdf/QPDF_Operator.hh>
#include <qpdf/QPDF_InlineImage.hh>
#include <qpdf/QPDF_Array.hh>
#include <qpdf/QPDF_Dictionary.hh>
#include <qpdf/QPDF_Stream.hh>
#include <qpdf/QPDF_Reserved.hh>
#include <qpdf/Pl_Buffer.hh>
#include <qpdf/BufferInputSource.hh>
#include <qpdf/QPDFExc.hh>

#include <qpdf/QTC.hh>
#include <qpdf/QUtil.hh>

#include <stdexcept>
#include <stdlib.h>
#include <ctype.h>

class TerminateParsing
{
};

void
QPDFObjectHandle::ParserCallbacks::terminateParsing()
{
 throw TerminateParsing();
}

QPDFObjectHandle::QPDFObjectHandle() :
 initialized(false),
 qpdf(0),
 objid(0),
 generation(0),
 reserved(false)
{
}

QPDFObjectHandle::QPDFObjectHandle(QPDF* qpdf, int objid, int generation) :
 initialized(true),
 qpdf(qpdf),
 objid(objid),
 generation(generation),
 reserved(false)
{
}

QPDFObjectHandle::QPDFObjectHandle(QPDFObject* data) :
 initialized(true),
 qpdf(0),
 objid(0),
 generation(0),
 obj(data),
 reserved(false)
{
}

void
QPDFObjectHandle::releaseResolved()
{
 // Recursively break any resolved references to indirect objects.
 // Do not cross over indirect object boundaries to avoid an
 // infinite loop. This method may only be called during final
 // destruction. See comments in QPDF::~QPDF().
 if (isIndirect())
 {
	if (this->obj.getPointer())
	{
	 this->obj = 0;
	}
 }
 else
 {
	QPDFObject::ObjAccessor::releaseResolved(this->obj.getPointer());
 }
}

bool
QPDFObjectHandle::isInitialized() const
{
 return this->initialized;
}

QPDFObject::object_type_e
QPDFObjectHandle::getTypeCode()
{
 if (this->initialized)
 {
 dereference();
 return obj->getTypeCode();
 }
 else
 {
 return QPDFObject::ot_uninitialized;
 }
}

char const*
QPDFObjectHandle::getTypeName()
{
 if (this->initialized)
 {
 dereference();
 return obj->getTypeName();
 }
 else
 {
 return "uninitialized";
 }
}

template <class T>
class QPDFObjectTypeAccessor
{
 public:
 static bool check(QPDFObject* o)
 {
	return (o && dynamic_cast<T*>(o));
 }
};

bool
QPDFObjectHandle::isBool()
{
 dereference();
 return QPDFObjectTypeAccessor<QPDF_Bool>::check(obj.getPointer());
}

bool
QPDFObjectHandle::isNull()
{
 dereference();
 return QPDFObjectTypeAccessor<QPDF_Null>::check(obj.getPointer());
}

bool
QPDFObjectHandle::isInteger()
{
 dereference();
 return QPDFObjectTypeAccessor<QPDF_Integer>::check(obj.getPointer());
}

bool
QPDFObjectHandle::isReal()
{
 dereference();
 return QPDFObjectTypeAccessor<QPDF_Real>::check(obj.getPointer());
}

bool
QPDFObjectHandle::isNumber()
{
 return (isInteger() || isReal());
}

double
QPDFObjectHandle::getNumericValue()
{
 double result = 0.0;
 if (isInteger())
 {
	result = static_cast<double>(getIntValue());
 }
 else if (isReal())
 {
	result = atof(getRealValue().c_str());
 }
 else
 {
	throw std::logic_error("getNumericValue called for non-numeric object");
 }
 return result;
}

bool
QPDFObjectHandle::isName()
{
 dereference();
 return QPDFObjectTypeAccessor<QPDF_Name>::check(obj.getPointer());
}

bool
QPDFObjectHandle::isString()
{
 dereference();
 return QPDFObjectTypeAccessor<QPDF_String>::check(obj.getPointer());
}

bool
QPDFObjectHandle::isOperator()
{
 dereference();
 return QPDFObjectTypeAccessor<QPDF_Operator>::check(obj.getPointer());
}

bool
QPDFObjectHandle::isInlineImage()
{
 dereference();
 return QPDFObjectTypeAccessor<QPDF_InlineImage>::check(obj.getPointer());
}

bool
QPDFObjectHandle::isArray()
{
 dereference();
 return QPDFObjectTypeAccessor<QPDF_Array>::check(obj.getPointer());
}

bool
QPDFObjectHandle::isDictionary()
{
 dereference();
 return QPDFObjectTypeAccessor<QPDF_Dictionary>::check(obj.getPointer());
}

bool
QPDFObjectHandle::isStream()
{
 dereference();
 return QPDFObjectTypeAccessor<QPDF_Stream>::check(obj.getPointer());
}

bool
QPDFObjectHandle::isReserved()
{
 // dereference will clear reserved if this has been replaced
 dereference();
 return this->reserved;
}

bool
QPDFObjectHandle::isIndirect()
{
 assertInitialized();
 return (this->objid != 0);
}

bool
QPDFObjectHandle::isScalar()
{
 return (! (isArray() || isDictionary() || isStream() ||
 isOperator() || isInlineImage()));
}

// Bool accessors

bool
QPDFObjectHandle::getBoolValue()
{
 assertBool();
 return dynamic_cast<QPDF_Bool*>(obj.getPointer())->getVal();
}

// Integer accessors

long long
QPDFObjectHandle::getIntValue()
{
 assertInteger();
 return dynamic_cast<QPDF_Integer*>(obj.getPointer())->getVal();
}

// Real accessors

std::string
QPDFObjectHandle::getRealValue()
{
 assertReal();
 return dynamic_cast<QPDF_Real*>(obj.getPointer())->getVal();
}

// Name accessors

std::string
QPDFObjectHandle::getName()
{
 assertName();
 return dynamic_cast<QPDF_Name*>(obj.getPointer())->getName();
}

// String accessors

std::string
QPDFObjectHandle::getStringValue()
{
 assertString();
 return dynamic_cast<QPDF_String*>(obj.getPointer())->getVal();
}

std::string
QPDFObjectHandle::getUTF8Value()
{
 assertString();
 return dynamic_cast<QPDF_String*>(obj.getPointer())->getUTF8Val();
}

// Operator and Inline Image accessors

std::string
QPDFObjectHandle::getOperatorValue()
{
 assertOperator();
 return dynamic_cast<QPDF_Operator*>(obj.getPointer())->getVal();
}

std::string
QPDFObjectHandle::getInlineImageValue()
{
 assertInlineImage();
 return dynamic_cast<QPDF_InlineImage*>(obj.getPointer())->getVal();
}

// Array accessors

int
QPDFObjectHandle::getArrayNItems()
{
 assertArray();
 return dynamic_cast<QPDF_Array*>(obj.getPointer())->getNItems();
}

QPDFObjectHandle
QPDFObjectHandle::getArrayItem(int n)
{
 assertArray();
 return dynamic_cast<QPDF_Array*>(obj.getPointer())->getItem(n);
}

std::vector<QPDFObjectHandle>
QPDFObjectHandle::getArrayAsVector()
{
 assertArray();
 return dynamic_cast<QPDF_Array*>(obj.getPointer())->getAsVector();
}

// Array mutators

void
QPDFObjectHandle::setArrayItem(int n, QPDFObjectHandle const& item)
{
 assertArray();
 return dynamic_cast<QPDF_Array*>(obj.getPointer())->setItem(n, item);
}

void
QPDFObjectHandle::setArrayFromVector(std::vector<QPDFObjectHandle> const& items)
{
 assertArray();
 return dynamic_cast<QPDF_Array*>(obj.getPointer())->setFromVector(items);
}

void
QPDFObjectHandle::insertItem(int at, QPDFObjectHandle const& item)
{
 assertArray();
 return dynamic_cast<QPDF_Array*>(obj.getPointer())->insertItem(at, item);
}

void
QPDFObjectHandle::appendItem(QPDFObjectHandle const& item)
{
 assertArray();
 return dynamic_cast<QPDF_Array*>(obj.getPointer())->appendItem(item);
}

void
QPDFObjectHandle::eraseItem(int at)
{
 assertArray();
 return dynamic_cast<QPDF_Array*>(obj.getPointer())->eraseItem(at);
}

// Dictionary accessors

bool
QPDFObjectHandle::hasKey(std::string const& key)
{
 assertDictionary();
 return dynamic_cast<QPDF_Dictionary*>(obj.getPointer())->hasKey(key);
}

QPDFObjectHandle
QPDFObjectHandle::getKey(std::string const& key)
{
 assertDictionary();
 return dynamic_cast<QPDF_Dictionary*>(obj.getPointer())->getKey(key);
}

std::set<std::string>
QPDFObjectHandle::getKeys()
{
 assertDictionary();
 return dynamic_cast<QPDF_Dictionary*>(obj.getPointer())->getKeys();
}

std::map<std::string, QPDFObjectHandle>
QPDFObjectHandle::getDictAsMap()
{
 assertDictionary();
 return dynamic_cast<QPDF_Dictionary*>(obj.getPointer())->getAsMap();
}

// Array and Name accessors
bool
QPDFObjectHandle::isOrHasName(std::string const& value)
{
 if (isName() && (getName() == value))
 {
	return true;
 }
 else if (isArray())
 {
	int n = getArrayNItems();
	for (int i = 0; i < n; ++i)
	{
	 QPDFObjectHandle item = getArrayItem(0);
	 if (item.isName() && (item.getName() == value))
	 {
		return true;
	 }
	}
 }
 return false;
}

// Indirect object accessors
QPDF*
QPDFObjectHandle::getOwningQPDF()
{
 // Will be null for direct objects
 return this->qpdf;
}

// Dictionary mutators

void
QPDFObjectHandle::replaceKey(std::string const& key,
			 QPDFObjectHandle const& value)
{
 assertDictionary();
 return dynamic_cast<QPDF_Dictionary*>(
	obj.getPointer())->replaceKey(key, value);
}

void
QPDFObjectHandle::removeKey(std::string const& key)
{
 assertDictionary();
 return dynamic_cast<QPDF_Dictionary*>(obj.getPointer())->removeKey(key);
}

void
QPDFObjectHandle::replaceOrRemoveKey(std::string const& key,
				 QPDFObjectHandle value)
{
 assertDictionary();
 return dynamic_cast<QPDF_Dictionary*>(
	obj.getPointer())->replaceOrRemoveKey(key, value);
}

// Stream accessors
QPDFObjectHandle
QPDFObjectHandle::getDict()
{
 assertStream();
 return dynamic_cast<QPDF_Stream*>(obj.getPointer())->getDict();
}

void
QPDFObjectHandle::replaceDict(QPDFObjectHandle new_dict)
{
 assertStream();
 dynamic_cast<QPDF_Stream*>(obj.getPointer())->replaceDict(new_dict);
}

PointerHolder<Buffer>
QPDFObjectHandle::getStreamData(qpdf_stream_decode_level_e level)
{
 assertStream();
 return dynamic_cast<QPDF_Stream*>(obj.getPointer())->getStreamData(level);
}

PointerHolder<Buffer>
QPDFObjectHandle::getRawStreamData()
{
 assertStream();
 return dynamic_cast<QPDF_Stream*>(obj.getPointer())->getRawStreamData();
}

bool
QPDFObjectHandle::pipeStreamData(Pipeline* p,
 unsigned long encode_flags,
 qpdf_stream_decode_level_e decode_level,
 bool suppress_warnings)
{
 return pipeStreamData(
 p, encode_flags, decode_level, suppress_warnings, false);
}

bool
QPDFObjectHandle::pipeStreamData(Pipeline* p,
 unsigned long encode_flags,
 qpdf_stream_decode_level_e decode_level,
 bool suppress_warnings, bool will_retry)
{
 assertStream();
 return dynamic_cast<QPDF_Stream*>(obj.getPointer())->pipeStreamData(
	p, encode_flags, decode_level, suppress_warnings, will_retry);
}

bool
QPDFObjectHandle::pipeStreamData(Pipeline* p, bool filter,
				 bool normalize, bool compress)
{
 unsigned long encode_flags = 0;
 qpdf_stream_decode_level_e decode_level = qpdf_dl_none;
 if (filter)
 {
 decode_level = qpdf_dl_generalized;
 if (normalize)
 {
 encode_flags |= qpdf_ef_normalize;
 }
 if (compress)
 {
 encode_flags |= qpdf_ef_compress;
 }
 }
 return pipeStreamData(p, encode_flags, decode_level, false);
}

void
QPDFObjectHandle::replaceStreamData(PointerHolder<Buffer> data,
				 QPDFObjectHandle const& filter,
				 QPDFObjectHandle const& decode_parms)
{
 assertStream();
 dynamic_cast<QPDF_Stream*>(obj.getPointer())->replaceStreamData(
	data, filter, decode_parms);
}

void
QPDFObjectHandle::replaceStreamData(std::string const& data,
				 QPDFObjectHandle const& filter,
				 QPDFObjectHandle const& decode_parms)
{
 assertStream();
 PointerHolder<Buffer> b = new Buffer(data.length());
 unsigned char* bp = b->getBuffer();
 memcpy(bp, data.c_str(), data.length());
 dynamic_cast<QPDF_Stream*>(obj.getPointer())->replaceStreamData(
	b, filter, decode_parms);
}

void
QPDFObjectHandle::replaceStreamData(PointerHolder<StreamDataProvider> provider,
				 QPDFObjectHandle const& filter,
				 QPDFObjectHandle const& decode_parms)
{
 assertStream();
 dynamic_cast<QPDF_Stream*>(obj.getPointer())->replaceStreamData(
	provider, filter, decode_parms);
}

QPDFObjGen
QPDFObjectHandle::getObjGen() const
{
 return QPDFObjGen(this->objid, this->generation);
}

int
QPDFObjectHandle::getObjectID() const
{
 return this->objid;
}

int
QPDFObjectHandle::getGeneration() const
{
 return this->generation;
}

std::map<std::string, QPDFObjectHandle>
QPDFObjectHandle::getPageImages()
{
 assertPageObject();

 // Note: this code doesn't handle inherited resources. If this
 // page dictionary doesn't have a /Resources key or has one whose
 // value is null or an empty dictionary, you are supposed to walk
 // up the page tree until you find a /Resources dictionary. As of
 // this writing, I don't have any test files that use inherited
 // resources, and hand-generating one won't be a good test because
 // any mistakes in my understanding would be present in both the
 // code and the test file.

 // NOTE: If support of inherited resources (see above comment) is
 // implemented, edit comment in QPDFObjectHandle.hh for this
 // function. Also remove call to pushInheritedAttributesToPage
 // from qpdf.cc when show_page_images is true.

 std::map<std::string, QPDFObjectHandle> result;
 if (this->hasKey("/Resources"))
 {
	QPDFObjectHandle resources = this->getKey("/Resources");
	if (resources.hasKey("/XObject"))
	{
	 QPDFObjectHandle xobject = resources.getKey("/XObject");
	 std::set<std::string> keys = xobject.getKeys();
	 for (std::set<std::string>::iterator iter = keys.begin();
		 iter != keys.end(); ++iter)
	 {
		std::string key = (*iter);
		QPDFObjectHandle value = xobject.getKey(key);
		if (value.isStream())
		{
		 QPDFObjectHandle dict = value.getDict();
		 if (dict.hasKey("/Subtype") &&
			(dict.getKey("/Subtype").getName() == "/Image") &&
			(! dict.hasKey("/ImageMask")))
		 {
			result[key] = value;
		 }
		}
	 }
	}
 }

 return result;
}

std::vector<QPDFObjectHandle>
QPDFObjectHandle::getPageContents()
{
 assertPageObject();

 std::vector<QPDFObjectHandle> result;
 QPDFObjectHandle contents = this->getKey("/Contents");
 if (contents.isArray())
 {
	int n_items = contents.getArrayNItems();
	for (int i = 0; i < n_items; ++i)
	{
	 QPDFObjectHandle item = contents.getArrayItem(i);
	 if (item.isStream())
	 {
		result.push_back(item);
	 }
	 else
	 {
		throw std::runtime_error(
		 "unknown item type while inspecting "
		 "element of /Contents array in page "
		 "dictionary");
	 }
	}
 }
 else if (contents.isStream())
 {
	result.push_back(contents);
 }
 else if (! contents.isNull())
 {
	throw std::runtime_error("unknown object type inspecting /Contents "
				 "key in page dictionary");
 }

 return result;
}

void
QPDFObjectHandle::addPageContents(QPDFObjectHandle new_contents, bool first)
{
 assertPageObject();
 new_contents.assertStream();

 std::vector<QPDFObjectHandle> orig_contents = getPageContents();

 std::vector<QPDFObjectHandle> content_streams;
 if (first)
 {
	QTC::TC("qpdf", "QPDFObjectHandle prepend page contents");
	content_streams.push_back(new_contents);
 }
 for (std::vector<QPDFObjectHandle>::iterator iter = orig_contents.begin();
	 iter != orig_contents.end(); ++iter)
 {
	QTC::TC("qpdf", "QPDFObjectHandle append page contents");
	content_streams.push_back(*iter);
 }
 if (! first)
 {
	content_streams.push_back(new_contents);
 }

 QPDFObjectHandle contents = QPDFObjectHandle::newArray(content_streams);
 this->replaceKey("/Contents", contents);
}

void
QPDFObjectHandle::rotatePage(int angle, bool relative)
{
 assertPageObject();
 if ((angle % 90) != 0)
 {
 throw std::runtime_error(
 "QPDF::rotatePage called with an"
 " angle that is not a multiple of 90");
 }
 int new_angle = angle;
 if (relative)
 {
 int old_angle = 0;
 bool found_rotate = false;
 QPDFObjectHandle cur_obj = *this;
 bool searched_parent = false;
 std::set<QPDFObjGen> visited;
 while (! found_rotate)
 {
 if (visited.count(cur_obj.getObjGen()))
 {
 // Don't get stuck in an infinite loop
 break;
 }
 if (! visited.empty())
 {
 searched_parent = true;
 }
 visited.insert(cur_obj.getObjGen());
 if (cur_obj.getKey("/Rotate").isInteger())
 {
 found_rotate = true;
 old_angle = cur_obj.getKey("/Rotate").getIntValue();
 }
 else if (cur_obj.getKey("/Parent").isDictionary())
 {
 cur_obj = cur_obj.getKey("/Parent");
 }
 else
 {
 break;
 }
 }
 QTC::TC("qpdf", "QPDFObjectHandle found old angle",
 searched_parent ? 0 : 1);
 if ((old_angle % 90) != 0)
 {
 old_angle = 0;
 }
 new_angle += old_angle;
 }
 new_angle = (new_angle + 360) % 360;
 replaceKey("/Rotate", QPDFObjectHandle::newInteger(new_angle));
}

std::string
QPDFObjectHandle::unparse()
{
 std::string result;
 if (this->isIndirect())
 {
	result = QUtil::int_to_string(this->objid) + " " +
	 QUtil::int_to_string(this->generation) + " R";
 }
 else
 {
	result = unparseResolved();
 }
 return result;
}

std::string
QPDFObjectHandle::unparseResolved()
{
 if (this->reserved)
 {
 throw std::logic_error(
 "QPDFObjectHandle: attempting to unparse a reserved object");
 }
 dereference();
 return this->obj->unparse();
}

QPDFObjectHandle
QPDFObjectHandle::parse(std::string const& object_str,
 std::string const& object_description)
{
 PointerHolder<InputSource> input =
 new BufferInputSource("parsed object", object_str);
 QPDFTokenizer tokenizer;
 bool empty = false;
 QPDFObjectHandle result =
 parse(input, object_description, tokenizer, empty, 0, 0);
 size_t offset = input->tell();
 while (offset < object_str.length())
 {
 if (! isspace(object_str.at(offset)))
 {
 QTC::TC("qpdf", "QPDFObjectHandle trailing data in parse");
 throw QPDFExc(qpdf_e_damaged_pdf, input->getName(),
 object_description,
 input->getLastOffset(),
 "trailing data found parsing object from string");
 }
 ++offset;
 }
 return result;
}

void
QPDFObjectHandle::parseContentStream(QPDFObjectHandle stream_or_array,
 ParserCallbacks* callbacks)
{
 std::vector<QPDFObjectHandle> streams;
 if (stream_or_array.isArray())
 {
 streams = stream_or_array.getArrayAsVector();
 }
 else
 {
 streams.push_back(stream_or_array);
 }
 Pl_Buffer buf("concatenated stream data buffer");
 std::string all_description = "content stream objects";
 bool first = true;
 for (std::vector<QPDFObjectHandle>::iterator iter = streams.begin();
 iter != streams.end(); ++iter)
 {
 QPDFObjectHandle stream = *iter;
 if (! stream.isStream())
 {
 QTC::TC("qpdf", "QPDFObjectHandle non-stream in parsecontent");
 warn(stream.getOwningQPDF(),
 QPDFExc(qpdf_e_damaged_pdf, "content stream",
 "", 0,
 "ignoring non-stream while parsing content streams"));
 }
 else
 {
 std::string og = QUtil::int_to_string(stream.getObjectID()) + " " +
 QUtil::int_to_string(stream.getGeneration());
 std::string description = "content stream object " + og;
 if (first)
 {
 first = false;
 }
 else
 {
 all_description += ",";
 }
 all_description += " " + og;
 if (! stream.pipeStreamData(&buf, 0, qpdf_dl_specialized))
 {
 QTC::TC("qpdf", "QPDFObjectHandle errors in parsecontent");
 warn(stream.getOwningQPDF(),
 QPDFExc(qpdf_e_damaged_pdf, "content stream",
 description, 0,
 "errors while decoding content stream"));
 }
 }
 }
 PointerHolder<Buffer> stream_data = buf.getBuffer();
 try
 {
 parseContentStream_internal(stream_data, all_description, callbacks);
 }
 catch (TerminateParsing&)
 {
 return;
 }
 callbacks->handleEOF();
}

void
QPDFObjectHandle::parseContentStream_internal(PointerHolder<Buffer> stream_data,
 std::string const& description,
 ParserCallbacks* callbacks)
{
 size_t length = stream_data->getSize();
 PointerHolder<InputSource> input =
 new BufferInputSource(description, stream_data.getPointer());
 QPDFTokenizer tokenizer;
 tokenizer.allowEOF();
 bool empty = false;
 while (static_cast<size_t>(input->tell()) < length)
 {
 QPDFObjectHandle obj =
 parseInternal(input, "content", tokenizer, empty, 0, 0, true);
 if (! obj.isInitialized())
 {
 // EOF
 break;
 }

 callbacks->handleObject(obj);
 if (obj.isOperator() && (obj.getOperatorValue() == "ID"))
 {
 // Discard next character; it is the space after ID that
 // terminated the token. Read until end of inline image.
 char ch;
 input->read(&ch, 1);
 char buf[4];
 memset(buf, '\0', sizeof(buf));
 bool done = false;
 std::string inline_image;
 while (! done)
 {
 if (input->read(&ch, 1) == 0)
 {
 QTC::TC("qpdf", "QPDFObjectHandle EOF in inline image");
 throw QPDFExc(qpdf_e_damaged_pdf, input->getName(),
 "stream data", input->tell(),
 "EOF found while reading inline image");
 }
 inline_image += ch;
 memmove(buf, buf + 1, sizeof(buf) - 1);
 buf[sizeof(buf) - 1] = ch;
 if (strchr(" \t\n\v\f\r", buf[0]) &&
 (buf[1] == 'E') &&
 (buf[2] == 'I') &&
 strchr(" \t\n\v\f\r", buf[3]))
 {
 // We've found an EI operator.
 done = true;
 input->seek(-3, SEEK_CUR);
 for (int i = 0; i < 4; ++i)
 {
 if (inline_image.length() > 0)
 {
 inline_image.erase(inline_image.length() - 1);
 }
 }
 }
 }
 QTC::TC("qpdf", "QPDFObjectHandle inline image token");
 callbacks->handleObject(
 QPDFObjectHandle::newInlineImage(inline_image));
 }
 }
}

QPDFObjectHandle
QPDFObjectHandle::parse(PointerHolder<InputSource> input,
 std::string const& object_description,
 QPDFTokenizer& tokenizer, bool& empty,
 StringDecrypter* decrypter, QPDF* context)
{
 return parseInternal(input, object_description, tokenizer, empty,
 decrypter, context, false);
}

QPDFObjectHandle
QPDFObjectHandle::parseInternal(PointerHolder<InputSource> input,
 std::string const& object_description,
 QPDFTokenizer& tokenizer, bool& empty,
 StringDecrypter* decrypter, QPDF* context,
 bool content_stream)
{
 // This method must take care not to resolve any objects. Don't
 // check the type of any object without first ensuring that it is
 // a direct object. Otherwise, doing so may have the side effect
 // of reading the object and changing the file pointer.

 empty = false;

 QPDFObjectHandle object;

 std::vector<std::vector<QPDFObjectHandle> > olist_stack;
 olist_stack.push_back(std::vector<QPDFObjectHandle>());
 std::vector<parser_state_e> state_stack;
 state_stack.push_back(st_top);
 std::vector<qpdf_offset_t> offset_stack;
 offset_stack.push_back(input->tell());
 bool done = false;
 while (! done)
 {
 std::vector<QPDFObjectHandle>& olist = olist_stack.back();
 parser_state_e state = state_stack.back();
 qpdf_offset_t offset = offset_stack.back();

	object = QPDFObjectHandle();

	QPDFTokenizer::Token token =
 tokenizer.readToken(input, object_description);

	switch (token.getType())
	{
 case QPDFTokenizer::tt_eof:
 if (content_stream)
 {
 state = st_eof;
 }
 else
 {
 // When not in content stream mode, EOF is tt_bad and
 // throws an exception before we get here.
 throw std::logic_error(
 "EOF received while not in content stream mode");
 }
 break;

	 case QPDFTokenizer::tt_brace_open:
	 case QPDFTokenizer::tt_brace_close:
	 QTC::TC("qpdf", "QPDFObjectHandle bad brace");
 warn(context,
 QPDFExc(qpdf_e_damaged_pdf, input->getName(),
 object_description,
 input->getLastOffset(),
 "treating unexpected brace token as null"));
 object = newNull();
	 break;

	 case QPDFTokenizer::tt_array_close:
	 if (state == st_array)
	 {
 state = st_stop;
	 }
	 else
	 {
		QTC::TC("qpdf", "QPDFObjectHandle bad array close");
 warn(context,
 QPDFExc(qpdf_e_damaged_pdf, input->getName(),
 object_description,
 input->getLastOffset(),
 "treating unexpected array close token as null"));
 object = newNull();
	 }
	 break;

	 case QPDFTokenizer::tt_dict_close:
	 if (state == st_dictionary)
	 {
 state = st_stop;
	 }
	 else
	 {
		QTC::TC("qpdf", "QPDFObjectHandle bad dictionary close");
 warn(context,
 QPDFExc(qpdf_e_damaged_pdf, input->getName(),
 object_description,
 input->getLastOffset(),
 "unexpected dictionary close token"));
 object = newNull();
	 }
	 break;

	 case QPDFTokenizer::tt_array_open:
	 case QPDFTokenizer::tt_dict_open:
 olist_stack.push_back(std::vector<QPDFObjectHandle>());
 state = st_start;
 offset_stack.push_back(input->tell());
 state_stack.push_back(
 (token.getType() == QPDFTokenizer::tt_array_open) ?
 st_array : st_dictionary);
	 break;

	 case QPDFTokenizer::tt_bool:
	 object = newBool((token.getValue() == "true"));
	 break;

	 case QPDFTokenizer::tt_null:
	 object = newNull();
	 break;

	 case QPDFTokenizer::tt_integer:
	 object = newInteger(QUtil::string_to_ll(token.getValue().c_str()));
	 break;

	 case QPDFTokenizer::tt_real:
	 object = newReal(token.getValue());
	 break;

	 case QPDFTokenizer::tt_name:
	 object = newName(token.getValue());
	 break;

	 case QPDFTokenizer::tt_word:
	 {
		std::string const& value = token.getValue();
 if (content_stream)
 {
 object = QPDFObjectHandle::newOperator(value);
 }
		else if ((value == "R") && (state != st_top) &&
 (olist.size() >= 2) &&
 (! olist.at(olist.size() - 1).isIndirect()) &&
 (olist.at(olist.size() - 1).isInteger()) &&
 (! olist.at(olist.size() - 2).isIndirect()) &&
 (olist.at(olist.size() - 2).isInteger()))
		{
 if (context == 0)
 {
 QTC::TC("qpdf", "QPDFObjectHandle indirect without context");
 throw std::logic_error(
 "QPDFObjectHandle::parse called without context"
 " on an object with indirect references");
 }
		 // Try to resolve indirect objects
		 object = newIndirect(
			context,
			olist.at(olist.size() - 2).getIntValue(),
			olist.at(olist.size() - 1).getIntValue());
		 olist.pop_back();
		 olist.pop_back();
		}
		else if ((value == "endobj") && (state == st_top))
		{
		 // We just saw endobj without having read
		 // anything. Treat this as a null and do not move
		 // the input source's offset.
		 object = newNull();
		 input->seek(input->getLastOffset(), SEEK_SET);
 empty = true;
		}
		else
		{
 QTC::TC("qpdf", "QPDFObjectHandle treat word as string");
 warn(context,
 QPDFExc(qpdf_e_damaged_pdf, input->getName(),
 object_description,
 input->getLastOffset(),
 "unknown token while reading object;"
 " treating as string"));
 object = newString(value);
		}
	 }
	 break;

	 case QPDFTokenizer::tt_string:
	 {
		std::string val = token.getValue();
 if (decrypter)
 {
 decrypter->decryptString(val);
 }
		object = QPDFObjectHandle::newString(val);
	 }

	 break;

	 default:
 warn(context,
 QPDFExc(qpdf_e_damaged_pdf, input->getName(),
 object_description,
 input->getLastOffset(),
 "treating unknown token type as null while "
 "reading object"));
 object = newNull();
	 break;
	}

 if ((! object.isInitialized()) &&
 (! ((state == st_start) ||
 (state == st_stop) ||
 (state == st_eof))))
 {
 throw std::logic_error(
 "QPDFObjectHandle::parseInternal: "
 "unexpected uninitialized object");
 object = newNull();
 }

 switch (state)
 {
 case st_eof:
 if (state_stack.size() > 1)
 {
 warn(context,
 QPDFExc(qpdf_e_damaged_pdf, input->getName(),
 object_description,
 input->getLastOffset(),
 "parse error while reading object"));
 }
 done = true;
 // Leave object uninitialized to indicate EOF
 break;

 case st_dictionary:
 case st_array:
 olist.push_back(object);
 break;

 case st_top:
 done = true;
 break;

 case st_start:
 break;

 case st_stop:
 if ((state_stack.size() < 2) || (olist_stack.size() < 2))
 {
 throw std::logic_error(
 "QPDFObjectHandle::parseInternal: st_stop encountered"
 " with insufficient elements in stack");
 }
 parser_state_e old_state = state_stack.back();
 state_stack.pop_back();
 if (old_state == st_array)
 {
 object = newArray(olist);
 }
 else if (old_state == st_dictionary)
 {
 // Convert list to map. Alternating elements are keys.
 // Attempt to recover more or less gracefully from
 // invalid dictionaries.
 std::set<std::string> names;
 for (std::vector<QPDFObjectHandle>::iterator iter =
 olist.begin();
 iter != olist.end(); ++iter)
 {
 if ((! (*iter).isIndirect()) && (*iter).isName())
 {
 names.insert((*iter).getName());
 }
 }

 std::map<std::string, QPDFObjectHandle> dict;
 int next_fake_key = 1;
 for (unsigned int i = 0; i < olist.size(); ++i)
 {
 QPDFObjectHandle key_obj = olist.at(i);
 QPDFObjectHandle val;
 if (key_obj.isIndirect() || (! key_obj.isName()))
 {
 bool found_fake = false;
 std::string candidate;
 while (! found_fake)
 {
 candidate =
 "/QPDFFake" +
 QUtil::int_to_string(next_fake_key++);
 found_fake = (names.count(candidate) == 0);
 QTC::TC("qpdf", "QPDFObjectHandle found fake",
 (found_fake ? 0 : 1));
 }
 warn(context,
 QPDFExc(
 qpdf_e_damaged_pdf,
 input->getName(), object_description, offset,
 "expected dictionary key but found"
 " non-name object; inserting key " +
 candidate));
 val = key_obj;
 key_obj = newName(candidate);
 }
 else if (i + 1 >= olist.size())
 {
 QTC::TC("qpdf", "QPDFObjectHandle no val for last key");
 warn(context,
 QPDFExc(
 qpdf_e_damaged_pdf,
 input->getName(), object_description, offset,
 "dictionary ended prematurely; "
 "using null as value for last key"));
 val = newNull();
 }
 else
 {
 val = olist.at(++i);
 }
 dict[key_obj.getName()] = val;
 }
 object = newDictionary(dict);
 }
 olist_stack.pop_back();
 offset_stack.pop_back();
 if (state_stack.back() == st_top)
 {
 done = true;
 }
 else
 {
 olist_stack.back().push_back(object);
 }
 }
 }

 return object;
}

QPDFObjectHandle
QPDFObjectHandle::newIndirect(QPDF* qpdf, int objid, int generation)
{
 if (objid == 0)
 {
 // Special case: QPDF uses objid 0 as a sentinel for direct
 // objects, and the PDF specification doesn't allow for object
 // 0. Treat indirect references to object 0 as null so that we
 // never create an indirect object with objid 0.
 QTC::TC("qpdf", "QPDFObjectHandle indirect with 0 objid");
 return newNull();
 }

 return QPDFObjectHandle(qpdf, objid, generation);
}

QPDFObjectHandle
QPDFObjectHandle::newBool(bool value)
{
 return QPDFObjectHandle(new QPDF_Bool(value));
}

QPDFObjectHandle
QPDFObjectHandle::newNull()
{
 return QPDFObjectHandle(new QPDF_Null());
}

QPDFObjectHandle
QPDFObjectHandle::newInteger(long long value)
{
 return QPDFObjectHandle(new QPDF_Integer(value));
}

QPDFObjectHandle
QPDFObjectHandle::newReal(std::string const& value)
{
 return QPDFObjectHandle(new QPDF_Real(value));
}

QPDFObjectHandle
QPDFObjectHandle::newReal(double value, int decimal_places)
{
 return QPDFObjectHandle(new QPDF_Real(value, decimal_places));
}

QPDFObjectHandle
QPDFObjectHandle::newName(std::string const& name)
{
 return QPDFObjectHandle(new QPDF_Name(name));
}

QPDFObjectHandle
QPDFObjectHandle::newString(std::string const& str)
{
 return QPDFObjectHandle(new QPDF_String(str));
}

QPDFObjectHandle
QPDFObjectHandle::newOperator(std::string const& value)
{
 return QPDFObjectHandle(new QPDF_Operator(value));
}

QPDFObjectHandle
QPDFObjectHandle::newInlineImage(std::string const& value)
{
 return QPDFObjectHandle(new QPDF_InlineImage(value));
}

QPDFObjectHandle
QPDFObjectHandle::newArray()
{
 return newArray(std::vector<QPDFObjectHandle>());
}

QPDFObjectHandle
QPDFObjectHandle::newArray(std::vector<QPDFObjectHandle> const& items)
{
 return QPDFObjectHandle(new QPDF_Array(items));
}

QPDFObjectHandle
QPDFObjectHandle::newDictionary()
{
 return newDictionary(std::map<std::string, QPDFObjectHandle>());
}

QPDFObjectHandle
QPDFObjectHandle::newDictionary(
 std::map<std::string, QPDFObjectHandle> const& items)
{
 return QPDFObjectHandle(new QPDF_Dictionary(items));
}

QPDFObjectHandle
QPDFObjectHandle::newStream(QPDF* qpdf, int objid, int generation,
			 QPDFObjectHandle stream_dict,
			 qpdf_offset_t offset, size_t length)
{
 return QPDFObjectHandle(new QPDF_Stream(
				qpdf, objid, generation,
				stream_dict, offset, length));
}

QPDFObjectHandle
QPDFObjectHandle::newStream(QPDF* qpdf)
{
 QTC::TC("qpdf", "QPDFObjectHandle newStream");
 QPDFObjectHandle stream_dict = newDictionary();
 QPDFObjectHandle result = qpdf->makeIndirectObject(
	QPDFObjectHandle(
	 new QPDF_Stream(qpdf, 0, 0, stream_dict, 0, 0)));
 result.dereference();
 QPDF_Stream* stream = dynamic_cast<QPDF_Stream*>(result.obj.getPointer());
 stream->setObjGen(result.getObjectID(), result.getGeneration());
 return result;
}

QPDFObjectHandle
QPDFObjectHandle::newStream(QPDF* qpdf, PointerHolder<Buffer> data)
{
 QTC::TC("qpdf", "QPDFObjectHandle newStream with data");
 QPDFObjectHandle result = newStream(qpdf);
 result.replaceStreamData(data, newNull(), newNull());
 return result;
}

QPDFObjectHandle
QPDFObjectHandle::newStream(QPDF* qpdf, std::string const& data)
{
 QTC::TC("qpdf", "QPDFObjectHandle newStream with string");
 QPDFObjectHandle result = newStream(qpdf);
 result.replaceStreamData(data, newNull(), newNull());
 return result;
}

QPDFObjectHandle
QPDFObjectHandle::newReserved(QPDF* qpdf)
{
 // Reserve a spot for this object by assigning it an object
 // number, but then return an unresolved handle to the object.
 QPDFObjectHandle reserved = qpdf->makeIndirectObject(
	QPDFObjectHandle(new QPDF_Reserved()));
 QPDFObjectHandle result =
 newIndirect(qpdf, reserved.objid, reserved.generation);
 result.reserved = true;
 return result;
}

QPDFObjectHandle
QPDFObjectHandle::shallowCopy()
{
 assertInitialized();

 if (isStream())
 {
	QTC::TC("qpdf", "QPDFObjectHandle ERR shallow copy stream");
	throw std::runtime_error(
	 "attempt to make a shallow copy of a stream");
 }

 QPDFObjectHandle new_obj;
 if (isArray())
 {
	QTC::TC("qpdf", "QPDFObjectHandle shallow copy array");
	new_obj = newArray(getArrayAsVector());
 }
 else if (isDictionary())
 {
	QTC::TC("qpdf", "QPDFObjectHandle shallow copy dictionary");
 new_obj = newDictionary(getDictAsMap());
 }
 else
 {
	QTC::TC("qpdf", "QPDFObjectHandle shallow copy scalar");
 new_obj = *this;
 }

 return new_obj;
}

void
QPDFObjectHandle::makeDirectInternal(std::set<int>& visited)
{
 assertInitialized();

 if (isStream())
 {
	QTC::TC("qpdf", "QPDFObjectHandle ERR clone stream");
	throw std::runtime_error(
	 "attempt to make a stream into a direct object");
 }

 int cur_objid = this->objid;
 if (cur_objid != 0)
 {
	if (visited.count(cur_objid))
	{
	 QTC::TC("qpdf", "QPDFObjectHandle makeDirect loop");
	 throw std::runtime_error(
		"loop detected while converting object from "
		"indirect to direct");
	}
	visited.insert(cur_objid);
 }

 if (isReserved())
 {
 throw std::logic_error(
 "QPDFObjectHandle: attempting to make a"
 " reserved object handle direct");
 }

 dereference();
 this->qpdf = 0;
 this->objid = 0;
 this->generation = 0;

 PointerHolder<QPDFObject> new_obj;

 if (isBool())
 {
	QTC::TC("qpdf", "QPDFObjectHandle clone bool");
	new_obj = new QPDF_Bool(getBoolValue());
 }
 else if (isNull())
 {
	QTC::TC("qpdf", "QPDFObjectHandle clone null");
	new_obj = new QPDF_Null();
 }
 else if (isInteger())
 {
	QTC::TC("qpdf", "QPDFObjectHandle clone integer");
	new_obj = new QPDF_Integer(getIntValue());
 }
 else if (isReal())
 {
	QTC::TC("qpdf", "QPDFObjectHandle clone real");
	new_obj = new QPDF_Real(getRealValue());
 }
 else if (isName())
 {
	QTC::TC("qpdf", "QPDFObjectHandle clone name");
	new_obj = new QPDF_Name(getName());
 }
 else if (isString())
 {
	QTC::TC("qpdf", "QPDFObjectHandle clone string");
	new_obj = new QPDF_String(getStringValue());
 }
 else if (isArray())
 {
	QTC::TC("qpdf", "QPDFObjectHandle clone array");
	std::vector<QPDFObjectHandle> items;
	int n = getArrayNItems();
	for (int i = 0; i < n; ++i)
	{
	 items.push_back(getArrayItem(i));
	 items.back().makeDirectInternal(visited);
	}
	new_obj = new QPDF_Array(items);
 }
 else if (isDictionary())
 {
	QTC::TC("qpdf", "QPDFObjectHandle clone dictionary");
	std::set<std::string> keys = getKeys();
	std::map<std::string, QPDFObjectHandle> items;
	for (std::set<std::string>::iterator iter = keys.begin();
	 iter != keys.end(); ++iter)
	{
	 items[*iter] = getKey(*iter);
	 items[*iter].makeDirectInternal(visited);
	}
	new_obj = new QPDF_Dictionary(items);
 }
 else
 {
	throw std::logic_error("QPDFObjectHandle::makeDirectInternal: "
			 "unknown object type");
 }

 this->obj = new_obj;

 if (cur_objid)
 {
	visited.erase(cur_objid);
 }
}

void
QPDFObjectHandle::makeDirect()
{
 std::set<int> visited;
 makeDirectInternal(visited);
}

void
QPDFObjectHandle::assertInitialized() const
{
 if (! this->initialized)
 {
	throw std::logic_error("operation attempted on uninitialized "
			 "QPDFObjectHandle");
 }
}

void
QPDFObjectHandle::assertType(char const* type_name, bool istype) const
{
 if (! istype)
 {
	throw std::logic_error(std::string("operation for ") + type_name +
			 " object attempted on object of wrong type");
 }
}

void
QPDFObjectHandle::assertNull()
{
 assertType("Null", isNull());
}

void
QPDFObjectHandle::assertBool()
{
 assertType("Boolean", isBool());
}

void
QPDFObjectHandle::assertInteger()
{
 assertType("Integer", isInteger());
}

void
QPDFObjectHandle::assertReal()
{
 assertType("Real", isReal());
}

void
QPDFObjectHandle::assertName()
{
 assertType("Name", isName());
}

void
QPDFObjectHandle::assertString()
{
 assertType("String", isString());
}

void
QPDFObjectHandle::assertOperator()
{
 assertType("Operator", isOperator());
}

void
QPDFObjectHandle::assertInlineImage()
{
 assertType("InlineImage", isInlineImage());
}

void
QPDFObjectHandle::assertArray()
{
 assertType("Array", isArray());
}

void
QPDFObjectHandle::assertDictionary()
{
 assertType("Dictionary", isDictionary());
}

void
QPDFObjectHandle::assertStream()
{
 assertType("Stream", isStream());
}

void
QPDFObjectHandle::assertReserved()
{
 assertType("Reserved", isReserved());
}

void
QPDFObjectHandle::assertIndirect()
{
 if (! isIndirect())
 {
	throw std::logic_error(
 "operation for indirect object attempted on direct object");
 }
}

void
QPDFObjectHandle::assertScalar()
{
 assertType("Scalar", isScalar());
}

void
QPDFObjectHandle::assertNumber()
{
 assertType("Number", isNumber());
}

bool
QPDFObjectHandle::isPageObject()
{
 return (this->isDictionary() && this->hasKey("/Type") &&
 (this->getKey("/Type").getName() == "/Page"));
}

bool
QPDFObjectHandle::isPagesObject()
{
 return (this->isDictionary() && this->hasKey("/Type") &&
 (this->getKey("/Type").getName() == "/Pages"));
}

void
QPDFObjectHandle::assertPageObject()
{
 if (! isPageObject())
 {
	throw std::logic_error("page operation called on non-Page object");
 }
}

void
QPDFObjectHandle::dereference()
{
 if (this->obj.getPointer() == 0)
 {
 PointerHolder<QPDFObject> obj = QPDF::Resolver::resolve(
	 this->qpdf, this->objid, this->generation);
	if (obj.getPointer() == 0)
	{
	 QTC::TC("qpdf", "QPDFObjectHandle indirect to unknown");
	 this->obj = new QPDF_Null();
	}
 else if (dynamic_cast<QPDF_Reserved*>(obj.getPointer()))
 {
 // Do not resolve
 }
 else
 {
 this->reserved = false;
 this->obj = obj;
 }
 }
}

void
QPDFObjectHandle::warn(QPDF* qpdf, QPDFExc const& e)
{
 // If parsing on behalf of a QPDF object and want to give a
 // warning, we can warn through the object. If parsing for some
 // other reason, such as an explicit creation of an object from a
 // string, then just throw the exception.
 if (qpdf)
 {
 QPDF::Warner::warn(qpdf, e);
 }
 else
 {
 throw e;
 }
}

qpdf-7.1.0/libqpdf/QPDF.cc

#include <qpdf/qpdf-config.h> // include first for large file support
#include <qpdf/QPDF.hh>

#include <vector>
#include <map>
#include <algorithm>
#include <string.h>
#include <memory.h>

#include <qpdf/QTC.hh>
#include <qpdf/QUtil.hh>
#include <qpdf/Pipeline.hh>
#include <qpdf/Pl_Discard.hh>
#include <qpdf/FileInputSource.hh>
#include <qpdf/BufferInputSource.hh>
#include <qpdf/OffsetInputSource.hh>

#include <qpdf/QPDFExc.hh>
#include <qpdf/QPDF_Null.hh>
#include <qpdf/QPDF_Dictionary.hh>

std::string QPDF::qpdf_version = "7.1.0";

static char const* EMPTY_PDF =
 "%PDF-1.3\n"
 "1 0 obj\n"
 "<< /Type /Catalog /Pages 2 0 R >>\n"
 "endobj\n"
 "2 0 obj\n"
 "<< /Type /Pages /Kids [] /Count 0 >>\n"
 "endobj\n"
 "xref\n"
 "0 3\n"
 "0000000000 65535 f \n"
 "0000000009 00000 n \n"
 "0000000058 00000 n \n"
 "trailer << /Size 3 /Root 1 0 R >>\n"
 "startxref\n"
 "110\n"
 "%%EOF\n";

void
QPDF::CopiedStreamDataProvider::provideStreamData(
 int objid, int generation, Pipeline* pipeline)
{
 QPDFObjectHandle foreign_stream =
 this->foreign_streams[QPDFObjGen(objid, generation)];
 foreign_stream.pipeStreamData(pipeline, 0, qpdf_dl_none);
}

void
QPDF::CopiedStreamDataProvider::registerForeignStream(
 QPDFObjGen const& local_og, QPDFObjectHandle foreign_stream)
{
 this->foreign_streams[local_og] = foreign_stream;
}

QPDF::StringDecrypter::StringDecrypter(QPDF* qpdf, int objid, int gen) :
 qpdf(qpdf),
 objid(objid),
 gen(gen)
{
}

void
QPDF::StringDecrypter::decryptString(std::string& val)
{
 qpdf->decryptString(val, objid, gen);
}

std::string const&
QPDF::QPDFVersion()
{
 return QPDF::qpdf_version;
}

QPDF::Members::Members() :
 provided_password_is_hex_key(false),
 encrypted(false),
 encryption_initialized(false),
 ignore_xref_streams(false),
 suppress_warnings(false),
 out_stream(&std::cout),
 err_stream(&std::cerr),
 attempt_recovery(true),
 encryption_V(0),
 encryption_R(0),
 encrypt_metadata(true),
 cf_stream(e_none),
 cf_string(e_none),
 cf_file(e_none),
 cached_key_objid(0),
 cached_key_generation(0),
 pushed_inherited_attributes_to_pages(false),
 copied_stream_data_provider(0),
 reconstructed_xref(false),
 first_xref_item_offset(0),
 uncompressed_after_compressed(false)
{
}

QPDF::Members::~Members()
{
}

QPDF::QPDF() :
 m(new Members())
{
}

QPDF::~QPDF()
{
 // If two objects are mutually referential (through each object
 // having an array or dictionary that contains an indirect
 // reference to the other), the circular references in the
 // PointerHolder objects will prevent the objects from being
 // deleted. Walk through all objects in the object cache, which
 // is those objects that we read from the file, and break all
 // resolved references. At this point, obviously no one is still
 // using the QPDF object, but we'll explicitly clear the xref
 // table anyway just to prevent any possibility of resolve()
 // succeeding. Note that we can't break references like this at
 // any time when the QPDF object is active. If we do, the next
 // reference will reread the object from the file, which would
 // have the effect of undoing any modifications that may have been
 // made to any of the objects.
 this->m->xref_table.clear();
 for (std::map<QPDFObjGen, ObjCache>::iterator iter =
 this->m->obj_cache.begin();
	 iter != this->m->obj_cache.end(); ++iter)
 {
	QPDFObject::ObjAccessor::releaseResolved(
	 (*iter).second.object.getPointer());
 }
}

void
QPDF::processFile(char const* filename, char const* password)
{
 FileInputSource* fi = new FileInputSource();
 fi->setFilename(filename);
 processInputSource(fi, password);
}

void
QPDF::processFile(char const* description, FILE* filep,
 bool close_file, char const* password)
{
 FileInputSource* fi = new FileInputSource();
 fi->setFile(description, filep, close_file);
 processInputSource(fi, password);
}

void
QPDF::processMemoryFile(char const* description,
			char const* buf, size_t length,
			char const* password)
{
 processInputSource(
	new BufferInputSource(
 description,
 new Buffer(QUtil::unsigned_char_pointer(buf), length),
 true),
 password);
}

void
QPDF::processInputSource(PointerHolder<InputSource> source,
 char const* password)
{
 this->m->file = source;
 parse(password);
}

void
QPDF::setPasswordIsHexKey(bool val)
{
 this->m->provided_password_is_hex_key = val;
}

void
QPDF::emptyPDF()
{
 processMemoryFile("empty PDF", EMPTY_PDF, strlen(EMPTY_PDF));
}

void
QPDF::setIgnoreXRefStreams(bool val)
{
 this->m->ignore_xref_streams = val;
}

void
QPDF::setOutputStreams(std::ostream* out, std::ostream* err)
{
 this->m->out_stream = out ? out : &std::cout;
 this->m->err_stream = err ? err : &std::cerr;
}

void
QPDF::setSuppressWarnings(bool val)
{
 this->m->suppress_warnings = val;
}

void
QPDF::setAttemptRecovery(bool val)
{
 this->m->attempt_recovery = val;
}

std::vector<QPDFExc>
QPDF::getWarnings()
{
 std::vector<QPDFExc> result = this->m->warnings;
 this->m->warnings.clear();
 return result;
}

bool
QPDF::findHeader()
{
 qpdf_offset_t global_offset = this->m->file->tell();
 std::string line = this->m->file->readLine(1024);
 char const* p = line.c_str();
 if (strncmp(p, "%PDF-", 5) != 0)
 {
 throw std::logic_error("findHeader is not looking at %PDF-");
 }
 p += 5;
 std::string version;
 // Note: The string returned by line.c_str() is always
 // null-terminated. The code below never overruns the buffer
 // because a null character always short-circuits further
 // advancement.
 bool valid = QUtil::is_digit(*p);
 if (valid)
 {
 while (QUtil::is_digit(*p))
 {
 version.append(1, *p++);
 }
 if ((*p == '.') && QUtil::is_digit(*(p+1)))
 {
 version.append(1, *p++);
 while (QUtil::is_digit(*p))
 {
 version.append(1, *p++);
 }
 }
 else
 {
 valid = false;
 }
 }
 if (valid)
 {
 this->m->pdf_version = version;
 if (global_offset != 0)
 {
 // Empirical evidence strongly suggests that when there is
 // leading material prior to the PDF header, all explicit
 // offsets in the file are such that 0 points to the
 // beginning of the header.
 QTC::TC("qpdf", "QPDF global offset");
 this->m->file = new OffsetInputSource(this->m->file, global_offset);
 }
 }
 return valid;
}

bool
QPDF::findStartxref()
{
 QPDFTokenizer::Token t = readToken(this->m->file, true);
 if (t == QPDFTokenizer::Token(QPDFTokenizer::tt_word, "startxref"))
 {
 t = readToken(this->m->file, true);
 if (t.getType() == QPDFTokenizer::tt_integer)
 {
 // Position in front of offset token
 this->m->file->seek(this->m->file->getLastOffset(), SEEK_SET);
 return true;
 }
 }
 return false;
}

void
QPDF::parse(char const* password)
{
 if (password)
 {
	this->m->provided_password = password;
 }

 // Find the header anywhere in the first 1024 bytes of the file.
 PatternFinder hf(*this, &QPDF::findHeader);
 if (! this->m->file->findFirst("%PDF-", 0, 1024, hf))
 {
	QTC::TC("qpdf", "QPDF not a pdf file");
	warn(QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
 "", 0, "can't find PDF header"));
 // QPDFWriter writes files that usually require at least
 // version 1.2 for /FlateDecode
 this->m->pdf_version = "1.2";
 }
 if (atof(this->m->pdf_version.c_str()) < 1.2)
 {
 this->m->tokenizer.allowPoundAnywhereInName();
 }

 // PDF spec says %%EOF must be found within the last 1024 bytes of
 // the file. We add an extra 30 characters to leave room for the
 // startxref stuff.
 this->m->file->seek(0, SEEK_END);
 qpdf_offset_t end_offset = this->m->file->tell();
 qpdf_offset_t start_offset = (end_offset > 1054 ? end_offset - 1054 : 0);
 PatternFinder sf(*this, &QPDF::findStartxref);
 qpdf_offset_t xref_offset = 0;
 if (this->m->file->findLast("startxref", start_offset, 0, sf))
 {
 xref_offset = QUtil::string_to_ll(
 readToken(this->m->file).getValue().c_str());
 }

 try
 {
	if (xref_offset == 0)
	{
	 QTC::TC("qpdf", "QPDF can't find startxref");
	 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(), "", 0,
			 "can't find startxref");
	}
	read_xref(xref_offset);
 }
 catch (QPDFExc& e)
 {
	if (this->m->attempt_recovery)
	{
	 reconstruct_xref(e);
	 QTC::TC("qpdf", "QPDF reconstructed xref table");
	}
	else
	{
	 throw e;
	}
 }

 initializeEncryption();
 findAttachmentStreams();
}

void
QPDF::warn(QPDFExc const& e)
{
 this->m->warnings.push_back(e);
 if (! this->m->suppress_warnings)
 {
	*this->m->err_stream
 << "WARNING: "
 << this->m->warnings.back().what() << std::endl;
 }
}

void
QPDF::setTrailer(QPDFObjectHandle obj)
{
 if (this->m->trailer.isInitialized())
 {
	return;
 }
 this->m->trailer = obj;
}

void
QPDF::reconstruct_xref(QPDFExc& e)
{
 if (this->m->reconstructed_xref)
 {
 // Avoid xref reconstruction infinite loops. This is getting
 // very hard to reproduce because qpdf is throwing many fewer
 // exceptions while parsing. Most situations are warnings now.
 throw e;
 }

 this->m->reconstructed_xref = true;

 warn(QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(), "", 0,
		 "file is damaged"));
 warn(e);
 warn(QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(), "", 0,
		 "Attempting to reconstruct cross-reference table"));

 // Delete all references to type 1 (uncompressed) objects
 std::set<QPDFObjGen> to_delete;
 for (std::map<QPDFObjGen, QPDFXRefEntry>::iterator iter =
	 this->m->xref_table.begin();
	 iter != this->m->xref_table.end(); ++iter)
 {
	if (((*iter).second).getType() == 1)
	{
	 to_delete.insert((*iter).first);
	}
 }
 for (std::set<QPDFObjGen>::iterator iter = to_delete.begin();
	 iter != to_delete.end(); ++iter)
 {
	this->m->xref_table.erase(*iter);
 }

 this->m->file->seek(0, SEEK_END);
 qpdf_offset_t eof = this->m->file->tell();
 this->m->file->seek(0, SEEK_SET);
 bool in_obj = false;
 qpdf_offset_t line_start = 0;
 // Don't allow very long tokens here during recovery.
 static size_t const MAX_LEN = 100;
 while (this->m->file->tell() < eof)
 {
 this->m->file->findAndSkipNextEOL();
 qpdf_offset_t next_line_start = this->m->file->tell();
 this->m->file->seek(line_start, SEEK_SET);
 QPDFTokenizer::Token t1 = readToken(this->m->file, true, MAX_LEN);
 qpdf_offset_t token_start =
 this->m->file->tell() - t1.getValue().length();
 if (token_start >= next_line_start)
 {
 // don't process yet
 }
	else if (in_obj)
	{
 if (t1 == QPDFTokenizer::Token(QPDFTokenizer::tt_word, "endobj"))
	 {
		in_obj = false;
	 }
	}
 else
 {
 if (t1.getType() == QPDFTokenizer::tt_integer)
 {
 QPDFTokenizer::Token t2 =
 readToken(this->m->file, true, MAX_LEN);
 QPDFTokenizer::Token t3 =
 readToken(this->m->file, true, MAX_LEN);
 if ((t2.getType() == QPDFTokenizer::tt_integer) &&
 (t3 == QPDFTokenizer::Token(QPDFTokenizer::tt_word, "obj")))
 {
 in_obj = true;
 int obj = QUtil::string_to_int(t1.getValue().c_str());
 int gen = QUtil::string_to_int(t2.getValue().c_str());
 insertXrefEntry(obj, 1, token_start, gen, true);
 }
 }
 else if ((! this->m->trailer.isInitialized()) &&
 (t1 == QPDFTokenizer::Token(
 QPDFTokenizer::tt_word, "trailer")))
 {
 QPDFObjectHandle t =
 readObject(this->m->file, "trailer", 0, 0, false);
 if (! t.isDictionary())
 {
 // Oh well. It was worth a try.
 }
 else
 {
 setTrailer(t);
 }
 }
	}
 this->m->file->seek(next_line_start, SEEK_SET);
 line_start = next_line_start;
 }

 if (! this->m->trailer.isInitialized())
 {
	// We could check the last encountered object to see if it was
	// an xref stream. If so, we could try to get the trailer
	// from there. This may make it possible to recover files
	// with bad startxref pointers even when they have object
	// streams.

	throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(), "", 0,
		 "unable to find trailer "
		 "dictionary while recovering damaged file");
 }

 // We could iterate through the objects looking for streams and
 // try to find objects inside of them, but it's probably not worth
 // the trouble. Acrobat can't recover files with any errors in an
 // xref stream, and this would be a real long shot anyway. If we
 // wanted to do anything that involved looking at stream contents,
 // we'd also have to call initializeEncryption() here. It's safe
 // to call it more than once.
}

void
QPDF::read_xref(qpdf_offset_t xref_offset)
{
 std::map<int, int> free_table;
 std::set<qpdf_offset_t> visited;
 while (xref_offset)
 {
 visited.insert(xref_offset);
 char buf[7];
 memset(buf, 0, sizeof(buf));
	this->m->file->seek(xref_offset, SEEK_SET);
	this->m->file->read(buf, sizeof(buf) - 1);
 // The PDF spec says xref must be followed by a line
 // terminator, but files exist in the wild where it is
 // terminated by arbitrary whitespace.
 if ((strncmp(buf, "xref", 4) == 0) &&
 QUtil::is_space(buf[4]))
	{
 QTC::TC("qpdf", "QPDF xref space",
 ((buf[4] == '\n') ? 0 :
 (buf[4] == '\r') ? 1 :
 (buf[4] == ' ') ? 2 : 9999));
 int skip = 4;
 // buf is null-terminated, and QUtil::is_space('\0') is
 // false, so this won't overrun.
 while (QUtil::is_space(buf[skip]))
 {
 ++skip;
 }
 xref_offset = read_xrefTable(xref_offset + skip);
	}
	else
	{
	 xref_offset = read_xrefStream(xref_offset);
	}
 if (visited.count(xref_offset) != 0)
 {
 xref_offset = 0;
 }
 }

 if (! this->m->trailer.isInitialized())
 {
 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(), "", 0,
 "unable to find trailer while reading xref");
 }
 int size = this->m->trailer.getKey("/Size").getIntValue();
 int max_obj = 0;
 if (! this->m->xref_table.empty())
 {
	max_obj = (*(this->m->xref_table.rbegin())).first.getObj();
 }
 if (! this->m->deleted_objects.empty())
 {
	max_obj = std::max(max_obj, *(this->m->deleted_objects.rbegin()));
 }
 if (size != max_obj + 1)
 {
	QTC::TC("qpdf", "QPDF xref size mismatch");
	warn(QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(), "", 0,
		 std::string("reported number of objects (") +
		 QUtil::int_to_string(size) +
		 ") inconsistent with actual number of objects (" +
		 QUtil::int_to_string(max_obj + 1) + ")"));
 }

 // We no longer need the deleted_objects table, so go ahead and
 // clear it out to make sure we never depend on its being set.
 this->m->deleted_objects.clear();
}

bool
QPDF::parse_xrefFirst(std::string const& line,
 int& obj, int& num, int& bytes)
{
 // is_space and is_digit both return false on '\0', so this will
 // not overrun the null-terminated buffer.
 char const* p = line.c_str();
 char const* start = line.c_str();

 // Skip zero or more spaces
 while (QUtil::is_space(*p))
 {
 ++p;
 }
 // Require digit
 if (! QUtil::is_digit(*p))
 {
 return false;
 }
 // Gather digits
 std::string obj_str;
 while (QUtil::is_digit(*p))
 {
 obj_str.append(1, *p++);
 }
 // Require space
 if (! QUtil::is_space(*p))
 {
 return false;
 }
 // Skip spaces
 while (QUtil::is_space(*p))
 {
 ++p;
 }
 // Require digit
 if (! QUtil::is_digit(*p))
 {
 return false;
 }
 // Gather digits
 std::string num_str;
 while (QUtil::is_digit(*p))
 {
 num_str.append(1, *p++);
 }
 // Skip any space including line terminators
 while (QUtil::is_space(*p))
 {
 ++p;
 }
 bytes = p - start;
 obj = QUtil::string_to_int(obj_str.c_str());
 num = QUtil::string_to_int(num_str.c_str());
 return true;
}

bool
QPDF::parse_xrefEntry(std::string const& line,
 qpdf_offset_t& f1, int& f2, char& type)
{
 // is_space and is_digit both return false on '\0', so this will
 // not overrun the null-terminated buffer.
 char const* p = line.c_str();

 // Skip zero or more spaces. There aren't supposed to be any.
 bool invalid = false;
 while (QUtil::is_space(*p))
 {
 ++p;
 QTC::TC("qpdf", "QPDF ignore first space in xref entry");
 invalid = true;
 }
 // Require digit
 if (! QUtil::is_digit(*p))
 {
 return false;
 }
 // Gather digits
 std::string f1_str;
 while (QUtil::is_digit(*p))
 {
 f1_str.append(1, *p++);
 }
 // Require space
 if (! QUtil::is_space(*p))
 {
 return false;
 }
 if (QUtil::is_space(*(p+1)))
 {
 QTC::TC("qpdf", "QPDF ignore first extra space in xref entry");
 invalid = true;
 }
 // Skip spaces
 while (QUtil::is_space(*p))
 {
 ++p;
 }
 // Require digit
 if (! QUtil::is_digit(*p))
 {
 return false;
 }
 // Gather digits
 std::string f2_str;
 while (QUtil::is_digit(*p))
 {
 f2_str.append(1, *p++);
 }
 // Require space
 if (! QUtil::is_space(*p))
 {
 return false;
 }
 if (QUtil::is_space(*(p+1)))
 {
 QTC::TC("qpdf", "QPDF ignore second extra space in xref entry");
 invalid = true;
 }
 // Skip spaces
 while (QUtil::is_space(*p))
 {
 ++p;
 }
 if ((*p == 'f') || (*p == 'n'))
 {
 type = *p;
 }
 else
 {
 return false;
 }
 if ((f1_str.length() != 10) || (f2_str.length() != 5))
 {
 QTC::TC("qpdf", "QPDF ignore length error xref entry");
 invalid = true;
 }

 if (invalid)
 {
 warn(QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
 "xref table",
 this->m->file->getLastOffset(),
 "accepting invalid xref table entry"));
 }

 f1 = QUtil::string_to_ll(f1_str.c_str());
 f2 = QUtil::string_to_int(f2_str.c_str());

 return true;
}

qpdf_offset_t
QPDF::read_xrefTable(qpdf_offset_t xref_offset)
{
 std::vector<QPDFObjGen> deleted_items;

 this->m->file->seek(xref_offset, SEEK_SET);
 bool done = false;
 while (! done)
 {
 char linebuf[51];
 memset(linebuf, 0, sizeof(linebuf));
 this->m->file->read(linebuf, sizeof(linebuf) - 1);
	std::string line = linebuf;
 int obj = 0;
 int num = 0;
 int bytes = 0;
 if (! parse_xrefFirst(line, obj, num, bytes))
	{
	 QTC::TC("qpdf", "QPDF invalid xref");
	 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
			 "xref table", this->m->file->getLastOffset(),
			 "xref syntax invalid");
	}
 this->m->file->seek(this->m->file->getLastOffset() + bytes, SEEK_SET);
	for (int i = obj; i < obj + num; ++i)
	{
	 if (i == 0)
	 {
		// This is needed by checkLinearization()
		this->m->first_xref_item_offset = this->m->file->tell();
	 }
	 std::string xref_entry = this->m->file->readLine(30);
 // For xref_table, these will always be small enough to be ints
	 qpdf_offset_t f1 = 0;
	 int f2 = 0;
	 char type = '\0';
 if (! parse_xrefEntry(xref_entry, f1, f2, type))
	 {
		QTC::TC("qpdf", "QPDF invalid xref entry");
		throw QPDFExc(
		 qpdf_e_damaged_pdf, this->m->file->getName(),
		 "xref table", this->m->file->getLastOffset(),
		 "invalid xref entry (obj=" +
		 QUtil::int_to_string(i) + ")");
	 }
	 if (type == 'f')
	 {
		// Save deleted items until after we've checked the
		// XRefStm, if any.
		deleted_items.push_back(QPDFObjGen(i, f2));
	 }
	 else
	 {
		insertXrefEntry(i, 1, f1, f2);
	 }
	}
	qpdf_offset_t pos = this->m->file->tell();
	QPDFTokenizer::Token t = readToken(this->m->file);
	if (t == QPDFTokenizer::Token(QPDFTokenizer::tt_word, "trailer"))
	{
	 done = true;
	}
	else
	{
	 this->m->file->seek(pos, SEEK_SET);
	}
 }

 // Set offset to previous xref table if any
 QPDFObjectHandle cur_trailer =
	readObject(this->m->file, "trailer", 0, 0, false);
 if (! cur_trailer.isDictionary())
 {
	QTC::TC("qpdf", "QPDF missing trailer");
	throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
		 "", this->m->file->getLastOffset(),
		 "expected trailer dictionary");
 }

 if (! this->m->trailer.isInitialized())
 {
	setTrailer(cur_trailer);

	if (! this->m->trailer.hasKey("/Size"))
	{
	 QTC::TC("qpdf", "QPDF trailer lacks size");
	 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
			 "trailer", this->m->file->getLastOffset(),
			 "trailer dictionary lacks /Size key");
	}
	if (! this->m->trailer.getKey("/Size").isInteger())
	{
	 QTC::TC("qpdf", "QPDF trailer size not integer");
	 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
			 "trailer", this->m->file->getLastOffset(),
			 "/Size key in trailer dictionary is not "
			 "an integer");
	}
 }

 if (cur_trailer.hasKey("/XRefStm"))
 {
	if (this->m->ignore_xref_streams)
	{
	 QTC::TC("qpdf", "QPDF ignoring XRefStm in trailer");
	}
	else
	{
	 if (cur_trailer.getKey("/XRefStm").isInteger())
	 {
		// Read the xref stream but disregard any return value
		// -- we'll use our trailer's /Prev key instead of the
		// xref stream's.
		(void) read_xrefStream(
		 cur_trailer.getKey("/XRefStm").getIntValue());
	 }
	 else
	 {
		throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
			 "xref stream", xref_offset,
			 "invalid /XRefStm");
	 }
	}
 }

 // Handle any deleted items now that we've read the /XRefStm.
 for (std::vector<QPDFObjGen>::iterator iter = deleted_items.begin();
	 iter != deleted_items.end(); ++iter)
 {
	QPDFObjGen& og = *iter;
	insertXrefEntry(og.getObj(), 0, 0, og.getGen());
 }

 if (cur_trailer.hasKey("/Prev"))
 {
	if (! cur_trailer.getKey("/Prev").isInteger())
	{
	 QTC::TC("qpdf", "QPDF trailer prev not integer");
	 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
			 "trailer", this->m->file->getLastOffset(),
			 "/Prev key in trailer dictionary is not "
			 "an integer");
	}
	QTC::TC("qpdf", "QPDF prev key in trailer dictionary");
	xref_offset = cur_trailer.getKey("/Prev").getIntValue();
 }
 else
 {
	xref_offset = 0;
 }

 return xref_offset;
}

qpdf_offset_t
QPDF::read_xrefStream(qpdf_offset_t xref_offset)
{
 bool found = false;
 if (! this->m->ignore_xref_streams)
 {
	int xobj;
	int xgen;
	QPDFObjectHandle xref_obj;
	try
	{
	 xref_obj = readObjectAtOffset(
		false, xref_offset, "xref stream", -1, 0, xobj, xgen);
	}
	catch (QPDFExc&)
	{
	 // ignore -- report error below
	}
	if (xref_obj.isInitialized() &&
	 xref_obj.isStream() &&
	 xref_obj.getDict().getKey("/Type").isName() &&
	 xref_obj.getDict().getKey("/Type").getName() == "/XRef")
	{
	 QTC::TC("qpdf", "QPDF found xref stream");
	 found = true;
	 xref_offset = processXRefStream(xref_offset, xref_obj);
	}
 }

 if (! found)
 {
	QTC::TC("qpdf", "QPDF can't find xref");
	throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
		 "", xref_offset, "xref not found");
 }

 return xref_offset;
}

qpdf_offset_t
QPDF::processXRefStream(qpdf_offset_t xref_offset, QPDFObjectHandle& xref_obj)
{
 QPDFObjectHandle dict = xref_obj.getDict();
 QPDFObjectHandle W_obj = dict.getKey("/W");
 QPDFObjectHandle Index_obj = dict.getKey("/Index");
 if (! (W_obj.isArray() &&
	 (W_obj.getArrayNItems() >= 3) &&
	 W_obj.getArrayItem(0).isInteger() &&
	 W_obj.getArrayItem(1).isInteger() &&
	 W_obj.getArrayItem(2).isInteger() &&
	 dict.getKey("/Size").isInteger() &&
	 (Index_obj.isArray() || Index_obj.isNull())))
 {
	throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
		 "xref stream", xref_offset,
		 "Cross-reference stream does not have"
		 " proper /W and /Index keys");
 }

 int W[3];
 size_t entry_size = 0;
 int max_bytes = sizeof(qpdf_offset_t);
 for (int i = 0; i < 3; ++i)
 {
	W[i] = W_obj.getArrayItem(i).getIntValue();
 if (W[i] > max_bytes)
 {
 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
 "xref stream", xref_offset,
 "Cross-reference stream's /W contains"
 " impossibly large values");
 }
	entry_size += W[i];
 }
 if (entry_size == 0)
 {
 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
 "xref stream", xref_offset,
 "Cross-reference stream's /W indicates"
 " entry size of 0");
 }
 long long max_num_entries =
 static_cast<unsigned long long>(-1) / entry_size;

 std::vector<long long> indx;
 if (Index_obj.isArray())
 {
	int n_index = Index_obj.getArrayNItems();
	if ((n_index % 2) || (n_index < 2))
	{
	 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
			 "xref stream", xref_offset,
			 "Cross-reference stream's /Index has an"
			 " invalid number of values");
	}
	for (int i = 0; i < n_index; ++i)
	{
	 if (Index_obj.getArrayItem(i).isInteger())
	 {
		indx.push_back(Index_obj.getArrayItem(i).getIntValue());
	 }
	 else
	 {
		throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
			 "xref stream", xref_offset,
			 "Cross-reference stream's /Index's item " +
			 QUtil::int_to_string(i) +
			 " is not an integer");
	 }
	}
	QTC::TC("qpdf", "QPDF xref /Index is array",
		n_index == 2 ? 0 : 1);
 }
 else
 {
	QTC::TC("qpdf", "QPDF xref /Index is null");
	long long size = dict.getKey("/Size").getIntValue();
	indx.push_back(0);
	indx.push_back(size);
 }

 long long num_entries = 0;
 for (unsigned int i = 1; i < indx.size(); i += 2)
 {
 if (indx.at(i) > max_num_entries - num_entries)
 {
 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
 "xref stream", xref_offset,
 "Cross-reference stream claims to contain"
 " too many entries: " +
 QUtil::int_to_string(indx.at(i)) + " " +
 QUtil::int_to_string(max_num_entries) + " " +
 QUtil::int_to_string(num_entries));
 }
	num_entries += indx.at(i);
 }

 // entry_size and num_entries have both been validated to ensure
 // that this multiplication does not cause an overflow.
 size_t expected_size = entry_size * num_entries;

 PointerHolder<Buffer> bp = xref_obj.getStreamData(qpdf_dl_specialized);
 size_t actual_size = bp->getSize();

 if (expected_size != actual_size)
 {
	QPDFExc x(qpdf_e_damaged_pdf, this->m->file->getName(),
		 "xref stream", xref_offset,
		 "Cross-reference stream data has the wrong size;"
		 " expected = " + QUtil::int_to_string(expected_size) +
		 "; actual = " + QUtil::int_to_string(actual_size));
	if (expected_size > actual_size)
	{
	 throw x;
	}
	else
	{
	 warn(x);
	}
 }

 int cur_chunk = 0;
 int chunk_count = 0;

 bool saw_first_compressed_object = false;

 // Actual size vs. expected size check above ensures that we will
 // not overflow any buffers here. We know that entry_size *
 // num_entries is equal to the size of the buffer.
 unsigned char const* data = bp->getBuffer();
 for (int i = 0; i < num_entries; ++i)
 {
	// Read this entry
	unsigned char const* entry = data + (entry_size * i);
	qpdf_offset_t fields[3];
	unsigned char const* p = entry;
	for (int j = 0; j < 3; ++j)
	{
	 fields[j] = 0;
	 if ((j == 0) && (W[0] == 0))
	 {
		QTC::TC("qpdf", "QPDF default for xref stream field 0");
		fields[0] = 1;
	 }
	 for (int k = 0; k < W[j]; ++k)
	 {
		fields[j] <<= 8;
		fields[j] += static_cast<int>(*p++);
	 }
	}

	// Get the object and generation number. The object number is
	// based on /Index. The generation number is 0 unless this is
	// an uncompressed object record, in which case the generation
	// number appears as the third field.
	int obj = indx.at(cur_chunk) + chunk_count;
	++chunk_count;
	if (chunk_count >= indx.at(cur_chunk + 1))
	{
	 cur_chunk += 2;
	 chunk_count = 0;
	}

	if (saw_first_compressed_object)
	{
	 if (fields[0] != 2)
	 {
		this->m->uncompressed_after_compressed = true;
	 }
	}
	else if (fields[0] == 2)
	{
	 saw_first_compressed_object = true;
	}
	if (obj == 0)
	{
	 // This is needed by checkLinearization()
	 this->m->first_xref_item_offset = xref_offset;
	}
	insertXrefEntry(obj, static_cast<int>(fields[0]),
 fields[1], static_cast<int>(fields[2]));
 }

 if (! this->m->trailer.isInitialized())
 {
	setTrailer(dict);
 }

 if (dict.hasKey("/Prev"))
 {
	if (! dict.getKey("/Prev").isInteger())
	{
	 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
			 "xref stream", this->m->file->getLastOffset(),
			 "/Prev key in xref stream dictionary is not "
			 "an integer");
	}
	QTC::TC("qpdf", "QPDF prev key in xref stream dictionary");
	xref_offset = dict.getKey("/Prev").getIntValue();
 }
 else
 {
	xref_offset = 0;
 }

 return xref_offset;
}

void
QPDF::insertXrefEntry(int obj, int f0, qpdf_offset_t f1, int f2, bool overwrite)
{
 // Populate the xref table in such a way that the first reference
 // to an object that we see, which is the one in the latest xref
 // table in which it appears, is the one that gets stored. This
 // works because we are reading more recent appends before older
 // ones. Exception: if overwrite is true, then replace any
 // existing object. This is used in xref recovery mode, which
 // reads the file from beginning to end.

 // If there is already an entry for this object and generation in
 // the table, it means that a later xref table has registered this
 // object. Disregard this one.
 { // private scope
	int gen = (f0 == 2 ? 0 : f2);
	QPDFObjGen og(obj, gen);
	if (this->m->xref_table.count(og))
	{
	 if (overwrite)
	 {
		QTC::TC("qpdf", "QPDF xref overwrite object");
		this->m->xref_table.erase(og);
	 }
	 else
	 {
		QTC::TC("qpdf", "QPDF xref reused object");
		return;
	 }
	}
	if (this->m->deleted_objects.count(obj))
	{
	 QTC::TC("qpdf", "QPDF xref deleted object");
	 return;
	}
 }

 switch (f0)
 {
 case 0:
	this->m->deleted_objects.insert(obj);
	break;

 case 1:
	// f2 is generation
	QTC::TC("qpdf", "QPDF xref gen > 0", ((f2 > 0) ? 1 : 0));
	this->m->xref_table[QPDFObjGen(obj, f2)] = QPDFXRefEntry(f0, f1, f2);
	break;

 case 2:
	this->m->xref_table[QPDFObjGen(obj, 0)] = QPDFXRefEntry(f0, f1, f2);
	break;

 default:
	throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
		 "xref stream", this->m->file->getLastOffset(),
		 "unknown xref stream entry type " +
		 QUtil::int_to_string(f0));
	break;
 }
}

void
QPDF::showXRefTable()
{
 for (std::map<QPDFObjGen, QPDFXRefEntry>::iterator iter =
	 this->m->xref_table.begin();
	 iter != this->m->xref_table.end(); ++iter)
 {
	QPDFObjGen const& og = (*iter).first;
	QPDFXRefEntry const& entry = (*iter).second;
	*this->m->out_stream << og.getObj() << "/" << og.getGen() << ": ";
	switch (entry.getType())
	{
	 case 1:
	 *this->m->out_stream
 << "uncompressed; offset = " << entry.getOffset();
	 break;

	 case 2:
	 *this->m->out_stream
 << "compressed; stream = "
 << entry.getObjStreamNumber()
 << ", index = " << entry.getObjStreamIndex();
	 break;

	 default:
	 throw std::logic_error("unknown cross-reference table type while"
				 " showing xref_table");
	 break;
	}
	*this->m->out_stream << std::endl;
 }
}

std::vector<QPDFObjectHandle>
QPDF::getAllObjects()
{
 std::vector<QPDFObjectHandle> result;
 for (std::map<QPDFObjGen, QPDFXRefEntry>::iterator iter =
	 this->m->xref_table.begin();
	 iter != this->m->xref_table.end(); ++iter)
 {

	QPDFObjGen const& og = (*iter).first;
 result.push_back(QPDFObjectHandle::Factory::newIndirect(
 this, og.getObj(), og.getGen()));
 }
 return result;
}

void
QPDF::setLastObjectDescription(std::string const& description,
			 int objid, int generation)
{
 this->m->last_object_description.clear();
 if (! description.empty())
 {
	this->m->last_object_description += description;
	if (objid > 0)
	{
	 this->m->last_object_description += ": ";
	}
 }
 if (objid > 0)
 {
	this->m->last_object_description += "object " +
	 QUtil::int_to_string(objid) + " " +
	 QUtil::int_to_string(generation);
 }
}

QPDFObjectHandle
QPDF::readObject(PointerHolder<InputSource> input,
		 std::string const& description,
		 int objid, int generation, bool in_object_stream)
{
 setLastObjectDescription(description, objid, generation);
 qpdf_offset_t offset = input->tell();

 bool empty = false;
 PointerHolder<StringDecrypter> decrypter_ph;
 StringDecrypter* decrypter = 0;
 if (this->m->encrypted && (! in_object_stream))
 {
 decrypter_ph = new StringDecrypter(this, objid, generation);
 decrypter = decrypter_ph.getPointer();
 }
 QPDFObjectHandle object = QPDFObjectHandle::parse(
 input, description, this->m->tokenizer, empty, decrypter, this);
 if (empty)
 {
 // Nothing in the PDF spec appears to allow empty objects, but
 // they have been encountered in actual PDF files and Adobe
 // Reader appears to ignore them.
 warn(QPDFExc(qpdf_e_damaged_pdf, input->getName(),
 this->m->last_object_description,
 input->getLastOffset(),
 "empty object treated as null"));
 }
 else if (object.isDictionary() && (! in_object_stream))
 {
 // check for stream
 qpdf_offset_t cur_offset = input->tell();
 if (readToken(input) ==
 QPDFTokenizer::Token(QPDFTokenizer::tt_word, "stream"))
 {
 // The PDF specification states that the word "stream"
 // should be followed by either a carriage return and
 // a newline or by a newline alone. It specifically
 // disallowed following it by a carriage return alone
 // since, in that case, there would be no way to tell
 // whether the NL in a CR NL sequence was part of the
 // stream data. However, some readers, including
 // Adobe reader, accept a carriage return by itself
 // when followed by a non-newline character, so that's
 // what we do here.
 {
 char ch;
 if (input->read(&ch, 1) == 0)
 {
 // A premature EOF here will result in some
 // other problem that will get reported at
 // another time.
 }
 else if (ch == '\n')
 {
 // ready to read stream data
 QTC::TC("qpdf", "QPDF stream with NL only");
 }
 else if (ch == '\r')
 {
 // Read another character
 if (input->read(&ch, 1) != 0)
 {
 if (ch == '\n')
 {
 // Ready to read stream data
 QTC::TC("qpdf", "QPDF stream with CRNL");
 }
 else
 {
 // Treat the \r by itself as the
 // whitespace after endstream and
 // start reading stream data in spite
 // of not having seen a newline.
 QTC::TC("qpdf", "QPDF stream with CR only");
 input->unreadCh(ch);
 warn(QPDFExc(
 qpdf_e_damaged_pdf,
 input->getName(),
 this->m->last_object_description,
 input->tell(),
 "stream keyword followed"
 " by carriage return only"));
 }
 }
 }
 else
 {
 QTC::TC("qpdf", "QPDF stream without newline");
 if (! QUtil::is_space(ch))
 {
 QTC::TC("qpdf", "QPDF stream with non-space");
 input->unreadCh(ch);
 }
 warn(QPDFExc(qpdf_e_damaged_pdf, input->getName(),
 this->m->last_object_description,
 input->tell(),
 "stream keyword not followed"
 " by proper line terminator"));
 }
 }

 // Must get offset before accessing any additional
 // objects since resolving a previously unresolved
 // indirect object will change file position.
 qpdf_offset_t stream_offset = input->tell();
 size_t length = 0;

 try
 {
 std::map<std::string, QPDFObjectHandle> dict =
 object.getDictAsMap();

 if (dict.count("/Length") == 0)
 {
 QTC::TC("qpdf", "QPDF stream without length");
 throw QPDFExc(qpdf_e_damaged_pdf, input->getName(),
 this->m->last_object_description, offset,
 "stream dictionary lacks /Length key");
 }

 QPDFObjectHandle length_obj = dict["/Length"];
 if (! length_obj.isInteger())
 {
 QTC::TC("qpdf", "QPDF stream length not integer");
 throw QPDFExc(qpdf_e_damaged_pdf, input->getName(),
 this->m->last_object_description, offset,
 "/Length key in stream dictionary is not "
 "an integer");
 }

 length = length_obj.getIntValue();
 input->seek(stream_offset + length, SEEK_SET);
 if (! (readToken(input) ==
 QPDFTokenizer::Token(
 QPDFTokenizer::tt_word, "endstream")))
 {
 QTC::TC("qpdf", "QPDF missing endstream");
 throw QPDFExc(qpdf_e_damaged_pdf, input->getName(),
 this->m->last_object_description,
 input->getLastOffset(),
 "expected endstream");
 }
 }
 catch (QPDFExc& e)
 {
 if (this->m->attempt_recovery)
 {
 warn(e);
 length = recoverStreamLength(
 input, objid, generation, stream_offset);
 }
 else
 {
 throw e;
 }
 }
 object = QPDFObjectHandle::Factory::newStream(
 this, objid, generation, object, stream_offset, length);
 }
 else
 {
 input->seek(cur_offset, SEEK_SET);
 }
 }

 // Override last_offset so that it points to the beginning of the
 // object we just read
 input->setLastOffset(offset);
 return object;
}

bool
QPDF::findEndstream()
{
 // Find endstream or endobj. Position the input at that token.
 QPDFTokenizer::Token t = readToken(this->m->file, true, 20);
 if ((t.getType() == QPDFTokenizer::tt_word) &&
 ((t.getValue() == "endobj") ||
 (t.getValue() == "endstream")))
 {
 this->m->file->seek(this->m->file->getLastOffset(), SEEK_SET);
 return true;
 }
 return false;
}

size_t
QPDF::recoverStreamLength(PointerHolder<InputSource> input,
			 int objid, int generation,
 qpdf_offset_t stream_offset)
{
 // Try to reconstruct stream length by looking for
 // endstream or endobj
 warn(QPDFExc(qpdf_e_damaged_pdf, input->getName(),
		 this->m->last_object_description, stream_offset,
		 "attempting to recover stream length"));

 PatternFinder ef(*this, &QPDF::findEndstream);
 size_t length = 0;
 if (this->m->file->findFirst("end", stream_offset, 0, ef))
 {
 length = this->m->file->tell() - stream_offset;
 // Reread endstream but, if it was endobj, don't skip that.
 QPDFTokenizer::Token t = readToken(this->m->file);
 if (t.getValue() == "endobj")
 {
 this->m->file->seek(this->m->file->getLastOffset(), SEEK_SET);
 }
 }

 if (length)
 {
	int this_obj_offset = 0;
	QPDFObjGen this_obj(0, 0);

	// Make sure this is inside this object
	for (std::map<QPDFObjGen, QPDFXRefEntry>::iterator iter =
		 this->m->xref_table.begin();
	 iter != this->m->xref_table.end(); ++iter)
	{
	 QPDFObjGen const& og = (*iter).first;
	 QPDFXRefEntry const& entry = (*iter).second;
	 if (entry.getType() == 1)
	 {
		qpdf_offset_t obj_offset = entry.getOffset();
		if ((obj_offset > stream_offset) &&
		 ((this_obj_offset == 0) ||
		 (this_obj_offset > obj_offset)))
		{
		 this_obj_offset = obj_offset;
		 this_obj = og;
		}
	 }
	}
	if (this_obj_offset &&
	 (this_obj.getObj() == objid) &&
	 (this_obj.getGen() == generation))
	{
	 // Well, we found endstream\nendobj within the space
	 // allowed for this object, so we're probably in good
	 // shape.
	}
	else
	{
	 QTC::TC("qpdf", "QPDF found wrong endstream in recovery");
	}
 }

 if (length == 0)
 {
 warn(QPDFExc(qpdf_e_damaged_pdf, input->getName(),
 this->m->last_object_description, stream_offset,
 "unable to recover stream data;"
 " treating stream as empty"));
 }
 else
 {
 warn(QPDFExc(qpdf_e_damaged_pdf, input->getName(),
 this->m->last_object_description, stream_offset,
 "recovered stream length: " +
 QUtil::int_to_string(length)));
 }

 QTC::TC("qpdf", "QPDF recovered stream length");
 return length;
}

QPDFTokenizer::Token
QPDF::readToken(PointerHolder<InputSource> input,
 bool allow_bad, size_t max_len)
{
 return this->m->tokenizer.readToken(
 input, this->m->last_object_description, allow_bad, max_len);
}

QPDFObjectHandle
QPDF::readObjectAtOffset(bool try_recovery,
			 qpdf_offset_t offset, std::string const& description,
			 int exp_objid, int exp_generation,
			 int& objid, int& generation)
{
 if (! this->m->attempt_recovery)
 {
 try_recovery = false;
 }
 setLastObjectDescription(description, exp_objid, exp_generation);

 // Special case: if offset is 0, just return null. Some PDF
 // writers, in particular "Mac OS X 10.7.5 Quartz PDFContext", may
 // store deleted objects in the xref table as "0000000000 00000
 // n", which is not correct, but it won't hurt anything for to
 // ignore these.
 if (offset == 0)
 {
 QTC::TC("qpdf", "QPDF bogus 0 offset", 0);
	warn(QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
		 this->m->last_object_description, 0,
		 "object has offset 0"));
 return QPDFObjectHandle::newNull();
 }

 this->m->file->seek(offset, SEEK_SET);

 QPDFTokenizer::Token tobjid = readToken(this->m->file);
 QPDFTokenizer::Token tgen = readToken(this->m->file);
 QPDFTokenizer::Token tobj = readToken(this->m->file);

 bool objidok = (tobjid.getType() == QPDFTokenizer::tt_integer);
 int genok = (tgen.getType() == QPDFTokenizer::tt_integer);
 int objok = (tobj == QPDFTokenizer::Token(QPDFTokenizer::tt_word, "obj"));

 QTC::TC("qpdf", "QPDF check objid", objidok ? 1 : 0);
 QTC::TC("qpdf", "QPDF check generation", genok ? 1 : 0);
 QTC::TC("qpdf", "QPDF check obj", objok ? 1 : 0);

 try
 {
	if (! (objidok && genok && objok))
	{
	 QTC::TC("qpdf", "QPDF expected n n obj");
	 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
			 this->m->last_object_description, offset,
			 "expected n n obj");
	}
	objid = QUtil::string_to_int(tobjid.getValue().c_str());
	generation = QUtil::string_to_int(tgen.getValue().c_str());

 if (objid == 0)
 {
 QTC::TC("qpdf", "QPDF object id 0");
 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
 this->m->last_object_description, offset,
 "object with ID 0");
 }

	if ((exp_objid >= 0) &&
	 (! ((objid == exp_objid) && (generation == exp_generation))))
	{
	 QTC::TC("qpdf", "QPDF err wrong objid/generation");
	 QPDFExc e(qpdf_e_damaged_pdf, this->m->file->getName(),
 this->m->last_object_description, offset,
 std::string("expected ") +
 QUtil::int_to_string(exp_objid) + " " +
 QUtil::int_to_string(exp_generation) + " obj");
 if (try_recovery)
 {
 // Will be retried below
 throw e;
 }
 else
 {
 // We can try reading the object anyway even if the ID
 // doesn't match.
 warn(e);
 }
	}
 }
 catch (QPDFExc& e)
 {
	if ((exp_objid >= 0) && try_recovery)
	{
	 // Try again after reconstructing xref table
	 reconstruct_xref(e);
	 QPDFObjGen og(exp_objid, exp_generation);
	 if (this->m->xref_table.count(og) &&
		(this->m->xref_table[og].getType() == 1))
	 {
		qpdf_offset_t new_offset = this->m->xref_table[og].getOffset();
		QPDFObjectHandle result = readObjectAtOffset(
		 false, new_offset, description,
		 exp_objid, exp_generation, objid, generation);
		QTC::TC("qpdf", "QPDF recovered in readObjectAtOffset");
		return result;
	 }
	 else
	 {
		QTC::TC("qpdf", "QPDF object gone after xref reconstruction");
		warn(QPDFExc(
			 qpdf_e_damaged_pdf, this->m->file->getName(),
			 "", 0,
			 std::string(
			 "object " +
			 QUtil::int_to_string(exp_objid) +
			 " " +
			 QUtil::int_to_string(exp_generation) +
			 " not found in file after regenerating"
			 " cross reference table")));
		return QPDFObjectHandle::newNull();
	 }
	}
	else
	{
	 throw e;
	}
 }

 QPDFObjectHandle oh = readObject(
	this->m->file, description, objid, generation, false);

 if (! (readToken(this->m->file) ==
	 QPDFTokenizer::Token(QPDFTokenizer::tt_word, "endobj")))
 {
	QTC::TC("qpdf", "QPDF err expected endobj");
	warn(QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
		 this->m->last_object_description,
 this->m->file->getLastOffset(),
		 "expected endobj"));
 }

 QPDFObjGen og(objid, generation);
 if (! this->m->obj_cache.count(og))
 {
	// Store the object in the cache here so it gets cached
	// whether we first know the offset or whether we first know
	// the object ID and generation (in which we case we would get
	// here through resolve).

	// Determine the end offset of this object before and after
	// white space. We use these numbers to validate
	// linearization hint tables. Offsets and lengths of objects
	// may imply the end of an object to be anywhere between these
	// values.
	qpdf_offset_t end_before_space = this->m->file->tell();

	// skip over spaces
	while (true)
	{
	 char ch;
	 if (this->m->file->read(&ch, 1))
	 {
		if (! isspace(static_cast<unsigned char>(ch)))
		{
		 this->m->file->seek(-1, SEEK_CUR);
		 break;
		}
	 }
	 else
	 {
		throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
			 this->m->last_object_description, offset,
			 "EOF after endobj");
	 }
	}
	qpdf_offset_t end_after_space = this->m->file->tell();

	this->m->obj_cache[og] =
	 ObjCache(QPDFObjectHandle::ObjAccessor::getObject(oh),
		 end_before_space, end_after_space);
 }

 return oh;
}

PointerHolder<QPDFObject>
QPDF::resolve(int objid, int generation)
{
 // Check object cache before checking xref table. This allows us
 // to insert things into the object cache that don't actually
 // exist in the file.
 QPDFObjGen og(objid, generation);
 if (this->m->resolving.count(og))
 {
 // This can happen if an object references itself directly or
 // indirectly in some key that has to be resolved during
 // object parsing, such as stream length.
	QTC::TC("qpdf", "QPDF recursion loop in resolve");
	warn(QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
		 "", this->m->file->getLastOffset(),
		 "loop detected resolving object " +
		 QUtil::int_to_string(objid) + " " +
		 QUtil::int_to_string(generation)));
 return new QPDF_Null;
 }
 ResolveRecorder rr(this, og);

 if (! this->m->obj_cache.count(og))
 {
	if (! this->m->xref_table.count(og))
	{
	 // PDF spec says unknown objects resolve to the null object.
	 return new QPDF_Null;
	}

	QPDFXRefEntry const& entry = this->m->xref_table[og];
 bool success = false;
 try
 {
 switch (entry.getType())
 {
 case 1:
 {
 qpdf_offset_t offset = entry.getOffset();
 // Object stored in cache by readObjectAtOffset
 int aobjid;
 int ageneration;
 QPDFObjectHandle oh =
 readObjectAtOffset(true, offset, "", objid, generation,
 aobjid, ageneration);
 }
 break;

 case 2:
 resolveObjectsInStream(entry.getObjStreamNumber());
 break;

 default:
 throw QPDFExc(qpdf_e_damaged_pdf,
 this->m->file->getName(), "", 0,
 "object " +
 QUtil::int_to_string(objid) + "/" +
 QUtil::int_to_string(generation) +
 " has unexpected xref entry type");
 }
 success = true;
 }
 catch (QPDFExc& e)
 {
 warn(e);
 }
 catch (std::exception& e)
 {
 warn(QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(), "", 0,
 "object " +
 QUtil::int_to_string(objid) + "/" +
 QUtil::int_to_string(generation) +
 ": error reading object: " + e.what()));
 }
 if (! success)
 {
 QTC::TC("qpdf", "QPDF resolve failure to null");
 QPDFObjectHandle oh = QPDFObjectHandle::newNull();
 this->m->obj_cache[og] =
 ObjCache(QPDFObjectHandle::ObjAccessor::getObject(oh), -1, -1);
 }
 }

 return this->m->obj_cache[og].object;
}

void
QPDF::resolveObjectsInStream(int obj_stream_number)
{
 // Force resolution of object stream
 QPDFObjectHandle obj_stream = getObjectByID(obj_stream_number, 0);
 if (! obj_stream.isStream())
 {
	throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
		 this->m->last_object_description,
		 this->m->file->getLastOffset(),
		 "supposed object stream " +
		 QUtil::int_to_string(obj_stream_number) +
		 " is not a stream");
 }

 // For linearization data in the object, use the data from the
 // object stream for the objects in the stream.
 QPDFObjGen stream_og(obj_stream_number, 0);
 qpdf_offset_t end_before_space =
 this->m->obj_cache[stream_og].end_before_space;
 qpdf_offset_t end_after_space =
 this->m->obj_cache[stream_og].end_after_space;

 QPDFObjectHandle dict = obj_stream.getDict();
 if (! (dict.getKey("/Type").isName() &&
	 dict.getKey("/Type").getName() == "/ObjStm"))
 {
	QTC::TC("qpdf", "QPDF ERR object stream with wrong type");
	throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
		 this->m->last_object_description,
		 this->m->file->getLastOffset(),
		 "supposed object stream " +
		 QUtil::int_to_string(obj_stream_number) +
		 " has wrong type");
 }

 if (! (dict.getKey("/N").isInteger() &&
	 dict.getKey("/First").isInteger()))
 {
	throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
		 this->m->last_object_description,
		 this->m->file->getLastOffset(),
		 "object stream " +
		 QUtil::int_to_string(obj_stream_number) +
		 " has incorrect keys");
 }

 int n = dict.getKey("/N").getIntValue();
 int first = dict.getKey("/First").getIntValue();

 std::map<int, int> offsets;

 PointerHolder<Buffer> bp = obj_stream.getStreamData(qpdf_dl_specialized);
 PointerHolder<InputSource> input = new BufferInputSource(
	"object stream " + QUtil::int_to_string(obj_stream_number),
	bp.getPointer());

 for (int i = 0; i < n; ++i)
 {
	QPDFTokenizer::Token tnum = readToken(input);
	QPDFTokenizer::Token toffset = readToken(input);
	if (! ((tnum.getType() == QPDFTokenizer::tt_integer) &&
	 (toffset.getType() == QPDFTokenizer::tt_integer)))
	{
	 throw QPDFExc(qpdf_e_damaged_pdf, input->getName(),
			 this->m->last_object_description,
 input->getLastOffset(),
			 "expected integer in object stream header");
	}

	int num = QUtil::string_to_int(tnum.getValue().c_str());
	int offset = QUtil::string_to_ll(toffset.getValue().c_str());
	offsets[num] = offset + first;
 }

 // To avoid having to read the object stream multiple times, store
 // all objects that would be found here in the cache. Remember
 // that some objects stored here might have been overridden by new
 // objects appended to the file, so it is necessary to recheck the
 // xref table and only cache what would actually be resolved here.
 for (std::map<int, int>::iterator iter = offsets.begin();
	 iter != offsets.end(); ++iter)
 {
	int obj = (*iter).first;
	QPDFObjGen og(obj, 0);
 QPDFXRefEntry const& entry = this->m->xref_table[og];
 if ((entry.getType() == 2) &&
 (entry.getObjStreamNumber() == obj_stream_number))
 {
 int offset = (*iter).second;
 input->seek(offset, SEEK_SET);
 QPDFObjectHandle oh = readObject(input, "", obj, 0, true);
 this->m->obj_cache[og] =
 ObjCache(QPDFObjectHandle::ObjAccessor::getObject(oh),
 end_before_space, end_after_space);
 }
 else
 {
 QTC::TC("qpdf", "QPDF not caching overridden objstm object");
 }
 }
}

QPDFObjectHandle
QPDF::makeIndirectObject(QPDFObjectHandle oh)
{
 QPDFObjGen o1(0, 0);
 if (! this->m->obj_cache.empty())
 {
	o1 = (*(this->m->obj_cache.rbegin())).first;
 }
 QPDFObjGen o2 = (*(this->m->xref_table.rbegin())).first;
 QTC::TC("qpdf", "QPDF indirect last obj from xref",
	 (o2.getObj() > o1.getObj()) ? 1 : 0);
 int max_objid = std::max(o1.getObj(), o2.getObj());
 QPDFObjGen next(max_objid + 1, 0);
 this->m->obj_cache[next] =
	ObjCache(QPDFObjectHandle::ObjAccessor::getObject(oh), -1, -1);
 return QPDFObjectHandle::Factory::newIndirect(
 this, next.getObj(), next.getGen());
}

QPDFObjectHandle
QPDF::getObjectByObjGen(QPDFObjGen const& og)
{
 return getObjectByID(og.getObj(), og.getGen());
}

QPDFObjectHandle
QPDF::getObjectByID(int objid, int generation)
{
 return QPDFObjectHandle::Factory::newIndirect(this, objid, generation);
}

void
QPDF::replaceObject(QPDFObjGen const& og, QPDFObjectHandle oh)
{
 replaceObject(og.getObj(), og.getGen(), oh);
}

void
QPDF::replaceObject(int objid, int generation, QPDFObjectHandle oh)
{
 if (oh.isIndirect())
 {
	QTC::TC("qpdf", "QPDF replaceObject called with indirect object");
	throw std::logic_error(
	 "QPDF::replaceObject called with indirect object handle");
 }

 // Force new object to appear in the cache
 resolve(objid, generation);

 // Replace the object in the object cache
 QPDFObjGen og(objid, generation);
 this->m->obj_cache[og] =
	ObjCache(QPDFObjectHandle::ObjAccessor::getObject(oh), -1, -1);
}

void
QPDF::replaceReserved(QPDFObjectHandle reserved,
 QPDFObjectHandle replacement)
{
 QTC::TC("qpdf", "QPDF replaceReserved");
 reserved.assertReserved();
 replaceObject(reserved.getObjGen(), replacement);
}

QPDFObjectHandle
QPDF::copyForeignObject(QPDFObjectHandle foreign)
{
 return copyForeignObject(foreign, false);
}

QPDFObjectHandle
QPDF::copyForeignObject(QPDFObjectHandle foreign, bool allow_page)
{
 if (! foreign.isIndirect())
 {
 QTC::TC("qpdf", "QPDF copyForeign direct");
	throw std::logic_error(
	 "QPDF::copyForeign called with direct object handle");
 }
 QPDF* other = foreign.getOwningQPDF();
 if (other == this)
 {
 QTC::TC("qpdf", "QPDF copyForeign not foreign");
 throw std::logic_error(
 "QPDF::copyForeign called with object from this QPDF");
 }

 ObjCopier& obj_copier = this->m->object_copiers[other];
 if (! obj_copier.visiting.empty())
 {
 throw std::logic_error("obj_copier.visiting is not empty"
 " at the beginning of copyForeignObject");
 }

 // Make sure we have an object in this file for every referenced
 // object in the old file. obj_copier.object_map maps foreign
 // QPDFObjGen to local objects. For everything new that we have
 // to copy, the local object will be a reservation, unless it is a
 // stream, in which case the local object will already be a
 // stream.
 reserveObjects(foreign, obj_copier, true);

 if (! obj_copier.visiting.empty())
 {
 throw std::logic_error("obj_copier.visiting is not empty"
 " after reserving objects");
 }

 // Copy any new objects and replace the reservations.
 for (std::vector<QPDFObjectHandle>::iterator iter =
 obj_copier.to_copy.begin();
 iter != obj_copier.to_copy.end(); ++iter)
 {
 QPDFObjectHandle& to_copy = *iter;
 QPDFObjectHandle copy =
 replaceForeignIndirectObjects(to_copy, obj_copier, true);
 if (! to_copy.isStream())
 {
 QPDFObjGen og(to_copy.getObjGen());
 replaceReserved(obj_copier.object_map[og], copy);
 }
 }
 obj_copier.to_copy.clear();

 return obj_copier.object_map[foreign.getObjGen()];
}

void
QPDF::reserveObjects(QPDFObjectHandle foreign, ObjCopier& obj_copier,
 bool top)
{
 if (foreign.isReserved())
 {
 throw std::logic_error(
 "QPDF: attempting to copy a foreign reserved object");
 }

 if (foreign.isPagesObject())
 {
 QTC::TC("qpdf", "QPDF not copying pages object");
 return;
 }

 if ((! top) && foreign.isPageObject())
 {
 QTC::TC("qpdf", "QPDF not crossing page boundary");
 return;
 }

 if (foreign.isIndirect())
 {
 QPDFObjGen foreign_og(foreign.getObjGen());
 if (obj_copier.visiting.find(foreign_og) != obj_copier.visiting.end())
 {
 QTC::TC("qpdf", "QPDF loop reserving objects");
 return;
 }
 if (obj_copier.object_map.find(foreign_og) !=
 obj_copier.object_map.end())
 {
 QTC::TC("qpdf", "QPDF already reserved object");
 return;
 }
 QTC::TC("qpdf", "QPDF copy indirect");
 obj_copier.visiting.insert(foreign_og);
 std::map<QPDFObjGen, QPDFObjectHandle>::iterator mapping =
 obj_copier.object_map.find(foreign_og);
 if (mapping == obj_copier.object_map.end())
 {
 obj_copier.to_copy.push_back(foreign);
 QPDFObjectHandle reservation;
 if (foreign.isStream())
 {
 reservation = QPDFObjectHandle::newStream(this);
 }
 else
 {
 reservation = QPDFObjectHandle::newReserved(this);
 }
 obj_copier.object_map[foreign_og] = reservation;
 }
 }

 if (foreign.isArray())
 {
 QTC::TC("qpdf", "QPDF reserve array");
	int n = foreign.getArrayNItems();
	for (int i = 0; i < n; ++i)
	{
 reserveObjects(foreign.getArrayItem(i), obj_copier, false);
	}
 }
 else if (foreign.isDictionary())
 {
 QTC::TC("qpdf", "QPDF reserve dictionary");
	std::set<std::string> keys = foreign.getKeys();
	for (std::set<std::string>::iterator iter = keys.begin();
	 iter != keys.end(); ++iter)
	{
 reserveObjects(foreign.getKey(*iter), obj_copier, false);
	}
 }
 else if (foreign.isStream())
 {
 QTC::TC("qpdf", "QPDF reserve stream");
 reserveObjects(foreign.getDict(), obj_copier, false);
 }

 if (foreign.isIndirect())
 {
 QPDFObjGen foreign_og(foreign.getObjGen());
 obj_copier.visiting.erase(foreign_og);
 }
}

QPDFObjectHandle
QPDF::replaceForeignIndirectObjects(
 QPDFObjectHandle foreign, ObjCopier& obj_copier, bool top)
{
 QPDFObjectHandle result;
 if ((! top) && foreign.isIndirect())
 {
 QTC::TC("qpdf", "QPDF replace indirect");
 QPDFObjGen foreign_og(foreign.getObjGen());
 std::map<QPDFObjGen, QPDFObjectHandle>::iterator mapping =
 obj_copier.object_map.find(foreign_og);
 if (mapping == obj_copier.object_map.end())
 {
 // This case would occur if this is a reference to a Page
 // or Pages object that we didn't traverse into.
 QTC::TC("qpdf", "QPDF replace foreign indirect with null");
 result = QPDFObjectHandle::newNull();
 }
 else
 {
 result = obj_copier.object_map[foreign_og];
 }
 }
 else if (foreign.isArray())
 {
 QTC::TC("qpdf", "QPDF replace array");
 result = QPDFObjectHandle::newArray();
	int n = foreign.getArrayNItems();
	for (int i = 0; i < n; ++i)
	{
 result.appendItem(
 replaceForeignIndirectObjects(
 foreign.getArrayItem(i), obj_copier, false));
	}
 }
 else if (foreign.isDictionary())
 {
 QTC::TC("qpdf", "QPDF replace dictionary");
 result = QPDFObjectHandle::newDictionary();
	std::set<std::string> keys = foreign.getKeys();
	for (std::set<std::string>::iterator iter = keys.begin();
	 iter != keys.end(); ++iter)
	{
 result.replaceKey(
 *iter,
 replaceForeignIndirectObjects(
 foreign.getKey(*iter), obj_copier, false));
	}
 }
 else if (foreign.isStream())
 {
 QTC::TC("qpdf", "QPDF replace stream");
 QPDFObjGen foreign_og(foreign.getObjGen());
 result = obj_copier.object_map[foreign_og];
 result.assertStream();
 QPDFObjectHandle dict = result.getDict();
 QPDFObjectHandle old_dict = foreign.getDict();
 std::set<std::string> keys = old_dict.getKeys();
 for (std::set<std::string>::iterator iter = keys.begin();
	 iter != keys.end(); ++iter)
	{
 dict.replaceKey(
 *iter,
 replaceForeignIndirectObjects(
 old_dict.getKey(*iter), obj_copier, false));
	}
 if (this->m->copied_stream_data_provider == 0)
 {
 this->m->copied_stream_data_provider =
 new CopiedStreamDataProvider();
 this->m->copied_streams = this->m->copied_stream_data_provider;
 }
 QPDFObjGen local_og(result.getObjGen());
 this->m->copied_stream_data_provider->registerForeignStream(
 local_og, foreign);
 result.replaceStreamData(this->m->copied_streams,
 dict.getKey("/Filter"),
 dict.getKey("/DecodeParms"));
 }
 else
 {
 foreign.assertScalar();
 result = foreign;
 result.makeDirect();
 }

 if (top && (! result.isStream()) && result.isIndirect())
 {
 throw std::logic_error("replacement for foreign object is indirect");
 }

 return result;
}

void
QPDF::swapObjects(QPDFObjGen const& og1, QPDFObjGen const& og2)
{
 swapObjects(og1.getObj(), og1.getGen(), og2.getObj(), og2.getGen());
}

void
QPDF::swapObjects(int objid1, int generation1, int objid2, int generation2)
{
 // Force objects to be loaded into cache; then swap them in the
 // cache.
 resolve(objid1, generation1);
 resolve(objid2, generation2);
 QPDFObjGen og1(objid1, generation1);
 QPDFObjGen og2(objid2, generation2);
 ObjCache t = this->m->obj_cache[og1];
 this->m->obj_cache[og1] = this->m->obj_cache[og2];
 this->m->obj_cache[og2] = t;
}

std::string
QPDF::getFilename() const
{
 return this->m->file->getName();
}

std::string
QPDF::getPDFVersion() const
{
 return this->m->pdf_version;
}

int
QPDF::getExtensionLevel()
{
 int result = 0;
 QPDFObjectHandle obj = getRoot();
 if (obj.hasKey("/Extensions"))
 {
 obj = obj.getKey("/Extensions");
 if (obj.isDictionary() && obj.hasKey("/ADBE"))
 {
 obj = obj.getKey("/ADBE");
 if (obj.isDictionary() && obj.hasKey("/ExtensionLevel"))
 {
 obj = obj.getKey("/ExtensionLevel");
 if (obj.isInteger())
 {
 result = obj.getIntValue();
 }
 }
 }
 }
 return result;
}

QPDFObjectHandle
QPDF::getTrailer()
{
 return this->m->trailer;
}

QPDFObjectHandle
QPDF::getRoot()
{
 QPDFObjectHandle root = this->m->trailer.getKey("/Root");
 if (! root.isDictionary())
 {
 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
 "", this->m->file->getLastOffset(),
 "unable to find /Root dictionary");
 }
 return root;
}

void
QPDF::getObjectStreamData(std::map<int, int>& omap)
{
 for (std::map<QPDFObjGen, QPDFXRefEntry>::iterator iter =
	 this->m->xref_table.begin();
	 iter != this->m->xref_table.end(); ++iter)
 {
	QPDFObjGen const& og = (*iter).first;
	QPDFXRefEntry const& entry = (*iter).second;
	if (entry.getType() == 2)
	{
	 omap[og.getObj()] = entry.getObjStreamNumber();
	}
 }
}

std::vector<QPDFObjGen>
QPDF::getCompressibleObjGens()
{
 // Return a list of objects that are allowed to be in object
 // streams. Walk through the objects by traversing the document
 // from the root, including a traversal of the pages tree. This
 // makes that objects that are on the same page are more likely to
 // be in the same object stream, which is slightly more efficient,
 // particularly with linearized files. This is better than
 // iterating through the xref table since it avoids preserving
 // orphaned items.

 // Exclude encryption dictionary, if any
 QPDFObjectHandle encryption_dict =
 this->m->trailer.getKey("/Encrypt");
 QPDFObjGen encryption_dict_og = encryption_dict.getObjGen();

 std::set<QPDFObjGen> visited;
 std::list<QPDFObjectHandle> queue;
 queue.push_front(this->m->trailer);
 std::vector<QPDFObjGen> result;
 while (! queue.empty())
 {
	QPDFObjectHandle obj = queue.front();
	queue.pop_front();
	if (obj.isIndirect())
	{
	 QPDFObjGen og = obj.getObjGen();
	 if (visited.count(og))
	 {
		QTC::TC("qpdf", "QPDF loop detected traversing objects");
		continue;
	 }
	 if (og == encryption_dict_og)
	 {
		QTC::TC("qpdf", "QPDF exclude encryption dictionary");
	 }
	 else if (! obj.isStream())
	 {
		result.push_back(og);
	 }
	 visited.insert(og);
	}
	if (obj.isStream())
	{
	 QPDFObjectHandle dict = obj.getDict();
	 std::set<std::string> keys = dict.getKeys();
	 for (std::set<std::string>::reverse_iterator iter = keys.rbegin();
		 iter != keys.rend(); ++iter)
	 {
		std::string const& key = *iter;
		QPDFObjectHandle value = dict.getKey(key);
		if (key == "/Length")
		{
		 // omit stream lengths
		 if (value.isIndirect())
		 {
			QTC::TC("qpdf", "QPDF exclude indirect length");
		 }
		}
		else
		{
		 queue.push_front(value);
		}
	 }
	}
	else if (obj.isDictionary())
	{
	 std::set<std::string> keys = obj.getKeys();
	 for (std::set<std::string>::reverse_iterator iter = keys.rbegin();
		 iter != keys.rend(); ++iter)
	 {
		queue.push_front(obj.getKey(*iter));
	 }
	}
	else if (obj.isArray())
	{
	 int n = obj.getArrayNItems();
	 for (int i = 1; i <= n; ++i)
	 {
		queue.push_front(obj.getArrayItem(n - i));
	 }
	}
 }

 return result;
}

bool
QPDF::pipeStreamData(int objid, int generation,
		 qpdf_offset_t offset, size_t length,
		 QPDFObjectHandle stream_dict,
		 Pipeline* pipeline,
 bool suppress_warnings,
 bool will_retry)
{
 bool success = false;
 std::vector<PointerHolder<Pipeline> > to_delete;
 if (this->m->encrypted)
 {
	decryptStream(pipeline, objid, generation, stream_dict, to_delete);
 }

 try
 {
	this->m->file->seek(offset, SEEK_SET);
	char buf[10240];
	while (length > 0)
	{
	 size_t to_read = (sizeof(buf) < length ? sizeof(buf) : length);
	 size_t len = this->m->file->read(buf, to_read);
	 if (len == 0)
	 {
		throw QPDFExc(qpdf_e_damaged_pdf,
			 this->m->file->getName(),
			 this->m->last_object_description,
			 this->m->file->getLastOffset(),
			 "unexpected EOF reading stream data");
	 }
	 length -= len;
	 pipeline->write(QUtil::unsigned_char_pointer(buf), len);
	}
 pipeline->finish();
 success = true;
 }
 catch (QPDFExc& e)
 {
 if (! suppress_warnings)
 {
 warn(e);
 }
 }
 catch (std::exception& e)
 {
 if (! suppress_warnings)
 {
 QTC::TC("qpdf", "QPDF decoding error warning");
 warn(QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
 "", this->m->file->getLastOffset(),
 "error decoding stream data for object " +
 QUtil::int_to_string(objid) + " " +
 QUtil::int_to_string(generation) + ": " + e.what()));
 if (will_retry)
 {
 warn(QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
 "", this->m->file->getLastOffset(),
 "stream will be re-processed without"
 " filtering to avoid data loss"));
 }
 }
 }
 if (! success)
 {
 try
 {
 pipeline->finish();
 }
 catch (std::exception&)
 {
 // ignore
 }
 }
 return success;
}

void
QPDF::findAttachmentStreams()
{
 QPDFObjectHandle root = getRoot();
 QPDFObjectHandle names = root.getKey("/Names");
 if (! names.isDictionary())
 {
 return;
 }
 QPDFObjectHandle embeddedFiles = names.getKey("/EmbeddedFiles");
 if (! embeddedFiles.isDictionary())
 {
 return;
 }
 names = embeddedFiles.getKey("/Names");
 if (! names.isArray())
 {
 return;
 }
 for (int i = 0; i < names.getArrayNItems(); ++i)
 {
 QPDFObjectHandle item = names.getArrayItem(i);
 if (item.isDictionary() &&
 item.getKey("/Type").isName() &&
 (item.getKey("/Type").getName() == "/Filespec") &&
 item.getKey("/EF").isDictionary() &&
 item.getKey("/EF").getKey("/F").isStream())
 {
 QPDFObjectHandle stream = item.getKey("/EF").getKey("/F");
 this->m->attachment_streams.insert(stream.getObjGen());
 }
 }
}

qpdf-7.1.0/libqpdf/QPDFObject.cc

#include <qpdf/QPDFObject.hh>

qpdf-7.1.0/libqpdf/BufferInputSource.cc

#include <qpdf/BufferInputSource.hh>
#include <string.h>
#include <stdexcept>
#include <algorithm>

BufferInputSource::BufferInputSource(std::string const& description,
 Buffer* buf, bool own_memory) :
 own_memory(own_memory),
 description(description),
 buf(buf),
 cur_offset(0)
{
}

BufferInputSource::BufferInputSource(std::string const& description,
 std::string const& contents) :
 own_memory(true),
 description(description),
 buf(0),
 cur_offset(0)
{
 this->buf = new Buffer(contents.length());
 unsigned char* bp = buf->getBuffer();
 memcpy(bp, contents.c_str(), contents.length());
}

BufferInputSource::~BufferInputSource()
{
 if (own_memory)
 {
	delete this->buf;
 }
}

qpdf_offset_t
BufferInputSource::findAndSkipNextEOL()
{
 if (this->cur_offset < 0)
 {
 throw std::logic_error("INTERNAL ERROR: BufferInputSource offset < 0");
 }
 qpdf_offset_t end_pos = this->buf->getSize();
 if (this->cur_offset >= end_pos)
 {
	this->last_offset = end_pos;
 this->cur_offset = end_pos;
	return end_pos;
 }

 qpdf_offset_t result = 0;
 size_t len = end_pos - this->cur_offset;
 unsigned char const* buffer = this->buf->getBuffer();

 void* start = const_cast<unsigned char*>(buffer) + this->cur_offset;
 unsigned char* p1 = static_cast<unsigned char*>(memchr(start, '\r', len));
 unsigned char* p2 = static_cast<unsigned char*>(memchr(start, '\n', len));
 unsigned char* p = (p1 && p2) ? std::min(p1, p2) : p1 ? p1 : p2;
 if (p)
 {
 result = p - buffer;
 this->cur_offset = result + 1;
 ++p;
 while ((this->cur_offset < end_pos) &&
 ((*p == '\r') || (*p == '\n')))
 {
 ++p;
 ++this->cur_offset;
 }
 }
 else
 {
 this->cur_offset = end_pos;
 result = end_pos;
 }
 return result;
}

std::string const&
BufferInputSource::getName() const
{
 return this->description;
}

qpdf_offset_t
BufferInputSource::tell()
{
 return this->cur_offset;
}

void
BufferInputSource::seek(qpdf_offset_t offset, int whence)
{
 switch (whence)
 {
 case SEEK_SET:
	this->cur_offset = offset;
	break;

 case SEEK_END:
	this->cur_offset = this->buf->getSize() + offset;
	break;

 case SEEK_CUR:
	this->cur_offset += offset;
	break;

 default:
	throw std::logic_error(
	 "INTERNAL ERROR: invalid argument to BufferInputSource::seek");
	break;
 }

 if (this->cur_offset < 0)
 {
 throw std::runtime_error(
 this->description + ": seek before beginning of buffer");
 }
}

void
BufferInputSource::rewind()
{
 this->cur_offset = 0;
}

size_t
BufferInputSource::read(char* buffer, size_t length)
{
 if (this->cur_offset < 0)
 {
 throw std::logic_error("INTERNAL ERROR: BufferInputSource offset < 0");
 }
 qpdf_offset_t end_pos = this->buf->getSize();
 if (this->cur_offset >= end_pos)
 {
	this->last_offset = end_pos;
	return 0;
 }

 this->last_offset = this->cur_offset;
 size_t len = std::min(
 static_cast<size_t>(end_pos - this->cur_offset), length);
 memcpy(buffer, buf->getBuffer() + this->cur_offset, len);
 this->cur_offset += len;
 return len;
}

void
BufferInputSource::unreadCh(char ch)
{
 if (this->cur_offset > 0)
 {
	--this->cur_offset;
 }
}

qpdf-7.1.0/libqpdf/QPDFWriter.cc

#include <qpdf/qpdf-config.h> // include first for large file support
#include <qpdf/QPDFWriter.hh>

#include <assert.h>
#include <qpdf/Pl_StdioFile.hh>
#include <qpdf/Pl_Count.hh>
#include <qpdf/Pl_Discard.hh>
#include <qpdf/Pl_RC4.hh>
#include <qpdf/Pl_AES_PDF.hh>
#include <qpdf/Pl_Flate.hh>
#include <qpdf/Pl_PNGFilter.hh>
#include <qpdf/Pl_MD5.hh>
#include <qpdf/QUtil.hh>
#include <qpdf/MD5.hh>
#include <qpdf/RC4.hh>
#include <qpdf/QTC.hh>

#include <qpdf/QPDF.hh>
#include <qpdf/QPDFObjectHandle.hh>
#include <qpdf/QPDF_Name.hh>
#include <qpdf/QPDF_String.hh>

#include <algorithm>
#include <stdlib.h>

QPDFWriter::Members::Members(QPDF& pdf) :
 pdf(pdf),
 filename(0),
 file(0),
 close_file(false),
 buffer_pipeline(0),
 output_buffer(0),
 normalize_content_set(false),
 normalize_content(false),
 compress_streams(true),
 compress_streams_set(false),
 stream_decode_level(qpdf_dl_none),
 stream_decode_level_set(false),
 qdf_mode(false),
 preserve_unreferenced_objects(false),
 newline_before_endstream(false),
 static_id(false),
 suppress_original_object_ids(false),
 direct_stream_lengths(true),
 encrypted(false),
 preserve_encryption(true),
 linearized(false),
 pclm(false),
 object_stream_mode(qpdf_o_preserve),
 encrypt_metadata(true),
 encrypt_use_aes(false),
 encryption_V(0),
 encryption_R(0),
 final_extension_level(0),
 min_extension_level(0),
 forced_extension_level(0),
 encryption_dict_objid(0),
 pipeline(0),
 next_objid(1),
 cur_stream_length_id(0),
 cur_stream_length(0),
 added_newline(false),
 max_ostream_index(0),
 deterministic_id(false),
 md5_pipeline(0)
{
}

QPDFWriter::Members::~Members()
{
 if (file && close_file)
 {
	fclose(file);
 }
 if (output_buffer)
 {
	delete output_buffer;
 }
}

QPDFWriter::QPDFWriter(QPDF& pdf) :
 m(new Members(pdf))
{
}

QPDFWriter::QPDFWriter(QPDF& pdf, char const* filename) :
 m(new Members(pdf))
{
 setOutputFilename(filename);
}

QPDFWriter::QPDFWriter(QPDF& pdf, char const* description,
 FILE *file, bool close_file) :
 m(new Members(pdf))
{
 setOutputFile(description, file, close_file);
}

QPDFWriter::~QPDFWriter()
{
}

void
QPDFWriter::setOutputFilename(char const* filename)
{
 char const* description = filename;
 FILE* f = 0;
 bool close_file = false;
 if (filename == 0)
 {
	description = "standard output";
	QTC::TC("qpdf", "QPDFWriter write to stdout");
	f = stdout;
	QUtil::binary_stdout();
 }
 else
 {
	QTC::TC("qpdf", "QPDFWriter write to file");
	f = QUtil::safe_fopen(filename, "wb+");
	close_file = true;
 }
 setOutputFile(description, f, close_file);
}

void
QPDFWriter::setOutputFile(char const* description, FILE* file, bool close_file)
{
 this->m->filename = description;
 this->m->file = file;
 this->m->close_file = close_file;
 Pipeline* p = new Pl_StdioFile("qpdf output", file);
 this->m->to_delete.push_back(p);
 initializePipelineStack(p);
}

void
QPDFWriter::setOutputMemory()
{
 this->m->filename = "memory buffer";
 this->m->buffer_pipeline = new Pl_Buffer("qpdf output");
 this->m->to_delete.push_back(this->m->buffer_pipeline);
 initializePipelineStack(this->m->buffer_pipeline);
}

Buffer*
QPDFWriter::getBuffer()
{
 Buffer* result = this->m->output_buffer;
 this->m->output_buffer = 0;
 return result;
}

void
QPDFWriter::setOutputPipeline(Pipeline* p)
{
 this->m->filename = "custom pipeline";
 initializePipelineStack(p);
}

void
QPDFWriter::setObjectStreamMode(qpdf_object_stream_e mode)
{
 this->m->object_stream_mode = mode;
}

void
QPDFWriter::setStreamDataMode(qpdf_stream_data_e mode)
{
 switch (mode)
 {
 case qpdf_s_uncompress:
 this->m->stream_decode_level =
 std::max(qpdf_dl_generalized, this->m->stream_decode_level);
 this->m->compress_streams = false;
 break;

 case qpdf_s_preserve:
 this->m->stream_decode_level = qpdf_dl_none;
 this->m->compress_streams = false;
 break;

 case qpdf_s_compress:
 this->m->stream_decode_level =
 std::max(qpdf_dl_generalized, this->m->stream_decode_level);
 this->m->compress_streams = true;
 break;
 }
 this->m->stream_decode_level_set = true;
 this->m->compress_streams_set = true;
}

void
QPDFWriter::setCompressStreams(bool val)
{
 this->m->compress_streams = val;
 this->m->compress_streams_set = true;
}

void
QPDFWriter::setDecodeLevel(qpdf_stream_decode_level_e val)
{
 this->m->stream_decode_level = val;
 this->m->stream_decode_level_set = true;
}

void
QPDFWriter::setContentNormalization(bool val)
{
 this->m->normalize_content_set = true;
 this->m->normalize_content = val;
}

void
QPDFWriter::setQDFMode(bool val)
{
 this->m->qdf_mode = val;
}

void
QPDFWriter::setPreserveUnreferencedObjects(bool val)
{
 this->m->preserve_unreferenced_objects = val;
}

void
QPDFWriter::setNewlineBeforeEndstream(bool val)
{
 this->m->newline_before_endstream = val;
}

void
QPDFWriter::setMinimumPDFVersion(std::string const& version)
{
 setMinimumPDFVersion(version, 0);
}

void
QPDFWriter::setMinimumPDFVersion(std::string const& version,
 int extension_level)
{
 bool set_version = false;
 bool set_extension_level = false;
 if (this->m->min_pdf_version.empty())
 {
	set_version = true;
 set_extension_level = true;
 }
 else
 {
	int old_major = 0;
	int old_minor = 0;
	int min_major = 0;
	int min_minor = 0;
	parseVersion(version, old_major, old_minor);
	parseVersion(this->m->min_pdf_version, min_major, min_minor);
 int compare = compareVersions(
 old_major, old_minor, min_major, min_minor);
	if (compare > 0)
	{
	 QTC::TC("qpdf", "QPDFWriter increasing minimum version",
 extension_level == 0 ? 0 : 1);
	 set_version = true;
 set_extension_level = true;
	}
 else if (compare == 0)
 {
 if (extension_level > this->m->min_extension_level)
 {
 QTC::TC("qpdf", "QPDFWriter increasing extension level");
 set_extension_level = true;
 }
	}
 }

 if (set_version)
 {
	this->m->min_pdf_version = version;
 }
 if (set_extension_level)
 {
 this->m->min_extension_level = extension_level;
 }
}

void
QPDFWriter::forcePDFVersion(std::string const& version)
{
 forcePDFVersion(version, 0);
}

void
QPDFWriter::forcePDFVersion(std::string const& version,
 int extension_level)
{
 this->m->forced_pdf_version = version;
 this->m->forced_extension_level = extension_level;
}

void
QPDFWriter::setExtraHeaderText(std::string const& text)
{
 this->m->extra_header_text = text;
 if ((this->m->extra_header_text.length() > 0) &&
 (*(this->m->extra_header_text.rbegin()) != '\n'))
 {
 QTC::TC("qpdf", "QPDFWriter extra header text add newline");
 this->m->extra_header_text += "\n";
 }
 else
 {
 QTC::TC("qpdf", "QPDFWriter extra header text no newline");
 }
}

void
QPDFWriter::setStaticID(bool val)
{
 this->m->static_id = val;
}

void
QPDFWriter::setDeterministicID(bool val)
{
 this->m->deterministic_id = val;
}

void
QPDFWriter::setStaticAesIV(bool val)
{
 if (val)
 {
	Pl_AES_PDF::useStaticIV();
 }
}

void
QPDFWriter::setSuppressOriginalObjectIDs(bool val)
{
 this->m->suppress_original_object_ids = val;
}

void
QPDFWriter::setPreserveEncryption(bool val)
{
 this->m->preserve_encryption = val;
}

void
QPDFWriter::setLinearization(bool val)
{
 this->m->linearized = val;
 if (val)
 {
 this->m->pclm = false;
 }
}

void
QPDFWriter::setPCLm(bool val)
{
 this->m->pclm = val;
 if (val)
 {
 this->m->linearized = false;
 }
}

void
QPDFWriter::setR2EncryptionParameters(
 char const* user_password, char const* owner_password,
 bool allow_print, bool allow_modify,
 bool allow_extract, bool allow_annotate)
{
 std::set<int> clear;
 if (! allow_print)
 {
	clear.insert(3);
 }
 if (! allow_modify)
 {
	clear.insert(4);
 }
 if (! allow_extract)
 {
	clear.insert(5);
 }
 if (! allow_annotate)
 {
	clear.insert(6);
 }

 setEncryptionParameters(user_password, owner_password, 1, 2, 5, clear);
}

void
QPDFWriter::setR3EncryptionParameters(
 char const* user_password, char const* owner_password,
 bool allow_accessibility, bool allow_extract,
 qpdf_r3_print_e print, qpdf_r3_modify_e modify)
{
 std::set<int> clear;
 interpretR3EncryptionParameters(
	clear, user_password, owner_password,
	allow_accessibility, allow_extract, print, modify);
 setEncryptionParameters(user_password, owner_password, 2, 3, 16, clear);
}

void
QPDFWriter::setR4EncryptionParameters(
 char const* user_password, char const* owner_password,
 bool allow_accessibility, bool allow_extract,
 qpdf_r3_print_e print, qpdf_r3_modify_e modify,
 bool encrypt_metadata, bool use_aes)
{
 std::set<int> clear;
 interpretR3EncryptionParameters(
	clear, user_password, owner_password,
	allow_accessibility, allow_extract, print, modify);
 this->m->encrypt_use_aes = use_aes;
 this->m->encrypt_metadata = encrypt_metadata;
 setEncryptionParameters(user_password, owner_password, 4, 4, 16, clear);
}

void
QPDFWriter::setR5EncryptionParameters(
 char const* user_password, char const* owner_password,
 bool allow_accessibility, bool allow_extract,
 qpdf_r3_print_e print, qpdf_r3_modify_e modify,
 bool encrypt_metadata)
{
 std::set<int> clear;
 interpretR3EncryptionParameters(
	clear, user_password, owner_password,
	allow_accessibility, allow_extract, print, modify);
 this->m->encrypt_use_aes = true;
 this->m->encrypt_metadata = encrypt_metadata;
 setEncryptionParameters(user_password, owner_password, 5, 5, 32, clear);
}

void
QPDFWriter::setR6EncryptionParameters(
 char const* user_password, char const* owner_password,
 bool allow_accessibility, bool allow_extract,
 qpdf_r3_print_e print, qpdf_r3_modify_e modify,
 bool encrypt_metadata)
{
 std::set<int> clear;
 interpretR3EncryptionParameters(
	clear, user_password, owner_password,
	allow_accessibility, allow_extract, print, modify);
 this->m->encrypt_use_aes = true;
 this->m->encrypt_metadata = encrypt_metadata;
 setEncryptionParameters(user_password, owner_password, 5, 6, 32, clear);
}

void
QPDFWriter::interpretR3EncryptionParameters(
 std::set<int>& clear,
 char const* user_password, char const* owner_password,
 bool allow_accessibility, bool allow_extract,
 qpdf_r3_print_e print, qpdf_r3_modify_e modify)
{
 // Acrobat 5 security options:

 // Checkboxes:
 // Enable Content Access for the Visually Impaired
 // Allow Content Copying and Extraction

 // Allowed changes menu:
 // None
 // Only Document Assembly
 // Only Form Field Fill-in or Signing
 // Comment Authoring, Form Field Fill-in or Signing
 // General Editing, Comment and Form Field Authoring

 // Allowed printing menu:
 // None
 // Low Resolution
 // Full printing

 if (! allow_accessibility)
 {
	clear.insert(10);
 }
 if (! allow_extract)
 {
	clear.insert(5);
 }

 // Note: these switch statements all "fall through" (no break
 // statements). Each option clears successively more access bits.
 switch (print)
 {
 case qpdf_r3p_none:
	clear.insert(3);	// any printing

 case qpdf_r3p_low:
	clear.insert(12);	// high resolution printing

 case qpdf_r3p_full:
	break;

	// no default so gcc warns for missing cases
 }

 switch (modify)
 {
 case qpdf_r3m_none:
	clear.insert(11);	// document assembly

 case qpdf_r3m_assembly:
	clear.insert(9);	// filling in form fields

 case qpdf_r3m_form:
	clear.insert(6);	// modify annotations, fill in form fields

 case qpdf_r3m_annotate:
	clear.insert(4);	// other modifications

 case qpdf_r3m_all:
	break;

	// no default so gcc warns for missing cases
 }
}

void
QPDFWriter::setEncryptionParameters(
 char const* user_password, char const* owner_password,
 int V, int R, int key_len, std::set<int>& bits_to_clear)
{
 // PDF specification refers to bits with the low bit numbered 1.
 // We have to convert this into a bit field.

 // Specification always requires bits 1 and 2 to be cleared.
 bits_to_clear.insert(1);
 bits_to_clear.insert(2);

 if (R > 3)
 {
 // Bit 10 is deprecated and should always be set. This used
 // to mean accessibility. There is no way to disable
 // accessibility with R > 3.
 bits_to_clear.erase(10);
 }

 int P = 0;
 // Create the complement of P, then invert.
 for (std::set<int>::iterator iter = bits_to_clear.begin();
	 iter != bits_to_clear.end(); ++iter)
 {
	P |= (1 << ((*iter) - 1));
 }
 P = ~P;

 generateID();
 std::string O;
 std::string U;
 std::string OE;
 std::string UE;
 std::string Perms;
 std::string encryption_key;
 if (V < 5)
 {
 QPDF::compute_encryption_O_U(
 user_password, owner_password, V, R, key_len, P,
 this->m->encrypt_metadata, this->m->id1, O, U);
 }
 else
 {
 QPDF::compute_encryption_parameters_V5(
 user_password, owner_password, V, R, key_len, P,
 this->m->encrypt_metadata, this->m->id1,
 encryption_key, O, U, OE, UE, Perms);
 }
 setEncryptionParametersInternal(
	V, R, key_len, P, O, U, OE, UE, Perms,
 this->m->id1, user_password, encryption_key);
}

void
QPDFWriter::copyEncryptionParameters(QPDF& qpdf)
{
 this->m->preserve_encryption = false;
 QPDFObjectHandle trailer = qpdf.getTrailer();
 if (trailer.hasKey("/Encrypt"))
 {
 generateID();
 this->m->id1 =
 trailer.getKey("/ID").getArrayItem(0).getStringValue();
	QPDFObjectHandle encrypt = trailer.getKey("/Encrypt");
	int V = encrypt.getKey("/V").getIntValue();
	int key_len = 5;
	if (V > 1)
	{
	 key_len = encrypt.getKey("/Length").getIntValue() / 8;
	}
	if (encrypt.hasKey("/EncryptMetadata") &&
	 encrypt.getKey("/EncryptMetadata").isBool())
	{
	 this->m->encrypt_metadata =
		encrypt.getKey("/EncryptMetadata").getBoolValue();
	}
 if (V >= 4)
 {
 // When copying encryption parameters, use AES even if the
 // original file did not. Acrobat doesn't create files
 // with V >= 4 that don't use AES, and the logic of
 // figuring out whether AES is used or not is complicated
 // with /StmF, /StrF, and /EFF all potentially having
 // different values.
 this->m->encrypt_use_aes = true;
 }
	QTC::TC("qpdf", "QPDFWriter copy encrypt metadata",
		this->m->encrypt_metadata ? 0 : 1);
 QTC::TC("qpdf", "QPDFWriter copy use_aes",
 this->m->encrypt_use_aes ? 0 : 1);
 std::string OE;
 std::string UE;
 std::string Perms;
 std::string encryption_key;
 if (V >= 5)
 {
 QTC::TC("qpdf", "QPDFWriter copy V5");
	 OE = encrypt.getKey("/OE").getStringValue();
 UE = encrypt.getKey("/UE").getStringValue();
	 Perms = encrypt.getKey("/Perms").getStringValue();
 encryption_key = qpdf.getEncryptionKey();
 }

	setEncryptionParametersInternal(
	 V,
	 encrypt.getKey("/R").getIntValue(),
 	 key_len,
	 encrypt.getKey("/P").getIntValue(),
	 encrypt.getKey("/O").getStringValue(),
	 encrypt.getKey("/U").getStringValue(),
 OE,
 UE,
 Perms,
	 this->m->id1,		// this->m->id1 == the other file's id1
	 qpdf.getPaddedUserPassword(),
 encryption_key);
 }
}

void
QPDFWriter::disableIncompatibleEncryption(int major, int minor,
 int extension_level)
{
 if (! this->m->encrypted)
 {
	return;
 }

 bool disable = false;
 if (compareVersions(major, minor, 1, 3) < 0)
 {
	disable = true;
 }
 else
 {
	int V = QUtil::string_to_int(
 this->m->encryption_dictionary["/V"].c_str());
	int R = QUtil::string_to_int(
 this->m->encryption_dictionary["/R"].c_str());
	if (compareVersions(major, minor, 1, 4) < 0)
	{
	 if ((V > 1) || (R > 2))
	 {
		disable = true;
	 }
	}
	else if (compareVersions(major, minor, 1, 5) < 0)
	{
	 if ((V > 2) || (R > 3))
	 {
		disable = true;
	 }
	}
	else if (compareVersions(major, minor, 1, 6) < 0)
	{
	 if (this->m->encrypt_use_aes)
	 {
		disable = true;
	 }
	}
 else if ((compareVersions(major, minor, 1, 7) < 0) ||
 ((compareVersions(major, minor, 1, 7) == 0) &&
 extension_level < 3))
 {
 if ((V >= 5) || (R >= 5))
 {
 disable = true;
 }
 }
 }
 if (disable)
 {
	QTC::TC("qpdf", "QPDFWriter forced version disabled encryption");
	this->m->encrypted = false;
 }
}

void
QPDFWriter::parseVersion(std::string const& version,
			 int& major, int& minor) const
{
 major = QUtil::string_to_int(version.c_str());
 minor = 0;
 size_t p = version.find('.');
 if ((p != std::string::npos) && (version.length() > p))
 {
	minor = QUtil::string_to_int(version.substr(p + 1).c_str());
 }
 std::string tmp = QUtil::int_to_string(major) + "." +
	QUtil::int_to_string(minor);
 if (tmp != version)
 {
	throw std::logic_error(
	 "INTERNAL ERROR: QPDFWriter::parseVersion"
	 " called with invalid version number " + version);
 }
}

int
QPDFWriter::compareVersions(int major1, int minor1,
			 int major2, int minor2) const
{
 if (major1 < major2)
 {
	return -1;
 }
 else if (major1 > major2)
 {
	return 1;
 }
 else if (minor1 < minor2)
 {
	return -1;
 }
 else if (minor1 > minor2)
 {
	return 1;
 }
 else
 {
	return 0;
 }
}

void
QPDFWriter::setEncryptionParametersInternal(
 int V, int R, int key_len, long P,
 std::string const& O, std::string const& U,
 std::string const& OE, std::string const& UE, std::string const& Perms,
 std::string const& id1, std::string const& user_password,
 std::string const& encryption_key)
{
 this->m->encryption_V = V;
 this->m->encryption_R = R;
 this->m->encryption_dictionary["/Filter"] = "/Standard";
 this->m->encryption_dictionary["/V"] = QUtil::int_to_string(V);
 this->m->encryption_dictionary["/Length"] =
 QUtil::int_to_string(key_len * 8);
 this->m->encryption_dictionary["/R"] = QUtil::int_to_string(R);
 this->m->encryption_dictionary["/P"] = QUtil::int_to_string(P);
 this->m->encryption_dictionary["/O"] = QPDF_String(O).unparse(true);
 this->m->encryption_dictionary["/U"] = QPDF_String(U).unparse(true);
 if (V >= 5)
 {
 this->m->encryption_dictionary["/OE"] = QPDF_String(OE).unparse(true);
 this->m->encryption_dictionary["/UE"] = QPDF_String(UE).unparse(true);
 this->m->encryption_dictionary["/Perms"] =
 QPDF_String(Perms).unparse(true);
 }
 if (R >= 6)
 {
 setMinimumPDFVersion("1.7", 8);
 }
 else if (R == 5)
 {
 setMinimumPDFVersion("1.7", 3);
 }
 else if (R == 4)
 {
 setMinimumPDFVersion(this->m->encrypt_use_aes ? "1.6" : "1.5");
 }
 else if (R == 3)
 {
 setMinimumPDFVersion("1.4");
 }
 else
 {
 setMinimumPDFVersion("1.3");
 }

 if ((R >= 4) && (! this->m->encrypt_metadata))
 {
	this->m->encryption_dictionary["/EncryptMetadata"] = "false";
 }
 if ((V == 4) || (V == 5))
 {
	// The spec says the value for the crypt filter key can be
	// anything, and xpdf seems to agree. However, Adobe Reader
	// won't open our files unless we use /StdCF.
	this->m->encryption_dictionary["/StmF"] = "/StdCF";
	this->m->encryption_dictionary["/StrF"] = "/StdCF";
	std::string method = (this->m->encrypt_use_aes
 ? ((V < 5) ? "/AESV2" : "/AESV3")
 : "/V2");
 // The PDF spec says the /Length key is optional, but the PDF
 // previewer on some versions of MacOS won't open encrypted
 // files without it.
	this->m->encryption_dictionary["/CF"] =
	 "<< /StdCF << /AuthEvent /DocOpen /CFM " + method +
 " /Length " + std::string((V < 5) ? "16" : "32") + " >> >>";
 }

 this->m->encrypted = true;
 QPDF::EncryptionData encryption_data(
	V, R, key_len, P, O, U, OE, UE, Perms, id1, this->m->encrypt_metadata);
 if (V < 5)
 {
 this->m->encryption_key = QPDF::compute_encryption_key(
 user_password, encryption_data);
 }
 else
 {
 this->m->encryption_key = encryption_key;
 }
}

void
QPDFWriter::setDataKey(int objid)
{
 this->m->cur_data_key = QPDF::compute_data_key(
	this->m->encryption_key, objid, 0,
 this->m->encrypt_use_aes, this->m->encryption_V, this->m->encryption_R);
}

int
QPDFWriter::bytesNeeded(unsigned long long n)
{
 int bytes = 0;
 while (n)
 {
	++bytes;
	n >>= 8;
 }
 return bytes;
}

void
QPDFWriter::writeBinary(unsigned long long val, unsigned int bytes)
{
 if (bytes > sizeof(unsigned long long))
 {
 throw std::logic_error(
 "QPDFWriter::writeBinary called with too many bytes");
 }
 unsigned char data[sizeof(unsigned long long)];
 for (unsigned int i = 0; i < bytes; ++i)
 {
	data[bytes - i - 1] = static_cast<unsigned char>(val & 0xff);
	val >>= 8;
 }
 this->m->pipeline->write(data, bytes);
}

void
QPDFWriter::writeString(std::string const& str)
{
 this->m->pipeline->write(QUtil::unsigned_char_pointer(str), str.length());
}

void
QPDFWriter::writeBuffer(PointerHolder<Buffer>& b)
{
 this->m->pipeline->write(b->getBuffer(), b->getSize());
}

void
QPDFWriter::writeStringQDF(std::string const& str)
{
 if (this->m->qdf_mode)
 {
	writeString(str);
 }
}

void
QPDFWriter::writeStringNoQDF(std::string const& str)
{
 if (! this->m->qdf_mode)
 {
	writeString(str);
 }
}

void
QPDFWriter::writePad(int nspaces)
{
 for (int i = 0; i < nspaces; ++i)
 {
	writeString(" ");
 }
}

Pipeline*
QPDFWriter::pushPipeline(Pipeline* p)
{
 assert(dynamic_cast<Pl_Count*>(p) == 0);
 this->m->pipeline_stack.push_back(p);
 return p;
}

void
QPDFWriter::initializePipelineStack(Pipeline *p)
{
 this->m->pipeline = new Pl_Count("qpdf count", p);
 this->m->to_delete.push_back(this->m->pipeline);
 this->m->pipeline_stack.push_back(this->m->pipeline);
}

void
QPDFWriter::activatePipelineStack()
{
 Pl_Count* c = new Pl_Count("count", this->m->pipeline_stack.back());
 this->m->pipeline_stack.push_back(c);
 this->m->pipeline = c;
}

void
QPDFWriter::popPipelineStack(PointerHolder<Buffer>* bp)
{
 assert(this->m->pipeline_stack.size() >= 2);
 this->m->pipeline->finish();
 assert(dynamic_cast<Pl_Count*>(this->m->pipeline_stack.back()) ==
	 this->m->pipeline);
 delete this->m->pipeline_stack.back();
 this->m->pipeline_stack.pop_back();
 while (dynamic_cast<Pl_Count*>(this->m->pipeline_stack.back()) == 0)
 {
	Pipeline* p = this->m->pipeline_stack.back();
 if (dynamic_cast<Pl_MD5*>(p) == this->m->md5_pipeline)
 {
 this->m->md5_pipeline = 0;
 }
	this->m->pipeline_stack.pop_back();
	Pl_Buffer* buf = dynamic_cast<Pl_Buffer*>(p);
	if (bp && buf)
	{
	 *bp = buf->getBuffer();
	}
	delete p;
 }
 this->m->pipeline = dynamic_cast<Pl_Count*>(this->m->pipeline_stack.back());
}

void
QPDFWriter::adjustAESStreamLength(size_t& length)
{
 if (this->m->encrypted && (! this->m->cur_data_key.empty()) &&
	this->m->encrypt_use_aes)
 {
	// Stream length will be padded with 1 to 16 bytes to end up
	// as a multiple of 16. It will also be prepended by 16 bits
	// of random data.
	length += 32 - (length & 0xf);
 }
}

void
QPDFWriter::pushEncryptionFilter()
{
 if (this->m->encrypted && (! this->m->cur_data_key.empty()))
 {
	Pipeline* p = 0;
	if (this->m->encrypt_use_aes)
	{
	 p = new Pl_AES_PDF(
		"aes stream encryption", this->m->pipeline, true,
		QUtil::unsigned_char_pointer(this->m->cur_data_key),
 this->m->cur_data_key.length());
	}
	else
	{
	 p = new Pl_RC4("rc4 stream encryption", this->m->pipeline,
			 QUtil::unsigned_char_pointer(this->m->cur_data_key),
			 this->m->cur_data_key.length());
	}
	pushPipeline(p);
 }
 // Must call this unconditionally so we can call popPipelineStack
 // to balance pushEncryptionFilter().
 activatePipelineStack();
}

void
QPDFWriter::pushDiscardFilter()
{
 pushPipeline(new Pl_Discard());
 activatePipelineStack();
}

void
QPDFWriter::pushMD5Pipeline()
{
 if (! this->m->id2.empty())
 {
 // Can't happen in the code
 throw std::logic_error(
 "Deterministic ID computation enabled after ID"
 " generation has already occurred.");
 }
 assert(this->m->deterministic_id);
 assert(this->m->md5_pipeline == 0);
 assert(this->m->pipeline->getCount() == 0);
 this->m->md5_pipeline = new Pl_MD5("qpdf md5", this->m->pipeline);
 this->m->md5_pipeline->persistAcrossFinish(true);
 // Special case code in popPipelineStack clears this->m->md5_pipeline
 // upon deletion.
 pushPipeline(this->m->md5_pipeline);
 activatePipelineStack();
}

void
QPDFWriter::computeDeterministicIDData()
{
 assert(this->m->md5_pipeline != 0);
 assert(this->m->deterministic_id_data.empty());
 this->m->deterministic_id_data = this->m->md5_pipeline->getHexDigest();
 this->m->md5_pipeline->enable(false);
}

int
QPDFWriter::openObject(int objid)
{
 if (objid == 0)
 {
	objid = this->m->next_objid++;
 }
 this->m->xref[objid] = QPDFXRefEntry(1, this->m->pipeline->getCount(), 0);
 writeString(QUtil::int_to_string(objid));
 writeString(" 0 obj\n");
 return objid;
}

void
QPDFWriter::closeObject(int objid)
{
 // Write a newline before endobj as it makes the file easier to
 // repair.
 writeString("\nendobj\n");
 writeStringQDF("\n");
 this->m->lengths[objid] = this->m->pipeline->getCount() -
 this->m->xref[objid].getOffset();
}

void
QPDFWriter::assignCompressedObjectNumbers(QPDFObjGen const& og)
{
 int objid = og.getObj();
 if ((og.getGen() != 0) ||
 (this->m->object_stream_to_objects.count(objid) == 0))
 {
 // This is not an object stream.
	return;
 }

 // Reserve numbers for the objects that belong to this object
 // stream.
 for (std::set<QPDFObjGen>::iterator iter =
	 this->m->object_stream_to_objects[objid].begin();
	 iter != this->m->object_stream_to_objects[objid].end();
	 ++iter)
 {
	this->m->obj_renumber[*iter] = this->m->next_objid++;
 }
}

void
QPDFWriter::enqueueObject(QPDFObjectHandle object)
{
 if (object.isIndirect())
 {
 if (object.getOwningQPDF() != &(this->m->pdf))
 {
 QTC::TC("qpdf", "QPDFWriter foreign object");
 throw std::logic_error(
 "QPDFObjectHandle from different QPDF found while writing."
 " Use QPDF::copyForeignObject to add objects from"
 " another file.");
 }

	QPDFObjGen og = object.getObjGen();

	if (this->m->obj_renumber.count(og) == 0)
	{
	 if (this->m->object_to_object_stream.count(og))
	 {
		// This is in an object stream. Don't process it
		// here. Instead, enqueue the object stream. Object
		// streams always have generation 0.
		int stream_id = this->m->object_to_object_stream[og];
 // Detect loops by storing invalid object ID 0, which
 // will get overwritten later.
 this->m->obj_renumber[og] = 0;
		enqueueObject(this->m->pdf.getObjectByID(stream_id, 0));
	 }
	 else
	 {
		this->m->object_queue.push_back(object);
		this->m->obj_renumber[og] = this->m->next_objid++;

		if ((og.getGen() == 0) &&
 this->m->object_stream_to_objects.count(og.getObj()))
		{
		 // For linearized files, uncompressed objects go
		 // at end, and we take care of assigning numbers
		 // to them elsewhere.
		 if (! this->m->linearized)
		 {
			assignCompressedObjectNumbers(og);
		 }
		}
		else if ((! this->m->direct_stream_lengths) &&
 object.isStream())
		{
		 // reserve next object ID for length
		 ++this->m->next_objid;
		}
	 }
	}
 else if (this->m->obj_renumber[og] == 0)
 {
 // This can happen if a specially constructed file
 // indicates that an object stream is inside itself.
 QTC::TC("qpdf", "QPDFWriter ignore self-referential object stream");
 }
 }
 else if (object.isArray())
 {
	int n = object.getArrayNItems();
	for (int i = 0; i < n; ++i)
	{
	 if (! this->m->linearized)
	 {
		enqueueObject(object.getArrayItem(i));
	 }
	}
 }
 else if (object.isDictionary())
 {
	std::set<std::string> keys = object.getKeys();
	for (std::set<std::string>::iterator iter = keys.begin();
	 iter != keys.end(); ++iter)
	{
	 if (! this->m->linearized)
	 {
		enqueueObject(object.getKey(*iter));
	 }
	}
 }
 else
 {
	// ignore
 }
}

void
QPDFWriter::unparseChild(QPDFObjectHandle child, int level, int flags)
{
 if (! this->m->linearized)
 {
	enqueueObject(child);
 }
 if (child.isIndirect())
 {
	QPDFObjGen old_og = child.getObjGen();
	int new_id = this->m->obj_renumber[old_og];
	writeString(QUtil::int_to_string(new_id));
	writeString(" 0 R");
 }
 else
 {
	unparseObject(child, level, flags);
 }
}

void
QPDFWriter::writeTrailer(trailer_e which, int size, bool xref_stream,
 qpdf_offset_t prev, int linearization_pass)
{
 QPDFObjectHandle trailer = getTrimmedTrailer();
 if (! xref_stream)
 {
	writeString("trailer <<");
 }
 writeStringQDF("\n");
 if (which == t_lin_second)
 {
	writeString(" /Size ");
	writeString(QUtil::int_to_string(size));
 }
 else
 {
	std::set<std::string> keys = trailer.getKeys();
	for (std::set<std::string>::iterator iter = keys.begin();
	 iter != keys.end(); ++iter)
	{
	 std::string const& key = *iter;
	 writeStringQDF(" ");
	 writeStringNoQDF(" ");
	 writeString(QPDF_Name::normalizeName(key));
	 writeString(" ");
	 if (key == "/Size")
	 {
		writeString(QUtil::int_to_string(size));
		if (which == t_lin_first)
		{
		 writeString(" /Prev ");
		 qpdf_offset_t pos = this->m->pipeline->getCount();
		 writeString(QUtil::int_to_string(prev));
		 int nspaces = pos - this->m->pipeline->getCount() + 21;
		 if (nspaces < 0)
 {
 throw std::logic_error(
 "QPDFWriter: no padding required in trailer");
 }
		 writePad(nspaces);
		}
	 }
	 else
	 {
		unparseChild(trailer.getKey(key), 1, 0);
	 }
	 writeStringQDF("\n");
	}
 }

 // Write ID
 writeStringQDF(" ");
 writeString(" /ID [");
 if (linearization_pass == 1)
 {
 writeString("<00000000000000000000000000000000>"
 "<00000000000000000000000000000000>");
 }
 else
 {
 if ((linearization_pass == 0) && (this->m->deterministic_id))
 {
 computeDeterministicIDData();
 }
 generateID();
 writeString(QPDF_String(this->m->id1).unparse(true));
 writeString(QPDF_String(this->m->id2).unparse(true));
 }
 writeString("]");

 if (which != t_lin_second)
 {
	// Write reference to encryption dictionary
	if (this->m->encrypted)
	{
	 writeString(" /Encrypt ");
	 writeString(QUtil::int_to_string(this->m->encryption_dict_objid));
	 writeString(" 0 R");
	}
 }

 writeStringQDF("\n");
 writeStringNoQDF(" ");
 writeString(">>");
}

void
QPDFWriter::unparseObject(QPDFObjectHandle object, int level,
			 unsigned int flags)
{
 unparseObject(object, level, flags, 0, false);
}

void
QPDFWriter::unparseObject(QPDFObjectHandle object, int level,
			 unsigned int flags, size_t stream_length,
 bool compress)
{
 QPDFObjGen old_og = object.getObjGen();
 unsigned int child_flags = flags & ~f_stream;

 std::string indent;
 for (int i = 0; i < level; ++i)
 {
	indent += " ";
 }

 if (object.isArray())
 {
	// Note: PDF spec 1.4 implementation note 121 states that
	// Acrobat requires a space after the [in the /H key of the
	// linearization parameter dictionary. We'll do this
	// unconditionally for all arrays because it looks nicer and
	// doesn't make the files that much bigger.
	writeString("[");
	writeStringQDF("\n");
	int n = object.getArrayNItems();
	for (int i = 0; i < n; ++i)
	{
	 writeStringQDF(indent);
	 writeStringQDF(" ");
	 writeStringNoQDF(" ");
	 unparseChild(object.getArrayItem(i), level + 1, child_flags);
	 writeStringQDF("\n");
	}
	writeStringQDF(indent);
	writeStringNoQDF(" ");
	writeString("]");
 }
 else if (object.isDictionary())
 {
 // Make a shallow copy of this object so we can modify it
 // safely without affecting the original. This code makes
 // assumptions about things that are made true in
 // prepareFileForWrite, such as that certain things are direct
 // objects so that replacing them doesn't leave unreferenced
 // objects in the output.
 object = object.shallowCopy();

 // Handle special cases for specific dictionaries.

 // Extensions dictionaries.

 // We have one of several cases:
 //
 // * We need ADBE
 // - We already have Extensions
 // - If it has the right ADBE, preserve it
 // - Otherwise, replace ADBE
 // - We don't have Extensions: create one from scratch
 // * We don't want ADBE
 // - We already have Extensions
 // - If it only has ADBE, remove it
 // - If it has other things, keep those and remove ADBE
 // - We have no extensions: no action required
 //
 // Before writing, we guarantee that /Extensions, if present,
 // is direct through the ADBE dictionary, so we can modify in
 // place.

 bool is_root = false;
 bool have_extensions_other = false;
 bool have_extensions_adbe = false;

 QPDFObjectHandle extensions;
 if (old_og == this->m->pdf.getRoot().getObjGen())
 {
 is_root = true;
 if (object.hasKey("/Extensions") &&
 object.getKey("/Extensions").isDictionary())
 {
 extensions = object.getKey("/Extensions");
 }
 }

 if (extensions.isInitialized())
 {
 std::set<std::string> keys = extensions.getKeys();
 if (keys.count("/ADBE") > 0)
 {
 have_extensions_adbe = true;
 keys.erase("/ADBE");
 }
 if (keys.size() > 0)
 {
 have_extensions_other = true;
 }
 }

 bool need_extensions_adbe = (this->m->final_extension_level > 0);

 if (is_root)
 {
 if (need_extensions_adbe)
 {
 if (! (have_extensions_other || have_extensions_adbe))
 {
 // We need Extensions and don't have it. Create
 // it here.
 QTC::TC("qpdf", "QPDFWriter create Extensions",
 this->m->qdf_mode ? 0 : 1);
 extensions = QPDFObjectHandle::newDictionary();
 object.replaceKey("/Extensions", extensions);
 }
 }
 else if (! have_extensions_other)
 {
 // We have Extensions dictionary and don't want one.
 if (have_extensions_adbe)
 {
 QTC::TC("qpdf", "QPDFWriter remove existing Extensions");
 object.removeKey("/Extensions");
 extensions = QPDFObjectHandle(); // uninitialized
 }
 }
 }

 if (extensions.isInitialized())
 {
 QTC::TC("qpdf", "QPDFWriter preserve Extensions");
 QPDFObjectHandle adbe = extensions.getKey("/ADBE");
 if (adbe.isDictionary() &&
 adbe.hasKey("/BaseVersion") &&
 adbe.getKey("/BaseVersion").isName() &&
 (adbe.getKey("/BaseVersion").getName() ==
 "/" + this->m->final_pdf_version) &&
 adbe.hasKey("/ExtensionLevel") &&
 adbe.getKey("/ExtensionLevel").isInteger() &&
 (adbe.getKey("/ExtensionLevel").getIntValue() ==
 this->m->final_extension_level))
 {
 QTC::TC("qpdf", "QPDFWriter preserve ADBE");
 }
 else
 {
 if (need_extensions_adbe)
 {
 extensions.replaceKey(
 "/ADBE",
 QPDFObjectHandle::parse(
 "<< /BaseVersion /" + this->m->final_pdf_version +
 " /ExtensionLevel " +
 QUtil::int_to_string(
 this->m->final_extension_level) +
 " >>"));
 }
 else
 {
 QTC::TC("qpdf", "QPDFWriter remove ADBE");
 extensions.removeKey("/ADBE");
 }
 }
 }

 // Stream dictionaries.

 if (flags & f_stream)
 {
 // Suppress /Length since we will write it manually
 object.removeKey("/Length");

	 if (flags & f_filtered)
 {
 // We will supply our own filter and decode
 // parameters.
 object.removeKey("/Filter");
 object.removeKey("/DecodeParms");
 }
 else
 {
 // Make sure, no matter what else we have, that we
 // don't have /Crypt in the output filters.
 QPDFObjectHandle filter = object.getKey("/Filter");
 QPDFObjectHandle decode_parms = object.getKey("/DecodeParms");
 if (filter.isOrHasName("/Crypt"))
 {
 if (filter.isName())
 {
 object.removeKey("/Filter");
 object.removeKey("/DecodeParms");
 }
 else
 {
 int idx = -1;
 for (int i = 0; i < filter.getArrayNItems(); ++i)
 {
 QPDFObjectHandle item = filter.getArrayItem(i);
 if (item.isName() && item.getName() == "/Crypt")
 {
 idx = i;
 break;
 }
 }
 if (idx >= 0)
 {
 // If filter is an array, then the code in
 // QPDF_Stream has already verified that
 // DecodeParms and Filters are arrays of
 // the same length, but if they weren't
 // for some reason, eraseItem does type
 // and bounds checking.
 QTC::TC("qpdf", "QPDFWriter remove Crypt");
 filter.eraseItem(idx);
 decode_parms.eraseItem(idx);
 }
 }
 }
 }
 }

	writeString("<<");
	writeStringQDF("\n");

	std::set<std::string> keys = object.getKeys();
	for (std::set<std::string>::iterator iter = keys.begin();
	 iter != keys.end(); ++iter)
	{
	 std::string const& key = *iter;

	 writeStringQDF(indent);
	 writeStringQDF(" ");
	 writeStringNoQDF(" ");
	 writeString(QPDF_Name::normalizeName(key));
	 writeString(" ");
 unparseChild(object.getKey(key), level + 1, child_flags);
	 writeStringQDF("\n");
	}

	if (flags & f_stream)
	{
	 writeStringQDF(indent);
	 writeStringQDF(" ");
	 writeString(" /Length ");

	 if (this->m->direct_stream_lengths)
	 {
		writeString(QUtil::int_to_string(stream_length));
	 }
	 else
	 {
		writeString(
		 QUtil::int_to_string(this->m->cur_stream_length_id));
		writeString(" 0 R");
	 }
	 writeStringQDF("\n");
	 if (compress && (flags & f_filtered))
	 {
		writeStringQDF(indent);
		writeStringQDF(" ");
		writeString(" /Filter /FlateDecode");
		writeStringQDF("\n");
	 }
	}

	writeStringQDF(indent);
	writeStringNoQDF(" ");
	writeString(">>");
 }
 else if (object.isStream())
 {
	// Write stream data to a buffer.
	int new_id = this->m->obj_renumber[old_og];
	if (! this->m->direct_stream_lengths)
	{
	 this->m->cur_stream_length_id = new_id + 1;
	}
	QPDFObjectHandle stream_dict = object.getDict();

	bool is_metadata = false;
	if (stream_dict.getKey("/Type").isName() &&
	 (stream_dict.getKey("/Type").getName() == "/Metadata"))
	{
	 is_metadata = true;
	}
	bool filter = (this->m->compress_streams ||
 this->m->stream_decode_level);
	if (this->m->compress_streams)
	{
	 // Don't filter if the stream is already compressed with
	 // FlateDecode. We don't want to make it worse by getting
	 // rid of a predictor or otherwise messing with it. We
	 // should also avoid messing with anything that's
	 // compressed with a lossy compression scheme, but we
	 // don't support any of those right now.
	 QPDFObjectHandle filter_obj = stream_dict.getKey("/Filter");
	 if (filter_obj.isName() &&
		((filter_obj.getName() == "/FlateDecode") ||
		 (filter_obj.getName() == "/Fl")))
	 {
		QTC::TC("qpdf", "QPDFWriter not recompressing /FlateDecode");
		filter = false;
	 }
	}
	bool normalize = false;
	bool compress = false;
 bool uncompress = false;
	if (is_metadata &&
	 ((! this->m->encrypted) || (this->m->encrypt_metadata == false)))
	{
	 QTC::TC("qpdf", "QPDFWriter not compressing metadata");
	 filter = true;
	 compress = false;
 uncompress = true;
	}
	else if (this->m->normalize_content &&
 this->m->normalized_streams.count(old_og))
	{
	 normalize = true;
	 filter = true;
	}
	else if (filter && this->m->compress_streams)
	{
	 compress = true;
	 QTC::TC("qpdf", "QPDFWriter compressing uncompressed stream");
	}

	flags |= f_stream;

 PointerHolder<Buffer> stream_data;
 bool filtered = false;
 for (int attempt = 1; attempt <= 2; ++attempt)
 {
 pushPipeline(new Pl_Buffer("stream data"));
 activatePipelineStack();

 filtered =
 object.pipeStreamData(
 this->m->pipeline,
 (((filter && normalize) ? qpdf_ef_normalize : 0) |
 ((filter && compress) ? qpdf_ef_compress : 0)),
 (filter
 ? (uncompress ? qpdf_dl_all : this->m->stream_decode_level)
 : qpdf_dl_none), false, (attempt == 1));
 popPipelineStack(&stream_data);
 if (filter && (! filtered))
 {
 // Try again
 filter = false;
 }
 else
 {
 break;
 }
 }
	if (filtered)
	{
	 flags |= f_filtered;
	}
	else
	{
	 compress = false;
	}

	this->m->cur_stream_length = stream_data->getSize();
	if (is_metadata && this->m->encrypted && (! this->m->encrypt_metadata))
	{
	 // Don't encrypt stream data for the metadata stream
	 this->m->cur_data_key.clear();
	}
	adjustAESStreamLength(this->m->cur_stream_length);
	unparseObject(stream_dict, 0, flags,
 this->m->cur_stream_length, compress);
	writeString("\nstream\n");
	pushEncryptionFilter();
	writeBuffer(stream_data);
	char last_char = this->m->pipeline->getLastChar();
	popPipelineStack();

 if (this->m->newline_before_endstream ||
 (this->m->qdf_mode && (last_char != '\n')))
 {
 writeString("\n");
 this->m->added_newline = true;
 }
 else
 {
 this->m->added_newline = false;
 }
	writeString("endstream");
 }
 else if (object.isString())
 {
	std::string val;
	if (this->m->encrypted &&
	 (! (flags & f_in_ostream)) &&
	 (! this->m->cur_data_key.empty()))
	{
	 val = object.getStringValue();
	 if (this->m->encrypt_use_aes)
	 {
		Pl_Buffer bufpl("encrypted string");
		Pl_AES_PDF pl(
 "aes encrypt string", &bufpl, true,
 QUtil::unsigned_char_pointer(this->m->cur_data_key),
 this->m->cur_data_key.length());
		pl.write(QUtil::unsigned_char_pointer(val), val.length());
		pl.finish();
		Buffer* buf = bufpl.getBuffer();
		val = QPDF_String(
		 std::string(reinterpret_cast<char*>(buf->getBuffer()),
				buf->getSize())).unparse(true);
		delete buf;
	 }
	 else
	 {
		char* tmp = QUtil::copy_string(val);
		size_t vlen = val.length();
		RC4 rc4(QUtil::unsigned_char_pointer(this->m->cur_data_key),
			this->m->cur_data_key.length());
		rc4.process(QUtil::unsigned_char_pointer(tmp), vlen);
		val = QPDF_String(std::string(tmp, vlen)).unparse();
		delete [] tmp;
	 }
	}
	else
	{
	 val = object.unparseResolved();
	}
	writeString(val);
 }
 else
 {
	writeString(object.unparseResolved());
 }
}

void
QPDFWriter::writeObjectStreamOffsets(std::vector<qpdf_offset_t>& offsets,
				 int first_obj)
{
 for (unsigned int i = 0; i < offsets.size(); ++i)
 {
	if (i != 0)
	{
	 writeStringQDF("\n");
	 writeStringNoQDF(" ");
	}
	writeString(QUtil::int_to_string(i + first_obj));
	writeString(" ");
	writeString(QUtil::int_to_string(offsets.at(i)));
 }
 writeString("\n");
}

void
QPDFWriter::writeObjectStream(QPDFObjectHandle object)
{
 // Note: object might be null if this is a place-holder for an
 // object stream that we are generating from scratch.

 QPDFObjGen old_og = object.getObjGen();
 assert(old_og.getGen() == 0);
 int old_id = old_og.getObj();
 int new_id = this->m->obj_renumber[old_og];

 std::vector<qpdf_offset_t> offsets;
 qpdf_offset_t first = 0;

 // Generate stream itself. We have to do this in two passes so we
 // can calculate offsets in the first pass.
 PointerHolder<Buffer> stream_buffer;
 int first_obj = -1;
 bool compressed = false;
 for (int pass = 1; pass <= 2; ++pass)
 {
	if (pass == 1)
	{
	 pushDiscardFilter();
	}
	else
	{
	 // Adjust offsets to skip over comment before first object

	 first = offsets.at(0);
	 for (std::vector<qpdf_offset_t>::iterator iter = offsets.begin();
		 iter != offsets.end(); ++iter)
	 {
		*iter -= first;
	 }

	 // Take one pass at writing pairs of numbers so we can get
	 // their size information
	 pushDiscardFilter();
	 writeObjectStreamOffsets(offsets, first_obj);
	 first += this->m->pipeline->getCount();
	 popPipelineStack();

	 // Set up a stream to write the stream data into a buffer.
	 Pipeline* next = pushPipeline(new Pl_Buffer("object stream"));
 if (! (this->m->stream_decode_level || this->m->qdf_mode))
	 {
		compressed = true;
		next = pushPipeline(
		 new Pl_Flate("compress object stream", next,
				 Pl_Flate::a_deflate));
	 }
	 activatePipelineStack();
	 writeObjectStreamOffsets(offsets, first_obj);
	}

	int count = 0;
	for (std::set<QPDFObjGen>::iterator iter =
		 this->m->object_stream_to_objects[old_id].begin();
	 iter != this->m->object_stream_to_objects[old_id].end();
	 ++iter, ++count)
	{
	 QPDFObjGen obj = *iter;
	 int new_obj = this->m->obj_renumber[obj];
	 if (first_obj == -1)
	 {
		first_obj = new_obj;
	 }
	 if (this->m->qdf_mode)
	 {
		writeString("%% Object stream: object " +
			 QUtil::int_to_string(new_obj) + ", index " +
			 QUtil::int_to_string(count));
		if (! this->m->suppress_original_object_ids)
		{
		 writeString("; original object ID: " +
				QUtil::int_to_string(obj.getObj()));
 // For compatibility, only write the generation if
 // non-zero. While object streams only allow
 // objects with generation 0, if we are generating
 // object streams, the old object could have a
 // non-zero generation.
 if (obj.getGen() != 0)
 {
 QTC::TC("qpdf", "QPDFWriter original obj non-zero gen");
 writeString(" " + QUtil::int_to_string(obj.getGen()));
 }
		}
		writeString("\n");
	 }
	 if (pass == 1)
	 {
		offsets.push_back(this->m->pipeline->getCount());
	 }
	 writeObject(this->m->pdf.getObjectByObjGen(obj), count);

	 this->m->xref[new_obj] = QPDFXRefEntry(2, new_id, count);
	}

	// stream_buffer will be initialized only for pass 2
	popPipelineStack(&stream_buffer);
 }

 // Write the object
 openObject(new_id);
 setDataKey(new_id);
 writeString("<<");
 writeStringQDF("\n ");
 writeString(" /Type /ObjStm");
 writeStringQDF("\n ");
 size_t length = stream_buffer->getSize();
 adjustAESStreamLength(length);
 writeString(" /Length " + QUtil::int_to_string(length));
 writeStringQDF("\n ");
 if (compressed)
 {
	writeString(" /Filter /FlateDecode");
 }
 writeString(" /N " + QUtil::int_to_string(offsets.size()));
 writeStringQDF("\n ");
 writeString(" /First " + QUtil::int_to_string(first));
 if (! object.isNull())
 {
	// If the original object has an /Extends key, preserve it.
	QPDFObjectHandle dict = object.getDict();
	QPDFObjectHandle extends = dict.getKey("/Extends");
	if (extends.isIndirect())
	{
	 QTC::TC("qpdf", "QPDFWriter copy Extends");
	 writeStringQDF("\n ");
	 writeString(" /Extends ");
	 unparseChild(extends, 1, f_in_ostream);
	}
 }
 writeStringQDF("\n");
 writeStringNoQDF(" ");
 writeString(">>\nstream\n");
 if (this->m->encrypted)
 {
	QTC::TC("qpdf", "QPDFWriter encrypt object stream");
 }
 pushEncryptionFilter();
 writeBuffer(stream_buffer);
 popPipelineStack();
 writeString("endstream");
 this->m->cur_data_key.clear();
 closeObject(new_id);
}

void
QPDFWriter::writeObject(QPDFObjectHandle object, int object_stream_index)
{
 QPDFObjGen old_og = object.getObjGen();

 if ((object_stream_index == -1) &&
 (old_og.getGen() == 0) &&
	(this->m->object_stream_to_objects.count(old_og.getObj())))
 {
	writeObjectStream(object);
	return;
 }

 int new_id = this->m->obj_renumber[old_og];
 if (this->m->qdf_mode)
 {
	if (this->m->page_object_to_seq.count(old_og))
	{
	 writeString("%% Page ");
	 writeString(
		QUtil::int_to_string(
		 this->m->page_object_to_seq[old_og]));
	 writeString("\n");
	}
	if (this->m->contents_to_page_seq.count(old_og))
	{
	 writeString("%% Contents for page ");
	 writeString(
		QUtil::int_to_string(
		 this->m->contents_to_page_seq[old_og]));
	 writeString("\n");
	}
 }
 if (object_stream_index == -1)
 {
	if (this->m->qdf_mode && (! this->m->suppress_original_object_ids))
	{
	 writeString("%% Original object ID: " +
			QUtil::int_to_string(object.getObjectID()) + " " +
			QUtil::int_to_string(object.getGeneration()) + "\n");
	}
	openObject(new_id);
	setDataKey(new_id);
	unparseObject(object, 0, 0);
	this->m->cur_data_key.clear();
	closeObject(new_id);
 }
 else
 {
	unparseObject(object, 0, f_in_ostream);
	writeString("\n");
 }

 if ((! this->m->direct_stream_lengths) && object.isStream())
 {
	if (this->m->qdf_mode)
	{
	 if (this->m->added_newline)
	 {
		writeString("%QDF: ignore_newline\n");
	 }
	}
	openObject(new_id + 1);
	writeString(QUtil::int_to_string(this->m->cur_stream_length));
	closeObject(new_id + 1);
 }
}

void
QPDFWriter::generateID()
{
 // Generate the ID lazily so that we can handle the user's
 // preference to use static or deterministic ID generation.

 if (! this->m->id2.empty())
 {
	return;
 }

 QPDFObjectHandle trailer = this->m->pdf.getTrailer();

 std::string result;

 if (this->m->static_id)
 {
	// For test suite use only...
	static unsigned char tmp[] = {0x31, 0x41, 0x59, 0x26,
 0x53, 0x58, 0x97, 0x93,
 0x23, 0x84, 0x62, 0x64,
 0x33, 0x83, 0x27, 0x95,
 0x00};
	result = reinterpret_cast<char*>(tmp);
 }
 else
 {
	// The PDF specification has guidelines for creating IDs, but
	// it states clearly that the only thing that's really
	// important is that it is very likely to be unique. We can't
	// really follow the guidelines in the spec exactly because we
	// haven't written the file yet. This scheme should be fine
	// though. The deterministic ID case uses a digest of a
	// sufficient portion of the file's contents such no two
	// non-matching files would match in the subsets used for this
	// computation. Note that we explicitly omit the filename from
	// the digest calculation for deterministic ID so that the same
	// file converted with qpdf, in that case, would have the same
	// ID regardless of the output file's name.

	std::string seed;
 if (this->m->deterministic_id)
 {
 if (this->m->deterministic_id_data.empty())
 {
 QTC::TC("qpdf", "QPDFWriter deterministic with no data");
 throw std::logic_error(
 "INTERNAL ERROR: QPDFWriter::generateID has no"
 " data for deterministic ID. This may happen if"
 " deterministic ID and file encryption are requested"
 " together.");
 }
 seed += this->m->deterministic_id_data;
 }
 else
 {
 seed += QUtil::int_to_string(QUtil::get_current_time());
 seed += this->m->filename;
 seed += " ";
 }
	seed += " QPDF ";
	if (trailer.hasKey("/Info"))
	{
 QPDFObjectHandle info = trailer.getKey("/Info");
	 std::set<std::string> keys = info.getKeys();
	 for (std::set<std::string>::iterator iter = keys.begin();
		 iter != keys.end(); ++iter)
	 {
		QPDFObjectHandle obj = info.getKey(*iter);
		if (obj.isString())
		{
		 seed += " ";
		 seed += obj.getStringValue();
		}
	 }
	}

	MD5 m;
	m.encodeString(seed.c_str());
	MD5::Digest digest;
	m.digest(digest);
	result = std::string(reinterpret_cast<char*>(digest),
 sizeof(MD5::Digest));
 }

 // If /ID already exists, follow the spec: use the original first
 // word and generate a new second word. Otherwise, we'll use the
 // generated ID for both.

 this->m->id2 = result;
 if (trailer.hasKey("/ID"))
 {
	// Note: keep /ID from old file even if --static-id was given.
	this->m->id1 = trailer.getKey("/ID").getArrayItem(0).getStringValue();
 }
 else
 {
	this->m->id1 = this->m->id2;
 }
}

void
QPDFWriter::initializeSpecialStreams()
{
 // Mark all page content streams in case we are filtering or
 // normalizing.
 std::vector<QPDFObjectHandle> pages = this->m->pdf.getAllPages();
 int num = 0;
 for (std::vector<QPDFObjectHandle>::iterator iter = pages.begin();
	 iter != pages.end(); ++iter)
 {
	QPDFObjectHandle& page = *iter;
	this->m->page_object_to_seq[page.getObjGen()] = ++num;
	QPDFObjectHandle contents = page.getKey("/Contents");
	std::vector<QPDFObjGen> contents_objects;
	if (contents.isArray())
	{
	 int n = contents.getArrayNItems();
	 for (int i = 0; i < n; ++i)
	 {
		contents_objects.push_back(
		 contents.getArrayItem(i).getObjGen());
	 }
	}
	else if (contents.isStream())
	{
	 contents_objects.push_back(contents.getObjGen());
	}

	for (std::vector<QPDFObjGen>::iterator iter = contents_objects.begin();
	 iter != contents_objects.end(); ++iter)
	{
	 this->m->contents_to_page_seq[*iter] = num;
	 this->m->normalized_streams.insert(*iter);
	}
 }
}

void
QPDFWriter::preserveObjectStreams()
{
 // Our object_to_object_stream map has to map ObjGen -> ObjGen
 // since we may be generating object streams out of old objects
 // that have generation numbers greater than zero. However in an
 // existing PDF, all object stream objects and all objects in them
 // must have generation 0 because the PDF spec does not provide
 // any way to do otherwise.
 std::map<int, int> omap;
 QPDF::Writer::getObjectStreamData(this->m->pdf, omap);
 for (std::map<int, int>::iterator iter = omap.begin();
 iter != omap.end(); ++iter)
 {
 this->m->object_to_object_stream[QPDFObjGen((*iter).first, 0)] =
 (*iter).second;
 }
}

void
QPDFWriter::generateObjectStreams()
{
 // Basic strategy: make a list of objects that can go into an
 // object stream. Then figure out how many object streams are
 // needed so that we can distribute objects approximately evenly
 // without having any object stream exceed 100 members. We don't
 // have to worry about linearized files here -- if the file is
 // linearized, we take care of excluding things that aren't
 // allowed here later.

 // This code doesn't do anything with /Extends.

 std::vector<QPDFObjGen> const& eligible =
 QPDF::Writer::getCompressibleObjGens(this->m->pdf);
 unsigned int n_object_streams = (eligible.size() + 99) / 100;
 if (n_object_streams == 0)
 {
 throw std::logic_error("n_object_streams == 0");
 }
 unsigned int n_per = eligible.size() / n_object_streams;
 if (n_per * n_object_streams < eligible.size())
 {
	++n_per;
 }
 unsigned int n = 0;
 int cur_ostream = 0;
 for (std::vector<QPDFObjGen>::const_iterator iter = eligible.begin();
	 iter != eligible.end(); ++iter)
 {
	if ((n % n_per) == 0)
	{
	 if (n > 0)
	 {
		QTC::TC("qpdf", "QPDFWriter generate >1 ostream");
	 }
	 n = 0;
	}
	if (n == 0)
	{
	 // Construct a new null object as the "original" object
	 // stream. The rest of the code knows that this means
	 // we're creating the object stream from scratch.
	 cur_ostream = this->m->pdf.makeIndirectObject(
		QPDFObjectHandle::newNull()).getObjectID();
	}
	this->m->object_to_object_stream[*iter] = cur_ostream;
	++n;
 }
}

QPDFObjectHandle
QPDFWriter::getTrimmedTrailer()
{
 // Remove keys from the trailer that necessarily have to be
 // replaced when writing the file.

 QPDFObjectHandle trailer = this->m->pdf.getTrailer().shallowCopy();

 // Remove encryption keys
 trailer.removeKey("/ID");
 trailer.removeKey("/Encrypt");

 // Remove modification information
 trailer.removeKey("/Prev");

 // Remove all trailer keys that potentially come from a
 // cross-reference stream
 trailer.removeKey("/Index");
 trailer.removeKey("/W");
 trailer.removeKey("/Length");
 trailer.removeKey("/Filter");
 trailer.removeKey("/DecodeParms");
 trailer.removeKey("/Type");
 trailer.removeKey("/XRefStm");

 return trailer;
}

void
QPDFWriter::prepareFileForWrite()
{
 // Do a traversal of the entire PDF file structure replacing all
 // indirect objects that QPDFWriter wants to be direct. This
 // includes stream lengths, stream filtering parameters, and
 // document extension level information.

 std::list<QPDFObjectHandle> queue;
 queue.push_back(getTrimmedTrailer());
 std::set<int> visited;

 while (! queue.empty())
 {
	QPDFObjectHandle node = queue.front();
	queue.pop_front();
	if (node.isIndirect())
	{
	 if (visited.count(node.getObjectID()) > 0)
	 {
		continue;
	 }
	 visited.insert(node.getObjectID());
	}

	if (node.isArray())
	{
	 int nitems = node.getArrayNItems();
	 for (int i = 0; i < nitems; ++i)
	 {
		QPDFObjectHandle oh = node.getArrayItem(i);
 if (oh.isIndirect() && oh.isNull())
 {
 QTC::TC("qpdf", "QPDFWriter flatten array null");
 oh.makeDirect();
 node.setArrayItem(i, oh);
 }
		else if (! oh.isScalar())
		{
		 queue.push_back(oh);
		}
	 }
	}
	else if (node.isDictionary() || node.isStream())
	{
 bool is_stream = false;
 bool is_root = false;
 bool filterable = false;
	 QPDFObjectHandle dict = node;
	 if (node.isStream())
	 {
 is_stream = true;
		dict = node.getDict();
 // See whether we are able to filter this stream.
 filterable = node.pipeStreamData(
 0, 0, this->m->stream_decode_level, true);
	 }
 else if (this->m->pdf.getRoot().getObjectID() == node.getObjectID())
 {
 is_root = true;
 }

	 std::set<std::string> keys = dict.getKeys();
	 for (std::set<std::string>::iterator iter = keys.begin();
		 iter != keys.end(); ++iter)
	 {
		std::string const& key = *iter;
		QPDFObjectHandle oh = dict.getKey(key);
 bool add_to_queue = true;
 if (is_stream)
 {
 if (oh.isIndirect() &&
 ((key == "/Length") ||
 (filterable &&
 ((key == "/Filter") ||
 (key == "/DecodeParms")))))
 {
 QTC::TC("qpdf", "QPDFWriter make stream key direct");
 add_to_queue = false;
 oh.makeDirect();
 dict.replaceKey(key, oh);
 }
 }
 else if (is_root)
 {
 if ((key == "/Extensions") && (oh.isDictionary()))
 {
 bool extensions_indirect = false;
 if (oh.isIndirect())
 {
 QTC::TC("qpdf", "QPDFWriter make Extensions direct");
 extensions_indirect = true;
 add_to_queue = false;
 oh = oh.shallowCopy();
 dict.replaceKey(key, oh);
 }
 if (oh.hasKey("/ADBE"))
 {
 QPDFObjectHandle adbe = oh.getKey("/ADBE");
 if (adbe.isIndirect())
 {
 QTC::TC("qpdf", "QPDFWriter make ADBE direct",
 extensions_indirect ? 0 : 1);
 adbe.makeDirect();
 oh.replaceKey("/ADBE", adbe);
 }
 }
 }
 }

 if (add_to_queue)
 {
 queue.push_back(oh);
		}
	 }
	}
 }
}

void
QPDFWriter::write()
{
 // Do preliminary setup

 if (this->m->linearized)
 {
	this->m->qdf_mode = false;
 }

 if (this->m->pclm)
 {
 this->m->stream_decode_level = qpdf_dl_none;
 this->m->compress_streams = false;
 this->m->encrypted = false;
 }

 if (this->m->qdf_mode)
 {
	if (! this->m->normalize_content_set)
	{
	 this->m->normalize_content = true;
	}
	if (! this->m->compress_streams_set)
	{
	 this->m->compress_streams = false;
	}
 if (! this->m->stream_decode_level_set)
 {
 this->m->stream_decode_level = qpdf_dl_generalized;
 }
 }

 if (this->m->encrypted)
 {
	// Encryption has been explicitly set
	this->m->preserve_encryption = false;
 }
 else if (this->m->normalize_content ||
	 this->m->stream_decode_level ||
 this->m->pclm ||
	 this->m->qdf_mode)
 {
	// Encryption makes looking at contents pretty useless. If
	// the user explicitly encrypted though, we still obey that.
	this->m->preserve_encryption = false;
 }

 if (this->m->preserve_encryption)
 {
	copyEncryptionParameters(this->m->pdf);
 }

 if (! this->m->forced_pdf_version.empty())
 {
	int major = 0;
	int minor = 0;
	parseVersion(this->m->forced_pdf_version, major, minor);
	disableIncompatibleEncryption(major, minor,
 this->m->forced_extension_level);
	if (compareVersions(major, minor, 1, 5) < 0)
	{
	 QTC::TC("qpdf", "QPDFWriter forcing object stream disable");
	 this->m->object_stream_mode = qpdf_o_disable;
	}
 }

 if (this->m->qdf_mode || this->m->normalize_content ||
 this->m->stream_decode_level)
 {
	initializeSpecialStreams();
 }

 if (this->m->qdf_mode)
 {
	// Generate indirect stream lengths for qdf mode since fix-qdf
	// uses them for storing recomputed stream length data.
	// Certain streams such as object streams, xref streams, and
	// hint streams always get direct stream lengths.
	this->m->direct_stream_lengths = false;
 }

 switch (this->m->object_stream_mode)
 {
 case qpdf_o_disable:
	// no action required
	break;

 case qpdf_o_preserve:
	preserveObjectStreams();
	break;

 case qpdf_o_generate:
	generateObjectStreams();
	break;

	// no default so gcc will warn for missing case tag
 }

 if (this->m->linearized)
 {
	// Page dictionaries are not allowed to be compressed objects.
	std::vector<QPDFObjectHandle> pages = this->m->pdf.getAllPages();
	for (std::vector<QPDFObjectHandle>::iterator iter = pages.begin();
	 iter != pages.end(); ++iter)
	{
	 QPDFObjectHandle& page = *iter;
	 QPDFObjGen og = page.getObjGen();
	 if (this->m->object_to_object_stream.count(og))
	 {
		QTC::TC("qpdf", "QPDFWriter uncompressing page dictionary");
		this->m->object_to_object_stream.erase(og);
	 }
	}
 }

 if (this->m->linearized || this->m->encrypted)
 {
 	// The document catalog is not allowed to be compressed in
 	// linearized files either. It also appears that Adobe Reader
 	// 8.0.0 has a bug that prevents it from being able to handle
 	// encrypted files with compressed document catalogs, so we
 	// disable them in that case as well.
	QPDFObjGen og = this->m->pdf.getRoot().getObjGen();
	if (this->m->object_to_object_stream.count(og))
	{
	 QTC::TC("qpdf", "QPDFWriter uncompressing root");
	 this->m->object_to_object_stream.erase(og);
	}
 }

 // Generate reverse mapping from object stream to objects
 for (std::map<QPDFObjGen, int>::iterator iter =
	 this->m->object_to_object_stream.begin();
	 iter != this->m->object_to_object_stream.end(); ++iter)
 {
	QPDFObjGen obj = (*iter).first;
	int stream = (*iter).second;
	this->m->object_stream_to_objects[stream].insert(obj);
	this->m->max_ostream_index =
	 std::max(this->m->max_ostream_index,
		 static_cast<int>(
 this->m->object_stream_to_objects[stream].size()) - 1);
 }

 if (! this->m->object_stream_to_objects.empty())
 {
	setMinimumPDFVersion("1.5");
 }

 prepareFileForWrite();

 if (this->m->linearized)
 {
	writeLinearized();
 }
 else
 {
	writeStandard();
 }

 this->m->pipeline->finish();
 if (this->m->close_file)
 {
	fclose(this->m->file);
 }
 this->m->file = 0;
 if (this->m->buffer_pipeline)
 {
	this->m->output_buffer = this->m->buffer_pipeline->getBuffer();
	this->m->buffer_pipeline = 0;
 }
}

void
QPDFWriter::enqueuePart(std::vector<QPDFObjectHandle>& part)
{
 for (std::vector<QPDFObjectHandle>::iterator iter = part.begin();
	 iter != part.end(); ++iter)
 {
	enqueueObject(*iter);
 }
}

void
QPDFWriter::writeEncryptionDictionary()
{
 this->m->encryption_dict_objid = openObject(this->m->encryption_dict_objid);
 writeString("<<");
 for (std::map<std::string, std::string>::iterator iter =
	 this->m->encryption_dictionary.begin();
	 iter != this->m->encryption_dictionary.end(); ++iter)
 {
	writeString(" ");
	writeString((*iter).first);
	writeString(" ");
	writeString((*iter).second);
 }
 writeString(" >>");
 closeObject(this->m->encryption_dict_objid);
}

void
QPDFWriter::writeHeader()
{
 setMinimumPDFVersion(this->m->pdf.getPDFVersion(),
 this->m->pdf.getExtensionLevel());
 this->m->final_pdf_version = this->m->min_pdf_version;
 this->m->final_extension_level = this->m->min_extension_level;
 if (! this->m->forced_pdf_version.empty())
 {
	QTC::TC("qpdf", "QPDFWriter using forced PDF version");
	this->m->final_pdf_version = this->m->forced_pdf_version;
 this->m->final_extension_level = this->m->forced_extension_level;
 }

 writeString("%PDF-");
 writeString(this->m->final_pdf_version);
 if (this->m->pclm)
 {
 // PCLm version
 writeString("\n%PCLm 1.0\n");
 }
 else
 {
 // This string of binary characters would not be valid UTF-8, so
 // it really should be treated as binary.
 writeString("\n%\xbf\xf7\xa2\xfe\n");
 }
 writeStringQDF("%QDF-1.0\n\n");

 // Note: do not write extra header text here. Linearized PDFs
 // must include the entire linearization parameter dictionary
 // within the first 1024 characters of the PDF file, so for
 // linearized files, we have to write extra header text after the
 // linearization parameter dictionary.
}

void
QPDFWriter::writeHintStream(int hint_id)
{
 PointerHolder<Buffer> hint_buffer;
 int S = 0;
 int O = 0;
 QPDF::Writer::generateHintStream(
 this->m->pdf, this->m->xref, this->m->lengths,
 this->m->obj_renumber_no_gen,
 hint_buffer, S, O);

 openObject(hint_id);
 setDataKey(hint_id);

 size_t hlen = hint_buffer->getSize();

 writeString("<< /Filter /FlateDecode /S ");
 writeString(QUtil::int_to_string(S));
 if (O)
 {
	writeString(" /O ");
	writeString(QUtil::int_to_string(O));
 }
 writeString(" /Length ");
 adjustAESStreamLength(hlen);
 writeString(QUtil::int_to_string(hlen));
 writeString(" >>\nstream\n");

 if (this->m->encrypted)
 {
	QTC::TC("qpdf", "QPDFWriter encrypted hint stream");
 }
 pushEncryptionFilter();
 writeBuffer(hint_buffer);
 char last_char = this->m->pipeline->getLastChar();
 popPipelineStack();

 if (last_char != '\n')
 {
	writeString("\n");
 }
 writeString("endstream");
 closeObject(hint_id);
}

qpdf_offset_t
QPDFWriter::writeXRefTable(trailer_e which, int first, int last, int size)
{
 return writeXRefTable(which, first, last, size, 0, false, 0, 0, 0, 0);
}

qpdf_offset_t
QPDFWriter::writeXRefTable(trailer_e which, int first, int last, int size,
			 qpdf_offset_t prev, bool suppress_offsets,
			 int hint_id, qpdf_offset_t hint_offset,
 qpdf_offset_t hint_length, int linearization_pass)
{
 writeString("xref\n");
 writeString(QUtil::int_to_string(first));
 writeString(" ");
 writeString(QUtil::int_to_string(last - first + 1));
 qpdf_offset_t space_before_zero = this->m->pipeline->getCount();
 writeString("\n");
 for (int i = first; i <= last; ++i)
 {
	if (i == 0)
	{
	 writeString("0000000000 65535 f \n");
	}
	else
	{
	 qpdf_offset_t offset = 0;
	 if (! suppress_offsets)
	 {
		offset = this->m->xref[i].getOffset();
		if ((hint_id != 0) &&
		 (i != hint_id) &&
		 (offset >= hint_offset))
		{
		 offset += hint_length;
		}
	 }
	 writeString(QUtil::int_to_string(offset, 10));
	 writeString(" 00000 n \n");
	}
 }
 writeTrailer(which, size, false, prev, linearization_pass);
 writeString("\n");
 return space_before_zero;
}

qpdf_offset_t
QPDFWriter::writeXRefStream(int objid, int max_id, qpdf_offset_t max_offset,
			 trailer_e which, int first, int last, int size)
{
 return writeXRefStream(objid, max_id, max_offset,
			 which, first, last, size, 0, 0, 0, 0, false, 0);
}

qpdf_offset_t
QPDFWriter::writeXRefStream(int xref_id, int max_id, qpdf_offset_t max_offset,
			 trailer_e which, int first, int last, int size,
			 qpdf_offset_t prev, int hint_id,
			 qpdf_offset_t hint_offset,
 qpdf_offset_t hint_length,
			 bool skip_compression,
 int linearization_pass)
{
 qpdf_offset_t xref_offset = this->m->pipeline->getCount();
 qpdf_offset_t space_before_zero = xref_offset - 1;

 // field 1 contains offsets and object stream identifiers
 int f1_size = std::max(bytesNeeded(max_offset + hint_length),
			 bytesNeeded(max_id));

 // field 2 contains object stream indices
 int f2_size = bytesNeeded(this->m->max_ostream_index);

 unsigned int esize = 1 + f1_size + f2_size;

 // Must store in xref table in advance of writing the actual data
 // rather than waiting for openObject to do it.
 this->m->xref[xref_id] = QPDFXRefEntry(1, this->m->pipeline->getCount(), 0);

 Pipeline* p = pushPipeline(new Pl_Buffer("xref stream"));
 bool compressed = false;
 if (! (this->m->stream_decode_level || this->m->qdf_mode))
 {
	compressed = true;
	if (! skip_compression)
	{
	 // Write the stream dictionary for compression but don't
	 // actually compress. This helps us with computation of
	 // padding for pass 1 of linearization.
	 p = pushPipeline(
		new Pl_Flate("compress xref", p, Pl_Flate::a_deflate));
	}
	p = pushPipeline(
	 new Pl_PNGFilter(
		"pngify xref", p, Pl_PNGFilter::a_encode, esize));
 }
 activatePipelineStack();
 for (int i = first; i <= last; ++i)
 {
	QPDFXRefEntry& e = this->m->xref[i];
	switch (e.getType())
	{
	 case 0:
	 writeBinary(0, 1);
	 writeBinary(0, f1_size);
	 writeBinary(0, f2_size);
	 break;

	 case 1:
	 {
		qpdf_offset_t offset = e.getOffset();
		if ((hint_id != 0) &&
		 (i != hint_id) &&
		 (offset >= hint_offset))
		{
		 offset += hint_length;
		}
		writeBinary(1, 1);
		writeBinary(offset, f1_size);
		writeBinary(0, f2_size);
	 }
	 break;

	 case 2:
	 writeBinary(2, 1);
	 writeBinary(e.getObjStreamNumber(), f1_size);
	 writeBinary(e.getObjStreamIndex(), f2_size);
	 break;

	 default:
	 throw std::logic_error("invalid type writing xref stream");
	 break;
	}
 }
 PointerHolder<Buffer> xref_data;
 popPipelineStack(&xref_data);

 openObject(xref_id);
 writeString("<<");
 writeStringQDF("\n ");
 writeString(" /Type /XRef");
 writeStringQDF("\n ");
 writeString(" /Length " + QUtil::int_to_string(xref_data->getSize()));
 if (compressed)
 {
	writeStringQDF("\n ");
	writeString(" /Filter /FlateDecode");
	writeStringQDF("\n ");
	writeString(" /DecodeParms << /Columns " +
		 QUtil::int_to_string(esize) + " /Predictor 12 >>");
 }
 writeStringQDF("\n ");
 writeString(" /W [1 " +
		QUtil::int_to_string(f1_size) + " " +
		QUtil::int_to_string(f2_size) + "]");
 if (! ((first == 0) && (last == size - 1)))
 {
	writeString(" /Index [" +
		 QUtil::int_to_string(first) + " " +
		 QUtil::int_to_string(last - first + 1) + "]");
 }
 writeTrailer(which, size, true, prev, linearization_pass);
 writeString("\nstream\n");
 writeBuffer(xref_data);
 writeString("\nendstream");
 closeObject(xref_id);
 return space_before_zero;
}

int
QPDFWriter::calculateXrefStreamPadding(int xref_bytes)
{
 // This routine is called right after a linearization first pass
 // xref stream has been written without compression. Calculate
 // the amount of padding that would be required in the worst case,
 // assuming the number of uncompressed bytes remains the same.
 // The worst case for zlib is that the output is larger than the
 // input by 6 bytes plus 5 bytes per 16K, and then we'll add 10
 // extra bytes for number length increases.

 return 16 + (5 * ((xref_bytes + 16383) / 16384));
}

void
QPDFWriter::discardGeneration(std::map<QPDFObjGen, int> const& in,
 std::map<int, int>& out)
{
 // There are deep assumptions in the linearization code in QPDF
 // that there is only one object with each object number; i.e.,
 // you can't have two objects with the same object number and
 // different generations. This is a pretty safe assumption
 // because Adobe Reader and Acrobat can't actually handle this
 // case. There is not much if any code in QPDF outside
 // linearization that assumes this, but the linearization code as
 // currently implemented would do weird things if we found such a
 // case. In order to avoid breaking ABI changes in QPDF, we will
 // first assert that this condition holds. Then we can create new
 // maps for QPDF that throw away generation numbers.

 out.clear();
 for (std::map<QPDFObjGen, int>::const_iterator iter = in.begin();
 iter != in.end(); ++iter)
 {
 if (out.count((*iter).first.getObj()))
 {
 throw std::logic_error(
 "QPDF cannot currently linearize files that contain"
 " multiple objects with the same object ID and different"
 " generations. If you see this error message, please file"
 " a bug report and attach the file if possible. As a"
 " workaround, first convert the file with qpdf without"
 " linearizing, and then linearize the result of that"
 " conversion.");
 }
 out[(*iter).first.getObj()] = (*iter).second;
 }
}

void
QPDFWriter::writeLinearized()
{
 // Optimize file and enqueue objects in order

 discardGeneration(this->m->object_to_object_stream,
 this->m->object_to_object_stream_no_gen);

 bool need_xref_stream = (! this->m->object_to_object_stream.empty());
 this->m->pdf.optimize(this->m->object_to_object_stream_no_gen);

 std::vector<QPDFObjectHandle> part4;
 std::vector<QPDFObjectHandle> part6;
 std::vector<QPDFObjectHandle> part7;
 std::vector<QPDFObjectHandle> part8;
 std::vector<QPDFObjectHandle> part9;
 QPDF::Writer::getLinearizedParts(
 this->m->pdf, this->m->object_to_object_stream_no_gen,
 part4, part6, part7, part8, part9);

 // Object number sequence:
 //
 // second half
 // second half uncompressed objects
 // second half xref stream, if any
 // second half compressed objects
 // first half
 // linearization dictionary
 // first half xref stream, if any
 // part 4 uncompresesd objects
 // encryption dictionary, if any
 // hint stream
 // part 6 uncompressed objects
 // first half compressed objects
 //

 // Second half objects
 int second_half_uncompressed = part7.size() + part8.size() + part9.size();
 int second_half_first_obj = 1;
 int after_second_half = 1 + second_half_uncompressed;
 this->m->next_objid = after_second_half;
 int second_half_xref = 0;
 if (need_xref_stream)
 {
	second_half_xref = this->m->next_objid++;
 }
 // Assign numbers to all compressed objects in the second half.
 std::vector<QPDFObjectHandle>* vecs2[] = {&part7, &part8, &part9};
 for (int i = 0; i < 3; ++i)
 {
	for (std::vector<QPDFObjectHandle>::iterator iter = (*vecs2[i]).begin();
	 iter != (*vecs2[i]).end(); ++iter)
	{
	 assignCompressedObjectNumbers((*iter).getObjGen());
	}
 }
 int second_half_end = this->m->next_objid - 1;
 int second_trailer_size = this->m->next_objid;

 // First half objects
 int first_half_start = this->m->next_objid;
 int lindict_id = this->m->next_objid++;
 int first_half_xref = 0;
 if (need_xref_stream)
 {
	first_half_xref = this->m->next_objid++;
 }
 int part4_first_obj = this->m->next_objid;
 this->m->next_objid += part4.size();
 int after_part4 = this->m->next_objid;
 if (this->m->encrypted)
 {
	this->m->encryption_dict_objid = this->m->next_objid++;
 }
 int hint_id = this->m->next_objid++;
 int part6_first_obj = this->m->next_objid;
 this->m->next_objid += part6.size();
 int after_part6 = this->m->next_objid;
 // Assign numbers to all compressed objects in the first half
 std::vector<QPDFObjectHandle>* vecs1[] = {&part4, &part6};
 for (int i = 0; i < 2; ++i)
 {
	for (std::vector<QPDFObjectHandle>::iterator iter = (*vecs1[i]).begin();
	 iter != (*vecs1[i]).end(); ++iter)
	{
	 assignCompressedObjectNumbers((*iter).getObjGen());
	}
 }
 int first_half_end = this->m->next_objid - 1;
 int first_trailer_size = this->m->next_objid;

 int part4_end_marker = part4.back().getObjectID();
 int part6_end_marker = part6.back().getObjectID();
 qpdf_offset_t space_before_zero = 0;
 qpdf_offset_t file_size = 0;
 qpdf_offset_t part6_end_offset = 0;
 qpdf_offset_t first_half_max_obj_offset = 0;
 qpdf_offset_t second_xref_offset = 0;
 qpdf_offset_t first_xref_end = 0;
 qpdf_offset_t second_xref_end = 0;

 this->m->next_objid = part4_first_obj;
 enqueuePart(part4);
 assert(this->m->next_objid == after_part4);
 this->m->next_objid = part6_first_obj;
 enqueuePart(part6);
 assert(this->m->next_objid == after_part6);
 this->m->next_objid = second_half_first_obj;
 enqueuePart(part7);
 enqueuePart(part8);
 enqueuePart(part9);
 assert(this->m->next_objid == after_second_half);

 qpdf_offset_t hint_length = 0;
 PointerHolder<Buffer> hint_buffer;

 // Write file in two passes. Part numbers refer to PDF spec 1.4.

 for (int pass = 1; pass <= 2; ++pass)
 {
	if (pass == 1)
	{
	 pushDiscardFilter();
 if (this->m->deterministic_id)
 {
 pushMD5Pipeline();
 }
	}

	// Part 1: header

	writeHeader();

	// Part 2: linearization parameter dictionary. Save enough
	// space to write real dictionary. 200 characters is enough
	// space if all numerical values in the parameter dictionary
	// that contain offsets are 20 digits long plus a few extra
	// characters for safety. The entire linearization parameter
	// dictionary must appear within the first 1024 characters of
	// the file.

	qpdf_offset_t pos = this->m->pipeline->getCount();
	openObject(lindict_id);
	writeString("<<");
	if (pass == 2)
	{
	 std::vector<QPDFObjectHandle> const& pages =
 this->m->pdf.getAllPages();
	 int first_page_object =
 this->m->obj_renumber[pages.at(0).getObjGen()];
	 int npages = pages.size();

	 writeString(" /Linearized 1 /L ");
	 writeString(QUtil::int_to_string(file_size + hint_length));
	 // Implementation note 121 states that a space is
	 // mandatory after this open bracket.
	 writeString(" /H [");
	 writeString(QUtil::int_to_string(
 this->m->xref[hint_id].getOffset()));
	 writeString(" ");
	 writeString(QUtil::int_to_string(hint_length));
	 writeString("] /O ");
	 writeString(QUtil::int_to_string(first_page_object));
	 writeString(" /E ");
	 writeString(QUtil::int_to_string(part6_end_offset + hint_length));
	 writeString(" /N ");
	 writeString(QUtil::int_to_string(npages));
	 writeString(" /T ");
	 writeString(QUtil::int_to_string(space_before_zero + hint_length));
	}
	writeString(" >>");
	closeObject(lindict_id);
	static int const pad = 200;
	int spaces = (pos - this->m->pipeline->getCount() + pad);
	assert(spaces >= 0);
	writePad(spaces);
	writeString("\n");

 // If the user supplied any additional header text, write it
 // here after the linearization parameter dictionary.
 writeString(this->m->extra_header_text);

	// Part 3: first page cross reference table and trailer.

	qpdf_offset_t first_xref_offset = this->m->pipeline->getCount();
	qpdf_offset_t hint_offset = 0;
	if (pass == 2)
	{
	 hint_offset = this->m->xref[hint_id].getOffset();
	}
	if (need_xref_stream)
	{
	 // Must pad here too.
	 if (pass == 1)
	 {
		// Set first_half_max_obj_offset to a value large
		// enough to force four bytes to be reserved for each
		// file offset. This would provide adequate space for
		// the xref stream as long as the last object in page
		// 1 starts with in the first 4 GB of the file, which
		// is extremely likely. In the second pass, we will
		// know the actual value for this, but it's okay if
		// it's smaller.
		first_half_max_obj_offset = 1 << 25;
	 }
	 pos = this->m->pipeline->getCount();
	 writeXRefStream(first_half_xref, first_half_end,
			 first_half_max_obj_offset,
			 t_lin_first, first_half_start, first_half_end,
			 first_trailer_size,
			 hint_length + second_xref_offset,
			 hint_id, hint_offset, hint_length,
			 (pass == 1), pass);
	 qpdf_offset_t endpos = this->m->pipeline->getCount();
	 if (pass == 1)
	 {
		// Pad so we have enough room for the real xref
		// stream.
		writePad(calculateXrefStreamPadding(endpos - pos));
		first_xref_end = this->m->pipeline->getCount();
	 }
	 else
	 {
		// Pad so that the next object starts at the same
		// place as in pass 1.
		writePad(first_xref_end - endpos);

		if (this->m->pipeline->getCount() != first_xref_end)
 {
 throw std::logic_error(
 "insufficient padding for first pass xref stream");
 }
	 }
	 writeString("\n");
	}
	else
	{
	 writeXRefTable(t_lin_first, first_half_start, first_half_end,
			 first_trailer_size, hint_length + second_xref_offset,
			 (pass == 1), hint_id, hint_offset, hint_length,
 pass);
	 writeString("startxref\n0\n%%EOF\n");
	}

	// Parts 4 through 9

	for (std::list<QPDFObjectHandle>::iterator iter =
		 this->m->object_queue.begin();
	 iter != this->m->object_queue.end(); ++iter)
	{
	 QPDFObjectHandle cur_object = (*iter);
	 if (cur_object.getObjectID() == part6_end_marker)
	 {
		first_half_max_obj_offset = this->m->pipeline->getCount();
	 }
	 writeObject(cur_object);
	 if (cur_object.getObjectID() == part4_end_marker)
	 {
		if (this->m->encrypted)
		{
		 writeEncryptionDictionary();
		}
		if (pass == 1)
		{
		 this->m->xref[hint_id] =
			QPDFXRefEntry(1, this->m->pipeline->getCount(), 0);
		}
		else
		{
		 // Part 5: hint stream
		 writeBuffer(hint_buffer);
		}
	 }
	 if (cur_object.getObjectID() == part6_end_marker)
	 {
		part6_end_offset = this->m->pipeline->getCount();
	 }
	}

	// Part 10: overflow hint stream -- not used

	// Part 11: main cross reference table and trailer

	second_xref_offset = this->m->pipeline->getCount();
	if (need_xref_stream)
	{
	 pos = this->m->pipeline->getCount();
	 space_before_zero =
		writeXRefStream(second_half_xref,
				second_half_end, second_xref_offset,
				t_lin_second, 0, second_half_end,
				second_trailer_size,
				0, 0, 0, 0, (pass == 1), pass);
	 qpdf_offset_t endpos = this->m->pipeline->getCount();

	 if (pass == 1)
	 {
		// Pad so we have enough room for the real xref
		// stream. See comments for previous xref stream on
		// how we calculate the padding.
		writePad(calculateXrefStreamPadding(endpos - pos));
		writeString("\n");
		second_xref_end = this->m->pipeline->getCount();
	 }
	 else
	 {
		// Make the file size the same.
		qpdf_offset_t pos = this->m->pipeline->getCount();
		writePad(second_xref_end + hint_length - 1 - pos);
		writeString("\n");

		// If this assertion fails, maybe we didn't have
		// enough padding above.
		if (this->m->pipeline->getCount() !=
 second_xref_end + hint_length)
 {
 throw std::logic_error(
 "count mismatch after xref stream;"
 " possible insufficient padding?");
 }
	 }
	}
	else
	{
	 space_before_zero =
		writeXRefTable(t_lin_second, 0, second_half_end,
			 second_trailer_size, 0, false, 0, 0, 0, pass);
	}
	writeString("startxref\n");
	writeString(QUtil::int_to_string(first_xref_offset));
	writeString("\n%%EOF\n");

 discardGeneration(this->m->obj_renumber, this->m->obj_renumber_no_gen);

	if (pass == 1)
	{
 if (this->m->deterministic_id)
 {
 QTC::TC("qpdf", "QPDFWriter linearized deterministic ID",
 need_xref_stream ? 0 : 1);
 computeDeterministicIDData();
 popPipelineStack();
 assert(this->m->md5_pipeline == 0);
 }

	 // Close first pass pipeline
	 file_size = this->m->pipeline->getCount();
	 popPipelineStack();

	 // Save hint offset since it will be set to zero by
	 // calling openObject.
	 qpdf_offset_t hint_offset = this->m->xref[hint_id].getOffset();

	 // Write hint stream to a buffer
	 pushPipeline(new Pl_Buffer("hint buffer"));
	 activatePipelineStack();
	 writeHintStream(hint_id);
	 popPipelineStack(&hint_buffer);
	 hint_length = hint_buffer->getSize();

	 // Restore hint offset
	 this->m->xref[hint_id] = QPDFXRefEntry(1, hint_offset, 0);
	}
 }
}

void
QPDFWriter::enqueueObjectsStandard()
{
 if (this->m->preserve_unreferenced_objects)
 {
 QTC::TC("qpdf", "QPDFWriter preserve unreferenced standard");
 std::vector<QPDFObjectHandle> all = this->m->pdf.getAllObjects();
 for (std::vector<QPDFObjectHandle>::iterator iter = all.begin();
 iter != all.end(); ++iter)
 {
 enqueueObject(*iter);
 }
 }

 // Put root first on queue.
 QPDFObjectHandle trailer = getTrimmedTrailer();
 enqueueObject(trailer.getKey("/Root"));

 // Next place any other objects referenced from the trailer
 // dictionary into the queue, handling direct objects recursively.
 // Root is already there, so enqueuing it a second time is a
 // no-op.
 std::set<std::string> keys = trailer.getKeys();
 for (std::set<std::string>::iterator iter = keys.begin();
	 iter != keys.end(); ++iter)
 {
	enqueueObject(trailer.getKey(*iter));
 }
}

void
QPDFWriter::enqueueObjectsPCLm()
{
 // Image transform stream content for page strip images.
 // Each of this new stream has to come after every page image
 // strip written in the pclm file.
 std::string image_transform_content = "q /image Do Q\n";

 // enqueue all pages first
 std::vector<QPDFObjectHandle> all = this->m->pdf.getAllPages();
 for (std::vector<QPDFObjectHandle>::iterator iter = all.begin();
 iter != all.end(); ++iter)
 {
 // enqueue page
 enqueueObject(*iter);

 // enqueue page contents stream
 enqueueObject((*iter).getKey("/Contents"));

 // enqueue all the strips for each page
 QPDFObjectHandle strips =
 (*iter).getKey("/Resources").getKey("/XObject");
 std::set<std::string> keys = strips.getKeys();
 for (std::set<std::string>::iterator image = keys.begin();
 image != keys.end(); ++image)
 {
 enqueueObject(strips.getKey(*image));
 enqueueObject(QPDFObjectHandle::newStream(
 &this->m->pdf, image_transform_content));
 }
 }

 // Put root in queue.
 QPDFObjectHandle trailer = getTrimmedTrailer();
 enqueueObject(trailer.getKey("/Root"));
}

void
QPDFWriter::writeStandard()
{
 if (this->m->deterministic_id)
 {
 pushMD5Pipeline();
 }

 // Start writing

 writeHeader();
 writeString(this->m->extra_header_text);

 if (this->m->pclm)
 {
 enqueueObjectsPCLm();
 }
 else
 {
 enqueueObjectsStandard();
 }

 // Now start walking queue, outputting each object. There shouldn't
 // really be any here, but this will catch anything that somehow
 // got missed.
 while (this->m->object_queue.size())
 {
	QPDFObjectHandle cur_object = this->m->object_queue.front();
	this->m->object_queue.pop_front();
	writeObject(cur_object);
 }

 // Write out the encryption dictionary, if any
 if (this->m->encrypted)
 {
	writeEncryptionDictionary();
 }

 // Now write out xref. next_objid is now the number of objects.
 qpdf_offset_t xref_offset = this->m->pipeline->getCount();
 if (this->m->object_stream_to_objects.empty())
 {
	// Write regular cross-reference table
	writeXRefTable(t_normal, 0, this->m->next_objid - 1,
 this->m->next_objid);
 }
 else
 {
	// Write cross-reference stream.
	int xref_id = this->m->next_objid++;
	writeXRefStream(xref_id, xref_id, xref_offset, t_normal,
			0, this->m->next_objid - 1, this->m->next_objid);
 }
 writeString("startxref\n");
 writeString(QUtil::int_to_string(xref_offset));
 writeString("\n%%EOF\n");

 if (this->m->deterministic_id)
 {
	QTC::TC("qpdf", "QPDFWriter standard deterministic ID",
 this->m->object_stream_to_objects.empty() ? 0 : 1);
 popPipelineStack();
 assert(this->m->md5_pipeline == 0);
 }
}

qpdf-7.1.0/libqpdf/Pl_Flate.cc

#include <qpdf/Pl_Flate.hh>
#include <zlib.h>

#include <qpdf/QUtil.hh>

Pl_Flate::Pl_Flate(char const* identifier, Pipeline* next,
		 action_e action, int out_bufsize) :
 Pipeline(identifier, next),
 out_bufsize(out_bufsize),
 action(action),
 initialized(false)
{
 this->outbuf = new unsigned char[out_bufsize];
 // Indirect through zdata to reach the z_stream so we don't have
 // to include zlib.h in Pl_Flate.hh. This means people using
 // shared library versions of qpdf don't have to have zlib
 // development files available, which particularly helps in a
 // Windows environment.
 this->zdata = new z_stream;

 z_stream& zstream = *(static_cast<z_stream*>(this->zdata));
 zstream.zalloc = 0;
 zstream.zfree = 0;
 zstream.opaque = 0;
 zstream.next_in = 0;
 zstream.avail_in = 0;
 zstream.next_out = this->outbuf;
 zstream.avail_out = out_bufsize;
}

Pl_Flate::~Pl_Flate()
{
 if (this->outbuf)
 {
	delete [] this->outbuf;
	this->outbuf = 0;
 }

 if (this->initialized)
 {
 z_stream& zstream = *(static_cast<z_stream*>(this->zdata));
 if (action == a_deflate)
 {
 deflateEnd(&zstream);
 }
 else
 {
 inflateEnd(&zstream);
 }
 }

 delete static_cast<z_stream*>(this->zdata);
 this->zdata = 0;
}

void
Pl_Flate::write(unsigned char* data, size_t len)
{
 if (this->outbuf == 0)
 {
	throw std::logic_error(
	 this->identifier +
	 ": Pl_Flate: write() called after finish() called");
 }

 // Write in chunks in case len is too big to fit in an int.
 // Assume int is at least 32 bits.
 static size_t const max_bytes = 1 << 30;
 size_t bytes_left = len;
 unsigned char* buf = data;
 while (bytes_left > 0)
 {
	size_t bytes = (bytes_left >= max_bytes ? max_bytes : bytes_left);
 handleData(buf, bytes, Z_NO_FLUSH);
	bytes_left -= bytes;
 buf += bytes;
 }
}

void
Pl_Flate::handleData(unsigned char* data, int len, int flush)
{
 z_stream& zstream = *(static_cast<z_stream*>(this->zdata));
 zstream.next_in = data;
 zstream.avail_in = len;

 if (! this->initialized)
 {
	int err = Z_OK;

 // deflateInit and inflateInit are macros that use old-style
 // casts.
#if ((defined(__GNUC__) && ((__GNUC__ * 100) + __GNUC_MINOR__) >= 406) || \
 defined(__clang__))
pragma GCC diagnostic push
pragma GCC diagnostic ignored "-Wold-style-cast"
#endif
	if (this->action == a_deflate)
	{
	 err = deflateInit(&zstream, Z_DEFAULT_COMPRESSION);
	}
	else
	{
	 err = inflateInit(&zstream);
	}
#if ((defined(__GNUC__) && ((__GNUC__ * 100) + __GNUC_MINOR__) >= 406) || \
 defined(__clang__))
pragma GCC diagnostic pop
#endif

	checkError("Init", err);
	this->initialized = true;
 }

 int err = Z_OK;

 bool done = false;
 while (! done)
 {
	if (action == a_deflate)
	{
	 err = deflate(&zstream, flush);
	}
	else
	{
	 err = inflate(&zstream, flush);
	}
	switch (err)
	{
	 case Z_BUF_ERROR:
	 // Probably shouldn't be able to happen, but possible as a
	 // boundary condition: if the last call to inflate exactly
	 // filled the output buffer, it's possible that the next
	 // call to inflate could have nothing to do.
	 done = true;
	 break;

	 case Z_STREAM_END:
	 done = true;
	 // fall through

	 case Z_OK:
	 {
		if ((zstream.avail_in == 0) &&
		 (zstream.avail_out > 0))
		{
		 // There is nothing left to read, and there was
		 // sufficient buffer space to write everything we
		 // needed, so we're done for now.
		 done = true;
		}
		uLong ready = (this->out_bufsize - zstream.avail_out);
		if (ready > 0)
		{
		 this->getNext()->write(this->outbuf, ready);
		 zstream.next_out = this->outbuf;
		 zstream.avail_out = this->out_bufsize;
		}
	 }
	 break;

	 default:
	 this->checkError("data", err);
	 break;
	}
 }
}

void
Pl_Flate::finish()
{
 try
 {
 if (this->outbuf)
 {
 if (this->initialized)
 {
 z_stream& zstream = *(static_cast<z_stream*>(this->zdata));
 unsigned char buf[1];
 buf[0] = '\0';
 handleData(buf, 0, Z_FINISH);
 int err = Z_OK;
 if (action == a_deflate)
 {
 err = deflateEnd(&zstream);
 }
 else
 {
 err = inflateEnd(&zstream);
 }
 this->initialized = false;
 checkError("End", err);
 }

 delete [] this->outbuf;
 this->outbuf = 0;
 }
 }
 catch (std::exception& e)
 {
 this->getNext()->finish();
 throw e;
 }
 this->getNext()->finish();
}

void
Pl_Flate::checkError(char const* prefix, int error_code)
{
 z_stream& zstream = *(static_cast<z_stream*>(this->zdata));
 if (error_code != Z_OK)
 {
	char const* action_str = (action == a_deflate ? "deflate" : "inflate");
	std::string msg =
	 this->identifier + ": " + action_str + ": " + prefix + ": ";

	if (zstream.msg)
	{
	 msg += zstream.msg;
	}
	else
	{
	 switch (error_code)
	 {
	 case Z_ERRNO:
		msg += "zlib system error";
		break;

	 case Z_STREAM_ERROR:
		msg += "zlib stream error";
		break;

	 case Z_DATA_ERROR:
		msg += "zlib data error";
		break;

	 case Z_MEM_ERROR:
		msg += "zlib memory error";
		break;

	 case Z_BUF_ERROR:
		msg += "zlib buffer error";
		break;

	 case Z_VERSION_ERROR:
		msg += "zlib version error";
		break;

	 default:
		msg += std::string("zlib unknown error (") +
		 QUtil::int_to_string(error_code) + ")";
		break;
	 }
	}

	throw std::runtime_error(msg);
 }
}

qpdf-7.1.0/libqpdf/QPDF_Real.cc

#include <qpdf/QPDF_Real.hh>

#include <qpdf/QUtil.hh>

QPDF_Real::QPDF_Real(std::string const& val) :
 val(val)
{
}

QPDF_Real::QPDF_Real(double value, int decimal_places) :
 val(QUtil::double_to_string(value, decimal_places))
{
}

QPDF_Real::~QPDF_Real()
{
}

std::string
QPDF_Real::unparse()
{
 return this->val;
}

QPDFObject::object_type_e
QPDF_Real::getTypeCode() const
{
 return QPDFObject::ot_real;
}

char const*
QPDF_Real::getTypeName() const
{
 return "real";
}

std::string
QPDF_Real::getVal()
{
 return this->val;
}

qpdf-7.1.0/libqpdf/BitWriter.cc

#include <qpdf/BitWriter.hh>

// See comments in bits.cc
#define BITS_WRITE 1
#include "bits.icc"

BitWriter::BitWriter(Pipeline* pl) :
 pl(pl),
 ch(0),
 bit_offset(7)
{
}

void
BitWriter::writeBits(unsigned long long val, unsigned int bits)
{
 write_bits(this->ch, this->bit_offset, val, bits, this->pl);
}

void
BitWriter::writeBitsSigned(long long val, unsigned int bits)
{
 unsigned long long uval = 0;
 if (val < 0)
 {
 uval = static_cast<unsigned long long>((1 << bits) + val);
 }
 else
 {
 uval = static_cast<unsigned long long>(val);
 }
 writeBits(uval, bits);
}

void
BitWriter::flush()
{
 if (bit_offset < 7)
 {
	int bits_to_write = bit_offset + 1;
	write_bits(this->ch, this->bit_offset, 0, bits_to_write, this->pl);
 }
}

qpdf-7.1.0/libqpdf/FileInputSource.cc

#include <qpdf/FileInputSource.hh>
#include <string.h>
#include <qpdf/QUtil.hh>
#include <qpdf/QPDFExc.hh>
#include <algorithm>

FileInputSource::FileInputSource() :
 close_file(false),
 file(0)
{
}

void
FileInputSource::setFilename(char const* filename)
{
 destroy();
 this->filename = filename;
 this->close_file = true;
 this->file = QUtil::safe_fopen(this->filename.c_str(), "rb");
}

void
FileInputSource::setFile(
 char const* description, FILE* filep, bool close_file)
{
 destroy();
 this->filename = description;
 this->close_file = close_file;
 this->file = filep;
 this->seek(0, SEEK_SET);
}

FileInputSource::~FileInputSource()
{
 destroy();
}

void
FileInputSource::destroy()
{
 if (this->file && this->close_file)
 {
	fclose(this->file);
	this->file = 0;
 }
}

qpdf_offset_t
FileInputSource::findAndSkipNextEOL()
{
 qpdf_offset_t result = 0;
 bool done = false;
 char buf[10240];
 while (! done)
 {
 qpdf_offset_t cur_offset = QUtil::tell(this->file);
 size_t len = this->read(buf, sizeof(buf));
 if (len == 0)
 {
 done = true;
 result = this->tell();
 }
 else
 {
 char* p1 = static_cast<char*>(memchr(buf, '\r', len));
 char* p2 = static_cast<char*>(memchr(buf, '\n', len));
 char* p = (p1 && p2) ? std::min(p1, p2) : p1 ? p1 : p2;
 if (p)
 {
 result = cur_offset + (p - buf);
 // We found \r or \n. Keep reading until we get past
 // \r and \n characters.
 this->seek(result + 1, SEEK_SET);
 char ch;
 while (! done)
 {
 if (this->read(&ch, 1) == 0)
 {
 done = true;
 }
 else if (! ((ch == '\r') || (ch == '\n')))
 {
 this->unreadCh(ch);
 done = true;
 }
 }
 }
 }
 }
 return result;
}

std::string const&
FileInputSource::getName() const
{
 return this->filename;
}

qpdf_offset_t
FileInputSource::tell()
{
 return QUtil::tell(this->file);
}

void
FileInputSource::seek(qpdf_offset_t offset, int whence)
{
 QUtil::os_wrapper(std::string("seek to ") + this->filename + ", offset " +
		 QUtil::int_to_string(offset) + " (" +
		 QUtil::int_to_string(whence) + ")",
		 QUtil::seek(this->file, offset, whence));
}

void
FileInputSource::rewind()
{
 ::rewind(this->file);
}

size_t
FileInputSource::read(char* buffer, size_t length)
{
 this->last_offset = QUtil::tell(this->file);
 size_t len = fread(buffer, 1, length, this->file);
 if ((len == 0) && ferror(this->file))
 {
	throw QPDFExc(qpdf_e_system,
		 this->filename, "",
		 this->last_offset,
		 std::string("read ") +
		 QUtil::int_to_string(length) + " bytes");
 }
 return len;
}

void
FileInputSource::unreadCh(char ch)
{
 QUtil::os_wrapper(this->filename + ": unread character",
		 ungetc(static_cast<unsigned char>(ch), this->file));
}

qpdf-7.1.0/libqpdf/QPDF_String.cc

#include <qpdf/QPDF_String.hh>

#include <qpdf/QUtil.hh>
#include <qpdf/QTC.hh>

// DO NOT USE ctype -- it is locale dependent for some things, and
// it's not worth the risk of including it in case it may accidentally
// be used.
#include <string.h>

// See above about ctype.
static bool is_ascii_printable(unsigned char ch)
{
 return ((ch >= 32) && (ch <= 126));
}
static bool is_iso_latin1_printable(unsigned char ch)
{
 return (((ch >= 32) && (ch <= 126)) || (ch >= 160));
}

QPDF_String::QPDF_String(std::string const& val) :
 val(val)
{
}

QPDF_String::~QPDF_String()
{
}

std::string
QPDF_String::unparse()
{
 return unparse(false);
}

QPDFObject::object_type_e
QPDF_String::getTypeCode() const
{
 return QPDFObject::ot_string;
}

char const*
QPDF_String::getTypeName() const
{
 return "string";
}

std::string
QPDF_String::unparse(bool force_binary)
{
 bool use_hexstring = force_binary;
 if (! use_hexstring)
 {
	unsigned int nonprintable = 0;
	int consecutive_printable = 0;
	for (unsigned int i = 0; i < this->val.length(); ++i)
	{
	 char ch = this->val.at(i);
	 // Note: do not use locale to determine printability. The
	 // PDF specification accepts arbitrary binary data. Some
	 // locales imply multibyte characters. We'll consider
	 // something printable if it is printable in 7-bit ASCII.
	 // We'll code this manually rather than being rude and
	 // setting locale.
	 if ((ch == 0) || (! (is_ascii_printable(ch) ||
				 strchr("\n\r\t\b\f", ch))))
	 {
		++nonprintable;
		consecutive_printable = 0;
	 }
	 else
	 {
		if (++consecutive_printable > 5)
		{
		 // If there are more than 5 consecutive printable
		 // characters, I want to see them as such.
		 nonprintable = 0;
		 break;
		}
	 }
	}

	// Use hex notation if more than 20% of the characters are not
	// printable in plain ASCII.
	if (5 * nonprintable > val.length())
	{
	 use_hexstring = true;
	}
 }
 std::string result;
 if (use_hexstring)
 {
	result += "<" + QUtil::hex_encode(this->val) + ">";
 }
 else
 {
	result += "(";
	for (unsigned int i = 0; i < this->val.length(); ++i)
	{
	 char ch = this->val.at(i);
	 switch (ch)
	 {
	 case '\n':
		result += "\\n";
		break;

	 case '\r':
		result += "\\r";
		break;

	 case '\t':
		result += "\\t";
		break;

	 case '\b':
		result += "\\b";
		break;

	 case '\f':
		result += "\\f";
		break;

	 case '(':
		result += "\\(";
		break;

	 case ')':
		result += "\\)";
		break;

	 case '\\':
		result += "\\\\";
		break;

	 default:
		if (is_iso_latin1_printable(ch))
		{
		 result += this->val.at(i);
		}
		else
		{
		 result += "\\" + QUtil::int_to_string_base(
 static_cast<int>(static_cast<unsigned char>(ch)),
 8, 3);
		}
		break;
	 }
	}
	result += ")";
 }

 return result;
}

std::string
QPDF_String::getVal() const
{
 return this->val;
}

std::string
QPDF_String::getUTF8Val() const
{
 std::string result;
 size_t len = this->val.length();
 if ((len >= 2) && (len % 2 == 0) &&
	(this->val.at(0) == '\xfe') && (this->val.at(1) == '\xff'))
 {
	// This is a Unicode string using big-endian UTF-16. This
	// code uses unsigned long and unsigned short to hold
	// codepoint values. It requires unsigned long to be at least
	// 32 bits and unsigned short to be at least 16 bits, but it
	// will work fine if they are larger.
	unsigned long codepoint = 0L;
	for (unsigned int i = 2; i < len; i += 2)
	{
	 // Convert from UTF16-BE. If we get a malformed
	 // codepoint, this code will generate incorrect output
	 // without giving a warning. Specifically, a high
	 // codepoint not followed by a low codepoint will be
	 // discarded, and a low codepoint not preceded by a high
	 // codepoint will just get its low 10 bits output.
	 unsigned short bits =
		(static_cast<unsigned char>(this->val.at(i)) << 8) +
		static_cast<unsigned char>(this->val.at(i+1));
	 if ((bits & 0xFC00) == 0xD800)
	 {
		codepoint = 0x10000 + ((bits & 0x3FF) << 10);
		continue;
	 }
	 else if ((bits & 0xFC00) == 0xDC00)
	 {
		if (codepoint != 0)
		{
		 QTC::TC("qpdf", "QPDF_String non-trivial UTF-16");
		}
		codepoint += bits & 0x3FF;
	 }
	 else
	 {
		codepoint = bits;
	 }

	 result += QUtil::toUTF8(codepoint);
	 codepoint = 0;
	}
 }
 else
 {
	for (unsigned int i = 0; i < len; ++i)
	{
	 result += QUtil::toUTF8(static_cast<unsigned char>(this->val.at(i)));
	}
 }
 return result;
}

qpdf-7.1.0/libqpdf/QPDF_pages.cc

#include <qpdf/QPDF.hh>

#include <assert.h>

#include <qpdf/QTC.hh>
#include <qpdf/QUtil.hh>
#include <qpdf/QPDFExc.hh>

// In support of page manipulation APIs, these methods internally
// maintain state about pages in a pair of data structures: all_pages,
// which is a vector of page objects, and pageobj_to_pages_pos, which
// maps a page object to its position in the all_pages array.
// Unfortunately, the getAllPages() method returns a const reference
// to all_pages and has been in the public API long before the
// introduction of mutation APIs, so we're pretty much stuck with it.
// Anyway, there are lots of calls to it in the library, so the
// efficiency of having it cached is probably worth keeping it.

// The goal of this code is to ensure that the all_pages vector, which
// users may have a reference to, and the pageobj_to_pages_pos map,
// which users will not have access to, remain consistent outside of
// any call to the library. As long as users only touch the /Pages
// structure through page-specific API calls, they never have to worry
// about anything, and this will also stay consistent. If a user
// touches anything about the /Pages structure outside of these calls
// (such as by directly looking up and manipulating the underlying
// objects), they can call updatePagesCache() to bring things back in
// sync.

// If the user doesn't ever use the page manipulation APIs, then qpdf
// leaves the /Pages structure alone. If the user does use the APIs,
// then we push all inheritable objects down and flatten the /Pages
// tree. This makes it easier for us to keep /Pages, all_pages, and
// pageobj_to_pages_pos internally consistent at all times.

// Responsibility for keeping all_pages, pageobj_to_pages_pos, and the
// Pages structure consistent should remain in as few places as
// possible. As of initial writing, only flattenPagesTree,
// insertPage, and removePage, along with methods they call, are
// concerned with it. Everything else goes through one of those
// methods.

std::vector<QPDFObjectHandle> const&
QPDF::getAllPages()
{
 // Note that pushInheritedAttributesToPage may also be used to
 // initialize this->m->all_pages.
 if (this->m->all_pages.empty())
 {
	getAllPagesInternal(getRoot().getKey("/Pages"), this->m->all_pages);
 }
 return this->m->all_pages;
}

void
QPDF::getAllPagesInternal(QPDFObjectHandle cur_pages,
			 std::vector<QPDFObjectHandle>& result)
{
 std::set<QPDFObjGen> visited;
 getAllPagesInternal2(cur_pages, result, visited);
}

void
QPDF::getAllPagesInternal2(QPDFObjectHandle cur_pages,
			 std::vector<QPDFObjectHandle>& result,
 std::set<QPDFObjGen>& visited)
{
 QPDFObjGen this_og = cur_pages.getObjGen();
 if (visited.count(this_og) > 0)
 {
 throw QPDFExc(
 qpdf_e_pages, this->m->file->getName(),
 this->m->last_object_description, 0,
 "Loop detected in /Pages structure (getAllPages)");
 }
 visited.insert(this_og);
 std::string type;
 QPDFObjectHandle type_key = cur_pages.getKey("/Type");
 if (type_key.isName())
 {
 type = type_key.getName();
 }
 else if (cur_pages.hasKey("/Kids"))
 {
 type = "/Pages";
 }
 else
 {
 type = "/Page";
 }
 if (type == "/Pages")
 {
	QPDFObjectHandle kids = cur_pages.getKey("/Kids");
	int n = kids.getArrayNItems();
	for (int i = 0; i < n; ++i)
	{
	 getAllPagesInternal2(kids.getArrayItem(i), result, visited);
	}
 }
 else if (type == "/Page")
 {
	result.push_back(cur_pages);
 }
 else
 {
	throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),
		 this->m->last_object_description,
		 this->m->file->getLastOffset(),
		 "invalid Type " + type + " in page tree");
 }
 visited.erase(this_og);
}

void
QPDF::updateAllPagesCache()
{
 // Force regeneration of the pages cache. We force immediate
 // recalculation of all_pages since users may have references to
 // it that they got from calls to getAllPages(). We can defer
 // recalculation of pageobj_to_pages_pos until needed.
 QTC::TC("qpdf", "QPDF updateAllPagesCache");
 this->m->all_pages.clear();
 this->m->pageobj_to_pages_pos.clear();
 this->m->pushed_inherited_attributes_to_pages = false;
 getAllPages();
}

void
QPDF::flattenPagesTree()
{
 // If not already done, flatten the /Pages structure and
 // initialize pageobj_to_pages_pos.

 if (! this->m->pageobj_to_pages_pos.empty())
 {
 return;
 }

 // Push inherited objects down to the /Page level. As a side
 // effect this->m->all_pages will also be generated.
 pushInheritedAttributesToPage(true, true);

 QPDFObjectHandle pages = getRoot().getKey("/Pages");

 int const len = this->m->all_pages.size();
 for (int pos = 0; pos < len; ++pos)
 {
 // populate pageobj_to_pages_pos and fix parent pointer
 insertPageobjToPage(this->m->all_pages.at(pos), pos, true);
 this->m->all_pages.at(pos).replaceKey("/Parent", pages);
 }

 pages.replaceKey("/Kids", QPDFObjectHandle::newArray(this->m->all_pages));
 // /Count has not changed
 if (pages.getKey("/Count").getIntValue() != len)
 {
 throw std::logic_error("/Count is wrong after flattening pages tree");
 }
}

void
QPDF::insertPageobjToPage(QPDFObjectHandle const& obj, int pos,
 bool check_duplicate)
{
 QPDFObjGen og(obj.getObjGen());
 if (check_duplicate)
 {
 if (! this->m->pageobj_to_pages_pos.insert(
 std::make_pair(og, pos)).second)
 {
 QTC::TC("qpdf", "QPDF duplicate page reference");
 setLastObjectDescription("page " + QUtil::int_to_string(pos) +
 " (numbered from zero)",
 og.getObj(), og.getGen());
 throw QPDFExc(qpdf_e_pages, this->m->file->getName(),
 this->m->last_object_description, 0,
 "duplicate page reference found;"
 " this would cause loss of data");
 }
 }
 else
 {
 this->m->pageobj_to_pages_pos[og] = pos;
 }
}

void
QPDF::insertPage(QPDFObjectHandle newpage, int pos)
{
 // pos is numbered from 0, so pos = 0 inserts at the beginning and
 // pos = npages adds to the end.

 flattenPagesTree();
 newpage.assertPageObject();

 if (! newpage.isIndirect())
 {
 QTC::TC("qpdf", "QPDF insert non-indirect page");
 newpage = makeIndirectObject(newpage);
 }
 else if (newpage.getOwningQPDF() != this)
 {
 QTC::TC("qpdf", "QPDF insert foreign page");
 newpage.getOwningQPDF()->pushInheritedAttributesToPage();
 newpage = copyForeignObject(newpage, true);
 }
 else
 {
 QTC::TC("qpdf", "QPDF insert indirect page");
 }

 QTC::TC("qpdf", "QPDF insert page",
 (pos == 0) ? 0 : // insert at beginning
 (pos == static_cast<int>(this->m->all_pages.size())) ? 1 : // at end
 2); // insert in middle

 QPDFObjectHandle pages = getRoot().getKey("/Pages");
 QPDFObjectHandle kids = pages.getKey("/Kids");
 assert ((pos >= 0) &&
 (static_cast<size_t>(pos) <= this->m->all_pages.size()));

 newpage.replaceKey("/Parent", pages);
 kids.insertItem(pos, newpage);
 int npages = kids.getArrayNItems();
 pages.replaceKey("/Count", QPDFObjectHandle::newInteger(npages));
 this->m->all_pages.insert(this->m->all_pages.begin() + pos, newpage);
 assert(this->m->all_pages.size() == static_cast<size_t>(npages));
 for (int i = pos + 1; i < npages; ++i)
 {
 insertPageobjToPage(this->m->all_pages.at(i), i, false);
 }
 insertPageobjToPage(newpage, pos, true);
 assert(this->m->pageobj_to_pages_pos.size() == static_cast<size_t>(npages));
}

void
QPDF::removePage(QPDFObjectHandle page)
{
 int pos = findPage(page); // also ensures flat /Pages
 QTC::TC("qpdf", "QPDF remove page",
 (pos == 0) ? 0 : // remove at beginning
 (pos == static_cast<int>(
 this->m->all_pages.size() - 1)) ? 1 : // end
 2); // remove in middle

 QPDFObjectHandle pages = getRoot().getKey("/Pages");
 QPDFObjectHandle kids = pages.getKey("/Kids");

 kids.eraseItem(pos);
 int npages = kids.getArrayNItems();
 pages.replaceKey("/Count", QPDFObjectHandle::newInteger(npages));
 this->m->all_pages.erase(this->m->all_pages.begin() + pos);
 assert(this->m->all_pages.size() == static_cast<size_t>(npages));
 this->m->pageobj_to_pages_pos.erase(page.getObjGen());
 assert(this->m->pageobj_to_pages_pos.size() == static_cast<size_t>(npages));
 for (int i = pos; i < npages; ++i)
 {
 insertPageobjToPage(this->m->all_pages.at(i), i, false);
 }
}

void
QPDF::addPageAt(QPDFObjectHandle newpage, bool before,
 QPDFObjectHandle refpage)
{
 int refpos = findPage(refpage);
 if (! before)
 {
 ++refpos;
 }
 insertPage(newpage, refpos);
}

void
QPDF::addPage(QPDFObjectHandle newpage, bool first)
{
 if (first)
 {
 insertPage(newpage, 0);
 }
 else
 {
 insertPage(newpage,
 getRoot().getKey("/Pages").getKey("/Count").getIntValue());
 }
}

int
QPDF::findPage(QPDFObjectHandle& page)
{
 page.assertPageObject();
 return findPage(page.getObjGen());
}

int
QPDF::findPage(QPDFObjGen const& og)
{
 flattenPagesTree();
 std::map<QPDFObjGen, int>::iterator it =
 this->m->pageobj_to_pages_pos.find(og);
 if (it == this->m->pageobj_to_pages_pos.end())
 {
 setLastObjectDescription("page object", og.getObj(), og.getGen());
 throw QPDFExc(qpdf_e_pages, this->m->file->getName(),
 this->m->last_object_description, 0,
 "page object not referenced in /Pages tree");
 }
 return (*it).second;
}

qpdf-7.1.0/libqpdf/qpdf/qpdf-config.h.in

/* libqpdf/qpdf/qpdf-config.h.in. Generated from configure.ac by autoheader. */

/* Define to 1 if you have the <dlfcn.h> header file. */
#undef HAVE_DLFCN_H

/* Define to 1 if fseeko (and presumably ftello) exists and is declared. */
#undef HAVE_FSEEKO

/* Define to 1 if you have the `fseeko64' function. */
#undef HAVE_FSEEKO64

/* Define to 1 if you have the <inttypes.h> header file. */
#undef HAVE_INTTYPES_H

/* Define to 1 if you have the <memory.h> header file. */
#undef HAVE_MEMORY_H

/* Define to 1 if you have the `random' function. */
#undef HAVE_RANDOM

/* Define to 1 (and set RANDOM_DEVICE) if a random device is available */
#undef HAVE_RANDOM_DEVICE

/* Define to 1 if you have the <stdint.h> header file. */
#undef HAVE_STDINT_H

/* Define to 1 if you have the <stdlib.h> header file. */
#undef HAVE_STDLIB_H

/* Define to 1 if you have the <strings.h> header file. */
#undef HAVE_STRINGS_H

/* Define to 1 if you have the <string.h> header file. */
#undef HAVE_STRING_H

/* Define to 1 if you have the <sys/stat.h> header file. */
#undef HAVE_SYS_STAT_H

/* Define to 1 if you have the <sys/types.h> header file. */
#undef HAVE_SYS_TYPES_H

/* Define to 1 if you have the <unistd.h> header file. */
#undef HAVE_UNISTD_H

/* Define to the sub-directory where libtool stores uninstalled libraries. */
#undef LT_OBJDIR

/* Define to the address where bug reports for this package should be sent. */
#undef PACKAGE_BUGREPORT

/* Define to the full name of this package. */
#undef PACKAGE_NAME

/* Define to the full name and version of this package. */
#undef PACKAGE_STRING

/* Define to the one symbol short name of this package. */
#undef PACKAGE_TARNAME

/* Define to the home page for this package. */
#undef PACKAGE_URL

/* Define to the version of this package. */
#undef PACKAGE_VERSION

/* Define to the filename of the random device (and set HAVE_RANDOM_DEVICE) */
#undef RANDOM_DEVICE

/* Whether to suppres use of OS-provided secure random numbers */
#undef SKIP_OS_SECURE_RANDOM

/* Define to 1 if you have the ANSI C header files. */
#undef STDC_HEADERS

/* Whether to use insecure random numbers */
#undef USE_INSECURE_RANDOM

/* Enable large inode numbers on Mac OS X 10.5. */
#ifndef _DARWIN_USE_64_BIT_INODE
define _DARWIN_USE_64_BIT_INODE 1
#endif

/* Number of bits in a file offset, on hosts where this is settable. */
#undef _FILE_OFFSET_BITS

/* Define to 1 to make fseeko visible on some hosts (e.g. glibc 2.2). */
#undef _LARGEFILE_SOURCE

/* Define for large files, on AIX-style hosts. */
#undef _LARGE_FILES

/* Define for Solaris 2.5.1 so the uint32_t typedef from <sys/synch.h>,
 <pthread.h>, or <semaphore.h> is not used. If the typedef were allowed, the
 #define below would cause a syntax error. */
#undef _UINT32_T

/* Define to the type of an unsigned integer type of width exactly 16 bits if
 such a type exists and the standard includes do not define it. */
#undef uint16_t

/* Define to the type of an unsigned integer type of width exactly 32 bits if
 such a type exists and the standard includes do not define it. */
#undef uint32_t

qpdf-7.1.0/libqpdf/qpdf/QPDF_Stream.hh

#ifndef __QPDF_STREAM_HH__
#define __QPDF_STREAM_HH__

#include <qpdf/Types.h>

#include <qpdf/QPDFObject.hh>
#include <qpdf/QPDFObjectHandle.hh>

class Pipeline;
class QPDF;

class QPDF_Stream: public QPDFObject
{
 public:
 QPDF_Stream(QPDF*, int objid, int generation,
		QPDFObjectHandle stream_dict,
		qpdf_offset_t offset, size_t length);
 virtual ~QPDF_Stream();
 virtual std::string unparse();
 virtual QPDFObject::object_type_e getTypeCode() const;
 virtual char const* getTypeName() const;
 QPDFObjectHandle getDict() const;

 // See comments in QPDFObjectHandle.hh for these methods.
 bool pipeStreamData(Pipeline*,
 unsigned long encode_flags,
 qpdf_stream_decode_level_e decode_level,
 bool suppress_warnings, bool will_retry);
 PointerHolder<Buffer> getStreamData(qpdf_stream_decode_level_e);
 PointerHolder<Buffer> getRawStreamData();
 void replaceStreamData(PointerHolder<Buffer> data,
			 QPDFObjectHandle const& filter,
			 QPDFObjectHandle const& decode_parms);
 void replaceStreamData(
	PointerHolder<QPDFObjectHandle::StreamDataProvider> provider,
	QPDFObjectHandle const& filter,
	QPDFObjectHandle const& decode_parms);

 void replaceDict(QPDFObjectHandle new_dict);

 // Replace object ID and generation. This may only be called if
 // object ID and generation are 0. It is used by QPDFObjectHandle
 // when adding streams to files.
 void setObjGen(int objid, int generation);

 protected:
 virtual void releaseResolved();

 private:
 static std::map<std::string, std::string> filter_abbreviations;

 void replaceFilterData(QPDFObjectHandle const& filter,
			 QPDFObjectHandle const& decode_parms,
			 size_t length);
 bool understandDecodeParams(
 std::string const& filter, QPDFObjectHandle decode_params,
 int& predictor, int& columns,
 int& colors, int& bits_per_component,
 bool& early_code_change);
 bool filterable(std::vector<std::string>& filters,
 bool& specialized_compression, bool& lossy_compression,
		 int& predictor, int& columns,
 int& colors, int& bits_per_component,
 bool& early_code_change);
 void warn(QPDFExc const& e);

 QPDF* qpdf;
 int objid;
 int generation;
 QPDFObjectHandle stream_dict;
 qpdf_offset_t offset;
 size_t length;
 PointerHolder<Buffer> stream_data;
 PointerHolder<QPDFObjectHandle::StreamDataProvider> stream_provider;
};

#endif // __QPDF_STREAM_HH__

qpdf-7.1.0/libqpdf/qpdf/Pl_ASCII85Decoder.hh

#ifndef __PL_ASCII85DECODER_HH__
#define __PL_ASCII85DECODER_HH__

#include <qpdf/Pipeline.hh>

class Pl_ASCII85Decoder: public Pipeline
{
 public:
 QPDF_DLL
 Pl_ASCII85Decoder(char const* identifier, Pipeline* next);
 QPDF_DLL
 virtual ~Pl_ASCII85Decoder();
 QPDF_DLL
 virtual void write(unsigned char* buf, size_t len);
 QPDF_DLL
 virtual void finish();

 private:
 void flush();

 char inbuf[5];
 size_t pos;
 size_t eod;
};

#endif // __PL_ASCII85DECODER_HH__

qpdf-7.1.0/libqpdf/qpdf/Pl_SHA2.hh

#ifndef __PL_SHA2_HH__
#define __PL_SHA2_HH__

// Bits must be a supported number of bits, currently only 256, 384,
// or 512. Passing 0 as bits leaves the pipeline uncommitted, in
// which case resetBits must be called before the pipeline is used.
// If a next is provided, this pipeline sends its output to its
// successor unmodified. After calling finish, the SHA2 checksum of
// the data that passed through the pipeline is available.

// This pipeline is reusable; i.e., it is safe to call write() after
// calling finish(). The first call to write() after a call to
// finish() initializes a new SHA2 object. resetBits may also be
// called between finish and the next call to write.

#include <qpdf/Pipeline.hh>
#include <sph/sph_sha2.h>

class Pl_SHA2: public Pipeline
{
 public:
 QPDF_DLL
 Pl_SHA2(int bits = 0, Pipeline* next = 0);
 QPDF_DLL
 virtual ~Pl_SHA2();
 QPDF_DLL
 virtual void write(unsigned char*, size_t);
 QPDF_DLL
 virtual void finish();
 QPDF_DLL
 void resetBits(int bits);
 QPDF_DLL
 std::string getHexDigest();
 QPDF_DLL
 std::string getRawDigest();

 private:
 void badBits();

 bool in_progress;
 int bits;
 sph_sha256_context ctx256;
 sph_sha384_context ctx384;
 sph_sha512_context ctx512;
 unsigned char sha256sum[32];
 unsigned char sha384sum[48];
 unsigned char sha512sum[64];
};

#endif // __PL_SHA2_HH__

qpdf-7.1.0/libqpdf/qpdf/Pl_MD5.hh

#ifndef __PL_MD5_HH__
#define __PL_MD5_HH__

// This pipeline sends its output to its successor unmodified. After
// calling finish, the MD5 checksum of the data that passed through
// the pipeline is available.

// This pipeline is reusable; i.e., it is safe to call write() after
// calling finish(). The first call to write() after a call to
// finish() initializes a new MD5 object.

#include <qpdf/Pipeline.hh>
#include <qpdf/MD5.hh>

class Pl_MD5: public Pipeline
{
 public:
 QPDF_DLL
 Pl_MD5(char const* identifier, Pipeline* next);
 QPDF_DLL
 virtual ~Pl_MD5();
 QPDF_DLL
 virtual void write(unsigned char*, size_t);
 QPDF_DLL
 virtual void finish();
 QPDF_DLL
 std::string getHexDigest();
 // Enable/disable. Disabling the pipeline causes it to become a
 // pass-through. This makes it possible to stick an MD5 pipeline
 // in a pipeline when it may or may not be required. Disabling it
 // avoids incurring the runtime overhead of doing needless
 // digest computation.
 QPDF_DLL
 void enable(bool enabled);
 // If persistAcrossFinish is called, calls to finish do not
 // finalize the underlying md5 object. In this case, the object is
 // not finalized until getHexDigest() is called.
 QPDF_DLL
 void persistAcrossFinish(bool);

 private:
 bool in_progress;
 MD5 md5;
 bool enabled;
 bool persist_across_finish;
};

#endif // __PL_MD5_HH__

qpdf-7.1.0/libqpdf/qpdf/Pl_TIFFPredictor.hh

#ifndef __PL_TIFFPREDICTOR_HH__
#define __PL_TIFFPREDICTOR_HH__

// This pipeline reverses the application of a TIFF predictor as
// described in the TIFF specification.

#include <qpdf/Pipeline.hh>

class Pl_TIFFPredictor: public Pipeline
{
 public:
 enum action_e { a_encode, a_decode };

 QPDF_DLL
 Pl_TIFFPredictor(char const* identifier, Pipeline* next,
 action_e action, unsigned int columns,
 unsigned int samples_per_pixel = 1,
 unsigned int bits_per_sample = 8);
 QPDF_DLL
 virtual ~Pl_TIFFPredictor();

 QPDF_DLL
 virtual void write(unsigned char* data, size_t len);
 QPDF_DLL
 virtual void finish();

 private:
 void processRow();

 action_e action;
 unsigned int columns;
 unsigned int bytes_per_row;
 unsigned int samples_per_pixel;
 unsigned int bits_per_sample;
 unsigned char* cur_row;
 size_t pos;
};

#endif // __PL_TIFFPREDICTOR_HH__

qpdf-7.1.0/libqpdf/qpdf/QPDF_Null.hh

#ifndef __QPDF_NULL_HH__
#define __QPDF_NULL_HH__

#include <qpdf/QPDFObject.hh>

class QPDF_Null: public QPDFObject
{
 public:
 virtual ~QPDF_Null();
 virtual std::string unparse();
 virtual QPDFObject::object_type_e getTypeCode() const;
 virtual char const* getTypeName() const;
};

#endif // __QPDF_NULL_HH__

qpdf-7.1.0/libqpdf/qpdf/Pl_LZWDecoder.hh

#ifndef __PL_LZWDECODER_HH__
#define __PL_LZWDECODER_HH__

#include <qpdf/Pipeline.hh>

#include <qpdf/Buffer.hh>
#include <vector>

class Pl_LZWDecoder: public Pipeline
{
 public:
 QPDF_DLL
 Pl_LZWDecoder(char const* identifier, Pipeline* next,
		 bool early_code_change);
 QPDF_DLL
 virtual ~Pl_LZWDecoder();
 QPDF_DLL
 virtual void write(unsigned char* buf, size_t len);
 QPDF_DLL
 virtual void finish();

 private:
 void sendNextCode();
 void handleCode(int code);
 unsigned char getFirstChar(int code);
 void addToTable(unsigned char next);

 // members used for converting bits to codes
 unsigned char buf[3];
 int code_size;
 int next;
 int byte_pos;
 int bit_pos;		// left to right: 01234567
 int bits_available;

 // members used for handle LZW decompression
 bool code_change_delta;
 bool eod;
 std::vector<Buffer> table;
 int last_code;
};

#endif // __PL_LZWDECODER_HH__

qpdf-7.1.0/libqpdf/qpdf/QPDF_Array.hh

#ifndef __QPDF_ARRAY_HH__
#define __QPDF_ARRAY_HH__

#include <qpdf/QPDFObject.hh>

#include <vector>
#include <qpdf/QPDFObjectHandle.hh>

class QPDF_Array: public QPDFObject
{
 public:
 QPDF_Array(std::vector<QPDFObjectHandle> const& items);
 virtual ~QPDF_Array();
 virtual std::string unparse();
 virtual QPDFObject::object_type_e getTypeCode() const;
 virtual char const* getTypeName() const;

 int getNItems() const;
 QPDFObjectHandle getItem(int n) const;
 std::vector<QPDFObjectHandle> const& getAsVector() const;

 void setItem(int, QPDFObjectHandle const&);
 void setFromVector(std::vector<QPDFObjectHandle> const& items);
 void insertItem(int at, QPDFObjectHandle const& item);
 void appendItem(QPDFObjectHandle const& item);
 void eraseItem(int at);

 protected:
 virtual void releaseResolved();

 private:
 std::vector<QPDFObjectHandle> items;
};

#endif // __QPDF_ARRAY_HH__

qpdf-7.1.0/libqpdf/qpdf/QPDF_InlineImage.hh

#ifndef __QPDF_INLINEIMAGE_HH__
#define __QPDF_INLINEIMAGE_HH__

#include <qpdf/QPDFObject.hh>

class QPDF_InlineImage: public QPDFObject
{
 public:
 QPDF_InlineImage(std::string const& val);
 virtual ~QPDF_InlineImage();
 virtual std::string unparse();
 virtual QPDFObject::object_type_e getTypeCode() const;
 virtual char const* getTypeName() const;
 std::string getVal() const;

 private:
 std::string val;
};

#endif // __QPDF_INLINEIMAGE_HH__

qpdf-7.1.0/libqpdf/qpdf/rijndael.h

#ifndef H__RIJNDAEL
#define H__RIJNDAEL

#include <qpdf/qpdf-config.h>
#ifdef HAVE_INTTYPES_H
include <inttypes.h>
#endif
#ifdef HAVE_STDINT_H
include <stdint.h>
#endif

int rijndaelSetupEncrypt(uint32_t *rk, const unsigned char *key,
 int keybits);
int rijndaelSetupDecrypt(uint32_t *rk, const unsigned char *key,
 int keybits);
void rijndaelEncrypt(const uint32_t *rk, int nrounds,
 const unsigned char plaintext[16], unsigned char ciphertext[16]);
void rijndaelDecrypt(const uint32_t *rk, int nrounds,
 const unsigned char ciphertext[16], unsigned char plaintext[16]);

#define KEYLENGTH(keybits) ((keybits)/8)
#define RKLENGTH(keybits) ((keybits)/8+28)
#define NROUNDS(keybits) ((keybits)/32+6)

#endif

qpdf-7.1.0/libqpdf/qpdf/Pl_ASCIIHexDecoder.hh

#ifndef __PL_ASCIIHEXDECODER_HH__
#define __PL_ASCIIHEXDECODER_HH__

#include <qpdf/Pipeline.hh>

class Pl_ASCIIHexDecoder: public Pipeline
{
 public:
 QPDF_DLL
 Pl_ASCIIHexDecoder(char const* identifier, Pipeline* next);
 QPDF_DLL
 virtual ~Pl_ASCIIHexDecoder();
 QPDF_DLL
 virtual void write(unsigned char* buf, size_t len);
 QPDF_DLL
 virtual void finish();

 private:
 void flush();

 char inbuf[3];
 size_t pos;
 bool eod;
};

#endif // __PL_ASCIIHEXDECODER_HH__

qpdf-7.1.0/libqpdf/qpdf/QPDF_Integer.hh

#ifndef __QPDF_INTEGER_HH__
#define __QPDF_INTEGER_HH__

#include <qpdf/QPDFObject.hh>

class QPDF_Integer: public QPDFObject
{
 public:
 QPDF_Integer(long long val);
 virtual ~QPDF_Integer();
 virtual std::string unparse();
 virtual QPDFObject::object_type_e getTypeCode() const;
 virtual char const* getTypeName() const;
 long long getVal() const;

 private:
 long long val;
};

#endif // __QPDF_INTEGER_HH__

qpdf-7.1.0/libqpdf/qpdf/Pl_QPDFTokenizer.hh

#ifndef __PL_QPDFTOKENIZER_HH__
#define __PL_QPDFTOKENIZER_HH__

#include <qpdf/Pipeline.hh>

#include <qpdf/QPDFTokenizer.hh>

//
// Treat incoming text as a stream consisting of valid PDF tokens, but
// output bad tokens just the same. The idea here is to be able to
// use pipeline for content streams to normalize newlines without
// interfering with meaningful newlines such as those that occur
// inside of strings.
//

class Pl_QPDFTokenizer: public Pipeline
{
 public:
 Pl_QPDFTokenizer(char const* identifier, Pipeline* next);
 virtual ~Pl_QPDFTokenizer();
 virtual void write(unsigned char* buf, size_t len);
 virtual void finish();

 private:
 void processChar(char ch);
 void checkUnread();
 void writeNext(char const*, size_t len);
 void writeToken(QPDFTokenizer::Token&);

 QPDFTokenizer tokenizer;
 bool newline_after_next_token;
 bool just_wrote_nl;
 bool last_char_was_cr;
 bool unread_char;
 char char_to_unread;
 bool in_inline_image;
 static int const IMAGE_BUF_SIZE = 4; // must be >= 4
 char image_buf[IMAGE_BUF_SIZE];
};

#endif // __PL_QPDFTOKENIZER_HH__

qpdf-7.1.0/libqpdf/qpdf/OffsetInputSource.hh

#ifndef __QPDF_OFFSETINPUTSOURCE_HH__
#define __QPDF_OFFSETINPUTSOURCE_HH__

// This class implements an InputSource that proxies for an underlying
// input source but offset a specific number of bytes.

#include <qpdf/InputSource.hh>
#include <qpdf/PointerHolder.hh>

class OffsetInputSource: public InputSource
{
 public:
 OffsetInputSource(PointerHolder<InputSource>, qpdf_offset_t global_offset);
 virtual ~OffsetInputSource();

 virtual qpdf_offset_t findAndSkipNextEOL();
 virtual std::string const& getName() const;
 virtual qpdf_offset_t tell();
 virtual void seek(qpdf_offset_t offset, int whence);
 virtual void rewind();
 virtual size_t read(char* buffer, size_t length);
 virtual void unreadCh(char ch);

 private:
 PointerHolder<InputSource> proxied;
 qpdf_offset_t global_offset;
};

#endif // __QPDF_OFFSETINPUTSOURCE_HH__

qpdf-7.1.0/libqpdf/qpdf/Pl_RC4.hh

#ifndef __PL_RC4_HH__
#define __PL_RC4_HH__

#include <qpdf/Pipeline.hh>

#include <qpdf/RC4.hh>

class Pl_RC4: public Pipeline
{
 public:
 static int const def_bufsize = 65536;

 // key_len of -1 means treat key_data as a null-terminated string
 QPDF_DLL
 Pl_RC4(char const* identifier, Pipeline* next,
	 unsigned char const* key_data, int key_len = -1,
	 size_t out_bufsize = def_bufsize);
 QPDF_DLL
 virtual ~Pl_RC4();

 QPDF_DLL
 virtual void write(unsigned char* data, size_t len);
 QPDF_DLL
 virtual void finish();

 private:
 unsigned char* outbuf;
 size_t out_bufsize;
 RC4 rc4;
};

#endif // __PL_RC4_HH__

qpdf-7.1.0/libqpdf/qpdf/QPDF_Reserved.hh

#ifndef __QPDF_RESERVED_HH__
#define __QPDF_RESERVED_HH__

#include <qpdf/QPDFObject.hh>

class QPDF_Reserved: public QPDFObject
{
 public:
 virtual ~QPDF_Reserved();
 virtual std::string unparse();
 virtual QPDFObject::object_type_e getTypeCode() const;
 virtual char const* getTypeName() const;
};

#endif // __QPDF_RESERVED_HH__

qpdf-7.1.0/libqpdf/qpdf/RC4.hh

#ifndef __RC4_HH__
#define __RC4_HH__

class RC4
{
 public:
 // key_len of -1 means treat key_data as a null-terminated string
 RC4(unsigned char const* key_data, int key_len = -1);

 // out_data = 0 means to encrypt/decrypt in place
 void process(unsigned char* in_data, int len, unsigned char* out_data = 0);

 private:
 class RC4Key
 {
 public:
 unsigned char state[256];
 unsigned char x;
 unsigned char y;
 };

 RC4Key key;
};

#endif // __RC4_HH__

qpdf-7.1.0/libqpdf/qpdf/QPDF_Real.hh

#ifndef __QPDF_REAL_HH__
#define __QPDF_REAL_HH__

#include <qpdf/QPDFObject.hh>

class QPDF_Real: public QPDFObject
{
 public:
 QPDF_Real(std::string const& val);
 QPDF_Real(double value, int decimal_places = 0);
 virtual ~QPDF_Real();
 virtual std::string unparse();
 virtual QPDFObject::object_type_e getTypeCode() const;
 virtual char const* getTypeName() const;
 std::string getVal();

 private:
 // Store reals as strings to avoid roundoff errors.
 std::string val;
};

#endif // __QPDF_REAL_HH__

qpdf-7.1.0/libqpdf/qpdf/Pl_PNGFilter.hh

#ifndef __PL_PNGFILTER_HH__
#define __PL_PNGFILTER_HH__

// This pipeline applies or reverses the application of a PNG filter
// as described in the PNG specification.

// NOTE: In its current implementation, this filter always encodes
// using the "up" filter, but it decodes all the filters.

#include <qpdf/Pipeline.hh>

class Pl_PNGFilter: public Pipeline
{
 public:
 // Encoding is only partially supported
 enum action_e { a_encode, a_decode };

 QPDF_DLL
 Pl_PNGFilter(char const* identifier, Pipeline* next,
		 action_e action, unsigned int columns,
 unsigned int samples_per_pixel = 1,
 unsigned int bits_per_sample = 8);
 QPDF_DLL
 virtual ~Pl_PNGFilter();

 QPDF_DLL
 virtual void write(unsigned char* data, size_t len);
 QPDF_DLL
 virtual void finish();

 private:
 void decodeSub();
 void decodeUp();
 void decodeAverage();
 void decodePaeth();
 void processRow();
 void encodeRow();
 void decodeRow();
 int PaethPredictor(int a, int b, int c);

 action_e action;
 unsigned int bytes_per_row;
 unsigned int bytes_per_pixel;
 unsigned char* cur_row;
 unsigned char* prev_row;
 unsigned char* buf1;
 unsigned char* buf2;
 size_t pos;
 size_t incoming;
};

#endif // __PL_PNGFILTER_HH__

qpdf-7.1.0/libqpdf/qpdf/SecureRandomDataProvider.hh

#ifndef __SECURERANDOMDATAPROVIDER_HH__
#define __SECURERANDOMDATAPROVIDER_HH__

#include <qpdf/RandomDataProvider.hh>
#include <qpdf/DLL.h>

class SecureRandomDataProvider: public RandomDataProvider
{
 public:
 QPDF_DLL
 SecureRandomDataProvider();
 QPDF_DLL
 virtual ~SecureRandomDataProvider();

 QPDF_DLL
 virtual void provideRandomData(unsigned char* data, size_t len);

 QPDF_DLL
 static RandomDataProvider* getInstance();
};

#endif // __SECURERANDOMDATAPROVIDER_HH__

qpdf-7.1.0/libqpdf/qpdf/BitStream.hh

// Read bits from a bit stream. See BitWriter for writing.

#ifndef __BITSTREAM_HH__
#define __BITSTREAM_HH__

#include <qpdf/DLL.h>

class BitStream
{
 public:
 QPDF_DLL
 BitStream(unsigned char const* p, int nbytes);
 QPDF_DLL
 void reset();
 QPDF_DLL
 unsigned long long getBits(int nbits);
 QPDF_DLL
 long long getBitsSigned(int nbits);
 QPDF_DLL
 void skipToNextByte();

 private:
 unsigned char const* start;
 int nbytes;

 unsigned char const* p;
 unsigned int bit_offset;
 unsigned int bits_available;
};

#endif // __BITSTREAM_HH__

qpdf-7.1.0/libqpdf/qpdf/InsecureRandomDataProvider.hh

#ifndef __INSECURERANDOMDATAPROVIDER_HH__
#define __INSECURERANDOMDATAPROVIDER_HH__

#include <qpdf/RandomDataProvider.hh>
#include <qpdf/DLL.h>

class InsecureRandomDataProvider: public RandomDataProvider
{
 public:
 QPDF_DLL
 InsecureRandomDataProvider();
 QPDF_DLL
 virtual ~InsecureRandomDataProvider();

 QPDF_DLL
 virtual void provideRandomData(unsigned char* data, size_t len);

 QPDF_DLL
 static RandomDataProvider* getInstance();

 private:
 long random();

 bool seeded_random;
};

#endif // __INSECURERANDOMDATAPROVIDER_HH__

qpdf-7.1.0/libqpdf/qpdf/Pl_AES_PDF.hh

#ifndef __PL_AES_PDF_HH__
#define __PL_AES_PDF_HH__

#include <qpdf/Pipeline.hh>
#include <qpdf/qpdf-config.h>
#ifdef HAVE_STDINT_H
include <stdint.h>
#endif

// This pipeline implements AES-128 and AES-256 with CBC and block
// padding as specified in the PDF specification.

class Pl_AES_PDF: public Pipeline
{
 public:
 QPDF_DLL
 // key should be a pointer to key_bytes bytes of data
 Pl_AES_PDF(char const* identifier, Pipeline* next,
	 bool encrypt, unsigned char const* key, unsigned int key_bytes);
 QPDF_DLL
 virtual ~Pl_AES_PDF();

 QPDF_DLL
 virtual void write(unsigned char* data, size_t len);
 QPDF_DLL
 virtual void finish();

 // Use zero initialization vector; needed for AESV3
 QPDF_DLL
 void useZeroIV();
 // Disable padding; needed for AESV3
 QPDF_DLL
 void disablePadding();
 // Specify an initialization vector, which will not be included in
 // the output.
 QPDF_DLL
 void setIV(unsigned char const* iv, size_t bytes);

 // For testing only; PDF always uses CBC
 QPDF_DLL
 void disableCBC();
 // For testing only: use a fixed initialization vector for CBC
 QPDF_DLL
 static void useStaticIV();

 private:
 void flush(bool discard_padding);
 void initializeVector();

 static unsigned int const buf_size = 16;
 static bool use_static_iv;

 bool encrypt;
 bool cbc_mode;
 bool first;
 size_t offset; // offset into memory buffer
 unsigned char* key;
 uint32_t* rk;
 unsigned char inbuf[buf_size];
 unsigned char outbuf[buf_size];
 unsigned char cbc_block[buf_size];
 unsigned char specified_iv[buf_size];
 unsigned int nrounds;
 bool use_zero_iv;
 bool use_specified_iv;
 bool disable_padding;
};

#endif // __PL_AES_PDF_HH__

qpdf-7.1.0/libqpdf/qpdf/QPDF_String.hh

#ifndef __QPDF_STRING_HH__
#define __QPDF_STRING_HH__

#include <qpdf/QPDFObject.hh>

// QPDF_Strings may included embedded null characters.

class QPDF_String: public QPDFObject
{
 public:
 QPDF_String(std::string const& val);
 virtual ~QPDF_String();
 virtual std::string unparse();
 virtual QPDFObject::object_type_e getTypeCode() const;
 virtual char const* getTypeName() const;
 std::string unparse(bool force_binary);
 std::string getVal() const;
 std::string getUTF8Val() const;

 private:
 std::string val;
};

#endif // __QPDF_STRING_HH__

qpdf-7.1.0/libqpdf/qpdf/QPDF_Name.hh

#ifndef __QPDF_NAME_HH__
#define __QPDF_NAME_HH__

#include <qpdf/QPDFObject.hh>

class QPDF_Name: public QPDFObject
{
 public:
 QPDF_Name(std::string const& name);
 virtual ~QPDF_Name();
 virtual std::string unparse();
 virtual QPDFObject::object_type_e getTypeCode() const;
 virtual char const* getTypeName() const;
 std::string getName() const;

 // Put # into strings with characters unsuitable for name token
 static std::string normalizeName(std::string const& name);

 private:
 std::string name;
};

#endif // __QPDF_NAME_HH__

qpdf-7.1.0/libqpdf/qpdf/BitWriter.hh

// Write bits into a bit stream. See BitStream for reading.

#ifndef __BITWRITER_HH__
#define __BITWRITER_HH__

#include <qpdf/DLL.h>

class Pipeline;

class BitWriter
{
 public:
 // Write bits to the pipeline. It is the caller's responsibility
 // to eventually call finish on the pipeline.
 QPDF_DLL
 BitWriter(Pipeline* pl);
 QPDF_DLL
 void writeBits(unsigned long long val, unsigned int bits);
 QPDF_DLL
 void writeBitsSigned(long long val, unsigned int bits);
 // Force any partial byte to be written to the pipeline.
 QPDF_DLL
 void flush();

 private:
 Pipeline* pl;
 unsigned char ch;
 unsigned int bit_offset;
};

#endif // __BITWRITER_HH__

qpdf-7.1.0/libqpdf/qpdf/QPDF_Dictionary.hh

#ifndef __QPDF_DICTIONARY_HH__
#define __QPDF_DICTIONARY_HH__

#include <qpdf/QPDFObject.hh>

#include <set>
#include <map>

#include <qpdf/QPDFObjectHandle.hh>

class QPDF_Dictionary: public QPDFObject
{
 public:
 QPDF_Dictionary(std::map<std::string, QPDFObjectHandle> const& items);
 virtual ~QPDF_Dictionary();
 virtual std::string unparse();
 virtual QPDFObject::object_type_e getTypeCode() const;
 virtual char const* getTypeName() const;

 // hasKey() and getKeys() treat keys with null values as if they
 // aren't there. getKey() returns null for the value of a
 // non-existent key. This is as per the PDF spec.
 bool hasKey(std::string const&);
 QPDFObjectHandle getKey(std::string const&);
 std::set<std::string> getKeys();
 std::map<std::string, QPDFObjectHandle> const& getAsMap() const;

 // Replace value of key, adding it if it does not exist
 void replaceKey(std::string const& key, QPDFObjectHandle const&);
 // Remove key, doing nothing if key does not exist
 void removeKey(std::string const& key);
 // If object is null, replace key; otherwise, remove key
 void replaceOrRemoveKey(std::string const& key, QPDFObjectHandle);

 protected:
 virtual void releaseResolved();

 private:
 std::map<std::string, QPDFObjectHandle> items;
};

#endif // __QPDF_DICTIONARY_HH__

qpdf-7.1.0/libqpdf/qpdf/MD5.hh

#ifndef __MD5_HH__
#define __MD5_HH__

#include <qpdf/DLL.h>
#include <qpdf/qpdf-config.h>
#ifdef HAVE_INTTYPES_H
include <inttypes.h>
#endif
#ifdef HAVE_STDINT_H
include <stdint.h>
#endif
#include <string>

class MD5
{
 public:
 typedef unsigned char Digest[16];

 QPDF_DLL
 MD5();
 QPDF_DLL
 void reset();

 // encodes string and finalizes
 QPDF_DLL
 void encodeString(char const* input_string);

 // encodes file and finalizes
 QPDF_DLL
 void encodeFile(char const* filename, int up_to_size = -1);

 // appends string to current md5 object
 QPDF_DLL
 void appendString(char const* input_string);

 // appends arbitrary data to current md5 object
 QPDF_DLL
 void encodeDataIncrementally(char const* input_data, int len);

 // computes a raw digest
 QPDF_DLL
 void digest(Digest);

 // prints the digest to stdout terminated with \r\n (primarily for
 // testing)
 QPDF_DLL
 void print();

 // returns the digest as a hexadecimal string
 QPDF_DLL
 std::string unparse();

 // Convenience functions
 QPDF_DLL
 static std::string getDataChecksum(char const* buf, int len);
 QPDF_DLL
 static std::string getFileChecksum(char const* filename,
				 int up_to_size = -1);
 QPDF_DLL
 static bool checkDataChecksum(char const* const checksum,
				 char const* buf, int len);
 QPDF_DLL
 static bool checkFileChecksum(char const* const checksum,
				 char const* filename, int up_to_size = -1);

 private:
 // POINTER defines a generic pointer type
 typedef void *POINTER;

 // UINT2 defines a two byte word
 typedef uint16_t UINT2;

 // UINT4 defines a four byte word
 typedef uint32_t UINT4;

 void init();
 void update(unsigned char *, unsigned int);
 void final();

 static void transform(UINT4 [4], unsigned char [64]);
 static void encode(unsigned char *, UINT4 *, unsigned int);
 static void decode(UINT4 *, unsigned char *, unsigned int);

 UINT4 state[4];		// state (ABCD)
 UINT4 count[2];		// number of bits, modulo 2^64 (lsb first)
 unsigned char buffer[64];	// input buffer

 bool finalized;
 Digest digest_val;
};

#endif // __MD5_HH__

qpdf-7.1.0/libqpdf/qpdf/QPDF_Bool.hh

#ifndef __QPDF_BOOL_HH__
#define __QPDF_BOOL_HH__

#include <qpdf/QPDFObject.hh>

class QPDF_Bool: public QPDFObject
{
 public:
 QPDF_Bool(bool val);
 virtual ~QPDF_Bool();
 virtual std::string unparse();
 virtual QPDFObject::object_type_e getTypeCode() const;
 virtual char const* getTypeName() const;
 bool getVal() const;

 private:
 bool val;
};

#endif // __QPDF_BOOL_HH__

qpdf-7.1.0/libqpdf/qpdf/QPDF_Operator.hh

#ifndef __QPDF_OPERATOR_HH__
#define __QPDF_OPERATOR_HH__

#include <qpdf/QPDFObject.hh>

class QPDF_Operator: public QPDFObject
{
 public:
 QPDF_Operator(std::string const& val);
 virtual ~QPDF_Operator();
 virtual std::string unparse();
 virtual QPDFObject::object_type_e getTypeCode() const;
 virtual char const* getTypeName() const;
 std::string getVal() const;

 private:
 std::string val;
};

#endif // __QPDF_OPERATOR_HH__

qpdf-7.1.0/libqpdf/QPDF_Integer.cc

#include <qpdf/QPDF_Integer.hh>

#include <qpdf/QUtil.hh>

QPDF_Integer::QPDF_Integer(long long val) :
 val(val)
{
}

QPDF_Integer::~QPDF_Integer()
{
}

std::string
QPDF_Integer::unparse()
{
 return QUtil::int_to_string(this->val);
}

QPDFObject::object_type_e
QPDF_Integer::getTypeCode() const
{
 return QPDFObject::ot_integer;
}

char const*
QPDF_Integer::getTypeName() const
{
 return "integer";
}

long long
QPDF_Integer::getVal() const
{
 return this->val;
}

qpdf-7.1.0/libqpdf/Pl_LZWDecoder.cc

#include <qpdf/Pl_LZWDecoder.hh>

#include <qpdf/QTC.hh>
#include <qpdf/QUtil.hh>
#include <stdexcept>
#include <string.h>
#include <assert.h>

Pl_LZWDecoder::Pl_LZWDecoder(char const* identifier, Pipeline* next,
			 bool early_code_change) :
 Pipeline(identifier, next),
 code_size(9),
 next(0),
 byte_pos(0),
 bit_pos(0),
 bits_available(0),
 code_change_delta(early_code_change ? 1 : 0),
 eod(false),
 last_code(256)
{
 memset(buf, 0, 3);
}

Pl_LZWDecoder::~Pl_LZWDecoder()
{
}

void
Pl_LZWDecoder::write(unsigned char* bytes, size_t len)
{
 for (size_t i = 0; i < len; ++i)
 {
	this->buf[next++] = bytes[i];
	if (this->next == 3)
	{
	 this->next = 0;
	}
	this->bits_available += 8;
	if (this->bits_available >= this->code_size)
	{
	 sendNextCode();
	}
 }
}

void
Pl_LZWDecoder::finish()
{
 getNext()->finish();
}

void
Pl_LZWDecoder::sendNextCode()
{
 int high = this->byte_pos;
 int med = (this->byte_pos + 1) % 3;
 int low = (this->byte_pos + 2) % 3;

 int bits_from_high = 8 - this->bit_pos;
 int bits_from_med = this->code_size - bits_from_high;
 int bits_from_low = 0;
 if (bits_from_med > 8)
 {
	bits_from_low = bits_from_med - 8;
	bits_from_med = 8;
 }
 int high_mask = (1 << bits_from_high) - 1;
 int med_mask = 0xff - ((1 << (8 - bits_from_med)) - 1);
 int low_mask = 0xff - ((1 << (8 - bits_from_low)) - 1);
 int code = 0;
 code += (this->buf[high] & high_mask) << bits_from_med;
 code += ((this->buf[med] & med_mask) >> (8 - bits_from_med));
 if (bits_from_low)
 {
	code <<= bits_from_low;
	code += ((this->buf[low] & low_mask) >> (8 - bits_from_low));
	this->byte_pos = low;
	this->bit_pos = bits_from_low;
 }
 else
 {
	this->byte_pos = med;
	this->bit_pos = bits_from_med;
 }
 if (this->bit_pos == 8)
 {
	this->bit_pos = 0;
	++this->byte_pos;
	this->byte_pos %= 3;
 }
 this->bits_available -= this->code_size;

 handleCode(code);
}

unsigned char
Pl_LZWDecoder::getFirstChar(int code)
{
 unsigned char result = '\0';
 if (code < 256)
 {
	result = static_cast<unsigned char>(code);
 }
 else if (code > 257)
 {
	unsigned int idx = code - 258;
	if (idx >= table.size())
 {
 throw std::logic_error(
 "Pl_LZWDecoder::getFirstChar: table overflow");
 }
	Buffer& b = table.at(idx);
	result = b.getBuffer()[0];
 }
 else
 {
 throw std::logic_error(
 "Pl_LZWDecoder::getFirstChar called with invalid code (" +
 QUtil::int_to_string(code) + ")");
 }
 return result;
}

void
Pl_LZWDecoder::addToTable(unsigned char next)
{
 unsigned int last_size = 0;
 unsigned char const* last_data = 0;
 unsigned char tmp[1];

 if (this->last_code < 256)
 {
	tmp[0] = this->last_code;
	last_data = tmp;
	last_size = 1;
 }
 else if (this->last_code > 257)
 {
	unsigned int idx = this->last_code - 258;
	if (idx >= table.size())
 {
 throw std::logic_error(
 "Pl_LZWDecoder::addToTable: table overflow");
 }
	Buffer& b = table.at(idx);
	last_data = b.getBuffer();
	last_size = b.getSize();
 }
 else
 {
 throw std::logic_error(
 "Pl_LZWDecoder::addToTable called with invalid code (" +
 QUtil::int_to_string(this->last_code) + ")");
 }

 Buffer entry(1 + last_size);
 unsigned char* new_data = entry.getBuffer();
 memcpy(new_data, last_data, last_size);
 new_data[last_size] = next;
 this->table.push_back(entry);
}

void
Pl_LZWDecoder::handleCode(int code)
{
 if (this->eod)
 {
	return;
 }

 if (code == 256)
 {
	if (! this->table.empty())
	{
	 QTC::TC("libtests", "Pl_LZWDecoder intermediate reset");
	}
	this->table.clear();
	this->code_size = 9;
 }
 else if (code == 257)
 {
	this->eod = true;
 }
 else
 {
	if (this->last_code != 256)
	{
	 // Add to the table from last time. New table entry would
	 // be what we read last plus the first character of what
	 // we're reading now.
	 unsigned char next = '\0';
	 unsigned int table_size = table.size();
	 if (code < 256)
	 {
		// just read < 256; last time's next was code
		next = code;
	 }
	 else if (code > 257)
	 {
		size_t idx = code - 258;
		if (idx > table_size)
		{
		 throw std::runtime_error("LZWDecoder: bad code received");
		}
		else if (idx == table_size)
		{
		 // The encoder would have just created this entry,
		 // so the first character of this entry would have
		 // been the same as the first character of the
		 // last entry.
		 QTC::TC("libtests", "Pl_LZWDecoder last was table size");
		 next = getFirstChar(this->last_code);
		}
		else
		{
		 next = getFirstChar(code);
		}
	 }
	 unsigned int new_idx = 258 + table_size;
	 if (new_idx == 4096)
	 {
		throw std::runtime_error("LZWDecoder: table full");
	 }
	 addToTable(next);
	 unsigned int change_idx = new_idx + code_change_delta;
	 if ((change_idx == 511) ||
		(change_idx == 1023) ||
		(change_idx == 2047))
	 {
		++this->code_size;
	 }
	}

	if (code < 256)
	{
	 unsigned char ch = static_cast<unsigned char>(code);
	 getNext()->write(&ch, 1);
	}
	else
	{
	 Buffer& b = table.at(code - 258);
	 getNext()->write(b.getBuffer(), b.getSize());
	}
 }

 this->last_code = code;
}

qpdf-7.1.0/libqpdf/Buffer.cc

#include <qpdf/Buffer.hh>

#include <string.h>

Buffer::Buffer()
{
 init(0, 0, true);
}

Buffer::Buffer(size_t size)
{
 init(size, 0, true);
}

Buffer::Buffer(unsigned char* buf, size_t size)
{
 init(size, buf, false);
}

Buffer::Buffer(Buffer const& rhs)
{
 init(0, 0, true);
 copy(rhs);
}

Buffer&
Buffer::operator=(Buffer const& rhs)
{
 copy(rhs);
 return *this;
}

Buffer::~Buffer()
{
 destroy();
}

void
Buffer::init(size_t size, unsigned char* buf, bool own_memory)
{
 this->own_memory = own_memory;
 this->size = size;
 if (own_memory)
 {
	this->buf = (size ? new unsigned char[size] : 0);
 }
 else
 {
	this->buf = buf;
 }
}

void
Buffer::copy(Buffer const& rhs)
{
 if (this != &rhs)
 {
	this->destroy();
	this->init(rhs.size, 0, true);
	if (this->size)
	{
	 memcpy(this->buf, rhs.buf, this->size);
	}
 }
}

void
Buffer::destroy()
{
 if (this->own_memory)
 {
	delete [] this->buf;
 }
 this->size = 0;
 this->buf = 0;
}

size_t
Buffer::getSize() const
{
 return this->size;
}

unsigned char const*
Buffer::getBuffer() const
{
 return this->buf;
}

unsigned char*
Buffer::getBuffer()
{
 return this->buf;
}

qpdf-7.1.0/libqpdf/Pl_PNGFilter.cc

#include <qpdf/Pl_PNGFilter.hh>
#include <qpdf/QTC.hh>
#include <stdexcept>
#include <string.h>
#include <limits.h>
#include <algorithm>

Pl_PNGFilter::Pl_PNGFilter(char const* identifier, Pipeline* next,
			 action_e action, unsigned int columns,
 unsigned int samples_per_pixel,
 unsigned int bits_per_sample) :
 Pipeline(identifier, next),
 action(action),
 cur_row(0),
 prev_row(0),
 buf1(0),
 buf2(0),
 pos(0)
{
 if (samples_per_pixel < 1)
 {
 throw std::runtime_error(
 "PNGFilter created with invalid samples_per_pixel");
 }
 if (! ((bits_per_sample == 1) ||
 (bits_per_sample == 2) ||
 (bits_per_sample == 4) ||
 (bits_per_sample == 8) ||
 (bits_per_sample == 16)))
 {
 throw std::runtime_error(
 "PNGFilter created with invalid bits_per_sample not"
 " 1, 2, 4, 8, or 16");
 }
 this->bytes_per_pixel = ((bits_per_sample * samples_per_pixel) + 7) / 8;
 unsigned long long bpr =
 ((columns * bits_per_sample * samples_per_pixel) + 7) / 8;
 if ((bpr == 0) || (bpr > (UINT_MAX - 1)))
 {
 throw std::runtime_error(
 "PNGFilter created with invalid columns value");
 }
 this->bytes_per_row = bpr & UINT_MAX;
 this->buf1 = new unsigned char[this->bytes_per_row + 1];
 this->buf2 = new unsigned char[this->bytes_per_row + 1];
 memset(this->buf1, 0, this->bytes_per_row + 1);
 memset(this->buf2, 0, this->bytes_per_row + 1);
 this->cur_row = this->buf1;
 this->prev_row = this->buf2;

 // number of bytes per incoming row
 this->incoming = (action == a_encode ?
 this->bytes_per_row :
 this->bytes_per_row + 1);
}

Pl_PNGFilter::~Pl_PNGFilter()
{
 delete [] buf1;
 delete [] buf2;
}

void
Pl_PNGFilter::write(unsigned char* data, size_t len)
{
 size_t left = this->incoming - this->pos;
 size_t offset = 0;
 while (len >= left)
 {
	// finish off current row
	memcpy(this->cur_row + this->pos, data + offset, left);
	offset += left;
	len -= left;

	processRow();

	// Swap rows
	unsigned char* t = this->prev_row;
	this->prev_row = this->cur_row;
	this->cur_row = t ? t : this->buf2;
	memset(this->cur_row, 0, this->bytes_per_row + 1);
	left = this->incoming;
	this->pos = 0;
 }
 if (len)
 {
	memcpy(this->cur_row + this->pos, data + offset, len);
 }
 this->pos += len;
}

void
Pl_PNGFilter::processRow()
{
 if (this->action == a_encode)
 {
	encodeRow();
 }
 else
 {
	decodeRow();
 }
}

void
Pl_PNGFilter::decodeRow()
{
 int filter = this->cur_row[0];
 if (this->prev_row)
 {
 switch (filter)
 {
 case 0:
 break;
 case 1:
 this->decodeSub();
 break;
 case 2:
 this->decodeUp();
 break;
 case 3:
 this->decodeAverage();
 break;
 case 4:
 this->decodePaeth();
 break;
 default:
 // ignore
 break;
 }
 }

 getNext()->write(this->cur_row + 1, this->bytes_per_row);
}

void
Pl_PNGFilter::decodeSub()
{
 QTC::TC("libtests", "Pl_PNGFilter decodeSub");
 unsigned char* buffer = this->cur_row + 1;
 unsigned int bpp = this->bytes_per_pixel;

 for (unsigned int i = 0; i < this->bytes_per_row; ++i)
 {
 unsigned char left = 0;

 if (i >= bpp)
 {
 left = buffer[i - bpp];
 }

 buffer[i] += left;
 }
}

void
Pl_PNGFilter::decodeUp()
{
 QTC::TC("libtests", "Pl_PNGFilter decodeUp");
 unsigned char* buffer = this->cur_row + 1;
 unsigned char* above_buffer = this->prev_row + 1;

 for (unsigned int i = 0; i < this->bytes_per_row; ++i)
 {
 unsigned char up = above_buffer[i];
 buffer[i] += up;
 }
}

void
Pl_PNGFilter::decodeAverage()
{
 QTC::TC("libtests", "Pl_PNGFilter decodeAverage");
 unsigned char* buffer = this->cur_row + 1;
 unsigned char* above_buffer = this->prev_row + 1;
 unsigned int bpp = this->bytes_per_pixel;

 for (unsigned int i = 0; i < this->bytes_per_row; ++i)
 {
 int left = 0;
 int up = 0;

 if (i >= bpp)
 {
 left = buffer[i - bpp];
 }

 up = above_buffer[i];
 buffer[i] += (left+up) / 2;
 }
}

void
Pl_PNGFilter::decodePaeth()
{
 QTC::TC("libtests", "Pl_PNGFilter decodePaeth");
 unsigned char* buffer = this->cur_row + 1;
 unsigned char* above_buffer = this->prev_row + 1;
 unsigned int bpp = this->bytes_per_pixel;

 for (unsigned int i = 0; i < this->bytes_per_row; ++i)
 {
 int left = 0;
 int up = above_buffer[i];
 int upper_left = 0;

 if (i >= bpp)
 {
 left = buffer[i - bpp];
 upper_left = above_buffer[i - bpp];
 }

 buffer[i] += this->PaethPredictor(left, up, upper_left);
 }
}

int
Pl_PNGFilter::PaethPredictor(int a, int b, int c)
{
 int p = a + b - c;
 int pa = std::abs(p - a);
 int pb = std::abs(p - b);
 int pc = std::abs(p - c);

 if (pa <= pb && pa <= pc)
 {
 return a;
 }
 if (pb <= pc)
 {
 return b;
 }
 return c;
}

void
Pl_PNGFilter::encodeRow()
{
 // For now, hard-code to using UP filter.
 unsigned char ch = 2;
 getNext()->write(&ch, 1);
 if (this->prev_row)
 {
	for (unsigned int i = 0; i < this->bytes_per_row; ++i)
	{
	 ch = this->cur_row[i] - this->prev_row[i];
	 getNext()->write(&ch, 1);
	}
 }
 else
 {
	getNext()->write(this->cur_row, this->bytes_per_row);
 }
}

void
Pl_PNGFilter::finish()
{
 if (this->pos)
 {
	// write partial row
	processRow();
 }
 this->prev_row = 0;
 this->cur_row = buf1;
 this->pos = 0;
 memset(this->cur_row, 0, this->bytes_per_row + 1);

 getNext()->finish();
}

qpdf-7.1.0/libqpdf/QPDFExc.cc

#include <qpdf/QPDFExc.hh>
#include <qpdf/QUtil.hh>

QPDFExc::QPDFExc(qpdf_error_code_e error_code,
		 std::string const& filename,
		 std::string const& object,
		 qpdf_offset_t offset,
		 std::string const& message) :
 std::runtime_error(createWhat(filename, object, offset, message)),
 error_code(error_code),
 filename(filename),
 object(object),
 offset(offset),
 message(message)
{
}

QPDFExc::~QPDFExc() throw ()
{
}

std::string
QPDFExc::createWhat(std::string const& filename,
		 std::string const& object,
		 qpdf_offset_t offset,
		 std::string const& message)
{
 std::string result;
 if (! filename.empty())
 {
	result += filename;
 }
 if (! (object.empty() && offset == 0))
 {
	result += " (";
	if (! object.empty())
	{
	 result += object;
	 if (offset > 0)
	 {
		result += ", ";
	 }
	}
	if (offset > 0)
	{
	 result += "file position " + QUtil::int_to_string(offset);
	}
	result += ")";
 }
 if (! result.empty())
 {
	result += ": ";
 }
 result += message;
 return result;
}

qpdf_error_code_e
QPDFExc::getErrorCode() const
{
 return this->error_code;
}

std::string const&
QPDFExc::getFilename() const
{
 return this->filename;
}

std::string const&
QPDFExc::getObject() const
{
 return this->object;
}

qpdf_offset_t
QPDFExc::getFilePosition() const
{
 return this->offset;
}

std::string const&
QPDFExc::getMessageDetail() const
{
 return this->message;
}

qpdf-7.1.0/libqpdf/MD5.cc

qpdf-7.1.0/libqpdf/MD5.cc

// This file implements a class for computation of MD5 checksums.

// It is derived from the reference algorithm for MD5 as given in

// RFC 1321. The original copyright notice is as follows:

//

///

//

// Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All

// rights reserved.

//

// License to copy and use this software is granted provided that it

// is identified as the "RSA Data Security, Inc. MD5 Message-Digest

// Algorithm" in all material mentioning or referencing this software

// or this function.

//

// License is also granted to make and use derivative works provided

// that such works are identified as "derived from the RSA Data

// Security, Inc. MD5 Message-Digest Algorithm" in all material

// mentioning or referencing the derived work.

//

// RSA Data Security, Inc. makes no representations concerning either

// the merchantability of this software or the suitability of this

// software for any particular purpose. It is provided "as is"

// without express or implied warranty of any kind.

//

// These notices must be retained in any copies of any part of this

// documentation and/or software.

//

///

#include <qpdf/MD5.hh>

#include <qpdf/QUtil.hh>

#include <stdio.h>

#include <memory.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

int const S11 = 7;

int const S12 = 12;

int const S13 = 17;

int const S14 = 22;

int const S21 = 5;

int const S22 = 9;

int const S23 = 14;

int const S24 = 20;

int const S31 = 4;

int const S32 = 11;

int const S33 = 16;

int const S34 = 23;

int const S41 = 6;

int const S42 = 10;

int const S43 = 15;

int const S44 = 21;

static unsigned char PADDING[64] = {

 0x80, 0,

 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

};

// F, G, H and I are basic MD5 functions.

#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))

#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))

#define H(x, y, z) ((x) ^ (y) ^ (z))

#define I(x, y, z) ((y) ^ ((x) | (~z)))

// ROTATE_LEFT rotates x left n bits.

#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

// FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.

// Rotation is separate from addition to prevent recomputation.

#define FF(a, b, c, d, x, s, ac) { \

 (a) += F ((b), (c), (d)) + (x) + static_cast<UINT4>(ac); \

 (a) = ROTATE_LEFT ((a), (s)); \

 (a) += (b); \

 }

#define GG(a, b, c, d, x, s, ac) { \

 (a) += G ((b), (c), (d)) + (x) + static_cast<UINT4>(ac); \

 (a) = ROTATE_LEFT ((a), (s)); \

 (a) += (b); \

 }

#define HH(a, b, c, d, x, s, ac) { \

 (a) += H ((b), (c), (d)) + (x) + static_cast<UINT4>(ac); \

 (a) = ROTATE_LEFT ((a), (s)); \

 (a) += (b); \

 }

#define II(a, b, c, d, x, s, ac) { \

 (a) += I ((b), (c), (d)) + (x) + static_cast<UINT4>(ac); \

 (a) = ROTATE_LEFT ((a), (s)); \

 (a) += (b); \

 }

// MD5 initialization. Begins an MD5 operation, writing a new context.

void MD5::init()

{

 count[0] = count[1] = 0;

 // Load magic initialization constants.

 state[0] = 0x67452301;

 state[1] = 0xefcdab89;

 state[2] = 0x98badcfe;

 state[3] = 0x10325476;

 finalized = false;

 memset(digest_val, 0, sizeof(digest_val));

}

// MD5 block update operation. Continues an MD5 message-digest

// operation, processing another message block, and updating the

// context.

void MD5::update(unsigned char *input,

 unsigned int inputLen)

{

 unsigned int i, index, partLen;

 // Compute number of bytes mod 64

 index = static_cast<unsigned int>((count[0] >> 3) & 0x3f);

 // Update number of bits

 if ((count[0] += (static_cast<UINT4>(inputLen) << 3)) <

 (static_cast<UINT4>(inputLen) << 3))

 count[1]++;

 count[1] += (static_cast<UINT4>(inputLen) >> 29);

 partLen = 64 - index;

 // Transform as many times as possible.

 if (inputLen >= partLen) {

 memcpy(&buffer[index], input, partLen);

 transform(state, buffer);

 for (i = partLen; i + 63 < inputLen; i += 64)

 transform(state, &input[i]);

 index = 0;

 }

 else

 i = 0;

 // Buffer remaining input

 memcpy(&buffer[index], &input[i], inputLen-i);

}

// MD5 finalization. Ends an MD5 message-digest operation, writing the

// the message digest and zeroizing the context.

void MD5::final()

{

 if (finalized)

 {

 return;

 }

 unsigned char bits[8];

 unsigned int index, padLen;

 // Save number of bits

 encode(bits, count, 8);

 // Pad out to 56 mod 64.

 index = static_cast<unsigned int>((count[0] >> 3) & 0x3f);

 padLen = (index < 56) ? (56 - index) : (120 - index);

 update(PADDING, padLen);

 // Append length (before padding)

 update(bits, 8);

 // Store state in digest_val

 encode(digest_val, state, 16);

 // Zeroize sensitive information.

 memset(state, 0, sizeof(state));

 memset(count, 0, sizeof(count));

 memset(buffer, 0, sizeof(buffer));

 finalized = true;

}

// MD5 basic transformation. Transforms state based on block.

void MD5::transform(UINT4 state[4], unsigned char block[64])

{

 UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];

 decode(x, block, 64);

 // Round 1

 FF (a, b, c, d, x[0], S11, 0xd76aa478); // 1

 FF (d, a, b, c, x[1], S12, 0xe8c7b756); // 2

 FF (c, d, a, b, x[2], S13, 0x242070db); // 3

 FF (b, c, d, a, x[3], S14, 0xc1bdceee); // 4

 FF (a, b, c, d, x[4], S11, 0xf57c0faf); // 5

 FF (d, a, b, c, x[5], S12, 0x4787c62a); // 6

 FF (c, d, a, b, x[6], S13, 0xa8304613); // 7

 FF (b, c, d, a, x[7], S14, 0xfd469501); // 8

 FF (a, b, c, d, x[8], S11, 0x698098d8); // 9

 FF (d, a, b, c, x[9], S12, 0x8b44f7af); // 10

 FF (c, d, a, b, x[10], S13, 0xffff5bb1); // 11

 FF (b, c, d, a, x[11], S14, 0x895cd7be); // 12

 FF (a, b, c, d, x[12], S11, 0x6b901122); // 13

 FF (d, a, b, c, x[13], S12, 0xfd987193); // 14

 FF (c, d, a, b, x[14], S13, 0xa679438e); // 15

 FF (b, c, d, a, x[15], S14, 0x49b40821); // 16

 // Round 2

 GG (a, b, c, d, x[1], S21, 0xf61e2562); // 17

 GG (d, a, b, c, x[6], S22, 0xc040b340); // 18

 GG (c, d, a, b, x[11], S23, 0x265e5a51); // 19

 GG (b, c, d, a, x[0], S24, 0xe9b6c7aa); // 20

 GG (a, b, c, d, x[5], S21, 0xd62f105d); // 21

 GG (d, a, b, c, x[10], S22, 0x2441453); // 22

 GG (c, d, a, b, x[15], S23, 0xd8a1e681); // 23

 GG (b, c, d, a, x[4], S24, 0xe7d3fbc8); // 24

 GG (a, b, c, d, x[9], S21, 0x21e1cde6); // 25

 GG (d, a, b, c, x[14], S22, 0xc33707d6); // 26

 GG (c, d, a, b, x[3], S23, 0xf4d50d87); // 27

 GG (b, c, d, a, x[8], S24, 0x455a14ed); // 28

 GG (a, b, c, d, x[13], S21, 0xa9e3e905); // 29

 GG (d, a, b, c, x[2], S22, 0xfcefa3f8); // 30

 GG (c, d, a, b, x[7], S23, 0x676f02d9); // 31

 GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); // 32

 // Round 3

 HH (a, b, c, d, x[5], S31, 0xfffa3942); // 33

 HH (d, a, b, c, x[8], S32, 0x8771f681); // 34

 HH (c, d, a, b, x[11], S33, 0x6d9d6122); // 35

 HH (b, c, d, a, x[14], S34, 0xfde5380c); // 36

 HH (a, b, c, d, x[1], S31, 0xa4beea44); // 37

 HH (d, a, b, c, x[4], S32, 0x4bdecfa9); // 38

 HH (c, d, a, b, x[7], S33, 0xf6bb4b60); // 39

 HH (b, c, d, a, x[10], S34, 0xbebfbc70); // 40

 HH (a, b, c, d, x[13], S31, 0x289b7ec6); // 41

 HH (d, a, b, c, x[0], S32, 0xeaa127fa); // 42

 HH (c, d, a, b, x[3], S33, 0xd4ef3085); // 43

 HH (b, c, d, a, x[6], S34, 0x4881d05); // 44

 HH (a, b, c, d, x[9], S31, 0xd9d4d039); // 45

 HH (d, a, b, c, x[12], S32, 0xe6db99e5); // 46

 HH (c, d, a, b, x[15], S33, 0x1fa27cf8); // 47

 HH (b, c, d, a, x[2], S34, 0xc4ac5665); // 48

 // Round 4

 II (a, b, c, d, x[0], S41, 0xf4292244); // 49

 II (d, a, b, c, x[7], S42, 0x432aff97); // 50

 II (c, d, a, b, x[14], S43, 0xab9423a7); // 51

 II (b, c, d, a, x[5], S44, 0xfc93a039); // 52

 II (a, b, c, d, x[12], S41, 0x655b59c3); // 53

 II (d, a, b, c, x[3], S42, 0x8f0ccc92); // 54

 II (c, d, a, b, x[10], S43, 0xffeff47d); // 55

 II (b, c, d, a, x[1], S44, 0x85845dd1); // 56

 II (a, b, c, d, x[8], S41, 0x6fa87e4f); // 57

 II (d, a, b, c, x[15], S42, 0xfe2ce6e0); // 58

 II (c, d, a, b, x[6], S43, 0xa3014314); // 59

 II (b, c, d, a, x[13], S44, 0x4e0811a1); // 60

 II (a, b, c, d, x[4], S41, 0xf7537e82); // 61

 II (d, a, b, c, x[11], S42, 0xbd3af235); // 62

 II (c, d, a, b, x[2], S43, 0x2ad7d2bb); // 63

 II (b, c, d, a, x[9], S44, 0xeb86d391); // 64

 state[0] += a;

 state[1] += b;

 state[2] += c;

 state[3] += d;

 // Zeroize sensitive information.

 memset (x, 0, sizeof (x));

}

// Encodes input (UINT4) into output (unsigned char). Assumes len is a

// multiple of 4.

void MD5::encode(unsigned char *output, UINT4 *input, unsigned int len)

{

 unsigned int i, j;

 for (i = 0, j = 0; j < len; i++, j += 4) {

 output[j] = static_cast<unsigned char>(input[i] & 0xff);

 output[j+1] = static_cast<unsigned char>((input[i] >> 8) & 0xff);

 output[j+2] = static_cast<unsigned char>((input[i] >> 16) & 0xff);

 output[j+3] = static_cast<unsigned char>((input[i] >> 24) & 0xff);

 }

}

// Decodes input (unsigned char) into output (UINT4). Assumes len is a

// multiple of 4.

void MD5::decode(UINT4 *output, unsigned char *input, unsigned int len)

{

 unsigned int i, j;

 for (i = 0, j = 0; j < len; i++, j += 4)

 output[i] =

 static_cast<UINT4>(input[j]) |

 (static_cast<UINT4>(input[j+1]) << 8) |

 (static_cast<UINT4>(input[j+2]) << 16) |

 (static_cast<UINT4>(input[j+3]) << 24);

}

// Public functions

MD5::MD5()

{

 init();

}

void MD5::reset()

{

 init();

}

void MD5::encodeString(char const* str)

{

 unsigned int len = strlen(str);

 update(QUtil::unsigned_char_pointer(str), len);

 final();

}

void MD5::appendString(char const* input_string)

{

 update(QUtil::unsigned_char_pointer(input_string), strlen(input_string));

}

void MD5::encodeDataIncrementally(char const* data, int len)

{

 update(QUtil::unsigned_char_pointer(data), len);

}

void MD5::encodeFile(char const *filename, int up_to_size)

{

 unsigned char buffer[1024];

 FILE *file = QUtil::safe_fopen(filename, "rb");

 size_t len;

 int so_far = 0;

 int to_try = 1024;

 do

 {

 if ((up_to_size >= 0) && ((so_far + to_try) > up_to_size))

 {

 to_try = up_to_size - so_far;

 }

 len = fread(buffer, 1, to_try, file);

 if (len > 0)

 {

 update(buffer, len);

 so_far += len;

 if ((up_to_size >= 0) && (so_far >= up_to_size))

 {

 break;

 }

 }

 } while (len > 0);

 if (ferror(file))

 {

 // Assume, perhaps incorrectly, that errno was set by the

 // underlying call to read....

 (void) fclose(file);

 QUtil::throw_system_error(

 std::string("MD5: read error on ") + filename);

 }

 (void) fclose(file);

 final();

}

void MD5::digest(Digest result)

{

 final();

 memcpy(result, digest_val, sizeof(digest_val));

}

void MD5::print()

{

 final();

 unsigned int i;

 for (i = 0; i < 16; ++i)

 {

 printf("%02x", digest_val[i]);

 }

 printf("\n");

}

std::string MD5::unparse()

{

 final();

 return QUtil::hex_encode(

 std::string(reinterpret_cast<char*>(digest_val), 16));

}

std::string

MD5::getDataChecksum(char const* buf, int len)

{

 MD5 m;

 m.encodeDataIncrementally(buf, len);

 return m.unparse();

}

std::string

MD5::getFileChecksum(char const* filename, int up_to_size)

{

 MD5 m;

 m.encodeFile(filename, up_to_size);

 return m.unparse();

}

bool

MD5::checkDataChecksum(char const* const checksum,

 char const* buf, int len)

{

 std::string actual_checksum = getDataChecksum(buf, len);

 return (checksum == actual_checksum);

}

bool

MD5::checkFileChecksum(char const* const checksum,

 char const* filename, int up_to_size)

{

 bool result = false;

 try

 {

 std::string actual_checksum = getFileChecksum(filename, up_to_size);

 result = (checksum == actual_checksum);

 }

 catch (std::runtime_error)

 {

 // Ignore -- return false

 }

 return result;

}

qpdf-7.1.0/libqpdf/Pl_AES_PDF.cc

#include <qpdf/Pl_AES_PDF.hh>
#include <qpdf/QUtil.hh>
#include <cstring>
#include <assert.h>
#include <stdexcept>
#include <qpdf/rijndael.h>
#include <string>
#include <stdlib.h>

bool Pl_AES_PDF::use_static_iv = false;

Pl_AES_PDF::Pl_AES_PDF(char const* identifier, Pipeline* next,
		 bool encrypt, unsigned char const* key,
 unsigned int key_bytes) :
 Pipeline(identifier, next),
 encrypt(encrypt),
 cbc_mode(true),
 first(true),
 offset(0),
 nrounds(0),
 use_zero_iv(false),
 use_specified_iv(false),
 disable_padding(false)
{
 unsigned int keybits = 8 * key_bytes;
 assert(key_bytes == KEYLENGTH(keybits));
 this->key = new unsigned char[key_bytes];
 this->rk = new uint32_t[RKLENGTH(keybits)];
 unsigned int rk_bytes = RKLENGTH(keybits) * sizeof(uint32_t);
 std::memcpy(this->key, key, key_bytes);
 std::memset(this->rk, 0, rk_bytes);
 std::memset(this->inbuf, 0, this->buf_size);
 std::memset(this->outbuf, 0, this->buf_size);
 std::memset(this->cbc_block, 0, this->buf_size);
 if (encrypt)
 {
	this->nrounds = rijndaelSetupEncrypt(this->rk, this->key, keybits);
 }
 else
 {
	this->nrounds = rijndaelSetupDecrypt(this->rk, this->key, keybits);
 }
 assert(this->nrounds == NROUNDS(keybits));
}

Pl_AES_PDF::~Pl_AES_PDF()
{
 delete [] this->key;
 delete [] this->rk;
}

void
Pl_AES_PDF::useZeroIV()
{
 this->use_zero_iv = true;
}

void
Pl_AES_PDF::disablePadding()
{
 this->disable_padding = true;
}

void
Pl_AES_PDF::setIV(unsigned char const* iv, size_t bytes)
{
 if (bytes != this->buf_size)
 {
 throw std::logic_error(
 "Pl_AES_PDF: specified initialization vector"
 " size in bytes must be " + QUtil::int_to_string(bytes));
 }
 this->use_specified_iv = true;
 memcpy(this->specified_iv, iv, bytes);
}

void
Pl_AES_PDF::disableCBC()
{
 this->cbc_mode = false;
}

void
Pl_AES_PDF::useStaticIV()
{
 use_static_iv = true;
}

void
Pl_AES_PDF::write(unsigned char* data, size_t len)
{
 size_t bytes_left = len;
 unsigned char* p = data;

 while (bytes_left > 0)
 {
	if (this->offset == this->buf_size)
	{
	 flush(false);
	}

	size_t available = this->buf_size - this->offset;
	size_t bytes = (bytes_left < available ? bytes_left : available);
	bytes_left -= bytes;
	std::memcpy(this->inbuf + this->offset, p, bytes);
	this->offset += bytes;
	p += bytes;
 }
}

void
Pl_AES_PDF::finish()
{
 if (this->encrypt)
 {
	if (this->offset == this->buf_size)
	{
	 flush(false);
	}
 if (! this->disable_padding)
 {
 // Pad as described in section 3.5.1 of version 1.7 of the PDF
 // specification, including providing an entire block of padding
 // if the input was a multiple of 16 bytes.
 unsigned char pad =
 static_cast<unsigned char>(this->buf_size - this->offset);
 memset(this->inbuf + this->offset, pad, pad);
 this->offset = this->buf_size;
 flush(false);
 }
 }
 else
 {
	if (this->offset != this->buf_size)
	{
	 // This is never supposed to happen as the output is
	 // always supposed to be padded. However, we have
	 // encountered files for which the output is not a
	 // multiple of the block size. In this case, pad with
	 // zeroes and hope for the best.
	 assert(this->buf_size > this->offset);
	 std::memset(this->inbuf + this->offset, 0,
			this->buf_size - this->offset);
	 this->offset = this->buf_size;
	}
	flush(! this->disable_padding);
 }
 getNext()->finish();
}

void
Pl_AES_PDF::initializeVector()
{
 if (use_zero_iv)
 {
	for (unsigned int i = 0; i < this->buf_size; ++i)
	{
	 this->cbc_block[i] = 0;
	}
 }
 else if (use_specified_iv)
 {
 std::memcpy(this->cbc_block, this->specified_iv, this->buf_size);
 }
 else if (use_static_iv)
 {
	for (unsigned int i = 0; i < this->buf_size; ++i)
	{
	 this->cbc_block[i] = 14 * (1 + i);
	}
 }
 else
 {
 QUtil::initializeWithRandomBytes(this->cbc_block, this->buf_size);
 }
}

void
Pl_AES_PDF::flush(bool strip_padding)
{
 assert(this->offset == this->buf_size);

 if (first)
 {
	first = false;
	if (this->cbc_mode)
	{
	 if (encrypt)
	 {
		// Set cbc_block to the initialization vector, and if
		// not zero, write it to the output stream.
		initializeVector();
 if (! (this->use_zero_iv || this->use_specified_iv))
 {
 getNext()->write(this->cbc_block, this->buf_size);
 }
	 }
	 else if (this->use_zero_iv || this->use_specified_iv)
 {
 // Initialize vector with zeroes; zero vector was not
 // written to the beginning of the input file.
 initializeVector();
 }
 else
	 {
		// Take the first block of input as the initialization
		// vector. There's nothing to write at this time.
		memcpy(this->cbc_block, this->inbuf, this->buf_size);
		this->offset = 0;
		return;
	 }
	}
 }

 if (this->encrypt)
 {
	if (this->cbc_mode)
	{
	 for (unsigned int i = 0; i < this->buf_size; ++i)
	 {
		this->inbuf[i] ^= this->cbc_block[i];
	 }
	}
	rijndaelEncrypt(this->rk, this->nrounds, this->inbuf, this->outbuf);
	if (this->cbc_mode)
	{
	 memcpy(this->cbc_block, this->outbuf, this->buf_size);
	}
 }
 else
 {
	rijndaelDecrypt(this->rk, this->nrounds, this->inbuf, this->outbuf);
	if (this->cbc_mode)
	{
	 for (unsigned int i = 0; i < this->buf_size; ++i)
	 {
		this->outbuf[i] ^= this->cbc_block[i];
	 }
	 memcpy(this->cbc_block, this->inbuf, this->buf_size);
	}
 }
 unsigned int bytes = this->buf_size;
 if (strip_padding)
 {
	unsigned char last = this->outbuf[this->buf_size - 1];
	if (last <= this->buf_size)
	{
	 bool strip = true;
	 for (unsigned int i = 1; i <= last; ++i)
	 {
		if (this->outbuf[this->buf_size - i] != last)
		{
		 strip = false;
		 break;
		}
	 }
	 if (strip)
	 {
		bytes -= last;
	 }
	}
 }
 getNext()->write(this->outbuf, bytes);
 this->offset = 0;
}

qpdf-7.1.0/libqpdf/Pl_ASCIIHexDecoder.cc

#include <qpdf/Pl_ASCIIHexDecoder.hh>
#include <qpdf/QTC.hh>
#include <stdexcept>
#include <string.h>
#include <ctype.h>

Pl_ASCIIHexDecoder::Pl_ASCIIHexDecoder(char const* identifier, Pipeline* next) :
 Pipeline(identifier, next),
 pos(0),
 eod(false)
{
 this->inbuf[0] = '0';
 this->inbuf[1] = '0';
 this->inbuf[2] = '\0';
}

Pl_ASCIIHexDecoder::~Pl_ASCIIHexDecoder()
{
}

void
Pl_ASCIIHexDecoder::write(unsigned char* buf, size_t len)
{
 if (this->eod)
 {
	return;
 }
 for (size_t i = 0; i < len; ++i)
 {
	char ch = toupper(buf[i]);
	switch (ch)
	{
	 case ' ':
	 case '\f':
	 case '\v':
	 case '\t':
	 case '\r':
	 case '\n':
	 QTC::TC("libtests", "Pl_ASCIIHexDecoder ignore space");
	 // ignore whitespace
	 break;

	 case '>':
	 this->eod = true;
	 flush();
	 break;

	 default:
	 if (((ch >= '0') && (ch <= '9')) ||
		((ch >= 'A') && (ch <= 'F')))
	 {
		this->inbuf[this->pos++] = ch;
		if (this->pos == 2)
		{
		 flush();
		}
	 }
	 else
	 {
		char t[2];
		t[0] = ch;
		t[1] = 0;
		throw std::runtime_error(
		 std::string("character out of range"
				" during base Hex decode: ") + t);
	 }
	 break;
	}
	if (this->eod)
	{
	 break;
	}
 }
}

void
Pl_ASCIIHexDecoder::flush()
{
 if (this->pos == 0)
 {
	QTC::TC("libtests", "Pl_ASCIIHexDecoder no-op flush");
	return;
 }
 int b[2];
 for (int i = 0; i < 2; ++i)
 {
	if (this->inbuf[i] >= 'A')
	{
	 b[i] = this->inbuf[i] - 'A' + 10;
	}
	else
	{
	 b[i] = this->inbuf[i] - '0';
	}
 }
 unsigned char ch = static_cast<unsigned char>((b[0] << 4) + b[1]);

 QTC::TC("libtests", "Pl_ASCIIHexDecoder partial flush",
	 (this->pos == 2) ? 0 : 1);
 getNext()->write(&ch, 1);

 this->pos = 0;
 this->inbuf[0] = '0';
 this->inbuf[1] = '0';
 this->inbuf[2] = '\0';
}

void
Pl_ASCIIHexDecoder::finish()
{
 flush();
 getNext()->finish();
}

qpdf-7.1.0/libqpdf/Pl_ASCII85Decoder.cc

#include <qpdf/Pl_ASCII85Decoder.hh>
#include <qpdf/QTC.hh>
#include <stdexcept>
#include <string.h>

Pl_ASCII85Decoder::Pl_ASCII85Decoder(char const* identifier, Pipeline* next) :
 Pipeline(identifier, next),
 pos(0),
 eod(0)
{
 memset(this->inbuf, 117, 5);
}

Pl_ASCII85Decoder::~Pl_ASCII85Decoder()
{
}

void
Pl_ASCII85Decoder::write(unsigned char* buf, size_t len)
{
 if (eod > 1)
 {
	return;
 }
 for (size_t i = 0; i < len; ++i)
 {
	if (eod > 1)
	{
	 break;
	}
	else if (eod == 1)
	{
	 if (buf[i] == '>')
	 {
		flush();
		eod = 2;
	 }
	 else
	 {
		throw std::runtime_error(
		 "broken end-of-data sequence in base 85 data");
	 }
	}
	else
	{
	 switch (buf[i])
	 {
	 case ' ':
	 case '\f':
	 case '\v':
	 case '\t':
	 case '\r':
	 case '\n':
		QTC::TC("libtests", "Pl_ASCII85Decoder ignore space");
		// ignore whitespace
		break;

	 case '~':
		eod = 1;
		break;

	 case 'z':
		if (pos != 0)
		{
		 throw std::runtime_error(
			"unexpected z during base 85 decode");
		}
		else
		{
		 QTC::TC("libtests", "Pl_ASCII85Decoder read z");
 unsigned char zeroes[4];
 memset(zeroes, '\0', 4);
		 getNext()->write(zeroes, 4);
		}
		break;

	 default:
		if ((buf[i] < 33) || (buf[i] > 117))
		{
		 throw std::runtime_error(
			"character out of range during base 85 decode");
		}
		else
		{
		 this->inbuf[this->pos++] = buf[i];
		 if (pos == 5)
		 {
			flush();
		 }
		}
		break;
	 }
	}
 }
}

void
Pl_ASCII85Decoder::flush()
{
 if (this->pos == 0)
 {
	QTC::TC("libtests", "Pl_ASCII85Decoder no-op flush");
	return;
 }
 unsigned long lval = 0;
 for (int i = 0; i < 5; ++i)
 {
	lval *= 85;
	lval += (this->inbuf[i] - 33);
 }

 unsigned char outbuf[4];
 memset(outbuf, 0, 4);
 for (int i = 3; i >= 0; --i)
 {
	outbuf[i] = lval & 0xff;
	lval >>= 8;
 }

 QTC::TC("libtests", "Pl_ASCII85Decoder partial flush",
	 (this->pos == 5) ? 0 : 1);
 getNext()->write(outbuf, this->pos - 1);

 this->pos = 0;
 memset(this->inbuf, 117, 5);
}

void
Pl_ASCII85Decoder::finish()
{
 flush();
 getNext()->finish();
}

qpdf-7.1.0/libqpdf/Pl_Concatenate.cc

#include <qpdf/Pl_Concatenate.hh>

Pl_Concatenate::Pl_Concatenate(char const* identifier, Pipeline* next) :
 Pipeline(identifier, next)
{
}

Pl_Concatenate::~Pl_Concatenate()
{
}

void
Pl_Concatenate::write(unsigned char* data, size_t len)
{
 getNext()->write(data, len);
}

void
Pl_Concatenate::finish()
{
}

void
Pl_Concatenate::manualFinish()
{
 getNext()->finish();
}

qpdf-7.1.0/libqpdf/QPDF_Null.cc

#include <qpdf/QPDF_Null.hh>

QPDF_Null::~QPDF_Null()
{
}

std::string
QPDF_Null::unparse()
{
 return "null";
}

QPDFObject::object_type_e
QPDF_Null::getTypeCode() const
{
 return QPDFObject::ot_null;
}

char const*
QPDF_Null::getTypeName() const
{
 return "null";
}

qpdf-7.1.0/libqpdf/QPDF_linearization.cc

qpdf-7.1.0/libqpdf/QPDF_linearization.cc

// See doc/linearization.

#include <qpdf/QPDF.hh>

#include <qpdf/QPDFExc.hh>

#include <qpdf/QTC.hh>

#include <qpdf/QUtil.hh>

#include <qpdf/Pl_Buffer.hh>

#include <qpdf/Pl_Flate.hh>

#include <qpdf/Pl_Count.hh>

#include <qpdf/BitWriter.hh>

#include <qpdf/BitStream.hh>

#include <iostream>

#include <algorithm>

#include <assert.h>

#include <math.h>

#include <string.h>

template <class T, class int_type>

static void

load_vector_int(BitStream& bit_stream, int nitems, std::vector<T>& vec,

 int bits_wanted, int_type T::*field)

{

 bool append = vec.empty();

 // nitems times, read bits_wanted from the given bit stream,

 // storing results in the ith vector entry.

 for (int i = 0; i < nitems; ++i)

 {

 if (append)

 {

 vec.push_back(T());

 }

 vec.at(i).*field = bit_stream.getBits(bits_wanted);

 }

 if (static_cast<int>(vec.size()) != nitems)

 {

 throw std::logic_error("vector has wrong size in load_vector_int");

 }

 // The PDF spec says that each hint table starts at a byte

 // boundary. Each "row" actually must start on a byte boundary.

 bit_stream.skipToNextByte();

}

template <class T>

static void

load_vector_vector(BitStream& bit_stream,

 int nitems1, std::vector<T>& vec1, int T::*nitems2,

 int bits_wanted, std::vector<int> T::*vec2)

{

 // nitems1 times, read nitems2 (from the ith element of vec1) items

 // into the vec2 vector field of the ith item of vec1.

 for (int i1 = 0; i1 < nitems1; ++i1)

 {

 for (int i2 = 0; i2 < vec1.at(i1).*nitems2; ++i2)

 {

 (vec1.at(i1).*vec2).push_back(bit_stream.getBits(bits_wanted));

 }

 }

 bit_stream.skipToNextByte();

}

bool

QPDF::checkLinearization()

{

 bool result = false;

 try

 {

 readLinearizationData();

 result = checkLinearizationInternal();

 }

 catch (QPDFExc& e)

 {

 *this->m->out_stream << e.what() << std::endl;

 }

 return result;

}

bool

QPDF::isLinearized()

{

 // If the first object in the file is a dictionary with a suitable

 // /Linearized key and has an /L key that accurately indicates the

 // file size, initialize this->m->lindict and return true.

 // A linearized PDF spec's first object will be contained within

 // the first 1024 bytes of the file and will be a dictionary with

 // a valid /Linearized key. This routine looks for that and does

 // no additional validation.

 // The PDF spec says the linearization dictionary must be

 // completely contained within the first 1024 bytes of the file.

 // Add a byte for a null terminator.

 static int const tbuf_size = 1025;

 char* buf = new char[tbuf_size];

 this->m->file->seek(0, SEEK_SET);

 PointerHolder<char> b(true, buf);

 memset(buf, '\0', tbuf_size);

 this->m->file->read(buf, tbuf_size - 1);

 int lindict_obj = -1;

 char* p = buf;

 while (lindict_obj == -1)

 {

 // Find a digit or end of buffer

 while (((p - buf) < tbuf_size) && (! QUtil::is_digit(*p)))

 {

 ++p;

 }

 if (p - buf == tbuf_size)

 {

 break;

 }

 // Seek to the digit. Then skip over digits for a potential

 // next iteration.

 this->m->file->seek(p - buf, SEEK_SET);

 while (((p - buf) < tbuf_size) && QUtil::is_digit(*p))

 {

 ++p;

 }

 QPDFTokenizer::Token t1 = readToken(this->m->file, true);

 QPDFTokenizer::Token t2 = readToken(this->m->file, true);

 QPDFTokenizer::Token t3 = readToken(this->m->file, true);

 QPDFTokenizer::Token t4 = readToken(this->m->file, true);

 if ((t1.getType() == QPDFTokenizer::tt_integer) &&

 (t2.getType() == QPDFTokenizer::tt_integer) &&

 (t3 == QPDFTokenizer::Token(QPDFTokenizer::tt_word, "obj")) &&

 (t4.getType() == QPDFTokenizer::tt_dict_open))

 {

 lindict_obj =

 static_cast<int>(QUtil::string_to_ll(t1.getValue().c_str()));

 }

 }

 if (lindict_obj <= 0)

 {

 return false;

 }

 QPDFObjectHandle candidate = QPDFObjectHandle::Factory::newIndirect(

 this, lindict_obj, 0);

 if (! candidate.isDictionary())

 {

 return false;

 }

 QPDFObjectHandle linkey = candidate.getKey("/Linearized");

 if (! (linkey.isNumber() &&

 (static_cast<int>(floor(linkey.getNumericValue())) == 1)))

 {

 return false;

 }

 QPDFObjectHandle L = candidate.getKey("/L");

 if (L.isInteger())

 {

 qpdf_offset_t Li = L.getIntValue();

 this->m->file->seek(0, SEEK_END);

 if (Li != this->m->file->tell())

 {

 QTC::TC("qpdf", "QPDF /L mismatch");

 return false;

 }

 else

 {

 this->m->linp.file_size = Li;

 }

 }

 this->m->lindict = candidate;

 return true;

}

void

QPDF::readLinearizationData()

{

 // This function throws an exception (which is trapped by

 // checkLinearization()) for any errors that prevent loading.

 // Hint table parsing code needs at least 32 bits in a long.

 assert(sizeof(long) >= 4);

 if (! isLinearized())

 {

 throw std::logic_error("called readLinearizationData for file"

 " that is not linearized");

 }

 // /L is read and stored in linp by isLinearized()

 QPDFObjectHandle H = this->m->lindict.getKey("/H");

 QPDFObjectHandle O = this->m->lindict.getKey("/O");

 QPDFObjectHandle E = this->m->lindict.getKey("/E");

 QPDFObjectHandle N = this->m->lindict.getKey("/N");

 QPDFObjectHandle T = this->m->lindict.getKey("/T");

 QPDFObjectHandle P = this->m->lindict.getKey("/P");

 if (! (H.isArray() &&

 O.isInteger() &&

 E.isInteger() &&

 N.isInteger() &&

 T.isInteger() &&

 (P.isInteger() || P.isNull())))

 {

 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 "linearization dictionary",

 this->m->file->getLastOffset(),

 "some keys in linearization dictionary are of "

 "the wrong type");

 }

 // Hint table array: offset length [offset length]

 unsigned int n_H_items = H.getArrayNItems();

 if (! ((n_H_items == 2) || (n_H_items == 4)))

 {

 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 "linearization dictionary",

 this->m->file->getLastOffset(),

 "H has the wrong number of items");

 }

 std::vector<int> H_items;

 for (unsigned int i = 0; i < n_H_items; ++i)

 {

 QPDFObjectHandle oh(H.getArrayItem(i));

 if (oh.isInteger())

 {

 H_items.push_back(oh.getIntValue());

 }

 else

 {

 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 "linearization dictionary",

 this->m->file->getLastOffset(),

 "some H items are of the wrong type");

 }

 }

 // H: hint table offset/length for primary and overflow hint tables

 int H0_offset = H_items.at(0);

 int H0_length = H_items.at(1);

 int H1_offset = 0;

 int H1_length = 0;

 if (H_items.size() == 4)

 {

 // Acrobat doesn't read or write these (as PDF 1.4), so we

 // don't have a way to generate a test case.

 // QTC::TC("qpdf", "QPDF overflow hint table");

 H1_offset = H_items.at(2);

 H1_length = H_items.at(3);

 }

 // P: first page number

 int first_page = 0;

 if (P.isInteger())

 {

 QTC::TC("qpdf", "QPDF P present in lindict");

 first_page = P.getIntValue();

 }

 else

 {

 QTC::TC("qpdf", "QPDF P absent in lindict");

 }

 // Store linearization parameter data

 // Various places in the code use linp.npages, which is

 // initialized from N, to pre-allocate memory, so make sure it's

 // accurate and bail right now if it's not.

 if (N.getIntValue() != static_cast<long long>(getAllPages().size()))

 {

 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 "linearization hint table",

 this->m->file->getLastOffset(),

 "/N does not match number of pages");

 }

 // file_size initialized by isLinearized()

 this->m->linp.first_page_object = O.getIntValue();

 this->m->linp.first_page_end = E.getIntValue();

 this->m->linp.npages = N.getIntValue();

 this->m->linp.xref_zero_offset = T.getIntValue();

 this->m->linp.first_page = first_page;

 this->m->linp.H_offset = H0_offset;

 this->m->linp.H_length = H0_length;

 // Read hint streams

 Pl_Buffer pb("hint buffer");

 QPDFObjectHandle H0 = readHintStream(pb, H0_offset, H0_length);

 if (H1_offset)

 {

 (void) readHintStream(pb, H1_offset, H1_length);

 }

 // PDF 1.4 hint tables that we ignore:

 // /T thumbnail

 // /A thread information

 // /E named destination

 // /V interactive form

 // /I information dictionary

 // /C logical structure

 // /L page label

 // Individual hint table offsets

 QPDFObjectHandle HS = H0.getKey("/S"); // shared object

 QPDFObjectHandle HO = H0.getKey("/O"); // outline

 PointerHolder<Buffer> hbp = pb.getBuffer();

 Buffer* hb = hbp.getPointer();

 unsigned char const* h_buf = hb->getBuffer();

 int h_size = hb->getSize();

 readHPageOffset(BitStream(h_buf, h_size));

 int HSi = HS.getIntValue();

 if ((HSi < 0) || (HSi >= h_size))

 {

 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 "linearization hint table",

 this->m->file->getLastOffset(),

 "/S (shared object) offset is out of bounds");

 }

 readHSharedObject(BitStream(h_buf + HSi, h_size - HSi));

 if (HO.isInteger())

 {

 int HOi = HO.getIntValue();

 if ((HOi < 0) || (HOi >= h_size))

 {

 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 "linearization hint table",

 this->m->file->getLastOffset(),

 "/O (outline) offset is out of bounds");

 }

 readHGeneric(BitStream(h_buf + HOi, h_size - HOi),

 this->m->outline_hints);

 }

}

QPDFObjectHandle

QPDF::readHintStream(Pipeline& pl, qpdf_offset_t offset, size_t length)

{

 int obj;

 int gen;

 QPDFObjectHandle H = readObjectAtOffset(

 false, offset, "linearization hint stream", -1, 0, obj, gen);

 ObjCache& oc = this->m->obj_cache[QPDFObjGen(obj, gen)];

 qpdf_offset_t min_end_offset = oc.end_before_space;

 qpdf_offset_t max_end_offset = oc.end_after_space;

 if (! H.isStream())

 {

 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 "linearization dictionary",

 this->m->file->getLastOffset(),

 "hint table is not a stream");

 }

 QPDFObjectHandle Hdict = H.getDict();

 // Some versions of Acrobat make /Length indirect and place it

 // immediately after the stream, increasing length to cover it,

 // even though the specification says all objects in the

 // linearization parameter dictionary must be direct. We have to

 // get the file position of the end of length in this case.

 QPDFObjectHandle length_obj = Hdict.getKey("/Length");

 if (length_obj.isIndirect())

 {

 QTC::TC("qpdf", "QPDF hint table length indirect");

 // Force resolution

 (void) length_obj.getIntValue();

 ObjCache& oc = this->m->obj_cache[length_obj.getObjGen()];

 min_end_offset = oc.end_before_space;

 max_end_offset = oc.end_after_space;

 }

 else

 {

 QTC::TC("qpdf", "QPDF hint table length direct");

 }

 qpdf_offset_t computed_end = offset + length;

 if ((computed_end < min_end_offset) ||

 (computed_end > max_end_offset))

 {

 *this->m->out_stream << "expected = " << computed_end

 << "; actual = " << min_end_offset << ".."

 << max_end_offset << std::endl;

 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 "linearization dictionary",

 this->m->file->getLastOffset(),

 "hint table length mismatch");

 }

 H.pipeStreamData(&pl, 0, qpdf_dl_specialized);

 return Hdict;

}

void

QPDF::readHPageOffset(BitStream h)

{

 // All comments referring to the PDF spec refer to the spec for

 // version 1.4.

 HPageOffset& t = this->m->page_offset_hints;

 t.min_nobjects = h.getBits(32); // 1

 t.first_page_offset = h.getBits(32); // 2

 t.nbits_delta_nobjects = h.getBits(16); // 3

 t.min_page_length = h.getBits(32); // 4

 t.nbits_delta_page_length = h.getBits(16); // 5

 t.min_content_offset = h.getBits(32); // 6

 t.nbits_delta_content_offset = h.getBits(16); // 7

 t.min_content_length = h.getBits(32); // 8

 t.nbits_delta_content_length = h.getBits(16); // 9

 t.nbits_nshared_objects = h.getBits(16); // 10

 t.nbits_shared_identifier = h.getBits(16); // 11

 t.nbits_shared_numerator = h.getBits(16); // 12

 t.shared_denominator = h.getBits(16); // 13

 std::vector<HPageOffsetEntry>& entries = t.entries;

 entries.clear();

 unsigned int nitems = this->m->linp.npages;

 load_vector_int(h, nitems, entries,

 t.nbits_delta_nobjects,

 &HPageOffsetEntry::delta_nobjects);

 load_vector_int(h, nitems, entries,

 t.nbits_delta_page_length,

 &HPageOffsetEntry::delta_page_length);

 load_vector_int(h, nitems, entries,

 t.nbits_nshared_objects,

 &HPageOffsetEntry::nshared_objects);

 load_vector_vector(h, nitems, entries,

 &HPageOffsetEntry::nshared_objects,

 t.nbits_shared_identifier,

 &HPageOffsetEntry::shared_identifiers);

 load_vector_vector(h, nitems, entries,

 &HPageOffsetEntry::nshared_objects,

 t.nbits_shared_numerator,

 &HPageOffsetEntry::shared_numerators);

 load_vector_int(h, nitems, entries,

 t.nbits_delta_content_offset,

 &HPageOffsetEntry::delta_content_offset);

 load_vector_int(h, nitems, entries,

 t.nbits_delta_content_length,

 &HPageOffsetEntry::delta_content_length);

}

void

QPDF::readHSharedObject(BitStream h)

{

 HSharedObject& t = this->m->shared_object_hints;

 t.first_shared_obj = h.getBits(32); // 1

 t.first_shared_offset = h.getBits(32); // 2

 t.nshared_first_page = h.getBits(32); // 3

 t.nshared_total = h.getBits(32); // 4

 t.nbits_nobjects = h.getBits(16); // 5

 t.min_group_length = h.getBits(32); // 6

 t.nbits_delta_group_length = h.getBits(16); // 7

 QTC::TC("qpdf", "QPDF lin nshared_total > nshared_first_page",

 (t.nshared_total > t.nshared_first_page) ? 1 : 0);

 std::vector<HSharedObjectEntry>& entries = t.entries;

 entries.clear();

 int nitems = t.nshared_total;

 load_vector_int(h, nitems, entries,

 t.nbits_delta_group_length,

 &HSharedObjectEntry::delta_group_length);

 load_vector_int(h, nitems, entries,

 1, &HSharedObjectEntry::signature_present);

 for (int i = 0; i < nitems; ++i)

 {

 if (entries.at(i).signature_present)

 {

 // Skip 128-bit MD5 hash. These are not supported by

 // acrobat, so they should probably never be there. We

 // have no test case for this.

 for (int j = 0; j < 4; ++j)

 {

 (void) h.getBits(32);

 }

 }

 }

 load_vector_int(h, nitems, entries,

 t.nbits_nobjects,

 &HSharedObjectEntry::nobjects_minus_one);

}

void

QPDF::readHGeneric(BitStream h, HGeneric& t)

{

 t.first_object = h.getBits(32); // 1

 t.first_object_offset = h.getBits(32); // 2

 t.nobjects = h.getBits(32); // 3

 t.group_length = h.getBits(32); // 4

}

bool

QPDF::checkLinearizationInternal()

{

 // All comments referring to the PDF spec refer to the spec for

 // version 1.4.

 std::list<std::string> errors;

 std::list<std::string> warnings;

 // Check all values in linearization parameter dictionary

 LinParameters& p = this->m->linp;

 // L: file size in bytes -- checked by isLinearized

 // O: object number of first page

 std::vector<QPDFObjectHandle> const& pages = getAllPages();

 if (p.first_page_object != pages.at(0).getObjectID())

 {

 QTC::TC("qpdf", "QPDF err /O mismatch");

 errors.push_back("first page object (/O) mismatch");

 }

 // N: number of pages

 int npages = pages.size();

 if (p.npages != npages)

 {

 // Not tested in the test suite

 errors.push_back("page count (/N) mismatch");

 }

 for (int i = 0; i < npages; ++i)

 {

 QPDFObjectHandle const& page = pages.at(i);

 QPDFObjGen og(page.getObjGen());

 if (this->m->xref_table[og].getType() == 2)

 {

 errors.push_back("page dictionary for page " +

 QUtil::int_to_string(i) + " is compressed");

 }

 }

 // T: offset of whitespace character preceding xref entry for object 0

 this->m->file->seek(p.xref_zero_offset, SEEK_SET);

 while (1)

 {

 char ch;

 this->m->file->read(&ch, 1);

 if (! ((ch == ' ') || (ch == '\r') || (ch == '\n')))

 {

 this->m->file->seek(-1, SEEK_CUR);

 break;

 }

 }

 if (this->m->file->tell() != this->m->first_xref_item_offset)

 {

 QTC::TC("qpdf", "QPDF err /T mismatch");

 errors.push_back("space before first xref item (/T) mismatch "

 "(computed = " +

 QUtil::int_to_string(this->m->first_xref_item_offset) +

 "; file = " +

 QUtil::int_to_string(this->m->file->tell()));

 }

 // P: first page number -- Implementation note 124 says Acrobat

 // ignores this value, so we will too.

 // Check numbering of compressed objects in each xref section.

 // For linearized files, all compressed objects are supposed to be

 // at the end of the containing xref section if any object streams

 // are in use.

 if (this->m->uncompressed_after_compressed)

 {

 errors.push_back("linearized file contains an uncompressed object"

 " after a compressed one in a cross-reference stream");

 }

 // Further checking requires optimization and order calculation.

 // Don't allow optimization to make changes. If it has to, then

 // the file is not properly linearized. We use the xref table to

 // figure out which objects are compressed and which are

 // uncompressed.

 { // local scope

 std::map<int, int> object_stream_data;

 for (std::map<QPDFObjGen, QPDFXRefEntry>::const_iterator iter =

 this->m->xref_table.begin();

 iter != this->m->xref_table.end(); ++iter)

 {

 QPDFObjGen const& og = (*iter).first;

 QPDFXRefEntry const& entry = (*iter).second;

 if (entry.getType() == 2)

 {

 object_stream_data[og.getObj()] = entry.getObjStreamNumber();

 }

 }

 optimize(object_stream_data, false);

 calculateLinearizationData(object_stream_data);

 }

 // E: offset of end of first page -- Implementation note 123 says

 // Acrobat includes on extra object here by mistake. pdlin fails

 // to place thumbnail images in section 9, so when thumbnails are

 // present, it also gets the wrong value for /E. It also doesn't

 // count outlines here when it should even though it places them

 // in part 6. This code fails to put thread information

 // dictionaries in part 9, so it actually gets the wrong value for

 // E when threads are present. In that case, it would probably

 // agree with pdlin. As of this writing, the test suite doesn't

 // contain any files with threads.

 if (this->m->part6.empty())

 {

 throw std::logic_error("linearization part 6 unexpectedly empty");

 }

 qpdf_offset_t min_E = -1;

 qpdf_offset_t max_E = -1;

 for (std::vector<QPDFObjectHandle>::iterator iter = this->m->part6.begin();

 iter != this->m->part6.end(); ++iter)

 {

 QPDFObjGen og((*iter).getObjGen());

 if (this->m->obj_cache.count(og) == 0)

 {

 // All objects have to have been dereferenced to be classified.

 throw std::logic_error("linearization part6 object not in cache");

 }

 ObjCache const& oc = this->m->obj_cache[og];

 min_E = std::max(min_E, oc.end_before_space);

 max_E = std::max(max_E, oc.end_after_space);

 }

 if ((p.first_page_end < min_E) || (p.first_page_end > max_E))

 {

 QTC::TC("qpdf", "QPDF warn /E mismatch");

 warnings.push_back("end of first page section (/E) mismatch: /E = " +

 QUtil::int_to_string(p.first_page_end) +

 "; computed = " +

 QUtil::int_to_string(min_E) + ".." +

 QUtil::int_to_string(max_E));

 }

 // Check hint tables

 std::map<int, int> shared_idx_to_obj;

 checkHSharedObject(errors, warnings, pages, shared_idx_to_obj);

 checkHPageOffset(errors, warnings, pages, shared_idx_to_obj);

 checkHOutlines(warnings);

 // Report errors

 bool result = true;

 if (! errors.empty())

 {

 result = false;

 for (std::list<std::string>::iterator iter = errors.begin();

 iter != errors.end(); ++iter)

 {

 *this->m->out_stream << "ERROR: " << (*iter) << std::endl;

 }

 }

 if (! warnings.empty())

 {

 result = false;

 for (std::list<std::string>::iterator iter = warnings.begin();

 iter != warnings.end(); ++iter)

 {

 *this->m->out_stream << "WARNING: " << (*iter) << std::endl;

 }

 }

 return result;

}

qpdf_offset_t

QPDF::maxEnd(ObjUser const& ou)

{

 assert(this->m->obj_user_to_objects.count(ou) > 0);

 std::set<QPDFObjGen> const& ogs = this->m->obj_user_to_objects[ou];

 qpdf_offset_t end = 0;

 for (std::set<QPDFObjGen>::const_iterator iter = ogs.begin();

 iter != ogs.end(); ++iter)

 {

 QPDFObjGen const& og = *iter;

 assert(this->m->obj_cache.count(og) > 0);

 end = std::max(end, this->m->obj_cache[og].end_after_space);

 }

 return end;

}

qpdf_offset_t

QPDF::getLinearizationOffset(QPDFObjGen const& og)

{

 QPDFXRefEntry entry = this->m->xref_table[og];

 qpdf_offset_t result = 0;

 switch (entry.getType())

 {

 case 1:

 result = entry.getOffset();

 break;

 case 2:

 // For compressed objects, return the offset of the object

 // stream that contains them.

 result = getLinearizationOffset(

 QPDFObjGen(entry.getObjStreamNumber(), 0));

 break;

 default:

 throw std::logic_error(

 "getLinearizationOffset called for xref entry not of type 1 or 2");

 break;

 }

 return result;

}

QPDFObjectHandle

QPDF::getUncompressedObject(QPDFObjectHandle& obj,

 std::map<int, int> const& object_stream_data)

{

 if (obj.isNull() || (object_stream_data.count(obj.getObjectID()) == 0))

 {

 return obj;

 }

 else

 {

 int repl = (*(object_stream_data.find(obj.getObjectID()))).second;

 return objGenToIndirect(QPDFObjGen(repl, 0));

 }

}

int

QPDF::lengthNextN(int first_object, int n,

 std::list<std::string>& errors)

{

 int length = 0;

 for (int i = 0; i < n; ++i)

 {

 QPDFObjGen og(first_object + i, 0);

 if (this->m->xref_table.count(og) == 0)

 {

 errors.push_back(

 "no xref table entry for " +

 QUtil::int_to_string(first_object + i) + " 0");

 }

 else

 {

 assert(this->m->obj_cache.count(og) > 0);

 length += this->m->obj_cache[og].end_after_space -

 getLinearizationOffset(og);

 }

 }

 return length;

}

void

QPDF::checkHPageOffset(std::list<std::string>& errors,

 std::list<std::string>& warnings,

 std::vector<QPDFObjectHandle> const& pages,

 std::map<int, int>& shared_idx_to_obj)

{

 // Implementation note 126 says Acrobat always sets

 // delta_content_offset and delta_content_length in the page

 // offset header dictionary to 0. It also states that

 // min_content_offset in the per-page information is always 0,

 // which is an incorrect value.

 // Implementation note 127 explains that Acrobat always sets item

 // 8 (min_content_length) to zero, item 9

 // (nbits_delta_content_length) to the value of item 5

 // (nbits_delta_page_length), and item 7 of each per-page hint

 // table (delta_content_length) to item 2 (delta_page_length) of

 // that entry. Acrobat ignores these values when reading files.

 // Empirically, it also seems that Acrobat sometimes puts items

 // under a page's /Resources dictionary in with shared objects

 // even when they are private.

 unsigned int npages = pages.size();

 int table_offset = adjusted_offset(

 this->m->page_offset_hints.first_page_offset);

 QPDFObjGen first_page_og(pages.at(0).getObjGen());

 assert(this->m->xref_table.count(first_page_og) > 0);

 int offset = getLinearizationOffset(first_page_og);

 if (table_offset != offset)

 {

 warnings.push_back("first page object offset mismatch");

 }

 for (unsigned int pageno = 0; pageno < npages; ++pageno)

 {

 QPDFObjGen page_og(pages.at(pageno).getObjGen());

 int first_object = page_og.getObj();

 assert(this->m->xref_table.count(page_og) > 0);

 offset = getLinearizationOffset(page_og);

 HPageOffsetEntry& he = this->m->page_offset_hints.entries.at(pageno);

 CHPageOffsetEntry& ce = this->m->c_page_offset_data.entries.at(pageno);

 int h_nobjects = he.delta_nobjects +

 this->m->page_offset_hints.min_nobjects;

 if (h_nobjects != ce.nobjects)

 {

 // This happens with pdlin when there are thumbnails.

 warnings.push_back(

 "object count mismatch for page " +

 QUtil::int_to_string(pageno) + ": hint table = " +

 QUtil::int_to_string(h_nobjects) + "; computed = " +

 QUtil::int_to_string(ce.nobjects));

 }

 // Use value for number of objects in hint table rather than

 // computed value if there is a discrepancy.

 int length = lengthNextN(first_object, h_nobjects, errors);

 int h_length = he.delta_page_length +

 this->m->page_offset_hints.min_page_length;

 if (length != h_length)

 {

 // This condition almost certainly indicates a bad hint

 // table or a bug in this code.

 errors.push_back(

 "page length mismatch for page " +

 QUtil::int_to_string(pageno) + ": hint table = " +

 QUtil::int_to_string(h_length) + "; computed length = " +

 QUtil::int_to_string(length) + " (offset = " +

 QUtil::int_to_string(offset) + ")");

 }

 offset += h_length;

 // Translate shared object indexes to object numbers.

 std::set<int> hint_shared;

 std::set<int> computed_shared;

 if ((pageno == 0) && (he.nshared_objects > 0))

 {

 // pdlin and Acrobat both do this even though the spec

 // states clearly and unambiguously that they should not.

 warnings.push_back("page 0 has shared identifier entries");

 }

 for (int i = 0; i < he.nshared_objects; ++i)

 {

 int idx = he.shared_identifiers.at(i);

 if (shared_idx_to_obj.count(idx) == 0)

 {

 throw std::logic_error(

 "unable to get object for item in"

 " shared objects hint table");

 }

 hint_shared.insert(shared_idx_to_obj[idx]);

 }

 for (int i = 0; i < ce.nshared_objects; ++i)

 {

 int idx = ce.shared_identifiers.at(i);

 if (idx >= this->m->c_shared_object_data.nshared_total)

 {

 throw std::logic_error(

 "index out of bounds for shared object hint table");

 }

 int obj = this->m->c_shared_object_data.entries.at(idx).object;

 computed_shared.insert(obj);

 }

 for (std::set<int>::iterator iter = hint_shared.begin();

 iter != hint_shared.end(); ++iter)

 {

 if (! computed_shared.count(*iter))

 {

 // pdlin puts thumbnails here even though it shouldn't

 warnings.push_back(

 "page " + QUtil::int_to_string(pageno) +

 ": shared object " + QUtil::int_to_string(*iter) +

 ": in hint table but not computed list");

 }

 }

 for (std::set<int>::iterator iter = computed_shared.begin();

 iter != computed_shared.end(); ++iter)

 {

 if (! hint_shared.count(*iter))

 {

 // Acrobat does not put some things including at least

 // built-in fonts and procsets here, at least in some

 // cases.

 warnings.push_back(

 "page " + QUtil::int_to_string(pageno) +

 ": shared object " + QUtil::int_to_string(*iter) +

 ": in computed list but not hint table");

 }

 }

 }

}

void

QPDF::checkHSharedObject(std::list<std::string>& errors,

 std::list<std::string>& warnings,

 std::vector<QPDFObjectHandle> const& pages,

 std::map<int, int>& idx_to_obj)

{

 // Implementation note 125 says shared object groups always

 // contain only one object. Implementation note 128 says that

 // Acrobat always nbits_nobjects to zero. Implementation note 130

 // says that Acrobat does not support more than one shared object

 // per group. These are all consistent.

 // Implementation note 129 states that MD5 signatures are not

 // implemented in Acrobat, so signature_present must always be

 // zero.

 // Implementation note 131 states that first_shared_obj and

 // first_shared_offset have meaningless values for single-page

 // files.

 // Empirically, Acrobat and pdlin generate incorrect values for

 // these whenever there are no shared objects not referenced by

 // the first page (i.e., nshared_total == nshared_first_page).

 HSharedObject& so = this->m->shared_object_hints;

 if (so.nshared_total < so.nshared_first_page)

 {

 errors.push_back("shared object hint table: ntotal < nfirst_page");

 }

 else

 {

 // The first nshared_first_page objects are consecutive

 // objects starting with the first page object. The rest are

 // consecutive starting from the first_shared_obj object.

 int cur_object = pages.at(0).getObjectID();

 for (int i = 0; i < so.nshared_total; ++i)

 {

 if (i == so.nshared_first_page)

 {

 QTC::TC("qpdf", "QPDF lin check shared past first page");

 if (this->m->part8.empty())

 {

 errors.push_back(

 "part 8 is empty but nshared_total > "

 "nshared_first_page");

 }

 else

 {

 int obj = this->m->part8.at(0).getObjectID();

 if (obj != so.first_shared_obj)

 {

 errors.push_back(

 "first shared object number mismatch: "

 "hint table = " +

 QUtil::int_to_string(so.first_shared_obj) +

 "; computed = " +

 QUtil::int_to_string(obj));

 }

 }

 cur_object = so.first_shared_obj;

 QPDFObjGen og(cur_object, 0);

 assert(this->m->xref_table.count(og) > 0);

 int offset = getLinearizationOffset(og);

 int h_offset = adjusted_offset(so.first_shared_offset);

 if (offset != h_offset)

 {

 errors.push_back(

 "first shared object offset mismatch: hint table = " +

 QUtil::int_to_string(h_offset) + "; computed = " +

 QUtil::int_to_string(offset));

 }

 }

 idx_to_obj[i] = cur_object;

 HSharedObjectEntry& se = so.entries.at(i);

 int nobjects = se.nobjects_minus_one + 1;

 int length = lengthNextN(cur_object, nobjects, errors);

 int h_length = so.min_group_length + se.delta_group_length;

 if (length != h_length)

 {

 errors.push_back(

 "shared object " + QUtil::int_to_string(i) +

 " length mismatch: hint table = " +

 QUtil::int_to_string(h_length) + "; computed = " +

 QUtil::int_to_string(length));

 }

 cur_object += nobjects;

 }

 }

}

void

QPDF::checkHOutlines(std::list<std::string>& warnings)

{

 // Empirically, Acrobat generates the correct value for the object

 // number but incorrectly stores the next object number's offset

 // as the offset, at least when outlines appear in part 6. It

 // also generates an incorrect value for length (specifically, the

 // length that would cover the correct number of objects from the

 // wrong starting place). pdlin appears to generate correct

 // values in those cases.

 if (this->m->c_outline_data.nobjects == this->m->outline_hints.nobjects)

 {

 if (this->m->c_outline_data.nobjects == 0)

 {

 return;

 }

 if (this->m->c_outline_data.first_object ==

 this->m->outline_hints.first_object)

 {

 // Check length and offset. Acrobat gets these wrong.

 QPDFObjectHandle outlines = getRoot().getKey("/Outlines");

 if (! outlines.isIndirect())

 {

 // This case is not exercised in test suite since not

 // permitted by the spec, but if this does occur, the

 // code below would fail.

 warnings.push_back(

 "/Outlines key of root dictionary is not indirect");

 return;

 }

 QPDFObjGen og(outlines.getObjGen());

 assert(this->m->xref_table.count(og) > 0);

 int offset = getLinearizationOffset(og);

 ObjUser ou(ObjUser::ou_root_key, "/Outlines");

 int length = maxEnd(ou) - offset;

 int table_offset =

 adjusted_offset(this->m->outline_hints.first_object_offset);

 if (offset != table_offset)

 {

 warnings.push_back(

 "incorrect offset in outlines table: hint table = " +

 QUtil::int_to_string(table_offset) +

 "; computed = " + QUtil::int_to_string(offset));

 }

 int table_length = this->m->outline_hints.group_length;

 if (length != table_length)

 {

 warnings.push_back(

 "incorrect length in outlines table: hint table = " +

 QUtil::int_to_string(table_length) +

 "; computed = " + QUtil::int_to_string(length));

 }

 }

 else

 {

 warnings.push_back("incorrect first object number in outline "

 "hints table.");

 }

 }

 else

 {

 warnings.push_back("incorrect object count in outline hint table");

 }

}

void

QPDF::showLinearizationData()

{

 try

 {

 readLinearizationData();

 checkLinearizationInternal();

 dumpLinearizationDataInternal();

 }

 catch (QPDFExc& e)

 {

 *this->m->out_stream << e.what() << std::endl;

 }

}

void

QPDF::dumpLinearizationDataInternal()

{

 *this->m->out_stream

 << this->m->file->getName() << ": linearization data:" << std::endl

 << std::endl;

 *this->m->out_stream

 << "file_size: " << this->m->linp.file_size << std::endl

 << "first_page_object: " << this->m->linp.first_page_object << std::endl

 << "first_page_end: " << this->m->linp.first_page_end << std::endl

 << "npages: " << this->m->linp.npages << std::endl

 << "xref_zero_offset: " << this->m->linp.xref_zero_offset << std::endl

 << "first_page: " << this->m->linp.first_page << std::endl

 << "H_offset: " << this->m->linp.H_offset << std::endl

 << "H_length: " << this->m->linp.H_length << std::endl

 << std::endl;

 *this->m->out_stream << "Page Offsets Hint Table" << std::endl

 << std::endl;

 dumpHPageOffset();

 *this->m->out_stream << std::endl

 << "Shared Objects Hint Table" << std::endl

 << std::endl;

 dumpHSharedObject();

 if (this->m->outline_hints.nobjects > 0)

 {

 *this->m->out_stream << std::endl

 << "Outlines Hint Table" << std::endl

 << std::endl;

 dumpHGeneric(this->m->outline_hints);

 }

}

int

QPDF::adjusted_offset(int offset)

{

 // All offsets >= H_offset have to be increased by H_length

 // since all hint table location values disregard the hint table

 // itself.

 if (offset >= this->m->linp.H_offset)

 {

 return offset + this->m->linp.H_length;

 }

 return offset;

}

void

QPDF::dumpHPageOffset()

{

 HPageOffset& t = this->m->page_offset_hints;

 *this->m->out_stream

 << "min_nobjects: " << t.min_nobjects

 << std::endl

 << "first_page_offset: " << adjusted_offset(t.first_page_offset)

 << std::endl

 << "nbits_delta_nobjects: " << t.nbits_delta_nobjects

 << std::endl

 << "min_page_length: " << t.min_page_length

 << std::endl

 << "nbits_delta_page_length: " << t.nbits_delta_page_length

 << std::endl

 << "min_content_offset: " << t.min_content_offset

 << std::endl

 << "nbits_delta_content_offset: " << t.nbits_delta_content_offset

 << std::endl

 << "min_content_length: " << t.min_content_length

 << std::endl

 << "nbits_delta_content_length: " << t.nbits_delta_content_length

 << std::endl

 << "nbits_nshared_objects: " << t.nbits_nshared_objects

 << std::endl

 << "nbits_shared_identifier: " << t.nbits_shared_identifier

 << std::endl

 << "nbits_shared_numerator: " << t.nbits_shared_numerator

 << std::endl

 << "shared_denominator: " << t.shared_denominator

 << std::endl;

 for (int i1 = 0; i1 < this->m->linp.npages; ++i1)

 {

 HPageOffsetEntry& pe = t.entries.at(i1);

 *this->m->out_stream

 << "Page " << i1 << ":" << std::endl

 << " nobjects: " << pe.delta_nobjects + t.min_nobjects

 << std::endl

 << " length: " << pe.delta_page_length + t.min_page_length

 << std::endl

 // content offset is relative to page, not file

 << " content_offset: "

 << pe.delta_content_offset + t.min_content_offset << std::endl

 << " content_length: "

 << pe.delta_content_length + t.min_content_length << std::endl

 << " nshared_objects: " << pe.nshared_objects << std::endl;

 for (int i2 = 0; i2 < pe.nshared_objects; ++i2)

 {

 *this->m->out_stream << " identifier " << i2 << ": "

 << pe.shared_identifiers.at(i2) << std::endl;

 *this->m->out_stream << " numerator " << i2 << ": "

 << pe.shared_numerators.at(i2) << std::endl;

 }

 }

}

void

QPDF::dumpHSharedObject()

{

 HSharedObject& t = this->m->shared_object_hints;

 *this->m->out_stream

 << "first_shared_obj: " << t.first_shared_obj

 << std::endl

 << "first_shared_offset: " << adjusted_offset(t.first_shared_offset)

 << std::endl

 << "nshared_first_page: " << t.nshared_first_page

 << std::endl

 << "nshared_total: " << t.nshared_total

 << std::endl

 << "nbits_nobjects: " << t.nbits_nobjects

 << std::endl

 << "min_group_length: " << t.min_group_length

 << std::endl

 << "nbits_delta_group_length: " << t.nbits_delta_group_length

 << std::endl;

 for (int i = 0; i < t.nshared_total; ++i)

 {

 HSharedObjectEntry& se = t.entries.at(i);

 *this->m->out_stream

 << "Shared Object " << i << ":" << std::endl

 << " group length: "

 << se.delta_group_length + t.min_group_length << std::endl;

 // PDF spec says signature present nobjects_minus_one are

 // always 0, so print them only if they have a non-zero value.

 if (se.signature_present)

 {

 *this->m->out_stream << " signature present" << std::endl;

 }

 if (se.nobjects_minus_one != 0)

 {

 *this->m->out_stream << " nobjects: "

 << se.nobjects_minus_one + 1 << std::endl;

 }

 }

}

void

QPDF::dumpHGeneric(HGeneric& t)

{

 *this->m->out_stream

 << "first_object: " << t.first_object

 << std::endl

 << "first_object_offset: " << adjusted_offset(t.first_object_offset)

 << std::endl

 << "nobjects: " << t.nobjects

 << std::endl

 << "group_length: " << t.group_length

 << std::endl;

}

QPDFObjectHandle

QPDF::objGenToIndirect(QPDFObjGen const& og)

{

 return getObjectByID(og.getObj(), og.getGen());

}

void

QPDF::calculateLinearizationData(std::map<int, int> const& object_stream_data)

{

 // This function calculates the ordering of objects, divides them

 // into the appropriate parts, and computes some values for the

 // linearization parameter dictionary and hint tables. The file

 // must be optimized (via calling optimize()) prior to calling

 // this function. Note that actual offsets and lengths are not

 // computed here, but anything related to object ordering is.

 if (this->m->object_to_obj_users.empty())

 {

 // Note that we can't call optimize here because we don't know

 // whether it should be called with or without allow changes.

 throw std::logic_error(

 "INTERNAL ERROR: QPDF::calculateLinearizationData "

 "called before optimize()");

 }

 // Separate objects into the categories sufficient for us to

 // determine which part of the linearized file should contain the

 // object. This categorization is useful for other purposes as

 // well. Part numbers refer to version 1.4 of the PDF spec.

 // Parts 1, 3, 5, 10, and 11 don't contain any objects from the

 // original file (except the trailer dictionary in part 11).

 // Part 4 is the document catalog (root) and the following root

 // keys: /ViewerPreferences, /PageMode, /Threads, /OpenAction,

 // /AcroForm, /Encrypt. Note that Thread information dictionaries

 // are supposed to appear in part 9, but we are disregarding that

 // recommendation for now.

 // Part 6 is the first page section. It includes all remaining

 // objects referenced by the first page including shared objects

 // but not including thumbnails. Additionally, if /PageMode is

 // /Outlines, then information from /Outlines also appears here.

 // Part 7 contains remaining objects private to pages other than

 // the first page.

 // Part 8 contains all remaining shared objects except those that

 // are shared only within thumbnails.

 // Part 9 contains all remaining objects.

 // We sort objects into the following categories:

 // * open_document: part 4

 // * first_page_private: part 6

 // * first_page_shared: part 6

 // * other_page_private: part 7

 // * other_page_shared: part 8

 // * thumbnail_private: part 9

 // * thumbnail_shared: part 9

 // * other: part 9

 // * outlines: part 6 or 9

 this->m->part4.clear();

 this->m->part6.clear();

 this->m->part7.clear();

 this->m->part8.clear();

 this->m->part9.clear();

 this->m->c_linp = LinParameters();

 this->m->c_page_offset_data = CHPageOffset();

 this->m->c_shared_object_data = CHSharedObject();

 this->m->c_outline_data = HGeneric();

 QPDFObjectHandle root = getRoot();

 bool outlines_in_first_page = false;

 QPDFObjectHandle pagemode = root.getKey("/PageMode");

 QTC::TC("qpdf", "QPDF categorize pagemode present",

 pagemode.isName() ? 1 : 0);

 if (pagemode.isName())

 {

 if (pagemode.getName() == "/UseOutlines")

 {

 if (root.hasKey("/Outlines"))

 {

 outlines_in_first_page = true;

 }

 else

 {

 QTC::TC("qpdf", "QPDF UseOutlines but no Outlines");

 }

 }

 QTC::TC("qpdf", "QPDF categorize pagemode outlines",

 outlines_in_first_page ? 1 : 0);

 }

 std::set<std::string> open_document_keys;

 open_document_keys.insert("/ViewerPreferences");

 open_document_keys.insert("/PageMode");

 open_document_keys.insert("/Threads");

 open_document_keys.insert("/OpenAction");

 open_document_keys.insert("/AcroForm");

 std::set<QPDFObjGen> lc_open_document;

 std::set<QPDFObjGen> lc_first_page_private;

 std::set<QPDFObjGen> lc_first_page_shared;

 std::set<QPDFObjGen> lc_other_page_private;

 std::set<QPDFObjGen> lc_other_page_shared;

 std::set<QPDFObjGen> lc_thumbnail_private;

 std::set<QPDFObjGen> lc_thumbnail_shared;

 std::set<QPDFObjGen> lc_other;

 std::set<QPDFObjGen> lc_outlines;

 std::set<QPDFObjGen> lc_root;

 for (std::map<QPDFObjGen, std::set<ObjUser> >::iterator oiter =

 this->m->object_to_obj_users.begin();

 oiter != this->m->object_to_obj_users.end(); ++oiter)

 {

 QPDFObjGen const& og = (*oiter).first;

 std::set<ObjUser>& ous = (*oiter).second;

 bool in_open_document = false;

 bool in_first_page = false;

 int other_pages = 0;

 int thumbs = 0;

 int others = 0;

 bool in_outlines = false;

 bool is_root = false;

 for (std::set<ObjUser>::iterator uiter = ous.begin();

 uiter != ous.end(); ++uiter)

 {

 ObjUser const& ou = *uiter;

 switch (ou.ou_type)

 {

 case ObjUser::ou_trailer_key:

 if (ou.key == "/Encrypt")

 {

 in_open_document = true;

 }

 else

 {

 ++others;

 }

 break;

 case ObjUser::ou_thumb:

 ++thumbs;

 break;

 case ObjUser::ou_root_key:

 if (open_document_keys.count(ou.key) > 0)

 {

 in_open_document = true;

 }

 else if (ou.key == "/Outlines")

 {

 in_outlines = true;

 }

 else

 {

 ++others;

 }

 break;

 case ObjUser::ou_page:

 if (ou.pageno == 0)

 {

 in_first_page = true;

 }

 else

 {

 ++other_pages;

 }

 break;

 case ObjUser::ou_root:

 is_root = true;

 break;

 case ObjUser::ou_bad:

 throw std::logic_error(

 "INTERNAL ERROR: QPDF::calculateLinearizationData: "

 "invalid user type");

 break;

 }

 }

 if (is_root)

 {

 lc_root.insert(og);

 }

 else if (in_outlines)

 {

 lc_outlines.insert(og);

 }

 else if (in_open_document)

 {

 lc_open_document.insert(og);

 }

 else if ((in_first_page) &&

 (others == 0) && (other_pages == 0) && (thumbs == 0))

 {

 lc_first_page_private.insert(og);

 }

 else if (in_first_page)

 {

 lc_first_page_shared.insert(og);

 }

 else if ((other_pages == 1) && (others == 0) && (thumbs == 0))

 {

 lc_other_page_private.insert(og);

 }

 else if (other_pages > 1)

 {

 lc_other_page_shared.insert(og);

 }

 else if ((thumbs == 1) && (others == 0))

 {

 lc_thumbnail_private.insert(og);

 }

 else if (thumbs > 1)

 {

 lc_thumbnail_shared.insert(og);

 }

 else

 {

 lc_other.insert(og);

 }

 }

 // Generate ordering for objects in the output file. Sometimes we

 // just dump right from a set into a vector. Rather than

 // optimizing this by going straight into the vector, we'll leave

 // these phases separate for now. That way, this section can be

 // concerned only with ordering, and the above section can be

 // considered only with categorization. Note that sets of

 // QPDFObjGens are sorted by QPDFObjGen. In a linearized file,

 // objects appear in sequence with the possible exception of hints

 // tables which we won't see here anyway. That means that running

 // calculateLinearizationData() on a linearized file should give

 // results identical to the original file ordering.

 // We seem to traverse the page tree a lot in this code, but we

 // can address this for a future code optimization if necessary.

 // Premature optimization is the root of all evil.

 std::vector<QPDFObjectHandle> pages;

 { // local scope

 // Map all page objects to the containing object stream. This

 // should be a no-op in a properly linearized file.

 std::vector<QPDFObjectHandle> t = getAllPages();

 for (std::vector<QPDFObjectHandle>::iterator iter = t.begin();

 iter != t.end(); ++iter)

 {

 pages.push_back(getUncompressedObject(*iter, object_stream_data));

 }

 }

 unsigned int npages = pages.size();

 // We will be initializing some values of the computed hint

 // tables. Specifically, we can initialize any items that deal

 // with object numbers or counts but not any items that deal with

 // lengths or offsets. The code that writes linearized files will

 // have to fill in these values during the first pass. The

 // validation code can compute them relatively easily given the

 // rest of the information.

 // npages is the size of the existing pages vector, which has been

 // created by traversing the pages tree, and as such is a

 // reasonable size.

 this->m->c_linp.npages = npages;

 this->m->c_page_offset_data.entries =

 std::vector<CHPageOffsetEntry>(npages);

 // Part 4: open document objects. We don't care about the order.

 assert(lc_root.size() == 1);

 this->m->part4.push_back(objGenToIndirect(*(lc_root.begin())));

 for (std::set<QPDFObjGen>::iterator iter = lc_open_document.begin();

 iter != lc_open_document.end(); ++iter)

 {

 this->m->part4.push_back(objGenToIndirect(*iter));

 }

 // Part 6: first page objects. Note: implementation note 124

 // states that Acrobat always treats page 0 as the first page for

 // linearization regardless of /OpenAction. pdlin doesn't provide

 // any option to set this and also disregards /OpenAction. We

 // will do the same.

 // First, place the actual first page object itself.

 QPDFObjGen first_page_og(pages.at(0).getObjGen());

 if (! lc_first_page_private.count(first_page_og))

 {

 throw std::logic_error(

 "INTERNAL ERROR: QPDF::calculateLinearizationData: first page "

 "object not in lc_first_page_private");

 }

 lc_first_page_private.erase(first_page_og);

 this->m->c_linp.first_page_object = pages.at(0).getObjectID();

 this->m->part6.push_back(pages.at(0));

 // The PDF spec "recommends" an order for the rest of the objects,

 // but we are going to disregard it except to the extent that it

 // groups private and shared objects contiguously for the sake of

 // hint tables.

 for (std::set<QPDFObjGen>::iterator iter = lc_first_page_private.begin();

 iter != lc_first_page_private.end(); ++iter)

 {

 this->m->part6.push_back(objGenToIndirect(*iter));

 }

 for (std::set<QPDFObjGen>::iterator iter = lc_first_page_shared.begin();

 iter != lc_first_page_shared.end(); ++iter)

 {

 this->m->part6.push_back(objGenToIndirect(*iter));

 }

 // Place the outline dictionary if it goes in the first page section.

 if (outlines_in_first_page)

 {

 pushOutlinesToPart(this->m->part6, lc_outlines, object_stream_data);

 }

 // Fill in page offset hint table information for the first page.

 // The PDF spec says that nshared_objects should be zero for the

 // first page. pdlin does not appear to obey this, but it fills

 // in garbage values for all the shared object identifiers on the

 // first page.

 this->m->c_page_offset_data.entries.at(0).nobjects = this->m->part6.size();

 // Part 7: other pages' private objects

 // For each page in order:

 for (unsigned int i = 1; i < npages; ++i)

 {

 // Place this page's page object

 QPDFObjGen page_og(pages.at(i).getObjGen());

 if (! lc_other_page_private.count(page_og))

 {

 throw std::logic_error(

 "INTERNAL ERROR: "

 "QPDF::calculateLinearizationData: page object for page " +

 QUtil::int_to_string(i) + " not in lc_other_page_private");

 }

 lc_other_page_private.erase(page_og);

 this->m->part7.push_back(pages.at(i));

 // Place all non-shared objects referenced by this page,

 // updating the page object count for the hint table.

 this->m->c_page_offset_data.entries.at(i).nobjects = 1;

 ObjUser ou(ObjUser::ou_page, i);

 assert(this->m->obj_user_to_objects.count(ou) > 0);

 std::set<QPDFObjGen> ogs = this->m->obj_user_to_objects[ou];

 for (std::set<QPDFObjGen>::iterator iter = ogs.begin();

 iter != ogs.end(); ++iter)

 {

 QPDFObjGen const& og = (*iter);

 if (lc_other_page_private.count(og))

 {

 lc_other_page_private.erase(og);

 this->m->part7.push_back(objGenToIndirect(og));

 ++this->m->c_page_offset_data.entries.at(i).nobjects;

 }

 }

 }

 // That should have covered all part7 objects.

 if (! lc_other_page_private.empty())

 {

 throw std::logic_error(

 "INTERNAL ERROR:"

 " QPDF::calculateLinearizationData: lc_other_page_private is "

 "not empty after generation of part7");

 }

 // Part 8: other pages' shared objects

 // Order is unimportant.

 for (std::set<QPDFObjGen>::iterator iter = lc_other_page_shared.begin();

 iter != lc_other_page_shared.end(); ++iter)

 {

 this->m->part8.push_back(objGenToIndirect(*iter));

 }

 // Part 9: other objects

 // The PDF specification makes recommendations on ordering here.

 // We follow them only to a limited extent. Specifically, we put

 // the pages tree first, then private thumbnail objects in page

 // order, then shared thumbnail objects, and then outlines (unless

 // in part 6). After that, we throw all remaining objects in

 // arbitrary order.

 // Place the pages tree.

 std::set<QPDFObjGen> pages_ogs =

 this->m->obj_user_to_objects[ObjUser(ObjUser::ou_root_key, "/Pages")];

 assert(! pages_ogs.empty());

 for (std::set<QPDFObjGen>::iterator iter = pages_ogs.begin();

 iter != pages_ogs.end(); ++iter)

 {

 QPDFObjGen const& og = *iter;

 if (lc_other.count(og))

 {

 lc_other.erase(og);

 this->m->part9.push_back(objGenToIndirect(og));

 }

 }

 // Place private thumbnail images in page order. Slightly more

 // information would be required if we were going to bother with

 // thumbnail hint tables.

 for (unsigned int i = 0; i < npages; ++i)

 {

 QPDFObjectHandle thumb = pages.at(i).getKey("/Thumb");

 thumb = getUncompressedObject(thumb, object_stream_data);

 if (! thumb.isNull())

 {

 // Output the thumbnail itself

 QPDFObjGen thumb_og(thumb.getObjGen());

 if (lc_thumbnail_private.count(thumb_og))

 {

 lc_thumbnail_private.erase(thumb_og);

 this->m->part9.push_back(thumb);

 }

 else

 {

 // No internal error this time...there's nothing to

 // stop this object from having been referred to

 // somewhere else outside of a page's /Thumb, and if

 // it had been, there's nothing to prevent it from

 // having been in some set other than

 // lc_thumbnail_private.

 }

 std::set<QPDFObjGen>& ogs =

 this->m->obj_user_to_objects[ObjUser(ObjUser::ou_thumb, i)];

 for (std::set<QPDFObjGen>::iterator iter = ogs.begin();

 iter != ogs.end(); ++iter)

 {

 QPDFObjGen const& og = *iter;

 if (lc_thumbnail_private.count(og))

 {

 lc_thumbnail_private.erase(og);

 this->m->part9.push_back(objGenToIndirect(og));

 }

 }

 }

 }

 if (! lc_thumbnail_private.empty())

 {

 throw std::logic_error(

 "INTERNAL ERROR: "

 "QPDF::calculateLinearizationData: lc_thumbnail_private "

 "not empty after placing thumbnails");

 }

 // Place shared thumbnail objects

 for (std::set<QPDFObjGen>::iterator iter = lc_thumbnail_shared.begin();

 iter != lc_thumbnail_shared.end(); ++iter)

 {

 this->m->part9.push_back(objGenToIndirect(*iter));

 }

 // Place outlines unless in first page

 if (! outlines_in_first_page)

 {

 pushOutlinesToPart(this->m->part9, lc_outlines, object_stream_data);

 }

 // Place all remaining objects

 for (std::set<QPDFObjGen>::iterator iter = lc_other.begin();

 iter != lc_other.end(); ++iter)

 {

 this->m->part9.push_back(objGenToIndirect(*iter));

 }

 // Make sure we got everything exactly once.

 unsigned int num_placed =

 this->m->part4.size() + this->m->part6.size() + this->m->part7.size() +

 this->m->part8.size() + this->m->part9.size();

 unsigned int num_wanted = this->m->object_to_obj_users.size();

 if (num_placed != num_wanted)

 {

 throw std::logic_error(

 "INTERNAL ERROR: QPDF::calculateLinearizationData: wrong "

 "number of objects placed (num_placed = " +

 QUtil::int_to_string(num_placed) +

 "; number of objects: " +

 QUtil::int_to_string(num_wanted));

 }

 // Calculate shared object hint table information including

 // references to shared objects from page offset hint data.

 // The shared object hint table consists of all part 6 (whether

 // shared or not) in order followed by all part 8 objects in

 // order. Add the objects to shared object data keeping a map of

 // object number to index. Then populate the shared object

 // information for the pages.

 // Note that two objects never have the same object number, so we

 // can map from object number only without regards to generation.

 std::map<int, int> obj_to_index;

 this->m->c_shared_object_data.nshared_first_page = this->m->part6.size();

 this->m->c_shared_object_data.nshared_total =

 this->m->c_shared_object_data.nshared_first_page +

 this->m->part8.size();

 std::vector<CHSharedObjectEntry>& shared =

 this->m->c_shared_object_data.entries;

 for (std::vector<QPDFObjectHandle>::iterator iter = this->m->part6.begin();

 iter != this->m->part6.end(); ++iter)

 {

 QPDFObjectHandle& oh = *iter;

 int obj = oh.getObjectID();

 obj_to_index[obj] = shared.size();

 shared.push_back(CHSharedObjectEntry(obj));

 }

 QTC::TC("qpdf", "QPDF lin part 8 empty", this->m->part8.empty() ? 1 : 0);

 if (! this->m->part8.empty())

 {

 this->m->c_shared_object_data.first_shared_obj =

 this->m->part8.at(0).getObjectID();

 for (std::vector<QPDFObjectHandle>::iterator iter =

 this->m->part8.begin();

 iter != this->m->part8.end(); ++iter)

 {

 QPDFObjectHandle& oh = *iter;

 int obj = oh.getObjectID();

 obj_to_index[obj] = shared.size();

 shared.push_back(CHSharedObjectEntry(obj));

 }

 }

 if (static_cast<size_t>(this->m->c_shared_object_data.nshared_total) !=

 this->m->c_shared_object_data.entries.size())

 {

 throw std::logic_error(

 "shared object hint table has wrong number of entries");

 }

 // Now compute the list of shared objects for each page after the

 // first page.

 for (unsigned int i = 1; i < npages; ++i)

 {

 CHPageOffsetEntry& pe = this->m->c_page_offset_data.entries.at(i);

 ObjUser ou(ObjUser::ou_page, i);

 assert(this->m->obj_user_to_objects.count(ou) > 0);

 std::set<QPDFObjGen> const& ogs = this->m->obj_user_to_objects[ou];

 for (std::set<QPDFObjGen>::const_iterator iter = ogs.begin();

 iter != ogs.end(); ++iter)

 {

 QPDFObjGen const& og = *iter;

 if ((this->m->object_to_obj_users[og].size() > 1) &&

 (obj_to_index.count(og.getObj()) > 0))

 {

 int idx = obj_to_index[og.getObj()];

 ++pe.nshared_objects;

 pe.shared_identifiers.push_back(idx);

 }

 }

 }

}

void

QPDF::pushOutlinesToPart(

 std::vector<QPDFObjectHandle>& part,

 std::set<QPDFObjGen>& lc_outlines,

 std::map<int, int> const& object_stream_data)

{

 QPDFObjectHandle root = getRoot();

 QPDFObjectHandle outlines = root.getKey("/Outlines");

 if (outlines.isNull())

 {

 return;

 }

 outlines = getUncompressedObject(outlines, object_stream_data);

 QPDFObjGen outlines_og(outlines.getObjGen());

 QTC::TC("qpdf", "QPDF lin outlines in part",

 ((&part == (&this->m->part6)) ? 0

 : (&part == (&this->m->part9)) ? 1

 : 9999)); // can't happen

 this->m->c_outline_data.first_object = outlines_og.getObj();

 this->m->c_outline_data.nobjects = 1;

 lc_outlines.erase(outlines_og);

 part.push_back(outlines);

 for (std::set<QPDFObjGen>::iterator iter = lc_outlines.begin();

 iter != lc_outlines.end(); ++iter)

 {

 part.push_back(objGenToIndirect(*iter));

 ++this->m->c_outline_data.nobjects;

 }

}

void

QPDF::getLinearizedParts(

 std::map<int, int> const& object_stream_data,

 std::vector<QPDFObjectHandle>& part4,

 std::vector<QPDFObjectHandle>& part6,

 std::vector<QPDFObjectHandle>& part7,

 std::vector<QPDFObjectHandle>& part8,

 std::vector<QPDFObjectHandle>& part9)

{

 calculateLinearizationData(object_stream_data);

 part4 = this->m->part4;

 part6 = this->m->part6;

 part7 = this->m->part7;

 part8 = this->m->part8;

 part9 = this->m->part9;

}

static inline int nbits(int val)

{

 return (val == 0 ? 0 : (1 + nbits(val >> 1)));

}

int

QPDF::outputLengthNextN(

 int in_object, int n,

 std::map<int, qpdf_offset_t> const& lengths,

 std::map<int, int> const& obj_renumber)

{

 // Figure out the length of a series of n consecutive objects in

 // the output file starting with whatever object in_object from

 // the input file mapped to.

 assert(obj_renumber.count(in_object) > 0);

 int first = (*(obj_renumber.find(in_object))).second;

 int length = 0;

 for (int i = 0; i < n; ++i)

 {

 assert(lengths.count(first + i) > 0);

 length += (*(lengths.find(first + i))).second;

 }

 return length;

}

void

QPDF::calculateHPageOffset(

 std::map<int, QPDFXRefEntry> const& xref,

 std::map<int, qpdf_offset_t> const& lengths,

 std::map<int, int> const& obj_renumber)

{

 // Page Offset Hint Table

 // We are purposely leaving some values set to their initial zero

 // values.

 std::vector<QPDFObjectHandle> const& pages = getAllPages();

 unsigned int npages = pages.size();

 CHPageOffset& cph = this->m->c_page_offset_data;

 std::vector<CHPageOffsetEntry>& cphe = cph.entries;

 // Calculate minimum and maximum values for number of objects per

 // page and page length.

 int min_nobjects = cphe.at(0).nobjects;

 int max_nobjects = min_nobjects;

 int min_length = outputLengthNextN(

 pages.at(0).getObjectID(), min_nobjects, lengths, obj_renumber);

 int max_length = min_length;

 int max_shared = cphe.at(0).nshared_objects;

 HPageOffset& ph = this->m->page_offset_hints;

 std::vector<HPageOffsetEntry>& phe = ph.entries;

 // npages is the size of the existing pages array.

 phe = std::vector<HPageOffsetEntry>(npages);

 for (unsigned int i = 0; i < npages; ++i)

 {

 // Calculate values for each page, assigning full values to

 // the delta items. They will be adjusted later.

 // Repeat calculations for page 0 so we can assign to phe[i]

 // without duplicating those assignments.

 int nobjects = cphe.at(i).nobjects;

 int length = outputLengthNextN(

 pages.at(i).getObjectID(), nobjects, lengths, obj_renumber);

 int nshared = cphe.at(i).nshared_objects;

 min_nobjects = std::min(min_nobjects, nobjects);

 max_nobjects = std::max(max_nobjects, nobjects);

 min_length = std::min(min_length, length);

 max_length = std::max(max_length, length);

 max_shared = std::max(max_shared, nshared);

 phe.at(i).delta_nobjects = nobjects;

 phe.at(i).delta_page_length = length;

 phe.at(i).nshared_objects = nshared;

 }

 ph.min_nobjects = min_nobjects;

 int in_page0_id = pages.at(0).getObjectID();

 int out_page0_id = (*(obj_renumber.find(in_page0_id))).second;

 ph.first_page_offset = (*(xref.find(out_page0_id))).second.getOffset();

 ph.nbits_delta_nobjects = nbits(max_nobjects - min_nobjects);

 ph.min_page_length = min_length;

 ph.nbits_delta_page_length = nbits(max_length - min_length);

 ph.nbits_nshared_objects = nbits(max_shared);

 ph.nbits_shared_identifier =

 nbits(this->m->c_shared_object_data.nshared_total);

 ph.shared_denominator = 4; // doesn't matter

 // It isn't clear how to compute content offset and content

 // length. Since we are not interleaving page objects with the

 // content stream, we'll use the same values for content length as

 // page length. We will use 0 as content offset because this is

 // what Adobe does (implementation note 127) and pdlin as well.

 ph.nbits_delta_content_length = ph.nbits_delta_page_length;

 ph.min_content_length = ph.min_page_length;

 for (unsigned int i = 0; i < npages; ++i)

 {

 // Adjust delta entries

 assert(phe.at(i).delta_nobjects >= min_nobjects);

 assert(phe.at(i).delta_page_length >= min_length);

 phe.at(i).delta_nobjects -= min_nobjects;

 phe.at(i).delta_page_length -= min_length;

 phe.at(i).delta_content_length = phe.at(i).delta_page_length;

 for (int j = 0; j < cphe.at(i).nshared_objects; ++j)

 {

 phe.at(i).shared_identifiers.push_back(

 cphe.at(i).shared_identifiers.at(j));

 phe.at(i).shared_numerators.push_back(0);

 }

 }

}

void

QPDF::calculateHSharedObject(

 std::map<int, QPDFXRefEntry> const& xref,

 std::map<int, qpdf_offset_t> const& lengths,

 std::map<int, int> const& obj_renumber)

{

 CHSharedObject& cso = this->m->c_shared_object_data;

 std::vector<CHSharedObjectEntry>& csoe = cso.entries;

 HSharedObject& so = this->m->shared_object_hints;

 std::vector<HSharedObjectEntry>& soe = so.entries;

 soe.clear();

 int min_length = outputLengthNextN(

 csoe.at(0).object, 1, lengths, obj_renumber);

 int max_length = min_length;

 for (int i = 0; i < cso.nshared_total; ++i)

 {

 // Assign absolute numbers to deltas; adjust later

 int length = outputLengthNextN(

 csoe.at(i).object, 1, lengths, obj_renumber);

 min_length = std::min(min_length, length);

 max_length = std::max(max_length, length);

 soe.push_back(HSharedObjectEntry());

 soe.at(i).delta_group_length = length;

 }

 if (soe.size() != static_cast<size_t>(cso.nshared_total))

 {

 throw std::logic_error("soe has wrong size after initialization");

 }

 so.nshared_total = cso.nshared_total;

 so.nshared_first_page = cso.nshared_first_page;

 if (so.nshared_total > so.nshared_first_page)

 {

 so.first_shared_obj =

 (*(obj_renumber.find(cso.first_shared_obj))).second;

 so.first_shared_offset =

 (*(xref.find(so.first_shared_obj))).second.getOffset();

 }

 so.min_group_length = min_length;

 so.nbits_delta_group_length = nbits(max_length - min_length);

 for (int i = 0; i < cso.nshared_total; ++i)

 {

 // Adjust deltas

 assert(soe.at(i).delta_group_length >= min_length);

 soe.at(i).delta_group_length -= min_length;

 }

}

void

QPDF::calculateHOutline(

 std::map<int, QPDFXRefEntry> const& xref,

 std::map<int, qpdf_offset_t> const& lengths,

 std::map<int, int> const& obj_renumber)

{

 HGeneric& cho = this->m->c_outline_data;

 if (cho.nobjects == 0)

 {

 return;

 }

 HGeneric& ho = this->m->outline_hints;

 ho.first_object =

 (*(obj_renumber.find(cho.first_object))).second;

 ho.first_object_offset =

 (*(xref.find(ho.first_object))).second.getOffset();

 ho.nobjects = cho.nobjects;

 ho.group_length = outputLengthNextN(

 cho.first_object, ho.nobjects, lengths, obj_renumber);

}

template <class T, class int_type>

static void

write_vector_int(BitWriter& w, int nitems, std::vector<T>& vec,

 int bits, int_type T::*field)

{

 // nitems times, write bits bits from the given field of the ith

 // vector to the given bit writer.

 for (int i = 0; i < nitems; ++i)

 {

 w.writeBits(vec.at(i).*field, bits);

 }

 // The PDF spec says that each hint table starts at a byte

 // boundary. Each "row" actually must start on a byte boundary.

 w.flush();

}

template <class T>

static void

write_vector_vector(BitWriter& w,

 int nitems1, std::vector<T>& vec1, int T::*nitems2,

 int bits, std::vector<int> T::*vec2)

{

 // nitems1 times, write nitems2 (from the ith element of vec1) items

 // from the vec2 vector field of the ith item of vec1.

 for (int i1 = 0; i1 < nitems1; ++i1)

 {

 for (int i2 = 0; i2 < vec1.at(i1).*nitems2; ++i2)

 {

 w.writeBits((vec1.at(i1).*vec2).at(i2), bits);

 }

 }

 w.flush();

}

void

QPDF::writeHPageOffset(BitWriter& w)

{

 HPageOffset& t = this->m->page_offset_hints;

 w.writeBits(t.min_nobjects, 32); // 1

 w.writeBits(t.first_page_offset, 32); // 2

 w.writeBits(t.nbits_delta_nobjects, 16); // 3

 w.writeBits(t.min_page_length, 32); // 4

 w.writeBits(t.nbits_delta_page_length, 16); // 5

 w.writeBits(t.min_content_offset, 32); // 6

 w.writeBits(t.nbits_delta_content_offset, 16); // 7

 w.writeBits(t.min_content_length, 32); // 8

 w.writeBits(t.nbits_delta_content_length, 16); // 9

 w.writeBits(t.nbits_nshared_objects, 16); // 10

 w.writeBits(t.nbits_shared_identifier, 16); // 11

 w.writeBits(t.nbits_shared_numerator, 16); // 12

 w.writeBits(t.shared_denominator, 16); // 13

 unsigned int nitems = getAllPages().size();

 std::vector<HPageOffsetEntry>& entries = t.entries;

 write_vector_int(w, nitems, entries,

 t.nbits_delta_nobjects,

 &HPageOffsetEntry::delta_nobjects);

 write_vector_int(w, nitems, entries,

 t.nbits_delta_page_length,

 &HPageOffsetEntry::delta_page_length);

 write_vector_int(w, nitems, entries,

 t.nbits_nshared_objects,

 &HPageOffsetEntry::nshared_objects);

 write_vector_vector(w, nitems, entries,

 &HPageOffsetEntry::nshared_objects,

 t.nbits_shared_identifier,

 &HPageOffsetEntry::shared_identifiers);

 write_vector_vector(w, nitems, entries,

 &HPageOffsetEntry::nshared_objects,

 t.nbits_shared_numerator,

 &HPageOffsetEntry::shared_numerators);

 write_vector_int(w, nitems, entries,

 t.nbits_delta_content_offset,

 &HPageOffsetEntry::delta_content_offset);

 write_vector_int(w, nitems, entries,

 t.nbits_delta_content_length,

 &HPageOffsetEntry::delta_content_length);

}

void

QPDF::writeHSharedObject(BitWriter& w)

{

 HSharedObject& t = this->m->shared_object_hints;

 w.writeBits(t.first_shared_obj, 32); // 1

 w.writeBits(t.first_shared_offset, 32); // 2

 w.writeBits(t.nshared_first_page, 32); // 3

 w.writeBits(t.nshared_total, 32); // 4

 w.writeBits(t.nbits_nobjects, 16); // 5

 w.writeBits(t.min_group_length, 32); // 6

 w.writeBits(t.nbits_delta_group_length, 16); // 7

 QTC::TC("qpdf", "QPDF lin write nshared_total > nshared_first_page",

 (t.nshared_total > t.nshared_first_page) ? 1 : 0);

 int nitems = t.nshared_total;

 std::vector<HSharedObjectEntry>& entries = t.entries;

 write_vector_int(w, nitems, entries,

 t.nbits_delta_group_length,

 &HSharedObjectEntry::delta_group_length);

 write_vector_int(w, nitems, entries,

 1, &HSharedObjectEntry::signature_present);

 for (int i = 0; i < nitems; ++i)

 {

 // If signature were present, we'd have to write a 128-bit hash.

 assert(entries.at(i).signature_present == 0);

 }

 write_vector_int(w, nitems, entries,

 t.nbits_nobjects,

 &HSharedObjectEntry::nobjects_minus_one);

}

void

QPDF::writeHGeneric(BitWriter& w, HGeneric& t)

{

 w.writeBits(t.first_object, 32); // 1

 w.writeBits(t.first_object_offset, 32); // 2

 w.writeBits(t.nobjects, 32); // 3

 w.writeBits(t.group_length, 32); // 4

}

void

QPDF::generateHintStream(std::map<int, QPDFXRefEntry> const& xref,

 std::map<int, qpdf_offset_t> const& lengths,

 std::map<int, int> const& obj_renumber,

 PointerHolder<Buffer>& hint_buffer,

 int& S, int& O)

{

 // Populate actual hint table values

 calculateHPageOffset(xref, lengths, obj_renumber);

 calculateHSharedObject(xref, lengths, obj_renumber);

 calculateHOutline(xref, lengths, obj_renumber);

 // Write the hint stream itself into a compressed memory buffer.

 // Write through a counter so we can get offsets.

 Pl_Buffer hint_stream("hint stream");

 Pl_Flate f("compress hint stream", &hint_stream, Pl_Flate::a_deflate);

 Pl_Count c("count", &f);

 BitWriter w(&c);

 writeHPageOffset(w);

 S = c.getCount();

 writeHSharedObject(w);

 O = 0;

 if (this->m->outline_hints.nobjects > 0)

 {

 O = c.getCount();

 writeHGeneric(w, this->m->outline_hints);

 }

 c.finish();

 hint_buffer = hint_stream.getBuffer();

}

qpdf-7.1.0/libqpdf/Pl_RunLength.cc

#include <qpdf/Pl_RunLength.hh>

#include <qpdf/QUtil.hh>
#include <qpdf/QTC.hh>

Pl_RunLength::Pl_RunLength(char const* identifier, Pipeline* next,
 action_e action) :
 Pipeline(identifier, next),
 action(action),
 state(st_top),
 length(0)
{
}

Pl_RunLength::~Pl_RunLength()
{
}

void
Pl_RunLength::write(unsigned char* data, size_t len)
{
 if (this->action == a_encode)
 {
 encode(data, len);
 }
 else
 {
 decode(data, len);
 }
}

void
Pl_RunLength::encode(unsigned char* data, size_t len)
{
 for (size_t i = 0; i < len; ++i)
 {
 if ((this->state == st_top) != (this->length <= 1))
 {
 throw std::logic_error(
 "Pl_RunLength::encode: state/length inconsistency");
 }
 unsigned char ch = data[i];
 if ((this->length > 0) &&
 ((this->state == st_copying) || (this->length < 128)) &&
 (ch == this->buf[this->length-1]))
 {
 QTC::TC("libtests", "Pl_RunLength: switch to run",
 (this->length == 128) ? 0 : 1);
 if (this->state == st_copying)
 {
 --this->length;
 flush_encode();
 this->buf[0] = ch;
 this->length = 1;
 }
 this->state = st_run;
 this->buf[this->length] = ch;
 ++this->length;
 }
 else
 {
 if ((this->length == 128) || (this->state == st_run))
 {
 flush_encode();
 }
 else if (this->length > 0)
 {
 this->state = st_copying;
 }
 this->buf[this->length] = ch;
 ++this->length;
 }
 }
}

void
Pl_RunLength::decode(unsigned char* data, size_t len)
{
 for (size_t i = 0; i < len; ++i)
 {
 unsigned char ch = data[i];
 switch (this->state)
 {
 case st_top:
 if (ch < 128)
 {
 // length represents remaining number of bytes to copy
 this->length = 1 + ch;
 this->state = st_copying;
 }
 else if (ch > 128)
 {
 // length represents number of copies of next byte
 this->length = 257 - ch;
 this->state = st_run;
 }
 else // ch == 128
 {
 // EOD; stay in this state
 }
 break;

 case st_copying:
 this->getNext()->write(&ch, 1);
 if (--this->length == 0)
 {
 this->state = st_top;
 }
 break;

 case st_run:
 for (unsigned int j = 0; j < this->length; ++j)
 {
 this->getNext()->write(&ch, 1);
 }
 this->state = st_top;
 break;
 }
 }
}

void
Pl_RunLength::flush_encode()
{
 if (this->length == 128)
 {
 QTC::TC("libtests", "Pl_RunLength flush full buffer",
 (this->state == st_copying ? 0 :
 this->state == st_run ? 1 :
 -1));
 }
 if (this->length == 0)
 {
 QTC::TC("libtests", "Pl_RunLength flush empty buffer");
 }
 if (this->state == st_run)
 {
 if ((this->length < 2) || (this->length > 128))
 {
 throw std::logic_error(
 "Pl_RunLength: invalid length in flush_encode for run");
 }
 unsigned char ch = static_cast<unsigned char>(257 - this->length);
 this->getNext()->write(&ch, 1);
 this->getNext()->write(&this->buf[0], 1);
 }
 else if (this->length > 0)
 {
 unsigned char ch = static_cast<unsigned char>(this->length - 1);
 this->getNext()->write(&ch, 1);
 this->getNext()->write(this->buf, this->length);
 }
 this->state = st_top;
 this->length = 0;
}

void
Pl_RunLength::finish()
{
 // When decoding, we might have read a length byte not followed by
 // data, which means the stream was terminated early, but we will
 // just ignore this case since this is the only sensible thing to
 // do.
 if (this->action == a_encode)
 {
 flush_encode();
 unsigned char ch = 128;
 this->getNext()->write(&ch, 1);
 }
 this->getNext()->finish();
}

qpdf-7.1.0/libqpdf/rijndael.cc

qpdf-7.1.0/libqpdf/rijndael.cc

#define FULL_UNROLL

#include "qpdf/rijndael.h"

typedef uint32_t u32;

typedef unsigned char u8;

static const u32 Te0[256] =

{

 0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU,

 0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U,

 0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU,

 0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU,

 0x8fcaca45U, 0x1f82829dU, 0x89c9c940U, 0xfa7d7d87U,

 0xeffafa15U, 0xb25959ebU, 0x8e4747c9U, 0xfbf0f00bU,

 0x41adadecU, 0xb3d4d467U, 0x5fa2a2fdU, 0x45afafeaU,

 0x239c9cbfU, 0x53a4a4f7U, 0xe4727296U, 0x9bc0c05bU,

 0x75b7b7c2U, 0xe1fdfd1cU, 0x3d9393aeU, 0x4c26266aU,

 0x6c36365aU, 0x7e3f3f41U, 0xf5f7f702U, 0x83cccc4fU,

 0x6834345cU, 0x51a5a5f4U, 0xd1e5e534U, 0xf9f1f108U,

 0xe2717193U, 0xabd8d873U, 0x62313153U, 0x2a15153fU,

 0x0804040cU, 0x95c7c752U, 0x46232365U, 0x9dc3c35eU,

 0x30181828U, 0x379696a1U, 0x0a05050fU, 0x2f9a9ab5U,

 0x0e070709U, 0x24121236U, 0x1b80809bU, 0xdfe2e23dU,

 0xcdebeb26U, 0x4e272769U, 0x7fb2b2cdU, 0xea75759fU,

 0x1209091bU, 0x1d83839eU, 0x582c2c74U, 0x341a1a2eU,

 0x361b1b2dU, 0xdc6e6eb2U, 0xb45a5aeeU, 0x5ba0a0fbU,

 0xa45252f6U, 0x763b3b4dU, 0xb7d6d661U, 0x7db3b3ceU,

 0x5229297bU, 0xdde3e33eU, 0x5e2f2f71U, 0x13848497U,

 0xa65353f5U, 0xb9d1d168U, 0x00000000U, 0xc1eded2cU,

 0x40202060U, 0xe3fcfc1fU, 0x79b1b1c8U, 0xb65b5bedU,

 0xd46a6abeU, 0x8dcbcb46U, 0x67bebed9U, 0x7239394bU,

 0x944a4adeU, 0x984c4cd4U, 0xb05858e8U, 0x85cfcf4aU,

 0xbbd0d06bU, 0xc5efef2aU, 0x4faaaae5U, 0xedfbfb16U,

 0x864343c5U, 0x9a4d4dd7U, 0x66333355U, 0x11858594U,

 0x8a4545cfU, 0xe9f9f910U, 0x04020206U, 0xfe7f7f81U,

 0xa05050f0U, 0x783c3c44U, 0x259f9fbaU, 0x4ba8a8e3U,

 0xa25151f3U, 0x5da3a3feU, 0x804040c0U, 0x058f8f8aU,

 0x3f9292adU, 0x219d9dbcU, 0x70383848U, 0xf1f5f504U,

 0x63bcbcdfU, 0x77b6b6c1U, 0xafdada75U, 0x42212163U,

 0x20101030U, 0xe5ffff1aU, 0xfdf3f30eU, 0xbfd2d26dU,

 0x81cdcd4cU, 0x180c0c14U, 0x26131335U, 0xc3ecec2fU,

 0xbe5f5fe1U, 0x359797a2U, 0x884444ccU, 0x2e171739U,

 0x93c4c457U, 0x55a7a7f2U, 0xfc7e7e82U, 0x7a3d3d47U,

 0xc86464acU, 0xba5d5de7U, 0x3219192bU, 0xe6737395U,

 0xc06060a0U, 0x19818198U, 0x9e4f4fd1U, 0xa3dcdc7fU,

 0x44222266U, 0x542a2a7eU, 0x3b9090abU, 0x0b888883U,

 0x8c4646caU, 0xc7eeee29U, 0x6bb8b8d3U, 0x2814143cU,

 0xa7dede79U, 0xbc5e5ee2U, 0x160b0b1dU, 0xaddbdb76U,

 0xdbe0e03bU, 0x64323256U, 0x743a3a4eU, 0x140a0a1eU,

 0x924949dbU, 0x0c06060aU, 0x4824246cU, 0xb85c5ce4U,

 0x9fc2c25dU, 0xbdd3d36eU, 0x43acacefU, 0xc46262a6U,

 0x399191a8U, 0x319595a4U, 0xd3e4e437U, 0xf279798bU,

 0xd5e7e732U, 0x8bc8c843U, 0x6e373759U, 0xda6d6db7U,

 0x018d8d8cU, 0xb1d5d564U, 0x9c4e4ed2U, 0x49a9a9e0U,

 0xd86c6cb4U, 0xac5656faU, 0xf3f4f407U, 0xcfeaea25U,

 0xca6565afU, 0xf47a7a8eU, 0x47aeaee9U, 0x10080818U,

 0x6fbabad5U, 0xf0787888U, 0x4a25256fU, 0x5c2e2e72U,

 0x381c1c24U, 0x57a6a6f1U, 0x73b4b4c7U, 0x97c6c651U,

 0xcbe8e823U, 0xa1dddd7cU, 0xe874749cU, 0x3e1f1f21U,

 0x964b4bddU, 0x61bdbddcU, 0x0d8b8b86U, 0x0f8a8a85U,

 0xe0707090U, 0x7c3e3e42U, 0x71b5b5c4U, 0xcc6666aaU,

 0x904848d8U, 0x06030305U, 0xf7f6f601U, 0x1c0e0e12U,

 0xc26161a3U, 0x6a35355fU, 0xae5757f9U, 0x69b9b9d0U,

 0x17868691U, 0x99c1c158U, 0x3a1d1d27U, 0x279e9eb9U,

 0xd9e1e138U, 0xebf8f813U, 0x2b9898b3U, 0x22111133U,

 0xd26969bbU, 0xa9d9d970U, 0x078e8e89U, 0x339494a7U,

 0x2d9b9bb6U, 0x3c1e1e22U, 0x15878792U, 0xc9e9e920U,

 0x87cece49U, 0xaa5555ffU, 0x50282878U, 0xa5dfdf7aU,

 0x038c8c8fU, 0x59a1a1f8U, 0x09898980U, 0x1a0d0d17U,

 0x65bfbfdaU, 0xd7e6e631U, 0x844242c6U, 0xd06868b8U,

 0x824141c3U, 0x299999b0U, 0x5a2d2d77U, 0x1e0f0f11U,

 0x7bb0b0cbU, 0xa85454fcU, 0x6dbbbbd6U, 0x2c16163aU,

};

static const u32 Te1[256] =

{

 0xa5c66363U, 0x84f87c7cU, 0x99ee7777U, 0x8df67b7bU,

 0x0dfff2f2U, 0xbdd66b6bU, 0xb1de6f6fU, 0x5491c5c5U,

 0x50603030U, 0x03020101U, 0xa9ce6767U, 0x7d562b2bU,

 0x19e7fefeU, 0x62b5d7d7U, 0xe64dababU, 0x9aec7676U,

 0x458fcacaU, 0x9d1f8282U, 0x4089c9c9U, 0x87fa7d7dU,

 0x15effafaU, 0xebb25959U, 0xc98e4747U, 0x0bfbf0f0U,

 0xec41adadU, 0x67b3d4d4U, 0xfd5fa2a2U, 0xea45afafU,

 0xbf239c9cU, 0xf753a4a4U, 0x96e47272U, 0x5b9bc0c0U,

 0xc275b7b7U, 0x1ce1fdfdU, 0xae3d9393U, 0x6a4c2626U,

 0x5a6c3636U, 0x417e3f3fU, 0x02f5f7f7U, 0x4f83ccccU,

 0x5c683434U, 0xf451a5a5U, 0x34d1e5e5U, 0x08f9f1f1U,

 0x93e27171U, 0x73abd8d8U, 0x53623131U, 0x3f2a1515U,

 0x0c080404U, 0x5295c7c7U, 0x65462323U, 0x5e9dc3c3U,

 0x28301818U, 0xa1379696U, 0x0f0a0505U, 0xb52f9a9aU,

 0x090e0707U, 0x36241212U, 0x9b1b8080U, 0x3ddfe2e2U,

 0x26cdebebU, 0x694e2727U, 0xcd7fb2b2U, 0x9fea7575U,

 0x1b120909U, 0x9e1d8383U, 0x74582c2cU, 0x2e341a1aU,

 0x2d361b1bU, 0xb2dc6e6eU, 0xeeb45a5aU, 0xfb5ba0a0U,

 0xf6a45252U, 0x4d763b3bU, 0x61b7d6d6U, 0xce7db3b3U,

 0x7b522929U, 0x3edde3e3U, 0x715e2f2fU, 0x97138484U,

 0xf5a65353U, 0x68b9d1d1U, 0x00000000U, 0x2cc1ededU,

 0x60402020U, 0x1fe3fcfcU, 0xc879b1b1U, 0xedb65b5bU,

 0xbed46a6aU, 0x468dcbcbU, 0xd967bebeU, 0x4b723939U,

 0xde944a4aU, 0xd4984c4cU, 0xe8b05858U, 0x4a85cfcfU,

 0x6bbbd0d0U, 0x2ac5efefU, 0xe54faaaaU, 0x16edfbfbU,

 0xc5864343U, 0xd79a4d4dU, 0x55663333U, 0x94118585U,

 0xcf8a4545U, 0x10e9f9f9U, 0x06040202U, 0x81fe7f7fU,

 0xf0a05050U, 0x44783c3cU, 0xba259f9fU, 0xe34ba8a8U,

 0xf3a25151U, 0xfe5da3a3U, 0xc0804040U, 0x8a058f8fU,

 0xad3f9292U, 0xbc219d9dU, 0x48703838U, 0x04f1f5f5U,

 0xdf63bcbcU, 0xc177b6b6U, 0x75afdadaU, 0x63422121U,

 0x30201010U, 0x1ae5ffffU, 0x0efdf3f3U, 0x6dbfd2d2U,

 0x4c81cdcdU, 0x14180c0cU, 0x35261313U, 0x2fc3ececU,

 0xe1be5f5fU, 0xa2359797U, 0xcc884444U, 0x392e1717U,

 0x5793c4c4U, 0xf255a7a7U, 0x82fc7e7eU, 0x477a3d3dU,

 0xacc86464U, 0xe7ba5d5dU, 0x2b321919U, 0x95e67373U,

 0xa0c06060U, 0x98198181U, 0xd19e4f4fU, 0x7fa3dcdcU,

 0x66442222U, 0x7e542a2aU, 0xab3b9090U, 0x830b8888U,

 0xca8c4646U, 0x29c7eeeeU, 0xd36bb8b8U, 0x3c281414U,

 0x79a7dedeU, 0xe2bc5e5eU, 0x1d160b0bU, 0x76addbdbU,

 0x3bdbe0e0U, 0x56643232U, 0x4e743a3aU, 0x1e140a0aU,

 0xdb924949U, 0x0a0c0606U, 0x6c482424U, 0xe4b85c5cU,

 0x5d9fc2c2U, 0x6ebdd3d3U, 0xef43acacU, 0xa6c46262U,

 0xa8399191U, 0xa4319595U, 0x37d3e4e4U, 0x8bf27979U,

 0x32d5e7e7U, 0x438bc8c8U, 0x596e3737U, 0xb7da6d6dU,

 0x8c018d8dU, 0x64b1d5d5U, 0xd29c4e4eU, 0xe049a9a9U,

 0xb4d86c6cU, 0xfaac5656U, 0x07f3f4f4U, 0x25cfeaeaU,

 0xafca6565U, 0x8ef47a7aU, 0xe947aeaeU, 0x18100808U,

 0xd56fbabaU, 0x88f07878U, 0x6f4a2525U, 0x725c2e2eU,

 0x24381c1cU, 0xf157a6a6U, 0xc773b4b4U, 0x5197c6c6U,

 0x23cbe8e8U, 0x7ca1ddddU, 0x9ce87474U, 0x213e1f1fU,

 0xdd964b4bU, 0xdc61bdbdU, 0x860d8b8bU, 0x850f8a8aU,

 0x90e07070U, 0x427c3e3eU, 0xc471b5b5U, 0xaacc6666U,

 0xd8904848U, 0x05060303U, 0x01f7f6f6U, 0x121c0e0eU,

 0xa3c26161U, 0x5f6a3535U, 0xf9ae5757U, 0xd069b9b9U,

 0x91178686U, 0x5899c1c1U, 0x273a1d1dU, 0xb9279e9eU,

 0x38d9e1e1U, 0x13ebf8f8U, 0xb32b9898U, 0x33221111U,

 0xbbd26969U, 0x70a9d9d9U, 0x89078e8eU, 0xa7339494U,

 0xb62d9b9bU, 0x223c1e1eU, 0x92158787U, 0x20c9e9e9U,

 0x4987ceceU, 0xffaa5555U, 0x78502828U, 0x7aa5dfdfU,

 0x8f038c8cU, 0xf859a1a1U, 0x80098989U, 0x171a0d0dU,

 0xda65bfbfU, 0x31d7e6e6U, 0xc6844242U, 0xb8d06868U,

 0xc3824141U, 0xb0299999U, 0x775a2d2dU, 0x111e0f0fU,

 0xcb7bb0b0U, 0xfca85454U, 0xd66dbbbbU, 0x3a2c1616U,

};

static const u32 Te2[256] =

{

 0x63a5c663U, 0x7c84f87cU, 0x7799ee77U, 0x7b8df67bU,

 0xf20dfff2U, 0x6bbdd66bU, 0x6fb1de6fU, 0xc55491c5U,

 0x30506030U, 0x01030201U, 0x67a9ce67U, 0x2b7d562bU,

 0xfe19e7feU, 0xd762b5d7U, 0xabe64dabU, 0x769aec76U,

 0xca458fcaU, 0x829d1f82U, 0xc94089c9U, 0x7d87fa7dU,

 0xfa15effaU, 0x59ebb259U, 0x47c98e47U, 0xf00bfbf0U,

 0xadec41adU, 0xd467b3d4U, 0xa2fd5fa2U, 0xafea45afU,

 0x9cbf239cU, 0xa4f753a4U, 0x7296e472U, 0xc05b9bc0U,

 0xb7c275b7U, 0xfd1ce1fdU, 0x93ae3d93U, 0x266a4c26U,

 0x365a6c36U, 0x3f417e3fU, 0xf702f5f7U, 0xcc4f83ccU,

 0x345c6834U, 0xa5f451a5U, 0xe534d1e5U, 0xf108f9f1U,

 0x7193e271U, 0xd873abd8U, 0x31536231U, 0x153f2a15U,

 0x040c0804U, 0xc75295c7U, 0x23654623U, 0xc35e9dc3U,

 0x18283018U, 0x96a13796U, 0x050f0a05U, 0x9ab52f9aU,

 0x07090e07U, 0x12362412U, 0x809b1b80U, 0xe23ddfe2U,

 0xeb26cdebU, 0x27694e27U, 0xb2cd7fb2U, 0x759fea75U,

 0x091b1209U, 0x839e1d83U, 0x2c74582cU, 0x1a2e341aU,

 0x1b2d361bU, 0x6eb2dc6eU, 0x5aeeb45aU, 0xa0fb5ba0U,

 0x52f6a452U, 0x3b4d763bU, 0xd661b7d6U, 0xb3ce7db3U,

 0x297b5229U, 0xe33edde3U, 0x2f715e2fU, 0x84971384U,

 0x53f5a653U, 0xd168b9d1U, 0x00000000U, 0xed2cc1edU,

 0x20604020U, 0xfc1fe3fcU, 0xb1c879b1U, 0x5bedb65bU,

 0x6abed46aU, 0xcb468dcbU, 0xbed967beU, 0x394b7239U,

 0x4ade944aU, 0x4cd4984cU, 0x58e8b058U, 0xcf4a85cfU,

 0xd06bbbd0U, 0xef2ac5efU, 0xaae54faaU, 0xfb16edfbU,

 0x43c58643U, 0x4dd79a4dU, 0x33556633U, 0x85941185U,

 0x45cf8a45U, 0xf910e9f9U, 0x02060402U, 0x7f81fe7fU,

 0x50f0a050U, 0x3c44783cU, 0x9fba259fU, 0xa8e34ba8U,

 0x51f3a251U, 0xa3fe5da3U, 0x40c08040U, 0x8f8a058fU,

 0x92ad3f92U, 0x9dbc219dU, 0x38487038U, 0xf504f1f5U,

 0xbcdf63bcU, 0xb6c177b6U, 0xda75afdaU, 0x21634221U,

 0x10302010U, 0xff1ae5ffU, 0xf30efdf3U, 0xd26dbfd2U,

 0xcd4c81cdU, 0x0c14180cU, 0x13352613U, 0xec2fc3ecU,

 0x5fe1be5fU, 0x97a23597U, 0x44cc8844U, 0x17392e17U,

 0xc45793c4U, 0xa7f255a7U, 0x7e82fc7eU, 0x3d477a3dU,

 0x64acc864U, 0x5de7ba5dU, 0x192b3219U, 0x7395e673U,

 0x60a0c060U, 0x81981981U, 0x4fd19e4fU, 0xdc7fa3dcU,

 0x22664422U, 0x2a7e542aU, 0x90ab3b90U, 0x88830b88U,

 0x46ca8c46U, 0xee29c7eeU, 0xb8d36bb8U, 0x143c2814U,

 0xde79a7deU, 0x5ee2bc5eU, 0x0b1d160bU, 0xdb76addbU,

 0xe03bdbe0U, 0x32566432U, 0x3a4e743aU, 0x0a1e140aU,

 0x49db9249U, 0x060a0c06U, 0x246c4824U, 0x5ce4b85cU,

 0xc25d9fc2U, 0xd36ebdd3U, 0xacef43acU, 0x62a6c462U,

 0x91a83991U, 0x95a43195U, 0xe437d3e4U, 0x798bf279U,

 0xe732d5e7U, 0xc8438bc8U, 0x37596e37U, 0x6db7da6dU,

 0x8d8c018dU, 0xd564b1d5U, 0x4ed29c4eU, 0xa9e049a9U,

 0x6cb4d86cU, 0x56faac56U, 0xf407f3f4U, 0xea25cfeaU,

 0x65afca65U, 0x7a8ef47aU, 0xaee947aeU, 0x08181008U,

 0xbad56fbaU, 0x7888f078U, 0x256f4a25U, 0x2e725c2eU,

 0x1c24381cU, 0xa6f157a6U, 0xb4c773b4U, 0xc65197c6U,

 0xe823cbe8U, 0xdd7ca1ddU, 0x749ce874U, 0x1f213e1fU,

 0x4bdd964bU, 0xbddc61bdU, 0x8b860d8bU, 0x8a850f8aU,

 0x7090e070U, 0x3e427c3eU, 0xb5c471b5U, 0x66aacc66U,

 0x48d89048U, 0x03050603U, 0xf601f7f6U, 0x0e121c0eU,

 0x61a3c261U, 0x355f6a35U, 0x57f9ae57U, 0xb9d069b9U,

 0x86911786U, 0xc15899c1U, 0x1d273a1dU, 0x9eb9279eU,

 0xe138d9e1U, 0xf813ebf8U, 0x98b32b98U, 0x11332211U,

 0x69bbd269U, 0xd970a9d9U, 0x8e89078eU, 0x94a73394U,

 0x9bb62d9bU, 0x1e223c1eU, 0x87921587U, 0xe920c9e9U,

 0xce4987ceU, 0x55ffaa55U, 0x28785028U, 0xdf7aa5dfU,

 0x8c8f038cU, 0xa1f859a1U, 0x89800989U, 0x0d171a0dU,

 0xbfda65bfU, 0xe631d7e6U, 0x42c68442U, 0x68b8d068U,

 0x41c38241U, 0x99b02999U, 0x2d775a2dU, 0x0f111e0fU,

 0xb0cb7bb0U, 0x54fca854U, 0xbbd66dbbU, 0x163a2c16U,

};

static const u32 Te3[256] =

{

 0x6363a5c6U, 0x7c7c84f8U, 0x777799eeU, 0x7b7b8df6U,

 0xf2f20dffU, 0x6b6bbdd6U, 0x6f6fb1deU, 0xc5c55491U,

 0x30305060U, 0x01010302U, 0x6767a9ceU, 0x2b2b7d56U,

 0xfefe19e7U, 0xd7d762b5U, 0xababe64dU, 0x76769aecU,

 0xcaca458fU, 0x82829d1fU, 0xc9c94089U, 0x7d7d87faU,

 0xfafa15efU, 0x5959ebb2U, 0x4747c98eU, 0xf0f00bfbU,

 0xadadec41U, 0xd4d467b3U, 0xa2a2fd5fU, 0xafafea45U,

 0x9c9cbf23U, 0xa4a4f753U, 0x727296e4U, 0xc0c05b9bU,

 0xb7b7c275U, 0xfdfd1ce1U, 0x9393ae3dU, 0x26266a4cU,

 0x36365a6cU, 0x3f3f417eU, 0xf7f702f5U, 0xcccc4f83U,

 0x34345c68U, 0xa5a5f451U, 0xe5e534d1U, 0xf1f108f9U,

 0x717193e2U, 0xd8d873abU, 0x31315362U, 0x15153f2aU,

 0x04040c08U, 0xc7c75295U, 0x23236546U, 0xc3c35e9dU,

 0x18182830U, 0x9696a137U, 0x05050f0aU, 0x9a9ab52fU,

 0x0707090eU, 0x12123624U, 0x80809b1bU, 0xe2e23ddfU,

 0xebeb26cdU, 0x2727694eU, 0xb2b2cd7fU, 0x75759feaU,

 0x09091b12U, 0x83839e1dU, 0x2c2c7458U, 0x1a1a2e34U,

 0x1b1b2d36U, 0x6e6eb2dcU, 0x5a5aeeb4U, 0xa0a0fb5bU,

 0x5252f6a4U, 0x3b3b4d76U, 0xd6d661b7U, 0xb3b3ce7dU,

 0x29297b52U, 0xe3e33eddU, 0x2f2f715eU, 0x84849713U,

 0x5353f5a6U, 0xd1d168b9U, 0x00000000U, 0xeded2cc1U,

 0x20206040U, 0xfcfc1fe3U, 0xb1b1c879U, 0x5b5bedb6U,

 0x6a6abed4U, 0xcbcb468dU, 0xbebed967U, 0x39394b72U,

 0x4a4ade94U, 0x4c4cd498U, 0x5858e8b0U, 0xcfcf4a85U,

 0xd0d06bbbU, 0xefef2ac5U, 0xaaaae54fU, 0xfbfb16edU,

 0x4343c586U, 0x4d4dd79aU, 0x33335566U, 0x85859411U,

 0x4545cf8aU, 0xf9f910e9U, 0x02020604U, 0x7f7f81feU,

 0x5050f0a0U, 0x3c3c4478U, 0x9f9fba25U, 0xa8a8e34bU,

 0x5151f3a2U, 0xa3a3fe5dU, 0x4040c080U, 0x8f8f8a05U,

 0x9292ad3fU, 0x9d9dbc21U, 0x38384870U, 0xf5f504f1U,

 0xbcbcdf63U, 0xb6b6c177U, 0xdada75afU, 0x21216342U,

 0x10103020U, 0xffff1ae5U, 0xf3f30efdU, 0xd2d26dbfU,

 0xcdcd4c81U, 0x0c0c1418U, 0x13133526U, 0xecec2fc3U,

 0x5f5fe1beU, 0x9797a235U, 0x4444cc88U, 0x1717392eU,

 0xc4c45793U, 0xa7a7f255U, 0x7e7e82fcU, 0x3d3d477aU,

 0x6464acc8U, 0x5d5de7baU, 0x19192b32U, 0x737395e6U,

 0x6060a0c0U, 0x81819819U, 0x4f4fd19eU, 0xdcdc7fa3U,

 0x22226644U, 0x2a2a7e54U, 0x9090ab3bU, 0x8888830bU,

 0x4646ca8cU, 0xeeee29c7U, 0xb8b8d36bU, 0x14143c28U,

 0xdede79a7U, 0x5e5ee2bcU, 0x0b0b1d16U, 0xdbdb76adU,

 0xe0e03bdbU, 0x32325664U, 0x3a3a4e74U, 0x0a0a1e14U,

 0x4949db92U, 0x06060a0cU, 0x24246c48U, 0x5c5ce4b8U,

 0xc2c25d9fU, 0xd3d36ebdU, 0xacacef43U, 0x6262a6c4U,

 0x9191a839U, 0x9595a431U, 0xe4e437d3U, 0x79798bf2U,

 0xe7e732d5U, 0xc8c8438bU, 0x3737596eU, 0x6d6db7daU,

 0x8d8d8c01U, 0xd5d564b1U, 0x4e4ed29cU, 0xa9a9e049U,

 0x6c6cb4d8U, 0x5656faacU, 0xf4f407f3U, 0xeaea25cfU,

 0x6565afcaU, 0x7a7a8ef4U, 0xaeaee947U, 0x08081810U,

 0xbabad56fU, 0x787888f0U, 0x25256f4aU, 0x2e2e725cU,

 0x1c1c2438U, 0xa6a6f157U, 0xb4b4c773U, 0xc6c65197U,

 0xe8e823cbU, 0xdddd7ca1U, 0x74749ce8U, 0x1f1f213eU,

 0x4b4bdd96U, 0xbdbddc61U, 0x8b8b860dU, 0x8a8a850fU,

 0x707090e0U, 0x3e3e427cU, 0xb5b5c471U, 0x6666aaccU,

 0x4848d890U, 0x03030506U, 0xf6f601f7U, 0x0e0e121cU,

 0x6161a3c2U, 0x35355f6aU, 0x5757f9aeU, 0xb9b9d069U,

 0x86869117U, 0xc1c15899U, 0x1d1d273aU, 0x9e9eb927U,

 0xe1e138d9U, 0xf8f813ebU, 0x9898b32bU, 0x11113322U,

 0x6969bbd2U, 0xd9d970a9U, 0x8e8e8907U, 0x9494a733U,

 0x9b9bb62dU, 0x1e1e223cU, 0x87879215U, 0xe9e920c9U,

 0xcece4987U, 0x5555ffaaU, 0x28287850U, 0xdfdf7aa5U,

 0x8c8c8f03U, 0xa1a1f859U, 0x89898009U, 0x0d0d171aU,

 0xbfbfda65U, 0xe6e631d7U, 0x4242c684U, 0x6868b8d0U,

 0x4141c382U, 0x9999b029U, 0x2d2d775aU, 0x0f0f111eU,

 0xb0b0cb7bU, 0x5454fca8U, 0xbbbbd66dU, 0x16163a2cU,

};

static const u32 Te4[256] =

{

 0x63636363U, 0x7c7c7c7cU, 0x77777777U, 0x7b7b7b7bU,

 0xf2f2f2f2U, 0x6b6b6b6bU, 0x6f6f6f6fU, 0xc5c5c5c5U,

 0x30303030U, 0x01010101U, 0x67676767U, 0x2b2b2b2bU,

 0xfefefefeU, 0xd7d7d7d7U, 0xababababU, 0x76767676U,

 0xcacacacaU, 0x82828282U, 0xc9c9c9c9U, 0x7d7d7d7dU,

 0xfafafafaU, 0x59595959U, 0x47474747U, 0xf0f0f0f0U,

 0xadadadadU, 0xd4d4d4d4U, 0xa2a2a2a2U, 0xafafafafU,

 0x9c9c9c9cU, 0xa4a4a4a4U, 0x72727272U, 0xc0c0c0c0U,

 0xb7b7b7b7U, 0xfdfdfdfdU, 0x93939393U, 0x26262626U,

 0x36363636U, 0x3f3f3f3fU, 0xf7f7f7f7U, 0xccccccccU,

 0x34343434U, 0xa5a5a5a5U, 0xe5e5e5e5U, 0xf1f1f1f1U,

 0x71717171U, 0xd8d8d8d8U, 0x31313131U, 0x15151515U,

 0x04040404U, 0xc7c7c7c7U, 0x23232323U, 0xc3c3c3c3U,

 0x18181818U, 0x96969696U, 0x05050505U, 0x9a9a9a9aU,

 0x07070707U, 0x12121212U, 0x80808080U, 0xe2e2e2e2U,

 0xebebebebU, 0x27272727U, 0xb2b2b2b2U, 0x75757575U,

 0x09090909U, 0x83838383U, 0x2c2c2c2cU, 0x1a1a1a1aU,

 0x1b1b1b1bU, 0x6e6e6e6eU, 0x5a5a5a5aU, 0xa0a0a0a0U,

 0x52525252U, 0x3b3b3b3bU, 0xd6d6d6d6U, 0xb3b3b3b3U,

 0x29292929U, 0xe3e3e3e3U, 0x2f2f2f2fU, 0x84848484U,

 0x53535353U, 0xd1d1d1d1U, 0x00000000U, 0xededededU,

 0x20202020U, 0xfcfcfcfcU, 0xb1b1b1b1U, 0x5b5b5b5bU,

 0x6a6a6a6aU, 0xcbcbcbcbU, 0xbebebebeU, 0x39393939U,

 0x4a4a4a4aU, 0x4c4c4c4cU, 0x58585858U, 0xcfcfcfcfU,

 0xd0d0d0d0U, 0xefefefefU, 0xaaaaaaaaU, 0xfbfbfbfbU,

 0x43434343U, 0x4d4d4d4dU, 0x33333333U, 0x85858585U,

 0x45454545U, 0xf9f9f9f9U, 0x02020202U, 0x7f7f7f7fU,

 0x50505050U, 0x3c3c3c3cU, 0x9f9f9f9fU, 0xa8a8a8a8U,

 0x51515151U, 0xa3a3a3a3U, 0x40404040U, 0x8f8f8f8fU,

 0x92929292U, 0x9d9d9d9dU, 0x38383838U, 0xf5f5f5f5U,

 0xbcbcbcbcU, 0xb6b6b6b6U, 0xdadadadaU, 0x21212121U,

 0x10101010U, 0xffffffffU, 0xf3f3f3f3U, 0xd2d2d2d2U,

 0xcdcdcdcdU, 0x0c0c0c0cU, 0x13131313U, 0xececececU,

 0x5f5f5f5fU, 0x97979797U, 0x44444444U, 0x17171717U,

 0xc4c4c4c4U, 0xa7a7a7a7U, 0x7e7e7e7eU, 0x3d3d3d3dU,

 0x64646464U, 0x5d5d5d5dU, 0x19191919U, 0x73737373U,

 0x60606060U, 0x81818181U, 0x4f4f4f4fU, 0xdcdcdcdcU,

 0x22222222U, 0x2a2a2a2aU, 0x90909090U, 0x88888888U,

 0x46464646U, 0xeeeeeeeeU, 0xb8b8b8b8U, 0x14141414U,

 0xdedededeU, 0x5e5e5e5eU, 0x0b0b0b0bU, 0xdbdbdbdbU,

 0xe0e0e0e0U, 0x32323232U, 0x3a3a3a3aU, 0x0a0a0a0aU,

 0x49494949U, 0x06060606U, 0x24242424U, 0x5c5c5c5cU,

 0xc2c2c2c2U, 0xd3d3d3d3U, 0xacacacacU, 0x62626262U,

 0x91919191U, 0x95959595U, 0xe4e4e4e4U, 0x79797979U,

 0xe7e7e7e7U, 0xc8c8c8c8U, 0x37373737U, 0x6d6d6d6dU,

 0x8d8d8d8dU, 0xd5d5d5d5U, 0x4e4e4e4eU, 0xa9a9a9a9U,

 0x6c6c6c6cU, 0x56565656U, 0xf4f4f4f4U, 0xeaeaeaeaU,

 0x65656565U, 0x7a7a7a7aU, 0xaeaeaeaeU, 0x08080808U,

 0xbabababaU, 0x78787878U, 0x25252525U, 0x2e2e2e2eU,

 0x1c1c1c1cU, 0xa6a6a6a6U, 0xb4b4b4b4U, 0xc6c6c6c6U,

 0xe8e8e8e8U, 0xddddddddU, 0x74747474U, 0x1f1f1f1fU,

 0x4b4b4b4bU, 0xbdbdbdbdU, 0x8b8b8b8bU, 0x8a8a8a8aU,

 0x70707070U, 0x3e3e3e3eU, 0xb5b5b5b5U, 0x66666666U,

 0x48484848U, 0x03030303U, 0xf6f6f6f6U, 0x0e0e0e0eU,

 0x61616161U, 0x35353535U, 0x57575757U, 0xb9b9b9b9U,

 0x86868686U, 0xc1c1c1c1U, 0x1d1d1d1dU, 0x9e9e9e9eU,

 0xe1e1e1e1U, 0xf8f8f8f8U, 0x98989898U, 0x11111111U,

 0x69696969U, 0xd9d9d9d9U, 0x8e8e8e8eU, 0x94949494U,

 0x9b9b9b9bU, 0x1e1e1e1eU, 0x87878787U, 0xe9e9e9e9U,

 0xcecececeU, 0x55555555U, 0x28282828U, 0xdfdfdfdfU,

 0x8c8c8c8cU, 0xa1a1a1a1U, 0x89898989U, 0x0d0d0d0dU,

 0xbfbfbfbfU, 0xe6e6e6e6U, 0x42424242U, 0x68686868U,

 0x41414141U, 0x99999999U, 0x2d2d2d2dU, 0x0f0f0f0fU,

 0xb0b0b0b0U, 0x54545454U, 0xbbbbbbbbU, 0x16161616U,

};

static const u32 Td0[256] =

{

 0x51f4a750U, 0x7e416553U, 0x1a17a4c3U, 0x3a275e96U,

 0x3bab6bcbU, 0x1f9d45f1U, 0xacfa58abU, 0x4be30393U,

 0x2030fa55U, 0xad766df6U, 0x88cc7691U, 0xf5024c25U,

 0x4fe5d7fcU, 0xc52acbd7U, 0x26354480U, 0xb562a38fU,

 0xdeb15a49U, 0x25ba1b67U, 0x45ea0e98U, 0x5dfec0e1U,

 0xc32f7502U, 0x814cf012U, 0x8d4697a3U, 0x6bd3f9c6U,

 0x038f5fe7U, 0x15929c95U, 0xbf6d7aebU, 0x955259daU,

 0xd4be832dU, 0x587421d3U, 0x49e06929U, 0x8ec9c844U,

 0x75c2896aU, 0xf48e7978U, 0x99583e6bU, 0x27b971ddU,

 0xbee14fb6U, 0xf088ad17U, 0xc920ac66U, 0x7dce3ab4U,

 0x63df4a18U, 0xe51a3182U, 0x97513360U, 0x62537f45U,

 0xb16477e0U, 0xbb6bae84U, 0xfe81a01cU, 0xf9082b94U,

 0x70486858U, 0x8f45fd19U, 0x94de6c87U, 0x527bf8b7U,

 0xab73d323U, 0x724b02e2U, 0xe31f8f57U, 0x6655ab2aU,

 0xb2eb2807U, 0x2fb5c203U, 0x86c57b9aU, 0xd33708a5U,

 0x302887f2U, 0x23bfa5b2U, 0x02036abaU, 0xed16825cU,

 0x8acf1c2bU, 0xa779b492U, 0xf307f2f0U, 0x4e69e2a1U,

 0x65daf4cdU, 0x0605bed5U, 0xd134621fU, 0xc4a6fe8aU,

 0x342e539dU, 0xa2f355a0U, 0x058ae132U, 0xa4f6eb75U,

 0x0b83ec39U, 0x4060efaaU, 0x5e719f06U, 0xbd6e1051U,

 0x3e218af9U, 0x96dd063dU, 0xdd3e05aeU, 0x4de6bd46U,

 0x91548db5U, 0x71c45d05U, 0x0406d46fU, 0x605015ffU,

 0x1998fb24U, 0xd6bde997U, 0x894043ccU, 0x67d99e77U,

 0xb0e842bdU, 0x07898b88U, 0xe7195b38U, 0x79c8eedbU,

 0xa17c0a47U, 0x7c420fe9U, 0xf8841ec9U, 0x00000000U,

 0x09808683U, 0x322bed48U, 0x1e1170acU, 0x6c5a724eU,

 0xfd0efffbU, 0x0f853856U, 0x3daed51eU, 0x362d3927U,

 0x0a0fd964U, 0x685ca621U, 0x9b5b54d1U, 0x24362e3aU,

 0x0c0a67b1U, 0x9357e70fU, 0xb4ee96d2U, 0x1b9b919eU,

 0x80c0c54fU, 0x61dc20a2U, 0x5a774b69U, 0x1c121a16U,

 0xe293ba0aU, 0xc0a02ae5U, 0x3c22e043U, 0x121b171dU,

 0x0e090d0bU, 0xf28bc7adU, 0x2db6a8b9U, 0x141ea9c8U,

 0x57f11985U, 0xaf75074cU, 0xee99ddbbU, 0xa37f60fdU,

 0xf701269fU, 0x5c72f5bcU, 0x44663bc5U, 0x5bfb7e34U,

 0x8b432976U, 0xcb23c6dcU, 0xb6edfc68U, 0xb8e4f163U,

 0xd731dccaU, 0x42638510U, 0x13972240U, 0x84c61120U,

 0x854a247dU, 0xd2bb3df8U, 0xaef93211U, 0xc729a16dU,

 0x1d9e2f4bU, 0xdcb230f3U, 0x0d8652ecU, 0x77c1e3d0U,

 0x2bb3166cU, 0xa970b999U, 0x119448faU, 0x47e96422U,

 0xa8fc8cc4U, 0xa0f03f1aU, 0x567d2cd8U, 0x223390efU,

 0x87494ec7U, 0xd938d1c1U, 0x8ccaa2feU, 0x98d40b36U,

 0xa6f581cfU, 0xa57ade28U, 0xdab78e26U, 0x3fadbfa4U,

 0x2c3a9de4U, 0x5078920dU, 0x6a5fcc9bU, 0x547e4662U,

 0xf68d13c2U, 0x90d8b8e8U, 0x2e39f75eU, 0x82c3aff5U,

 0x9f5d80beU, 0x69d0937cU, 0x6fd52da9U, 0xcf2512b3U,

 0xc8ac993bU, 0x10187da7U, 0xe89c636eU, 0xdb3bbb7bU,

 0xcd267809U, 0x6e5918f4U, 0xec9ab701U, 0x834f9aa8U,

 0xe6956e65U, 0xaaffe67eU, 0x21bccf08U, 0xef15e8e6U,

 0xbae79bd9U, 0x4a6f36ceU, 0xea9f09d4U, 0x29b07cd6U,

 0x31a4b2afU, 0x2a3f2331U, 0xc6a59430U, 0x35a266c0U,

 0x744ebc37U, 0xfc82caa6U, 0xe090d0b0U, 0x33a7d815U,

 0xf104984aU, 0x41ecdaf7U, 0x7fcd500eU, 0x1791f62fU,

 0x764dd68dU, 0x43efb04dU, 0xccaa4d54U, 0xe49604dfU,

 0x9ed1b5e3U, 0x4c6a881bU, 0xc12c1fb8U, 0x4665517fU,

 0x9d5eea04U, 0x018c355dU, 0xfa877473U, 0xfb0b412eU,

 0xb3671d5aU, 0x92dbd252U, 0xe9105633U, 0x6dd64713U,

 0x9ad7618cU, 0x37a10c7aU, 0x59f8148eU, 0xeb133c89U,

 0xcea927eeU, 0xb761c935U, 0xe11ce5edU, 0x7a47b13cU,

 0x9cd2df59U, 0x55f2733fU, 0x1814ce79U, 0x73c737bfU,

 0x53f7cdeaU, 0x5ffdaa5bU, 0xdf3d6f14U, 0x7844db86U,

 0xcaaff381U, 0xb968c43eU, 0x3824342cU, 0xc2a3405fU,

 0x161dc372U, 0xbce2250cU, 0x283c498bU, 0xff0d9541U,

 0x39a80171U, 0x080cb3deU, 0xd8b4e49cU, 0x6456c190U,

 0x7bcb8461U, 0xd532b670U, 0x486c5c74U, 0xd0b85742U,

};

static const u32 Td1[256] =

{

 0x5051f4a7U, 0x537e4165U, 0xc31a17a4U, 0x963a275eU,

 0xcb3bab6bU, 0xf11f9d45U, 0xabacfa58U, 0x934be303U,

 0x552030faU, 0xf6ad766dU, 0x9188cc76U, 0x25f5024cU,

 0xfc4fe5d7U, 0xd7c52acbU, 0x80263544U, 0x8fb562a3U,

 0x49deb15aU, 0x6725ba1bU, 0x9845ea0eU, 0xe15dfec0U,

 0x02c32f75U, 0x12814cf0U, 0xa38d4697U, 0xc66bd3f9U,

 0xe7038f5fU, 0x9515929cU, 0xebbf6d7aU, 0xda955259U,

 0x2dd4be83U, 0xd3587421U, 0x2949e069U, 0x448ec9c8U,

 0x6a75c289U, 0x78f48e79U, 0x6b99583eU, 0xdd27b971U,

 0xb6bee14fU, 0x17f088adU, 0x66c920acU, 0xb47dce3aU,

 0x1863df4aU, 0x82e51a31U, 0x60975133U, 0x4562537fU,

 0xe0b16477U, 0x84bb6baeU, 0x1cfe81a0U, 0x94f9082bU,

 0x58704868U, 0x198f45fdU, 0x8794de6cU, 0xb7527bf8U,

 0x23ab73d3U, 0xe2724b02U, 0x57e31f8fU, 0x2a6655abU,

 0x07b2eb28U, 0x032fb5c2U, 0x9a86c57bU, 0xa5d33708U,

 0xf2302887U, 0xb223bfa5U, 0xba02036aU, 0x5ced1682U,

 0x2b8acf1cU, 0x92a779b4U, 0xf0f307f2U, 0xa14e69e2U,

 0xcd65daf4U, 0xd50605beU, 0x1fd13462U, 0x8ac4a6feU,

 0x9d342e53U, 0xa0a2f355U, 0x32058ae1U, 0x75a4f6ebU,

 0x390b83ecU, 0xaa4060efU, 0x065e719fU, 0x51bd6e10U,

 0xf93e218aU, 0x3d96dd06U, 0xaedd3e05U, 0x464de6bdU,

 0xb591548dU, 0x0571c45dU, 0x6f0406d4U, 0xff605015U,

 0x241998fbU, 0x97d6bde9U, 0xcc894043U, 0x7767d99eU,

 0xbdb0e842U, 0x8807898bU, 0x38e7195bU, 0xdb79c8eeU,

 0x47a17c0aU, 0xe97c420fU, 0xc9f8841eU, 0x00000000U,

 0x83098086U, 0x48322bedU, 0xac1e1170U, 0x4e6c5a72U,

 0xfbfd0effU, 0x560f8538U, 0x1e3daed5U, 0x27362d39U,

 0x640a0fd9U, 0x21685ca6U, 0xd19b5b54U, 0x3a24362eU,

 0xb10c0a67U, 0x0f9357e7U, 0xd2b4ee96U, 0x9e1b9b91U,

 0x4f80c0c5U, 0xa261dc20U, 0x695a774bU, 0x161c121aU,

 0x0ae293baU, 0xe5c0a02aU, 0x433c22e0U, 0x1d121b17U,

 0x0b0e090dU, 0xadf28bc7U, 0xb92db6a8U, 0xc8141ea9U,

 0x8557f119U, 0x4caf7507U, 0xbbee99ddU, 0xfda37f60U,

 0x9ff70126U, 0xbc5c72f5U, 0xc544663bU, 0x345bfb7eU,

 0x768b4329U, 0xdccb23c6U, 0x68b6edfcU, 0x63b8e4f1U,

 0xcad731dcU, 0x10426385U, 0x40139722U, 0x2084c611U,

 0x7d854a24U, 0xf8d2bb3dU, 0x11aef932U, 0x6dc729a1U,

 0x4b1d9e2fU, 0xf3dcb230U, 0xec0d8652U, 0xd077c1e3U,

 0x6c2bb316U, 0x99a970b9U, 0xfa119448U, 0x2247e964U,

 0xc4a8fc8cU, 0x1aa0f03fU, 0xd8567d2cU, 0xef223390U,

 0xc787494eU, 0xc1d938d1U, 0xfe8ccaa2U, 0x3698d40bU,

 0xcfa6f581U, 0x28a57adeU, 0x26dab78eU, 0xa43fadbfU,

 0xe42c3a9dU, 0x0d507892U, 0x9b6a5fccU, 0x62547e46U,

 0xc2f68d13U, 0xe890d8b8U, 0x5e2e39f7U, 0xf582c3afU,

 0xbe9f5d80U, 0x7c69d093U, 0xa96fd52dU, 0xb3cf2512U,

 0x3bc8ac99U, 0xa710187dU, 0x6ee89c63U, 0x7bdb3bbbU,

 0x09cd2678U, 0xf46e5918U, 0x01ec9ab7U, 0xa8834f9aU,

 0x65e6956eU, 0x7eaaffe6U, 0x0821bccfU, 0xe6ef15e8U,

 0xd9bae79bU, 0xce4a6f36U, 0xd4ea9f09U, 0xd629b07cU,

 0xaf31a4b2U, 0x312a3f23U, 0x30c6a594U, 0xc035a266U,

 0x37744ebcU, 0xa6fc82caU, 0xb0e090d0U, 0x1533a7d8U,

 0x4af10498U, 0xf741ecdaU, 0x0e7fcd50U, 0x2f1791f6U,

 0x8d764dd6U, 0x4d43efb0U, 0x54ccaa4dU, 0xdfe49604U,

 0xe39ed1b5U, 0x1b4c6a88U, 0xb8c12c1fU, 0x7f466551U,

 0x049d5eeaU, 0x5d018c35U, 0x73fa8774U, 0x2efb0b41U,

 0x5ab3671dU, 0x5292dbd2U, 0x33e91056U, 0x136dd647U,

 0x8c9ad761U, 0x7a37a10cU, 0x8e59f814U, 0x89eb133cU,

 0xeecea927U, 0x35b761c9U, 0xede11ce5U, 0x3c7a47b1U,

 0x599cd2dfU, 0x3f55f273U, 0x791814ceU, 0xbf73c737U,

 0xea53f7cdU, 0x5b5ffdaaU, 0x14df3d6fU, 0x867844dbU,

 0x81caaff3U, 0x3eb968c4U, 0x2c382434U, 0x5fc2a340U,

 0x72161dc3U, 0x0cbce225U, 0x8b283c49U, 0x41ff0d95U,

 0x7139a801U, 0xde080cb3U, 0x9cd8b4e4U, 0x906456c1U,

 0x617bcb84U, 0x70d532b6U, 0x74486c5cU, 0x42d0b857U,

};

static const u32 Td2[256] =

{

 0xa75051f4U, 0x65537e41U, 0xa4c31a17U, 0x5e963a27U,

 0x6bcb3babU, 0x45f11f9dU, 0x58abacfaU, 0x03934be3U,

 0xfa552030U, 0x6df6ad76U, 0x769188ccU, 0x4c25f502U,

 0xd7fc4fe5U, 0xcbd7c52aU, 0x44802635U, 0xa38fb562U,

 0x5a49deb1U, 0x1b6725baU, 0x0e9845eaU, 0xc0e15dfeU,

 0x7502c32fU, 0xf012814cU, 0x97a38d46U, 0xf9c66bd3U,

 0x5fe7038fU, 0x9c951592U, 0x7aebbf6dU, 0x59da9552U,

 0x832dd4beU, 0x21d35874U, 0x692949e0U, 0xc8448ec9U,

 0x896a75c2U, 0x7978f48eU, 0x3e6b9958U, 0x71dd27b9U,

 0x4fb6bee1U, 0xad17f088U, 0xac66c920U, 0x3ab47dceU,

 0x4a1863dfU, 0x3182e51aU, 0x33609751U, 0x7f456253U,

 0x77e0b164U, 0xae84bb6bU, 0xa01cfe81U, 0x2b94f908U,

 0x68587048U, 0xfd198f45U, 0x6c8794deU, 0xf8b7527bU,

 0xd323ab73U, 0x02e2724bU, 0x8f57e31fU, 0xab2a6655U,

 0x2807b2ebU, 0xc2032fb5U, 0x7b9a86c5U, 0x08a5d337U,

 0x87f23028U, 0xa5b223bfU, 0x6aba0203U, 0x825ced16U,

 0x1c2b8acfU, 0xb492a779U, 0xf2f0f307U, 0xe2a14e69U,

 0xf4cd65daU, 0xbed50605U, 0x621fd134U, 0xfe8ac4a6U,

 0x539d342eU, 0x55a0a2f3U, 0xe132058aU, 0xeb75a4f6U,

 0xec390b83U, 0xefaa4060U, 0x9f065e71U, 0x1051bd6eU,

 0x8af93e21U, 0x063d96ddU, 0x05aedd3eU, 0xbd464de6U,

 0x8db59154U, 0x5d0571c4U, 0xd46f0406U, 0x15ff6050U,

 0xfb241998U, 0xe997d6bdU, 0x43cc8940U, 0x9e7767d9U,

 0x42bdb0e8U, 0x8b880789U, 0x5b38e719U, 0xeedb79c8U,

 0x0a47a17cU, 0x0fe97c42U, 0x1ec9f884U, 0x00000000U,

 0x86830980U, 0xed48322bU, 0x70ac1e11U, 0x724e6c5aU,

 0xfffbfd0eU, 0x38560f85U, 0xd51e3daeU, 0x3927362dU,

 0xd9640a0fU, 0xa621685cU, 0x54d19b5bU, 0x2e3a2436U,

 0x67b10c0aU, 0xe70f9357U, 0x96d2b4eeU, 0x919e1b9bU,

 0xc54f80c0U, 0x20a261dcU, 0x4b695a77U, 0x1a161c12U,

 0xba0ae293U, 0x2ae5c0a0U, 0xe0433c22U, 0x171d121bU,

 0x0d0b0e09U, 0xc7adf28bU, 0xa8b92db6U, 0xa9c8141eU,

 0x198557f1U, 0x074caf75U, 0xddbbee99U, 0x60fda37fU,

 0x269ff701U, 0xf5bc5c72U, 0x3bc54466U, 0x7e345bfbU,

 0x29768b43U, 0xc6dccb23U, 0xfc68b6edU, 0xf163b8e4U,

 0xdccad731U, 0x85104263U, 0x22401397U, 0x112084c6U,

 0x247d854aU, 0x3df8d2bbU, 0x3211aef9U, 0xa16dc729U,

 0x2f4b1d9eU, 0x30f3dcb2U, 0x52ec0d86U, 0xe3d077c1U,

 0x166c2bb3U, 0xb999a970U, 0x48fa1194U, 0x642247e9U,

 0x8cc4a8fcU, 0x3f1aa0f0U, 0x2cd8567dU, 0x90ef2233U,

 0x4ec78749U, 0xd1c1d938U, 0xa2fe8ccaU, 0x0b3698d4U,

 0x81cfa6f5U, 0xde28a57aU, 0x8e26dab7U, 0xbfa43fadU,

 0x9de42c3aU, 0x920d5078U, 0xcc9b6a5fU, 0x4662547eU,

 0x13c2f68dU, 0xb8e890d8U, 0xf75e2e39U, 0xaff582c3U,

 0x80be9f5dU, 0x937c69d0U, 0x2da96fd5U, 0x12b3cf25U,

 0x993bc8acU, 0x7da71018U, 0x636ee89cU, 0xbb7bdb3bU,

 0x7809cd26U, 0x18f46e59U, 0xb701ec9aU, 0x9aa8834fU,

 0x6e65e695U, 0xe67eaaffU, 0xcf0821bcU, 0xe8e6ef15U,

 0x9bd9bae7U, 0x36ce4a6fU, 0x09d4ea9fU, 0x7cd629b0U,

 0xb2af31a4U, 0x23312a3fU, 0x9430c6a5U, 0x66c035a2U,

 0xbc37744eU, 0xcaa6fc82U, 0xd0b0e090U, 0xd81533a7U,

 0x984af104U, 0xdaf741ecU, 0x500e7fcdU, 0xf62f1791U,

 0xd68d764dU, 0xb04d43efU, 0x4d54ccaaU, 0x04dfe496U,

 0xb5e39ed1U, 0x881b4c6aU, 0x1fb8c12cU, 0x517f4665U,

 0xea049d5eU, 0x355d018cU, 0x7473fa87U, 0x412efb0bU,

 0x1d5ab367U, 0xd25292dbU, 0x5633e910U, 0x47136dd6U,

 0x618c9ad7U, 0x0c7a37a1U, 0x148e59f8U, 0x3c89eb13U,

 0x27eecea9U, 0xc935b761U, 0xe5ede11cU, 0xb13c7a47U,

 0xdf599cd2U, 0x733f55f2U, 0xce791814U, 0x37bf73c7U,

 0xcdea53f7U, 0xaa5b5ffdU, 0x6f14df3dU, 0xdb867844U,

 0xf381caafU, 0xc43eb968U, 0x342c3824U, 0x405fc2a3U,

 0xc372161dU, 0x250cbce2U, 0x498b283cU, 0x9541ff0dU,

 0x017139a8U, 0xb3de080cU, 0xe49cd8b4U, 0xc1906456U,

 0x84617bcbU, 0xb670d532U, 0x5c74486cU, 0x5742d0b8U,

};

static const u32 Td3[256] =

{

 0xf4a75051U, 0x4165537eU, 0x17a4c31aU, 0x275e963aU,

 0xab6bcb3bU, 0x9d45f11fU, 0xfa58abacU, 0xe303934bU,

 0x30fa5520U, 0x766df6adU, 0xcc769188U, 0x024c25f5U,

 0xe5d7fc4fU, 0x2acbd7c5U, 0x35448026U, 0x62a38fb5U,

 0xb15a49deU, 0xba1b6725U, 0xea0e9845U, 0xfec0e15dU,

 0x2f7502c3U, 0x4cf01281U, 0x4697a38dU, 0xd3f9c66bU,

 0x8f5fe703U, 0x929c9515U, 0x6d7aebbfU, 0x5259da95U,

 0xbe832dd4U, 0x7421d358U, 0xe0692949U, 0xc9c8448eU,

 0xc2896a75U, 0x8e7978f4U, 0x583e6b99U, 0xb971dd27U,

 0xe14fb6beU, 0x88ad17f0U, 0x20ac66c9U, 0xce3ab47dU,

 0xdf4a1863U, 0x1a3182e5U, 0x51336097U, 0x537f4562U,

 0x6477e0b1U, 0x6bae84bbU, 0x81a01cfeU, 0x082b94f9U,

 0x48685870U, 0x45fd198fU, 0xde6c8794U, 0x7bf8b752U,

 0x73d323abU, 0x4b02e272U, 0x1f8f57e3U, 0x55ab2a66U,

 0xeb2807b2U, 0xb5c2032fU, 0xc57b9a86U, 0x3708a5d3U,

 0x2887f230U, 0xbfa5b223U, 0x036aba02U, 0x16825cedU,

 0xcf1c2b8aU, 0x79b492a7U, 0x07f2f0f3U, 0x69e2a14eU,

 0xdaf4cd65U, 0x05bed506U, 0x34621fd1U, 0xa6fe8ac4U,

 0x2e539d34U, 0xf355a0a2U, 0x8ae13205U, 0xf6eb75a4U,

 0x83ec390bU, 0x60efaa40U, 0x719f065eU, 0x6e1051bdU,

 0x218af93eU, 0xdd063d96U, 0x3e05aeddU, 0xe6bd464dU,

 0x548db591U, 0xc45d0571U, 0x06d46f04U, 0x5015ff60U,

 0x98fb2419U, 0xbde997d6U, 0x4043cc89U, 0xd99e7767U,

 0xe842bdb0U, 0x898b8807U, 0x195b38e7U, 0xc8eedb79U,

 0x7c0a47a1U, 0x420fe97cU, 0x841ec9f8U, 0x00000000U,

 0x80868309U, 0x2bed4832U, 0x1170ac1eU, 0x5a724e6cU,

 0x0efffbfdU, 0x8538560fU, 0xaed51e3dU, 0x2d392736U,

 0x0fd9640aU, 0x5ca62168U, 0x5b54d19bU, 0x362e3a24U,

 0x0a67b10cU, 0x57e70f93U, 0xee96d2b4U, 0x9b919e1bU,

 0xc0c54f80U, 0xdc20a261U, 0x774b695aU, 0x121a161cU,

 0x93ba0ae2U, 0xa02ae5c0U, 0x22e0433cU, 0x1b171d12U,

 0x090d0b0eU, 0x8bc7adf2U, 0xb6a8b92dU, 0x1ea9c814U,

 0xf1198557U, 0x75074cafU, 0x99ddbbeeU, 0x7f60fda3U,

 0x01269ff7U, 0x72f5bc5cU, 0x663bc544U, 0xfb7e345bU,

 0x4329768bU, 0x23c6dccbU, 0xedfc68b6U, 0xe4f163b8U,

 0x31dccad7U, 0x63851042U, 0x97224013U, 0xc6112084U,

 0x4a247d85U, 0xbb3df8d2U, 0xf93211aeU, 0x29a16dc7U,

 0x9e2f4b1dU, 0xb230f3dcU, 0x8652ec0dU, 0xc1e3d077U,

 0xb3166c2bU, 0x70b999a9U, 0x9448fa11U, 0xe9642247U,

 0xfc8cc4a8U, 0xf03f1aa0U, 0x7d2cd856U, 0x3390ef22U,

 0x494ec787U, 0x38d1c1d9U, 0xcaa2fe8cU, 0xd40b3698U,

 0xf581cfa6U, 0x7ade28a5U, 0xb78e26daU, 0xadbfa43fU,

 0x3a9de42cU, 0x78920d50U, 0x5fcc9b6aU, 0x7e466254U,

 0x8d13c2f6U, 0xd8b8e890U, 0x39f75e2eU, 0xc3aff582U,

 0x5d80be9fU, 0xd0937c69U, 0xd52da96fU, 0x2512b3cfU,

 0xac993bc8U, 0x187da710U, 0x9c636ee8U, 0x3bbb7bdbU,

 0x267809cdU, 0x5918f46eU, 0x9ab701ecU, 0x4f9aa883U,

 0x956e65e6U, 0xffe67eaaU, 0xbccf0821U, 0x15e8e6efU,

 0xe79bd9baU, 0x6f36ce4aU, 0x9f09d4eaU, 0xb07cd629U,

 0xa4b2af31U, 0x3f23312aU, 0xa59430c6U, 0xa266c035U,

 0x4ebc3774U, 0x82caa6fcU, 0x90d0b0e0U, 0xa7d81533U,

 0x04984af1U, 0xecdaf741U, 0xcd500e7fU, 0x91f62f17U,

 0x4dd68d76U, 0xefb04d43U, 0xaa4d54ccU, 0x9604dfe4U,

 0xd1b5e39eU, 0x6a881b4cU, 0x2c1fb8c1U, 0x65517f46U,

 0x5eea049dU, 0x8c355d01U, 0x877473faU, 0x0b412efbU,

 0x671d5ab3U, 0xdbd25292U, 0x105633e9U, 0xd647136dU,

 0xd7618c9aU, 0xa10c7a37U, 0xf8148e59U, 0x133c89ebU,

 0xa927eeceU, 0x61c935b7U, 0x1ce5ede1U, 0x47b13c7aU,

 0xd2df599cU, 0xf2733f55U, 0x14ce7918U, 0xc737bf73U,

 0xf7cdea53U, 0xfdaa5b5fU, 0x3d6f14dfU, 0x44db8678U,

 0xaff381caU, 0x68c43eb9U, 0x24342c38U, 0xa3405fc2U,

 0x1dc37216U, 0xe2250cbcU, 0x3c498b28U, 0x0d9541ffU,

 0xa8017139U, 0x0cb3de08U, 0xb4e49cd8U, 0x56c19064U,

 0xcb84617bU, 0x32b670d5U, 0x6c5c7448U, 0xb85742d0U,

};

static const u32 Td4[256] =

{

 0x52525252U, 0x09090909U, 0x6a6a6a6aU, 0xd5d5d5d5U,

 0x30303030U, 0x36363636U, 0xa5a5a5a5U, 0x38383838U,

 0xbfbfbfbfU, 0x40404040U, 0xa3a3a3a3U, 0x9e9e9e9eU,

 0x81818181U, 0xf3f3f3f3U, 0xd7d7d7d7U, 0xfbfbfbfbU,

 0x7c7c7c7cU, 0xe3e3e3e3U, 0x39393939U, 0x82828282U,

 0x9b9b9b9bU, 0x2f2f2f2fU, 0xffffffffU, 0x87878787U,

 0x34343434U, 0x8e8e8e8eU, 0x43434343U, 0x44444444U,

 0xc4c4c4c4U, 0xdedededeU, 0xe9e9e9e9U, 0xcbcbcbcbU,

 0x54545454U, 0x7b7b7b7bU, 0x94949494U, 0x32323232U,

 0xa6a6a6a6U, 0xc2c2c2c2U, 0x23232323U, 0x3d3d3d3dU,

 0xeeeeeeeeU, 0x4c4c4c4cU, 0x95959595U, 0x0b0b0b0bU,

 0x42424242U, 0xfafafafaU, 0xc3c3c3c3U, 0x4e4e4e4eU,

 0x08080808U, 0x2e2e2e2eU, 0xa1a1a1a1U, 0x66666666U,

 0x28282828U, 0xd9d9d9d9U, 0x24242424U, 0xb2b2b2b2U,

 0x76767676U, 0x5b5b5b5bU, 0xa2a2a2a2U, 0x49494949U,

 0x6d6d6d6dU, 0x8b8b8b8bU, 0xd1d1d1d1U, 0x25252525U,

 0x72727272U, 0xf8f8f8f8U, 0xf6f6f6f6U, 0x64646464U,

 0x86868686U, 0x68686868U, 0x98989898U, 0x16161616U,

 0xd4d4d4d4U, 0xa4a4a4a4U, 0x5c5c5c5cU, 0xccccccccU,

 0x5d5d5d5dU, 0x65656565U, 0xb6b6b6b6U, 0x92929292U,

 0x6c6c6c6cU, 0x70707070U, 0x48484848U, 0x50505050U,

 0xfdfdfdfdU, 0xededededU, 0xb9b9b9b9U, 0xdadadadaU,

 0x5e5e5e5eU, 0x15151515U, 0x46464646U, 0x57575757U,

 0xa7a7a7a7U, 0x8d8d8d8dU, 0x9d9d9d9dU, 0x84848484U,

 0x90909090U, 0xd8d8d8d8U, 0xababababU, 0x00000000U,

 0x8c8c8c8cU, 0xbcbcbcbcU, 0xd3d3d3d3U, 0x0a0a0a0aU,

 0xf7f7f7f7U, 0xe4e4e4e4U, 0x58585858U, 0x05050505U,

 0xb8b8b8b8U, 0xb3b3b3b3U, 0x45454545U, 0x06060606U,

 0xd0d0d0d0U, 0x2c2c2c2cU, 0x1e1e1e1eU, 0x8f8f8f8fU,

 0xcacacacaU, 0x3f3f3f3fU, 0x0f0f0f0fU, 0x02020202U,

 0xc1c1c1c1U, 0xafafafafU, 0xbdbdbdbdU, 0x03030303U,

 0x01010101U, 0x13131313U, 0x8a8a8a8aU, 0x6b6b6b6bU,

 0x3a3a3a3aU, 0x91919191U, 0x11111111U, 0x41414141U,

 0x4f4f4f4fU, 0x67676767U, 0xdcdcdcdcU, 0xeaeaeaeaU,

 0x97979797U, 0xf2f2f2f2U, 0xcfcfcfcfU, 0xcecececeU,

 0xf0f0f0f0U, 0xb4b4b4b4U, 0xe6e6e6e6U, 0x73737373U,

 0x96969696U, 0xacacacacU, 0x74747474U, 0x22222222U,

 0xe7e7e7e7U, 0xadadadadU, 0x35353535U, 0x85858585U,

 0xe2e2e2e2U, 0xf9f9f9f9U, 0x37373737U, 0xe8e8e8e8U,

 0x1c1c1c1cU, 0x75757575U, 0xdfdfdfdfU, 0x6e6e6e6eU,

 0x47474747U, 0xf1f1f1f1U, 0x1a1a1a1aU, 0x71717171U,

 0x1d1d1d1dU, 0x29292929U, 0xc5c5c5c5U, 0x89898989U,

 0x6f6f6f6fU, 0xb7b7b7b7U, 0x62626262U, 0x0e0e0e0eU,

 0xaaaaaaaaU, 0x18181818U, 0xbebebebeU, 0x1b1b1b1bU,

 0xfcfcfcfcU, 0x56565656U, 0x3e3e3e3eU, 0x4b4b4b4bU,

 0xc6c6c6c6U, 0xd2d2d2d2U, 0x79797979U, 0x20202020U,

 0x9a9a9a9aU, 0xdbdbdbdbU, 0xc0c0c0c0U, 0xfefefefeU,

 0x78787878U, 0xcdcdcdcdU, 0x5a5a5a5aU, 0xf4f4f4f4U,

 0x1f1f1f1fU, 0xddddddddU, 0xa8a8a8a8U, 0x33333333U,

 0x88888888U, 0x07070707U, 0xc7c7c7c7U, 0x31313131U,

 0xb1b1b1b1U, 0x12121212U, 0x10101010U, 0x59595959U,

 0x27272727U, 0x80808080U, 0xececececU, 0x5f5f5f5fU,

 0x60606060U, 0x51515151U, 0x7f7f7f7fU, 0xa9a9a9a9U,

 0x19191919U, 0xb5b5b5b5U, 0x4a4a4a4aU, 0x0d0d0d0dU,

 0x2d2d2d2dU, 0xe5e5e5e5U, 0x7a7a7a7aU, 0x9f9f9f9fU,

 0x93939393U, 0xc9c9c9c9U, 0x9c9c9c9cU, 0xefefefefU,

 0xa0a0a0a0U, 0xe0e0e0e0U, 0x3b3b3b3bU, 0x4d4d4d4dU,

 0xaeaeaeaeU, 0x2a2a2a2aU, 0xf5f5f5f5U, 0xb0b0b0b0U,

 0xc8c8c8c8U, 0xebebebebU, 0xbbbbbbbbU, 0x3c3c3c3cU,

 0x83838383U, 0x53535353U, 0x99999999U, 0x61616161U,

 0x17171717U, 0x2b2b2b2bU, 0x04040404U, 0x7e7e7e7eU,

 0xbabababaU, 0x77777777U, 0xd6d6d6d6U, 0x26262626U,

 0xe1e1e1e1U, 0x69696969U, 0x14141414U, 0x63636363U,

 0x55555555U, 0x21212121U, 0x0c0c0c0cU, 0x7d7d7d7dU,

};

static const u32 rcon[] =

{

 0x01000000, 0x02000000, 0x04000000, 0x08000000,

 0x10000000, 0x20000000, 0x40000000, 0x80000000,

 0x1B000000, 0x36000000,

 /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */

};

#define GETU32(plaintext) \

 ((static_cast<u32>((plaintext)[0]) << 24) ^ \

 (static_cast<u32>((plaintext)[1]) << 16) ^ \

 (static_cast<u32>((plaintext)[2]) << 8) ^ \

 (static_cast<u32>((plaintext)[3])))

#define PUTU32(ciphertext, st) { \

 (ciphertext)[0] = static_cast<u8>((st) >> 24); \

 (ciphertext)[1] = static_cast<u8>((st) >> 16); \

 (ciphertext)[2] = static_cast<u8>((st) >> 8); \

 (ciphertext)[3] = static_cast<u8>(st); }

/**

 * Expand the cipher key into the encryption key schedule.

 *

 * @return the number of rounds for the given cipher key size.

 */

int rijndaelSetupEncrypt(u32 *rk, const u8 *key, int keybits)

{

 int i = 0;

 u32 temp;

 rk[0] = GETU32(key);

 rk[1] = GETU32(key + 4);

 rk[2] = GETU32(key + 8);

 rk[3] = GETU32(key + 12);

 if (keybits == 128)

 {

 for (;;)

 {

 temp = rk[3];

 rk[4] = rk[0] ^

 (Te4[(temp >> 16) & 0xff] & 0xff000000) ^

 (Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^

 (Te4[(temp) & 0xff] & 0x0000ff00) ^

 (Te4[(temp >> 24)] & 0x000000ff) ^

 rcon[i];

 rk[5] = rk[1] ^ rk[4];

 rk[6] = rk[2] ^ rk[5];

 rk[7] = rk[3] ^ rk[6];

 if (++i == 10)

 return 10;

 rk += 4;

 }

 }

 rk[4] = GETU32(key + 16);

 rk[5] = GETU32(key + 20);

 if (keybits == 192)

 {

 for (;;)

 {

 temp = rk[5];

 rk[6] = rk[0] ^

 (Te4[(temp >> 16) & 0xff] & 0xff000000) ^

 (Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^

 (Te4[(temp) & 0xff] & 0x0000ff00) ^

 (Te4[(temp >> 24)] & 0x000000ff) ^

 rcon[i];

 rk[7] = rk[1] ^ rk[6];

 rk[8] = rk[2] ^ rk[7];

 rk[9] = rk[3] ^ rk[8];

 if (++i == 8)

 return 12;

 rk[10] = rk[4] ^ rk[9];

 rk[11] = rk[5] ^ rk[10];

 rk += 6;

 }

 }

 rk[6] = GETU32(key + 24);

 rk[7] = GETU32(key + 28);

 if (keybits == 256)

 {

 for (;;)

 {

 temp = rk[7];

 rk[8] = rk[0] ^

 (Te4[(temp >> 16) & 0xff] & 0xff000000) ^

 (Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^

 (Te4[(temp) & 0xff] & 0x0000ff00) ^

 (Te4[(temp >> 24)] & 0x000000ff) ^

 rcon[i];

 rk[9] = rk[1] ^ rk[8];

 rk[10] = rk[2] ^ rk[9];

 rk[11] = rk[3] ^ rk[10];

 if (++i == 7)

 return 14;

 temp = rk[11];

 rk[12] = rk[4] ^

 (Te4[(temp >> 24)] & 0xff000000) ^

 (Te4[(temp >> 16) & 0xff] & 0x00ff0000) ^

 (Te4[(temp >> 8) & 0xff] & 0x0000ff00) ^

 (Te4[(temp) & 0xff] & 0x000000ff);

 rk[13] = rk[5] ^ rk[12];

 rk[14] = rk[6] ^ rk[13];

 rk[15] = rk[7] ^ rk[14];

 rk += 8;

 }

 }

 return 0;

}

/**

 * Expand the cipher key into the decryption key schedule.

 *

 * @return the number of rounds for the given cipher key size.

 */

int rijndaelSetupDecrypt(u32 *rk, const u8 *key, int keybits)

{

 int nrounds, i, j;

 u32 temp;

 /* expand the cipher key: */

 nrounds = rijndaelSetupEncrypt(rk, key, keybits);

 /* invert the order of the round keys: */

 for (i = 0, j = 4*nrounds; i < j; i += 4, j -= 4)

 {

 temp = rk[i]; rk[i] = rk[j]; rk[j] = temp;

 temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp;

 temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp;

 temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp;

 }

 /* apply the inverse MixColumn transform to all round keys but the first and the last: */

 for (i = 1; i < nrounds; i++)

 {

 rk += 4;

 rk[0] =

 Td0[Te4[(rk[0] >> 24)] & 0xff] ^

 Td1[Te4[(rk[0] >> 16) & 0xff] & 0xff] ^

 Td2[Te4[(rk[0] >> 8) & 0xff] & 0xff] ^

 Td3[Te4[(rk[0]) & 0xff] & 0xff];

 rk[1] =

 Td0[Te4[(rk[1] >> 24)] & 0xff] ^

 Td1[Te4[(rk[1] >> 16) & 0xff] & 0xff] ^

 Td2[Te4[(rk[1] >> 8) & 0xff] & 0xff] ^

 Td3[Te4[(rk[1]) & 0xff] & 0xff];

 rk[2] =

 Td0[Te4[(rk[2] >> 24)] & 0xff] ^

 Td1[Te4[(rk[2] >> 16) & 0xff] & 0xff] ^

 Td2[Te4[(rk[2] >> 8) & 0xff] & 0xff] ^

 Td3[Te4[(rk[2]) & 0xff] & 0xff];

 rk[3] =

 Td0[Te4[(rk[3] >> 24)] & 0xff] ^

 Td1[Te4[(rk[3] >> 16) & 0xff] & 0xff] ^

 Td2[Te4[(rk[3] >> 8) & 0xff] & 0xff] ^

 Td3[Te4[(rk[3]) & 0xff] & 0xff];

 }

 return nrounds;

}

void rijndaelEncrypt(const u32 *rk, int nrounds, const u8 plaintext[16],

 u8 ciphertext[16])

{

 u32 s0, s1, s2, s3, t0, t1, t2, t3;

 #ifndef FULL_UNROLL

 int r;

 #endif /* ?FULL_UNROLL */

 /*

 * map byte array block to cipher state

 * and add initial round key:

 */

 s0 = GETU32(plaintext) ^ rk[0];

 s1 = GETU32(plaintext + 4) ^ rk[1];

 s2 = GETU32(plaintext + 8) ^ rk[2];

 s3 = GETU32(plaintext + 12) ^ rk[3];

 #ifdef FULL_UNROLL

 /* round 1: */

 t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[4];

 t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[5];

 t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[6];

 t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[7];

 /* round 2: */

 s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[8];

 s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[9];

 s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[10];

 s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[11];

 /* round 3: */

 t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[12];

 t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[13];

 t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[14];

 t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[15];

 /* round 4: */

 s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[16];

 s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[17];

 s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[18];

 s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[19];

 /* round 5: */

 t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[20];

 t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[21];

 t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[22];

 t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[23];

 /* round 6: */

 s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[24];

 s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[25];

 s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[26];

 s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[27];

 /* round 7: */

 t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[28];

 t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[29];

 t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[30];

 t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[31];

 /* round 8: */

 s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[32];

 s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[33];

 s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[34];

 s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[35];

 /* round 9: */

 t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[36];

 t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[37];

 t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[38];

 t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[39];

 if (nrounds > 10)

 {

 /* round 10: */

 s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[40];

 s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[41];

 s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[42];

 s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[43];

 /* round 11: */

 t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[44];

 t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[45];

 t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[46];

 t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[47];

 if (nrounds > 12)

 {

 /* round 12: */

 s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[48];

 s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[49];

 s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[50];

 s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[51];

 /* round 13: */

 t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[52];

 t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[53];

 t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[54];

 t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[55];

 }

 }

 rk += nrounds << 2;

 #else /* !FULL_UNROLL */

 /*

 * nrounds - 1 full rounds:

 */

 r = nrounds >> 1;

 for (;;)

 {

 t0 =

 Te0[(s0 >> 24)] ^

 Te1[(s1 >> 16) & 0xff] ^

 Te2[(s2 >> 8) & 0xff] ^

 Te3[(s3) & 0xff] ^

 rk[4];

 t1 =

 Te0[(s1 >> 24)] ^

 Te1[(s2 >> 16) & 0xff] ^

 Te2[(s3 >> 8) & 0xff] ^

 Te3[(s0) & 0xff] ^

 rk[5];

 t2 =

 Te0[(s2 >> 24)] ^

 Te1[(s3 >> 16) & 0xff] ^

 Te2[(s0 >> 8) & 0xff] ^

 Te3[(s1) & 0xff] ^

 rk[6];

 t3 =

 Te0[(s3 >> 24)] ^

 Te1[(s0 >> 16) & 0xff] ^

 Te2[(s1 >> 8) & 0xff] ^

 Te3[(s2) & 0xff] ^

 rk[7];

 rk += 8;

 if (--r == 0)

 break;

 s0 =

 Te0[(t0 >> 24)] ^

 Te1[(t1 >> 16) & 0xff] ^

 Te2[(t2 >> 8) & 0xff] ^

 Te3[(t3) & 0xff] ^

 rk[0];

 s1 =

 Te0[(t1 >> 24)] ^

 Te1[(t2 >> 16) & 0xff] ^

 Te2[(t3 >> 8) & 0xff] ^

 Te3[(t0) & 0xff] ^

 rk[1];

 s2 =

 Te0[(t2 >> 24)] ^

 Te1[(t3 >> 16) & 0xff] ^

 Te2[(t0 >> 8) & 0xff] ^

 Te3[(t1) & 0xff] ^

 rk[2];

 s3 =

 Te0[(t3 >> 24)] ^

 Te1[(t0 >> 16) & 0xff] ^

 Te2[(t1 >> 8) & 0xff] ^

 Te3[(t2) & 0xff] ^

 rk[3];

 }

 #endif /* ?FULL_UNROLL */

 /*

 * apply last round and

 * map cipher state to byte array block:

 */

 s0 =

 (Te4[(t0 >> 24)] & 0xff000000) ^

 (Te4[(t1 >> 16) & 0xff] & 0x00ff0000) ^

 (Te4[(t2 >> 8) & 0xff] & 0x0000ff00) ^

 (Te4[(t3) & 0xff] & 0x000000ff) ^

 rk[0];

 PUTU32(ciphertext , s0);

 s1 =

 (Te4[(t1 >> 24)] & 0xff000000) ^

 (Te4[(t2 >> 16) & 0xff] & 0x00ff0000) ^

 (Te4[(t3 >> 8) & 0xff] & 0x0000ff00) ^

 (Te4[(t0) & 0xff] & 0x000000ff) ^

 rk[1];

 PUTU32(ciphertext + 4, s1);

 s2 =

 (Te4[(t2 >> 24)] & 0xff000000) ^

 (Te4[(t3 >> 16) & 0xff] & 0x00ff0000) ^

 (Te4[(t0 >> 8) & 0xff] & 0x0000ff00) ^

 (Te4[(t1) & 0xff] & 0x000000ff) ^

 rk[2];

 PUTU32(ciphertext + 8, s2);

 s3 =

 (Te4[(t3 >> 24)] & 0xff000000) ^

 (Te4[(t0 >> 16) & 0xff] & 0x00ff0000) ^

 (Te4[(t1 >> 8) & 0xff] & 0x0000ff00) ^

 (Te4[(t2) & 0xff] & 0x000000ff) ^

 rk[3];

 PUTU32(ciphertext + 12, s3);

}

void rijndaelDecrypt(const u32 *rk, int nrounds, const u8 ciphertext[16],

 u8 plaintext[16])

{

 u32 s0, s1, s2, s3, t0, t1, t2, t3;

 #ifndef FULL_UNROLL

 int r;

 #endif /* ?FULL_UNROLL */

 /*

 * map byte array block to cipher state

 * and add initial round key:

 */

 s0 = GETU32(ciphertext) ^ rk[0];

 s1 = GETU32(ciphertext + 4) ^ rk[1];

 s2 = GETU32(ciphertext + 8) ^ rk[2];

 s3 = GETU32(ciphertext + 12) ^ rk[3];

 #ifdef FULL_UNROLL

 /* round 1: */

 t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[4];

 t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[5];

 t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[6];

 t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[7];

 /* round 2: */

 s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[8];

 s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[9];

 s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[10];

 s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[11];

 /* round 3: */

 t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[12];

 t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[13];

 t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[14];

 t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[15];

 /* round 4: */

 s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[16];

 s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[17];

 s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[18];

 s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[19];

 /* round 5: */

 t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[20];

 t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[21];

 t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[22];

 t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[23];

 /* round 6: */

 s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[24];

 s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[25];

 s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[26];

 s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[27];

 /* round 7: */

 t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[28];

 t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[29];

 t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[30];

 t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[31];

 /* round 8: */

 s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[32];

 s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[33];

 s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[34];

 s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[35];

 /* round 9: */

 t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[36];

 t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[37];

 t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[38];

 t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[39];

 if (nrounds > 10)

 {

 /* round 10: */

 s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[40];

 s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[41];

 s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[42];

 s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[43];

 /* round 11: */

 t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[44];

 t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[45];

 t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[46];

 t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[47];

 if (nrounds > 12)

 {

 /* round 12: */

 s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[48];

 s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[49];

 s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[50];

 s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[51];

 /* round 13: */

 t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[52];

 t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[53];

 t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[54];

 t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[55];

 }

 }

 rk += nrounds << 2;

 #else /* !FULL_UNROLL */

 /*

 * nrounds - 1 full rounds:

 */

 r = nrounds >> 1;

 for (;;)

 {

 t0 =

 Td0[(s0 >> 24)] ^

 Td1[(s3 >> 16) & 0xff] ^

 Td2[(s2 >> 8) & 0xff] ^

 Td3[(s1) & 0xff] ^

 rk[4];

 t1 =

 Td0[(s1 >> 24)] ^

 Td1[(s0 >> 16) & 0xff] ^

 Td2[(s3 >> 8) & 0xff] ^

 Td3[(s2) & 0xff] ^

 rk[5];

 t2 =

 Td0[(s2 >> 24)] ^

 Td1[(s1 >> 16) & 0xff] ^

 Td2[(s0 >> 8) & 0xff] ^

 Td3[(s3) & 0xff] ^

 rk[6];

 t3 =

 Td0[(s3 >> 24)] ^

 Td1[(s2 >> 16) & 0xff] ^

 Td2[(s1 >> 8) & 0xff] ^

 Td3[(s0) & 0xff] ^

 rk[7];

 rk += 8;

 if (--r == 0)

 break;

 s0 =

 Td0[(t0 >> 24)] ^

 Td1[(t3 >> 16) & 0xff] ^

 Td2[(t2 >> 8) & 0xff] ^

 Td3[(t1) & 0xff] ^

 rk[0];

 s1 =

 Td0[(t1 >> 24)] ^

 Td1[(t0 >> 16) & 0xff] ^

 Td2[(t3 >> 8) & 0xff] ^

 Td3[(t2) & 0xff] ^

 rk[1];

 s2 =

 Td0[(t2 >> 24)] ^

 Td1[(t1 >> 16) & 0xff] ^

 Td2[(t0 >> 8) & 0xff] ^

 Td3[(t3) & 0xff] ^

 rk[2];

 s3 =

 Td0[(t3 >> 24)] ^

 Td1[(t2 >> 16) & 0xff] ^

 Td2[(t1 >> 8) & 0xff] ^

 Td3[(t0) & 0xff] ^

 rk[3];

 }

 #endif /* ?FULL_UNROLL */

 /*

 * apply last round and

 * map cipher state to byte array block:

 */

 s0 =

 (Td4[(t0 >> 24)] & 0xff000000) ^

 (Td4[(t3 >> 16) & 0xff] & 0x00ff0000) ^

 (Td4[(t2 >> 8) & 0xff] & 0x0000ff00) ^

 (Td4[(t1) & 0xff] & 0x000000ff) ^

 rk[0];

 PUTU32(plaintext , s0);

 s1 =

 (Td4[(t1 >> 24)] & 0xff000000) ^

 (Td4[(t0 >> 16) & 0xff] & 0x00ff0000) ^

 (Td4[(t3 >> 8) & 0xff] & 0x0000ff00) ^

 (Td4[(t2) & 0xff] & 0x000000ff) ^

 rk[1];

 PUTU32(plaintext + 4, s1);

 s2 =

 (Td4[(t2 >> 24)] & 0xff000000) ^

 (Td4[(t1 >> 16) & 0xff] & 0x00ff0000) ^

 (Td4[(t0 >> 8) & 0xff] & 0x0000ff00) ^

 (Td4[(t3) & 0xff] & 0x000000ff) ^

 rk[2];

 PUTU32(plaintext + 8, s2);

 s3 =

 (Td4[(t3 >> 24)] & 0xff000000) ^

 (Td4[(t2 >> 16) & 0xff] & 0x00ff0000) ^

 (Td4[(t1 >> 8) & 0xff] & 0x0000ff00) ^

 (Td4[(t0) & 0xff] & 0x000000ff) ^

 rk[3];

 PUTU32(plaintext + 12, s3);

}

qpdf-7.1.0/libqpdf/QPDF_Reserved.cc

#include <qpdf/QPDF_Reserved.hh>
#include <stdexcept>

QPDF_Reserved::~QPDF_Reserved()
{
}

std::string
QPDF_Reserved::unparse()
{
 throw std::logic_error("attempt to unparse QPDF_Reserved");
 return "";
}

QPDFObject::object_type_e
QPDF_Reserved::getTypeCode() const
{
 return QPDFObject::ot_reserved;
}

char const*
QPDF_Reserved::getTypeName() const
{
 return "reserved";
}

qpdf-7.1.0/libqpdf/Pl_RC4.cc

#include <qpdf/Pl_RC4.hh>
#include <qpdf/QUtil.hh>

Pl_RC4::Pl_RC4(char const* identifier, Pipeline* next,
	 unsigned char const* key_data, int key_len,
	 size_t out_bufsize) :
 Pipeline(identifier, next),
 out_bufsize(out_bufsize),
 rc4(key_data, key_len)
{
 this->outbuf = new unsigned char[out_bufsize];
}

Pl_RC4::~Pl_RC4()
{
 if (this->outbuf)
 {
	delete [] this->outbuf;
	this->outbuf = 0;
 }
}

void
Pl_RC4::write(unsigned char* data, size_t len)
{
 if (this->outbuf == 0)
 {
	throw std::logic_error(
	 this->identifier +
	 ": Pl_RC4: write() called after finish() called");
 }

 size_t bytes_left = len;
 unsigned char* p = data;

 while (bytes_left > 0)
 {
	size_t bytes =
 (bytes_left < this->out_bufsize ? bytes_left : out_bufsize);
	bytes_left -= bytes;
	rc4.process(p, bytes, outbuf);
	p += bytes;
	getNext()->write(outbuf, bytes);
 }
}

void
Pl_RC4::finish()
{
 if (this->outbuf)
 {
	delete [] this->outbuf;
	this->outbuf = 0;
 }
 this->getNext()->finish();
}

qpdf-7.1.0/libqpdf/QTC.cc

#include <qpdf/QTC.hh>

#include <set>
#include <stdio.h>
#include <qpdf/QUtil.hh>

static bool tc_active(char const* const scope)
{
 std::string value;
 return (QUtil::get_env("TC_SCOPE", &value) && (value == scope));
}

void QTC::TC(char const* const scope, char const* const ccase, int n)
{
 static std::set<std::pair<std::string, int> > cache;

 if (! tc_active(scope))
 {
	return;
 }

 std::string filename;
#ifdef _WIN32
define TC_ENV "TC_WIN_FILENAME"
#else
define TC_ENV "TC_FILENAME"
#endif
 if (! QUtil::get_env(TC_ENV, &filename))
 {
	return;
 }
#undef TC_ENV

 if (cache.count(std::make_pair(ccase, n)))
 {
	return;
 }
 cache.insert(std::make_pair(ccase, n));

 FILE* tc = QUtil::safe_fopen(filename.c_str(), "ab");
 fprintf(tc, "%s %d\n", ccase, n);
 fclose(tc);
}

qpdf-7.1.0/libqpdf/RC4.cc

#include <qpdf/RC4.hh>

#include <string.h>

static void swap_byte(unsigned char &a, unsigned char &b)
{
 unsigned char t;

 t = a;
 a = b;
 b = t;
}

RC4::RC4(unsigned char const* key_data, int key_len)
{
 if (key_len == -1)
 {
	key_len = strlen(reinterpret_cast<char const*>(key_data));
 }

 for (int i = 0; i < 256; ++i)
 {
 key.state[i] = i;
 }
 key.x = 0;
 key.y = 0;

 int i1 = 0;
 int i2 = 0;
 for (int i = 0; i < 256; ++i)
 {
	i2 = (key_data[i1] + key.state[i] + i2) % 256;
	swap_byte(key.state[i], key.state[i2]);
	i1 = (i1 + 1) % key_len;
 }
}

void
RC4::process(unsigned char *in_data, int len, unsigned char* out_data)
{
 if (out_data == 0)
 {
	// Convert in place
	out_data = in_data;
 }

 for (int i = 0; i < len; ++i)
 {
	key.x = (key.x + 1) % 256;
	key.y = (key.state[key.x] + key.y) % 256;
	swap_byte(key.state[key.x], key.state[key.y]);
	int xor_index = (key.state[key.x] + key.state[key.y]) % 256;
	out_data[i] = in_data[i] ^ key.state[xor_index];
 }
}

qpdf-7.1.0/libqpdf/QPDF_encryption.cc

qpdf-7.1.0/libqpdf/QPDF_encryption.cc

// This file implements methods from the QPDF class that involve

// encryption.

#include <qpdf/QPDF.hh>

#include <qpdf/QPDFExc.hh>

#include <qpdf/QTC.hh>

#include <qpdf/QUtil.hh>

#include <qpdf/Pl_RC4.hh>

#include <qpdf/Pl_AES_PDF.hh>

#include <qpdf/Pl_Buffer.hh>

#include <qpdf/Pl_SHA2.hh>

#include <qpdf/RC4.hh>

#include <qpdf/MD5.hh>

#include <algorithm>

#include <assert.h>

#include <string.h>

static unsigned char const padding_string[] = {

 0x28, 0xbf, 0x4e, 0x5e, 0x4e, 0x75, 0x8a, 0x41,

 0x64, 0x00, 0x4e, 0x56, 0xff, 0xfa, 0x01, 0x08,

 0x2e, 0x2e, 0x00, 0xb6, 0xd0, 0x68, 0x3e, 0x80,

 0x2f, 0x0c, 0xa9, 0xfe, 0x64, 0x53, 0x69, 0x7a

};

static unsigned int const key_bytes = 32;

// V4 key lengths apply to V <= 4

static unsigned int const OU_key_bytes_V4 = sizeof(MD5::Digest);

static unsigned int const OU_key_bytes_V5 = 48;

static unsigned int const OUE_key_bytes_V5 = 32;

static unsigned int const Perms_key_bytes_V5 = 16;

int

QPDF::EncryptionData::getV() const

{

 return this->V;

}

int

QPDF::EncryptionData::getR() const

{

 return this->R;

}

int

QPDF::EncryptionData::getLengthBytes() const

{

 return this->Length_bytes;

}

int

QPDF::EncryptionData::getP() const

{

 return this->P;

}

std::string const&

QPDF::EncryptionData::getO() const

{

 return this->O;

}

std::string const&

QPDF::EncryptionData::getU() const

{

 return this->U;

}

std::string const&

QPDF::EncryptionData::getOE() const

{

 return this->OE;

}

std::string const&

QPDF::EncryptionData::getUE() const

{

 return this->UE;

}

std::string const&

QPDF::EncryptionData::getPerms() const

{

 return this->Perms;

}

std::string const&

QPDF::EncryptionData::getId1() const

{

 return this->id1;

}

bool

QPDF::EncryptionData::getEncryptMetadata() const

{

 return this->encrypt_metadata;

}

void

QPDF::EncryptionData::setO(std::string const& O)

{

 this->O = O;

}

void

QPDF::EncryptionData::setU(std::string const& U)

{

 this->U = U;

}

void

QPDF::EncryptionData::setV5EncryptionParameters(

 std::string const& O,

 std::string const& OE,

 std::string const& U,

 std::string const& UE,

 std::string const& Perms)

{

 this->O = O;

 this->OE = OE;

 this->U = U;

 this->UE = UE;

 this->Perms = Perms;

}

static void

pad_or_truncate_password_V4(std::string const& password, char k1[key_bytes])

{

 int password_bytes = std::min(static_cast<size_t>(key_bytes),

 password.length());

 int pad_bytes = key_bytes - password_bytes;

 memcpy(k1, password.c_str(), password_bytes);

 memcpy(k1 + password_bytes, padding_string, pad_bytes);

}

void

QPDF::trim_user_password(std::string& user_password)

{

 // Although unnecessary, this routine trims the padding string

 // from the end of a user password. Its only purpose is for

 // recovery of user passwords which is done in the test suite.

 char const* cstr = user_password.c_str();

 size_t len = user_password.length();

 if (len < key_bytes)

 {

 return;

 }

 char const* p1 = cstr;

 char const* p2 = 0;

 while ((p2 = strchr(p1, '\x28')) != 0)

 {

 if (memcmp(p2, padding_string, len - (p2 - cstr)) == 0)

 {

 user_password = user_password.substr(0, p2 - cstr);

 return;

 }

 else

 {

 QTC::TC("qpdf", "QPDF_encryption skip 0x28");

 p1 = p2 + 1;

 }

 }

}

static std::string

pad_or_truncate_password_V4(std::string const& password)

{

 char k1[key_bytes];

 pad_or_truncate_password_V4(password, k1);

 return std::string(k1, key_bytes);

}

static std::string

truncate_password_V5(std::string const& password)

{

 return password.substr(

 0, std::min(static_cast<size_t>(127), password.length()));

}

static void

iterate_md5_digest(MD5& md5, MD5::Digest& digest, int iterations)

{

 md5.digest(digest);

 for (int i = 0; i < iterations; ++i)

 {

 MD5 m;

 m.encodeDataIncrementally(reinterpret_cast<char*>(digest),

 sizeof(digest));

 m.digest(digest);

 }

}

static void

iterate_rc4(unsigned char* data, int data_len,

 unsigned char* okey, int key_len,

 int iterations, bool reverse)

{

 unsigned char* key = new unsigned char[key_len];

 for (int i = 0; i < iterations; ++i)

 {

 int const xor_value = (reverse ? iterations - 1 - i : i);

 for (int j = 0; j < key_len; ++j)

 {

 key[j] = okey[j] ^ xor_value;

 }

 RC4 rc4(key, key_len);

 rc4.process(data, data_len);

 }

 delete [] key;

}

static std::string

process_with_aes(std::string const& key,

 bool encrypt,

 std::string const& data,

 size_t outlength = 0,

 unsigned int repetitions = 1,

 unsigned char const* iv = 0,

 size_t iv_length = 0)

{

 Pl_Buffer buffer("buffer");

 Pl_AES_PDF aes("aes", &buffer, encrypt,

 QUtil::unsigned_char_pointer(key),

 key.length());

 if (iv)

 {

 aes.setIV(iv, iv_length);

 }

 else

 {

 aes.useZeroIV();

 }

 aes.disablePadding();

 for (unsigned int i = 0; i < repetitions; ++i)

 {

 aes.write(QUtil::unsigned_char_pointer(data), data.length());

 }

 aes.finish();

 PointerHolder<Buffer> bufp = buffer.getBuffer();

 if (outlength == 0)

 {

 outlength = bufp->getSize();

 }

 else

 {

 outlength = std::min(outlength, bufp->getSize());

 }

 return std::string(reinterpret_cast<char*>(bufp->getBuffer()), outlength);

}

static std::string

hash_V5(std::string const& password,

 std::string const& salt,

 std::string const& udata,

 QPDF::EncryptionData const& data)

{

 Pl_SHA2 hash(256);

 hash.write(QUtil::unsigned_char_pointer(password), password.length());

 hash.write(QUtil::unsigned_char_pointer(salt), salt.length());

 hash.write(QUtil::unsigned_char_pointer(udata), udata.length());

 hash.finish();

 std::string K = hash.getRawDigest();

 std::string result;

 if (data.getR() < 6)

 {

 result = K;

 }

 else

 {

 // Algorithm 2.B from ISO 32000-1 chapter 7: Computing a hash

 int round_number = 0;

 bool done = false;

 while (! done)

 {

 // The hash algorithm has us setting K initially to the R5

 // value and then repeating a series of steps 64 times

 // before starting with the termination case testing. The

 // wording of the specification is very unclear as to the

 // exact number of times it should be run since the

 // wording about whether the initial setup counts as round

 // 0 or not is ambiguous. This code counts the initial

 // setup (R5) value as round 0, which appears to be

 // correct. This was determined to be correct by

 // increasing or decreasing the number of rounds by 1 or 2

 // from this value and generating 20 test files. In this

 // interpretation, all the test files worked with Adobe

 // Reader X. In the other configurations, many of the

 // files did not work, and we were accurately able to

 // predict which files didn't work by looking at the

 // conditions under which we terminated repetition.

 ++round_number;

 std::string K1 = password + K + udata;

 assert(K.length() >= 32);

 std::string E = process_with_aes(

 K.substr(0, 16), true, K1, 0, 64,

 QUtil::unsigned_char_pointer(K.substr(16, 16)), 16);

 // E_mod_3 is supposed to be mod 3 of the first 16 bytes

 // of E taken as as a (128-bit) big-endian number. Since

 // (xy mod n) is equal to ((x mod n) + (y mod n)) mod n

 // and since 256 mod n is 1, we can just take the sums of

 // the the mod 3s of each byte to get the same result.

 int E_mod_3 = 0;

 for (unsigned int i = 0; i < 16; ++i)

 {

 E_mod_3 += static_cast<unsigned char>(E.at(i));

 }

 E_mod_3 %= 3;

 int next_hash = ((E_mod_3 == 0) ? 256 :

 (E_mod_3 == 1) ? 384 :

 512);

 Pl_SHA2 hash(next_hash);

 hash.write(QUtil::unsigned_char_pointer(E), E.length());

 hash.finish();

 K = hash.getRawDigest();

 if (round_number >= 64)

 {

 unsigned int ch = static_cast<unsigned char>(*(E.rbegin()));

 if (ch <= static_cast<unsigned int>(round_number - 32))

 {

 done = true;

 }

 }

 }

 result = K.substr(0, 32);

 }

 return result;

}

static

void pad_short_parameter(std::string& param, unsigned int max_len)

{

 if (param.length() < max_len)

 {

 QTC::TC("qpdf", "QPDF_encryption pad short parameter");

 param.append(max_len - param.length(), '\0');

 }

}

std::string

QPDF::compute_data_key(std::string const& encryption_key,

 int objid, int generation, bool use_aes,

 int encryption_V, int encryption_R)

{

 // Algorithm 3.1 from the PDF 1.7 Reference Manual

 std::string result = encryption_key;

 if (encryption_V >= 5)

 {

 // Algorithm 3.1a (PDF 1.7 extension level 3): just use

 // encryption key straight.

 return result;

 }

 // Append low three bytes of object ID and low two bytes of generation

 result += static_cast<char>(objid & 0xff);

 result += static_cast<char>((objid >> 8) & 0xff);

 result += static_cast<char>((objid >> 16) & 0xff);

 result += static_cast<char>(generation & 0xff);

 result += static_cast<char>((generation >> 8) & 0xff);

 if (use_aes)

 {

 result += "sAlT";

 }

 MD5 md5;

 md5.encodeDataIncrementally(result.c_str(), result.length());

 MD5::Digest digest;

 md5.digest(digest);

 return std::string(reinterpret_cast<char*>(digest),

 std::min(result.length(), static_cast<size_t>(16)));

}

std::string

QPDF::compute_encryption_key(

 std::string const& password, EncryptionData const& data)

{

 if (data.getV() >= 5)

 {

 // For V >= 5, the encryption key is generated and stored in

 // the file, encrypted separately with both user and owner

 // passwords.

 return recover_encryption_key_with_password(password, data);

 }

 else

 {

 // For V < 5, the encryption key is derived from the user

 // password.

 return compute_encryption_key_from_password(password, data);

 }

}

std::string

QPDF::compute_encryption_key_from_password(

 std::string const& password, EncryptionData const& data)

{

 // Algorithm 3.2 from the PDF 1.7 Reference Manual

 // This code does not properly handle Unicode passwords.

 // Passwords are supposed to be converted from OS codepage

 // characters to PDFDocEncoding. Unicode passwords are supposed

 // to be converted to OS codepage before converting to

 // PDFDocEncoding. We instead require the password to be

 // presented in its final form.

 MD5 md5;

 md5.encodeDataIncrementally(

 pad_or_truncate_password_V4(password).c_str(), key_bytes);

 md5.encodeDataIncrementally(data.getO().c_str(), key_bytes);

 char pbytes[4];

 int P = data.getP();

 pbytes[0] = static_cast<char>(P & 0xff);

 pbytes[1] = static_cast<char>((P >> 8) & 0xff);

 pbytes[2] = static_cast<char>((P >> 16) & 0xff);

 pbytes[3] = static_cast<char>((P >> 24) & 0xff);

 md5.encodeDataIncrementally(pbytes, 4);

 md5.encodeDataIncrementally(data.getId1().c_str(),

 data.getId1().length());

 if ((data.getR() >= 4) && (! data.getEncryptMetadata()))

 {

 char bytes[4];

 memset(bytes, 0xff, 4);

 md5.encodeDataIncrementally(bytes, 4);

 }

 MD5::Digest digest;

 iterate_md5_digest(md5, digest, ((data.getR() >= 3) ? 50 : 0));

 return std::string(reinterpret_cast<char*>(digest),

 std::min(static_cast<int>(sizeof(digest)),

 data.getLengthBytes()));

}

static void

compute_O_rc4_key(std::string const& user_password,

 std::string const& owner_password,

 QPDF::EncryptionData const& data,

 unsigned char key[OU_key_bytes_V4])

{

 if (data.getV() >= 5)

 {

 throw std::logic_error(

 "compute_O_rc4_key called for file with V >= 5");

 }

 std::string password = owner_password;

 if (password.empty())

 {

 password = user_password;

 }

 MD5 md5;

 md5.encodeDataIncrementally(

 pad_or_truncate_password_V4(password).c_str(), key_bytes);

 MD5::Digest digest;

 iterate_md5_digest(md5, digest, ((data.getR() >= 3) ? 50 : 0));

 memcpy(key, digest, OU_key_bytes_V4);

}

static std::string

compute_O_value(std::string const& user_password,

 std::string const& owner_password,

 QPDF::EncryptionData const& data)

{

 // Algorithm 3.3 from the PDF 1.7 Reference Manual

 unsigned char O_key[OU_key_bytes_V4];

 compute_O_rc4_key(user_password, owner_password, data, O_key);

 char upass[key_bytes];

 pad_or_truncate_password_V4(user_password, upass);

 std::string k1(reinterpret_cast<char*>(O_key), OU_key_bytes_V4);

 pad_short_parameter(k1, data.getLengthBytes());

 iterate_rc4(QUtil::unsigned_char_pointer(upass), key_bytes,

 O_key, data.getLengthBytes(),

 (data.getR() >= 3) ? 20 : 1, false);

 return std::string(upass, key_bytes);

}

static

std::string

compute_U_value_R2(std::string const& user_password,

 QPDF::EncryptionData const& data)

{

 // Algorithm 3.4 from the PDF 1.7 Reference Manual

 std::string k1 = QPDF::compute_encryption_key(user_password, data);

 char udata[key_bytes];

 pad_or_truncate_password_V4("", udata);

 pad_short_parameter(k1, data.getLengthBytes());

 iterate_rc4(QUtil::unsigned_char_pointer(udata), key_bytes,

 QUtil::unsigned_char_pointer(k1),

 data.getLengthBytes(), 1, false);

 return std::string(udata, key_bytes);

}

static

std::string

compute_U_value_R3(std::string const& user_password,

 QPDF::EncryptionData const& data)

{

 // Algorithm 3.5 from the PDF 1.7 Reference Manual

 std::string k1 = QPDF::compute_encryption_key(user_password, data);

 MD5 md5;

 md5.encodeDataIncrementally(

 pad_or_truncate_password_V4("").c_str(), key_bytes);

 md5.encodeDataIncrementally(data.getId1().c_str(),

 data.getId1().length());

 MD5::Digest digest;

 md5.digest(digest);

 pad_short_parameter(k1, data.getLengthBytes());

 iterate_rc4(digest, sizeof(MD5::Digest),

 QUtil::unsigned_char_pointer(k1),

 data.getLengthBytes(), 20, false);

 char result[key_bytes];

 memcpy(result, digest, sizeof(MD5::Digest));

 // pad with arbitrary data -- make it consistent for the sake of

 // testing

 for (unsigned int i = sizeof(MD5::Digest); i < key_bytes; ++i)

 {

 result[i] = static_cast<char>((i * i) % 0xff);

 }

 return std::string(result, key_bytes);

}

static std::string

compute_U_value(std::string const& user_password,

 QPDF::EncryptionData const& data)

{

 if (data.getR() >= 3)

 {

 return compute_U_value_R3(user_password, data);

 }

 return compute_U_value_R2(user_password, data);

}

static bool

check_user_password_V4(std::string const& user_password,

 QPDF::EncryptionData const& data)

{

 // Algorithm 3.6 from the PDF 1.7 Reference Manual

 std::string u_value = compute_U_value(user_password, data);

 int to_compare = ((data.getR() >= 3) ? sizeof(MD5::Digest)

 : key_bytes);

 return (memcmp(data.getU().c_str(), u_value.c_str(), to_compare) == 0);

}

static bool

check_user_password_V5(std::string const& user_password,

 QPDF::EncryptionData const& data)

{

 // Algorithm 3.11 from the PDF 1.7 extension level 3

 std::string user_data = data.getU().substr(0, 32);

 std::string validation_salt = data.getU().substr(32, 8);

 std::string password = truncate_password_V5(user_password);

 return (hash_V5(password, validation_salt, "", data) == user_data);

}

static bool

check_user_password(std::string const& user_password,

 QPDF::EncryptionData const& data)

{

 if (data.getV() < 5)

 {

 return check_user_password_V4(user_password, data);

 }

 else

 {

 return check_user_password_V5(user_password, data);

 }

}

static bool

check_owner_password_V4(std::string& user_password,

 std::string const& owner_password,

 QPDF::EncryptionData const& data)

{

 // Algorithm 3.7 from the PDF 1.7 Reference Manual

 unsigned char key[OU_key_bytes_V4];

 compute_O_rc4_key(user_password, owner_password, data, key);

 unsigned char O_data[key_bytes];

 memcpy(O_data, QUtil::unsigned_char_pointer(data.getO()), key_bytes);

 std::string k1(reinterpret_cast<char*>(key), OU_key_bytes_V4);

 pad_short_parameter(k1, data.getLengthBytes());

 iterate_rc4(O_data, key_bytes, QUtil::unsigned_char_pointer(k1),

 data.getLengthBytes(),

 (data.getR() >= 3) ? 20 : 1, true);

 std::string new_user_password =

 std::string(reinterpret_cast<char*>(O_data), key_bytes);

 bool result = false;

 if (check_user_password(new_user_password, data))

 {

 result = true;

 user_password = new_user_password;

 }

 return result;

}

static bool

check_owner_password_V5(std::string const& owner_password,

 QPDF::EncryptionData const& data)

{

 // Algorithm 3.12 from the PDF 1.7 extension level 3

 std::string user_data = data.getU().substr(0, 48);

 std::string owner_data = data.getO().substr(0, 32);

 std::string validation_salt = data.getO().substr(32, 8);

 std::string password = truncate_password_V5(owner_password);

 return (hash_V5(password, validation_salt, user_data,

 data) == owner_data);

}

static bool

check_owner_password(std::string& user_password,

 std::string const& owner_password,

 QPDF::EncryptionData const& data)

{

 if (data.getV() < 5)

 {

 return check_owner_password_V4(user_password, owner_password, data);

 }

 else

 {

 return check_owner_password_V5(owner_password, data);

 }

}

std::string

QPDF::recover_encryption_key_with_password(

 std::string const& password, EncryptionData const& data)

{

 // Disregard whether Perms is valid.

 bool disregard;

 return recover_encryption_key_with_password(password, data, disregard);

}

static void

compute_U_UE_value_V5(std::string const& user_password,

 std::string const& encryption_key,

 QPDF::EncryptionData const& data,

 std::string& U, std::string& UE)

{

 // Algorithm 3.8 from the PDF 1.7 extension level 3

 char k[16];

 QUtil::initializeWithRandomBytes(

 QUtil::unsigned_char_pointer(k), sizeof(k));

 std::string validation_salt(k, 8);

 std::string key_salt(k + 8, 8);

 U = hash_V5(user_password, validation_salt, "", data) +

 validation_salt + key_salt;

 std::string intermediate_key = hash_V5(user_password, key_salt, "", data);

 UE = process_with_aes(intermediate_key, true, encryption_key);

}

static void

compute_O_OE_value_V5(std::string const& owner_password,

 std::string const& encryption_key,

 QPDF::EncryptionData const& data,

 std::string const& U,

 std::string& O, std::string& OE)

{

 // Algorithm 3.9 from the PDF 1.7 extension level 3

 char k[16];

 QUtil::initializeWithRandomBytes(

 QUtil::unsigned_char_pointer(k), sizeof(k));

 std::string validation_salt(k, 8);

 std::string key_salt(k + 8, 8);

 O = hash_V5(owner_password, validation_salt, U, data) +

 validation_salt + key_salt;

 std::string intermediate_key = hash_V5(owner_password, key_salt, U, data);

 OE = process_with_aes(intermediate_key, true, encryption_key);

}

void

compute_Perms_value_V5_clear(std::string const& encryption_key,

 QPDF::EncryptionData const& data,

 unsigned char k[16])

{

 // From algorithm 3.10 from the PDF 1.7 extension level 3

 unsigned long long extended_perms = 0xffffffff00000000LL | data.getP();

 for (int i = 0; i < 8; ++i)

 {

 k[i] = static_cast<unsigned char>(extended_perms & 0xff);

 extended_perms >>= 8;

 }

 k[8] = data.getEncryptMetadata() ? 'T' : 'F';

 k[9] = 'a';

 k[10] = 'd';

 k[11] = 'b';

 QUtil::initializeWithRandomBytes(k + 12, 4);

}

static std::string

compute_Perms_value_V5(std::string const& encryption_key,

 QPDF::EncryptionData const& data)

{

 // Algorithm 3.10 from the PDF 1.7 extension level 3

 unsigned char k[16];

 compute_Perms_value_V5_clear(encryption_key, data, k);

 return process_with_aes(

 encryption_key, true,

 std::string(reinterpret_cast<char*>(k), sizeof(k)));

}

std::string

QPDF::recover_encryption_key_with_password(

 std::string const& password, EncryptionData const& data,

 bool& perms_valid)

{

 // Algorithm 3.2a from the PDF 1.7 extension level 3

 // This code does not handle Unicode passwords correctly.

 // Empirical evidence suggests that most viewers don't. We are

 // supposed to process the input string with the SASLprep (RFC

 // 4013) profile of stringprep (RFC 3454) and then convert the

 // result to UTF-8.

 perms_valid = false;

 std::string key_password = truncate_password_V5(password);

 std::string key_salt;

 std::string user_data;

 std::string encrypted_file_key;

 if (check_owner_password_V5(key_password, data))

 {

 key_salt = data.getO().substr(40, 8);

 user_data = data.getU().substr(0, 48);

 encrypted_file_key = data.getOE().substr(0, 32);

 }

 else if (check_user_password_V5(key_password, data))

 {

 key_salt = data.getU().substr(40, 8);

 encrypted_file_key = data.getUE().substr(0, 32);

 }

 std::string intermediate_key =

 hash_V5(key_password, key_salt, user_data, data);

 std::string file_key =

 process_with_aes(intermediate_key, false, encrypted_file_key);

 // Decrypt Perms and check against expected value

 std::string perms_check =

 process_with_aes(file_key, false, data.getPerms(), 12);

 unsigned char k[16];

 compute_Perms_value_V5_clear(file_key, data, k);

 perms_valid = (memcmp(perms_check.c_str(), k, 12) == 0);

 return file_key;

}

QPDF::encryption_method_e

QPDF::interpretCF(QPDFObjectHandle cf)

{

 if (cf.isName())

 {

 std::string filter = cf.getName();

 if (this->m->crypt_filters.count(filter) != 0)

 {

 return this->m->crypt_filters[filter];

 }

 else if (filter == "/Identity")

 {

 return e_none;

 }

 else

 {

 return e_unknown;

 }

 }

 else

 {

 // Default: /Identity

 return e_none;

 }

}

void

QPDF::initializeEncryption()

{

 if (this->m->encryption_initialized)

 {

 return;

 }

 this->m->encryption_initialized = true;

 // After we initialize encryption parameters, we must used stored

 // key information and never look at /Encrypt again. Otherwise,

 // things could go wrong if someone mutates the encryption

 // dictionary.

 if (! this->m->trailer.hasKey("/Encrypt"))

 {

 return;

 }

 // Go ahead and set this->m->encrypted here. That way, isEncrypted

 // will return true even if there were errors reading the

 // encryption dictionary.

 this->m->encrypted = true;

 std::string id1;

 QPDFObjectHandle id_obj = this->m->trailer.getKey("/ID");

 if ((id_obj.isArray() &&

 (id_obj.getArrayNItems() == 2) &&

 id_obj.getArrayItem(0).isString()))

 {

 id1 = id_obj.getArrayItem(0).getStringValue();

 }

 else

 {

 // Treating a missing ID as the empty string enables qpdf to

 // decrypt some invalid encrypted files with no /ID that

 // poppler can read but Adobe Reader can't.

 warn(QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 "trailer", this->m->file->getLastOffset(),

 "invalid /ID in trailer dictionary"));

 }

 QPDFObjectHandle encryption_dict = this->m->trailer.getKey("/Encrypt");

 if (! encryption_dict.isDictionary())

 {

 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 this->m->last_object_description,

 this->m->file->getLastOffset(),

 "/Encrypt in trailer dictionary is not a dictionary");

 }

 if (! (encryption_dict.getKey("/Filter").isName() &&

 (encryption_dict.getKey("/Filter").getName() == "/Standard")))

 {

 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 "encryption dictionary", this->m->file->getLastOffset(),

 "unsupported encryption filter");

 }

 if (! encryption_dict.getKey("/SubFilter").isNull())

 {

 warn(QPDFExc(qpdf_e_unsupported, this->m->file->getName(),

 "encryption dictionary", this->m->file->getLastOffset(),

 "file uses encryption SubFilters,"

 " which qpdf does not support"));

 }

 if (! (encryption_dict.getKey("/V").isInteger() &&

 encryption_dict.getKey("/R").isInteger() &&

 encryption_dict.getKey("/O").isString() &&

 encryption_dict.getKey("/U").isString() &&

 encryption_dict.getKey("/P").isInteger()))

 {

 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 "encryption dictionary", this->m->file->getLastOffset(),

 "some encryption dictionary parameters are missing "

 "or the wrong type");

 }

 int V = encryption_dict.getKey("/V").getIntValue();

 int R = encryption_dict.getKey("/R").getIntValue();

 std::string O = encryption_dict.getKey("/O").getStringValue();

 std::string U = encryption_dict.getKey("/U").getStringValue();

 unsigned int P = encryption_dict.getKey("/P").getIntValue();

 // If supporting new encryption R/V values, remember to update

 // error message inside this if statement.

 if (! (((R >= 2) && (R <= 6)) &&

 ((V == 1) || (V == 2) || (V == 4) || (V == 5))))

 {

 throw QPDFExc(qpdf_e_unsupported, this->m->file->getName(),

 "encryption dictionary", this->m->file->getLastOffset(),

 "Unsupported /R or /V in encryption dictionary; R = " +

 QUtil::int_to_string(R) + " (max 6), V = " +

 QUtil::int_to_string(V) + " (max 5)");

 }

 this->m->encryption_V = V;

 this->m->encryption_R = R;

 // OE, UE, and Perms are only present if V >= 5.

 std::string OE;

 std::string UE;

 std::string Perms;

 if (V < 5)

 {

 // These must be exactly the right number of bytes.

 pad_short_parameter(O, key_bytes);

 pad_short_parameter(U, key_bytes);

 if (! ((O.length() == key_bytes) && (U.length() == key_bytes)))

 {

 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 "encryption dictionary",

 this->m->file->getLastOffset(),

 "incorrect length for /O and/or /U in "

 "encryption dictionary");

 }

 }

 else

 {

 if (! (encryption_dict.getKey("/OE").isString() &&

 encryption_dict.getKey("/UE").isString() &&

 encryption_dict.getKey("/Perms").isString()))

 {

 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 "encryption dictionary",

 this->m->file->getLastOffset(),

 "some V=5 encryption dictionary parameters are "

 "missing or the wrong type");

 }

 OE = encryption_dict.getKey("/OE").getStringValue();

 UE = encryption_dict.getKey("/UE").getStringValue();

 Perms = encryption_dict.getKey("/Perms").getStringValue();

 // These may be longer than the minimum number of bytes.

 pad_short_parameter(O, OU_key_bytes_V5);

 pad_short_parameter(U, OU_key_bytes_V5);

 pad_short_parameter(OE, OUE_key_bytes_V5);

 pad_short_parameter(UE, OUE_key_bytes_V5);

 pad_short_parameter(Perms, Perms_key_bytes_V5);

 }

 int Length = 40;

 if (encryption_dict.getKey("/Length").isInteger())

 {

 Length = encryption_dict.getKey("/Length").getIntValue();

 if ((Length % 8) || (Length < 40) || (Length > 256))

 {

 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 "encryption dictionary",

 this->m->file->getLastOffset(),

 "invalid /Length value in encryption dictionary");

 }

 }

 this->m->encrypt_metadata = true;

 if ((V >= 4) && (encryption_dict.getKey("/EncryptMetadata").isBool()))

 {

 this->m->encrypt_metadata =

 encryption_dict.getKey("/EncryptMetadata").getBoolValue();

 }

 if ((V == 4) || (V == 5))

 {

 QPDFObjectHandle CF = encryption_dict.getKey("/CF");

 std::set<std::string> keys = CF.getKeys();

 for (std::set<std::string>::iterator iter = keys.begin();

 iter != keys.end(); ++iter)

 {

 std::string const& filter = *iter;

 QPDFObjectHandle cdict = CF.getKey(filter);

 if (cdict.isDictionary())

 {

 encryption_method_e method = e_none;

 if (cdict.getKey("/CFM").isName())

 {

 std::string method_name = cdict.getKey("/CFM").getName();

 if (method_name == "/V2")

 {

 QTC::TC("qpdf", "QPDF_encryption CFM V2");

 method = e_rc4;

 }

 else if (method_name == "/AESV2")

 {

 QTC::TC("qpdf", "QPDF_encryption CFM AESV2");

 method = e_aes;

 }

 else if (method_name == "/AESV3")

 {

 QTC::TC("qpdf", "QPDF_encryption CFM AESV3");

 method = e_aesv3;

 }

 else

 {

 // Don't complain now -- maybe we won't need

 // to reference this type.

 method = e_unknown;

 }

 }

 this->m->crypt_filters[filter] = method;

 }

 }

 QPDFObjectHandle StmF = encryption_dict.getKey("/StmF");

 QPDFObjectHandle StrF = encryption_dict.getKey("/StrF");

 QPDFObjectHandle EFF = encryption_dict.getKey("/EFF");

 this->m->cf_stream = interpretCF(StmF);

 this->m->cf_string = interpretCF(StrF);

 if (EFF.isName())

 {

 this->m->cf_file = interpretCF(EFF);

 }

 else

 {

 this->m->cf_file = this->m->cf_stream;

 }

 }

 EncryptionData data(V, R, Length / 8, P, O, U, OE, UE, Perms,

 id1, this->m->encrypt_metadata);

 if (this->m->provided_password_is_hex_key)

 {

 // ignore passwords in file

 }

 else if (check_owner_password(

 this->m->user_password, this->m->provided_password, data))

 {

 // password supplied was owner password; user_password has

 // been initialized for V < 5

 }

 else if (check_user_password(this->m->provided_password, data))

 {

 this->m->user_password = this->m->provided_password;

 }

 else

 {

 throw QPDFExc(qpdf_e_password, this->m->file->getName(),

 "", 0, "invalid password");

 }

 if (this->m->provided_password_is_hex_key)

 {

 this->m->encryption_key = QUtil::hex_decode(this->m->provided_password);

 }

 else if (V < 5)

 {

 // For V < 5, the user password is encrypted with the owner

 // password, and the user password is always used for

 // computing the encryption key.

 this->m->encryption_key = compute_encryption_key(

 this->m->user_password, data);

 }

 else

 {

 // For V >= 5, either password can be used independently to

 // compute the encryption key, and neither password can be

 // used to recover the other.

 bool perms_valid;

 this->m->encryption_key = recover_encryption_key_with_password(

 this->m->provided_password, data, perms_valid);

 if (! perms_valid)

 {

 warn(QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 "encryption dictionary",

 this->m->file->getLastOffset(),

 "/Perms field in encryption dictionary"

 " doesn't match expected value"));

 }

 }

}

std::string

QPDF::getKeyForObject(int objid, int generation, bool use_aes)

{

 if (! this->m->encrypted)

 {

 throw std::logic_error(

 "request for encryption key in non-encrypted PDF");

 }

 if (! ((objid == this->m->cached_key_objid) &&

 (generation == this->m->cached_key_generation)))

 {

 this->m->cached_object_encryption_key =

 compute_data_key(this->m->encryption_key, objid, generation,

 use_aes, this->m->encryption_V,

 this->m->encryption_R);

 this->m->cached_key_objid = objid;

 this->m->cached_key_generation = generation;

 }

 return this->m->cached_object_encryption_key;

}

void

QPDF::decryptString(std::string& str, int objid, int generation)

{

 if (objid == 0)

 {

 return;

 }

 bool use_aes = false;

 if (this->m->encryption_V >= 4)

 {

 switch (this->m->cf_string)

 {

 case e_none:

 return;

 case e_aes:

 use_aes = true;

 break;

 case e_aesv3:

 use_aes = true;

 break;

 case e_rc4:

 break;

 default:

 warn(QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 this->m->last_object_description,

 this->m->file->getLastOffset(),

 "unknown encryption filter for strings"

 " (check /StrF in /Encrypt dictionary);"

 " strings may be decrypted improperly"));

 // To avoid repeated warnings, reset cf_string. Assume

 // we'd want to use AES if V == 4.

 this->m->cf_string = e_aes;

 break;

 }

 }

 std::string key = getKeyForObject(objid, generation, use_aes);

 try

 {

 if (use_aes)

 {

 QTC::TC("qpdf", "QPDF_encryption aes decode string");

 Pl_Buffer bufpl("decrypted string");

 Pl_AES_PDF pl("aes decrypt string", &bufpl, false,

 QUtil::unsigned_char_pointer(key),

 key.length());

 pl.write(QUtil::unsigned_char_pointer(str), str.length());

 pl.finish();

 PointerHolder<Buffer> buf = bufpl.getBuffer();

 str = std::string(reinterpret_cast<char*>(buf->getBuffer()),

 buf->getSize());

 }

 else

 {

 QTC::TC("qpdf", "QPDF_encryption rc4 decode string");

 unsigned int vlen = str.length();

 // Using PointerHolder guarantees that tmp will

 // be freed even if rc4.process throws an exception.

 PointerHolder<char> tmp(true, QUtil::copy_string(str));

 RC4 rc4(QUtil::unsigned_char_pointer(key), key.length());

 rc4.process(QUtil::unsigned_char_pointer(tmp.getPointer()), vlen);

 str = std::string(tmp.getPointer(), vlen);

 }

 }

 catch (QPDFExc&)

 {

 throw;

 }

 catch (std::runtime_error& e)

 {

 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 this->m->last_object_description,

 this->m->file->getLastOffset(),

 "error decrypting string for object " +

 QUtil::int_to_string(objid) + " " +

 QUtil::int_to_string(generation) + ": " + e.what());

 }

}

void

QPDF::decryptStream(Pipeline*& pipeline, int objid, int generation,

 QPDFObjectHandle& stream_dict,

 std::vector<PointerHolder<Pipeline> >& heap)

{

 std::string type;

 if (stream_dict.getKey("/Type").isName())

 {

 type = stream_dict.getKey("/Type").getName();

 }

 if (type == "/XRef")

 {

 QTC::TC("qpdf", "QPDF_encryption xref stream from encrypted file");

 return;

 }

 bool use_aes = false;

 if (this->m->encryption_V >= 4)

 {

 encryption_method_e method = e_unknown;

 std::string method_source = "/StmF from /Encrypt dictionary";

 if (stream_dict.getKey("/Filter").isOrHasName("/Crypt"))

 {

 if (stream_dict.getKey("/DecodeParms").isDictionary())

 {

 QPDFObjectHandle decode_parms =

 stream_dict.getKey("/DecodeParms");

 if (decode_parms.getKey("/Type").isName() &&

 (decode_parms.getKey("/Type").getName() ==

 "/CryptFilterDecodeParms"))

 {

 QTC::TC("qpdf", "QPDF_encryption stream crypt filter");

 method = interpretCF(decode_parms.getKey("/Name"));

 method_source = "stream's Crypt decode parameters";

 }

 }

 else if (stream_dict.getKey("/DecodeParms").isArray() &&

 stream_dict.getKey("/Filter").isArray())

 {

 QPDFObjectHandle filter = stream_dict.getKey("/Filter");

 QPDFObjectHandle decode = stream_dict.getKey("/DecodeParms");

 if (filter.getArrayNItems() == decode.getArrayNItems())

 {

 for (int i = 0; i < filter.getArrayNItems(); ++i)

 {

 if (filter.getArrayItem(i).isName() &&

 (filter.getArrayItem(i).getName() == "/Crypt"))

 {

 QPDFObjectHandle crypt_params =

 decode.getArrayItem(i);

 if (crypt_params.isDictionary() &&

 crypt_params.getKey("/Name").isName())

 {

 QTC::TC("qpdf", "QPDF_encrypt crypt array");

 method = interpretCF(

 crypt_params.getKey("/Name"));

 method_source = "stream's Crypt "

 "decode parameters (array)";

 }

 }

 }

 }

 }

 }

 if (method == e_unknown)

 {

 if ((! this->m->encrypt_metadata) && (type == "/Metadata"))

 {

 QTC::TC("qpdf", "QPDF_encryption cleartext metadata");

 method = e_none;

 }

 else

 {

 if (this->m->attachment_streams.count(

 QPDFObjGen(objid, generation)) > 0)

 {

 method = this->m->cf_file;

 }

 else

 {

 method = this->m->cf_stream;

 }

 }

 }

 use_aes = false;

 switch (method)

 {

 case e_none:

 return;

 break;

 case e_aes:

 use_aes = true;

 break;

 case e_aesv3:

 use_aes = true;

 break;

 case e_rc4:

 break;

 default:

 // filter local to this stream.

 warn(QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 this->m->last_object_description,

 this->m->file->getLastOffset(),

 "unknown encryption filter for streams"

 " (check " + method_source + ");"

 " streams may be decrypted improperly"));

 // To avoid repeated warnings, reset cf_stream. Assume

 // we'd want to use AES if V == 4.

 this->m->cf_stream = e_aes;

 break;

 }

 }

 std::string key = getKeyForObject(objid, generation, use_aes);

 if (use_aes)

 {

 QTC::TC("qpdf", "QPDF_encryption aes decode stream");

 pipeline = new Pl_AES_PDF("AES stream decryption", pipeline,

 false, QUtil::unsigned_char_pointer(key),

 key.length());

 }

 else

 {

 QTC::TC("qpdf", "QPDF_encryption rc4 decode stream");

 pipeline = new Pl_RC4("RC4 stream decryption", pipeline,

 QUtil::unsigned_char_pointer(key),

 key.length());

 }

 heap.push_back(pipeline);

}

void

QPDF::compute_encryption_O_U(

 char const* user_password, char const* owner_password,

 int V, int R, int key_len, int P, bool encrypt_metadata,

 std::string const& id1, std::string& O, std::string& U)

{

 if (V >= 5)

 {

 throw std::logic_error(

 "compute_encryption_O_U called for file with V >= 5");

 }

 EncryptionData data(V, R, key_len, P, "", "", "", "", "",

 id1, encrypt_metadata);

 data.setO(compute_O_value(user_password, owner_password, data));

 O = data.getO();

 data.setU(compute_U_value(user_password, data));

 U = data.getU();

}

void

QPDF::compute_encryption_parameters_V5(

 char const* user_password, char const* owner_password,

 int V, int R, int key_len, int P, bool encrypt_metadata,

 std::string const& id1,

 std::string& encryption_key,

 std::string& O, std::string& U,

 std::string& OE, std::string& UE, std::string& Perms)

{

 EncryptionData data(V, R, key_len, P, "", "", "", "", "",

 id1, encrypt_metadata);

 unsigned char k[key_bytes];

 QUtil::initializeWithRandomBytes(k, key_bytes);

 encryption_key = std::string(reinterpret_cast<char*>(k), key_bytes);

 compute_U_UE_value_V5(user_password, encryption_key, data, U, UE);

 compute_O_OE_value_V5(owner_password, encryption_key, data, U, O, OE);

 Perms = compute_Perms_value_V5(encryption_key, data);

 data.setV5EncryptionParameters(O, OE, U, UE, Perms);

}

std::string const&

QPDF::getPaddedUserPassword() const

{

 return this->m->user_password;

}

std::string

QPDF::getTrimmedUserPassword() const

{

 std::string result = this->m->user_password;

 trim_user_password(result);

 return result;

}

std::string

QPDF::getEncryptionKey() const

{

 return this->m->encryption_key;

}

bool

QPDF::isEncrypted() const

{

 return this->m->encrypted;

}

bool

QPDF::isEncrypted(int& R, int& P)

{

 int V;

 encryption_method_e stream, string, file;

 return isEncrypted(R, P, V, stream, string, file);

}

bool

QPDF::isEncrypted(int& R, int& P, int& V,

 encryption_method_e& stream_method,

 encryption_method_e& string_method,

 encryption_method_e& file_method)

{

 if (this->m->encrypted)

 {

 QPDFObjectHandle trailer = getTrailer();

 QPDFObjectHandle encrypt = trailer.getKey("/Encrypt");

 QPDFObjectHandle Pkey = encrypt.getKey("/P");

 QPDFObjectHandle Rkey = encrypt.getKey("/R");

 QPDFObjectHandle Vkey = encrypt.getKey("/V");

 P = Pkey.getIntValue();

 R = Rkey.getIntValue();

 V = Vkey.getIntValue();

 stream_method = this->m->cf_stream;

 string_method = this->m->cf_stream;

 file_method = this->m->cf_file;

 return true;

 }

 else

 {

 return false;

 }

}

static bool

is_bit_set(int P, int bit)

{

 // Bits in P are numbered from 1 in the spec

 return (P & (1 << (bit - 1)));

}

bool

QPDF::allowAccessibility()

{

 int R = 0;

 int P = 0;

 bool status = true;

 if (isEncrypted(R, P))

 {

 if (R < 3)

 {

 status = is_bit_set(P, 5);

 }

 else

 {

 status = is_bit_set(P, 10);

 }

 }

 return status;

}

bool

QPDF::allowExtractAll()

{

 int R = 0;

 int P = 0;

 bool status = true;

 if (isEncrypted(R, P))

 {

 status = is_bit_set(P, 5);

 }

 return status;

}

bool

QPDF::allowPrintLowRes()

{

 int R = 0;

 int P = 0;

 bool status = true;

 if (isEncrypted(R, P))

 {

 status = is_bit_set(P, 3);

 }

 return status;

}

bool

QPDF::allowPrintHighRes()

{

 int R = 0;

 int P = 0;

 bool status = true;

 if (isEncrypted(R, P))

 {

 status = is_bit_set(P, 3);

 if ((R >= 3) && (! is_bit_set(P, 12)))

 {

 status = false;

 }

 }

 return status;

}

bool

QPDF::allowModifyAssembly()

{

 int R = 0;

 int P = 0;

 bool status = true;

 if (isEncrypted(R, P))

 {

 if (R < 3)

 {

 status = is_bit_set(P, 4);

 }

 else

 {

 status = is_bit_set(P, 11);

 }

 }

 return status;

}

bool

QPDF::allowModifyForm()

{

 int R = 0;

 int P = 0;

 bool status = true;

 if (isEncrypted(R, P))

 {

 if (R < 3)

 {

 status = is_bit_set(P, 6);

 }

 else

 {

 status = is_bit_set(P, 9);

 }

 }

 return status;

}

bool

QPDF::allowModifyAnnotation()

{

 int R = 0;

 int P = 0;

 bool status = true;

 if (isEncrypted(R, P))

 {

 status = is_bit_set(P, 6);

 }

 return status;

}

bool

QPDF::allowModifyOther()

{

 int R = 0;

 int P = 0;

 bool status = true;

 if (isEncrypted(R, P))

 {

 status = is_bit_set(P, 4);

 }

 return status;

}

bool

QPDF::allowModifyAll()

{

 int R = 0;

 int P = 0;

 bool status = true;

 if (isEncrypted(R, P))

 {

 status = (is_bit_set(P, 4) && is_bit_set(P, 6));

 if (R >= 3)

 {

 status = status && (is_bit_set(P, 9) && is_bit_set(P, 11));

 }

 }

 return status;

}

qpdf-7.1.0/libqpdf/InputSource.cc

#include <qpdf/InputSource.hh>
#include <string.h>
#include <stdexcept>
#include <qpdf/QTC.hh>
#include <qpdf/PointerHolder.hh>

void
InputSource::setLastOffset(qpdf_offset_t offset)
{
 this->last_offset = offset;
}

qpdf_offset_t
InputSource::getLastOffset() const
{
 return this->last_offset;
}

std::string
InputSource::readLine(size_t max_line_length)
{
 // Return at most max_line_length characters from the next line.
 // Lines are terminated by one or more \r or \n characters.
 // Consume the trailing newline characters but don't return them.
 // After this is called, the file will be positioned after a line
 // terminator or at the end of the file, and last_offset will
 // point to position the file had when this method was called.

 qpdf_offset_t offset = this->tell();
 char* buf = new char[max_line_length + 1];
 PointerHolder<char> bp(true, buf);
 memset(buf, '\0', max_line_length + 1);
 this->read(buf, max_line_length);
 this->seek(offset, SEEK_SET);
 qpdf_offset_t eol = this->findAndSkipNextEOL();
 this->last_offset = offset;
 size_t line_length = eol - offset;
 if (line_length < max_line_length)
 {
 buf[line_length] = '\0';
 }
 return std::string(buf);
}

bool
InputSource::findFirst(char const* start_chars,
 qpdf_offset_t offset, size_t len,
 Finder& finder)
{
 // Basic approach: search for the first character of start_chars
 // starting from offset but not going past len (if len != 0). Once
 // the first character is found, see if it is the beginning of a
 // sequence of characters matching start_chars. If so, call
 // finder.check() to do caller-specific additional checks. If not,
 // keep searching.

 // This code is tricky and highly subject to off-by-one or other
 // edge case logic errors. See comments throughout that explain
 // how we're not missing any edge cases. There are also tests
 // specifically constructed to make sure we caught the edge cases
 // in testing.

 char buf[1025]; // size known to input_source.cc in libtests
 // To enable us to guarantee null-termination, save an extra byte
 // so that buf[size] is valid memory.
 size_t size = sizeof(buf) - 1;
 if ((strlen(start_chars) < 1) || (strlen(start_chars) > size))
 {
 throw std::logic_error(
 "InputSource::findSource called with"
 " too small or too large of a character sequence");
 }

 char* p = 0;
 qpdf_offset_t buf_offset = offset;
 size_t bytes_read = 0;

 // Guarantee that we return from this loop. Each time through, we
 // either return, advance p, or restart the loop with a condition
 // that will cause return on the next pass. Eventually we will
 // either be out of range or hit EOF, either of which forces us to
 // return.
 while (true)
 {
 // Do we need to read more data? Pretend size = 5, buf starts
 // at 0, and start_chars has 3 characters. buf[5] is valid and
 // null. If p == 2, start_chars could be buf[2] through
 // buf[4], so p + strlen(start_chars) == buf + size is okay.
 // If p points to buf[size], since strlen(start_chars) is
 // always >= 1, this overflow test will be correct for that
 // case regardless of start_chars.
 if ((p == 0) || ((p + strlen(start_chars)) > (buf + bytes_read)))
 {
 if (p)
 {
 QTC::TC("libtests", "InputSource read next block",
 ((p == buf + bytes_read) ? 0 : 1));
 buf_offset += (p - buf);
 }
 this->seek(buf_offset, SEEK_SET);
 // Read into buffer and zero out the rest of the buffer
 // including buf[size]. We allocated an extra byte so that
 // we could guarantee null termination as an extra
 // protection against overrun when using string functions.
 bytes_read = this->read(buf, size);
 if (bytes_read < strlen(start_chars))
 {
 QTC::TC("libtests", "InputSource find EOF",
 bytes_read == 0 ? 0 : 1);
 return false;
 }
 memset(buf + bytes_read, '\0', 1 + (size - bytes_read));
 p = buf;
 }

 // Search for the first character.
 if ((p = static_cast<char*>(
 memchr(p, start_chars[0], bytes_read - (p - buf)))) != 0)
 {
 if (p == buf)
 {
 QTC::TC("libtests", "InputSource found match at buf[0]");
 }
 // Found first letter.
 if (len != 0)
 {
 // Make sure it's in range.
 size_t p_relative_offset = (p - buf) + (buf_offset - offset);
 if (p_relative_offset >= len)
 {
 // out of range
 QTC::TC("libtests", "InputSource out of range");
 return false;
 }
 }
 if ((p + strlen(start_chars)) > (buf + bytes_read))
 {
 // If there are not enough bytes left in the file for
 // start_chars, we will detect this on the next pass
 // as EOF and return.
 QTC::TC("libtests", "InputSource not enough bytes");
 continue;
 }

 // See if p points to a sequence matching start_chars. We
 // already checked above to make sure we are not going to
 // overrun memory.
 if (strncmp(p, start_chars, strlen(start_chars)) == 0)
 {
 // Call finder.check() with the input source
 // positioned to the point of the match.
 this->seek(buf_offset + (p - buf), SEEK_SET);
 if (finder.check())
 {
 return true;
 }
 else
 {
 QTC::TC("libtests", "InputSource start_chars matched but not check");
 }
 }
 else
 {
 QTC::TC("libtests", "InputSource first char matched but not string");
 }
 // This occurrence of the first character wasn't a match.
 // Skip over it and keep searching.
 ++p;
 }
 else
 {
 // Trigger reading the next block
 p = buf + bytes_read;
 }
 }
 throw std::logic_error("InputSource after while (true)");
}

bool
InputSource::findLast(char const* start_chars,
 qpdf_offset_t offset, size_t len,
 Finder& finder)
{
 bool found = false;
 qpdf_offset_t after_found_offset = 0;
 qpdf_offset_t cur_offset = offset;
 size_t cur_len = len;
 while (this->findFirst(start_chars, cur_offset, cur_len, finder))
 {
 if (found)
 {
 QTC::TC("libtests", "InputSource findLast found more than one");
 }
 else
 {
 found = true;
 }
 after_found_offset = this->tell();
 cur_offset = after_found_offset;
 cur_len = len - (cur_offset - offset);
 }
 if (found)
 {
 this->seek(after_found_offset, SEEK_SET);
 }
 return found;
}

qpdf-7.1.0/libqpdf/QPDF_optimization.cc

qpdf-7.1.0/libqpdf/QPDF_optimization.cc

// See the "Optimization" section of the manual.

#include <qpdf/QPDF.hh>

#include <qpdf/QTC.hh>

#include <qpdf/QPDFExc.hh>

#include <qpdf/QPDF_Dictionary.hh>

#include <qpdf/QPDF_Array.hh>

#include <assert.h>

QPDF::ObjUser::ObjUser() :

 ou_type(ou_bad),

 pageno(0)

{

}

QPDF::ObjUser::ObjUser(user_e type) :

 ou_type(type),

 pageno(0)

{

 assert(type == ou_root);

}

QPDF::ObjUser::ObjUser(user_e type, int pageno) :

 ou_type(type),

 pageno(pageno)

{

 assert((type == ou_page) || (type == ou_thumb));

}

QPDF::ObjUser::ObjUser(user_e type, std::string const& key) :

 ou_type(type),

 pageno(0),

 key(key)

{

 assert((type == ou_trailer_key) || (type == ou_root_key));

}

bool

QPDF::ObjUser::operator<(ObjUser const& rhs) const

{

 if (this->ou_type < rhs.ou_type)

 {

 return true;

 }

 else if (this->ou_type == rhs.ou_type)

 {

 if (this->pageno < rhs.pageno)

 {

 return true;

 }

 else if (this->pageno == rhs.pageno)

 {

 return (this->key < rhs.key);

 }

 }

 return false;

}

void

QPDF::optimize(std::map<int, int> const& object_stream_data,

 bool allow_changes)

{

 if (! this->m->obj_user_to_objects.empty())

 {

 // already optimized

 return;

 }

 // The PDF specification indicates that /Outlines is supposed to

 // be an indirect reference. Force it to be so if it exists and

 // is direct. (This has been seen in the wild.)

 QPDFObjectHandle root = getRoot();

 if (root.getKey("/Outlines").isDictionary())

 {

 QPDFObjectHandle outlines = root.getKey("/Outlines");

 if (! outlines.isIndirect())

 {

 QTC::TC("qpdf", "QPDF_optimization indirect outlines");

 root.replaceKey("/Outlines", makeIndirectObject(outlines));

 }

 }

 // Traverse pages tree pushing all inherited resources down to the

 // page level. This also initializes this->m->all_pages.

 pushInheritedAttributesToPage(allow_changes, false);

 // Traverse pages

 int n = this->m->all_pages.size();

 for (int pageno = 0; pageno < n; ++pageno)

 {

 updateObjectMaps(ObjUser(ObjUser::ou_page, pageno),

 this->m->all_pages.at(pageno));

 }

 // Traverse document-level items

 std::set<std::string> keys = this->m->trailer.getKeys();

 for (std::set<std::string>::iterator iter = keys.begin();

 iter != keys.end(); ++iter)

 {

 std::string const& key = *iter;

 if (key == "/Root")

 {

 // handled separately

 }

 else

 {

 updateObjectMaps(ObjUser(ObjUser::ou_trailer_key, key),

 this->m->trailer.getKey(key));

 }

 }

 keys = root.getKeys();

 for (std::set<std::string>::iterator iter = keys.begin();

 iter != keys.end(); ++iter)

 {

 // Technically, /I keys from /Thread dictionaries are supposed

 // to be handled separately, but we are going to disregard

 // that specification for now. There is loads of evidence

 // that pdlin and Acrobat both disregard things like this from

 // time to time, so this is almost certain not to cause any

 // problems.

 std::string const& key = *iter;

 updateObjectMaps(ObjUser(ObjUser::ou_root_key, key),

 root.getKey(key));

 }

 ObjUser root_ou = ObjUser(ObjUser::ou_root);

 QPDFObjGen root_og = QPDFObjGen(root.getObjGen());

 this->m->obj_user_to_objects[root_ou].insert(root_og);

 this->m->object_to_obj_users[root_og].insert(root_ou);

 filterCompressedObjects(object_stream_data);

}

void

QPDF::pushInheritedAttributesToPage()

{

 // Public API should not have access to allow_changes.

 pushInheritedAttributesToPage(true, false);

}

void

QPDF::pushInheritedAttributesToPage(bool allow_changes, bool warn_skipped_keys)

{

 // Traverse pages tree pushing all inherited resources down to the

 // page level.

 // The record of whether we've done this is cleared by

 // updateAllPagesCache(). If we're warning for skipped keys,

 // re-traverse unconditionally.

 if (this->m->pushed_inherited_attributes_to_pages && (! warn_skipped_keys))

 {

 return;

 }

 // key_ancestors is a mapping of page attribute keys to a stack of

 // Pages nodes that contain values for them.

 std::map<std::string, std::vector<QPDFObjectHandle> > key_ancestors;

 this->m->all_pages.clear();

 pushInheritedAttributesToPageInternal(

 this->m->trailer.getKey("/Root").getKey("/Pages"),

 key_ancestors, this->m->all_pages, allow_changes, warn_skipped_keys);

 assert(key_ancestors.empty());

 this->m->pushed_inherited_attributes_to_pages = true;

}

void

QPDF::pushInheritedAttributesToPageInternal(

 QPDFObjectHandle cur_pages,

 std::map<std::string, std::vector<QPDFObjectHandle> >& key_ancestors,

 std::vector<QPDFObjectHandle>& pages,

 bool allow_changes, bool warn_skipped_keys)

{

 std::set<QPDFObjGen> visited;

 pushInheritedAttributesToPageInternal2(

 cur_pages, key_ancestors, pages, allow_changes,

 warn_skipped_keys, visited);

}

void

QPDF::pushInheritedAttributesToPageInternal2(

 QPDFObjectHandle cur_pages,

 std::map<std::string, std::vector<QPDFObjectHandle> >& key_ancestors,

 std::vector<QPDFObjectHandle>& pages,

 bool allow_changes, bool warn_skipped_keys,

 std::set<QPDFObjGen>& visited)

{

 QPDFObjGen this_og = cur_pages.getObjGen();

 if (visited.count(this_og) > 0)

 {

 throw QPDFExc(

 qpdf_e_pages, this->m->file->getName(),

 this->m->last_object_description, 0,

 "Loop detected in /Pages structure (inherited attributes)");

 }

 visited.insert(this_og);

 // Extract the underlying dictionary object

 std::string type = cur_pages.getKey("/Type").getName();

 if (type == "/Pages")

 {

 // Make a list of inheritable keys. Any key other than /Type,

 // /Parent, Kids, or /Count is an inheritable attribute. Push

 // this object onto the stack of pages nodes that have values

 // for this attribute.

 std::set<std::string> inheritable_keys;

 std::set<std::string> keys = cur_pages.getKeys();

 for (std::set<std::string>::iterator iter = keys.begin();

 iter != keys.end(); ++iter)

 {

 std::string const& key = *iter;

 if ((key == "/MediaBox") || (key == "/CropBox") ||

 (key == "/Resources") || (key == "/Rotate"))

 {

 if (! allow_changes)

 {

 throw QPDFExc(qpdf_e_internal, this->m->file->getName(),

 this->m->last_object_description,

 this->m->file->getLastOffset(),

 "optimize detected an "

 "inheritable attribute when called "

 "in no-change mode");

 }

 // This is an inheritable resource

 inheritable_keys.insert(key);

 QPDFObjectHandle oh = cur_pages.getKey(key);

 QTC::TC("qpdf", "QPDF opt direct pages resource",

 oh.isIndirect() ? 0 : 1);

 if (! oh.isIndirect())

 {

 if (! oh.isScalar())

 {

 // Replace shared direct object non-scalar

 // resources with indirect objects to avoid

 // copying large structures around.

 cur_pages.replaceKey(key, makeIndirectObject(oh));

 oh = cur_pages.getKey(key);

 }

 else

 {

 // It's okay to copy scalars.

 QTC::TC("qpdf", "QPDF opt inherited scalar");

 }

 }

 key_ancestors[key].push_back(oh);

 if (key_ancestors[key].size() > 1)

 {

 QTC::TC("qpdf", "QPDF opt key ancestors depth > 1");

 }

 // Remove this resource from this node. It will be

 // reattached at the page level.

 cur_pages.removeKey(key);

 }

 else if (! ((key == "/Type") || (key == "/Parent") ||

 (key == "/Kids") || (key == "/Count")))

 {

 // Warn when flattening, but not if the key is at the top

 // level (i.e. "/Parent" not set), as we don't change these;

 // but flattening removes intermediate /Pages nodes.

 if ((warn_skipped_keys) && (cur_pages.hasKey("/Parent")))

 {

 QTC::TC("qpdf", "QPDF unknown key not inherited");

 setLastObjectDescription("Pages object",

 cur_pages.getObjectID(),

 cur_pages.getGeneration());

 warn(QPDFExc(qpdf_e_pages, this->m->file->getName(),

 this->m->last_object_description, 0,

 "Unknown key " + key + " in /Pages object"

 " is being discarded as a result of"

 " flattening the /Pages tree"));

 }

 }

 }

 // Visit descendant nodes.

 QPDFObjectHandle kids = cur_pages.getKey("/Kids");

 int n = kids.getArrayNItems();

 for (int i = 0; i < n; ++i)

 {

 pushInheritedAttributesToPageInternal2(

 kids.getArrayItem(i), key_ancestors, pages,

 allow_changes, warn_skipped_keys, visited);

 }

 // For each inheritable key, pop the stack. If the stack

 // becomes empty, remove it from the map. That way, the

 // invariant that the list of keys in key_ancestors is exactly

 // those keys for which inheritable attributes are available.

 if (! inheritable_keys.empty())

 {

 QTC::TC("qpdf", "QPDF opt inheritable keys");

 for (std::set<std::string>::iterator iter =

 inheritable_keys.begin();

 iter != inheritable_keys.end(); ++iter)

 {

 std::string const& key = (*iter);

 key_ancestors[key].pop_back();

 if (key_ancestors[key].empty())

 {

 QTC::TC("qpdf", "QPDF opt erase empty key ancestor");

 key_ancestors.erase(key);

 }

 }

 }

 else

 {

 QTC::TC("qpdf", "QPDF opt no inheritable keys");

 }

 }

 else if (type == "/Page")

 {

 // Add all available inheritable attributes not present in

 // this object to this object.

 for (std::map<std::string, std::vector<QPDFObjectHandle> >::iterator

 iter = key_ancestors.begin();

 iter != key_ancestors.end(); ++iter)

 {

 std::string const& key = (*iter).first;

 if (! cur_pages.hasKey(key))

 {

 QTC::TC("qpdf", "QPDF opt resource inherited");

 cur_pages.replaceKey(key, (*iter).second.back());

 }

 else

 {

 QTC::TC("qpdf", "QPDF opt page resource hides ancestor");

 }

 }

 pages.push_back(cur_pages);

 }

 else

 {

 throw QPDFExc(qpdf_e_damaged_pdf, this->m->file->getName(),

 this->m->last_object_description,

 this->m->file->getLastOffset(),

 "invalid Type " + type + " in page tree");

 }

 visited.erase(this_og);

}

void

QPDF::updateObjectMaps(ObjUser const& ou, QPDFObjectHandle oh)

{

 std::set<QPDFObjGen> visited;

 updateObjectMapsInternal(ou, oh, visited, true);

}

void

QPDF::updateObjectMapsInternal(ObjUser const& ou, QPDFObjectHandle oh,

 std::set<QPDFObjGen>& visited, bool top)

{

 // Traverse the object tree from this point taking care to avoid

 // crossing page boundaries.

 bool is_page_node = false;

 if (oh.isDictionary() && oh.hasKey("/Type"))

 {

 std::string type = oh.getKey("/Type").getName();

 if (type == "/Page")

 {

 is_page_node = true;

 if (! top)

 {

 return;

 }

 }

 }

 if (oh.isIndirect())

 {

 QPDFObjGen og(oh.getObjGen());

 if (visited.count(og))

 {

 QTC::TC("qpdf", "QPDF opt loop detected");

 return;

 }

 this->m->obj_user_to_objects[ou].insert(og);

 this->m->object_to_obj_users[og].insert(ou);

 visited.insert(og);

 }

 if (oh.isArray())

 {

 int n = oh.getArrayNItems();

 for (int i = 0; i < n; ++i)

 {

 updateObjectMapsInternal(ou, oh.getArrayItem(i), visited, false);

 }

 }

 else if (oh.isDictionary() || oh.isStream())

 {

 QPDFObjectHandle dict = oh;

 if (oh.isStream())

 {

 dict = oh.getDict();

 }

 std::set<std::string> keys = dict.getKeys();

 for (std::set<std::string>::iterator iter = keys.begin();

 iter != keys.end(); ++iter)

 {

 std::string const& key = *iter;

 if (is_page_node && (key == "/Thumb"))

 {

 // Traverse page thumbnail dictionaries as a special

 // case.

 updateObjectMaps(ObjUser(ObjUser::ou_thumb, ou.pageno),

 dict.getKey(key));

 }

 else if (is_page_node && (key == "/Parent"))

 {

 // Don't traverse back up the page tree

 }

 else

 {

 updateObjectMapsInternal(ou, dict.getKey(key),

 visited, false);

 }

 }

 }

}

void

QPDF::filterCompressedObjects(std::map<int, int> const& object_stream_data)

{

 if (object_stream_data.empty())

 {

 return;

 }

 // Transform object_to_obj_users and obj_user_to_objects so that

 // they refer only to uncompressed objects. If something is a

 // user of a compressed object, then it is really a user of the

 // object stream that contains it.

 std::map<ObjUser, std::set<QPDFObjGen> > t_obj_user_to_objects;

 std::map<QPDFObjGen, std::set<ObjUser> > t_object_to_obj_users;

 for (std::map<ObjUser, std::set<QPDFObjGen> >::iterator i1 =

 this->m->obj_user_to_objects.begin();

 i1 != this->m->obj_user_to_objects.end(); ++i1)

 {

 ObjUser const& ou = (*i1).first;

 std::set<QPDFObjGen> const& objects = (*i1).second;

 for (std::set<QPDFObjGen>::const_iterator i2 = objects.begin();

 i2 != objects.end(); ++i2)

 {

 QPDFObjGen const& og = (*i2);

 std::map<int, int>::const_iterator i3 =

 object_stream_data.find(og.getObj());

 if (i3 == object_stream_data.end())

 {

 t_obj_user_to_objects[ou].insert(og);

 }

 else

 {

 t_obj_user_to_objects[ou].insert(QPDFObjGen((*i3).second, 0));

 }

 }

 }

 for (std::map<QPDFObjGen, std::set<ObjUser> >::iterator i1 =

 this->m->object_to_obj_users.begin();

 i1 != this->m->object_to_obj_users.end(); ++i1)

 {

 QPDFObjGen const& og = (*i1).first;

 std::set<ObjUser> const& objusers = (*i1).second;

 for (std::set<ObjUser>::const_iterator i2 = objusers.begin();

 i2 != objusers.end(); ++i2)

 {

 ObjUser const& ou = (*i2);

 std::map<int, int>::const_iterator i3 =

 object_stream_data.find(og.getObj());

 if (i3 == object_stream_data.end())

 {

 t_object_to_obj_users[og].insert(ou);

 }

 else

 {

 t_object_to_obj_users[QPDFObjGen((*i3).second, 0)].insert(ou);

 }

 }

 }

 this->m->obj_user_to_objects = t_obj_user_to_objects;

 this->m->object_to_obj_users = t_object_to_obj_users;

}

qpdf-7.1.0/libqpdf/QPDF_Stream.cc

#include <qpdf/QPDF_Stream.hh>

#include <qpdf/QUtil.hh>
#include <qpdf/Pipeline.hh>
#include <qpdf/Pl_Flate.hh>
#include <qpdf/Pl_PNGFilter.hh>
#include <qpdf/Pl_TIFFPredictor.hh>
#include <qpdf/Pl_RC4.hh>
#include <qpdf/Pl_Buffer.hh>
#include <qpdf/Pl_ASCII85Decoder.hh>
#include <qpdf/Pl_ASCIIHexDecoder.hh>
#include <qpdf/Pl_LZWDecoder.hh>
#include <qpdf/Pl_RunLength.hh>
#include <qpdf/Pl_DCT.hh>
#include <qpdf/Pl_Count.hh>

#include <qpdf/QTC.hh>
#include <qpdf/QPDF.hh>
#include <qpdf/QPDFExc.hh>
#include <qpdf/Pl_QPDFTokenizer.hh>

#include <stdexcept>

std::map<std::string, std::string> QPDF_Stream::filter_abbreviations;

QPDF_Stream::QPDF_Stream(QPDF* qpdf, int objid, int generation,
			 QPDFObjectHandle stream_dict,
			 qpdf_offset_t offset, size_t length) :
 qpdf(qpdf),
 objid(objid),
 generation(generation),
 stream_dict(stream_dict),
 offset(offset),
 length(length)
{
 if (! stream_dict.isDictionary())
 {
	throw std::logic_error(
	 "stream object instantiated with non-dictionary "
	 "object for dictionary");
 }
}

QPDF_Stream::~QPDF_Stream()
{
}

void
QPDF_Stream::releaseResolved()
{
 this->stream_provider = 0;
 QPDFObjectHandle::ReleaseResolver::releaseResolved(this->stream_dict);
}

void
QPDF_Stream::setObjGen(int objid, int generation)
{
 if (! ((this->objid == 0) && (this->generation == 0)))
 {
	throw std::logic_error(
	 "attempt to set object ID and generation of a stream"
	 " that already has them");
 }
 this->objid = objid;
 this->generation = generation;
}

std::string
QPDF_Stream::unparse()
{
 // Unparse stream objects as indirect references
 return QUtil::int_to_string(this->objid) + " " +
	QUtil::int_to_string(this->generation) + " R";
}

QPDFObject::object_type_e
QPDF_Stream::getTypeCode() const
{
 return QPDFObject::ot_stream;
}

char const*
QPDF_Stream::getTypeName() const
{
 return "stream";
}

QPDFObjectHandle
QPDF_Stream::getDict() const
{
 return this->stream_dict;
}

PointerHolder<Buffer>
QPDF_Stream::getStreamData(qpdf_stream_decode_level_e decode_level)
{
 Pl_Buffer buf("stream data buffer");
 if (! pipeStreamData(&buf, 0, decode_level, false, false))
 {
	throw QPDFExc(qpdf_e_unsupported, qpdf->getFilename(),
 "", this->offset,
 "getStreamData called on unfilterable stream");
 }
 QTC::TC("qpdf", "QPDF_Stream getStreamData");
 return buf.getBuffer();
}

PointerHolder<Buffer>
QPDF_Stream::getRawStreamData()
{
 Pl_Buffer buf("stream data buffer");
 pipeStreamData(&buf, 0, qpdf_dl_none, false, false);
 QTC::TC("qpdf", "QPDF_Stream getRawStreamData");
 return buf.getBuffer();
}

bool
QPDF_Stream::understandDecodeParams(
 std::string const& filter, QPDFObjectHandle decode_obj,
 int& predictor, int& columns,
 int& colors, int& bits_per_component,
 bool& early_code_change)
{
 bool filterable = true;
 std::set<std::string> keys = decode_obj.getKeys();
 for (std::set<std::string>::iterator iter = keys.begin();
 iter != keys.end(); ++iter)
 {
 std::string const& key = *iter;
 if (((filter == "/FlateDecode") || (filter == "/LZWDecode")) &&
 (key == "/Predictor"))
 {
 QPDFObjectHandle predictor_obj = decode_obj.getKey(key);
 if (predictor_obj.isInteger())
 {
 predictor = predictor_obj.getIntValue();
 if (! ((predictor == 1) || (predictor == 2) ||
 ((predictor >= 10) && (predictor <= 15))))
 {
 filterable = false;
 }
 }
 else
 {
 filterable = false;
 }
 }
 else if ((filter == "/LZWDecode") && (key == "/EarlyChange"))
 {
 QPDFObjectHandle earlychange_obj = decode_obj.getKey(key);
 if (earlychange_obj.isInteger())
 {
 int earlychange = earlychange_obj.getIntValue();
 early_code_change = (earlychange == 1);
 if (! ((earlychange == 0) || (earlychange == 1)))
 {
 filterable = false;
 }
 }
 else
 {
 filterable = false;
 }
 }
 else if ((key == "/Columns") ||
 (key == "/Colors") ||
 (key == "/BitsPerComponent"))
 {
 QPDFObjectHandle param_obj = decode_obj.getKey(key);
 if (param_obj.isInteger())
 {
 int val = param_obj.getIntValue();
 if (key == "/Columns")
 {
 columns = val;
 }
 else if (key == "/Colors")
 {
 colors = val;
 }
 else if (key == "/BitsPerComponent")
 {
 bits_per_component = val;
 }
 }
 else
 {
 filterable = false;
 }
 }
 else if ((filter == "/Crypt") &&
 (((key == "/Type") || (key == "/Name")) &&
 (decode_obj.getKey("/Type").isNull() ||
 (decode_obj.getKey("/Type").isName() &&
 (decode_obj.getKey("/Type").getName() ==
 "/CryptFilterDecodeParms")))))
 {
 // we handle this in decryptStream
 }
 else
 {
 filterable = false;
 }
 }

 return filterable;
}

bool
QPDF_Stream::filterable(std::vector<std::string>& filters,
 bool& specialized_compression,
 bool& lossy_compression,
			int& predictor, int& columns,
 int& colors, int& bits_per_component,
			bool& early_code_change)
{
 if (filter_abbreviations.empty())
 {
	// The PDF specification provides these filter abbreviations
	// for use in inline images, but according to table H.1 in the
	// pre-ISO versions of the PDF specification, Adobe Reader
	// also accepts them for stream filters.
	filter_abbreviations["/AHx"] = "/ASCIIHexDecode";
	filter_abbreviations["/A85"] = "/ASCII85Decode";
	filter_abbreviations["/LZW"] = "/LZWDecode";
	filter_abbreviations["/Fl"] = "/FlateDecode";
	filter_abbreviations["/RL"] = "/RunLengthDecode";
	filter_abbreviations["/CCF"] = "/CCITTFaxDecode";
	filter_abbreviations["/DCT"] = "/DCTDecode";
 }

 // Check filters

 QPDFObjectHandle filter_obj = this->stream_dict.getKey("/Filter");
 bool filters_okay = true;

 if (filter_obj.isNull())
 {
	// No filters
 }
 else if (filter_obj.isName())
 {
	// One filter
	filters.push_back(filter_obj.getName());
 }
 else if (filter_obj.isArray())
 {
	// Potentially multiple filters
	int n = filter_obj.getArrayNItems();
	for (int i = 0; i < n; ++i)
	{
	 QPDFObjectHandle item = filter_obj.getArrayItem(i);
	 if (item.isName())
	 {
		filters.push_back(item.getName());
	 }
	 else
	 {
		filters_okay = false;
	 }
	}
 }
 else
 {
	filters_okay = false;
 }

 if (! filters_okay)
 {
	QTC::TC("qpdf", "QPDF_Stream invalid filter");
	warn(QPDFExc(qpdf_e_damaged_pdf, qpdf->getFilename(),
 "", this->offset,
 "stream filter type is not name or array"));
 return false;
 }

 bool filterable = true;

 for (std::vector<std::string>::iterator iter = filters.begin();
	 iter != filters.end(); ++iter)
 {
	std::string& filter = *iter;

	if (filter_abbreviations.count(filter))
	{
	 QTC::TC("qpdf", "QPDF_Stream expand filter abbreviation");
	 filter = filter_abbreviations[filter];
	}

 if (filter == "/RunLengthDecode")
 {
 specialized_compression = true;
 }
 else if (filter == "/DCTDecode")
 {
 specialized_compression = true;
 lossy_compression = true;
 }
	else if (! ((filter == "/Crypt") ||
 (filter == "/FlateDecode") ||
 (filter == "/LZWDecode") ||
 (filter == "/ASCII85Decode") ||
 (filter == "/ASCIIHexDecode")))
	{
	 filterable = false;
	}
 }

 if (! filterable)
 {
 return false;
 }

 // `filters' now contains a list of filters to be applied in
 // order. See which ones we can support.

 // Initialize values to their defaults as per the PDF spec
 predictor = 1;
 columns = 0;
 colors = 1;
 bits_per_component = 8;
 early_code_change = true;

 // See if we can support any decode parameters that are specified.

 QPDFObjectHandle decode_obj = this->stream_dict.getKey("/DecodeParms");
 std::vector<QPDFObjectHandle> decode_parms;
 if (decode_obj.isArray())
 {
 for (int i = 0; i < decode_obj.getArrayNItems(); ++i)
 {
 decode_parms.push_back(decode_obj.getArrayItem(i));
 }
 }
 else
 {
 for (unsigned int i = 0; i < filters.size(); ++i)
 {
 decode_parms.push_back(decode_obj);
 }
 }

 // Ignore /DecodeParms entirely if /Filters is empty. At least
 // one case of a file whose /DecodeParms was [<< >>] when
 // /Filters was empty has been seen in the wild.
 if ((filters.size() != 0) && (decode_parms.size() != filters.size()))
 {
 warn(QPDFExc(qpdf_e_damaged_pdf, qpdf->getFilename(),
 "", this->offset,
 "stream /DecodeParms length is"
 " inconsistent with filters"));
 filterable = false;
 }

 if (! filterable)
 {
 return false;
 }

 for (unsigned int i = 0; i < filters.size(); ++i)
 {
 QPDFObjectHandle decode_item = decode_parms.at(i);
 if (decode_item.isNull())
 {
 // okay
 }
 else if (decode_item.isDictionary())
 {
 if (! understandDecodeParams(
 filters.at(i), decode_item,
 predictor, columns, colors, bits_per_component,
 early_code_change))
 {
 filterable = false;
 }
 }
 else
 {
 filterable = false;
 }
 }

 if ((predictor > 1) && (columns == 0))
 {
	// invalid
	filterable = false;
 }

 if (! filterable)
 {
	return false;
 }

 return filterable;
}

bool
QPDF_Stream::pipeStreamData(Pipeline* pipeline,
 unsigned long encode_flags,
 qpdf_stream_decode_level_e decode_level,
 bool suppress_warnings, bool will_retry)
{
 std::vector<std::string> filters;
 int predictor = 1;
 int columns = 0;
 int colors = 1;
 int bits_per_component = 8;
 bool early_code_change = true;
 bool specialized_compression = false;
 bool lossy_compression = false;
 bool filter = (! ((encode_flags == 0) && (decode_level == qpdf_dl_none)));
 if (filter)
 {
	filter = filterable(filters, specialized_compression, lossy_compression,
 predictor, columns,
 colors, bits_per_component,
 early_code_change);
 if ((decode_level < qpdf_dl_all) && lossy_compression)
 {
 filter = false;
 }
 if ((decode_level < qpdf_dl_specialized) && specialized_compression)
 {
 filter = false;
 }
 QTC::TC("qpdf", "QPDF_Stream special filters",
 (! filter) ? 0 :
 lossy_compression ? 1 :
 specialized_compression ? 2 :
 3);
 }

 if (pipeline == 0)
 {
	QTC::TC("qpdf", "QPDF_Stream pipeStreamData with null pipeline");
	return filter;
 }

 // Construct the pipeline in reverse order. Force pipelines we
 // create to be deleted when this function finishes.
 std::vector<PointerHolder<Pipeline> > to_delete;

 if (filter)
 {
	if (encode_flags & qpdf_ef_compress)
	{
	 pipeline = new Pl_Flate("compress object stream", pipeline,
				 Pl_Flate::a_deflate);
	 to_delete.push_back(pipeline);
	}

	if (encode_flags & qpdf_ef_normalize)
	{
	 pipeline = new Pl_QPDFTokenizer("normalizer", pipeline);
	 to_delete.push_back(pipeline);
	}

	for (std::vector<std::string>::reverse_iterator iter = filters.rbegin();
	 iter != filters.rend(); ++iter)
	{
	 std::string const& filter = *iter;

 if ((filter == "/FlateDecode") || (filter == "/LZWDecode"))
 {
 if ((predictor >= 10) && (predictor <= 15))
 {
 QTC::TC("qpdf", "QPDF_Stream PNG filter");
 pipeline = new Pl_PNGFilter(
 "png decode", pipeline, Pl_PNGFilter::a_decode,
 columns, colors, bits_per_component);
 to_delete.push_back(pipeline);
 }
 else if (predictor == 2)
 {
 QTC::TC("qpdf", "QPDF_Stream TIFF predictor");
 pipeline = new Pl_TIFFPredictor(
 "tiff decode", pipeline, Pl_TIFFPredictor::a_decode,
 columns, colors, bits_per_component);
 to_delete.push_back(pipeline);
 }
 }

	 if (filter == "/Crypt")
	 {
		// Ignore -- handled by pipeStreamData
	 }
	 else if (filter == "/FlateDecode")
	 {
		pipeline = new Pl_Flate("stream inflate",
					pipeline, Pl_Flate::a_inflate);
		to_delete.push_back(pipeline);
	 }
	 else if (filter == "/ASCII85Decode")
	 {
		pipeline = new Pl_ASCII85Decoder("ascii85 decode", pipeline);
		to_delete.push_back(pipeline);
	 }
	 else if (filter == "/ASCIIHexDecode")
	 {
		pipeline = new Pl_ASCIIHexDecoder("asciiHex decode", pipeline);
		to_delete.push_back(pipeline);
	 }
	 else if (filter == "/LZWDecode")
	 {
		pipeline = new Pl_LZWDecoder("lzw decode", pipeline,
					 early_code_change);
		to_delete.push_back(pipeline);
	 }
	 else if (filter == "/RunLengthDecode")
	 {
		pipeline = new Pl_RunLength("runlength decode", pipeline,
 Pl_RunLength::a_decode);
		to_delete.push_back(pipeline);
	 }
	 else if (filter == "/DCTDecode")
	 {
		pipeline = new Pl_DCT("DCT decode", pipeline);
		to_delete.push_back(pipeline);
	 }
	 else
	 {
		throw std::logic_error(
		 "INTERNAL ERROR: QPDFStream: unknown filter "
		 "encountered after check");
	 }
	}
 }

 if (this->stream_data.getPointer())
 {
	QTC::TC("qpdf", "QPDF_Stream pipe replaced stream data");
	pipeline->write(this->stream_data->getBuffer(),
			this->stream_data->getSize());
	pipeline->finish();
 }
 else if (this->stream_provider.getPointer())
 {
	Pl_Count count("stream provider count", pipeline);
	this->stream_provider->provideStreamData(
	 this->objid, this->generation, &count);
	qpdf_offset_t actual_length = count.getCount();
	qpdf_offset_t desired_length = 0;
 if (this->stream_dict.hasKey("/Length"))
 {
	 desired_length = this->stream_dict.getKey("/Length").getIntValue();
 if (actual_length == desired_length)
 {
 QTC::TC("qpdf", "QPDF_Stream pipe use stream provider");
 }
 else
 {
 QTC::TC("qpdf", "QPDF_Stream provider length mismatch");
 // This would be caused by programmer error on the
 // part of a library user, not by invalid input data.
 throw std::runtime_error(
 "stream data provider for " +
 QUtil::int_to_string(this->objid) + " " +
 QUtil::int_to_string(this->generation) +
 " provided " +
 QUtil::int_to_string(actual_length) +
 " bytes instead of expected " +
 QUtil::int_to_string(desired_length) + " bytes");
 }
 }
 else
 {
 QTC::TC("qpdf", "QPDF_Stream provider length not provided");
 this->stream_dict.replaceKey(
 "/Length", QPDFObjectHandle::newInteger(actual_length));
 }
 }
 else if (this->offset == 0)
 {
	QTC::TC("qpdf", "QPDF_Stream pipe no stream data");
	throw std::logic_error(
	 "pipeStreamData called for stream with no data");
 }
 else
 {
	QTC::TC("qpdf", "QPDF_Stream pipe original stream data");
	if (! QPDF::Pipe::pipeStreamData(this->qpdf, this->objid, this->generation,
 this->offset, this->length,
 this->stream_dict, pipeline,
 suppress_warnings,
 will_retry))
 {
 filter = false;
 }
 }

 return filter;
}

void
QPDF_Stream::replaceStreamData(PointerHolder<Buffer> data,
			 QPDFObjectHandle const& filter,
			 QPDFObjectHandle const& decode_parms)
{
 this->stream_data = data;
 this->stream_provider = 0;
 replaceFilterData(filter, decode_parms, data->getSize());
}

void
QPDF_Stream::replaceStreamData(
 PointerHolder<QPDFObjectHandle::StreamDataProvider> provider,
 QPDFObjectHandle const& filter,
 QPDFObjectHandle const& decode_parms)
{
 this->stream_provider = provider;
 this->stream_data = 0;
 replaceFilterData(filter, decode_parms, 0);
}

void
QPDF_Stream::replaceFilterData(QPDFObjectHandle const& filter,
			 QPDFObjectHandle const& decode_parms,
			 size_t length)
{
 this->stream_dict.replaceOrRemoveKey("/Filter", filter);
 this->stream_dict.replaceOrRemoveKey("/DecodeParms", decode_parms);
 if (length == 0)
 {
 QTC::TC("qpdf", "QPDF_Stream unknown stream length");
 this->stream_dict.removeKey("/Length");
 }
 else
 {
 this->stream_dict.replaceKey(
 "/Length", QPDFObjectHandle::newInteger(length));
 }
}

void
QPDF_Stream::replaceDict(QPDFObjectHandle new_dict)
{
 this->stream_dict = new_dict;
 QPDFObjectHandle length_obj = new_dict.getKey("/Length");
 if (length_obj.isInteger())
 {
 this->length = length_obj.getIntValue();
 }
 else
 {
 this->length = 0;
 }
}

void
QPDF_Stream::warn(QPDFExc const& e)
{
 QPDF::Warner::warn(this->qpdf, e);
}

qpdf-7.1.0/libqpdf/QPDF_InlineImage.cc

#include <qpdf/QPDF_InlineImage.hh>

#include <qpdf/QUtil.hh>

QPDF_InlineImage::QPDF_InlineImage(std::string const& val) :
 val(val)
{
}

QPDF_InlineImage::~QPDF_InlineImage()
{
}

std::string
QPDF_InlineImage::unparse()
{
 return this->val;
}

QPDFObject::object_type_e
QPDF_InlineImage::getTypeCode() const
{
 return QPDFObject::ot_inlineimage;
}

char const*
QPDF_InlineImage::getTypeName() const
{
 return "inline-image";
}

std::string
QPDF_InlineImage::getVal() const
{
 return this->val;
}

qpdf-7.1.0/libqpdf/Pl_Count.cc

#include <qpdf/Pl_Count.hh>

Pl_Count::Pl_Count(char const* identifier, Pipeline* next) :
 Pipeline(identifier, next),
 count(0),
 last_char('\0')
{
}

Pl_Count::~Pl_Count()
{
}

void
Pl_Count::write(unsigned char* buf, size_t len)
{
 if (len)
 {
	this->count += len;
	getNext()->write(buf, len);
	this->last_char = buf[len - 1];
 }
}

void
Pl_Count::finish()
{
 getNext()->finish();
}

qpdf_offset_t
Pl_Count::getCount() const
{
 return this->count;
}

unsigned char
Pl_Count::getLastChar() const
{
 return this->last_char;
}

qpdf-7.1.0/libqpdf/QPDF_Bool.cc

#include <qpdf/QPDF_Bool.hh>

QPDF_Bool::QPDF_Bool(bool val) :
 val(val)
{
}

QPDF_Bool::~QPDF_Bool()
{
}

std::string
QPDF_Bool::unparse()
{
 return (val ? "true" : "false");
}

QPDFObject::object_type_e
QPDF_Bool::getTypeCode() const
{
 return QPDFObject::ot_boolean;
}

char const*
QPDF_Bool::getTypeName() const
{
 return "boolean";
}

bool
QPDF_Bool::getVal() const
{
 return this->val;
}

qpdf-7.1.0/libqpdf/BitStream.cc

#include <qpdf/BitStream.hh>

// See comments in bits.cc
#define BITS_READ 1
#include "bits.icc"

BitStream::BitStream(unsigned char const* p, int nbytes) :
 start(p),
 nbytes(nbytes)
{
 reset();
}

void
BitStream::reset()
{
 p = start;
 bit_offset = 7;
 if (static_cast<unsigned int>(nbytes) > static_cast<unsigned int>(-1) / 8)
 {
	throw std::runtime_error("array too large for bitstream");
 }
 bits_available = 8 * nbytes;
}

unsigned long long
BitStream::getBits(int nbits)
{
 return read_bits(this->p, this->bit_offset,
		 this->bits_available, nbits);
}

long long
BitStream::getBitsSigned(int nbits)
{
 unsigned long long bits = read_bits(this->p, this->bit_offset,
 this->bits_available, nbits);
 long long result = 0;
 if (static_cast<long long>(bits) > 1 << (nbits - 1))
 {
 result = static_cast<long long>(bits - (1 << nbits));
 }
 else
 {
 result = static_cast<long long>(bits);
 }
 return result;
}

void
BitStream::skipToNextByte()
{
 if (bit_offset != 7)
 {
	unsigned int bits_to_skip = bit_offset + 1;
	if (bits_available < bits_to_skip)
	{
	 throw std::logic_error(
		"INTERNAL ERROR: overflow skipping to next byte in bitstream");
	}
	bit_offset = 7;
	++p;
	bits_available -= bits_to_skip;
 }
}

qpdf-7.1.0/libqpdf/bits.icc

#ifndef __BITS_CC__
#define __BITS_CC__

#include <algorithm>
#include <stdexcept>
#include <qpdf/QTC.hh>
#include <qpdf/Pipeline.hh>

// These functions may be run at places where the function call
// overhead from test coverage testing would be too high. Therefore,
// we make the test coverage cases conditional upon a preprocessor
// symbol. BitStream.cc includes this file without defining the
// symbol, and the specially designed test code that fully exercises
// this code includes with the symbol defined.

#ifdef BITS_READ
static unsigned long long
read_bits(unsigned char const*& p, unsigned int& bit_offset,
	 unsigned int& bits_available, unsigned int bits_wanted)
{
 // View p as a stream of bits:

 // 76543210 76543210

 // bit_offset is the bit number within the first byte that marks
 // the first bit that we would read.

 if (bits_wanted > bits_available)
 {
	throw std::length_error("overflow reading bit stream");
 }
 if (bits_wanted > 32)
 {
	throw std::out_of_range("read_bits: too many bits requested");
 }

 unsigned long result = 0;
#ifdef BITS_TESTING
 if (bits_wanted == 0)
 {
	QTC::TC("libtests", "bits zero bits wanted");
 }
#endif
 while (bits_wanted > 0)
 {
	// Grab bits from the first byte clearing anything before
	// bit_offset.
	unsigned char byte = *p & ((1 << (bit_offset + 1)) - 1);

	// There are bit_offset + 1 bits available in the first byte.
	unsigned int to_copy = std::min(bits_wanted, bit_offset + 1);
	unsigned int leftover = (bit_offset + 1) - to_copy;

#ifdef BITS_TESTING
	QTC::TC("libtests", "bits bit_offset",
		((bit_offset == 0) ? 0 :
		 (bit_offset == 7) ? 1 :
		 2));
	QTC::TC("libtests", "bits leftover", (leftover > 0) ? 1 : 0);
#endif

	// Right shift so that all the bits we want are right justified.
	byte >>= leftover;

	// Copy the bits into result
	result <<= to_copy;
	result |= byte;

	// Update pointers
	if (leftover)
	{
	 bit_offset = leftover - 1;
	}
	else
	{
	 bit_offset = 7;
	 ++p;
	}
	bits_wanted -= to_copy;
	bits_available -= to_copy;

#ifdef BITS_TESTING
	QTC::TC("libtests", "bits iterations",
		((bits_wanted > 8) ? 0 :
		 (bits_wanted > 0) ? 1 :
		 2));
#endif
 }

 return result;
}
#endif

#ifdef BITS_WRITE
static void
write_bits(unsigned char& ch, unsigned int& bit_offset,
	 unsigned long long val, unsigned int bits, Pipeline* pipeline)
{
 if (bits > 32)
 {
	throw std::out_of_range("write_bits: too many bits requested");
 }

 // bit_offset + 1 is the number of bits left in ch
#ifdef BITS_TESTING
 if (bits == 0)
 {
	QTC::TC("libtests", "bits write zero bits");
 }
#endif
 while (bits > 0)
 {
	int bits_to_write = std::min(bits, bit_offset + 1);
	unsigned char newval =
	 (val >> (bits - bits_to_write)) & ((1 << bits_to_write) - 1);
	int bits_left_in_ch = bit_offset + 1 - bits_to_write;
	newval <<= bits_left_in_ch;
	ch |= newval;
	if (bits_left_in_ch == 0)
	{
#ifdef BITS_TESTING
	 QTC::TC("libtests", "bits write pipeline");
#endif
	 pipeline->write(&ch, 1);
	 bit_offset = 7;
	 ch = 0;
	}
	else
	{
#ifdef BITS_TESTING
	 QTC::TC("libtests", "bits write leftover");
#endif
	 bit_offset -= bits_to_write;
	}
	bits -= bits_to_write;
#ifdef BITS_TESTING
	QTC::TC("libtests", "bits write iterations",
		((bits > 8) ? 0 :
		 (bits > 0) ? 1 :
		 2));
#endif
 }

}
#endif

#endif // __BITS_CC__

qpdf-7.1.0/libqpdf/qpdf-c.cc

#include <qpdf/qpdf-c.h>

#include <qpdf/QPDF.hh>
#include <qpdf/QPDFWriter.hh>
#include <qpdf/QTC.hh>
#include <qpdf/QPDFExc.hh>

#include <list>
#include <string>
#include <stdexcept>
#include <cstring>

struct _qpdf_error
{
 PointerHolder<QPDFExc> exc;
};

struct _qpdf_data
{
 _qpdf_data();
 ~_qpdf_data();

 QPDF* qpdf;
 QPDFWriter* qpdf_writer;

 PointerHolder<QPDFExc> error;
 _qpdf_error tmp_error;
 std::list<QPDFExc> warnings;
 std::string tmp_string;

 // Parameters for functions we call
 char const* filename;	// or description
 char const* buffer;
 unsigned long long size;
 char const* password;
 bool write_memory;
 Buffer* output_buffer;
};

_qpdf_data::_qpdf_data() :
 qpdf(0),
 qpdf_writer(0),
 write_memory(false),
 output_buffer(0)
{
}

_qpdf_data::~_qpdf_data()
{
 delete qpdf_writer;
 delete qpdf;
 delete output_buffer;
}

// must set qpdf->filename and qpdf->password
static void call_read(qpdf_data qpdf)
{
 qpdf->qpdf->processFile(qpdf->filename, qpdf->password);
}

// must set qpdf->filename, qpdf->buffer, qpdf->size, and qpdf->password
static void call_read_memory(qpdf_data qpdf)
{
 qpdf->qpdf->processMemoryFile(qpdf->filename, qpdf->buffer,
				 qpdf->size, qpdf->password);
}

// must set qpdf->filename
static void call_init_write(qpdf_data qpdf)
{
 qpdf->qpdf_writer = new QPDFWriter(*(qpdf->qpdf), qpdf->filename);
}

static void call_init_write_memory(qpdf_data qpdf)
{
 qpdf->qpdf_writer = new QPDFWriter(*(qpdf->qpdf));
 qpdf->qpdf_writer->setOutputMemory();
}

static void call_write(qpdf_data qpdf)
{
 qpdf->qpdf_writer->write();
}

static QPDF_ERROR_CODE trap_errors(qpdf_data qpdf, void (*fn)(qpdf_data))
{
 QPDF_ERROR_CODE status = QPDF_SUCCESS;
 try
 {
	fn(qpdf);
 }
 catch (QPDFExc& e)
 {
	qpdf->error = new QPDFExc(e);
	status |= QPDF_ERRORS;
 }
 catch (std::runtime_error& e)
 {
	qpdf->error = new QPDFExc(qpdf_e_system, "", "", 0, e.what());
	status |= QPDF_ERRORS;
 }
 catch (std::exception& e)
 {
	qpdf->error = new QPDFExc(qpdf_e_internal, "", "", 0, e.what());
	status |= QPDF_ERRORS;
 }

 if (qpdf_more_warnings(qpdf))
 {
	status |= QPDF_WARNINGS;
 }
 return status;
}

char const* qpdf_get_qpdf_version()
{
 QTC::TC("qpdf", "qpdf-c called qpdf_get_qpdf_version");
 return QPDF::QPDFVersion().c_str();
}

qpdf_data qpdf_init()
{
 QTC::TC("qpdf", "qpdf-c called qpdf_init");
 qpdf_data qpdf = new _qpdf_data();
 qpdf->qpdf = new QPDF();
 return qpdf;
}

void qpdf_cleanup(qpdf_data* qpdf)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_cleanup");
 delete *qpdf;
 *qpdf = 0;
}

QPDF_BOOL qpdf_more_warnings(qpdf_data qpdf)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_more_warnings");

 if (qpdf->warnings.empty())
 {
	std::vector<QPDFExc> w = qpdf->qpdf->getWarnings();
	if (! w.empty())
	{
	 qpdf->warnings.assign(w.begin(), w.end());
	}
 }
 if (qpdf->warnings.empty())
 {
	return QPDF_FALSE;
 }
 else
 {
	return QPDF_TRUE;
 }
}

QPDF_BOOL qpdf_has_error(qpdf_data qpdf)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_has_error");
 return (qpdf->error.getPointer() ? QPDF_TRUE : QPDF_FALSE);
}

qpdf_error qpdf_get_error(qpdf_data qpdf)
{
 if (qpdf->error.getPointer())
 {
	qpdf->tmp_error.exc = qpdf->error;
	qpdf->error = 0;
	QTC::TC("qpdf", "qpdf-c qpdf_get_error returned error");
	return &qpdf->tmp_error;
 }
 else
 {
	return 0;
 }
}

qpdf_error qpdf_next_warning(qpdf_data qpdf)
{
 if (qpdf_more_warnings(qpdf))
 {
	qpdf->tmp_error.exc = new QPDFExc(qpdf->warnings.front());
	qpdf->warnings.pop_front();
	QTC::TC("qpdf", "qpdf-c qpdf_next_warning returned warning");
	return &qpdf->tmp_error;
 }
 else
 {
	return 0;
 }
}

char const* qpdf_get_error_full_text(qpdf_data qpdf, qpdf_error e)
{
 if (e == 0)
 {
	return "";
 }
 return e->exc->what();
}

enum qpdf_error_code_e qpdf_get_error_code(qpdf_data qpdf, qpdf_error e)
{
 if (e == 0)
 {
	return qpdf_e_success;
 }
 return e->exc->getErrorCode();
}

char const* qpdf_get_error_filename(qpdf_data qpdf, qpdf_error e)
{
 if (e == 0)
 {
	return "";
 }
 return e->exc->getFilename().c_str();
}

unsigned long long qpdf_get_error_file_position(qpdf_data qpdf, qpdf_error e)
{
 if (e == 0)
 {
	return 0;
 }
 return e->exc->getFilePosition();
}

char const* qpdf_get_error_message_detail(qpdf_data qpdf, qpdf_error e)
{
 if (e == 0)
 {
	return "";
 }
 return e->exc->getMessageDetail().c_str();
}

void qpdf_set_suppress_warnings(qpdf_data qpdf, QPDF_BOOL value)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_suppress_warnings");
 qpdf->qpdf->setSuppressWarnings(value);
}

void qpdf_set_ignore_xref_streams(qpdf_data qpdf, QPDF_BOOL value)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_ignore_xref_streams");
 qpdf->qpdf->setIgnoreXRefStreams(value);
}

void qpdf_set_attempt_recovery(qpdf_data qpdf, QPDF_BOOL value)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_attempt_recovery");
 qpdf->qpdf->setAttemptRecovery(value);
}

QPDF_ERROR_CODE qpdf_read(qpdf_data qpdf, char const* filename,
			 char const* password)
{
 QPDF_ERROR_CODE status = QPDF_SUCCESS;
 qpdf->filename = filename;
 qpdf->password = password;
 status = trap_errors(qpdf, &call_read);
 // We no longer have a good way to exercise a file with both
 // warnings and errors because qpdf is getting much better at
 // recovering.
 QTC::TC("qpdf", "qpdf-c called qpdf_read",
 (status == 0) ? 0
 : (status & QPDF_WARNINGS) ? 1
 : (status & QPDF_ERRORS) ? 2 :
 -1
);
 return status;
}

QPDF_ERROR_CODE qpdf_read_memory(qpdf_data qpdf,
				 char const* description,
				 char const* buffer,
				 unsigned long long size,
				 char const* password)
{
 QPDF_ERROR_CODE status = QPDF_SUCCESS;
 qpdf->filename = description;
 qpdf->buffer = buffer;
 qpdf->size = size;
 qpdf->password = password;
 status = trap_errors(qpdf, &call_read_memory);
 QTC::TC("qpdf", "qpdf-c called qpdf_read_memory", status);
 return status;
}

char const* qpdf_get_pdf_version(qpdf_data qpdf)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_get_pdf_version");
 qpdf->tmp_string = qpdf->qpdf->getPDFVersion();
 return qpdf->tmp_string.c_str();
}

int qpdf_get_pdf_extension_level(qpdf_data qpdf)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_get_pdf_extension_level");
 return qpdf->qpdf->getExtensionLevel();
}

char const* qpdf_get_user_password(qpdf_data qpdf)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_get_user_password");
 qpdf->tmp_string = qpdf->qpdf->getTrimmedUserPassword();
 return qpdf->tmp_string.c_str();
}

char const* qpdf_get_info_key(qpdf_data qpdf, char const* key)
{
 char const* result = 0;
 QPDFObjectHandle trailer = qpdf->qpdf->getTrailer();
 if (trailer.hasKey("/Info"))
 {
	QPDFObjectHandle info = trailer.getKey("/Info");
	if (info.hasKey(key))
	{
	 QPDFObjectHandle value = info.getKey(key);
	 if (value.isString())
	 {
		qpdf->tmp_string = value.getStringValue();
		result = qpdf->tmp_string.c_str();
	 }
	}
 }
 QTC::TC("qpdf", "qpdf-c get_info_key", (result == 0 ? 0 : 1));
 return result;
}

void qpdf_set_info_key(qpdf_data qpdf, char const* key, char const* value)
{
 if ((key == 0) || (std::strlen(key) == 0) || (key[0] != '/'))
 {
	return;
 }
 QPDFObjectHandle value_object;
 if (value)
 {
	QTC::TC("qpdf", "qpdf-c set_info_key to value");
	value_object = QPDFObjectHandle::newString(value);
 }
 else
 {
	QTC::TC("qpdf", "qpdf-c set_info_key to null");
	value_object = QPDFObjectHandle::newNull();
 }

 QPDFObjectHandle trailer = qpdf->qpdf->getTrailer();
 if (! trailer.hasKey("/Info"))
 {
	QTC::TC("qpdf", "qpdf-c add info to trailer");
	trailer.replaceKey(
	 "/Info",
	 qpdf->qpdf->makeIndirectObject(QPDFObjectHandle::newDictionary()));
 }
 else
 {
	QTC::TC("qpdf", "qpdf-c set-info-key use existing info");
 }

 QPDFObjectHandle info = trailer.getKey("/Info");
 info.replaceOrRemoveKey(key, value_object);
}

QPDF_BOOL qpdf_is_linearized(qpdf_data qpdf)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_is_linearized");
 return (qpdf->qpdf->isLinearized() ? QPDF_TRUE : QPDF_FALSE);
}

QPDF_BOOL qpdf_is_encrypted(qpdf_data qpdf)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_is_encrypted");
 return (qpdf->qpdf->isEncrypted() ? QPDF_TRUE : QPDF_FALSE);
}

QPDF_BOOL qpdf_allow_accessibility(qpdf_data qpdf)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_allow_accessibility");
 return qpdf->qpdf->allowAccessibility();
}

QPDF_BOOL qpdf_allow_extract_all(qpdf_data qpdf)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_allow_extract_all");
 return qpdf->qpdf->allowExtractAll();
}

QPDF_BOOL qpdf_allow_print_low_res(qpdf_data qpdf)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_allow_print_low_res");
 return qpdf->qpdf->allowPrintLowRes();
}

QPDF_BOOL qpdf_allow_print_high_res(qpdf_data qpdf)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_allow_print_high_res");
 return qpdf->qpdf->allowPrintHighRes();
}

QPDF_BOOL qpdf_allow_modify_assembly(qpdf_data qpdf)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_allow_modify_assembly");
 return qpdf->qpdf->allowModifyAssembly();
}

QPDF_BOOL qpdf_allow_modify_form(qpdf_data qpdf)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_allow_modify_form");
 return qpdf->qpdf->allowModifyForm();
}

QPDF_BOOL qpdf_allow_modify_annotation(qpdf_data qpdf)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_allow_modify_annotation");
 return qpdf->qpdf->allowModifyAnnotation();
}

QPDF_BOOL qpdf_allow_modify_other(qpdf_data qpdf)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_allow_modify_other");
 return qpdf->qpdf->allowModifyOther();
}

QPDF_BOOL qpdf_allow_modify_all(qpdf_data qpdf)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_allow_modify_all");
 return qpdf->qpdf->allowModifyAll();
}

static void qpdf_init_write_internal(qpdf_data qpdf)
{
 if (qpdf->qpdf_writer)
 {
	QTC::TC("qpdf", "qpdf-c called qpdf_init_write multiple times");
	delete qpdf->qpdf_writer;
	qpdf->qpdf_writer = 0;
	if (qpdf->output_buffer)
	{
	 delete qpdf->output_buffer;
	 qpdf->output_buffer = 0;
	 qpdf->write_memory = false;
	 qpdf->filename = 0;
	}
 }
}

QPDF_ERROR_CODE qpdf_init_write(qpdf_data qpdf, char const* filename)
{
 qpdf_init_write_internal(qpdf);
 qpdf->filename = filename;
 QPDF_ERROR_CODE status = trap_errors(qpdf, &call_init_write);
 QTC::TC("qpdf", "qpdf-c called qpdf_init_write", status);
 return status;
}

QPDF_ERROR_CODE qpdf_init_write_memory(qpdf_data qpdf)
{
 qpdf_init_write_internal(qpdf);
 QPDF_ERROR_CODE status = trap_errors(qpdf, &call_init_write_memory);
 QTC::TC("qpdf", "qpdf-c called qpdf_init_write_memory");
 qpdf->write_memory = true;
 return status;
}

static void qpdf_get_buffer_internal(qpdf_data qpdf)
{
 if (qpdf->write_memory && (qpdf->output_buffer == 0))
 {
	qpdf->output_buffer = qpdf->qpdf_writer->getBuffer();
 }
}

size_t qpdf_get_buffer_length(qpdf_data qpdf)
{
 qpdf_get_buffer_internal(qpdf);
 size_t result = 0;
 if (qpdf->output_buffer)
 {
	result = qpdf->output_buffer->getSize();
 }
 return result;
}

unsigned char const* qpdf_get_buffer(qpdf_data qpdf)
{
 unsigned char const* result = 0;
 qpdf_get_buffer_internal(qpdf);
 if (qpdf->output_buffer)
 {
	result = qpdf->output_buffer->getBuffer();
 }
 return result;
}

void qpdf_set_object_stream_mode(qpdf_data qpdf, qpdf_object_stream_e mode)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_object_stream_mode");
 qpdf->qpdf_writer->setObjectStreamMode(mode);
}

void qpdf_set_compress_streams(qpdf_data qpdf, QPDF_BOOL value)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_compress_streams");
 qpdf->qpdf_writer->setCompressStreams(value);
}

void qpdf_set_decode_level(qpdf_data qpdf, qpdf_stream_decode_level_e level)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_decode_level");
 qpdf->qpdf_writer->setDecodeLevel(level);
}

void qpdf_set_preserve_unreferenced_objects(qpdf_data qpdf, QPDF_BOOL value)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_preserve_unreferenced_objects");
 qpdf->qpdf_writer->setPreserveUnreferencedObjects(value);
}

void qpdf_set_newline_before_endstream(qpdf_data qpdf, QPDF_BOOL value)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_newline_before_endstream");
 qpdf->qpdf_writer->setNewlineBeforeEndstream(value);
}

void qpdf_set_stream_data_mode(qpdf_data qpdf, qpdf_stream_data_e mode)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_stream_data_mode");
 qpdf->qpdf_writer->setStreamDataMode(mode);
}

void qpdf_set_content_normalization(qpdf_data qpdf, QPDF_BOOL value)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_content_normalization");
 qpdf->qpdf_writer->setContentNormalization(value);
}

void qpdf_set_qdf_mode(qpdf_data qpdf, QPDF_BOOL value)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_qdf_mode");
 qpdf->qpdf_writer->setQDFMode(value);
}

void qpdf_set_deterministic_ID(qpdf_data qpdf, QPDF_BOOL value)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_deterministic_ID");
 qpdf->qpdf_writer->setDeterministicID(value);
}

void qpdf_set_static_ID(qpdf_data qpdf, QPDF_BOOL value)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_static_ID");
 qpdf->qpdf_writer->setStaticID(value);
}

void qpdf_set_static_aes_IV(qpdf_data qpdf, QPDF_BOOL value)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_static_aes_IV");
 qpdf->qpdf_writer->setStaticAesIV(value);
}

void qpdf_set_suppress_original_object_IDs(
 qpdf_data qpdf, QPDF_BOOL value)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_suppress_original_object_IDs");
 qpdf->qpdf_writer->setSuppressOriginalObjectIDs(value);
}

void qpdf_set_preserve_encryption(qpdf_data qpdf, QPDF_BOOL value)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_preserve_encryption");
 qpdf->qpdf_writer->setPreserveEncryption(value);
}

void qpdf_set_r2_encryption_parameters(
 qpdf_data qpdf, char const* user_password, char const* owner_password,
 QPDF_BOOL allow_print, QPDF_BOOL allow_modify,
 QPDF_BOOL allow_extract, QPDF_BOOL allow_annotate)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_r2_encryption_parameters");
 qpdf->qpdf_writer->setR2EncryptionParameters(
	user_password, owner_password,
	allow_print, allow_modify, allow_extract, allow_annotate);
}

void qpdf_set_r3_encryption_parameters(
 qpdf_data qpdf, char const* user_password, char const* owner_password,
 QPDF_BOOL allow_accessibility, QPDF_BOOL allow_extract,
 qpdf_r3_print_e print, qpdf_r3_modify_e modify)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_r3_encryption_parameters");
 qpdf->qpdf_writer->setR3EncryptionParameters(
	user_password, owner_password,
	allow_accessibility, allow_extract, print, modify);
}

void qpdf_set_r4_encryption_parameters(
 qpdf_data qpdf, char const* user_password, char const* owner_password,
 QPDF_BOOL allow_accessibility, QPDF_BOOL allow_extract,
 qpdf_r3_print_e print, qpdf_r3_modify_e modify,
 QPDF_BOOL encrypt_metadata, QPDF_BOOL use_aes)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_r4_encryption_parameters");
 qpdf->qpdf_writer->setR4EncryptionParameters(
	user_password, owner_password,
	allow_accessibility, allow_extract, print, modify,
	encrypt_metadata, use_aes);
}

void qpdf_set_r5_encryption_parameters(
 qpdf_data qpdf, char const* user_password, char const* owner_password,
 QPDF_BOOL allow_accessibility, QPDF_BOOL allow_extract,
 qpdf_r3_print_e print, qpdf_r3_modify_e modify,
 QPDF_BOOL encrypt_metadata)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_r5_encryption_parameters");
 qpdf->qpdf_writer->setR5EncryptionParameters(
	user_password, owner_password,
	allow_accessibility, allow_extract, print, modify,
	encrypt_metadata);
}

void qpdf_set_r6_encryption_parameters(
 qpdf_data qpdf, char const* user_password, char const* owner_password,
 QPDF_BOOL allow_accessibility, QPDF_BOOL allow_extract,
 qpdf_r3_print_e print, qpdf_r3_modify_e modify,
 QPDF_BOOL encrypt_metadata)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_r6_encryption_parameters");
 qpdf->qpdf_writer->setR6EncryptionParameters(
	user_password, owner_password,
	allow_accessibility, allow_extract, print, modify,
	encrypt_metadata);
}

void qpdf_set_linearization(qpdf_data qpdf, QPDF_BOOL value)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_linearization");
 qpdf->qpdf_writer->setLinearization(value);
}

void qpdf_set_minimum_pdf_version(qpdf_data qpdf, char const* version)
{
 qpdf_set_minimum_pdf_version_and_extension(qpdf, version, 0);
}

void qpdf_set_minimum_pdf_version_and_extension(
 qpdf_data qpdf, char const* version, int extension_level)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_set_minimum_pdf_version");
 qpdf->qpdf_writer->setMinimumPDFVersion(version, extension_level);
}

void qpdf_force_pdf_version(qpdf_data qpdf, char const* version)
{
 qpdf_force_pdf_version_and_extension(qpdf, version, 0);
}

void qpdf_force_pdf_version_and_extension(
 qpdf_data qpdf, char const* version, int extension_level)
{
 QTC::TC("qpdf", "qpdf-c called qpdf_force_pdf_version");
 qpdf->qpdf_writer->forcePDFVersion(version, extension_level);
}

QPDF_ERROR_CODE qpdf_write(qpdf_data qpdf)
{
 QPDF_ERROR_CODE status = QPDF_SUCCESS;
 status = trap_errors(qpdf, &call_write);
 QTC::TC("qpdf", "qpdf-c called qpdf_write", (status == 0) ? 0 : 1);
 return status;
}

qpdf-7.1.0/libqpdf/QPDFXRefEntry.cc

#include <qpdf/QPDFXRefEntry.hh>
#include <qpdf/QPDFExc.hh>
#include <qpdf/QUtil.hh>

QPDFXRefEntry::QPDFXRefEntry() :
 type(0),
 field1(0),
 field2(0)
{
}

QPDFXRefEntry::QPDFXRefEntry(int type, qpdf_offset_t field1, int field2) :
 type(type),
 field1(field1),
 field2(field2)
{
 if ((type < 1) || (type > 2))
 {
	throw std::logic_error(
	 "invalid xref type " + QUtil::int_to_string(type));
 }
}

int
QPDFXRefEntry::getType() const
{
 return this->type;
}

qpdf_offset_t
QPDFXRefEntry::getOffset() const
{
 if (this->type != 1)
 {
	throw std::logic_error(
	 "getOffset called for xref entry of type != 1");
 }
 return this->field1;
}

int
QPDFXRefEntry::getObjStreamNumber() const
{
 if (this->type != 2)
 {
	throw std::logic_error(
	 "getObjStreamNumber called for xref entry of type != 2");
 }
 return this->field1;
}

int
QPDFXRefEntry::getObjStreamIndex() const
{
 if (this->type != 2)
 {
	throw std::logic_error(
	 "getObjStreamIndex called for xref entry of type != 2");
 }
 return this->field2;
}

qpdf-7.1.0/libqpdf/Pl_MD5.cc

#include <qpdf/Pl_MD5.hh>
#include <stdexcept>

Pl_MD5::Pl_MD5(char const* identifier, Pipeline* next) :
 Pipeline(identifier, next),
 in_progress(false),
 enabled(true),
 persist_across_finish(false)
{
}

Pl_MD5::~Pl_MD5()
{
}

void
Pl_MD5::write(unsigned char* buf, size_t len)
{
 if (this->enabled)
 {
 if (! this->in_progress)
 {
 this->md5.reset();
 this->in_progress = true;
 }

 // Write in chunks in case len is too big to fit in an int.
 // Assume int is at least 32 bits.
 static size_t const max_bytes = 1 << 30;
 size_t bytes_left = len;
 unsigned char* data = buf;
 while (bytes_left > 0)
 {
 size_t bytes = (bytes_left >= max_bytes ? max_bytes : bytes_left);
 this->md5.encodeDataIncrementally(
 reinterpret_cast<char*>(data), bytes);
 bytes_left -= bytes;
 data += bytes;
 }
 }

 this->getNext()->write(buf, len);
}

void
Pl_MD5::finish()
{
 this->getNext()->finish();
 if (! this->persist_across_finish)
 {
 this->in_progress = false;
 }
}

void
Pl_MD5::enable(bool enabled)
{
 this->enabled = enabled;
}

void
Pl_MD5::persistAcrossFinish(bool persist)
{
 this->persist_across_finish = persist;
}

std::string
Pl_MD5::getHexDigest()
{
 if (! this->enabled)
 {
	throw std::logic_error(
	 "digest requested for a disabled MD5 Pipeline");
 }
 this->in_progress = false;
 return this->md5.unparse();
}

qpdf-7.1.0/libqpdf/Pl_SHA2.cc

#include <qpdf/Pl_SHA2.hh>
#include <stdexcept>
#include <cstdio>
#include <qpdf/PointerHolder.hh>
#include <qpdf/QUtil.hh>

Pl_SHA2::Pl_SHA2(int bits, Pipeline* next) :
 Pipeline("sha2", next),
 in_progress(false),
 bits(0)
{
 if (bits)
 {
 resetBits(bits);
 }
}

Pl_SHA2::~Pl_SHA2()
{
}

void
Pl_SHA2::badBits()
{
 throw std::logic_error("Pl_SHA2 has unexpected value for bits");
}

void
Pl_SHA2::write(unsigned char* buf, size_t len)
{
 if (! this->in_progress)
 {
 switch (bits)
 {
 case 256:
 sph_sha256_init(&this->ctx256);
 break;
 case 384:
 sph_sha384_init(&this->ctx384);
 break;
 case 512:
 sph_sha512_init(&this->ctx512);
 break;
 default:
 badBits();
 break;
 }
	this->in_progress = true;
 }

 // Write in chunks in case len is too big to fit in an int.
 // Assume int is at least 32 bits.
 static size_t const max_bytes = 1 << 30;
 size_t bytes_left = len;
 unsigned char* data = buf;
 while (bytes_left > 0)
 {
	size_t bytes = (bytes_left >= max_bytes ? max_bytes : bytes_left);
 switch (bits)
 {
 case 256:
 sph_sha256(&this->ctx256, data, bytes);
 break;
 case 384:
 sph_sha384(&this->ctx384, data, bytes);
 break;
 case 512:
 sph_sha512(&this->ctx512, data, bytes);
 break;
 default:
 badBits();
 break;
 }
	bytes_left -= bytes;
 data += bytes;
 }

 if (this->getNext(true))
 {
 this->getNext()->write(buf, len);
 }
}

void
Pl_SHA2::finish()
{
 if (this->getNext(true))
 {
 this->getNext()->finish();
 }
 switch (bits)
 {
 case 256:
 sph_sha256_close(&this->ctx256, sha256sum);
 break;
 case 384:
 sph_sha384_close(&this->ctx384, sha384sum);
 break;
 case 512:
 sph_sha512_close(&this->ctx512, sha512sum);
 break;
 default:
 badBits();
 break;
 }
 this->in_progress = false;
}

void
Pl_SHA2::resetBits(int bits)
{
 if (this->in_progress)
 {
	throw std::logic_error(
	 "bit reset requested for in-progress SHA2 Pipeline");
 }
 if (! ((bits == 256) || (bits == 384) || (bits == 512)))
 {
	throw std::logic_error("Pl_SHA2 called with bits != 256, 384, or 512");
 }
 this->bits = bits;
}

std::string
Pl_SHA2::getRawDigest()
{
 std::string result;
 switch (bits)
 {
 case 256:
 result = std::string(reinterpret_cast<char*>(this->sha256sum),
 sizeof(this->sha256sum));
 break;
 case 384:
 result = std::string(reinterpret_cast<char*>(this->sha384sum),
 sizeof(this->sha384sum));
 break;
 case 512:
 result = std::string(reinterpret_cast<char*>(this->sha512sum),
 sizeof(this->sha512sum));
 break;
 default:
 badBits();
 break;
 }
 return result;
}

std::string
Pl_SHA2::getHexDigest()
{
 if (this->in_progress)
 {
	throw std::logic_error(
	 "digest requested for in-progress SHA2 Pipeline");
 }
 return QUtil::hex_encode(getRawDigest());
}

qpdf-7.1.0/libqpdf/OffsetInputSource.cc

#include <qpdf/OffsetInputSource.hh>

OffsetInputSource::OffsetInputSource(PointerHolder<InputSource> proxied,
 qpdf_offset_t global_offset) :
 proxied(proxied),
 global_offset(global_offset)
{
}

OffsetInputSource::~OffsetInputSource()
{
}

qpdf_offset_t
OffsetInputSource::findAndSkipNextEOL()
{
 return this->proxied->findAndSkipNextEOL() - this->global_offset;
}

std::string const&
OffsetInputSource::getName() const
{
 return this->proxied->getName();
}

qpdf_offset_t
OffsetInputSource::tell()
{
 return this->proxied->tell() - this->global_offset;
}

void
OffsetInputSource::seek(qpdf_offset_t offset, int whence)
{
 if (whence == SEEK_SET)
 {
 this->proxied->seek(offset + global_offset, whence);
 }
 else
 {
 this->proxied->seek(offset, whence);
 }
}

void
OffsetInputSource::rewind()
{
 seek(0, SEEK_SET);
}

size_t
OffsetInputSource::read(char* buffer, size_t length)
{
 size_t result = this->proxied->read(buffer, length);
 this->setLastOffset(this->proxied->getLastOffset() - global_offset);
 return result;
}

void
OffsetInputSource::unreadCh(char ch)
{
 this->proxied->unreadCh(ch);
}

qpdf-7.1.0/libqpdf/QPDF_Operator.cc

#include <qpdf/QPDF_Operator.hh>

#include <qpdf/QUtil.hh>

QPDF_Operator::QPDF_Operator(std::string const& val) :
 val(val)
{
}

QPDF_Operator::~QPDF_Operator()
{
}

std::string
QPDF_Operator::unparse()
{
 return this->val;
}

QPDFObject::object_type_e
QPDF_Operator::getTypeCode() const
{
 return QPDFObject::ot_operator;
}

char const*
QPDF_Operator::getTypeName() const
{
 return "operator";
}

std::string
QPDF_Operator::getVal() const
{
 return this->val;
}

qpdf-7.1.0/libqpdf/Pipeline.cc

#include <qpdf/Pipeline.hh>
#include <stdexcept>

Pipeline::Pipeline(char const* identifier, Pipeline* next) :
 identifier(identifier),
 next(next)
{
}

Pipeline::~Pipeline()
{
}

Pipeline*
Pipeline::getNext(bool allow_null)
{
 if ((next == 0) && (! allow_null))
 {
	throw std::logic_error(
	 this->identifier +
	 ": Pipeline::getNext() called on pipeline with no next");
 }
 return this->next;
}

qpdf-7.1.0/libqpdf/QUtil.cc

qpdf-7.1.0/libqpdf/QUtil.cc

// Include qpdf-config.h first so off_t is guaranteed to have the right size.

#include <qpdf/qpdf-config.h>

#include <qpdf/QUtil.hh>

#include <qpdf/PointerHolder.hh>

#ifdef USE_INSECURE_RANDOM

include <qpdf/InsecureRandomDataProvider.hh>

#endif

#include <qpdf/SecureRandomDataProvider.hh>

#include <cmath>

#include <iomanip>

#include <sstream>

#include <fstream>

#include <stdexcept>

#include <stdio.h>

#include <errno.h>

#include <ctype.h>

#include <stdlib.h>

#include <string.h>

#include <fcntl.h>

#ifdef _WIN32

#include <windows.h>

#include <direct.h>

#include <io.h>

#else

#include <unistd.h>

#include <sys/stat.h>

#endif

std::string

QUtil::int_to_string(long long num, int length)

{

 return int_to_string_base(num, 10, length);

}

std::string

QUtil::int_to_string_base(long long num, int base, int length)

{

 // Backward compatibility -- int_to_string, which calls this

 // function, used to use sprintf with %0*d, so we interpret length

 // such that a negative value appends spaces and a positive value

 // prepends zeroes.

 if (! ((base == 8) || (base == 10) || (base == 16)))

 {

 throw std::logic_error(

 "int_to_string_base called with unsupported base");

 }

 std::ostringstream buf;

 buf << std::setbase(base) << std::nouppercase << num;

 std::string result;

 if ((length > 0) &&

 (buf.str().length() < static_cast<size_t>(length)))

 {

 result.append(length - buf.str().length(), '0');

 }

 result += buf.str();

 if ((length < 0) && (buf.str().length() < static_cast<size_t>(-length)))

 {

 result.append(-length - buf.str().length(), ' ');

 }

 return result;

}

std::string

QUtil::double_to_string(double num, int decimal_places)

{

 // Backward compatibility -- this code used to use sprintf and

 // treated decimal_places <= 0 to mean to use the default, which

 // was six decimal places. Also sprintf with %*.f interprets the

 // length as fixed point rather than significant figures.

 if (decimal_places <= 0)

 {

 decimal_places = 6;

 }

 std::ostringstream buf;

 buf << std::setprecision(decimal_places) << std::fixed << num;

 return buf.str();

}

long long

QUtil::string_to_ll(char const* str)

{

 errno = 0;

#ifdef _MSC_VER

 long long result = _strtoi64(str, 0, 10);

#else

 long long result = strtoll(str, 0, 10);

#endif

 if (errno == ERANGE)

 {

 throw std::runtime_error(

 std::string("overflow/underflow converting ") + str

 + " to 64-bit integer");

 }

 return result;

}

int

QUtil::string_to_int(char const* str)

{

 errno = 0;

 long long_val = strtol(str, 0, 10);

 if (errno == ERANGE)

 {

 throw std::runtime_error(

 std::string("overflow/underflow converting ") + str

 + " to long integer");

 }

 int result = static_cast<int>(long_val);

 if (static_cast<long>(result) != long_val)

 {

 throw std::runtime_error(

 std::string("overflow/underflow converting ") + str

 + " to integer");

 }

 return result;

}

unsigned char*

QUtil::unsigned_char_pointer(std::string const& str)

{

 return reinterpret_cast<unsigned char*>(const_cast<char*>(str.c_str()));

}

unsigned char*

QUtil::unsigned_char_pointer(char const* str)

{

 return reinterpret_cast<unsigned char*>(const_cast<char*>(str));

}

void

QUtil::throw_system_error(std::string const& description)

{

#ifdef _MSC_VER

 // "94" is mentioned in the MSVC docs, but it's still safe if the

 // message is longer. strerror_s is a templated function that

 // knows the size of buf and truncates.

 char buf[94];

 if (strerror_s(buf, errno) != 0)

 {

 throw std::runtime_error(description + ": failed with an unknown error");

 }

 else

 {

 throw std::runtime_error(description + ": " + buf);

 }

#else

 throw std::runtime_error(description + ": " + strerror(errno));

#endif

}

int

QUtil::os_wrapper(std::string const& description, int status)

{

 if (status == -1)

 {

 throw_system_error(description);

 }

 return status;

}

FILE*

QUtil::safe_fopen(char const* filename, char const* mode)

{

 FILE* f = 0;

#ifdef _MSC_VER

 errno_t err = fopen_s(&f, filename, mode);

 if (err != 0)

 {

 errno = err;

 throw_system_error(std::string("open ") + filename);

 }

#else

 f = fopen_wrapper(std::string("open ") + filename, fopen(filename, mode));

#endif

 return f;

}

FILE*

QUtil::fopen_wrapper(std::string const& description, FILE* f)

{

 if (f == 0)

 {

 throw_system_error(description);

 }

 return f;

}

int

QUtil::seek(FILE* stream, qpdf_offset_t offset, int whence)

{

#if HAVE_FSEEKO

 return fseeko(stream, static_cast<off_t>(offset), whence);

#elif HAVE_FSEEKO64

 return fseeko64(stream, offset, whence);

#else

if defined _MSC_VER || defined __BORLANDC__

 return _fseeki64(stream, offset, whence);

else

 return fseek(stream, static_cast<long>(offset), whence);

endif

#endif

}

qpdf_offset_t

QUtil::tell(FILE* stream)

{

#if HAVE_FSEEKO

 return static_cast<qpdf_offset_t>(ftello(stream));

#elif HAVE_FSEEKO64

 return static_cast<qpdf_offset_t>(ftello64(stream));

#else

if defined _MSC_VER || defined __BORLANDC__

 return _ftelli64(stream);

else

 return static_cast<qpdf_offset_t>(ftell(stream));

endif

#endif

}

bool

QUtil::same_file(char const* name1, char const* name2)

{

 if ((name1 == 0) || (strlen(name1) == 0) ||

 (name2 == 0) || (strlen(name2) == 0))

 {

 return false;

 }

#ifdef _WIN32

 HANDLE fh1 = CreateFile(name1, GENERIC_READ, FILE_SHARE_READ,

 NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

 HANDLE fh2 = CreateFile(name2, GENERIC_READ, FILE_SHARE_READ,

 NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

 BY_HANDLE_FILE_INFORMATION fi1;

 BY_HANDLE_FILE_INFORMATION fi2;

 bool same = false;

 if ((fh1 != INVALID_HANDLE_VALUE) &&

 (fh2 != INVALID_HANDLE_VALUE) &&

 GetFileInformationByHandle(fh1, &fi1) &&

 GetFileInformationByHandle(fh2, &fi2) &&

 (fi1.dwVolumeSerialNumber == fi2.dwVolumeSerialNumber) &&

 (fi1.nFileIndexLow == fi2.nFileIndexLow) &&

 (fi1.nFileIndexHigh == fi2.nFileIndexHigh))

 {

 same = true;

 }

 if (fh1 != INVALID_HANDLE_VALUE)

 {

 CloseHandle(fh1);

 }

 if (fh2 != INVALID_HANDLE_VALUE)

 {

 CloseHandle(fh2);

 }

 return same;

#else

 struct stat st1;

 struct stat st2;

 if ((stat(name1, &st1) == 0) &&

 (stat(name2, &st2) == 0) &&

 (st1.st_ino == st2.st_ino) &&

 (st1.st_dev == st2.st_dev))

 {

 return true;

 }

#endif

 return false;

}

char*

QUtil::copy_string(std::string const& str)

{

 char* result = new char[str.length() + 1];

 // Use memcpy in case string contains nulls

 result[str.length()] = '\0';

 memcpy(result, str.c_str(), str.length());

 return result;

}

std::string

QUtil::hex_encode(std::string const& input)

{

 std::string result;

 for (unsigned int i = 0; i < input.length(); ++i)

 {

 result += QUtil::int_to_string_base(

 static_cast<int>(static_cast<unsigned char>(input.at(i))), 16, 2);

 }

 return result;

}

std::string

QUtil::hex_decode(std::string const& input)

{

 std::string result;

 size_t pos = 0;

 for (std::string::const_iterator p = input.begin(); p != input.end(); ++p)

 {

 char ch = *p;

 bool skip = false;

 if ((*p >= 'A') && (*p <= 'F'))

 {

 ch -= 'A';

 ch += 10;

 }

 else if ((*p >= 'a') && (*p <= 'f'))

 {

 ch -= 'a';

 ch += 10;

 }

 else if ((*p >= '0') && (*p <= '9'))

 {

 ch -= '0';

 }

 else

 {

 skip = true;

 }

 if (! skip)

 {

 if (pos == 0)

 {

 result.push_back(ch << 4);

 pos = 1;

 }

 else

 {

 result[result.length()-1] += ch;

 pos = 0;

 }

 }

 }

 return result;

}

void

QUtil::binary_stdout()

{

#ifdef _WIN32

 _setmode(_fileno(stdout), _O_BINARY);

#endif

}

void

QUtil::binary_stdin()

{

#ifdef _WIN32

 _setmode(_fileno(stdin), _O_BINARY);

#endif

}

void

QUtil::setLineBuf(FILE* f)

{

#ifndef _WIN32

 setvbuf(f, reinterpret_cast<char *>(NULL), _IOLBF, 0);

#endif

}

char*

QUtil::getWhoami(char* argv0)

{

 char* whoami = 0;

 if (((whoami = strrchr(argv0, '/')) == NULL) &&

 ((whoami = strrchr(argv0, '\\')) == NULL))

 {

 whoami = argv0;

 }

 else

 {

 ++whoami;

 }

 if ((strlen(whoami) > 4) &&

 (strcmp(whoami + strlen(whoami) - 4, ".exe") == 0))

 {

 whoami[strlen(whoami) - 4] = '\0';

 }

 return whoami;

}

bool

QUtil::get_env(std::string const& var, std::string* value)

{

 // This was basically ripped out of wxWindows.

#ifdef _WIN32

ifdef NO_GET_ENVIRONMENT

 return false;

else

 // first get the size of the buffer

 DWORD len = ::GetEnvironmentVariable(var.c_str(), NULL, 0);

 if (len == 0)

 {

 // this means that there is no such variable

 return false;

 }

 if (value)

 {

 char* t = new char[len + 1];

 ::GetEnvironmentVariable(var.c_str(), t, len);

 *value = t;

 delete [] t;

 }

 return true;

endif

#else

 char* p = getenv(var.c_str());

 if (p == 0)

 {

 return false;

 }

 if (value)

 {

 *value = p;

 }

 return true;

#endif

}

time_t

QUtil::get_current_time()

{

#ifdef _WIN32

 // The procedure to get local time at this resolution comes from

 // the Microsoft documentation. It says to convert a SYSTEMTIME

 // to a FILETIME, and to copy the FILETIME to a ULARGE_INTEGER.

 // The resulting number is the number of 100-nanosecond intervals

 // between January 1, 1601 and now. POSIX threads wants a time

 // based on January 1, 1970, so we adjust by subtracting the

 // number of seconds in that time period from the result we get

 // here.

 SYSTEMTIME sysnow;

 GetSystemTime(&sysnow);

 FILETIME filenow;

 SystemTimeToFileTime(&sysnow, &filenow);

 ULARGE_INTEGER uinow;

 uinow.LowPart = filenow.dwLowDateTime;

 uinow.HighPart = filenow.dwHighDateTime;

 ULONGLONG now = uinow.QuadPart;

 return ((now / 10000000LL) - 11644473600LL);

#else

 return time(0);

#endif

}

std::string

QUtil::toUTF8(unsigned long uval)

{

 std::string result;

 // A UTF-8 encoding of a Unicode value is a single byte for

 // Unicode values <= 127. For larger values, the first byte of

 // the UTF-8 encoding has '1' as each of its n highest bits and

 // '0' for its (n+1)th highest bit where n is the total number of

 // bytes required. Subsequent bytes start with '10' and have the

 // remaining 6 bits free for encoding. For example, an 11-bit

 // Unicode value can be stored in two bytes where the first is

 // 110zzzzz, the second is 10zzzzzz, and the z's represent the

 // remaining bits.

 if (uval > 0x7fffffff)

 {

 throw std::runtime_error("bounds error in QUtil::toUTF8");

 }

 else if (uval < 128)

 {

 result += static_cast<char>(uval);

 }

 else

 {

 unsigned char bytes[7];

 bytes[6] = '\0';

 unsigned char* cur_byte = &bytes[5];

 // maximum value that will fit in the current number of bytes

 unsigned char maxval = 0x3f; // six bits

 while (uval > maxval)

 {

 // Assign low six bits plus 10000000 to lowest unused

 // byte position, then shift

 *cur_byte = static_cast<unsigned char>(0x80 + (uval & 0x3f));

 uval >>= 6;

 // Maximum that will fit in high byte now shrinks by one bit

 maxval >>= 1;

 // Slide to the left one byte

 if (cur_byte <= bytes)

 {

 throw std::logic_error("QUtil::toUTF8: overflow error");

 }

 --cur_byte;

 }

 // If maxval is k bits long, the high (7 - k) bits of the

 // resulting byte must be high.

 *cur_byte = static_cast<unsigned char>(

 (0xff - (1 + (maxval << 1))) + uval);

 result += reinterpret_cast<char*>(cur_byte);

 }

 return result;

}

// Random data support

long

QUtil::random()

{

 long result = 0L;

 initializeWithRandomBytes(

 reinterpret_cast<unsigned char*>(&result),

 sizeof(result));

 return result;

}

static RandomDataProvider* random_data_provider = 0;

#ifdef USE_INSECURE_RANDOM

static RandomDataProvider* insecure_random_data_provider =

 InsecureRandomDataProvider::getInstance();

#else

static RandomDataProvider* insecure_random_data_provider = 0;

#endif

static RandomDataProvider* secure_random_data_provider =

 SecureRandomDataProvider::getInstance();

static void

initialize_random_data_provider()

{

 if (random_data_provider == 0)

 {

 if (secure_random_data_provider)

 {

 random_data_provider = secure_random_data_provider;

 }

 else if (insecure_random_data_provider)

 {

 random_data_provider = insecure_random_data_provider;

 }

 }

 // QUtil.hh has comments indicating that getRandomDataProvider(),

 // which calls this method, never returns null.

 if (random_data_provider == 0)

 {

 throw std::logic_error("QPDF has no random data provider");

 }

}

void

QUtil::setRandomDataProvider(RandomDataProvider* p)

{

 random_data_provider = p;

}

RandomDataProvider*

QUtil::getRandomDataProvider()

{

 initialize_random_data_provider();

 return random_data_provider;

}

void

QUtil::initializeWithRandomBytes(unsigned char* data, size_t len)

{

 initialize_random_data_provider();

 random_data_provider->provideRandomData(data, len);

}

void

QUtil::srandom(unsigned int seed)

{

#ifdef HAVE_RANDOM

 ::srandom(seed);

#else

 srand(seed);

#endif

}

bool

QUtil::is_hex_digit(char ch)

{

 return (ch && (strchr("0123456789abcdefABCDEF", ch) != 0));

}

bool

QUtil::is_space(char ch)

{

 return (ch && (strchr(" \f\n\r\t\v", ch) != 0));

}

bool

QUtil::is_digit(char ch)

{

 return ((ch >= '0') && (ch <= '9'));

}

bool

QUtil::is_number(char const* p)

{

 // ^[\+\-]?(\.\d*|\d+(\.\d*)?)$

 if (! *p)

 {

 return false;

 }

 if ((*p == '-') || (*p == '+'))

 {

 ++p;

 }

 bool found_dot = false;

 bool found_digit = false;

 for (; *p; ++p)

 {

 if (*p == '.')

 {

 if (found_dot)

 {

 // only one dot

 return false;

 }

 found_dot = true;

 }

 else if (QUtil::is_digit(*p))

 {

 found_digit = true;

 }

 else

 {

 return false;

 }

 }

 return found_digit;

}

std::list<std::string>

QUtil::read_lines_from_file(char const* filename)

{

 std::ifstream in(filename, std::ios_base::binary);

 if (! in.is_open())

 {

 throw_system_error(std::string("open ") + filename);

 }

 std::list<std::string> lines = read_lines_from_file(in);

 in.close();

 return lines;

}

std::list<std::string>

QUtil::read_lines_from_file(std::istream& in)

{

 std::list<std::string> result;

 std::string* buf = 0;

 char c;

 while (in.get(c))

 {

 if (buf == 0)

 {

 result.push_back("");

 buf = &(result.back());

 buf->reserve(80);

 }

 if (buf->capacity() == buf->size())

 {

 buf->reserve(buf->capacity() * 2);

 }

 if (c == '\n')

 {

 // Remove any carriage return that preceded the

 // newline and discard the newline

 if ((! buf->empty()) && ((*(buf->rbegin())) == '\r'))

 {

 buf->erase(buf->length() - 1);

 }

 buf = 0;

 }

 else

 {

 buf->append(1, c);

 }

 }

 return result;

}

int

QUtil::strcasecmp(char const *s1, char const *s2)

{

#ifdef _WIN32

 return _stricmp(s1, s2);

#else

 return ::strcasecmp(s1, s2);

#endif

}

qpdf-7.1.0/libqpdf/Pl_QPDFTokenizer.cc

#include <qpdf/Pl_QPDFTokenizer.hh>
#include <qpdf/QPDF_String.hh>
#include <qpdf/QPDF_Name.hh>
#include <qpdf/QTC.hh>
#include <stdexcept>
#include <string.h>

Pl_QPDFTokenizer::Pl_QPDFTokenizer(char const* identifier, Pipeline* next) :
 Pipeline(identifier, next),
 newline_after_next_token(false),
 just_wrote_nl(false),
 last_char_was_cr(false),
 unread_char(false),
 char_to_unread('\0'),
 in_inline_image(false)
{
 memset(this->image_buf, 0, IMAGE_BUF_SIZE);
}

Pl_QPDFTokenizer::~Pl_QPDFTokenizer()
{
}

void
Pl_QPDFTokenizer::writeNext(char const* buf, size_t len)
{
 if (len)
 {
	unsigned char* t = new unsigned char[len];
	memcpy(t, buf, len);
	getNext()->write(t, len);
	delete [] t;
	this->just_wrote_nl = (buf[len-1] == '\n');
 }
}

void
Pl_QPDFTokenizer::writeToken(QPDFTokenizer::Token& token)
{
 std::string value = token.getRawValue();

 switch (token.getType())
 {
 case QPDFTokenizer::tt_string:
	value = QPDF_String(token.getValue()).unparse();
	break;

 case QPDFTokenizer::tt_name:
	value = QPDF_Name(token.getValue()).unparse();
	break;

 default:
	break;
 }
 writeNext(value.c_str(), value.length());
}

void
Pl_QPDFTokenizer::processChar(char ch)
{
 if (this->in_inline_image)
 {
	// Scan through the input looking for EI surrounded by
	// whitespace. If that pattern appears in the inline image's
	// representation, we're hosed, but this situation seems
	// excessively unlikely, and this code path is only followed
	// during content stream normalization, which is pretty much
	// used for debugging and human inspection of PDF files.
	memmove(this->image_buf,
		this->image_buf + 1,
		IMAGE_BUF_SIZE - 1);
	this->image_buf[IMAGE_BUF_SIZE - 1] = ch;
	if (strchr(" \t\n\v\f\r", this->image_buf[0]) &&
	 (this->image_buf[1] == 'E') &&
	 (this->image_buf[2] == 'I') &&
	 strchr(" \t\n\v\f\r", this->image_buf[3]))
	{
	 // We've found an EI operator. We've already written the
	 // EI operator to output; terminate with a newline
	 // character and resume normal processing.
	 writeNext("\n", 1);
	 this->in_inline_image = false;
	 QTC::TC("qpdf", "Pl_QPDFTokenizer found EI");
	}
	else
	{
	 writeNext(&ch, 1);
	}
	return;
 }

 tokenizer.presentCharacter(ch);
 QPDFTokenizer::Token token;
 if (tokenizer.getToken(token, this->unread_char, this->char_to_unread))
 {
	writeToken(token);
	if (this->newline_after_next_token)
	{
	 writeNext("\n", 1);
	 this->newline_after_next_token = false;
	}
	if ((token.getType() == QPDFTokenizer::tt_word) &&
	 (token.getValue() == "ID"))
	{
	 // Suspend normal scanning until we find an EI token.
	 this->in_inline_image = true;
	 if (this->unread_char)
	 {
		writeNext(&this->char_to_unread, 1);
		this->unread_char = false;
	 }
	}
 }
 else
 {
	bool suppress = false;
	if ((ch == '\n') && (this->last_char_was_cr))
	{
	 // Always ignore \n following \r
	 suppress = true;
	}

	if ((this->last_char_was_cr = (ch == '\r')))
	{
	 ch = '\n';
	}

	if (this->tokenizer.betweenTokens())
	{
	 if (! suppress)
	 {
		writeNext(&ch, 1);
	 }
	}
	else
	{
	 if (ch == '\n')
	 {
		this->newline_after_next_token = true;
	 }
	}
 }
}

void
Pl_QPDFTokenizer::checkUnread()
{
 if (this->unread_char)
 {
	processChar(this->char_to_unread);
	if (this->unread_char)
	{
	 throw std::logic_error(
		"INTERNAL ERROR: unread_char still true after processing "
		"unread character");
	}
 }
}

void
Pl_QPDFTokenizer::write(unsigned char* buf, size_t len)
{
 checkUnread();
 for (size_t i = 0; i < len; ++i)
 {
	processChar(buf[i]);
	checkUnread();
 }
}

void
Pl_QPDFTokenizer::finish()
{
 this->tokenizer.presentEOF();
 if (! this->in_inline_image)
 {
	QPDFTokenizer::Token token;
	if (tokenizer.getToken(token, this->unread_char, this->char_to_unread))
	{
	 writeToken(token);
	 if (unread_char)
	 {
		if (this->char_to_unread == '\r')
		{
		 this->char_to_unread = '\n';
		}
		writeNext(&this->char_to_unread, 1);
	 }
	}
 }
 if (! this->just_wrote_nl)
 {
	writeNext("\n", 1);
 }

 getNext()->finish();
}

qpdf-7.1.0/libqpdf/sph/sph_sha2.h

/* $Id: sph_sha2.h 216 2010-06-08 09:46:57Z tp $ */
/**
 * SHA-224, SHA-256, SHA-384 and SHA-512 interface.
 *
 * SHA-256 has been published in FIPS 180-2, now amended with a change
 * notice to include SHA-224 as well (which is a simple variation on
 * SHA-256). SHA-384 and SHA-512 are also defined in FIPS 180-2. FIPS
 * standards can be found at:
 * http://csrc.nist.gov/publications/fips/
 *
 * ==========================(LICENSE BEGIN)============================
 *
 * Copyright (c) 2007-2010 Projet RNRT SAPHIR
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * ===========================(LICENSE END)=============================
 *
 * @file sph_sha2.h
 * @author Thomas Pornin <thomas.pornin@cryptolog.com>
 */

#ifndef SPH_SHA2_H__
#define SPH_SHA2_H__

#ifdef __cplusplus
extern "C" {
#endif

#include <stddef.h>
#include "sph_types.h"

/**
 * Output size (in bits) for SHA-224.
 */
#define SPH_SIZE_sha224 224

/**
 * Output size (in bits) for SHA-256.
 */
#define SPH_SIZE_sha256 256

/**
 * This structure is a context for SHA-224 computations: it contains the
 * intermediate values and some data from the last entered block. Once
 * a SHA-224 computation has been performed, the context can be reused for
 * another computation.
 *
 * The contents of this structure are private. A running SHA-224 computation
 * can be cloned by copying the context (e.g. with a simple
 * <code>memcpy()</code>).
 */
typedef struct {
#ifndef DOXYGEN_IGNORE
	unsigned char buf[64]; /* first field, for alignment */
	sph_u32 val[8];
#if SPH_64
	sph_u64 count;
#else
	sph_u32 count_high, count_low;
#endif
#endif
} sph_sha224_context;

/**
 * This structure is a context for SHA-256 computations. It is identical
 * to the SHA-224 context. However, a context is initialized for SHA-224
 * or SHA-256, but not both (the internal IV is not the
 * same).
 */
typedef sph_sha224_context sph_sha256_context;

/**
 * Initialize a SHA-224 context. This process performs no memory allocation.
 *
 * @param cc the SHA-224 context (pointer to
 * a <code>sph_sha224_context</code>)
 */
void sph_sha224_init(void *cc);

/**
 * Process some data bytes. It is acceptable that <code>len</code> is zero
 * (in which case this function does nothing).
 *
 * @param cc the SHA-224 context
 * @param data the input data
 * @param len the input data length (in bytes)
 */
void sph_sha224(void *cc, const void *data, size_t len);

/**
 * Terminate the current SHA-224 computation and output the result into the
 * provided buffer. The destination buffer must be wide enough to
 * accomodate the result (28 bytes). The context is automatically
 * reinitialized.
 *
 * @param cc the SHA-224 context
 * @param dst the destination buffer
 */
void sph_sha224_close(void *cc, void *dst);

/**
 * Add a few additional bits (0 to 7) to the current computation, then
 * terminate it and output the result in the provided buffer, which must
 * be wide enough to accomodate the result (28 bytes). If bit number i
 * in <code>ub</code> has value 2^i, then the extra bits are those
 * numbered 7 downto 8-n (this is the big-endian convention at the byte
 * level). The context is automatically reinitialized.
 *
 * @param cc the SHA-224 context
 * @param ub the extra bits
 * @param n the number of extra bits (0 to 7)
 * @param dst the destination buffer
 */
void sph_sha224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst);

/**
 * Apply the SHA-224 compression function on the provided data. The
 * <code>msg</code> parameter contains the 16 32-bit input blocks,
 * as numerical values (hence after the big-endian decoding). The
 * <code>val</code> parameter contains the 8 32-bit input blocks for
 * the compression function; the output is written in place in this
 * array.
 *
 * @param msg the message block (16 values)
 * @param val the function 256-bit input and output
 */
void sph_sha224_comp(const sph_u32 msg[16], sph_u32 val[8]);

/**
 * Initialize a SHA-256 context. This process performs no memory allocation.
 *
 * @param cc the SHA-256 context (pointer to
 * a <code>sph_sha256_context</code>)
 */
void sph_sha256_init(void *cc);

#ifdef DOXYGEN_IGNORE
/**
 * Process some data bytes, for SHA-256. This function is identical to
 * <code>sha_224()</code>
 *
 * @param cc the SHA-224 context
 * @param data the input data
 * @param len the input data length (in bytes)
 */
void sph_sha256(void *cc, const void *data, size_t len);
#endif

#ifndef DOXYGEN_IGNORE
#define sph_sha256 sph_sha224
#endif

/**
 * Terminate the current SHA-256 computation and output the result into the
 * provided buffer. The destination buffer must be wide enough to
 * accomodate the result (32 bytes). The context is automatically
 * reinitialized.
 *
 * @param cc the SHA-256 context
 * @param dst the destination buffer
 */
void sph_sha256_close(void *cc, void *dst);

/**
 * Add a few additional bits (0 to 7) to the current computation, then
 * terminate it and output the result in the provided buffer, which must
 * be wide enough to accomodate the result (32 bytes). If bit number i
 * in <code>ub</code> has value 2^i, then the extra bits are those
 * numbered 7 downto 8-n (this is the big-endian convention at the byte
 * level). The context is automatically reinitialized.
 *
 * @param cc the SHA-256 context
 * @param ub the extra bits
 * @param n the number of extra bits (0 to 7)
 * @param dst the destination buffer
 */
void sph_sha256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst);

#ifdef DOXYGEN_IGNORE
/**
 * Apply the SHA-256 compression function on the provided data. This
 * function is identical to <code>sha224_comp()</code>.
 *
 * @param msg the message block (16 values)
 * @param val the function 256-bit input and output
 */
void sph_sha256_comp(const sph_u32 msg[16], sph_u32 val[8]);
#endif

#ifndef DOXYGEN_IGNORE
#define sph_sha256_comp sph_sha224_comp
#endif

#if SPH_64

/**
 * Output size (in bits) for SHA-384.
 */
#define SPH_SIZE_sha384 384

/**
 * Output size (in bits) for SHA-512.
 */
#define SPH_SIZE_sha512 512

/**
 * This structure is a context for SHA-384 computations: it contains the
 * intermediate values and some data from the last entered block. Once
 * a SHA-384 computation has been performed, the context can be reused for
 * another computation.
 *
 * The contents of this structure are private. A running SHA-384 computation
 * can be cloned by copying the context (e.g. with a simple
 * <code>memcpy()</code>).
 */
typedef struct {
#ifndef DOXYGEN_IGNORE
	unsigned char buf[128]; /* first field, for alignment */
	sph_u64 val[8];
	sph_u64 count;
#endif
} sph_sha384_context;

/**
 * Initialize a SHA-384 context. This process performs no memory allocation.
 *
 * @param cc the SHA-384 context (pointer to
 * a <code>sph_sha384_context</code>)
 */
void sph_sha384_init(void *cc);

/**
 * Process some data bytes. It is acceptable that <code>len</code> is zero
 * (in which case this function does nothing).
 *
 * @param cc the SHA-384 context
 * @param data the input data
 * @param len the input data length (in bytes)
 */
void sph_sha384(void *cc, const void *data, size_t len);

/**
 * Terminate the current SHA-384 computation and output the result into the
 * provided buffer. The destination buffer must be wide enough to
 * accomodate the result (48 bytes). The context is automatically
 * reinitialized.
 *
 * @param cc the SHA-384 context
 * @param dst the destination buffer
 */
void sph_sha384_close(void *cc, void *dst);

/**
 * Add a few additional bits (0 to 7) to the current computation, then
 * terminate it and output the result in the provided buffer, which must
 * be wide enough to accomodate the result (48 bytes). If bit number i
 * in <code>ub</code> has value 2^i, then the extra bits are those
 * numbered 7 downto 8-n (this is the big-endian convention at the byte
 * level). The context is automatically reinitialized.
 *
 * @param cc the SHA-384 context
 * @param ub the extra bits
 * @param n the number of extra bits (0 to 7)
 * @param dst the destination buffer
 */
void sph_sha384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst);

/**
 * Apply the SHA-384 compression function on the provided data. The
 * <code>msg</code> parameter contains the 16 64-bit input blocks,
 * as numerical values (hence after the big-endian decoding). The
 * <code>val</code> parameter contains the 8 64-bit input blocks for
 * the compression function; the output is written in place in this
 * array.
 *
 * @param msg the message block (16 values)
 * @param val the function 512-bit input and output
 */
void sph_sha384_comp(const sph_u64 msg[16], sph_u64 val[8]);

/**
 * This structure is a context for SHA-512 computations. It is identical
 * to the SHA-384 context. However, a context is initialized for SHA-384
 * or SHA-512, but not both (the internal IV is not the
 * same).
 */
typedef sph_sha384_context sph_sha512_context;

/**
 * Initialize a SHA-512 context. This process performs no memory allocation.
 *
 * @param cc the SHA-512 context (pointer to
 * a <code>sph_sha512_context</code>)
 */
void sph_sha512_init(void *cc);

#ifdef DOXYGEN_IGNORE
/**
 * Process some data bytes, for SHA-512. This function is identical to
 * <code>sph_sha384()</code>.
 *
 * @param cc the SHA-384 context
 * @param data the input data
 * @param len the input data length (in bytes)
 */
void sph_sha512(void *cc, const void *data, size_t len);
#endif

#ifndef DOXYGEN_IGNORE
#define sph_sha512 sph_sha384
#endif

/**
 * Terminate the current SHA-512 computation and output the result into the
 * provided buffer. The destination buffer must be wide enough to
 * accomodate the result (64 bytes). The context is automatically
 * reinitialized.
 *
 * @param cc the SHA-512 context
 * @param dst the destination buffer
 */
void sph_sha512_close(void *cc, void *dst);

/**
 * Add a few additional bits (0 to 7) to the current computation, then
 * terminate it and output the result in the provided buffer, which must
 * be wide enough to accomodate the result (64 bytes). If bit number i
 * in <code>ub</code> has value 2^i, then the extra bits are those
 * numbered 7 downto 8-n (this is the big-endian convention at the byte
 * level). The context is automatically reinitialized.
 *
 * @param cc the SHA-512 context
 * @param ub the extra bits
 * @param n the number of extra bits (0 to 7)
 * @param dst the destination buffer
 */
void sph_sha512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst);

#ifdef DOXYGEN_IGNORE
/**
 * Apply the SHA-512 compression function. This function is identical to
 * <code>sph_sha384_comp()</code>.
 *
 * @param msg the message block (16 values)
 * @param val the function 512-bit input and output
 */
void sph_sha512_comp(const sph_u64 msg[16], sph_u64 val[8]);
#endif

#ifndef DOXYGEN_IGNORE
#define sph_sha512_comp sph_sha384_comp
#endif

#endif

#ifdef __cplusplus
}
#endif

#endif

qpdf-7.1.0/libqpdf/sph/md_helper.c

/* $Id: md_helper.c 216 2010-06-08 09:46:57Z tp $ */
/*
 * This file contains some functions which implement the external data
 * handling and padding for Merkle-Damgard hash functions which follow
 * the conventions set out by MD4 (little-endian) or SHA-1 (big-endian).
 *
 * API: this file is meant to be included, not compiled as a stand-alone
 * file. Some macros must be defined:
 * RFUN name for the round function
 * HASH "short name" for the hash function
 * BE32 defined for big-endian, 32-bit based (e.g. SHA-1)
 * LE32 defined for little-endian, 32-bit based (e.g. MD5)
 * BE64 defined for big-endian, 64-bit based (e.g. SHA-512)
 * LE64 defined for little-endian, 64-bit based (no example yet)
 * PW01 if defined, append 0x01 instead of 0x80 (for Tiger)
 * BLEN if defined, length of a message block (in bytes)
 * PLW1 if defined, length is defined on one 64-bit word only (for Tiger)
 * PLW4 if defined, length is defined on four 64-bit words (for WHIRLPOOL)
 * SVAL if defined, reference to the context state information
 *
 * BLEN is used when a message block is not 16 (32-bit or 64-bit) words:
 * this is used for instance for Tiger, which works on 64-bit words but
 * uses 512-bit message blocks (eight 64-bit words). PLW1 and PLW4 are
 * ignored if 32-bit words are used; if 64-bit words are used and PLW1 is
 * set, then only one word (64 bits) will be used to encode the input
 * message length (in bits), otherwise two words will be used (as in
 * SHA-384 and SHA-512). If 64-bit words are used and PLW4 is defined (but
 * not PLW1), four 64-bit words will be used to encode the message length
 * (in bits). Note that regardless of those settings, only 64-bit message
 * lengths are supported (in bits): messages longer than 2 Exabytes will be
 * improperly hashed (this is unlikely to happen soon: 2 Exabytes is about
 * 2 millions Terabytes, which is huge).
 *
 * If CLOSE_ONLY is defined, then this file defines only the sph_XXX_close()
 * function. This is used for Tiger2, which is identical to Tiger except
 * when it comes to the padding (Tiger2 uses the standard 0x80 byte instead
 * of the 0x01 from original Tiger).
 *
 * The RFUN function is invoked with two arguments, the first pointing to
 * aligned data (as a "const void *"), the second being state information
 * from the context structure. By default, this state information is the
 * "val" field from the context, and this field is assumed to be an array
 * of words ("sph_u32" or "sph_u64", depending on BE32/LE32/BE64/LE64).
 * from the context structure. The "val" field can have any type, except
 * for the output encoding which assumes that it is an array of "sph_u32"
 * values. By defining NO_OUTPUT, this last step is deactivated; the
 * includer code is then responsible for writing out the hash result. When
 * NO_OUTPUT is defined, the third parameter to the "close()" function is
 * ignored.
 *
 * ==========================(LICENSE BEGIN)============================
 *
 * Copyright (c) 2007-2010 Projet RNRT SAPHIR
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * ===========================(LICENSE END)=============================
 *
 * @author Thomas Pornin <thomas.pornin@cryptolog.com>
 */

#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif

#undef SPH_XCAT
#define SPH_XCAT(a, b) SPH_XCAT_(a, b)
#undef SPH_XCAT_
#define SPH_XCAT_(a, b) a ## b

#undef SPH_BLEN
#undef SPH_WLEN
#if defined BE64 || defined LE64
#define SPH_BLEN 128U
#define SPH_WLEN 8U
#else
#define SPH_BLEN 64U
#define SPH_WLEN 4U
#endif

#ifdef BLEN
#undef SPH_BLEN
#define SPH_BLEN BLEN
#endif

#undef SPH_MAXPAD
#if defined PLW1
#define SPH_MAXPAD (SPH_BLEN - SPH_WLEN)
#elif defined PLW4
#define SPH_MAXPAD (SPH_BLEN - (SPH_WLEN << 2))
#else
#define SPH_MAXPAD (SPH_BLEN - (SPH_WLEN << 1))
#endif

#undef SPH_VAL
#undef SPH_NO_OUTPUT
#ifdef SVAL
#define SPH_VAL SVAL
#define SPH_NO_OUTPUT 1
#else
#define SPH_VAL sc->val
#endif

#ifndef CLOSE_ONLY

#ifdef SPH_UPTR
static void
SPH_XCAT(HASH, _short)(void *cc, const void *data, size_t len)
#else
void
SPH_XCAT(sph_, HASH)(void *cc, const void *data, size_t len)
#endif
{
	SPH_XCAT(sph_, SPH_XCAT(HASH, _context)) *sc;
	unsigned current;

	sc = cc;
#if SPH_64
	current = (unsigned)sc->count & (SPH_BLEN - 1U);
#else
	current = (unsigned)sc->count_low & (SPH_BLEN - 1U);
#endif
	while (len > 0) {
		unsigned clen;
#if !SPH_64
		sph_u32 clow, clow2;
#endif

		clen = SPH_BLEN - current;
		if (clen > len)
			clen = len;
		memcpy(sc->buf + current, data, clen);
		data = (const unsigned char *)data + clen;
		current += clen;
		len -= clen;
		if (current == SPH_BLEN) {
			RFUN(sc->buf, SPH_VAL);
			current = 0;
		}
#if SPH_64
		sc->count += clen;
#else
		clow = sc->count_low;
		clow2 = SPH_T32(clow + clen);
		sc->count_low = clow2;
		if (clow2 < clow)
			sc->count_high ++;
#endif
	}
}

#ifdef SPH_UPTR
void
SPH_XCAT(sph_, HASH)(void *cc, const void *data, size_t len)
{
	SPH_XCAT(sph_, SPH_XCAT(HASH, _context)) *sc;
	unsigned current;
	size_t orig_len;
#if !SPH_64
	sph_u32 clow, clow2;
#endif

	if (len < (2 * SPH_BLEN)) {
		SPH_XCAT(HASH, _short)(cc, data, len);
		return;
	}
	sc = cc;
#if SPH_64
	current = (unsigned)sc->count & (SPH_BLEN - 1U);
#else
	current = (unsigned)sc->count_low & (SPH_BLEN - 1U);
#endif
	if (current > 0) {
		unsigned t;

		t = SPH_BLEN - current;
		SPH_XCAT(HASH, _short)(cc, data, t);
		data = (const unsigned char *)data + t;
		len -= t;
	}
#if !SPH_UNALIGNED
	if (((SPH_UPTR)data & (SPH_WLEN - 1U)) != 0) {
		SPH_XCAT(HASH, _short)(cc, data, len);
		return;
	}
#endif
	orig_len = len;
	while (len >= SPH_BLEN) {
		RFUN(data, SPH_VAL);
		len -= SPH_BLEN;
		data = (const unsigned char *)data + SPH_BLEN;
	}
	if (len > 0)
		memcpy(sc->buf, data, len);
#if SPH_64
	sc->count += (sph_u64)orig_len;
#else
	clow = sc->count_low;
	clow2 = SPH_T32(clow + orig_len);
	sc->count_low = clow2;
	if (clow2 < clow)
		sc->count_high ++;
	/*
	 * This code handles the improbable situation where "size_t" is
	 * greater than 32 bits, and yet we do not have a 64-bit type.
	 */
	orig_len >>= 12;
	orig_len >>= 10;
	orig_len >>= 10;
	sc->count_high += orig_len;
#endif
}
#endif

#endif

/*
 * Perform padding and produce result. The context is NOT reinitialized
 * by this function.
 */
static void
SPH_XCAT(HASH, _addbits_and_close)(void *cc,
	unsigned ub, unsigned n, void *dst, unsigned rnum)
{
	SPH_XCAT(sph_, SPH_XCAT(HASH, _context)) *sc;
	unsigned current, u;
#if !SPH_64
	sph_u32 low, high;
#endif

	sc = cc;
#if SPH_64
	current = (unsigned)sc->count & (SPH_BLEN - 1U);
#else
	current = (unsigned)sc->count_low & (SPH_BLEN - 1U);
#endif
#ifdef PW01
	sc->buf[current ++] = (0x100 | (ub & 0xFF)) >> (8 - n);
#else
	{
		unsigned z;

		z = 0x80 >> n;
		sc->buf[current ++] = ((ub & -z) | z) & 0xFF;
	}
#endif
	if (current > SPH_MAXPAD) {
		memset(sc->buf + current, 0, SPH_BLEN - current);
		RFUN(sc->buf, SPH_VAL);
		memset(sc->buf, 0, SPH_MAXPAD);
	} else {
		memset(sc->buf + current, 0, SPH_MAXPAD - current);
	}
#if defined BE64
#if defined PLW1
	sph_enc64be_aligned(sc->buf + SPH_MAXPAD,
		SPH_T64(sc->count << 3) + (sph_u64)n);
#elif defined PLW4
	memset(sc->buf + SPH_MAXPAD, 0, 2 * SPH_WLEN);
	sph_enc64be_aligned(sc->buf + SPH_MAXPAD + 2 * SPH_WLEN,
		sc->count >> 61);
	sph_enc64be_aligned(sc->buf + SPH_MAXPAD + 3 * SPH_WLEN,
		SPH_T64(sc->count << 3) + (sph_u64)n);
#else
	sph_enc64be_aligned(sc->buf + SPH_MAXPAD, sc->count >> 61);
	sph_enc64be_aligned(sc->buf + SPH_MAXPAD + SPH_WLEN,
		SPH_T64(sc->count << 3) + (sph_u64)n);
#endif
#elif defined LE64
#if defined PLW1
	sph_enc64le_aligned(sc->buf + SPH_MAXPAD,
		SPH_T64(sc->count << 3) + (sph_u64)n);
#elif defined PLW1
	sph_enc64le_aligned(sc->buf + SPH_MAXPAD,
		SPH_T64(sc->count << 3) + (sph_u64)n);
	sph_enc64le_aligned(sc->buf + SPH_MAXPAD + SPH_WLEN, sc->count >> 61);
	memset(sc->buf + SPH_MAXPAD + 2 * SPH_WLEN, 0, 2 * SPH_WLEN);
#else
	sph_enc64le_aligned(sc->buf + SPH_MAXPAD,
		SPH_T64(sc->count << 3) + (sph_u64)n);
	sph_enc64le_aligned(sc->buf + SPH_MAXPAD + SPH_WLEN, sc->count >> 61);
#endif
#else
#if SPH_64
#ifdef BE32
	sph_enc64be_aligned(sc->buf + SPH_MAXPAD,
		SPH_T64(sc->count << 3) + (sph_u64)n);
#else
	sph_enc64le_aligned(sc->buf + SPH_MAXPAD,
		SPH_T64(sc->count << 3) + (sph_u64)n);
#endif
#else
	low = sc->count_low;
	high = SPH_T32((sc->count_high << 3) | (low >> 29));
	low = SPH_T32(low << 3) + (sph_u32)n;
#ifdef BE32
	sph_enc32be(sc->buf + SPH_MAXPAD, high);
	sph_enc32be(sc->buf + SPH_MAXPAD + SPH_WLEN, low);
#else
	sph_enc32le(sc->buf + SPH_MAXPAD, low);
	sph_enc32le(sc->buf + SPH_MAXPAD + SPH_WLEN, high);
#endif
#endif
#endif
	RFUN(sc->buf, SPH_VAL);
#ifdef SPH_NO_OUTPUT
	(void)dst;
	(void)rnum;
	(void)u;
#else
	for (u = 0; u < rnum; u ++) {
#if defined BE64
		sph_enc64be((unsigned char *)dst + 8 * u, sc->val[u]);
#elif defined LE64
		sph_enc64le((unsigned char *)dst + 8 * u, sc->val[u]);
#elif defined BE32
		sph_enc32be((unsigned char *)dst + 4 * u, sc->val[u]);
#else
		sph_enc32le((unsigned char *)dst + 4 * u, sc->val[u]);
#endif
	}
#endif
}

static void
SPH_XCAT(HASH, _close)(void *cc, void *dst, unsigned rnum)
{
	SPH_XCAT(HASH, _addbits_and_close)(cc, 0, 0, dst, rnum);
}

qpdf-7.1.0/libqpdf/sph/sph_types.h

/* $Id: sph_types.h 260 2011-07-21 01:02:38Z tp $ */
/**
 * Basic type definitions.
 *
 * This header file defines the generic integer types that will be used
 * for the implementation of hash functions; it also contains helper
 * functions which encode and decode multi-byte integer values, using
 * either little-endian or big-endian conventions.
 *
 * This file contains a compile-time test on the size of a byte
 * (the <code>unsigned char</code> C type). If bytes are not octets,
 * i.e. if they do not have a size of exactly 8 bits, then compilation
 * is aborted. Architectures where bytes are not octets are relatively
 * rare, even in the embedded devices market. We forbid non-octet bytes
 * because there is no clear convention on how octet streams are encoded
 * on such systems.
 *
 * ==========================(LICENSE BEGIN)============================
 *
 * Copyright (c) 2007-2010 Projet RNRT SAPHIR
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * ===========================(LICENSE END)=============================
 *
 * @file sph_types.h
 * @author Thomas Pornin <thomas.pornin@cryptolog.com>
 */

#ifndef SPH_TYPES_H__
#define SPH_TYPES_H__

#include <limits.h>

/*
 * All our I/O functions are defined over octet streams. We do not know
 * how to handle input data if bytes are not octets.
 */
#if CHAR_BIT != 8
#error This code requires 8-bit bytes
#endif

/* ============= BEGIN documentation block for Doxygen ============ */

#ifdef DOXYGEN_IGNORE

/** @mainpage sphlib C code documentation
 *
 * @section overview Overview
 *
 * <code>sphlib</code> is a library which contains implementations of
 * various cryptographic hash functions. These pages have been generated
 * with doxygen and
 * document the API for the C implementations.
 *
 * The API is described in appropriate header files, which are available
 * in the "Files" section. Each hash function family has its own header,
 * whose name begins with <code>"sph_"</code> and contains the family
 * name. For instance, the API for the RIPEMD hash functions is available
 * in the header file <code>sph_ripemd.h</code>.
 *
 * @section principles API structure and conventions
 *
 * @subsection io Input/output conventions
 *
 * In all generality, hash functions operate over strings of bits.
 * Individual bits are rarely encountered in C programming or actual
 * communication protocols; most protocols converge on the ubiquitous
 * "octet" which is a group of eight bits. Data is thus expressed as a
 * stream of octets. The C programming language contains the notion of a
 * "byte", which is a data unit managed under the type <code>"unsigned
 * char"</code>. The C standard prescribes that a byte should hold at
 * least eight bits, but possibly more. Most modern architectures, even
 * in the embedded world, feature eight-bit bytes, i.e. map bytes to
 * octets.
 *
 * Nevertheless, for some of the implemented hash functions, an extra
 * API has been added, which allows the input of arbitrary sequences of
 * bits: when the computation is about to be closed, 1 to 7 extra bits
 * can be added. The functions for which this API is implemented include
 * the SHA-2 functions and all SHA-3 candidates.
 *
 * <code>sphlib</code> defines hash function which may hash octet streams,
 * i.e. streams of bits where the number of bits is a multiple of eight.
 * The data input functions in the <code>sphlib</code> API expect data
 * as anonymous pointers (<code>"const void *"</code>) with a length
 * (of type <code>"size_t"</code>) which gives the input data chunk length
 * in bytes. A byte is assumed to be an octet; the <code>sph_types.h</code>
 * header contains a compile-time test which prevents compilation on
 * architectures where this property is not met.
 *
 * The hash function output is also converted into bytes. All currently
 * implemented hash functions have an output width which is a multiple of
 * eight, and this is likely to remain true for new designs.
 *
 * Most hash functions internally convert input data into 32-bit of 64-bit
 * words, using either little-endian or big-endian conversion. The hash
 * output also often consists of such words, which are encoded into output
 * bytes with a similar endianness convention. Some hash functions have
 * been only loosely specified on that subject; when necessary,
 * <code>sphlib</code> has been tested against published "reference"
 * implementations in order to use the same conventions.
 *
 * @subsection shortname Function short name
 *
 * Each implemented hash function has a "short name" which is used
 * internally to derive the identifiers for the functions and context
 * structures which the function uses. For instance, MD5 has the short
 * name <code>"md5"</code>. Short names are listed in the next section,
 * for the implemented hash functions. In subsequent sections, the
 * short name will be assumed to be <code>"XXX"</code>: replace with the
 * actual hash function name to get the C identifier.
 *
 * Note: some functions within the same family share the same core
 * elements, such as update function or context structure. Correspondingly,
 * some of the defined types or functions may actually be macros which
 * transparently evaluate to another type or function name.
 *
 * @subsection context Context structure
 *
 * Each implemented hash fonction has its own context structure, available
 * under the type name <code>"sph_XXX_context"</code> for the hash function
 * with short name <code>"XXX"</code>. This structure holds all needed
 * state for a running hash computation.
 *
 * The contents of these structures are meant to be opaque, and private
 * to the implementation. However, these contents are specified in the
 * header files so that application code which uses <code>sphlib</code>
 * may access the size of those structures.
 *
 * The caller is responsible for allocating the context structure,
 * whether by dynamic allocation (<code>malloc()</code> or equivalent),
 * static allocation (a global permanent variable), as an automatic
 * variable ("on the stack"), or by any other mean which ensures proper
 * structure alignment. <code>sphlib</code> code performs no dynamic
 * allocation by itself.
 *
 * The context must be initialized before use, using the
 * <code>sph_XXX_init()</code> function. This function sets the context
 * state to proper initial values for hashing.
 *
 * Since all state data is contained within the context structure,
 * <code>sphlib</code> is thread-safe and reentrant: several hash
 * computations may be performed in parallel, provided that they do not
 * operate on the same context. Moreover, a running computation can be
 * cloned by copying the context (with a simple <code>memcpy()</code>):
 * the context and its clone are then independant and may be updated
 * with new data and/or closed without interfering with each other.
 * Similarly, a context structure can be moved in memory at will:
 * context structures contain no pointer, in particular no pointer to
 * themselves.
 *
 * @subsection dataio Data input
 *
 * Hashed data is input with the <code>sph_XXX()</code> fonction, which
 * takes as parameters a pointer to the context, a pointer to the data
 * to hash, and the number of data bytes to hash. The context is updated
 * with the new data.
 *
 * Data can be input in one or several calls, with arbitrary input lengths.
 * However, it is best, performance wise, to input data by relatively big
 * chunks (say a few kilobytes), because this allows <code>sphlib</code> to
 * optimize things and avoid internal copying.
 *
 * When all data has been input, the context can be closed with
 * <code>sph_XXX_close()</code>. The hash output is computed and written
 * into the provided buffer. The caller must take care to provide a
 * buffer of appropriate length; e.g., when using SHA-1, the output is
 * a 20-byte word, therefore the output buffer must be at least 20-byte
 * long.
 *
 * For some hash functions, the <code>sph_XXX_addbits_and_close()</code>
 * function can be used instead of <code>sph_XXX_close()</code>. This
 * function can take a few extra bits to be added at
 * the end of the input message. This allows hashing messages with a
 * bit length which is not a multiple of 8. The extra bits are provided
 * as an unsigned integer value, and a bit count. The bit count must be
 * between 0 and 7, inclusive. The extra bits are provided as bits 7 to
 * 0 (bits of numerical value 128, 64, 32... downto 0), in that order.
 * For instance, to add three bits of value 1, 1 and 0, the unsigned
 * integer will have value 192 (1*128 + 1*64 + 0*32) and the bit count
 * will be 3.
 *
 * The <code>SPH_SIZE_XXX</code> macro is defined for each hash function;
 * it evaluates to the function output size, expressed in bits. For instance,
 * <code>SPH_SIZE_sha1</code> evaluates to <code>160</code>.
 *
 * When closed, the context is automatically reinitialized and can be
 * immediately used for another computation. It is not necessary to call
 * <code>sph_XXX_init()</code> after a close. Note that
 * <code>sph_XXX_init()</code> can still be called to "reset" a context,
 * i.e. forget previously input data, and get back to the initial state.
 *
 * @subsection alignment Data alignment
 *
 * "Alignment" is a property of data, which is said to be "properly
 * aligned" when its emplacement in memory is such that the data can
 * be optimally read by full words. This depends on the type of access;
 * basically, some hash functions will read data by 32-bit or 64-bit
 * words. <code>sphlib</code> does not mandate such alignment for input
 * data, but using aligned data can substantially improve performance.
 *
 * As a rule, it is best to input data by chunks whose length (in bytes)
 * is a multiple of eight, and which begins at "generally aligned"
 * addresses, such as the base address returned by a call to
 * <code>malloc()</code>.
 *
 * @section functions Implemented functions
 *
 * We give here the list of implemented functions. They are grouped by
 * family; to each family corresponds a specific header file. Each
 * individual function has its associated "short name". Please refer to
 * the documentation for that header file to get details on the hash
 * function denomination and provenance.
 *
 * Note: the functions marked with a '(64)' in the list below are
 * available only if the C compiler provides an integer type of length
 * 64 bits or more. Such a type is mandatory in the latest C standard
 * (ISO 9899:1999, aka "C99") and is present in several older compilers
 * as well, so chances are that such a type is available.
 *
 * - HAVAL family: file <code>sph_haval.h</code>
 * - HAVAL-128/3 (128-bit, 3 passes): short name: <code>haval128_3</code>
 * - HAVAL-128/4 (128-bit, 4 passes): short name: <code>haval128_4</code>
 * - HAVAL-128/5 (128-bit, 5 passes): short name: <code>haval128_5</code>
 * - HAVAL-160/3 (160-bit, 3 passes): short name: <code>haval160_3</code>
 * - HAVAL-160/4 (160-bit, 4 passes): short name: <code>haval160_4</code>
 * - HAVAL-160/5 (160-bit, 5 passes): short name: <code>haval160_5</code>
 * - HAVAL-192/3 (192-bit, 3 passes): short name: <code>haval192_3</code>
 * - HAVAL-192/4 (192-bit, 4 passes): short name: <code>haval192_4</code>
 * - HAVAL-192/5 (192-bit, 5 passes): short name: <code>haval192_5</code>
 * - HAVAL-224/3 (224-bit, 3 passes): short name: <code>haval224_3</code>
 * - HAVAL-224/4 (224-bit, 4 passes): short name: <code>haval224_4</code>
 * - HAVAL-224/5 (224-bit, 5 passes): short name: <code>haval224_5</code>
 * - HAVAL-256/3 (256-bit, 3 passes): short name: <code>haval256_3</code>
 * - HAVAL-256/4 (256-bit, 4 passes): short name: <code>haval256_4</code>
 * - HAVAL-256/5 (256-bit, 5 passes): short name: <code>haval256_5</code>
 * - MD2: file <code>sph_md2.h</code>, short name: <code>md2</code>
 * - MD4: file <code>sph_md4.h</code>, short name: <code>md4</code>
 * - MD5: file <code>sph_md5.h</code>, short name: <code>md5</code>
 * - PANAMA: file <code>sph_panama.h</code>, short name: <code>panama</code>
 * - RadioGatun family: file <code>sph_radiogatun.h</code>
 * - RadioGatun[32]: short name: <code>radiogatun32</code>
 * - RadioGatun[64]: short name: <code>radiogatun64</code> (64)
 * - RIPEMD family: file <code>sph_ripemd.h</code>
 * - RIPEMD: short name: <code>ripemd</code>
 * - RIPEMD-128: short name: <code>ripemd128</code>
 * - RIPEMD-160: short name: <code>ripemd160</code>
 * - SHA-0: file <code>sph_sha0.h</code>, short name: <code>sha0</code>
 * - SHA-1: file <code>sph_sha1.h</code>, short name: <code>sha1</code>
 * - SHA-2 family, 32-bit hashes: file <code>sph_sha2.h</code>
 * - SHA-224: short name: <code>sha224</code>
 * - SHA-256: short name: <code>sha256</code>
 * - SHA-384: short name: <code>sha384</code> (64)
 * - SHA-512: short name: <code>sha512</code> (64)
 * - Tiger family: file <code>sph_tiger.h</code>
 * - Tiger: short name: <code>tiger</code> (64)
 * - Tiger2: short name: <code>tiger2</code> (64)
 * - WHIRLPOOL family: file <code>sph_whirlpool.h</code>
 * - WHIRLPOOL-0: short name: <code>whirlpool0</code> (64)
 * - WHIRLPOOL-1: short name: <code>whirlpool1</code> (64)
 * - WHIRLPOOL: short name: <code>whirlpool</code> (64)
 *
 * The fourteen second-round SHA-3 candidates are also implemented;
 * when applicable, the implementations follow the "final" specifications
 * as published for the third round of the SHA-3 competition (BLAKE,
 * Groestl, JH, Keccak and Skein have been tweaked for third round).
 *
 * - BLAKE family: file <code>sph_blake.h</code>
 * - BLAKE-224: short name: <code>blake224</code>
 * - BLAKE-256: short name: <code>blake256</code>
 * - BLAKE-384: short name: <code>blake384</code>
 * - BLAKE-512: short name: <code>blake512</code>
 * - BMW (Blue Midnight Wish) family: file <code>sph_bmw.h</code>
 * - BMW-224: short name: <code>bmw224</code>
 * - BMW-256: short name: <code>bmw256</code>
 * - BMW-384: short name: <code>bmw384</code> (64)
 * - BMW-512: short name: <code>bmw512</code> (64)
 * - CubeHash family: file <code>sph_cubehash.h</code> (specified as
 * CubeHash16/32 in the CubeHash specification)
 * - CubeHash-224: short name: <code>cubehash224</code>
 * - CubeHash-256: short name: <code>cubehash256</code>
 * - CubeHash-384: short name: <code>cubehash384</code>
 * - CubeHash-512: short name: <code>cubehash512</code>
 * - ECHO family: file <code>sph_echo.h</code>
 * - ECHO-224: short name: <code>echo224</code>
 * - ECHO-256: short name: <code>echo256</code>
 * - ECHO-384: short name: <code>echo384</code>
 * - ECHO-512: short name: <code>echo512</code>
 * - Fugue family: file <code>sph_fugue.h</code>
 * - Fugue-224: short name: <code>fugue224</code>
 * - Fugue-256: short name: <code>fugue256</code>
 * - Fugue-384: short name: <code>fugue384</code>
 * - Fugue-512: short name: <code>fugue512</code>
 * - Groestl family: file <code>sph_groestl.h</code>
 * - Groestl-224: short name: <code>groestl224</code>
 * - Groestl-256: short name: <code>groestl256</code>
 * - Groestl-384: short name: <code>groestl384</code>
 * - Groestl-512: short name: <code>groestl512</code>
 * - Hamsi family: file <code>sph_hamsi.h</code>
 * - Hamsi-224: short name: <code>hamsi224</code>
 * - Hamsi-256: short name: <code>hamsi256</code>
 * - Hamsi-384: short name: <code>hamsi384</code>
 * - Hamsi-512: short name: <code>hamsi512</code>
 * - JH family: file <code>sph_jh.h</code>
 * - JH-224: short name: <code>jh224</code>
 * - JH-256: short name: <code>jh256</code>
 * - JH-384: short name: <code>jh384</code>
 * - JH-512: short name: <code>jh512</code>
 * - Keccak family: file <code>sph_keccak.h</code>
 * - Keccak-224: short name: <code>keccak224</code>
 * - Keccak-256: short name: <code>keccak256</code>
 * - Keccak-384: short name: <code>keccak384</code>
 * - Keccak-512: short name: <code>keccak512</code>
 * - Luffa family: file <code>sph_luffa.h</code>
 * - Luffa-224: short name: <code>luffa224</code>
 * - Luffa-256: short name: <code>luffa256</code>
 * - Luffa-384: short name: <code>luffa384</code>
 * - Luffa-512: short name: <code>luffa512</code>
 * - Shabal family: file <code>sph_shabal.h</code>
 * - Shabal-192: short name: <code>shabal192</code>
 * - Shabal-224: short name: <code>shabal224</code>
 * - Shabal-256: short name: <code>shabal256</code>
 * - Shabal-384: short name: <code>shabal384</code>
 * - Shabal-512: short name: <code>shabal512</code>
 * - SHAvite-3 family: file <code>sph_shavite.h</code>
 * - SHAvite-224 (nominally "SHAvite-3 with 224-bit output"):
 * short name: <code>shabal224</code>
 * - SHAvite-256 (nominally "SHAvite-3 with 256-bit output"):
 * short name: <code>shabal256</code>
 * - SHAvite-384 (nominally "SHAvite-3 with 384-bit output"):
 * short name: <code>shabal384</code>
 * - SHAvite-512 (nominally "SHAvite-3 with 512-bit output"):
 * short name: <code>shabal512</code>
 * - SIMD family: file <code>sph_simd.h</code>
 * - SIMD-224: short name: <code>simd224</code>
 * - SIMD-256: short name: <code>simd256</code>
 * - SIMD-384: short name: <code>simd384</code>
 * - SIMD-512: short name: <code>simd512</code>
 * - Skein family: file <code>sph_skein.h</code>
 * - Skein-224 (nominally specified as Skein-512-224): short name:
 * <code>skein224</code> (64)
 * - Skein-256 (nominally specified as Skein-512-256): short name:
 * <code>skein256</code> (64)
 * - Skein-384 (nominally specified as Skein-512-384): short name:
 * <code>skein384</code> (64)
 * - Skein-512 (nominally specified as Skein-512-512): short name:
 * <code>skein512</code> (64)
 *
 * For the second-round SHA-3 candidates, the functions are as specified
 * for round 2, i.e. with the "tweaks" that some candidates added
 * between round 1 and round 2. Also, some of the submitted packages for
 * round 2 contained errors, in the specification, reference code, or
 * both. <code>sphlib</code> implements the corrected versions.
 */

/** @hideinitializer
 * Unsigned integer type whose length is at least 32 bits; on most
 * architectures, it will have a width of exactly 32 bits. Unsigned C
 * types implement arithmetics modulo a power of 2; use the
 * <code>SPH_T32()</code> macro to ensure that the value is truncated
 * to exactly 32 bits. Unless otherwise specified, all macros and
 * functions which accept <code>sph_u32</code> values assume that these
 * values fit on 32 bits, i.e. do not exceed 2^32-1, even on architectures
 * where <code>sph_u32</code> is larger than that.
 */
typedef __arch_dependant__ sph_u32;

/** @hideinitializer
 * Signed integer type corresponding to <code>sph_u32</code>; it has
 * width 32 bits or more.
 */
typedef __arch_dependant__ sph_s32;

/** @hideinitializer
 * Unsigned integer type whose length is at least 64 bits; on most
 * architectures which feature such a type, it will have a width of
 * exactly 64 bits. C99-compliant platform will have this type; it
 * is also defined when the GNU compiler (gcc) is used, and on
 * platforms where <code>unsigned long</code> is large enough. If this
 * type is not available, then some hash functions which depends on
 * a 64-bit type will not be available (most notably SHA-384, SHA-512,
 * Tiger and WHIRLPOOL).
 */
typedef __arch_dependant__ sph_u64;

/** @hideinitializer
 * Signed integer type corresponding to <code>sph_u64</code>; it has
 * width 64 bits or more.
 */
typedef __arch_dependant__ sph_s64;

/**
 * This macro expands the token <code>x</code> into a suitable
 * constant expression of type <code>sph_u32</code>. Depending on
 * how this type is defined, a suffix such as <code>UL</code> may
 * be appended to the argument.
 *
 * @param x the token to expand into a suitable constant expression
 */
#define SPH_C32(x)

/**
 * Truncate a 32-bit value to exactly 32 bits. On most systems, this is
 * a no-op, recognized as such by the compiler.
 *
 * @param x the value to truncate (of type <code>sph_u32</code>)
 */
#define SPH_T32(x)

/**
 * Rotate a 32-bit value by a number of bits to the left. The rotate
 * count must reside between 1 and 31. This macro assumes that its
 * first argument fits in 32 bits (no extra bit allowed on machines where
 * <code>sph_u32</code> is wider); both arguments may be evaluated
 * several times.
 *
 * @param x the value to rotate (of type <code>sph_u32</code>)
 * @param n the rotation count (between 1 and 31, inclusive)
 */
#define SPH_ROTL32(x, n)

/**
 * Rotate a 32-bit value by a number of bits to the left. The rotate
 * count must reside between 1 and 31. This macro assumes that its
 * first argument fits in 32 bits (no extra bit allowed on machines where
 * <code>sph_u32</code> is wider); both arguments may be evaluated
 * several times.
 *
 * @param x the value to rotate (of type <code>sph_u32</code>)
 * @param n the rotation count (between 1 and 31, inclusive)
 */
#define SPH_ROTR32(x, n)

/**
 * This macro is defined on systems for which a 64-bit type has been
 * detected, and is used for <code>sph_u64</code>.
 */
#define SPH_64

/**
 * This macro is defined on systems for the "native" integer size is
 * 64 bits (64-bit values fit in one register).
 */
#define SPH_64_TRUE

/**
 * This macro expands the token <code>x</code> into a suitable
 * constant expression of type <code>sph_u64</code>. Depending on
 * how this type is defined, a suffix such as <code>ULL</code> may
 * be appended to the argument. This macro is defined only if a
 * 64-bit type was detected and used for <code>sph_u64</code>.
 *
 * @param x the token to expand into a suitable constant expression
 */
#define SPH_C64(x)

/**
 * Truncate a 64-bit value to exactly 64 bits. On most systems, this is
 * a no-op, recognized as such by the compiler. This macro is defined only
 * if a 64-bit type was detected and used for <code>sph_u64</code>.
 *
 * @param x the value to truncate (of type <code>sph_u64</code>)
 */
#define SPH_T64(x)

/**
 * Rotate a 64-bit value by a number of bits to the left. The rotate
 * count must reside between 1 and 63. This macro assumes that its
 * first argument fits in 64 bits (no extra bit allowed on machines where
 * <code>sph_u64</code> is wider); both arguments may be evaluated
 * several times. This macro is defined only if a 64-bit type was detected
 * and used for <code>sph_u64</code>.
 *
 * @param x the value to rotate (of type <code>sph_u64</code>)
 * @param n the rotation count (between 1 and 63, inclusive)
 */
#define SPH_ROTL64(x, n)

/**
 * Rotate a 64-bit value by a number of bits to the left. The rotate
 * count must reside between 1 and 63. This macro assumes that its
 * first argument fits in 64 bits (no extra bit allowed on machines where
 * <code>sph_u64</code> is wider); both arguments may be evaluated
 * several times. This macro is defined only if a 64-bit type was detected
 * and used for <code>sph_u64</code>.
 *
 * @param x the value to rotate (of type <code>sph_u64</code>)
 * @param n the rotation count (between 1 and 63, inclusive)
 */
#define SPH_ROTR64(x, n)

/**
 * This macro evaluates to <code>inline</code> or an equivalent construction,
 * if available on the compilation platform, or to nothing otherwise. This
 * is used to declare inline functions, for which the compiler should
 * endeavour to include the code directly in the caller. Inline functions
 * are typically defined in header files as replacement for macros.
 */
#define SPH_INLINE

/**
 * This macro is defined if the platform has been detected as using
 * little-endian convention. This implies that the <code>sph_u32</code>
 * type (and the <code>sph_u64</code> type also, if it is defined) has
 * an exact width (i.e. exactly 32-bit, respectively 64-bit).
 */
#define SPH_LITTLE_ENDIAN

/**
 * This macro is defined if the platform has been detected as using
 * big-endian convention. This implies that the <code>sph_u32</code>
 * type (and the <code>sph_u64</code> type also, if it is defined) has
 * an exact width (i.e. exactly 32-bit, respectively 64-bit).
 */
#define SPH_BIG_ENDIAN

/**
 * This macro is defined if 32-bit words (and 64-bit words, if defined)
 * can be read from and written to memory efficiently in little-endian
 * convention. This is the case for little-endian platforms, and also
 * for the big-endian platforms which have special little-endian access
 * opcodes (e.g. Ultrasparc).
 */
#define SPH_LITTLE_FAST

/**
 * This macro is defined if 32-bit words (and 64-bit words, if defined)
 * can be read from and written to memory efficiently in big-endian
 * convention. This is the case for little-endian platforms, and also
 * for the little-endian platforms which have special big-endian access
 * opcodes.
 */
#define SPH_BIG_FAST

/**
 * On some platforms, this macro is defined to an unsigned integer type
 * into which pointer values may be cast. The resulting value can then
 * be tested for being a multiple of 2, 4 or 8, indicating an aligned
 * pointer for, respectively, 16-bit, 32-bit or 64-bit memory accesses.
 */
#define SPH_UPTR

/**
 * When defined, this macro indicates that unaligned memory accesses
 * are possible with only a minor penalty, and thus should be prefered
 * over strategies which first copy data to an aligned buffer.
 */
#define SPH_UNALIGNED

/**
 * Byte-swap a 32-bit word (i.e. <code>0x12345678</code> becomes
 * <code>0x78563412</code>). This is an inline function which resorts
 * to inline assembly on some platforms, for better performance.
 *
 * @param x the 32-bit value to byte-swap
 * @return the byte-swapped value
 */
static inline sph_u32 sph_bswap32(sph_u32 x);

/**
 * Byte-swap a 64-bit word. This is an inline function which resorts
 * to inline assembly on some platforms, for better performance. This
 * function is defined only if a suitable 64-bit type was found for
 * <code>sph_u64</code>
 *
 * @param x the 64-bit value to byte-swap
 * @return the byte-swapped value
 */
static inline sph_u64 sph_bswap64(sph_u64 x);

/**
 * Decode a 16-bit unsigned value from memory, in little-endian convention
 * (least significant byte comes first).
 *
 * @param src the source address
 * @return the decoded value
 */
static inline unsigned sph_dec16le(const void *src);

/**
 * Encode a 16-bit unsigned value into memory, in little-endian convention
 * (least significant byte comes first).
 *
 * @param dst the destination buffer
 * @param val the value to encode
 */
static inline void sph_enc16le(void *dst, unsigned val);

/**
 * Decode a 16-bit unsigned value from memory, in big-endian convention
 * (most significant byte comes first).
 *
 * @param src the source address
 * @return the decoded value
 */
static inline unsigned sph_dec16be(const void *src);

/**
 * Encode a 16-bit unsigned value into memory, in big-endian convention
 * (most significant byte comes first).
 *
 * @param dst the destination buffer
 * @param val the value to encode
 */
static inline void sph_enc16be(void *dst, unsigned val);

/**
 * Decode a 32-bit unsigned value from memory, in little-endian convention
 * (least significant byte comes first).
 *
 * @param src the source address
 * @return the decoded value
 */
static inline sph_u32 sph_dec32le(const void *src);

/**
 * Decode a 32-bit unsigned value from memory, in little-endian convention
 * (least significant byte comes first). This function assumes that the
 * source address is suitably aligned for a direct access, if the platform
 * supports such things; it can thus be marginally faster than the generic
 * <code>sph_dec32le()</code> function.
 *
 * @param src the source address
 * @return the decoded value
 */
static inline sph_u32 sph_dec32le_aligned(const void *src);

/**
 * Encode a 32-bit unsigned value into memory, in little-endian convention
 * (least significant byte comes first).
 *
 * @param dst the destination buffer
 * @param val the value to encode
 */
static inline void sph_enc32le(void *dst, sph_u32 val);

/**
 * Encode a 32-bit unsigned value into memory, in little-endian convention
 * (least significant byte comes first). This function assumes that the
 * destination address is suitably aligned for a direct access, if the
 * platform supports such things; it can thus be marginally faster than
 * the generic <code>sph_enc32le()</code> function.
 *
 * @param dst the destination buffer
 * @param val the value to encode
 */
static inline void sph_enc32le_aligned(void *dst, sph_u32 val);

/**
 * Decode a 32-bit unsigned value from memory, in big-endian convention
 * (most significant byte comes first).
 *
 * @param src the source address
 * @return the decoded value
 */
static inline sph_u32 sph_dec32be(const void *src);

/**
 * Decode a 32-bit unsigned value from memory, in big-endian convention
 * (most significant byte comes first). This function assumes that the
 * source address is suitably aligned for a direct access, if the platform
 * supports such things; it can thus be marginally faster than the generic
 * <code>sph_dec32be()</code> function.
 *
 * @param src the source address
 * @return the decoded value
 */
static inline sph_u32 sph_dec32be_aligned(const void *src);

/**
 * Encode a 32-bit unsigned value into memory, in big-endian convention
 * (most significant byte comes first).
 *
 * @param dst the destination buffer
 * @param val the value to encode
 */
static inline void sph_enc32be(void *dst, sph_u32 val);

/**
 * Encode a 32-bit unsigned value into memory, in big-endian convention
 * (most significant byte comes first). This function assumes that the
 * destination address is suitably aligned for a direct access, if the
 * platform supports such things; it can thus be marginally faster than
 * the generic <code>sph_enc32be()</code> function.
 *
 * @param dst the destination buffer
 * @param val the value to encode
 */
static inline void sph_enc32be_aligned(void *dst, sph_u32 val);

/**
 * Decode a 64-bit unsigned value from memory, in little-endian convention
 * (least significant byte comes first). This function is defined only
 * if a suitable 64-bit type was detected and used for <code>sph_u64</code>.
 *
 * @param src the source address
 * @return the decoded value
 */
static inline sph_u64 sph_dec64le(const void *src);

/**
 * Decode a 64-bit unsigned value from memory, in little-endian convention
 * (least significant byte comes first). This function assumes that the
 * source address is suitably aligned for a direct access, if the platform
 * supports such things; it can thus be marginally faster than the generic
 * <code>sph_dec64le()</code> function. This function is defined only
 * if a suitable 64-bit type was detected and used for <code>sph_u64</code>.
 *
 * @param src the source address
 * @return the decoded value
 */
static inline sph_u64 sph_dec64le_aligned(const void *src);

/**
 * Encode a 64-bit unsigned value into memory, in little-endian convention
 * (least significant byte comes first). This function is defined only
 * if a suitable 64-bit type was detected and used for <code>sph_u64</code>.
 *
 * @param dst the destination buffer
 * @param val the value to encode
 */
static inline void sph_enc64le(void *dst, sph_u64 val);

/**
 * Encode a 64-bit unsigned value into memory, in little-endian convention
 * (least significant byte comes first). This function assumes that the
 * destination address is suitably aligned for a direct access, if the
 * platform supports such things; it can thus be marginally faster than
 * the generic <code>sph_enc64le()</code> function. This function is defined
 * only if a suitable 64-bit type was detected and used for
 * <code>sph_u64</code>.
 *
 * @param dst the destination buffer
 * @param val the value to encode
 */
static inline void sph_enc64le_aligned(void *dst, sph_u64 val);

/**
 * Decode a 64-bit unsigned value from memory, in big-endian convention
 * (most significant byte comes first). This function is defined only
 * if a suitable 64-bit type was detected and used for <code>sph_u64</code>.
 *
 * @param src the source address
 * @return the decoded value
 */
static inline sph_u64 sph_dec64be(const void *src);

/**
 * Decode a 64-bit unsigned value from memory, in big-endian convention
 * (most significant byte comes first). This function assumes that the
 * source address is suitably aligned for a direct access, if the platform
 * supports such things; it can thus be marginally faster than the generic
 * <code>sph_dec64be()</code> function. This function is defined only
 * if a suitable 64-bit type was detected and used for <code>sph_u64</code>.
 *
 * @param src the source address
 * @return the decoded value
 */
static inline sph_u64 sph_dec64be_aligned(const void *src);

/**
 * Encode a 64-bit unsigned value into memory, in big-endian convention
 * (most significant byte comes first). This function is defined only
 * if a suitable 64-bit type was detected and used for <code>sph_u64</code>.
 *
 * @param dst the destination buffer
 * @param val the value to encode
 */
static inline void sph_enc64be(void *dst, sph_u64 val);

/**
 * Encode a 64-bit unsigned value into memory, in big-endian convention
 * (most significant byte comes first). This function assumes that the
 * destination address is suitably aligned for a direct access, if the
 * platform supports such things; it can thus be marginally faster than
 * the generic <code>sph_enc64be()</code> function. This function is defined
 * only if a suitable 64-bit type was detected and used for
 * <code>sph_u64</code>.
 *
 * @param dst the destination buffer
 * @param val the value to encode
 */
static inline void sph_enc64be_aligned(void *dst, sph_u64 val);

#endif

/* ============== END documentation block for Doxygen ============= */

#if defined(__clang__)
pragma GCC diagnostic push
pragma GCC diagnostic ignored "-Wold-style-cast"
#endif

#ifndef DOXYGEN_IGNORE

/*
 * We want to define the types "sph_u32" and "sph_u64" which hold
 * unsigned values of at least, respectively, 32 and 64 bits. These
 * tests should select appropriate types for most platforms. The
 * macro "SPH_64" is defined if the 64-bit is supported.
 */

#undef SPH_64
#undef SPH_64_TRUE

#if defined __STDC__ && __STDC_VERSION__ >= 199901L

/*
 * On C99 implementations, we can use <stdint.h> to get an exact 64-bit
 * type, if any, or otherwise use a wider type (which must exist, for
 * C99 conformance).
 */

#include <stdint.h>

#ifdef UINT32_MAX
typedef uint32_t sph_u32;
typedef int32_t sph_s32;
#else
typedef uint_fast32_t sph_u32;
typedef int_fast32_t sph_s32;
#endif
#if !SPH_NO_64
#ifdef UINT64_MAX
typedef uint64_t sph_u64;
typedef int64_t sph_s64;
#else
typedef uint_fast64_t sph_u64;
typedef int_fast64_t sph_s64;
#endif
#endif

#define SPH_C32(x) ((sph_u32)(x))
#if !SPH_NO_64
#define SPH_C64(x) ((sph_u64)(x))
#define SPH_64 1
#endif

#else

/*
 * On non-C99 systems, we use "unsigned int" if it is wide enough,
 * "unsigned long" otherwise. This supports all "reasonable" architectures.
 * We have to be cautious: pre-C99 preprocessors handle constants
 * differently in '#if' expressions. Hence the shifts to test UINT_MAX.
 */

#if ((UINT_MAX >> 11) >> 11) >= 0x3FF

typedef unsigned int sph_u32;
typedef int sph_s32;

#define SPH_C32(x) ((sph_u32)(x ## U))

#else

typedef unsigned long sph_u32;
typedef long sph_s32;

#define SPH_C32(x) ((sph_u32)(x ## UL))

#endif

#if !SPH_NO_64

/*
 * We want a 64-bit type. We use "unsigned long" if it is wide enough (as
 * is common on 64-bit architectures such as AMD64, Alpha or Sparcv9),
 * "unsigned long long" otherwise, if available. We use ULLONG_MAX to
 * test whether "unsigned long long" is available; we also know that
 * gcc features this type, even if the libc header do not know it.
 */

#if ((ULONG_MAX >> 31) >> 31) >= 3

typedef unsigned long sph_u64;
typedef long sph_s64;

#define SPH_C64(x) ((sph_u64)(x ## UL))

#define SPH_64 1

#elif ((ULLONG_MAX >> 31) >> 31) >= 3 || defined __GNUC__

typedef unsigned long long sph_u64;
typedef long long sph_s64;

#define SPH_C64(x) ((sph_u64)(x ## ULL))

#define SPH_64 1

#else

/*
 * No 64-bit type...
 */

#endif

#endif

#endif

/*
 * If the "unsigned long" type has length 64 bits or more, then this is
 * a "true" 64-bit architectures. This is also true with Visual C on
 * amd64, even though the "long" type is limited to 32 bits.
 */
#if SPH_64 && (((ULONG_MAX >> 31) >> 31) >= 3 || defined _M_X64)
#define SPH_64_TRUE 1
#endif

/*
 * Implementation note: some processors have specific opcodes to perform
 * a rotation. Recent versions of gcc recognize the expression above and
 * use the relevant opcodes, when appropriate.
 */

#define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF))
#define SPH_ROTL32(x, n) SPH_T32(((x) << (n)) | ((x) >> (32 - (n))))
#define SPH_ROTR32(x, n) SPH_ROTL32(x, (32 - (n)))

#if SPH_64

#define SPH_T64(x) ((x) & SPH_C64(0xFFFFFFFFFFFFFFFF))
#define SPH_ROTL64(x, n) SPH_T64(((x) << (n)) | ((x) >> (64 - (n))))
#define SPH_ROTR64(x, n) SPH_ROTL64(x, (64 - (n)))

#endif

#ifndef DOXYGEN_IGNORE
/*
 * Define SPH_INLINE to be an "inline" qualifier, if available. We define
 * some small macro-like functions which benefit greatly from being inlined.
 */
#if (defined __STDC__ && __STDC_VERSION__ >= 199901L) || defined __GNUC__
#define SPH_INLINE inline
#elif defined _MSC_VER
#define SPH_INLINE __inline
#else
#define SPH_INLINE
#endif
#endif

/*
 * We define some macros which qualify the architecture. These macros
 * may be explicit set externally (e.g. as compiler parameters). The
 * code below sets those macros if they are not already defined.
 *
 * Most macros are boolean, thus evaluate to either zero or non-zero.
 * The SPH_UPTR macro is special, in that it evaluates to a C type,
 * or is not defined.
 *
 * SPH_UPTR if defined: unsigned type to cast pointers into
 *
 * SPH_UNALIGNED non-zero if unaligned accesses are efficient
 * SPH_LITTLE_ENDIAN non-zero if architecture is known to be little-endian
 * SPH_BIG_ENDIAN non-zero if architecture is known to be big-endian
 * SPH_LITTLE_FAST non-zero if little-endian decoding is fast
 * SPH_BIG_FAST non-zero if big-endian decoding is fast
 *
 * If SPH_UPTR is defined, then encoding and decoding of 32-bit and 64-bit
 * values will try to be "smart". Either SPH_LITTLE_ENDIAN or SPH_BIG_ENDIAN
 * _must_ be non-zero in those situations. The 32-bit and 64-bit types
 * _must_ also have an exact width.
 *
 * SPH_SPARCV9_GCC_32 UltraSPARC-compatible with gcc, 32-bit mode
 * SPH_SPARCV9_GCC_64 UltraSPARC-compatible with gcc, 64-bit mode
 * SPH_SPARCV9_GCC UltraSPARC-compatible with gcc
 * SPH_I386_GCC x86-compatible (32-bit) with gcc
 * SPH_I386_MSVC x86-compatible (32-bit) with Microsoft Visual C
 * SPH_AMD64_GCC x86-compatible (64-bit) with gcc
 * SPH_AMD64_MSVC x86-compatible (64-bit) with Microsoft Visual C
 * SPH_PPC32_GCC PowerPC, 32-bit, with gcc
 * SPH_PPC64_GCC PowerPC, 64-bit, with gcc
 *
 * TODO: enhance automatic detection, for more architectures and compilers.
 * Endianness is the most important. SPH_UNALIGNED and SPH_UPTR help with
 * some very fast functions (e.g. MD4) when using unaligned input data.
 * The CPU-specific-with-GCC macros are useful only for inline assembly,
 * normally restrained to this header file.
 */

/*
 * 32-bit x86, aka "i386 compatible".
 */
#if defined __i386__ || defined _M_IX86

#define SPH_DETECT_UNALIGNED 1
#define SPH_DETECT_LITTLE_ENDIAN 1
#define SPH_DETECT_UPTR sph_u32
#ifdef __GNUC__
#define SPH_DETECT_I386_GCC 1
#endif
#ifdef _MSC_VER
#define SPH_DETECT_I386_MSVC 1
#endif

/*
 * 64-bit x86, hereafter known as "amd64".
 */
#elif defined __x86_64 || defined _M_X64

#define SPH_DETECT_UNALIGNED 1
#define SPH_DETECT_LITTLE_ENDIAN 1
#define SPH_DETECT_UPTR sph_u64
#ifdef __GNUC__
#define SPH_DETECT_AMD64_GCC 1
#endif
#ifdef _MSC_VER
#define SPH_DETECT_AMD64_MSVC 1
#endif

/*
 * 64-bit Sparc architecture (implies v9).
 */
#elif ((defined __sparc__ || defined __sparc) && defined __arch64__) \
	|| defined __sparcv9

#define SPH_DETECT_BIG_ENDIAN 1
#define SPH_DETECT_UPTR sph_u64
#ifdef __GNUC__
#define SPH_DETECT_SPARCV9_GCC_64 1
#define SPH_DETECT_LITTLE_FAST 1
#endif

/*
 * 32-bit Sparc.
 */
#elif (defined __sparc__ || defined __sparc) \
	&& !(defined __sparcv9 || defined __arch64__)

#define SPH_DETECT_BIG_ENDIAN 1
#define SPH_DETECT_UPTR sph_u32
#if defined __GNUC__ && defined __sparc_v9__
#define SPH_DETECT_SPARCV9_GCC_32 1
#define SPH_DETECT_LITTLE_FAST 1
#endif

/*
 * ARM, little-endian.
 */
#elif defined __arm__ && __ARMEL__

#define SPH_DETECT_LITTLE_ENDIAN 1

/*
 * MIPS, little-endian.
 */
#elif MIPSEL || _MIPSEL || __MIPSEL || __MIPSEL__

#define SPH_DETECT_LITTLE_ENDIAN 1

/*
 * MIPS, big-endian.
 */
#elif MIPSEB || _MIPSEB || __MIPSEB || __MIPSEB__

#define SPH_DETECT_BIG_ENDIAN 1

/*
 * PowerPC.
 */
#elif defined __powerpc__ || defined __POWERPC__ || defined __ppc__ \
	|| defined _ARCH_PPC

/*
 * Note: we do not declare cross-endian access to be "fast": even if
 * using inline assembly, implementation should still assume that
 * keeping the decoded word in a temporary is faster than decoding
 * it again.
 */
#if defined __GNUC__
#if SPH_64_TRUE
#define SPH_DETECT_PPC64_GCC 1
#else
#define SPH_DETECT_PPC32_GCC 1
#endif
#endif

#if defined __BIG_ENDIAN__ || defined _BIG_ENDIAN
#define SPH_DETECT_BIG_ENDIAN 1
#elif defined __LITTLE_ENDIAN__ || defined _LITTLE_ENDIAN
#define SPH_DETECT_LITTLE_ENDIAN 1
#endif

/*
 * Itanium, 64-bit.
 */
#elif defined __ia64 || defined __ia64__ \
	|| defined __itanium__ || defined _M_IA64

#if defined __BIG_ENDIAN__ || defined _BIG_ENDIAN
#define SPH_DETECT_BIG_ENDIAN 1
#else
#define SPH_DETECT_LITTLE_ENDIAN 1
#endif
#if defined __LP64__ || defined _LP64
#define SPH_DETECT_UPTR sph_u64
#else
#define SPH_DETECT_UPTR sph_u32
#endif

#endif

#if defined SPH_DETECT_SPARCV9_GCC_32 || defined SPH_DETECT_SPARCV9_GCC_64
#define SPH_DETECT_SPARCV9_GCC 1
#endif

#if defined SPH_DETECT_UNALIGNED && !defined SPH_UNALIGNED
#define SPH_UNALIGNED SPH_DETECT_UNALIGNED
#endif
#if defined SPH_DETECT_UPTR && !defined SPH_UPTR
#define SPH_UPTR SPH_DETECT_UPTR
#endif
#if defined SPH_DETECT_LITTLE_ENDIAN && !defined SPH_LITTLE_ENDIAN
#define SPH_LITTLE_ENDIAN SPH_DETECT_LITTLE_ENDIAN
#endif
#if defined SPH_DETECT_BIG_ENDIAN && !defined SPH_BIG_ENDIAN
#define SPH_BIG_ENDIAN SPH_DETECT_BIG_ENDIAN
#endif
#if defined SPH_DETECT_LITTLE_FAST && !defined SPH_LITTLE_FAST
#define SPH_LITTLE_FAST SPH_DETECT_LITTLE_FAST
#endif
#if defined SPH_DETECT_BIG_FAST && !defined SPH_BIG_FAST
#define SPH_BIG_FAST SPH_DETECT_BIG_FAST
#endif
#if defined SPH_DETECT_SPARCV9_GCC_32 && !defined SPH_SPARCV9_GCC_32
#define SPH_SPARCV9_GCC_32 SPH_DETECT_SPARCV9_GCC_32
#endif
#if defined SPH_DETECT_SPARCV9_GCC_64 && !defined SPH_SPARCV9_GCC_64
#define SPH_SPARCV9_GCC_64 SPH_DETECT_SPARCV9_GCC_64
#endif
#if defined SPH_DETECT_SPARCV9_GCC && !defined SPH_SPARCV9_GCC
#define SPH_SPARCV9_GCC SPH_DETECT_SPARCV9_GCC
#endif
#if defined SPH_DETECT_I386_GCC && !defined SPH_I386_GCC
#define SPH_I386_GCC SPH_DETECT_I386_GCC
#endif
#if defined SPH_DETECT_I386_MSVC && !defined SPH_I386_MSVC
#define SPH_I386_MSVC SPH_DETECT_I386_MSVC
#endif
#if defined SPH_DETECT_AMD64_GCC && !defined SPH_AMD64_GCC
#define SPH_AMD64_GCC SPH_DETECT_AMD64_GCC
#endif
#if defined SPH_DETECT_AMD64_MSVC && !defined SPH_AMD64_MSVC
#define SPH_AMD64_MSVC SPH_DETECT_AMD64_MSVC
#endif
#if defined SPH_DETECT_PPC32_GCC && !defined SPH_PPC32_GCC
#define SPH_PPC32_GCC SPH_DETECT_PPC32_GCC
#endif
#if defined SPH_DETECT_PPC64_GCC && !defined SPH_PPC64_GCC
#define SPH_PPC64_GCC SPH_DETECT_PPC64_GCC
#endif

#if SPH_LITTLE_ENDIAN && !defined SPH_LITTLE_FAST
#define SPH_LITTLE_FAST 1
#endif
#if SPH_BIG_ENDIAN && !defined SPH_BIG_FAST
#define SPH_BIG_FAST 1
#endif

#if defined SPH_UPTR && !(SPH_LITTLE_ENDIAN || SPH_BIG_ENDIAN)
#error SPH_UPTR defined, but endianness is not known.
#endif

#if SPH_I386_GCC && !SPH_NO_ASM

/*
 * On x86 32-bit, with gcc, we use the bswapl opcode to byte-swap 32-bit
 * values.
 */

static SPH_INLINE sph_u32
sph_bswap32(sph_u32 x)
{
	__asm__ __volatile__ ("bswapl %0" : "=r" (x) : "0" (x));
	return x;
}

#if SPH_64

static SPH_INLINE sph_u64
sph_bswap64(sph_u64 x)
{
	return ((sph_u64)sph_bswap32((sph_u32)x) << 32)
		| (sph_u64)sph_bswap32((sph_u32)(x >> 32));
}

#endif

#elif SPH_AMD64_GCC && !SPH_NO_ASM

/*
 * On x86 64-bit, with gcc, we use the bswapl opcode to byte-swap 32-bit
 * and 64-bit values.
 */

static SPH_INLINE sph_u32
sph_bswap32(sph_u32 x)
{
	__asm__ __volatile__ ("bswapl %0" : "=r" (x) : "0" (x));
	return x;
}

#if SPH_64

static SPH_INLINE sph_u64
sph_bswap64(sph_u64 x)
{
	__asm__ __volatile__ ("bswapq %0" : "=r" (x) : "0" (x));
	return x;
}

#endif

/*
 * Disabled code. Apparently, Microsoft Visual C 2005 is smart enough
 * to generate proper opcodes for endianness swapping with the pure C
 * implementation below.
 *

#elif SPH_I386_MSVC && !SPH_NO_ASM

static __inline sph_u32 __declspec(naked) __fastcall
sph_bswap32(sph_u32 x)
{
	__asm {
		bswap ecx
		mov eax,ecx
		ret
	}
}

#if SPH_64

static SPH_INLINE sph_u64
sph_bswap64(sph_u64 x)
{
	return ((sph_u64)sph_bswap32((sph_u32)x) << 32)
		| (sph_u64)sph_bswap32((sph_u32)(x >> 32));
}

#endif

 *
 * [end of disabled code]
 */

#else

static SPH_INLINE sph_u32
sph_bswap32(sph_u32 x)
{
	x = SPH_T32((x << 16) | (x >> 16));
	x = ((x & SPH_C32(0xFF00FF00)) >> 8)
		| ((x & SPH_C32(0x00FF00FF)) << 8);
	return x;
}

#if SPH_64

/**
 * Byte-swap a 64-bit value.
 *
 * @param x the input value
 * @return the byte-swapped value
 */
static SPH_INLINE sph_u64
sph_bswap64(sph_u64 x)
{
	x = SPH_T64((x << 32) | (x >> 32));
	x = ((x & SPH_C64(0xFFFF0000FFFF0000)) >> 16)
		| ((x & SPH_C64(0x0000FFFF0000FFFF)) << 16);
	x = ((x & SPH_C64(0xFF00FF00FF00FF00)) >> 8)
		| ((x & SPH_C64(0x00FF00FF00FF00FF)) << 8);
	return x;
}

#endif

#endif

#if SPH_SPARCV9_GCC && !SPH_NO_ASM

/*
 * On UltraSPARC systems, native ordering is big-endian, but it is
 * possible to perform little-endian read accesses by specifying the
 * address space 0x88 (ASI_PRIMARY_LITTLE). Basically, either we use
 * the opcode "lda [%reg]0x88,%dst", where %reg is the register which
 * contains the source address and %dst is the destination register,
 * or we use "lda [%reg+imm]%asi,%dst", which uses the %asi register
 * to get the address space name. The latter format is better since it
 * combines an addition and the actual access in a single opcode; but
 * it requires the setting (and subsequent resetting) of %asi, which is
 * slow. Some operations (i.e. MD5 compression function) combine many
 * successive little-endian read accesses, which may share the same
 * %asi setting. The macros below contain the appropriate inline
 * assembly.
 */

#define SPH_SPARCV9_SET_ASI \
	sph_u32 sph_sparcv9_asi; \
	__asm__ __volatile__ (\
		"rd %%asi,%0\n\twr %%g0,0x88,%%asi" : "=r" (sph_sparcv9_asi));

#define SPH_SPARCV9_RESET_ASI \
	__asm__ __volatile__ ("wr %%g0,%0,%%asi" : : "r" (sph_sparcv9_asi));

#define SPH_SPARCV9_DEC32LE(base, idx) ({ \
		sph_u32 sph_sparcv9_tmp; \
		__asm__ __volatile__ ("lda [%1+" #idx "*4]%%asi,%0" \
			: "=r" (sph_sparcv9_tmp) : "r" (base)); \
		sph_sparcv9_tmp; \
	})

#endif

static SPH_INLINE void
sph_enc16be(void *dst, unsigned val)
{
	((unsigned char *)dst)[0] = (val >> 8);
	((unsigned char *)dst)[1] = val;
}

static SPH_INLINE unsigned
sph_dec16be(const void *src)
{
	return ((unsigned)(((const unsigned char *)src)[0]) << 8)
		| (unsigned)(((const unsigned char *)src)[1]);
}

static SPH_INLINE void
sph_enc16le(void *dst, unsigned val)
{
	((unsigned char *)dst)[0] = val;
	((unsigned char *)dst)[1] = val >> 8;
}

static SPH_INLINE unsigned
sph_dec16le(const void *src)
{
	return (unsigned)(((const unsigned char *)src)[0])
		| ((unsigned)(((const unsigned char *)src)[1]) << 8);
}

/**
 * Encode a 32-bit value into the provided buffer (big endian convention).
 *
 * @param dst the destination buffer
 * @param val the 32-bit value to encode
 */
static SPH_INLINE void
sph_enc32be(void *dst, sph_u32 val)
{
#if defined SPH_UPTR
#if SPH_UNALIGNED
#if SPH_LITTLE_ENDIAN
	val = sph_bswap32(val);
#endif
	*(sph_u32 *)dst = val;
#else
	if (((SPH_UPTR)dst & 3) == 0) {
#if SPH_LITTLE_ENDIAN
		val = sph_bswap32(val);
#endif
		*(sph_u32 *)dst = val;
	} else {
		((unsigned char *)dst)[0] = (val >> 24);
		((unsigned char *)dst)[1] = (val >> 16);
		((unsigned char *)dst)[2] = (val >> 8);
		((unsigned char *)dst)[3] = val;
	}
#endif
#else
	((unsigned char *)dst)[0] = (val >> 24);
	((unsigned char *)dst)[1] = (val >> 16);
	((unsigned char *)dst)[2] = (val >> 8);
	((unsigned char *)dst)[3] = val;
#endif
}

/**
 * Encode a 32-bit value into the provided buffer (big endian convention).
 * The destination buffer must be properly aligned.
 *
 * @param dst the destination buffer (32-bit aligned)
 * @param val the value to encode
 */
static SPH_INLINE void
sph_enc32be_aligned(void *dst, sph_u32 val)
{
#if SPH_LITTLE_ENDIAN
	*(sph_u32 *)dst = sph_bswap32(val);
#elif SPH_BIG_ENDIAN
	*(sph_u32 *)dst = val;
#else
	((unsigned char *)dst)[0] = (val >> 24);
	((unsigned char *)dst)[1] = (val >> 16);
	((unsigned char *)dst)[2] = (val >> 8);
	((unsigned char *)dst)[3] = val;
#endif
}

/**
 * Decode a 32-bit value from the provided buffer (big endian convention).
 *
 * @param src the source buffer
 * @return the decoded value
 */
static SPH_INLINE sph_u32
sph_dec32be(const void *src)
{
#if defined SPH_UPTR
#if SPH_UNALIGNED
#if SPH_LITTLE_ENDIAN
	return sph_bswap32(*(const sph_u32 *)src);
#else
	return *(const sph_u32 *)src;
#endif
#else
	if (((SPH_UPTR)src & 3) == 0) {
#if SPH_LITTLE_ENDIAN
		return sph_bswap32(*(const sph_u32 *)src);
#else
		return *(const sph_u32 *)src;
#endif
	} else {
		return ((sph_u32)(((const unsigned char *)src)[0]) << 24)
			| ((sph_u32)(((const unsigned char *)src)[1]) << 16)
			| ((sph_u32)(((const unsigned char *)src)[2]) << 8)
			| (sph_u32)(((const unsigned char *)src)[3]);
	}
#endif
#else
	return ((sph_u32)(((const unsigned char *)src)[0]) << 24)
		| ((sph_u32)(((const unsigned char *)src)[1]) << 16)
		| ((sph_u32)(((const unsigned char *)src)[2]) << 8)
		| (sph_u32)(((const unsigned char *)src)[3]);
#endif
}

/**
 * Decode a 32-bit value from the provided buffer (big endian convention).
 * The source buffer must be properly aligned.
 *
 * @param src the source buffer (32-bit aligned)
 * @return the decoded value
 */
static SPH_INLINE sph_u32
sph_dec32be_aligned(const void *src)
{
#if SPH_LITTLE_ENDIAN
	return sph_bswap32(*(const sph_u32 *)src);
#elif SPH_BIG_ENDIAN
	return *(const sph_u32 *)src;
#else
	return ((sph_u32)(((const unsigned char *)src)[0]) << 24)
		| ((sph_u32)(((const unsigned char *)src)[1]) << 16)
		| ((sph_u32)(((const unsigned char *)src)[2]) << 8)
		| (sph_u32)(((const unsigned char *)src)[3]);
#endif
}

/**
 * Encode a 32-bit value into the provided buffer (little endian convention).
 *
 * @param dst the destination buffer
 * @param val the 32-bit value to encode
 */
static SPH_INLINE void
sph_enc32le(void *dst, sph_u32 val)
{
#if defined SPH_UPTR
#if SPH_UNALIGNED
#if SPH_BIG_ENDIAN
	val = sph_bswap32(val);
#endif
	*(sph_u32 *)dst = val;
#else
	if (((SPH_UPTR)dst & 3) == 0) {
#if SPH_BIG_ENDIAN
		val = sph_bswap32(val);
#endif
		*(sph_u32 *)dst = val;
	} else {
		((unsigned char *)dst)[0] = val;
		((unsigned char *)dst)[1] = (val >> 8);
		((unsigned char *)dst)[2] = (val >> 16);
		((unsigned char *)dst)[3] = (val >> 24);
	}
#endif
#else
	((unsigned char *)dst)[0] = val;
	((unsigned char *)dst)[1] = (val >> 8);
	((unsigned char *)dst)[2] = (val >> 16);
	((unsigned char *)dst)[3] = (val >> 24);
#endif
}

/**
 * Encode a 32-bit value into the provided buffer (little endian convention).
 * The destination buffer must be properly aligned.
 *
 * @param dst the destination buffer (32-bit aligned)
 * @param val the value to encode
 */
static SPH_INLINE void
sph_enc32le_aligned(void *dst, sph_u32 val)
{
#if SPH_LITTLE_ENDIAN
	*(sph_u32 *)dst = val;
#elif SPH_BIG_ENDIAN
	*(sph_u32 *)dst = sph_bswap32(val);
#else
	((unsigned char *)dst)[0] = val;
	((unsigned char *)dst)[1] = (val >> 8);
	((unsigned char *)dst)[2] = (val >> 16);
	((unsigned char *)dst)[3] = (val >> 24);
#endif
}

/**
 * Decode a 32-bit value from the provided buffer (little endian convention).
 *
 * @param src the source buffer
 * @return the decoded value
 */
static SPH_INLINE sph_u32
sph_dec32le(const void *src)
{
#if defined SPH_UPTR
#if SPH_UNALIGNED
#if SPH_BIG_ENDIAN
	return sph_bswap32(*(const sph_u32 *)src);
#else
	return *(const sph_u32 *)src;
#endif
#else
	if (((SPH_UPTR)src & 3) == 0) {
#if SPH_BIG_ENDIAN
#if SPH_SPARCV9_GCC && !SPH_NO_ASM
		sph_u32 tmp;

		/*
		 * "__volatile__" is needed here because without it,
		 * gcc-3.4.3 miscompiles the code and performs the
		 * access before the test on the address, thus triggering
		 * a bus error...
		 */
		__asm__ __volatile__ (
			"lda [%1]0x88,%0" : "=r" (tmp) : "r" (src));
		return tmp;
/*
 * On PowerPC, this turns out not to be worth the effort: the inline
 * assembly makes GCC optimizer uncomfortable, which tends to nullify
 * the decoding gains.
 *
 * For most hash functions, using this inline assembly trick changes
 * hashing speed by less than 5% and often _reduces_ it. The biggest
 * gains are for MD4 (+11%) and CubeHash (+30%). For all others, it is
 * less then 10%. The speed gain on CubeHash is probably due to the
 * chronic shortage of registers that CubeHash endures; for the other
 * functions, the generic code appears to be efficient enough already.
 *
#elif (SPH_PPC32_GCC || SPH_PPC64_GCC) && !SPH_NO_ASM
		sph_u32 tmp;

		__asm__ __volatile__ (
			"lwbrx %0,0,%1" : "=r" (tmp) : "r" (src));
		return tmp;
 */
#else
		return sph_bswap32(*(const sph_u32 *)src);
#endif
#else
		return *(const sph_u32 *)src;
#endif
	} else {
		return (sph_u32)(((const unsigned char *)src)[0])
			| ((sph_u32)(((const unsigned char *)src)[1]) << 8)
			| ((sph_u32)(((const unsigned char *)src)[2]) << 16)
			| ((sph_u32)(((const unsigned char *)src)[3]) << 24);
	}
#endif
#else
	return (sph_u32)(((const unsigned char *)src)[0])
		| ((sph_u32)(((const unsigned char *)src)[1]) << 8)
		| ((sph_u32)(((const unsigned char *)src)[2]) << 16)
		| ((sph_u32)(((const unsigned char *)src)[3]) << 24);
#endif
}

/**
 * Decode a 32-bit value from the provided buffer (little endian convention).
 * The source buffer must be properly aligned.
 *
 * @param src the source buffer (32-bit aligned)
 * @return the decoded value
 */
static SPH_INLINE sph_u32
sph_dec32le_aligned(const void *src)
{
#if SPH_LITTLE_ENDIAN
	return *(const sph_u32 *)src;
#elif SPH_BIG_ENDIAN
#if SPH_SPARCV9_GCC && !SPH_NO_ASM
	sph_u32 tmp;

	__asm__ __volatile__ ("lda [%1]0x88,%0" : "=r" (tmp) : "r" (src));
	return tmp;
/*
 * Not worth it generally.
 *
#elif (SPH_PPC32_GCC || SPH_PPC64_GCC) && !SPH_NO_ASM
	sph_u32 tmp;

	__asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (tmp) : "r" (src));
	return tmp;
 */
#else
	return sph_bswap32(*(const sph_u32 *)src);
#endif
#else
	return (sph_u32)(((const unsigned char *)src)[0])
		| ((sph_u32)(((const unsigned char *)src)[1]) << 8)
		| ((sph_u32)(((const unsigned char *)src)[2]) << 16)
		| ((sph_u32)(((const unsigned char *)src)[3]) << 24);
#endif
}

#if SPH_64

/**
 * Encode a 64-bit value into the provided buffer (big endian convention).
 *
 * @param dst the destination buffer
 * @param val the 64-bit value to encode
 */
static SPH_INLINE void
sph_enc64be(void *dst, sph_u64 val)
{
#if defined SPH_UPTR
#if SPH_UNALIGNED
#if SPH_LITTLE_ENDIAN
	val = sph_bswap64(val);
#endif
	*(sph_u64 *)dst = val;
#else
	if (((SPH_UPTR)dst & 7) == 0) {
#if SPH_LITTLE_ENDIAN
		val = sph_bswap64(val);
#endif
		*(sph_u64 *)dst = val;
	} else {
		((unsigned char *)dst)[0] = (val >> 56);
		((unsigned char *)dst)[1] = (val >> 48);
		((unsigned char *)dst)[2] = (val >> 40);
		((unsigned char *)dst)[3] = (val >> 32);
		((unsigned char *)dst)[4] = (val >> 24);
		((unsigned char *)dst)[5] = (val >> 16);
		((unsigned char *)dst)[6] = (val >> 8);
		((unsigned char *)dst)[7] = val;
	}
#endif
#else
	((unsigned char *)dst)[0] = (val >> 56);
	((unsigned char *)dst)[1] = (val >> 48);
	((unsigned char *)dst)[2] = (val >> 40);
	((unsigned char *)dst)[3] = (val >> 32);
	((unsigned char *)dst)[4] = (val >> 24);
	((unsigned char *)dst)[5] = (val >> 16);
	((unsigned char *)dst)[6] = (val >> 8);
	((unsigned char *)dst)[7] = val;
#endif
}

/**
 * Encode a 64-bit value into the provided buffer (big endian convention).
 * The destination buffer must be properly aligned.
 *
 * @param dst the destination buffer (64-bit aligned)
 * @param val the value to encode
 */
static SPH_INLINE void
sph_enc64be_aligned(void *dst, sph_u64 val)
{
#if SPH_LITTLE_ENDIAN
	*(sph_u64 *)dst = sph_bswap64(val);
#elif SPH_BIG_ENDIAN
	*(sph_u64 *)dst = val;
#else
	((unsigned char *)dst)[0] = (val >> 56);
	((unsigned char *)dst)[1] = (val >> 48);
	((unsigned char *)dst)[2] = (val >> 40);
	((unsigned char *)dst)[3] = (val >> 32);
	((unsigned char *)dst)[4] = (val >> 24);
	((unsigned char *)dst)[5] = (val >> 16);
	((unsigned char *)dst)[6] = (val >> 8);
	((unsigned char *)dst)[7] = val;
#endif
}

/**
 * Decode a 64-bit value from the provided buffer (big endian convention).
 *
 * @param src the source buffer
 * @return the decoded value
 */
static SPH_INLINE sph_u64
sph_dec64be(const void *src)
{
#if defined SPH_UPTR
#if SPH_UNALIGNED
#if SPH_LITTLE_ENDIAN
	return sph_bswap64(*(const sph_u64 *)src);
#else
	return *(const sph_u64 *)src;
#endif
#else
	if (((SPH_UPTR)src & 7) == 0) {
#if SPH_LITTLE_ENDIAN
		return sph_bswap64(*(const sph_u64 *)src);
#else
		return *(const sph_u64 *)src;
#endif
	} else {
		return ((sph_u64)(((const unsigned char *)src)[0]) << 56)
			| ((sph_u64)(((const unsigned char *)src)[1]) << 48)
			| ((sph_u64)(((const unsigned char *)src)[2]) << 40)
			| ((sph_u64)(((const unsigned char *)src)[3]) << 32)
			| ((sph_u64)(((const unsigned char *)src)[4]) << 24)
			| ((sph_u64)(((const unsigned char *)src)[5]) << 16)
			| ((sph_u64)(((const unsigned char *)src)[6]) << 8)
			| (sph_u64)(((const unsigned char *)src)[7]);
	}
#endif
#else
	return ((sph_u64)(((const unsigned char *)src)[0]) << 56)
		| ((sph_u64)(((const unsigned char *)src)[1]) << 48)
		| ((sph_u64)(((const unsigned char *)src)[2]) << 40)
		| ((sph_u64)(((const unsigned char *)src)[3]) << 32)
		| ((sph_u64)(((const unsigned char *)src)[4]) << 24)
		| ((sph_u64)(((const unsigned char *)src)[5]) << 16)
		| ((sph_u64)(((const unsigned char *)src)[6]) << 8)
		| (sph_u64)(((const unsigned char *)src)[7]);
#endif
}

/**
 * Decode a 64-bit value from the provided buffer (big endian convention).
 * The source buffer must be properly aligned.
 *
 * @param src the source buffer (64-bit aligned)
 * @return the decoded value
 */
static SPH_INLINE sph_u64
sph_dec64be_aligned(const void *src)
{
#if SPH_LITTLE_ENDIAN
	return sph_bswap64(*(const sph_u64 *)src);
#elif SPH_BIG_ENDIAN
	return *(const sph_u64 *)src;
#else
	return ((sph_u64)(((const unsigned char *)src)[0]) << 56)
		| ((sph_u64)(((const unsigned char *)src)[1]) << 48)
		| ((sph_u64)(((const unsigned char *)src)[2]) << 40)
		| ((sph_u64)(((const unsigned char *)src)[3]) << 32)
		| ((sph_u64)(((const unsigned char *)src)[4]) << 24)
		| ((sph_u64)(((const unsigned char *)src)[5]) << 16)
		| ((sph_u64)(((const unsigned char *)src)[6]) << 8)
		| (sph_u64)(((const unsigned char *)src)[7]);
#endif
}

/**
 * Encode a 64-bit value into the provided buffer (little endian convention).
 *
 * @param dst the destination buffer
 * @param val the 64-bit value to encode
 */
static SPH_INLINE void
sph_enc64le(void *dst, sph_u64 val)
{
#if defined SPH_UPTR
#if SPH_UNALIGNED
#if SPH_BIG_ENDIAN
	val = sph_bswap64(val);
#endif
	*(sph_u64 *)dst = val;
#else
	if (((SPH_UPTR)dst & 7) == 0) {
#if SPH_BIG_ENDIAN
		val = sph_bswap64(val);
#endif
		*(sph_u64 *)dst = val;
	} else {
		((unsigned char *)dst)[0] = val;
		((unsigned char *)dst)[1] = (val >> 8);
		((unsigned char *)dst)[2] = (val >> 16);
		((unsigned char *)dst)[3] = (val >> 24);
		((unsigned char *)dst)[4] = (val >> 32);
		((unsigned char *)dst)[5] = (val >> 40);
		((unsigned char *)dst)[6] = (val >> 48);
		((unsigned char *)dst)[7] = (val >> 56);
	}
#endif
#else
	((unsigned char *)dst)[0] = val;
	((unsigned char *)dst)[1] = (val >> 8);
	((unsigned char *)dst)[2] = (val >> 16);
	((unsigned char *)dst)[3] = (val >> 24);
	((unsigned char *)dst)[4] = (val >> 32);
	((unsigned char *)dst)[5] = (val >> 40);
	((unsigned char *)dst)[6] = (val >> 48);
	((unsigned char *)dst)[7] = (val >> 56);
#endif
}

/**
 * Encode a 64-bit value into the provided buffer (little endian convention).
 * The destination buffer must be properly aligned.
 *
 * @param dst the destination buffer (64-bit aligned)
 * @param val the value to encode
 */
static SPH_INLINE void
sph_enc64le_aligned(void *dst, sph_u64 val)
{
#if SPH_LITTLE_ENDIAN
	*(sph_u64 *)dst = val;
#elif SPH_BIG_ENDIAN
	*(sph_u64 *)dst = sph_bswap64(val);
#else
	((unsigned char *)dst)[0] = val;
	((unsigned char *)dst)[1] = (val >> 8);
	((unsigned char *)dst)[2] = (val >> 16);
	((unsigned char *)dst)[3] = (val >> 24);
	((unsigned char *)dst)[4] = (val >> 32);
	((unsigned char *)dst)[5] = (val >> 40);
	((unsigned char *)dst)[6] = (val >> 48);
	((unsigned char *)dst)[7] = (val >> 56);
#endif
}

/**
 * Decode a 64-bit value from the provided buffer (little endian convention).
 *
 * @param src the source buffer
 * @return the decoded value
 */
static SPH_INLINE sph_u64
sph_dec64le(const void *src)
{
#if defined SPH_UPTR
#if SPH_UNALIGNED
#if SPH_BIG_ENDIAN
	return sph_bswap64(*(const sph_u64 *)src);
#else
	return *(const sph_u64 *)src;
#endif
#else
	if (((SPH_UPTR)src & 7) == 0) {
#if SPH_BIG_ENDIAN
#if SPH_SPARCV9_GCC_64 && !SPH_NO_ASM
		sph_u64 tmp;

		__asm__ __volatile__ (
			"ldxa [%1]0x88,%0" : "=r" (tmp) : "r" (src));
		return tmp;
/*
 * Not worth it generally.
 *
#elif SPH_PPC32_GCC && !SPH_NO_ASM
		return (sph_u64)sph_dec32le_aligned(src)
			| ((sph_u64)sph_dec32le_aligned(
				(const char *)src + 4) << 32);
#elif SPH_PPC64_GCC && !SPH_NO_ASM
		sph_u64 tmp;

		__asm__ __volatile__ (
			"ldbrx %0,0,%1" : "=r" (tmp) : "r" (src));
		return tmp;
 */
#else
		return sph_bswap64(*(const sph_u64 *)src);
#endif
#else
		return *(const sph_u64 *)src;
#endif
	} else {
		return (sph_u64)(((const unsigned char *)src)[0])
			| ((sph_u64)(((const unsigned char *)src)[1]) << 8)
			| ((sph_u64)(((const unsigned char *)src)[2]) << 16)
			| ((sph_u64)(((const unsigned char *)src)[3]) << 24)
			| ((sph_u64)(((const unsigned char *)src)[4]) << 32)
			| ((sph_u64)(((const unsigned char *)src)[5]) << 40)
			| ((sph_u64)(((const unsigned char *)src)[6]) << 48)
			| ((sph_u64)(((const unsigned char *)src)[7]) << 56);
	}
#endif
#else
	return (sph_u64)(((const unsigned char *)src)[0])
		| ((sph_u64)(((const unsigned char *)src)[1]) << 8)
		| ((sph_u64)(((const unsigned char *)src)[2]) << 16)
		| ((sph_u64)(((const unsigned char *)src)[3]) << 24)
		| ((sph_u64)(((const unsigned char *)src)[4]) << 32)
		| ((sph_u64)(((const unsigned char *)src)[5]) << 40)
		| ((sph_u64)(((const unsigned char *)src)[6]) << 48)
		| ((sph_u64)(((const unsigned char *)src)[7]) << 56);
#endif
}

/**
 * Decode a 64-bit value from the provided buffer (little endian convention).
 * The source buffer must be properly aligned.
 *
 * @param src the source buffer (64-bit aligned)
 * @return the decoded value
 */
static SPH_INLINE sph_u64
sph_dec64le_aligned(const void *src)
{
#if SPH_LITTLE_ENDIAN
	return *(const sph_u64 *)src;
#elif SPH_BIG_ENDIAN
#if SPH_SPARCV9_GCC_64 && !SPH_NO_ASM
	sph_u64 tmp;

	__asm__ __volatile__ ("ldxa [%1]0x88,%0" : "=r" (tmp) : "r" (src));
	return tmp;
/*
 * Not worth it generally.
 *
#elif SPH_PPC32_GCC && !SPH_NO_ASM
	return (sph_u64)sph_dec32le_aligned(src)
		| ((sph_u64)sph_dec32le_aligned((const char *)src + 4) << 32);
#elif SPH_PPC64_GCC && !SPH_NO_ASM
	sph_u64 tmp;

	__asm__ __volatile__ ("ldbrx %0,0,%1" : "=r" (tmp) : "r" (src));
	return tmp;
 */
#else
	return sph_bswap64(*(const sph_u64 *)src);
#endif
#else
	return (sph_u64)(((const unsigned char *)src)[0])
		| ((sph_u64)(((const unsigned char *)src)[1]) << 8)
		| ((sph_u64)(((const unsigned char *)src)[2]) << 16)
		| ((sph_u64)(((const unsigned char *)src)[3]) << 24)
		| ((sph_u64)(((const unsigned char *)src)[4]) << 32)
		| ((sph_u64)(((const unsigned char *)src)[5]) << 40)
		| ((sph_u64)(((const unsigned char *)src)[6]) << 48)
		| ((sph_u64)(((const unsigned char *)src)[7]) << 56);
#endif
}

#endif

#if defined(__clang__)
pragma GCC diagnostic pop
#endif

#endif /* Doxygen excluded block */

#endif

qpdf-7.1.0/libqpdf/Pl_StdioFile.cc

#include <qpdf/qpdf-config.h> // include first for large file support
#include <qpdf/Pl_StdioFile.hh>
#include <qpdf/QUtil.hh>
#include <stdexcept>
#include <errno.h>

Pl_StdioFile::Pl_StdioFile(char const* identifier, FILE* f) :
 Pipeline(identifier, 0),
 file(f)
{
}

Pl_StdioFile::~Pl_StdioFile()
{
}

void
Pl_StdioFile::write(unsigned char* buf, size_t len)
{
 size_t so_far = 0;
 while (len > 0)
 {
	so_far = fwrite(buf, 1, len, this->file);
	if (so_far == 0)
	{
	 QUtil::throw_system_error(
		this->identifier + ": Pl_StdioFile::write");
	}
	else
	{
	 buf += so_far;
	 len -= so_far;
	}
 }
}

void
Pl_StdioFile::finish()
{
 if ((fflush(this->file) == -1) &&
 (errno == EBADF))
 {
	throw std::logic_error(
	 this->identifier +
	 ": Pl_StdioFile::finish: stream already closed");
 }
}

qpdf-7.1.0/libqpdf/Pl_Buffer.cc

#include <qpdf/Pl_Buffer.hh>
#include <stdexcept>
#include <assert.h>
#include <string.h>

Pl_Buffer::Pl_Buffer(char const* identifier, Pipeline* next) :
 Pipeline(identifier, next),
 ready(false),
 total_size(0)
{
}

Pl_Buffer::~Pl_Buffer()
{
}

void
Pl_Buffer::write(unsigned char* buf, size_t len)
{
 Buffer* b = new Buffer(len);
 memcpy(b->getBuffer(), buf, len);
 this->data.push_back(b);
 this->ready = false;
 this->total_size += len;

 if (getNext(true))
 {
	getNext()->write(buf, len);
 }
}

void
Pl_Buffer::finish()
{
 this->ready = true;
 if (getNext(true))
 {
	getNext()->finish();
 }
}

Buffer*
Pl_Buffer::getBuffer()
{
 if (! this->ready)
 {
	throw std::logic_error("Pl_Buffer::getBuffer() called when not ready");
 }

 Buffer* b = new Buffer(this->total_size);
 unsigned char* p = b->getBuffer();
 while (! this->data.empty())
 {
	PointerHolder<Buffer> bp = this->data.front();
	this->data.pop_front();
	size_t bytes = bp->getSize();
	memcpy(p, bp->getBuffer(), bytes);
	p += bytes;
	this->total_size -= bytes;
 }

 assert(this->total_size == 0);
 this->ready = false;

 return b;
}

qpdf-7.1.0/NOTICE.md

QPDF is copyright (c) 2005-2018 Jay Berkenbilt

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Versions of qpdf prior to version 7 were released under the terms of version 2.0 of the Artistic License. At your option, you may continue to consider qpdf to be licensed under those terms. Please see the manual for additional information.

The qpdf distribution includes a copy of [qtest](http://qtest.qbilt.org), which is released under the terms of the [version 2.0 of the Artistic license](https://opensource.org/licenses/Artistic-2.0), which can be found at https://opensource.org/licenses/Artistic-2.0.

The Rijndael encryption implementation used as the basis for AES encryption and decryption support comes from Philip J. Erdelsky's public domain implementation. The files `libqpdf/rijndael.cc` and `libqpdf/qpdf/rijndael.h` remain in the public domain. They were obtained from
* http://www.efgh.com/software/rijndael.htm
* http://www.efgh.com/software/rijndael.txt

The embedded sha2 code comes from sphlib 3.0
* http://www.saphir2.com/sphlib/

That code has the following license:
  ```
  Copyright (c) 2007-2011  Projet RNRT SAPHIR

  Permission is hereby granted, free of charge, to any person obtaining
  a copy of this software and associated documentation files (the
  "Software"), to deal in the Software without restriction, including
  without limitation the rights to use, copy, modify, merge, publish,
  distribute, sublicense, and/or sell copies of the Software, and to
  permit persons to whom the Software is furnished to do so, subject to
  the following conditions:

  The above copyright notice and this permission notice shall be included
  in all copies or substantial portions of the Software.

  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
  IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
  CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  ```


qpdf-7.1.0/LICENSE.txt

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

qpdf-7.1.0/copy_dlls

#!/usr/bin/env perl

require 5.008;
BEGIN { $^W = 1; }
use strict;
use File::Basename;

my $whoami = basename($0);

usage() unless @ARGV == 4;
my ($file, $destdir, $objdump, $windows_wordsize) = @ARGV;
my $filedir = dirname($file);

my $sep = ($^O eq 'MSWin32' ? ';' : ':');
my @path = ($filedir, '.', split($sep, $ENV{'PATH'}));
foreach my $var (qw(LIB))
{
 if (exists $ENV{$var})
 {
 push(@path, split($sep, $ENV{$var}));
 }
}
my $redist_suffix = (($windows_wordsize eq '64') ? "x64" : "x86");
if (exists $ENV{'VCINSTALLDIR'})
{
 my $redist = $ENV{'VCINSTALLDIR'} . "/Redist/$redist_suffix";
 if (opendir(D, $redist))
 {
 my @entries = readdir(D);
 closedir(D);
 foreach my $e (@entries)
 {
 if ($e =~ m/\.CRT$/i)
 {
 unshift(@path, "$redist/$e");
 }
 }
 }
}
if (exists $ENV{'UniversalCRTSdkDir'})
{
 my $redist = $ENV{'UniversalCRTSdkDir'} . "/Redist/ucrt/DLLs/$redist_suffix";
 unshift(@path, $redist);
}

my $format = undef;
my @to_find = get_dlls($file);

my %final = ();
my @notfound = ();

while (@to_find)
{
 my $dll = shift(@to_find);
 my $found = 0;
 foreach my $dir (@path)
 {
 if ((-f "$dir/$dll") && is_format("$dir/$dll", $format))
 {
 if (! exists $final{$dll})
 {
 $final{$dll} = "$dir/$dll";
 push(@to_find, get_dlls("$dir/$dll"));
 }
 $found = 1;
 last;
 }
 }
 if (! $found)
 {
 push(@notfound, $dll);
 }
}
if (@notfound)
{
 die "$whoami: can't find the following dlls: " .
	join(', ', @notfound), "\n";
}

foreach my $dll (sort keys (%final))
{
 my $f = $final{$dll};
 $f =~ s,\\,/,g;
 print "Copying $f to $destdir\n";
 system("cp -p '$f' '$destdir'") == 0 or
	die "$whoami: copy $f to $destdir failed\n";
}

sub get_dlls
{
 my @result = ();
 my $exe = shift;
 open(O, "$objdump -p \"$exe\"|") or die "$whoami: can't run objdump\n";
 while (<O>)
 {
 if (m/^\s+DLL Name:\s+(.+\.dll)/i)
 {
 my $dll = $1;
 $dll =~ tr/A-Z/a-z/;
 next if $dll =~ m/^(kernel32|user32|msvcrt|advapi32)\.dll$/;
 push(@result, $dll);
 }
 elsif (m/^Magic.*\((PE.+?)\)/)
 {
 $format = $1;
 }
 }
 close(O);
 if (! defined $format)
 {
 die "$whoami: can't determine format of $exe\n";
 }
 @result;
}

sub is_format
{
 my ($file, $format) = @_;
 $file =~ s,\\,/,g;
 # Special case: msvc*.dll seem to be able to behave both as 32-bit
 # and 64-bit DLLs. Either that, or this logic is wrong for those
 # DLLs and it doesn't matter because they're already installed on
 # my test system (which doesn't have msvc installed on it).
 if ($file =~ m,/msvc,i)
 {
 return 1;
 }
 my $result = 0;
 my $file_format = `file "$file"`;
 print "$file $format $file_format\n";
 if ($? == 0)
 {
 if ($file_format =~ m/\Q${format}\E executable/)
 {
 $result = 1;
 }
 }
 $result;
}

sub usage
{
 die "Usage: $whoami {exe|dll} destdir\n";
}

qpdf-7.1.0/config.guess

#! /bin/sh
Attempt to guess a canonical system name.
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
2011, 2012 Free Software Foundation, Inc.

timestamp='2012-02-10'

This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
#
As a special exception to the GNU General Public License, if you
distribute this file as part of a program that contains a
configuration script generated by Autoconf, you may include it under
the same distribution terms that you use for the rest of that program.

Originally written by Per Bothner. Please send patches (context
diff format) to <config-patches@gnu.org> and include a ChangeLog
entry.
#
This script attempts to guess a canonical system name similar to
config.sub. If it succeeds, it prints the system name on stdout, and
exits with 0. Otherwise, it exits with 1.
#
You can get the latest version of this script from:
http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD

me=`echo "$0" | sed -e 's,.*/,,'`

usage="\
Usage: $0 [OPTION]

Output the configuration name of the system \`$me' is run on.

Operation modes:
 -h, --help print this help, then exit
 -t, --time-stamp print date of last modification, then exit
 -v, --version print version number, then exit

Report bugs and patches to <config-patches@gnu.org>."

version="\
GNU config.guess ($timestamp)

Originally written by Per Bothner.
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE."

help="
Try \`$me --help' for more information."

Parse command line
while test $# -gt 0 ; do
 case $1 in
 --time-stamp | --time* | -t)
 echo "$timestamp" ; exit ;;
 --version | -v)
 echo "$version" ; exit ;;
 --help | --h* | -h)
 echo "$usage"; exit ;;
 --) # Stop option processing
 shift; break ;;
 -)	# Use stdin as input.
 break ;;
 -*)
 echo "$me: invalid option 1help" >&2
 exit 1 ;;
 *)
 break ;;
 esac
done

if test $# != 0; then
 echo "$me: too many arguments$help" >&2
 exit 1
fi

trap 'exit 1' 1 2 15

CC_FOR_BUILD -- compiler used by this script. Note that the use of a
compiler to aid in system detection is discouraged as it requires
temporary files to be created and, as you can see below, it is a
headache to deal with in a portable fashion.

Historically, `CC_FOR_BUILD' used to be named `HOST_CC'. We still
use `HOST_CC' if defined, but it is deprecated.

Portable tmp directory creation inspired by the Autoconf team.

set_cc_for_build='
trap "exitcode=\$?; (rm -f \$tmpfiles 2>/dev/null; rmdir \$tmp 2>/dev/null) && exit \$exitcode" 0 ;
trap "rm -f \$tmpfiles 2>/dev/null; rmdir \$tmp 2>/dev/null; exit 1" 1 2 13 15 ;
: ${TMPDIR=/tmp} ;
 { tmp=`(umask 077 && mktemp -d "$TMPDIR/cgXXXXXX") 2>/dev/null` && test -n "$tmp" && test -d "$tmp" ; } ||
 { test -n "$RANDOM" && tmp=$TMPDIR/cg$$-$RANDOM && (umask 077 && mkdir $tmp) ; } ||
 { tmp=$TMPDIR/cg-$$ && (umask 077 && mkdir $tmp) && echo "Warning: creating insecure temp directory" >&2 ; } ||
 { echo "$me: cannot create a temporary directory in $TMPDIR" >&2 ; exit 1 ; } ;
dummy=$tmp/dummy ;
tmpfiles="$dummy.c $dummy.o $dummy.rel $dummy" ;
case $CC_FOR_BUILD,$HOST_CC,$CC in
 ,,) echo "int x;" > $dummy.c ;
	for c in cc gcc c89 c99 ; do
	 if ($c -c -o $dummy.o $dummy.c) >/dev/null 2>&1 ; then
	 CC_FOR_BUILD="$c"; break ;
	 fi ;
	done ;
	if test x"$CC_FOR_BUILD" = x ; then
	 CC_FOR_BUILD=no_compiler_found ;
	fi
	;;
 ,,*) CC_FOR_BUILD=$CC ;;
 ,*,*) CC_FOR_BUILD=$HOST_CC ;;
esac ; set_cc_for_build= ;'

This is needed to find uname on a Pyramid OSx when run in the BSD universe.
(ghazi@noc.rutgers.edu 1994-08-24)
if (test -f /.attbin/uname) >/dev/null 2>&1 ; then
	PATH=$PATH:/.attbin ; export PATH
fi

UNAME_MACHINE=`(uname -m) 2>/dev/null` || UNAME_MACHINE=unknown
UNAME_RELEASE=`(uname -r) 2>/dev/null` || UNAME_RELEASE=unknown
UNAME_SYSTEM=`(uname -s) 2>/dev/null` || UNAME_SYSTEM=unknown
UNAME_VERSION=`(uname -v) 2>/dev/null` || UNAME_VERSION=unknown

Note: order is significant - the case branches are not exclusive.

case "${UNAME_MACHINE}:${UNAME_SYSTEM}:${UNAME_RELEASE}:${UNAME_VERSION}" in
 :NetBSD::*)
	# NetBSD (nbsd) targets should (where applicable) match one or
	# more of the tuples: *-*-netbsdelf*, *-*-netbsdaout*,
	# *-*-netbsdecoff* and *-*-netbsd*. For targets that recently
	# switched to ELF, *-*-netbsd* would select the old
	# object file format. This provides both forward
	# compatibility and a consistent mechanism for selecting the
	# object file format.
	#
	# Note: NetBSD doesn't particularly care about the vendor
	# portion of the name. We always set it to "unknown".
	sysctl="sysctl -n hw.machine_arch"
	UNAME_MACHINE_ARCH=`(/sbin/$sysctl 2>/dev/null || \
	 /usr/sbin/$sysctl 2>/dev/null || echo unknown)`
	case "${UNAME_MACHINE_ARCH}" in
	 armeb) machine=armeb-unknown ;;
	 arm*) machine=arm-unknown ;;
	 sh3el) machine=shl-unknown ;;
	 sh3eb) machine=sh-unknown ;;
	 sh5el) machine=sh5le-unknown ;;
	 *) machine=${UNAME_MACHINE_ARCH}-unknown ;;
	esac
	# The Operating System including object format, if it has switched
	# to ELF recently, or will in the future.
	case "${UNAME_MACHINE_ARCH}" in
	 arm*|i386|m68k|ns32k|sh3*|sparc|vax)
		eval $set_cc_for_build
		if echo __ELF__ | $CC_FOR_BUILD -E - 2>/dev/null \
			| grep -q __ELF__
		then
		 # Once all utilities can be ECOFF (netbsdecoff) or a.out (netbsdaout).
		 # Return netbsd for either. FIX?
		 os=netbsd
		else
		 os=netbsdelf
		fi
		;;
	 *)
		os=netbsd
		;;
	esac
	# The OS release
	# Debian GNU/NetBSD machines have a different userland, and
	# thus, need a distinct triplet. However, they do not need
	# kernel version information, so it can be replaced with a
	# suitable tag, in the style of linux-gnu.
	case "${UNAME_VERSION}" in
	 Debian*)
		release='-gnu'
		;;
	 *)
		release=`echo ${UNAME_RELEASE}|sed -e 's/[-_].*/\./'`
		;;
	esac
	# Since CPU_TYPE-MANUFACTURER-KERNEL-OPERATING_SYSTEM:
	# contains redundant information, the shorter form:
	# CPU_TYPE-MANUFACTURER-OPERATING_SYSTEM is used.
	echo "${machine}-${os}${release}"
	exit ;;
 :OpenBSD::*)
	UNAME_MACHINE_ARCH=`arch | sed 's/OpenBSD.//'`
	echo ${UNAME_MACHINE_ARCH}-unknown-openbsd${UNAME_RELEASE}
	exit ;;
 :ekkoBSD::*)
	echo ${UNAME_MACHINE}-unknown-ekkobsd${UNAME_RELEASE}
	exit ;;
 :SolidBSD::*)
	echo ${UNAME_MACHINE}-unknown-solidbsd${UNAME_RELEASE}
	exit ;;
 macppc:MirBSD:*:*)
	echo powerpc-unknown-mirbsd${UNAME_RELEASE}
	exit ;;
 :MirBSD::*)
	echo ${UNAME_MACHINE}-unknown-mirbsd${UNAME_RELEASE}
	exit ;;
 alpha:OSF1:*:*)
	case $UNAME_RELEASE in
	*4.0)
		UNAME_RELEASE=`/usr/sbin/sizer -v | awk '{print $3}'`
		;;
	5.)
		UNAME_RELEASE=`/usr/sbin/sizer -v | awk '{print $4}'`
		;;
	esac
	# According to Compaq, /usr/sbin/psrinfo has been available on
	# OSF/1 and Tru64 systems produced since 1995. I hope that
	# covers most systems running today. This code pipes the CPU
	# types through head -n 1, so we only detect the type of CPU 0.
	ALPHA_CPU_TYPE=`/usr/sbin/psrinfo -v | sed -n -e 's/^ The alpha \(.*\) processor.*$/\1/p' | head -n 1`
	case "$ALPHA_CPU_TYPE" in
	 "EV4 (21064)")
		UNAME_MACHINE="alpha" ;;
	 "EV4.5 (21064)")
		UNAME_MACHINE="alpha" ;;
	 "LCA4 (21066/21068)")
		UNAME_MACHINE="alpha" ;;
	 "EV5 (21164)")
		UNAME_MACHINE="alphaev5" ;;
	 "EV5.6 (21164A)")
		UNAME_MACHINE="alphaev56" ;;
	 "EV5.6 (21164PC)")
		UNAME_MACHINE="alphapca56" ;;
	 "EV5.7 (21164PC)")
		UNAME_MACHINE="alphapca57" ;;
	 "EV6 (21264)")
		UNAME_MACHINE="alphaev6" ;;
	 "EV6.7 (21264A)")
		UNAME_MACHINE="alphaev67" ;;
	 "EV6.8CB (21264C)")
		UNAME_MACHINE="alphaev68" ;;
	 "EV6.8AL (21264B)")
		UNAME_MACHINE="alphaev68" ;;
	 "EV6.8CX (21264D)")
		UNAME_MACHINE="alphaev68" ;;
	 "EV6.9A (21264/EV69A)")
		UNAME_MACHINE="alphaev69" ;;
	 "EV7 (21364)")
		UNAME_MACHINE="alphaev7" ;;
	 "EV7.9 (21364A)")
		UNAME_MACHINE="alphaev79" ;;
	esac
	# A Pn.n version is a patched version.
	# A Vn.n version is a released version.
	# A Tn.n version is a released field test version.
	# A Xn.n version is an unreleased experimental baselevel.
	# 1.2 uses "1.2" for uname -r.
	echo ${UNAME_MACHINE}-dec-osf`echo ${UNAME_RELEASE} | sed -e 's/^[PVTX]//' | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz'`
	# Reset EXIT trap before exiting to avoid spurious non-zero exit code.
	exitcode=$?
	trap '' 0
	exit $exitcode ;;
 Alpha\ *:Windows_NT*:*)
	# How do we know it's Interix rather than the generic POSIX subsystem?
	# Should we change UNAME_MACHINE based on the output of uname instead
	# of the specific Alpha model?
	echo alpha-pc-interix
	exit ;;
 21064:Windows_NT:50:3)
	echo alpha-dec-winnt3.5
	exit ;;
 Amiga*:UNIX_System_V:4.0:*)
	echo m68k-unknown-sysv4
	exit ;;
 :[Aa]miga[Oo][Ss]::*)
	echo ${UNAME_MACHINE}-unknown-amigaos
	exit ;;
 :[Mm]orph[Oo][Ss]::*)
	echo ${UNAME_MACHINE}-unknown-morphos
	exit ;;
 :OS/390::*)
	echo i370-ibm-openedition
	exit ;;
 :z/VM::*)
	echo s390-ibm-zvmoe
	exit ;;
 :OS400::*)
	echo powerpc-ibm-os400
	exit ;;
 arm:RISC*:1.[012]*:*|arm:riscix:1.[012]*:*)
	echo arm-acorn-riscix${UNAME_RELEASE}
	exit ;;
 arm:riscos:*:*|arm:RISCOS:*:*)
	echo arm-unknown-riscos
	exit ;;
 SR2?01:HI-UX/MPP:*:* | SR8000:HI-UX/MPP:*:*)
	echo hppa1.1-hitachi-hiuxmpp
	exit ;;
 Pyramid*:OSx*:*:* | MIS*:OSx*:*:* | MIS*:SMP_DC-OSx*:*:*)
	# akee@wpdis03.wpafb.af.mil (Earle F. Ake) contributed MIS and NILE.
	if test "`(/bin/universe) 2>/dev/null`" = att ; then
		echo pyramid-pyramid-sysv3
	else
		echo pyramid-pyramid-bsd
	fi
	exit ;;
 NILE*:*:*:dcosx)
	echo pyramid-pyramid-svr4
	exit ;;
 DRS?6000:unix:4.0:6*)
	echo sparc-icl-nx6
	exit ;;
 DRS?6000:UNIX_SV:4.2*:7* | DRS?6000:isis:4.2*:7*)
	case `/usr/bin/uname -p` in
	 sparc) echo sparc-icl-nx7; exit ;;
	esac ;;
 s390x:SunOS:*:*)
	echo ${UNAME_MACHINE}-ibm-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'`
	exit ;;
 sun4H:SunOS:5.*:*)
	echo sparc-hal-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'`
	exit ;;
 sun4*:SunOS:5.*:* | tadpole*:SunOS:5.*:*)
	echo sparc-sun-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'`
	exit ;;
 i86pc:AuroraUX:5.*:* | i86xen:AuroraUX:5.*:*)
	echo i386-pc-auroraux${UNAME_RELEASE}
	exit ;;
 i86pc:SunOS:5.*:* | i86xen:SunOS:5.*:*)
	eval $set_cc_for_build
	SUN_ARCH="i386"
	# If there is a compiler, see if it is configured for 64-bit objects.
	# Note that the Sun cc does not turn __LP64__ into 1 like gcc does.
	# This test works for both compilers.
	if ["$CC_FOR_BUILD" != 'no_compiler_found']; then
	 if (echo '#ifdef __amd64'; echo IS_64BIT_ARCH; echo '#endif') | \
		(CCOPTS= $CC_FOR_BUILD -E - 2>/dev/null) | \
		grep IS_64BIT_ARCH >/dev/null
	 then
		SUN_ARCH="x86_64"
	 fi
	fi
	echo ${SUN_ARCH}-pc-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'`
	exit ;;
 sun4*:SunOS:6*:*)
	# According to config.sub, this is the proper way to canonicalize
	# SunOS6. Hard to guess exactly what SunOS6 will be like, but
	# it's likely to be more like Solaris than SunOS4.
	echo sparc-sun-solaris3`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'`
	exit ;;
 sun4*:SunOS:*:*)
	case "`/usr/bin/arch -k`" in
	 Series*|S4*)
		UNAME_RELEASE=`uname -v`
		;;
	esac
	# Japanese Language versions have a version number like `4.1.3-JL'.
	echo sparc-sun-sunos`echo ${UNAME_RELEASE}|sed -e 's/-/_/'`
	exit ;;
 sun3*:SunOS:*:*)
	echo m68k-sun-sunos${UNAME_RELEASE}
	exit ;;
 sun*:*:4.2BSD:*)
	UNAME_RELEASE=`(sed 1q /etc/motd | awk '{print substr($5,1,3)}') 2>/dev/null`
	test "x${UNAME_RELEASE}" = "x" && UNAME_RELEASE=3
	case "`/bin/arch`" in
	 sun3)
		echo m68k-sun-sunos${UNAME_RELEASE}
		;;
	 sun4)
		echo sparc-sun-sunos${UNAME_RELEASE}
		;;
	esac
	exit ;;
 aushp:SunOS:*:*)
	echo sparc-auspex-sunos${UNAME_RELEASE}
	exit ;;
 # The situation for MiNT is a little confusing. The machine name
 # can be virtually everything (everything which is not
 # "atarist" or "atariste" at least should have a processor
 # > m68000). The system name ranges from "MiNT" over "FreeMiNT"
 # to the lowercase version "mint" (or "freemint"). Finally
 # the system name "TOS" denotes a system which is actually not
 # MiNT. But MiNT is downward compatible to TOS, so this should
 # be no problem.
 atarist[e]:*MiNT:*:* | atarist[e]:*mint:*:* | atarist[e]:*TOS:*:*)
	echo m68k-atari-mint${UNAME_RELEASE}
	exit ;;
 atari*:*MiNT:*:* | atari*:*mint:*:* | atarist[e]:*TOS:*:*)
	echo m68k-atari-mint${UNAME_RELEASE}
	exit ;;
 falcon:*MiNT:*:* | *falcon*:*mint:*:* | *falcon*:*TOS:*:*)
	echo m68k-atari-mint${UNAME_RELEASE}
	exit ;;
 milan*:*MiNT:*:* | milan*:*mint:*:* | *milan*:*TOS:*:*)
	echo m68k-milan-mint${UNAME_RELEASE}
	exit ;;
 hades*:*MiNT:*:* | hades*:*mint:*:* | *hades*:*TOS:*:*)
	echo m68k-hades-mint${UNAME_RELEASE}
	exit ;;
 *:*MiNT:*:* | *:*mint:*:* | *:*TOS:*:*)
	echo m68k-unknown-mint${UNAME_RELEASE}
	exit ;;
 m68k:machten:*:*)
	echo m68k-apple-machten${UNAME_RELEASE}
	exit ;;
 powerpc:machten:*:*)
	echo powerpc-apple-machten${UNAME_RELEASE}
	exit ;;
 RISC*:Mach:*:*)
	echo mips-dec-mach_bsd4.3
	exit ;;
 RISC*:ULTRIX:*:*)
	echo mips-dec-ultrix${UNAME_RELEASE}
	exit ;;
 VAX*:ULTRIX*:*:*)
	echo vax-dec-ultrix${UNAME_RELEASE}
	exit ;;
 2020:CLIX:*:* | 2430:CLIX:*:*)
	echo clipper-intergraph-clix${UNAME_RELEASE}
	exit ;;
 mips:*:*:UMIPS | mips:*:*:RISCos)
	eval $set_cc_for_build
	sed 's/^	//' << EOF >$dummy.c
#ifdef __cplusplus
#include <stdio.h> /* for printf() prototype */
	int main (int argc, char *argv[]) {
#else
	int main (argc, argv) int argc; char *argv[]; {
#endif
	#if defined (host_mips) && defined (MIPSEB)
	#if defined (SYSTYPE_SYSV)
	 printf ("mips-mips-riscos%ssysv\n", argv[1]); exit (0);
	#endif
	#if defined (SYSTYPE_SVR4)
	 printf ("mips-mips-riscos%ssvr4\n", argv[1]); exit (0);
	#endif
	#if defined (SYSTYPE_BSD43) || defined(SYSTYPE_BSD)
	 printf ("mips-mips-riscos%sbsd\n", argv[1]); exit (0);
	#endif
	#endif
	 exit (-1);
	}
EOF
	$CC_FOR_BUILD -o $dummy $dummy.c &&
	 dummyarg=`echo "${UNAME_RELEASE}" | sed -n 's/\([0-9]*\).*/\1/p'` &&
	 SYSTEM_NAME=`$dummy $dummyarg` &&
	 { echo "$SYSTEM_NAME"; exit; }
	echo mips-mips-riscos${UNAME_RELEASE}
	exit ;;
 Motorola:PowerMAX_OS:*:*)
	echo powerpc-motorola-powermax
	exit ;;
 Motorola:*:4.3:PL8-*)
	echo powerpc-harris-powermax
	exit ;;
 Night_Hawk:*:*:PowerMAX_OS | Synergy:PowerMAX_OS:*:*)
	echo powerpc-harris-powermax
	exit ;;
 Night_Hawk:Power_UNIX:*:*)
	echo powerpc-harris-powerunix
	exit ;;
 m88k:CX/UX:7*:*)
	echo m88k-harris-cxux7
	exit ;;
 m88k:*:4*:R4*)
	echo m88k-motorola-sysv4
	exit ;;
 m88k:*:3*:R3*)
	echo m88k-motorola-sysv3
	exit ;;
 AViiON:dgux:*:*)
	# DG/UX returns AViiON for all architectures
	UNAME_PROCESSOR=`/usr/bin/uname -p`
	if [$UNAME_PROCESSOR = mc88100] || [$UNAME_PROCESSOR = mc88110]
	then
	 if [${TARGET_BINARY_INTERFACE}x = m88kdguxelfx] || \
	 [${TARGET_BINARY_INTERFACE}x = x]
	 then
		echo m88k-dg-dgux${UNAME_RELEASE}
	 else
		echo m88k-dg-dguxbcs${UNAME_RELEASE}
	 fi
	else
	 echo i586-dg-dgux${UNAME_RELEASE}
	fi
	exit ;;
 M88*:DolphinOS:*:*)	# DolphinOS (SVR3)
	echo m88k-dolphin-sysv3
	exit ;;
 M88*:*:R3*:*)
	# Delta 88k system running SVR3
	echo m88k-motorola-sysv3
	exit ;;
 XD88*:*:*:*) # Tektronix XD88 system running UTekV (SVR3)
	echo m88k-tektronix-sysv3
	exit ;;
 Tek43[0-9][0-9]:UTek:*:*) # Tektronix 4300 system running UTek (BSD)
	echo m68k-tektronix-bsd
	exit ;;
 :IRIX:*:*)
	echo mips-sgi-irix`echo ${UNAME_RELEASE}|sed -e 's/-/_/g'`
	exit ;;
 ????????:AIX?:[12].1:2) # AIX 2.2.1 or AIX 2.1.1 is RT/PC AIX.
	echo romp-ibm-aix # uname -m gives an 8 hex-code CPU id
	exit ;; # Note that: echo "'`uname -s`'" gives 'AIX '
 i*86:AIX:*:*)
	echo i386-ibm-aix
	exit ;;
 ia64:AIX:*:*)
	if [-x /usr/bin/oslevel] ; then
		IBM_REV=`/usr/bin/oslevel`
	else
		IBM_REV=${UNAME_VERSION}.${UNAME_RELEASE}
	fi
	echo ${UNAME_MACHINE}-ibm-aix${IBM_REV}
	exit ;;
 *:AIX:2:3)
	if grep bos325 /usr/include/stdio.h >/dev/null 2>&1; then
		eval $set_cc_for_build
		sed 's/^		//' << EOF >$dummy.c
		#include <sys/systemcfg.h>

		main()
			{
			if (!__power_pc())
				exit(1);
			puts("powerpc-ibm-aix3.2.5");
			exit(0);
			}
EOF
		if $CC_FOR_BUILD -o $dummy $dummy.c && SYSTEM_NAME=`$dummy`
		then
			echo "$SYSTEM_NAME"
		else
			echo rs6000-ibm-aix3.2.5
		fi
	elif grep bos324 /usr/include/stdio.h >/dev/null 2>&1; then
		echo rs6000-ibm-aix3.2.4
	else
		echo rs6000-ibm-aix3.2
	fi
	exit ;;
 :AIX::[4567])
	IBM_CPU_ID=`/usr/sbin/lsdev -C -c processor -S available | sed 1q | awk '{ print $1 }'`
	if /usr/sbin/lsattr -El ${IBM_CPU_ID} | grep ' POWER' >/dev/null 2>&1; then
		IBM_ARCH=rs6000
	else
		IBM_ARCH=powerpc
	fi
	if [-x /usr/bin/oslevel] ; then
		IBM_REV=`/usr/bin/oslevel`
	else
		IBM_REV=${UNAME_VERSION}.${UNAME_RELEASE}
	fi
	echo ${IBM_ARCH}-ibm-aix${IBM_REV}
	exit ;;
 :AIX::*)
	echo rs6000-ibm-aix
	exit ;;
 ibmrt:4.4BSD:*|romp-ibm:BSD:*)
	echo romp-ibm-bsd4.4
	exit ;;
 ibmrt:*BSD:*|romp-ibm:BSD:*) # covers RT/PC BSD and
	echo romp-ibm-bsd${UNAME_RELEASE} # 4.3 with uname added to
	exit ;; # report: romp-ibm BSD 4.3
 :BOSX::*)
	echo rs6000-bull-bosx
	exit ;;
 DPX/2?00:B.O.S.:*:*)
	echo m68k-bull-sysv3
	exit ;;
 9000/[34]??:4.3bsd:1.*:*)
	echo m68k-hp-bsd
	exit ;;
 hp300:4.4BSD:*:* | 9000/[34]??:4.3bsd:2.*:*)
	echo m68k-hp-bsd4.4
	exit ;;
 9000/[34678]??:HP-UX:*:*)
	HPUX_REV=`echo ${UNAME_RELEASE}|sed -e 's/[^.]*.[0B]*//'`
	case "${UNAME_MACHINE}" in
	 9000/31?) HP_ARCH=m68000 ;;
	 9000/[34]??) HP_ARCH=m68k ;;
	 9000/[678][0-9][0-9])
		if [-x /usr/bin/getconf]; then
		 sc_cpu_version=`/usr/bin/getconf SC_CPU_VERSION 2>/dev/null`
		 sc_kernel_bits=`/usr/bin/getconf SC_KERNEL_BITS 2>/dev/null`
		 case "${sc_cpu_version}" in
		 523) HP_ARCH="hppa1.0" ;; # CPU_PA_RISC1_0
		 528) HP_ARCH="hppa1.1" ;; # CPU_PA_RISC1_1
		 532) # CPU_PA_RISC2_0
			case "${sc_kernel_bits}" in
			 32) HP_ARCH="hppa2.0n" ;;
			 64) HP_ARCH="hppa2.0w" ;;
			 '') HP_ARCH="hppa2.0" ;; # HP-UX 10.20
			esac ;;
		 esac
		fi
		if ["${HP_ARCH}" = ""]; then
		 eval $set_cc_for_build
		 sed 's/^		//' << EOF >$dummy.c

		#define _HPUX_SOURCE
		#include <stdlib.h>
		#include <unistd.h>

		int main ()
		{
		#if defined(_SC_KERNEL_BITS)
		 long bits = sysconf(_SC_KERNEL_BITS);
		#endif
		 long cpu = sysconf (_SC_CPU_VERSION);

		 switch (cpu)
			{
			case CPU_PA_RISC1_0: puts ("hppa1.0"); break;
			case CPU_PA_RISC1_1: puts ("hppa1.1"); break;
			case CPU_PA_RISC2_0:
		#if defined(_SC_KERNEL_BITS)
			 switch (bits)
				{
				case 64: puts ("hppa2.0w"); break;
				case 32: puts ("hppa2.0n"); break;
				default: puts ("hppa2.0"); break;
				} break;
		#else /* !defined(_SC_KERNEL_BITS) */
			 puts ("hppa2.0"); break;
		#endif
			default: puts ("hppa1.0"); break;
			}
		 exit (0);
		}
EOF
		 (CCOPTS= $CC_FOR_BUILD -o $dummy $dummy.c 2>/dev/null) && HP_ARCH=`$dummy`
		 test -z "$HP_ARCH" && HP_ARCH=hppa
		fi ;;
	esac
	if [${HP_ARCH} = "hppa2.0w"]
	then
	 eval $set_cc_for_build

	 # hppa2.0w-hp-hpux* has a 64-bit kernel and a compiler generating
	 # 32-bit code. hppa64-hp-hpux* has the same kernel and a compiler
	 # generating 64-bit code. GNU and HP use different nomenclature:
	 #
	 # $ CC_FOR_BUILD=cc ./config.guess
	 # => hppa2.0w-hp-hpux11.23
	 # $ CC_FOR_BUILD="cc +DA2.0w" ./config.guess
	 # => hppa64-hp-hpux11.23

	 if echo __LP64__ | (CCOPTS= $CC_FOR_BUILD -E - 2>/dev/null) |
		grep -q __LP64__
	 then
		HP_ARCH="hppa2.0w"
	 else
		HP_ARCH="hppa64"
	 fi
	fi
	echo ${HP_ARCH}-hp-hpux${HPUX_REV}
	exit ;;
 ia64:HP-UX:*:*)
	HPUX_REV=`echo ${UNAME_RELEASE}|sed -e 's/[^.]*.[0B]*//'`
	echo ia64-hp-hpux${HPUX_REV}
	exit ;;
 3050*:HI-UX:*:*)
	eval $set_cc_for_build
	sed 's/^	//' << EOF >$dummy.c
	#include <unistd.h>
	int
	main ()
	{
	 long cpu = sysconf (_SC_CPU_VERSION);
	 /* The order matters, because CPU_IS_HP_MC68K erroneously returns
	 true for CPU_PA_RISC1_0. CPU_IS_PA_RISC returns correct
	 results, however. */
	 if (CPU_IS_PA_RISC (cpu))
	 {
	 switch (cpu)
		{
		 case CPU_PA_RISC1_0: puts ("hppa1.0-hitachi-hiuxwe2"); break;
		 case CPU_PA_RISC1_1: puts ("hppa1.1-hitachi-hiuxwe2"); break;
		 case CPU_PA_RISC2_0: puts ("hppa2.0-hitachi-hiuxwe2"); break;
		 default: puts ("hppa-hitachi-hiuxwe2"); break;
		}
	 }
	 else if (CPU_IS_HP_MC68K (cpu))
	 puts ("m68k-hitachi-hiuxwe2");
	 else puts ("unknown-hitachi-hiuxwe2");
	 exit (0);
	}
EOF
	$CC_FOR_BUILD -o $dummy $dummy.c && SYSTEM_NAME=`$dummy` &&
		{ echo "$SYSTEM_NAME"; exit; }
	echo unknown-hitachi-hiuxwe2
	exit ;;
 9000/7??:4.3bsd:*:* | 9000/8?[79]:4.3bsd:*:*)
	echo hppa1.1-hp-bsd
	exit ;;
 9000/8??:4.3bsd:*:*)
	echo hppa1.0-hp-bsd
	exit ;;
 9??:MPE/iX:*:* | *3000*:MPE/iX:*:*)
	echo hppa1.0-hp-mpeix
	exit ;;
 hp7??:OSF1:*:* | hp8?[79]:OSF1:*:*)
	echo hppa1.1-hp-osf
	exit ;;
 hp8??:OSF1:*:*)
	echo hppa1.0-hp-osf
	exit ;;
 i*86:OSF1:*:*)
	if [-x /usr/sbin/sysversion] ; then
	 echo ${UNAME_MACHINE}-unknown-osf1mk
	else
	 echo ${UNAME_MACHINE}-unknown-osf1
	fi
	exit ;;
 parisc*:Lites*:*:*)
	echo hppa1.1-hp-lites
	exit ;;
 C1*:ConvexOS:*:* | convex:ConvexOS:C1*:*)
	echo c1-convex-bsd
	exit ;;
 C2*:ConvexOS:*:* | convex:ConvexOS:C2*:*)
	if getsysinfo -f scalar_acc
	then echo c32-convex-bsd
	else echo c2-convex-bsd
	fi
	exit ;;
 C34*:ConvexOS:*:* | convex:ConvexOS:C34*:*)
	echo c34-convex-bsd
	exit ;;
 C38*:ConvexOS:*:* | convex:ConvexOS:C38*:*)
	echo c38-convex-bsd
	exit ;;
 C4*:ConvexOS:*:* | convex:ConvexOS:C4*:*)
	echo c4-convex-bsd
	exit ;;
 CRAY*Y-MP:*:*:*)
	echo ymp-cray-unicos${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/'
	exit ;;
 CRAY*[A-Z]90:*:*:*)
	echo ${UNAME_MACHINE}-cray-unicos${UNAME_RELEASE} \
	| sed -e 's/CRAY.*\([A-Z]90\)/\1/' \
	 -e y/ABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefghijklmnopqrstuvwxyz/ \
	 -e 's/\.[^.]*$/.X/'
	exit ;;
 CRAY*TS:*:*:*)
	echo t90-cray-unicos${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/'
	exit ;;
 CRAY*T3E:*:*:*)
	echo alphaev5-cray-unicosmk${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/'
	exit ;;
 CRAY*SV1:*:*:*)
	echo sv1-cray-unicos${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/'
	exit ;;
 :UNICOS/mp::*)
	echo craynv-cray-unicosmp${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/'
	exit ;;
 F30[01]:UNIX_System_V:*:* | F700:UNIX_System_V:*:*)
	FUJITSU_PROC=`uname -m | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz'`
	FUJITSU_SYS=`uname -p | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' | sed -e 's/\///'`
	FUJITSU_REL=`echo ${UNAME_RELEASE} | sed -e 's/ /_/'`
	echo "${FUJITSU_PROC}-fujitsu-${FUJITSU_SYS}${FUJITSU_REL}"
	exit ;;
 5000:UNIX_System_V:4.*:*)
	FUJITSU_SYS=`uname -p | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' | sed -e 's/\///'`
	FUJITSU_REL=`echo ${UNAME_RELEASE} | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' | sed -e 's/ /_/'`
	echo "sparc-fujitsu-${FUJITSU_SYS}${FUJITSU_REL}"
	exit ;;
 i*86:BSD/386:*:* | i*86:BSD/OS:*:* | *:Ascend\ Embedded/OS:*:*)
	echo ${UNAME_MACHINE}-pc-bsdi${UNAME_RELEASE}
	exit ;;
 sparc*:BSD/OS:*:*)
	echo sparc-unknown-bsdi${UNAME_RELEASE}
	exit ;;
 :BSD/OS::*)
	echo ${UNAME_MACHINE}-unknown-bsdi${UNAME_RELEASE}
	exit ;;
 :FreeBSD::*)
	UNAME_PROCESSOR=`/usr/bin/uname -p`
	case ${UNAME_PROCESSOR} in
	 amd64)
		echo x86_64-unknown-freebsd`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'` ;;
	 *)
		echo ${UNAME_PROCESSOR}-unknown-freebsd`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'` ;;
	esac
	exit ;;
 i*:CYGWIN*:*)
	echo ${UNAME_MACHINE}-pc-cygwin
	exit ;;
 :MINGW:*)
	echo ${UNAME_MACHINE}-pc-mingw32
	exit ;;
 i*:MSYS*:*)
	echo ${UNAME_MACHINE}-pc-msys
	exit ;;
 i*:windows32*:*)
	# uname -m includes "-pc" on this system.
	echo ${UNAME_MACHINE}-mingw32
	exit ;;
 i*:PW*:*)
	echo ${UNAME_MACHINE}-pc-pw32
	exit ;;
 :Interix:*)
	case ${UNAME_MACHINE} in
	 x86)
		echo i586-pc-interix${UNAME_RELEASE}
		exit ;;
	 authenticamd | genuineintel | EM64T)
		echo x86_64-unknown-interix${UNAME_RELEASE}
		exit ;;
	 IA64)
		echo ia64-unknown-interix${UNAME_RELEASE}
		exit ;;
	esac ;;
 [345]86:Windows_95:* | [345]86:Windows_98:* | [345]86:Windows_NT:*)
	echo i${UNAME_MACHINE}-pc-mks
	exit ;;
 8664:Windows_NT:*)
	echo x86_64-pc-mks
	exit ;;
 i*:Windows_NT*:* | Pentium*:Windows_NT*:*)
	# How do we know it's Interix rather than the generic POSIX subsystem?
	# It also conflicts with pre-2.0 versions of AT&T UWIN. Should we
	# UNAME_MACHINE based on the output of uname instead of i386?
	echo i586-pc-interix
	exit ;;
 i*:UWIN*:*)
	echo ${UNAME_MACHINE}-pc-uwin
	exit ;;
 amd64:CYGWIN*:*:* | x86_64:CYGWIN*:*:*)
	echo x86_64-unknown-cygwin
	exit ;;
 p*:CYGWIN*:*)
	echo powerpcle-unknown-cygwin
	exit ;;
 prep*:SunOS:5.*:*)
	echo powerpcle-unknown-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'`
	exit ;;
 :GNU::*)
	# the GNU system
	echo `echo ${UNAME_MACHINE}|sed -e 's,[-/].*$,,'`-unknown-gnu`echo ${UNAME_RELEASE}|sed -e 's,/.*$,,'`
	exit ;;
 :GNU/:*:*)
	# other systems with GNU libc and userland
	echo ${UNAME_MACHINE}-unknown-`echo ${UNAME_SYSTEM} | sed 's,^[^/]*/,,' | tr '[A-Z]' '[a-z]'``echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'`-gnu
	exit ;;
 i*86:Minix:*:*)
	echo ${UNAME_MACHINE}-pc-minix
	exit ;;
 aarch64:Linux:*:*)
	echo ${UNAME_MACHINE}-unknown-linux-gnu
	exit ;;
 aarch64_be:Linux:*:*)
	UNAME_MACHINE=aarch64_be
	echo ${UNAME_MACHINE}-unknown-linux-gnu
	exit ;;
 alpha:Linux:*:*)
	case `sed -n '/^cpu model/s/^.*: \(.*\)/\1/p' < /proc/cpuinfo` in
	 EV5) UNAME_MACHINE=alphaev5 ;;
	 EV56) UNAME_MACHINE=alphaev56 ;;
	 PCA56) UNAME_MACHINE=alphapca56 ;;
	 PCA57) UNAME_MACHINE=alphapca56 ;;
	 EV6) UNAME_MACHINE=alphaev6 ;;
	 EV67) UNAME_MACHINE=alphaev67 ;;
	 EV68*) UNAME_MACHINE=alphaev68 ;;
	esac
	objdump --private-headers /bin/sh | grep -q ld.so.1
	if test "$?" = 0 ; then LIBC="libc1" ; else LIBC="" ; fi
	echo ${UNAME_MACHINE}-unknown-linux-gnu${LIBC}
	exit ;;
 arm*:Linux:*:*)
	eval $set_cc_for_build
	if echo __ARM_EABI__ | $CC_FOR_BUILD -E - 2>/dev/null \
	 | grep -q __ARM_EABI__
	then
	 echo ${UNAME_MACHINE}-unknown-linux-gnu
	else
	 if echo __ARM_PCS_VFP | $CC_FOR_BUILD -E - 2>/dev/null \
		| grep -q __ARM_PCS_VFP
	 then
		echo ${UNAME_MACHINE}-unknown-linux-gnueabi
	 else
		echo ${UNAME_MACHINE}-unknown-linux-gnueabihf
	 fi
	fi
	exit ;;
 avr32*:Linux:*:*)
	echo ${UNAME_MACHINE}-unknown-linux-gnu
	exit ;;
 cris:Linux:*:*)
	echo ${UNAME_MACHINE}-axis-linux-gnu
	exit ;;
 crisv32:Linux:*:*)
	echo ${UNAME_MACHINE}-axis-linux-gnu
	exit ;;
 frv:Linux:*:*)
	echo ${UNAME_MACHINE}-unknown-linux-gnu
	exit ;;
 hexagon:Linux:*:*)
	echo ${UNAME_MACHINE}-unknown-linux-gnu
	exit ;;
 i*86:Linux:*:*)
	LIBC=gnu
	eval $set_cc_for_build
	sed 's/^	//' << EOF >$dummy.c
	#ifdef __dietlibc__
	LIBC=dietlibc
	#endif
EOF
	eval `$CC_FOR_BUILD -E $dummy.c 2>/dev/null | grep '^LIBC'`
	echo "${UNAME_MACHINE}-pc-linux-${LIBC}"
	exit ;;
 ia64:Linux:*:*)
	echo ${UNAME_MACHINE}-unknown-linux-gnu
	exit ;;
 m32r*:Linux:*:*)
	echo ${UNAME_MACHINE}-unknown-linux-gnu
	exit ;;
 m68*:Linux:*:*)
	echo ${UNAME_MACHINE}-unknown-linux-gnu
	exit ;;
 mips:Linux:*:* | mips64:Linux:*:*)
	eval $set_cc_for_build
	sed 's/^	//' << EOF >$dummy.c
	#undef CPU
	#undef ${UNAME_MACHINE}
	#undef ${UNAME_MACHINE}el
	#if defined(__MIPSEL__) || defined(__MIPSEL) || defined(_MIPSEL) || defined(MIPSEL)
	CPU=${UNAME_MACHINE}el
	#else
	#if defined(__MIPSEB__) || defined(__MIPSEB) || defined(_MIPSEB) || defined(MIPSEB)
	CPU=${UNAME_MACHINE}
	#else
	CPU=
	#endif
	#endif
EOF
	eval `$CC_FOR_BUILD -E $dummy.c 2>/dev/null | grep '^CPU'`
	test x"${CPU}" != x && { echo "${CPU}-unknown-linux-gnu"; exit; }
	;;
 or32:Linux:*:*)
	echo ${UNAME_MACHINE}-unknown-linux-gnu
	exit ;;
 padre:Linux:*:*)
	echo sparc-unknown-linux-gnu
	exit ;;
 parisc64:Linux:*:* | hppa64:Linux:*:*)
	echo hppa64-unknown-linux-gnu
	exit ;;
 parisc:Linux:*:* | hppa:Linux:*:*)
	# Look for CPU level
	case `grep '^cpu[^a-z]*:' /proc/cpuinfo 2>/dev/null | cut -d' ' -f2` in
	 PA7*) echo hppa1.1-unknown-linux-gnu ;;
	 PA8*) echo hppa2.0-unknown-linux-gnu ;;
	 *) echo hppa-unknown-linux-gnu ;;
	esac
	exit ;;
 ppc64:Linux:*:*)
	echo powerpc64-unknown-linux-gnu
	exit ;;
 ppc:Linux:*:*)
	echo powerpc-unknown-linux-gnu
	exit ;;
 s390:Linux:*:* | s390x:Linux:*:*)
	echo ${UNAME_MACHINE}-ibm-linux
	exit ;;
 sh64*:Linux:*:*)
	echo ${UNAME_MACHINE}-unknown-linux-gnu
	exit ;;
 sh*:Linux:*:*)
	echo ${UNAME_MACHINE}-unknown-linux-gnu
	exit ;;
 sparc:Linux:*:* | sparc64:Linux:*:*)
	echo ${UNAME_MACHINE}-unknown-linux-gnu
	exit ;;
 tile*:Linux:*:*)
	echo ${UNAME_MACHINE}-unknown-linux-gnu
	exit ;;
 vax:Linux:*:*)
	echo ${UNAME_MACHINE}-dec-linux-gnu
	exit ;;
 x86_64:Linux:*:*)
	echo ${UNAME_MACHINE}-unknown-linux-gnu
	exit ;;
 xtensa*:Linux:*:*)
	echo ${UNAME_MACHINE}-unknown-linux-gnu
	exit ;;
 i*86:DYNIX/ptx:4*:*)
	# ptx 4.0 does uname -s correctly, with DYNIX/ptx in there.
	# earlier versions are messed up and put the nodename in both
	# sysname and nodename.
	echo i386-sequent-sysv4
	exit ;;
 i*86:UNIX_SV:4.2MP:2.*)
	# Unixware is an offshoot of SVR4, but it has its own version
	# number series starting with 2...
	# I am not positive that other SVR4 systems won't match this,
	# I just have to hope. -- rms.
	# Use sysv4.2uw... so that sysv4* matches it.
	echo ${UNAME_MACHINE}-pc-sysv4.2uw${UNAME_VERSION}
	exit ;;
 i*86:OS/2:*:*)
	# If we were able to find `uname', then EMX Unix compatibility
	# is probably installed.
	echo ${UNAME_MACHINE}-pc-os2-emx
	exit ;;
 i*86:XTS-300:*:STOP)
	echo ${UNAME_MACHINE}-unknown-stop
	exit ;;
 i*86:atheos:*:*)
	echo ${UNAME_MACHINE}-unknown-atheos
	exit ;;
 i*86:syllable:*:*)
	echo ${UNAME_MACHINE}-pc-syllable
	exit ;;
 i*86:LynxOS:2.*:* | i*86:LynxOS:3.[01]*:* | i*86:LynxOS:4.[02]*:*)
	echo i386-unknown-lynxos${UNAME_RELEASE}
	exit ;;
 i*86:*DOS:*:*)
	echo ${UNAME_MACHINE}-pc-msdosdjgpp
	exit ;;
 i*86:*:4.*:* | i*86:SYSTEM_V:4.*:*)
	UNAME_REL=`echo ${UNAME_RELEASE} | sed 's/\/MP$//'`
	if grep Novell /usr/include/link.h >/dev/null 2>/dev/null; then
		echo ${UNAME_MACHINE}-univel-sysv${UNAME_REL}
	else
		echo ${UNAME_MACHINE}-pc-sysv${UNAME_REL}
	fi
	exit ;;
 i*86:*:5:[678]*)
	# UnixWare 7.x, OpenUNIX and OpenServer 6.
	case `/bin/uname -X | grep "^Machine"` in
	 486)	 UNAME_MACHINE=i486 ;;
	 *Pentium)	 UNAME_MACHINE=i586 ;;
	 Pent|*Celeron) UNAME_MACHINE=i686 ;;
	esac
	echo ${UNAME_MACHINE}-unknown-sysv${UNAME_RELEASE}${UNAME_SYSTEM}${UNAME_VERSION}
	exit ;;
 i*86:*:3.2:*)
	if test -f /usr/options/cb.name; then
		UNAME_REL=`sed -n 's/.*Version //p' </usr/options/cb.name`
		echo ${UNAME_MACHINE}-pc-isc$UNAME_REL
	elif /bin/uname -X 2>/dev/null >/dev/null ; then
		UNAME_REL=`(/bin/uname -X|grep Release|sed -e 's/.*= //')`
		(/bin/uname -X|grep i80486 >/dev/null) && UNAME_MACHINE=i486
		(/bin/uname -X|grep '^Machine.*Pentium' >/dev/null) \
			&& UNAME_MACHINE=i586
		(/bin/uname -X|grep '^Machine.*Pent *II' >/dev/null) \
			&& UNAME_MACHINE=i686
		(/bin/uname -X|grep '^Machine.*Pentium Pro' >/dev/null) \
			&& UNAME_MACHINE=i686
		echo ${UNAME_MACHINE}-pc-sco$UNAME_REL
	else
		echo ${UNAME_MACHINE}-pc-sysv32
	fi
	exit ;;
 pc:*:*:*)
	# Left here for compatibility:
	# uname -m prints for DJGPP always 'pc', but it prints nothing about
	# the processor, so we play safe by assuming i586.
	# Note: whatever this is, it MUST be the same as what config.sub
	# prints for the "djgpp" host, or else GDB configury will decide that
	# this is a cross-build.
	echo i586-pc-msdosdjgpp
	exit ;;
 Intel:Mach:3*:*)
	echo i386-pc-mach3
	exit ;;
 paragon:*:*:*)
	echo i860-intel-osf1
	exit ;;
 i860:*:4.*:*) # i860-SVR4
	if grep Stardent /usr/include/sys/uadmin.h >/dev/null 2>&1 ; then
	 echo i860-stardent-sysv${UNAME_RELEASE} # Stardent Vistra i860-SVR4
	else # Add other i860-SVR4 vendors below as they are discovered.
	 echo i860-unknown-sysv${UNAME_RELEASE} # Unknown i860-SVR4
	fi
	exit ;;
 mini*:CTIX:SYS*5:*)
	# "miniframe"
	echo m68010-convergent-sysv
	exit ;;
 mc68k:UNIX:SYSTEM5:3.51m)
	echo m68k-convergent-sysv
	exit ;;
 M680?0:D-NIX:5.3:*)
	echo m68k-diab-dnix
	exit ;;
 M68*:*:R3V[5678]*:*)
	test -r /sysV68 && { echo 'm68k-motorola-sysv'; exit; } ;;
 3[345]??:*:4.0:3.0 | 3[34]??A:*:4.0:3.0 | 3[34]??,*:*:4.0:3.0 | 3[34]??/*:*:4.0:3.0 | 4400:*:4.0:3.0 | 4850:*:4.0:3.0 | SKA40:*:4.0:3.0 | SDS2:*:4.0:3.0 | SHG2:*:4.0:3.0 | S7501*:*:4.0:3.0)
	OS_REL=''
	test -r /etc/.relid \
	&& OS_REL=.`sed -n 's/[^]* [^]* \([0-9][0-9]\).*/\1/p' < /etc/.relid`
	/bin/uname -p 2>/dev/null | grep 86 >/dev/null \
	 && { echo i486-ncr-sysv4.3${OS_REL}; exit; }
	/bin/uname -p 2>/dev/null | /bin/grep entium >/dev/null \
	 && { echo i586-ncr-sysv4.3${OS_REL}; exit; } ;;
 3[34]??:*:4.0:* | 3[34]??,*:*:4.0:*)
	/bin/uname -p 2>/dev/null | grep 86 >/dev/null \
	 && { echo i486-ncr-sysv4; exit; } ;;
 NCR*:*:4.2:* | MPRAS*:*:4.2:*)
	OS_REL='.3'
	test -r /etc/.relid \
	 && OS_REL=.`sed -n 's/[^]* [^]* \([0-9][0-9]\).*/\1/p' < /etc/.relid`
	/bin/uname -p 2>/dev/null | grep 86 >/dev/null \
	 && { echo i486-ncr-sysv4.3${OS_REL}; exit; }
	/bin/uname -p 2>/dev/null | /bin/grep entium >/dev/null \
	 && { echo i586-ncr-sysv4.3${OS_REL}; exit; }
	/bin/uname -p 2>/dev/null | /bin/grep pteron >/dev/null \
	 && { echo i586-ncr-sysv4.3${OS_REL}; exit; } ;;
 m68*:LynxOS:2.*:* | m68*:LynxOS:3.0*:*)
	echo m68k-unknown-lynxos${UNAME_RELEASE}
	exit ;;
 mc68030:UNIX_System_V:4.*:*)
	echo m68k-atari-sysv4
	exit ;;
 TSUNAMI:LynxOS:2.*:*)
	echo sparc-unknown-lynxos${UNAME_RELEASE}
	exit ;;
 rs6000:LynxOS:2.*:*)
	echo rs6000-unknown-lynxos${UNAME_RELEASE}
	exit ;;
 PowerPC:LynxOS:2.*:* | PowerPC:LynxOS:3.[01]*:* | PowerPC:LynxOS:4.[02]*:*)
	echo powerpc-unknown-lynxos${UNAME_RELEASE}
	exit ;;
 SM[BE]S:UNIX_SV:*:*)
	echo mips-dde-sysv${UNAME_RELEASE}
	exit ;;
 RM*:ReliantUNIX-*:*:*)
	echo mips-sni-sysv4
	exit ;;
 RM*:SINIX-*:*:*)
	echo mips-sni-sysv4
	exit ;;
 :SINIX-:*:*)
	if uname -p 2>/dev/null >/dev/null ; then
		UNAME_MACHINE=`(uname -p) 2>/dev/null`
		echo ${UNAME_MACHINE}-sni-sysv4
	else
		echo ns32k-sni-sysv
	fi
	exit ;;
 PENTIUM:*:4.0*:*)	# Unisys `ClearPath HMP IX 4000' SVR4/MP effort
			# says <Richard.M.Bartel@ccMail.Census.GOV>
	echo i586-unisys-sysv4
	exit ;;
 :UNIX_System_V:4:FTX*)
	# From Gerald Hewes <hewes@openmarket.com>.
	# How about differentiating between stratus architectures? -djm
	echo hppa1.1-stratus-sysv4
	exit ;;
 ::*:FTX*)
	# From seanf@swdc.stratus.com.
	echo i860-stratus-sysv4
	exit ;;
 i*86:VOS:*:*)
	# From Paul.Green@stratus.com.
	echo ${UNAME_MACHINE}-stratus-vos
	exit ;;
 :VOS::*)
	# From Paul.Green@stratus.com.
	echo hppa1.1-stratus-vos
	exit ;;
 mc68*:A/UX:*:*)
	echo m68k-apple-aux${UNAME_RELEASE}
	exit ;;
 news*:NEWS-OS:6*:*)
	echo mips-sony-newsos6
	exit ;;
 R[34]000:*System_V*:*:* | R4000:UNIX_SYSV:*:* | R*000:UNIX_SV:*:*)
	if [-d /usr/nec]; then
		echo mips-nec-sysv${UNAME_RELEASE}
	else
		echo mips-unknown-sysv${UNAME_RELEASE}
	fi
	exit ;;
 BeBox:BeOS:*:*)	# BeOS running on hardware made by Be, PPC only.
	echo powerpc-be-beos
	exit ;;
 BeMac:BeOS:*:*)	# BeOS running on Mac or Mac clone, PPC only.
	echo powerpc-apple-beos
	exit ;;
 BePC:BeOS:*:*)	# BeOS running on Intel PC compatible.
	echo i586-pc-beos
	exit ;;
 BePC:Haiku:*:*)	# Haiku running on Intel PC compatible.
	echo i586-pc-haiku
	exit ;;
 SX-4:SUPER-UX:*:*)
	echo sx4-nec-superux${UNAME_RELEASE}
	exit ;;
 SX-5:SUPER-UX:*:*)
	echo sx5-nec-superux${UNAME_RELEASE}
	exit ;;
 SX-6:SUPER-UX:*:*)
	echo sx6-nec-superux${UNAME_RELEASE}
	exit ;;
 SX-7:SUPER-UX:*:*)
	echo sx7-nec-superux${UNAME_RELEASE}
	exit ;;
 SX-8:SUPER-UX:*:*)
	echo sx8-nec-superux${UNAME_RELEASE}
	exit ;;
 SX-8R:SUPER-UX:*:*)
	echo sx8r-nec-superux${UNAME_RELEASE}
	exit ;;
 Power*:Rhapsody:*:*)
	echo powerpc-apple-rhapsody${UNAME_RELEASE}
	exit ;;
 :Rhapsody::*)
	echo ${UNAME_MACHINE}-apple-rhapsody${UNAME_RELEASE}
	exit ;;
 :Darwin::*)
	UNAME_PROCESSOR=`uname -p` || UNAME_PROCESSOR=unknown
	case $UNAME_PROCESSOR in
	 i386)
		eval $set_cc_for_build
		if ["$CC_FOR_BUILD" != 'no_compiler_found']; then
		 if (echo '#ifdef __LP64__'; echo IS_64BIT_ARCH; echo '#endif') | \
		 (CCOPTS= $CC_FOR_BUILD -E - 2>/dev/null) | \
		 grep IS_64BIT_ARCH >/dev/null
		 then
		 UNAME_PROCESSOR="x86_64"
		 fi
		fi ;;
	 unknown) UNAME_PROCESSOR=powerpc ;;
	esac
	echo ${UNAME_PROCESSOR}-apple-darwin${UNAME_RELEASE}
	exit ;;
 :procnto:*:* | *:QNX:[0123456789]*:*)
	UNAME_PROCESSOR=`uname -p`
	if test "$UNAME_PROCESSOR" = "x86"; then
		UNAME_PROCESSOR=i386
		UNAME_MACHINE=pc
	fi
	echo ${UNAME_PROCESSOR}-${UNAME_MACHINE}-nto-qnx${UNAME_RELEASE}
	exit ;;
 :QNX::4*)
	echo i386-pc-qnx
	exit ;;
 NEO-?:NONSTOP_KERNEL:*:*)
	echo neo-tandem-nsk${UNAME_RELEASE}
	exit ;;
 NSE-?:NONSTOP_KERNEL:*:*)
	echo nse-tandem-nsk${UNAME_RELEASE}
	exit ;;
 NSR-?:NONSTOP_KERNEL:*:*)
	echo nsr-tandem-nsk${UNAME_RELEASE}
	exit ;;
 :NonStop-UX::*)
	echo mips-compaq-nonstopux
	exit ;;
 BS2000:POSIX*:*:*)
	echo bs2000-siemens-sysv
	exit ;;
 DS/*:UNIX_System_V:*:*)
	echo ${UNAME_MACHINE}-${UNAME_SYSTEM}-${UNAME_RELEASE}
	exit ;;
 :Plan9::*)
	# "uname -m" is not consistent, so use $cputype instead. 386
	# is converted to i386 for consistency with other x86
	# operating systems.
	if test "$cputype" = "386"; then
	 UNAME_MACHINE=i386
	else
	 UNAME_MACHINE="$cputype"
	fi
	echo ${UNAME_MACHINE}-unknown-plan9
	exit ;;
 :TOPS-10::*)
	echo pdp10-unknown-tops10
	exit ;;
 :TENEX::*)
	echo pdp10-unknown-tenex
	exit ;;
 KS10:TOPS-20:*:* | KL10:TOPS-20:*:* | TYPE4:TOPS-20:*:*)
	echo pdp10-dec-tops20
	exit ;;
 XKL-1:TOPS-20:*:* | TYPE5:TOPS-20:*:*)
	echo pdp10-xkl-tops20
	exit ;;
 :TOPS-20::*)
	echo pdp10-unknown-tops20
	exit ;;
 :ITS::*)
	echo pdp10-unknown-its
	exit ;;
 SEI:*:*:SEIUX)
	echo mips-sei-seiux${UNAME_RELEASE}
	exit ;;
 :DragonFly::*)
	echo ${UNAME_MACHINE}-unknown-dragonfly`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'`
	exit ;;
 *:*VMS:*:*)
	UNAME_MACHINE=`(uname -p) 2>/dev/null`
	case "${UNAME_MACHINE}" in
	 A*) echo alpha-dec-vms ; exit ;;
	 I*) echo ia64-dec-vms ; exit ;;
	 V*) echo vax-dec-vms ; exit ;;
	esac ;;
 :XENIX::SysV)
	echo i386-pc-xenix
	exit ;;
 i*86:skyos:*:*)
	echo ${UNAME_MACHINE}-pc-skyos`echo ${UNAME_RELEASE}` | sed -e 's/ .*$//'
	exit ;;
 i*86:rdos:*:*)
	echo ${UNAME_MACHINE}-pc-rdos
	exit ;;
 i*86:AROS:*:*)
	echo ${UNAME_MACHINE}-pc-aros
	exit ;;
 x86_64:VMkernel:*:*)
	echo ${UNAME_MACHINE}-unknown-esx
	exit ;;
esac

#echo '(No uname command or uname output not recognized.)' 1>&2
#echo "${UNAME_MACHINE}:${UNAME_SYSTEM}:${UNAME_RELEASE}:${UNAME_VERSION}" 1>&2

eval $set_cc_for_build
cat >$dummy.c <<EOF
#ifdef _SEQUENT_
include <sys/types.h>
include <sys/utsname.h>
#endif
main ()
{
#if defined (sony)
#if defined (MIPSEB)
 /* BFD wants "bsd" instead of "newsos". Perhaps BFD should be changed,
 I don't know.... */
 printf ("mips-sony-bsd\n"); exit (0);
#else
#include <sys/param.h>
 printf ("m68k-sony-newsos%s\n",
#ifdef NEWSOS4
	"4"
#else
	""
#endif
); exit (0);
#endif
#endif

#if defined (__arm) && defined (__acorn) && defined (__unix)
 printf ("arm-acorn-riscix\n"); exit (0);
#endif

#if defined (hp300) && !defined (hpux)
 printf ("m68k-hp-bsd\n"); exit (0);
#endif

#if defined (NeXT)
#if !defined (__ARCHITECTURE__)
#define __ARCHITECTURE__ "m68k"
#endif
 int version;
 version=`(hostinfo | sed -n 's/.*NeXT Mach \([0-9]*\).*/\1/p') 2>/dev/null`;
 if (version < 4)
 printf ("%s-next-nextstep%d\n", __ARCHITECTURE__, version);
 else
 printf ("%s-next-openstep%d\n", __ARCHITECTURE__, version);
 exit (0);
#endif

#if defined (MULTIMAX) || defined (n16)
#if defined (UMAXV)
 printf ("ns32k-encore-sysv\n"); exit (0);
#else
#if defined (CMU)
 printf ("ns32k-encore-mach\n"); exit (0);
#else
 printf ("ns32k-encore-bsd\n"); exit (0);
#endif
#endif
#endif

#if defined (__386BSD__)
 printf ("i386-pc-bsd\n"); exit (0);
#endif

#if defined (sequent)
#if defined (i386)
 printf ("i386-sequent-dynix\n"); exit (0);
#endif
#if defined (ns32000)
 printf ("ns32k-sequent-dynix\n"); exit (0);
#endif
#endif

#if defined (_SEQUENT_)
 struct utsname un;

 uname(&un);

 if (strncmp(un.version, "V2", 2) == 0) {
	printf ("i386-sequent-ptx2\n"); exit (0);
 }
 if (strncmp(un.version, "V1", 2) == 0) { /* XXX is V1 correct? */
	printf ("i386-sequent-ptx1\n"); exit (0);
 }
 printf ("i386-sequent-ptx\n"); exit (0);

#endif

#if defined (vax)
if !defined (ultrix)
include <sys/param.h>
if defined (BSD)
if BSD == 43
 printf ("vax-dec-bsd4.3\n"); exit (0);
else
if BSD == 199006
 printf ("vax-dec-bsd4.3reno\n"); exit (0);
else
 printf ("vax-dec-bsd\n"); exit (0);
endif
endif
else
 printf ("vax-dec-bsd\n"); exit (0);
endif
else
 printf ("vax-dec-ultrix\n"); exit (0);
endif
#endif

#if defined (alliant) && defined (i860)
 printf ("i860-alliant-bsd\n"); exit (0);
#endif

 exit (1);
}
EOF

$CC_FOR_BUILD -o $dummy $dummy.c 2>/dev/null && SYSTEM_NAME=`$dummy` &&
	{ echo "$SYSTEM_NAME"; exit; }

Apollos put the system type in the environment.

test -d /usr/apollo && { echo ${ISP}-apollo-${SYSTYPE}; exit; }

Convex versions that predate uname can use getsysinfo(1)

if [-x /usr/convex/getsysinfo]
then
 case `getsysinfo -f cpu_type` in
 c1*)
	echo c1-convex-bsd
	exit ;;
 c2*)
	if getsysinfo -f scalar_acc
	then echo c32-convex-bsd
	else echo c2-convex-bsd
	fi
	exit ;;
 c34*)
	echo c34-convex-bsd
	exit ;;
 c38*)
	echo c38-convex-bsd
	exit ;;
 c4*)
	echo c4-convex-bsd
	exit ;;
 esac
fi

cat >&2 <<EOF
$0: unable to guess system type

This script, last modified $timestamp, has failed to recognize
the operating system you are using. It is advised that you
download the most up to date version of the config scripts from

 http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD
and
 http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD

If the version you run ($0) is already up to date, please
send the following data and any information you think might be
pertinent to <config-patches@gnu.org> in order to provide the needed
information to handle your system.

config.guess timestamp = $timestamp

uname -m = `(uname -m) 2>/dev/null || echo unknown`
uname -r = `(uname -r) 2>/dev/null || echo unknown`
uname -s = `(uname -s) 2>/dev/null || echo unknown`
uname -v = `(uname -v) 2>/dev/null || echo unknown`

/usr/bin/uname -p = `(/usr/bin/uname -p) 2>/dev/null`
/bin/uname -X = `(/bin/uname -X) 2>/dev/null`

hostinfo = `(hostinfo) 2>/dev/null`
/bin/universe = `(/bin/universe) 2>/dev/null`
/usr/bin/arch -k = `(/usr/bin/arch -k) 2>/dev/null`
/bin/arch = `(/bin/arch) 2>/dev/null`
/usr/bin/oslevel = `(/usr/bin/oslevel) 2>/dev/null`
/usr/convex/getsysinfo = `(/usr/convex/getsysinfo) 2>/dev/null`

UNAME_MACHINE = ${UNAME_MACHINE}
UNAME_RELEASE = ${UNAME_RELEASE}
UNAME_SYSTEM = ${UNAME_SYSTEM}
UNAME_VERSION = ${UNAME_VERSION}
EOF

exit 1

Local variables:
eval: (add-hook 'write-file-hooks 'time-stamp)
time-stamp-start: "timestamp='"
time-stamp-format: "%:y-%02m-%02d"
time-stamp-end: "'"
End:

qpdf-7.1.0/configure

#! /bin/sh
Guess values for system-dependent variables and create Makefiles.
Generated by GNU Autoconf 2.69 for qpdf 7.1.0.
#
#
Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
#
#
This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.

M4sh Initialization.

Be more Bourne compatible
DUALCASE=1; export DUALCASE # for MKS sh
if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then :
 emulate sh
 NULLCMD=:
 # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which
 # is contrary to our usage. Disable this feature.
 alias -g '${1+"$@"}'='"$@"'
 setopt NO_GLOB_SUBST
else
 case `(set -o) 2>/dev/null` in #(
 posix) :
 set -o posix ;; #(
 *) :
 ;;
esac
fi

as_nl='
'
export as_nl
Printing a long string crashes Solaris 7 /usr/bin/printf.
as_echo='\\\'
as_echo=as_echoas_echoas_echoas_echo$as_echo
as_echo=as_echoas_echoas_echoas_echoas_echoas_echo
Prefer a ksh shell builtin over an external printf program on Solaris,
but without wasting forks for bash or zsh.
if test -z "$BASH_VERSION$ZSH_VERSION" \
 && (test "X`print -r -- $as_echo`" = "X$as_echo") 2>/dev/null; then
 as_echo='print -r --'
 as_echo_n='print -rn --'
elif (test "X`printf %s $as_echo`" = "X$as_echo") 2>/dev/null; then
 as_echo='printf %s\n'
 as_echo_n='printf %s'
else
 if test "X`(/usr/ucb/echo -n -n $as_echo) 2>/dev/null`" = "X-n $as_echo"; then
 as_echo_body='eval /usr/ucb/echo -n "1as_nl"'
 as_echo_n='/usr/ucb/echo -n'
 else
 as_echo_body='eval expr "X$1" : "X\\(.*\\)"'
 as_echo_n_body='eval
 arg=$1;
 case $arg in #(
 "$as_nl")
	expr "X$arg" : "X\\(.*\\)$as_nl";
	arg=`expr "X$arg" : ".*$as_nl\\(.*\\)"`;;
 esac;
 expr "X$arg" : "X\\(.*\\)" | tr -d "$as_nl"
 '
 export as_echo_n_body
 as_echo_n='sh -c $as_echo_n_body as_echo'
 fi
 export as_echo_body
 as_echo='sh -c $as_echo_body as_echo'
fi

The user is always right.
if test "${PATH_SEPARATOR+set}" != set; then
 PATH_SEPARATOR=:
 (PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && {
 (PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 ||
 PATH_SEPARATOR=';'
 }
fi

IFS
We need space, tab and new line, in precisely that order. Quoting is
there to prevent editors from complaining about space-tab.
(If _AS_PATH_WALK were called with IFS unset, it would disable word
splitting by setting IFS to empty value.)
IFS=" ""	$as_nl"

Find who we are. Look in the path if we contain no directory separator.
as_myself=
case $0 in #((
 [\\/]) as_myself=$0 ;;
 *) as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 test -r "$as_dir/$0" && as_myself=$as_dir/$0 && break
 done
IFS=$as_save_IFS

 ;;
esac
We did not find ourselves, most probably we were run as `sh COMMAND'
in which case we are not to be found in the path.
if test "x$as_myself" = x; then
 as_myself=$0
fi
if test ! -f "$as_myself"; then
 $as_echo "$as_myself: error: cannot find myself; rerun with an absolute file name" >&2
 exit 1
fi

Unset variables that we do not need and which cause bugs (e.g. in
pre-3.0 UWIN ksh). But do not cause bugs in bash 2.01; the "|| exit 1"
suppresses any "Segmentation fault" message there. '((' could
trigger a bug in pdksh 5.2.14.
for as_var in BASH_ENV ENV MAIL MAILPATH
do eval test x\${$as_var+set} = xset \
 && ((unset $as_var) || exit 1) >/dev/null 2>&1 && unset $as_var || :
done
PS1='$ '
PS2='> '
PS4='+ '

NLS nuisances.
LC_ALL=C
export LC_ALL
LANGUAGE=C
export LANGUAGE

CDPATH.
(unset CDPATH) >/dev/null 2>&1 && unset CDPATH

Use a proper internal environment variable to ensure we don't fall
 # into an infinite loop, continuously re-executing ourselves.
 if test x"${_as_can_reexec}" != xno && test "x$CONFIG_SHELL" != x; then
 _as_can_reexec=no; export _as_can_reexec;
 # We cannot yet assume a decent shell, so we have to provide a
neutralization value for shells without unset; and this also
works around shells that cannot unset nonexistent variables.
Preserve -v and -x to the replacement shell.
BASH_ENV=/dev/null
ENV=/dev/null
(unset BASH_ENV) >/dev/null 2>&1 && unset BASH_ENV ENV
case $- in # ((((
 *v*x* | *x*v*) as_opts=-vx ;;
 v) as_opts=-v ;;
 x) as_opts=-x ;;
 *) as_opts= ;;
esac
exec $CONFIG_SHELL $as_opts "$as_myself" ${1+"$@"}
Admittedly, this is quite paranoid, since all the known shells bail
out after a failed `exec'.
$as_echo "$0: could not re-execute with $CONFIG_SHELL" >&2
as_fn_exit 255
 fi
 # We don't want this to propagate to other subprocesses.
 { _as_can_reexec=; unset _as_can_reexec;}
if test "x$CONFIG_SHELL" = x; then
 as_bourne_compatible="if test -n \"\${ZSH_VERSION+set}\" && (emulate sh) >/dev/null 2>&1; then :
 emulate sh
 NULLCMD=:
 # Pre-4.2 versions of Zsh do word splitting on \${1+\"\$@\"}, which
 # is contrary to our usage. Disable this feature.
 alias -g '\${1+\"\$@\"}'='\"\$@\"'
 setopt NO_GLOB_SUBST
else
 case \`(set -o) 2>/dev/null\` in #(
 posix) :
 set -o posix ;; #(
 *) :
 ;;
esac
fi
"
 as_required="as_fn_return () { (exit \$1); }
as_fn_success () { as_fn_return 0; }
as_fn_failure () { as_fn_return 1; }
as_fn_ret_success () { return 0; }
as_fn_ret_failure () { return 1; }

exitcode=0
as_fn_success || { exitcode=1; echo as_fn_success failed.; }
as_fn_failure && { exitcode=1; echo as_fn_failure succeeded.; }
as_fn_ret_success || { exitcode=1; echo as_fn_ret_success failed.; }
as_fn_ret_failure && { exitcode=1; echo as_fn_ret_failure succeeded.; }
if (set x; as_fn_ret_success y && test x = \"\$1\"); then :

else
 exitcode=1; echo positional parameters were not saved.
fi
test x\$exitcode = x0 || exit 1
test -x / || exit 1"
 as_suggested=" as_lineno_1=";as_suggested=$as_suggested$LINENO;as_suggested=$as_suggested" as_lineno_1a=\$LINENO
 as_lineno_2=";as_suggested=$as_suggested$LINENO;as_suggested=$as_suggested" as_lineno_2a=\$LINENO
 eval 'test \"x\$as_lineno_1'\$as_run'\" != \"x\$as_lineno_2'\$as_run'\" &&
 test \"x\`expr \$as_lineno_1'\$as_run' + 1\`\" = \"x\$as_lineno_2'\$as_run'\"' || exit 1
test \$((1 + 1)) = 2 || exit 1

 test -n \"\${ZSH_VERSION+set}\${BASH_VERSION+set}\" || (
 ECHO='\\'
 ECHO=\$ECHO\$ECHO\$ECHO\$ECHO\$ECHO
 ECHO=\$ECHO\$ECHO\$ECHO\$ECHO\$ECHO\$ECHO
 PATH=/empty FPATH=/empty; export PATH FPATH
 test \"X\`printf %s \$ECHO\`\" = \"X\$ECHO\" \\
 || test \"X\`print -r -- \$ECHO\`\" = \"X\$ECHO\") || exit 1"
 if (eval "$as_required") 2>/dev/null; then :
 as_have_required=yes
else
 as_have_required=no
fi
 if test x$as_have_required = xyes && (eval "$as_suggested") 2>/dev/null; then :

else
 as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
as_found=false
for as_dir in /bin$PATH_SEPARATOR/usr/bin$PATH_SEPARATOR$PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 as_found=:
 case $as_dir in #(
	 /*)
	 for as_base in sh bash ksh sh5; do
	 # Try only shells that exist, to save several forks.
	 as_shell=$as_dir/$as_base
	 if { test -f "$as_shell" || test -f "$as_shell.exe"; } &&
		 { $as_echo "$as_bourne_compatible""$as_required" | as_run=a "$as_shell"; } 2>/dev/null; then :
 CONFIG_SHELL=$as_shell as_have_required=yes
		 if { $as_echo "$as_bourne_compatible""$as_suggested" | as_run=a "$as_shell"; } 2>/dev/null; then :
 break 2
fi
fi
	 done;;
 esac
 as_found=false
done
$as_found || { if { test -f "$SHELL" || test -f "$SHELL.exe"; } &&
	 { $as_echo "$as_bourne_compatible""$as_required" | as_run=a "$SHELL"; } 2>/dev/null; then :
 CONFIG_SHELL=$SHELL as_have_required=yes
fi; }
IFS=$as_save_IFS

 if test "x$CONFIG_SHELL" != x; then :
 export CONFIG_SHELL
 # We cannot yet assume a decent shell, so we have to provide a
neutralization value for shells without unset; and this also
works around shells that cannot unset nonexistent variables.
Preserve -v and -x to the replacement shell.
BASH_ENV=/dev/null
ENV=/dev/null
(unset BASH_ENV) >/dev/null 2>&1 && unset BASH_ENV ENV
case $- in # ((((
 *v*x* | *x*v*) as_opts=-vx ;;
 v) as_opts=-v ;;
 x) as_opts=-x ;;
 *) as_opts= ;;
esac
exec $CONFIG_SHELL $as_opts "$as_myself" ${1+"$@"}
Admittedly, this is quite paranoid, since all the known shells bail
out after a failed `exec'.
$as_echo "$0: could not re-execute with $CONFIG_SHELL" >&2
exit 255
fi

 if test x$as_have_required = xno; then :
 $as_echo "$0: This script requires a shell more modern than all"
 $as_echo "$0: the shells that I found on your system."
 if test x${ZSH_VERSION+set} = xset ; then
 $as_echo "$0: In particular, zsh $ZSH_VERSION has bugs and should"
 $as_echo "$0: be upgraded to zsh 4.3.4 or later."
 else
 $as_echo "$0: Please tell bug-autoconf@gnu.org about your system,
$0: including any error possibly output before this
$0: message. Then install a modern shell, or manually run
$0: the script under such a shell if you do have one."
 fi
 exit 1
fi
fi
fi
SHELL=${CONFIG_SHELL-/bin/sh}
export SHELL
Unset more variables known to interfere with behavior of common tools.
CLICOLOR_FORCE= GREP_OPTIONS=
unset CLICOLOR_FORCE GREP_OPTIONS

M4sh Shell Functions.

as_fn_unset VAR

Portably unset VAR.
as_fn_unset ()
{
 { eval $1=; unset $1;}
}
as_unset=as_fn_unset

as_fn_set_status STATUS

Set $? to STATUS, without forking.
as_fn_set_status ()
{
 return $1
} # as_fn_set_status

as_fn_exit STATUS

Exit the shell with STATUS, even in a "trap 0" or "set -e" context.
as_fn_exit ()
{
 set +e
 as_fn_set_status $1
 exit $1
} # as_fn_exit

as_fn_mkdir_p

Create "$as_dir" as a directory, including parents if necessary.
as_fn_mkdir_p ()
{

 case $as_dir in #(
 -*) as_dir=./$as_dir;;
 esac
 test -d "$as_dir" || eval $as_mkdir_p || {
 as_dirs=
 while :; do
 case $as_dir in #(
 \') as_qdir=`$as_echo "$as_dir" | sed "s/'/'\\\\\\\\''/g"`;; #'(
 *) as_qdir=$as_dir;;
 esac
 as_dirs="'$as_qdir' $as_dirs"
 as_dir=`$as_dirname -- "$as_dir" ||
$as_expr X"$as_dir" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \
	 X"$as_dir" : 'X\(//\)[^/]' \| \
	 X"$as_dir" : 'X\(//\)$' \| \
	 X"$as_dir" : 'X\(/\)' \| . 2>/dev/null ||
$as_echo X"$as_dir" |
 sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{
	 s//\1/
	 q
	 }
	 /^X\(\/\/\)[^/].*/{
	 s//\1/
	 q
	 }
	 /^X\(\/\/\)$/{
	 s//\1/
	 q
	 }
	 /^X\(\/\).*/{
	 s//\1/
	 q
	 }
	 s/.*/./; q'`
 test -d "$as_dir" && break
 done
 test -z "$as_dirs" || eval "mkdir $as_dirs"
 } || test -d "$as_dir" || as_fn_error $? "cannot create directory $as_dir"

} # as_fn_mkdir_p

as_fn_executable_p FILE

Test if FILE is an executable regular file.
as_fn_executable_p ()
{
 test -f "$1" && test -x "$1"
} # as_fn_executable_p
as_fn_append VAR VALUE

Append the text in VALUE to the end of the definition contained in VAR. Take
advantage of any shell optimizations that allow amortized linear growth over
repeated appends, instead of the typical quadratic growth present in naive
implementations.
if (eval "as_var=1; as_var+=2; test x\$as_var = x12") 2>/dev/null; then :
 eval 'as_fn_append ()
 {
 eval $1+=\$2
 }'
else
 as_fn_append ()
 {
 eval $1=\$$1\$2
 }
fi # as_fn_append

as_fn_arith ARG...

Perform arithmetic evaluation on the ARGs, and store the result in the
global $as_val. Take advantage of shells that can avoid forks. The arguments
must be portable across $(()) and expr.
if (eval "test \$((1 + 1)) = 2") 2>/dev/null; then :
 eval 'as_fn_arith ()
 {
 as_val=$(($*))
 }'
else
 as_fn_arith ()
 {
 as_val=`expr "$@" || test $? -eq 1`
 }
fi # as_fn_arith

as_fn_error STATUS ERROR [LINENO LOG_FD]
--
Output "`basename $0`: error: ERROR" to stderr. If LINENO and LOG_FD are
provided, also output the error to LOG_FD, referencing LINENO. Then exit the
script with STATUS, using 1 if that was 0.
as_fn_error ()
{
 as_status=$1; test $as_status -eq 0 && as_status=1
 if test "$4"; then
 as_lineno=${as_lineno-"$3"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
 $as_echo "$as_me:${as_lineno-$LINENO}: error: $2" >&$4
 fi
 $as_echo "$as_me: error: $2" >&2
 as_fn_exit $as_status
} # as_fn_error

if expr a : '\(a\)' >/dev/null 2>&1 &&
 test "X`expr 00001 : '.*\(...\)'`" = X001; then
 as_expr=expr
else
 as_expr=false
fi

if (basename -- /) >/dev/null 2>&1 && test "X`basename -- / 2>&1`" = "X/"; then
 as_basename=basename
else
 as_basename=false
fi

if (as_dir=`dirname -- /` && test "X$as_dir" = X/) >/dev/null 2>&1; then
 as_dirname=dirname
else
 as_dirname=false
fi

as_me=`$as_basename -- "$0" ||
$as_expr X/"$0" : '.*/\([^/][^/]*\)/*$' \| \
	 X"$0" : 'X\(//\)$' \| \
	 X"$0" : 'X\(/\)' \| . 2>/dev/null ||
$as_echo X/"$0" |
 sed '/^.*\/\([^/][^/]*\)\/*$/{
	 s//\1/
	 q
	 }
	 /^X\/\(\/\/\)$/{
	 s//\1/
	 q
	 }
	 /^X\/\(\/\).*/{
	 s//\1/
	 q
	 }
	 s/.*/./; q'`

Avoid depending upon Character Ranges.
as_cr_letters='abcdefghijklmnopqrstuvwxyz'
as_cr_LETTERS='ABCDEFGHIJKLMNOPQRSTUVWXYZ'
as_cr_Letters=$as_cr_letters$as_cr_LETTERS
as_cr_digits='0123456789'
as_cr_alnum=$as_cr_Letters$as_cr_digits

 as_lineno_1=$LINENO as_lineno_1a=$LINENO
 as_lineno_2=$LINENO as_lineno_2a=$LINENO
 eval 'test "xas_lineno_1'as_run'" != "xas_lineno_2'as_run'" &&
 test "x`expr as_lineno_1'as_run' + 1`" = "xas_lineno_2'as_run'"' || {
 # Blame Lee E. McMahon (1931-1989) for sed's syntax. :-)
 sed -n '
 p
 /[$]LINENO/=
 ' <$as_myself |
 sed '
 s/[$]LINENO.*/&-/
 t lineno
 b
 :lineno
 N
 :loop
 s/[$]LINENO\([^'$as_cr_alnum'_].*\n\)\(.*\)/\2\1\2/
 t loop
 s/-\n.*//
 ' >$as_me.lineno &&
 chmod +x "$as_me.lineno" ||
 { $as_echo "$as_me: error: cannot create $as_me.lineno; rerun with a POSIX shell" >&2; as_fn_exit 1; }

 # If we had to re-execute with $CONFIG_SHELL, we're ensured to have
 # already done that, so ensure we don't try to do so again and fall
 # in an infinite loop. This has already happened in practice.
 _as_can_reexec=no; export _as_can_reexec
 # Don't try to exec as it changes $[0], causing all sort of problems
 # (the dirname of $[0] is not the place where we might find the
 # original and so on. Autoconf is especially sensitive to this).
 . "./$as_me.lineno"
 # Exit status is that of the last command.
 exit
}

ECHO_C= ECHO_N= ECHO_T=
case `echo -n x` in #(((((
-n*)
 case `echo 'xy\c'` in
 c) ECHO_T='	';;	# ECHO_T is single tab character.
 xy) ECHO_C='\c';;
 *) echo `echo ksh88 bug on AIX 6.1` > /dev/null
 ECHO_T='	';;
 esac;;
*)
 ECHO_N='-n';;
esac

rm -f conf$$ conf$$.exe conf$$.file
if test -d conf$$.dir; then
 rm -f conf$$.dir/conf$$.file
else
 rm -f conf$$.dir
 mkdir conf$$.dir 2>/dev/null
fi
if (echo >conf$$.file) 2>/dev/null; then
 if ln -s conf$$.file conf$$ 2>/dev/null; then
 as_ln_s='ln -s'
 # ... but there are two gotchas:
 # 1) On MSYS, both `ln -s file dir' and `ln file dir' fail.
 # 2) DJGPP < 2.04 has no symlinks; `ln -s' creates a wrapper executable.
 # In both cases, we have to default to `cp -pR'.
 ln -s conf$$.file conf$$.dir 2>/dev/null && test ! -f conf$$.exe ||
 as_ln_s='cp -pR'
 elif ln conf$$.file conf$$ 2>/dev/null; then
 as_ln_s=ln
 else
 as_ln_s='cp -pR'
 fi
else
 as_ln_s='cp -pR'
fi
rm -f conf$$ conf$$.exe conf$$.dir/conf$$.file conf$$.file
rmdir conf$$.dir 2>/dev/null

if mkdir -p . 2>/dev/null; then
 as_mkdir_p='mkdir -p "$as_dir"'
else
 test -d ./-p && rmdir ./-p
 as_mkdir_p=false
fi

as_test_x='test -x'
as_executable_p=as_fn_executable_p

Sed expression to map a string onto a valid CPP name.
as_tr_cpp="eval sed 'y%*$as_cr_letters%P$as_cr_LETTERS%;s%[^_$as_cr_alnum]%_%g'"

Sed expression to map a string onto a valid variable name.
as_tr_sh="eval sed 'y%*+%pp%;s%[^_$as_cr_alnum]%_%g'"

SHELL=${CONFIG_SHELL-/bin/sh}

test -n "$DJDIR" || exec 7<&0 </dev/null
exec 6>&1

Name of the host.
hostname on some systems (SVR3.2, old GNU/Linux) returns a bogus exit status,
so uname gets run too.
ac_hostname=`(hostname || uname -n) 2>/dev/null | sed 1q`

#
Initializations.
#
ac_default_prefix=/usr/local
ac_clean_files=
ac_config_libobj_dir=.
LIBOBJS=
cross_compiling=no
subdirs=
MFLAGS=
MAKEFLAGS=

Identity of this package.
PACKAGE_NAME='qpdf'
PACKAGE_TARNAME='qpdf'
PACKAGE_VERSION='7.1.0'
PACKAGE_STRING='qpdf 7.1.0'
PACKAGE_BUGREPORT=''
PACKAGE_URL=''

Factoring default headers for most tests.
ac_includes_default="\
#include <stdio.h>
#ifdef HAVE_SYS_TYPES_H
include <sys/types.h>
#endif
#ifdef HAVE_SYS_STAT_H
include <sys/stat.h>
#endif
#ifdef STDC_HEADERS
include <stdlib.h>
include <stddef.h>
#else
ifdef HAVE_STDLIB_H
include <stdlib.h>
endif
#endif
#ifdef HAVE_STRING_H
if !defined STDC_HEADERS && defined HAVE_MEMORY_H
include <memory.h>
endif
include <string.h>
#endif
#ifdef HAVE_STRINGS_H
include <strings.h>
#endif
#ifdef HAVE_INTTYPES_H
include <inttypes.h>
#endif
#ifdef HAVE_STDINT_H
include <stdint.h>
#endif
#ifdef HAVE_UNISTD_H
include <unistd.h>
#endif"

ac_subst_vars='LTLIBOBJS
LIBOBJS
VALIDATE_DOC
BUILD_PDF
BUILD_HTML
XMLLINT
XSLTPROC
FOP
DOCBOOKX_DTD
DOCBOOK_FO
DOCBOOK_XHTML
SHOW_FAILED_TEST_OUTPUT
QPDF_SKIP_TEST_COMPARE_IMAGES
CXXWFLAGS
WFLAGS
BUILDRULES
GENDEPS
HAVE_LD_VERSION_SCRIPT
QPDF_LARGE_FILE_TEST_PATH
WINDOWS_WORDSIZE
RANDOM_DEVICE
LT_SONAME
LT_AGE
LT_REVISION
LT_CURRENT
CXXCPP
LT_SYS_LIBRARY_PATH
OTOOL64
OTOOL
LIPO
NMEDIT
DSYMUTIL
MANIFEST_TOOL
AWK
RANLIB
STRIP
ac_ct_AR
AR
LN_S
NM
ac_ct_DUMPBIN
DUMPBIN
LD
FGREP
SED
host_os
host_vendor
host_cpu
host
build_os
build_vendor
build_cpu
build
LIBTOOL
OBJDUMP
DLLTOOL
AS
EGREP
GREP
CPP
ac_ct_CXX
CXXFLAGS
CXX
OBJEXT
EXEEXT
ac_ct_CC
CPPFLAGS
LDFLAGS
CFLAGS
CC
target_alias
host_alias
build_alias
LIBS
ECHO_T
ECHO_N
ECHO_C
DEFS
mandir
localedir
libdir
psdir
pdfdir
dvidir
htmldir
infodir
docdir
oldincludedir
includedir
runstatedir
localstatedir
sharedstatedir
sysconfdir
datadir
datarootdir
libexecdir
sbindir
bindir
program_transform_name
prefix
exec_prefix
PACKAGE_URL
PACKAGE_BUGREPORT
PACKAGE_STRING
PACKAGE_VERSION
PACKAGE_TARNAME
PACKAGE_NAME
PATH_SEPARATOR
SHELL'
ac_subst_files=''
ac_user_opts='
enable_option_checking
enable_shared
enable_static
with_pic
enable_fast_install
with_aix_soname
with_gnu_ld
with_sysroot
enable_libtool_lock
enable_insecure_random
enable_os_secure_random
with_random
enable_external_libs
with_windows_wordsize
with_large_file_test_path
enable_largefile
enable_ld_version_script
with_buildrules
enable_werror
enable_test_compare_images
enable_show_failed_test_output
with_docbook_xsl
with_docbookx_dtd
enable_doc_maintenance
enable_html_doc
enable_pdf_doc
enable_validate_doc
'
 ac_precious_vars='build_alias
host_alias
target_alias
CC
CFLAGS
LDFLAGS
LIBS
CPPFLAGS
CXX
CXXFLAGS
CCC
CPP
LT_SYS_LIBRARY_PATH
CXXCPP'

Initialize some variables set by options.
ac_init_help=
ac_init_version=false
ac_unrecognized_opts=
ac_unrecognized_sep=
The variables have the same names as the options, with
dashes changed to underlines.
cache_file=/dev/null
exec_prefix=NONE
no_create=
no_recursion=
prefix=NONE
program_prefix=NONE
program_suffix=NONE
program_transform_name=s,x,x,
silent=
site=
srcdir=
verbose=
x_includes=NONE
x_libraries=NONE

Installation directory options.
These are left unexpanded so users can "make install exec_prefix=/foo"
and all the variables that are supposed to be based on exec_prefix
by default will actually change.
Use braces instead of parens because sh, perl, etc. also accept them.
(The list follows the same order as the GNU Coding Standards.)
bindir='${exec_prefix}/bin'
sbindir='${exec_prefix}/sbin'
libexecdir='${exec_prefix}/libexec'
datarootdir='${prefix}/share'
datadir='${datarootdir}'
sysconfdir='${prefix}/etc'
sharedstatedir='${prefix}/com'
localstatedir='${prefix}/var'
runstatedir='${localstatedir}/run'
includedir='${prefix}/include'
oldincludedir='/usr/include'
docdir='${datarootdir}/doc/${PACKAGE_TARNAME}'
infodir='${datarootdir}/info'
htmldir='${docdir}'
dvidir='${docdir}'
pdfdir='${docdir}'
psdir='${docdir}'
libdir='${exec_prefix}/lib'
localedir='${datarootdir}/locale'
mandir='${datarootdir}/man'

ac_prev=
ac_dashdash=
for ac_option
do
 # If the previous option needs an argument, assign it.
 if test -n "$ac_prev"; then
 eval $ac_prev=\$ac_option
 ac_prev=
 continue
 fi

 case $ac_option in
 =?) ac_optarg=`expr "X$ac_option" : '[^=]*=\(.*\)'` ;;
 *=) ac_optarg= ;;
 *) ac_optarg=yes ;;
 esac

 # Accept the important Cygnus configure options, so we can diagnose typos.

 case $ac_dashdash$ac_option in
 --)
 ac_dashdash=yes ;;

 -bindir | --bindir | --bindi | --bind | --bin | --bi)
 ac_prev=bindir ;;
 -bindir=* | --bindir=* | --bindi=* | --bind=* | --bin=* | --bi=*)
 bindir=$ac_optarg ;;

 -build | --build | --buil | --bui | --bu)
 ac_prev=build_alias ;;
 -build=* | --build=* | --buil=* | --bui=* | --bu=*)
 build_alias=$ac_optarg ;;

 -cache-file | --cache-file | --cache-fil | --cache-fi \
 | --cache-f | --cache- | --cache | --cach | --cac | --ca | --c)
 ac_prev=cache_file ;;
 -cache-file=* | --cache-file=* | --cache-fil=* | --cache-fi=* \
 | --cache-f=* | --cache-=* | --cache=* | --cach=* | --cac=* | --ca=* | --c=*)
 cache_file=$ac_optarg ;;

 --config-cache | -C)
 cache_file=config.cache ;;

 -datadir | --datadir | --datadi | --datad)
 ac_prev=datadir ;;
 -datadir=* | --datadir=* | --datadi=* | --datad=*)
 datadir=$ac_optarg ;;

 -datarootdir | --datarootdir | --datarootdi | --datarootd | --dataroot \
 | --dataroo | --dataro | --datar)
 ac_prev=datarootdir ;;
 -datarootdir=* | --datarootdir=* | --datarootdi=* | --datarootd=* \
 | --dataroot=* | --dataroo=* | --dataro=* | --datar=*)
 datarootdir=$ac_optarg ;;

 -disable-* | --disable-*)
 ac_useropt=`expr "x$ac_option" : 'x-*disable-\(.*\)'`
 # Reject names that are not valid shell variable names.
 expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null &&
 as_fn_error $? "invalid feature name: $ac_useropt"
 ac_useropt_orig=$ac_useropt
 ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'`
 case $ac_user_opts in
 *"
"enable_$ac_useropt"
"*) ;;
 *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--disable-$ac_useropt_orig"
	 ac_unrecognized_sep=', ';;
 esac
 eval enable_$ac_useropt=no ;;

 -docdir | --docdir | --docdi | --doc | --do)
 ac_prev=docdir ;;
 -docdir=* | --docdir=* | --docdi=* | --doc=* | --do=*)
 docdir=$ac_optarg ;;

 -dvidir | --dvidir | --dvidi | --dvid | --dvi | --dv)
 ac_prev=dvidir ;;
 -dvidir=* | --dvidir=* | --dvidi=* | --dvid=* | --dvi=* | --dv=*)
 dvidir=$ac_optarg ;;

 -enable-* | --enable-*)
 ac_useropt=`expr "x$ac_option" : 'x-*enable-\([^=]*\)'`
 # Reject names that are not valid shell variable names.
 expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null &&
 as_fn_error $? "invalid feature name: $ac_useropt"
 ac_useropt_orig=$ac_useropt
 ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'`
 case $ac_user_opts in
 *"
"enable_$ac_useropt"
"*) ;;
 *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--enable-$ac_useropt_orig"
	 ac_unrecognized_sep=', ';;
 esac
 eval enable_$ac_useropt=\$ac_optarg ;;

 -exec-prefix | --exec_prefix | --exec-prefix | --exec-prefi \
 | --exec-pref | --exec-pre | --exec-pr | --exec-p | --exec- \
 | --exec | --exe | --ex)
 ac_prev=exec_prefix ;;
 -exec-prefix=* | --exec_prefix=* | --exec-prefix=* | --exec-prefi=* \
 | --exec-pref=* | --exec-pre=* | --exec-pr=* | --exec-p=* | --exec-=* \
 | --exec=* | --exe=* | --ex=*)
 exec_prefix=$ac_optarg ;;

 -gas | --gas | --ga | --g)
 # Obsolete; use --with-gas.
 with_gas=yes ;;

 -help | --help | --hel | --he | -h)
 ac_init_help=long ;;
 -help=r* | --help=r* | --hel=r* | --he=r* | -hr*)
 ac_init_help=recursive ;;
 -help=s* | --help=s* | --hel=s* | --he=s* | -hs*)
 ac_init_help=short ;;

 -host | --host | --hos | --ho)
 ac_prev=host_alias ;;
 -host=* | --host=* | --hos=* | --ho=*)
 host_alias=$ac_optarg ;;

 -htmldir | --htmldir | --htmldi | --htmld | --html | --htm | --ht)
 ac_prev=htmldir ;;
 -htmldir=* | --htmldir=* | --htmldi=* | --htmld=* | --html=* | --htm=* \
 | --ht=*)
 htmldir=$ac_optarg ;;

 -includedir | --includedir | --includedi | --included | --include \
 | --includ | --inclu | --incl | --inc)
 ac_prev=includedir ;;
 -includedir=* | --includedir=* | --includedi=* | --included=* | --include=* \
 | --includ=* | --inclu=* | --incl=* | --inc=*)
 includedir=$ac_optarg ;;

 -infodir | --infodir | --infodi | --infod | --info | --inf)
 ac_prev=infodir ;;
 -infodir=* | --infodir=* | --infodi=* | --infod=* | --info=* | --inf=*)
 infodir=$ac_optarg ;;

 -libdir | --libdir | --libdi | --libd)
 ac_prev=libdir ;;
 -libdir=* | --libdir=* | --libdi=* | --libd=*)
 libdir=$ac_optarg ;;

 -libexecdir | --libexecdir | --libexecdi | --libexecd | --libexec \
 | --libexe | --libex | --libe)
 ac_prev=libexecdir ;;
 -libexecdir=* | --libexecdir=* | --libexecdi=* | --libexecd=* | --libexec=* \
 | --libexe=* | --libex=* | --libe=*)
 libexecdir=$ac_optarg ;;

 -localedir | --localedir | --localedi | --localed | --locale)
 ac_prev=localedir ;;
 -localedir=* | --localedir=* | --localedi=* | --localed=* | --locale=*)
 localedir=$ac_optarg ;;

 -localstatedir | --localstatedir | --localstatedi | --localstated \
 | --localstate | --localstat | --localsta | --localst | --locals)
 ac_prev=localstatedir ;;
 -localstatedir=* | --localstatedir=* | --localstatedi=* | --localstated=* \
 | --localstate=* | --localstat=* | --localsta=* | --localst=* | --locals=*)
 localstatedir=$ac_optarg ;;

 -mandir | --mandir | --mandi | --mand | --man | --ma | --m)
 ac_prev=mandir ;;
 -mandir=* | --mandir=* | --mandi=* | --mand=* | --man=* | --ma=* | --m=*)
 mandir=$ac_optarg ;;

 -nfp | --nfp | --nf)
 # Obsolete; use --without-fp.
 with_fp=no ;;

 -no-create | --no-create | --no-creat | --no-crea | --no-cre \
 | --no-cr | --no-c | -n)
 no_create=yes ;;

 -no-recursion | --no-recursion | --no-recursio | --no-recursi \
 | --no-recurs | --no-recur | --no-recu | --no-rec | --no-re | --no-r)
 no_recursion=yes ;;

 -oldincludedir | --oldincludedir | --oldincludedi | --oldincluded \
 | --oldinclude | --oldinclud | --oldinclu | --oldincl | --oldinc \
 | --oldin | --oldi | --old | --ol | --o)
 ac_prev=oldincludedir ;;
 -oldincludedir=* | --oldincludedir=* | --oldincludedi=* | --oldincluded=* \
 | --oldinclude=* | --oldinclud=* | --oldinclu=* | --oldincl=* | --oldinc=* \
 | --oldin=* | --oldi=* | --old=* | --ol=* | --o=*)
 oldincludedir=$ac_optarg ;;

 -prefix | --prefix | --prefi | --pref | --pre | --pr | --p)
 ac_prev=prefix ;;
 -prefix=* | --prefix=* | --prefi=* | --pref=* | --pre=* | --pr=* | --p=*)
 prefix=$ac_optarg ;;

 -program-prefix | --program-prefix | --program-prefi | --program-pref \
 | --program-pre | --program-pr | --program-p)
 ac_prev=program_prefix ;;
 -program-prefix=* | --program-prefix=* | --program-prefi=* \
 | --program-pref=* | --program-pre=* | --program-pr=* | --program-p=*)
 program_prefix=$ac_optarg ;;

 -program-suffix | --program-suffix | --program-suffi | --program-suff \
 | --program-suf | --program-su | --program-s)
 ac_prev=program_suffix ;;
 -program-suffix=* | --program-suffix=* | --program-suffi=* \
 | --program-suff=* | --program-suf=* | --program-su=* | --program-s=*)
 program_suffix=$ac_optarg ;;

 -program-transform-name | --program-transform-name \
 | --program-transform-nam | --program-transform-na \
 | --program-transform-n | --program-transform- \
 | --program-transform | --program-transfor \
 | --program-transfo | --program-transf \
 | --program-trans | --program-tran \
 | --progr-tra | --program-tr | --program-t)
 ac_prev=program_transform_name ;;
 -program-transform-name=* | --program-transform-name=* \
 | --program-transform-nam=* | --program-transform-na=* \
 | --program-transform-n=* | --program-transform-=* \
 | --program-transform=* | --program-transfor=* \
 | --program-transfo=* | --program-transf=* \
 | --program-trans=* | --program-tran=* \
 | --progr-tra=* | --program-tr=* | --program-t=*)
 program_transform_name=$ac_optarg ;;

 -pdfdir | --pdfdir | --pdfdi | --pdfd | --pdf | --pd)
 ac_prev=pdfdir ;;
 -pdfdir=* | --pdfdir=* | --pdfdi=* | --pdfd=* | --pdf=* | --pd=*)
 pdfdir=$ac_optarg ;;

 -psdir | --psdir | --psdi | --psd | --ps)
 ac_prev=psdir ;;
 -psdir=* | --psdir=* | --psdi=* | --psd=* | --ps=*)
 psdir=$ac_optarg ;;

 -q | -quiet | --quiet | --quie | --qui | --qu | --q \
 | -silent | --silent | --silen | --sile | --sil)
 silent=yes ;;

 -runstatedir | --runstatedir | --runstatedi | --runstated \
 | --runstate | --runstat | --runsta | --runst | --runs \
 | --run | --ru | --r)
 ac_prev=runstatedir ;;
 -runstatedir=* | --runstatedir=* | --runstatedi=* | --runstated=* \
 | --runstate=* | --runstat=* | --runsta=* | --runst=* | --runs=* \
 | --run=* | --ru=* | --r=*)
 runstatedir=$ac_optarg ;;

 -sbindir | --sbindir | --sbindi | --sbind | --sbin | --sbi | --sb)
 ac_prev=sbindir ;;
 -sbindir=* | --sbindir=* | --sbindi=* | --sbind=* | --sbin=* \
 | --sbi=* | --sb=*)
 sbindir=$ac_optarg ;;

 -sharedstatedir | --sharedstatedir | --sharedstatedi \
 | --sharedstated | --sharedstate | --sharedstat | --sharedsta \
 | --sharedst | --shareds | --shared | --share | --shar \
 | --sha | --sh)
 ac_prev=sharedstatedir ;;
 -sharedstatedir=* | --sharedstatedir=* | --sharedstatedi=* \
 | --sharedstated=* | --sharedstate=* | --sharedstat=* | --sharedsta=* \
 | --sharedst=* | --shareds=* | --shared=* | --share=* | --shar=* \
 | --sha=* | --sh=*)
 sharedstatedir=$ac_optarg ;;

 -site | --site | --sit)
 ac_prev=site ;;
 -site=* | --site=* | --sit=*)
 site=$ac_optarg ;;

 -srcdir | --srcdir | --srcdi | --srcd | --src | --sr)
 ac_prev=srcdir ;;
 -srcdir=* | --srcdir=* | --srcdi=* | --srcd=* | --src=* | --sr=*)
 srcdir=$ac_optarg ;;

 -sysconfdir | --sysconfdir | --sysconfdi | --sysconfd | --sysconf \
 | --syscon | --sysco | --sysc | --sys | --sy)
 ac_prev=sysconfdir ;;
 -sysconfdir=* | --sysconfdir=* | --sysconfdi=* | --sysconfd=* | --sysconf=* \
 | --syscon=* | --sysco=* | --sysc=* | --sys=* | --sy=*)
 sysconfdir=$ac_optarg ;;

 -target | --target | --targe | --targ | --tar | --ta | --t)
 ac_prev=target_alias ;;
 -target=* | --target=* | --targe=* | --targ=* | --tar=* | --ta=* | --t=*)
 target_alias=$ac_optarg ;;

 -v | -verbose | --verbose | --verbos | --verbo | --verb)
 verbose=yes ;;

 -version | --version | --versio | --versi | --vers | -V)
 ac_init_version=: ;;

 -with-* | --with-*)
 ac_useropt=`expr "x$ac_option" : 'x-*with-\([^=]*\)'`
 # Reject names that are not valid shell variable names.
 expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null &&
 as_fn_error $? "invalid package name: $ac_useropt"
 ac_useropt_orig=$ac_useropt
 ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'`
 case $ac_user_opts in
 *"
"with_$ac_useropt"
"*) ;;
 *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--with-$ac_useropt_orig"
	 ac_unrecognized_sep=', ';;
 esac
 eval with_$ac_useropt=\$ac_optarg ;;

 -without-* | --without-*)
 ac_useropt=`expr "x$ac_option" : 'x-*without-\(.*\)'`
 # Reject names that are not valid shell variable names.
 expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null &&
 as_fn_error $? "invalid package name: $ac_useropt"
 ac_useropt_orig=$ac_useropt
 ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'`
 case $ac_user_opts in
 *"
"with_$ac_useropt"
"*) ;;
 *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--without-$ac_useropt_orig"
	 ac_unrecognized_sep=', ';;
 esac
 eval with_$ac_useropt=no ;;

 --x)
 # Obsolete; use --with-x.
 with_x=yes ;;

 -x-includes | --x-includes | --x-include | --x-includ | --x-inclu \
 | --x-incl | --x-inc | --x-in | --x-i)
 ac_prev=x_includes ;;
 -x-includes=* | --x-includes=* | --x-include=* | --x-includ=* | --x-inclu=* \
 | --x-incl=* | --x-inc=* | --x-in=* | --x-i=*)
 x_includes=$ac_optarg ;;

 -x-libraries | --x-libraries | --x-librarie | --x-librari \
 | --x-librar | --x-libra | --x-libr | --x-lib | --x-li | --x-l)
 ac_prev=x_libraries ;;
 -x-libraries=* | --x-libraries=* | --x-librarie=* | --x-librari=* \
 | --x-librar=* | --x-libra=* | --x-libr=* | --x-lib=* | --x-li=* | --x-l=*)
 x_libraries=$ac_optarg ;;

 -*) as_fn_error $? "unrecognized option: \`$ac_option'
Try \`$0 --help' for more information"
 ;;

 =)
 ac_envvar=`expr "x$ac_option" : 'x\([^=]*\)='`
 # Reject names that are not valid shell variable names.
 case $ac_envvar in #(
 '' | [0-9]* | *[!_$as_cr_alnum]*)
 as_fn_error $? "invalid variable name: \`$ac_envvar'" ;;
 esac
 eval $ac_envvar=\$ac_optarg
 export $ac_envvar ;;

 *)
 # FIXME: should be removed in autoconf 3.0.
 $as_echo "$as_me: WARNING: you should use --build, --host, --target" >&2
 expr "x$ac_option" : ".*[^-._$as_cr_alnum]" >/dev/null &&
 $as_echo "$as_me: WARNING: invalid host type: $ac_option" >&2
 : "${build_alias=$ac_option} ${host_alias=$ac_option} ${target_alias=$ac_option}"
 ;;

 esac
done

if test -n "$ac_prev"; then
 ac_option=--`echo $ac_prev | sed 's/_/-/g'`
 as_fn_error $? "missing argument to $ac_option"
fi

if test -n "$ac_unrecognized_opts"; then
 case $enable_option_checking in
 no) ;;
 fatal) as_fn_error $? "unrecognized options: $ac_unrecognized_opts" ;;
 *) $as_echo "$as_me: WARNING: unrecognized options: $ac_unrecognized_opts" >&2 ;;
 esac
fi

Check all directory arguments for consistency.
for ac_var in	exec_prefix prefix bindir sbindir libexecdir datarootdir \
		datadir sysconfdir sharedstatedir localstatedir includedir \
		oldincludedir docdir infodir htmldir dvidir pdfdir psdir \
		libdir localedir mandir runstatedir
do
 eval ac_val=\$$ac_var
 # Remove trailing slashes.
 case $ac_val in
 */)
 ac_val=`expr "X$ac_val" : 'X\(.*[^/]\)' \| "X$ac_val" : 'X\(.*\)'`
 eval $ac_var=\$ac_val;;
 esac
 # Be sure to have absolute directory names.
 case $ac_val in
 [\\/$]* | ?:[\\/]*) continue;;
 NONE | '') case $ac_var in *prefix) continue;; esac;;
 esac
 as_fn_error $? "expected an absolute directory name for --$ac_var: $ac_val"
done

There might be people who depend on the old broken behavior: `$host'
used to hold the argument of --host etc.
FIXME: To remove some day.
build=$build_alias
host=$host_alias
target=$target_alias

FIXME: To remove some day.
if test "x$host_alias" != x; then
 if test "x$build_alias" = x; then
 cross_compiling=maybe
 elif test "x$build_alias" != "x$host_alias"; then
 cross_compiling=yes
 fi
fi

ac_tool_prefix=
test -n "$host_alias" && ac_tool_prefix=$host_alias-

test "$silent" = yes && exec 6>/dev/null

ac_pwd=`pwd` && test -n "$ac_pwd" &&
ac_ls_di=`ls -di .` &&
ac_pwd_ls_di=`cd "$ac_pwd" && ls -di .` ||
 as_fn_error $? "working directory cannot be determined"
test "X$ac_ls_di" = "X$ac_pwd_ls_di" ||
 as_fn_error $? "pwd does not report name of working directory"

Find the source files, if location was not specified.
if test -z "$srcdir"; then
 ac_srcdir_defaulted=yes
 # Try the directory containing this script, then the parent directory.
 ac_confdir=`$as_dirname -- "$as_myself" ||
$as_expr X"$as_myself" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \
	 X"$as_myself" : 'X\(//\)[^/]' \| \
	 X"$as_myself" : 'X\(//\)$' \| \
	 X"$as_myself" : 'X\(/\)' \| . 2>/dev/null ||
$as_echo X"$as_myself" |
 sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{
	 s//\1/
	 q
	 }
	 /^X\(\/\/\)[^/].*/{
	 s//\1/
	 q
	 }
	 /^X\(\/\/\)$/{
	 s//\1/
	 q
	 }
	 /^X\(\/\).*/{
	 s//\1/
	 q
	 }
	 s/.*/./; q'`
 srcdir=$ac_confdir
 if test ! -r "$srcdir/$ac_unique_file"; then
 srcdir=..
 fi
else
 ac_srcdir_defaulted=no
fi
if test ! -r "$srcdir/$ac_unique_file"; then
 test "$ac_srcdir_defaulted" = yes && srcdir="$ac_confdir or .."
 as_fn_error $? "cannot find sources ($ac_unique_file) in $srcdir"
fi
ac_msg="sources are in $srcdir, but \`cd $srcdir' does not work"
ac_abs_confdir=`(
	cd "$srcdir" && test -r "./$ac_unique_file" || as_fn_error $? "$ac_msg"
	pwd)`
When building in place, set srcdir=.
if test "$ac_abs_confdir" = "$ac_pwd"; then
 srcdir=.
fi
Remove unnecessary trailing slashes from srcdir.
Double slashes in file names in object file debugging info
mess up M-x gdb in Emacs.
case $srcdir in
/) srcdir=`expr "X$srcdir" : 'X\(.[^/]\)' \| "X$srcdir" : 'X\(.*\)'`;;
esac
for ac_var in $ac_precious_vars; do
 eval ac_env_${ac_var}_set=\${${ac_var}+set}
 eval ac_env_${ac_var}_value=\$${ac_var}
 eval ac_cv_env_${ac_var}_set=\${${ac_var}+set}
 eval ac_cv_env_${ac_var}_value=\$${ac_var}
done

#
Report the --help message.
#
if test "$ac_init_help" = "long"; then
 # Omit some internal or obsolete options to make the list less imposing.
 # This message is too long to be a string in the A/UX 3.1 sh.
 cat <<_ACEOF
\`configure' configures qpdf 7.1.0 to adapt to many kinds of systems.

Usage: $0 [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:
 -h, --help display this help and exit
 --help=short display options specific to this package
 --help=recursive display the short help of all the included packages
 -V, --version display version information and exit
 -q, --quiet, --silent do not print \`checking ...' messages
 --cache-file=FILE cache test results in FILE [disabled]
 -C, --config-cache alias for \`--cache-file=config.cache'
 -n, --no-create do not create output files
 --srcdir=DIR find the sources in DIR [configure dir or \`..']

Installation directories:
 --prefix=PREFIX install architecture-independent files in PREFIX
 [$ac_default_prefix]
 --exec-prefix=EPREFIX install architecture-dependent files in EPREFIX
 [PREFIX]

By default, \`make install' will install all the files in
\`$ac_default_prefix/bin', \`$ac_default_prefix/lib' etc. You can specify
an installation prefix other than \`$ac_default_prefix' using \`--prefix',
for instance \`--prefix=\$HOME'.

For better control, use the options below.

Fine tuning of the installation directories:
 --bindir=DIR user executables [EPREFIX/bin]
 --sbindir=DIR system admin executables [EPREFIX/sbin]
 --libexecdir=DIR program executables [EPREFIX/libexec]
 --sysconfdir=DIR read-only single-machine data [PREFIX/etc]
 --sharedstatedir=DIR modifiable architecture-independent data [PREFIX/com]
 --localstatedir=DIR modifiable single-machine data [PREFIX/var]
 --runstatedir=DIR modifiable per-process data [LOCALSTATEDIR/run]
 --libdir=DIR object code libraries [EPREFIX/lib]
 --includedir=DIR C header files [PREFIX/include]
 --oldincludedir=DIR C header files for non-gcc [/usr/include]
 --datarootdir=DIR read-only arch.-independent data root [PREFIX/share]
 --datadir=DIR read-only architecture-independent data [DATAROOTDIR]
 --infodir=DIR info documentation [DATAROOTDIR/info]
 --localedir=DIR locale-dependent data [DATAROOTDIR/locale]
 --mandir=DIR man documentation [DATAROOTDIR/man]
 --docdir=DIR documentation root [DATAROOTDIR/doc/qpdf]
 --htmldir=DIR html documentation [DOCDIR]
 --dvidir=DIR dvi documentation [DOCDIR]
 --pdfdir=DIR pdf documentation [DOCDIR]
 --psdir=DIR ps documentation [DOCDIR]
_ACEOF

 cat <<_ACEOF

System types:
 --build=BUILD configure for building on BUILD [guessed]
 --host=HOST cross-compile to build programs to run on HOST [BUILD]
_ACEOF
fi

if test -n "$ac_init_help"; then
 case $ac_init_help in
 short | recursive) echo "Configuration of qpdf 7.1.0:";;
 esac
 cat <<_ACEOF

Optional Features:
 --disable-option-checking ignore unrecognized --enable/--with options
 --disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no)
 --enable-FEATURE[=ARG] include FEATURE [ARG=yes]
 --enable-shared[=PKGS] build shared libraries [default=yes]
 --enable-static[=PKGS] build static libraries [default=yes]
 --enable-fast-install[=PKGS]
 optimize for fast installation [default=yes]
 --disable-libtool-lock avoid locking (might break parallel builds)
 --enable-insecure-random
 whether to use stdlib's random number generator
 (default is no)
 --enable-os-secure-random
 whether to try to use OS-provided secure random
 numbers (default is yes)
 --enable-external-libs whether to use external libraries distribution
 --disable-largefile omit support for large files
 --enable-ld-version-script
 enable linker version script (default is enabled)
 --enable-werror whether to treat warnings as errors (default is no)
 --enable-test-compare-images
 whether to compare images in test suite; disabled by
 default, enabling requires ghostscript and tiffcmp
 to be available
 --enable-show-failed-test-output
 if specified, write failed test output to the
 console; useful for building on build servers where
 you can't easily open the test output files
 --enable-doc-maintenance
 if set, enables all documentation options
 --enable-html-doc whether to build HTML documents
 --enable-pdf-doc whether to build PDF documents
 --enable-validate-doc whether to validate xml document source

Optional Packages:
 --with-PACKAGE[=ARG] use PACKAGE [ARG=yes]
 --without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)
 --with-pic[=PKGS] try to use only PIC/non-PIC objects [default=use
 both]
 --with-aix-soname=aix|svr4|both
 shared library versioning (aka "SONAME") variant to
 provide on AIX, [default=aix].
 --with-gnu-ld assume the C compiler uses GNU ld [default=no]
 --with-sysroot[=DIR] Search for dependent libraries within DIR (or the
 compiler's sysroot if not specified).
 --with-random=FILE Use FILE as random number seed [auto-detected]
 --with-windows-wordsize={32,64}
 Windows only: whether this is a 32-bit or 64-bit
 build; required if external-libs are enabled
 --with-large-file-test-path=path
 To enable testing of files > 4GB, give the path to a
 directory with at least 11 GB free. The test suite
 will write temporary files to this directory.
 Alternatively, just set the
 QPDF_LARGE_FILE_TEST_PATH environment variable to
 the path before running the test suite.
 --with-buildrules=rules which build rules to use; see README.md
 --with-docbook-xsl=DIR location of docbook 4.x xml stylesheets
 --with-docbookx-dtd=FILE
 location of docbook 4.x xml DTD

Some influential environment variables:
 CC C compiler command
 CFLAGS C compiler flags
 LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
 nonstandard directory <lib dir>
 LIBS libraries to pass to the linker, e.g. -l<library>
 CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I<include dir> if
 you have headers in a nonstandard directory <include dir>
 CXX C++ compiler command
 CXXFLAGS C++ compiler flags
 CPP C preprocessor
 LT_SYS_LIBRARY_PATH
 User-defined run-time library search path.
 CXXCPP C++ preprocessor

Use these variables to override the choices made by `configure' or to help
it to find libraries and programs with nonstandard names/locations.

Report bugs to the package provider.
_ACEOF
ac_status=$?
fi

if test "$ac_init_help" = "recursive"; then
 # If there are subdirs, report their specific --help.
 for ac_dir in : $ac_subdirs_all; do test "x$ac_dir" = x: && continue
 test -d "$ac_dir" ||
 { cd "$srcdir" && ac_pwd=`pwd` && srcdir=. && test -d "$ac_dir"; } ||
 continue
 ac_builddir=.

case "$ac_dir" in
.) ac_dir_suffix= ac_top_builddir_sub=. ac_top_build_prefix= ;;
*)
 ac_dir_suffix=/`$as_echo "$ac_dir" | sed 's|^\.[\\/]||'`
 # A ".." for each directory in $ac_dir_suffix.
 ac_top_builddir_sub=`$as_echo "$ac_dir_suffix" | sed 's|/[^\\/]*|/..|g;s|/||'`
 case $ac_top_builddir_sub in
 "") ac_top_builddir_sub=. ac_top_build_prefix= ;;
 *) ac_top_build_prefix=$ac_top_builddir_sub/ ;;
 esac ;;
esac
ac_abs_top_builddir=$ac_pwd
ac_abs_builddir=ac_pwdac_dir_suffix
for backward compatibility:
ac_top_builddir=$ac_top_build_prefix

case $srcdir in
 .) # We are building in place.
 ac_srcdir=.
 ac_top_srcdir=$ac_top_builddir_sub
 ac_abs_top_srcdir=$ac_pwd ;;
 [\\/]* | ?:[\\/]*) # Absolute name.
 ac_srcdir=$srcdir$ac_dir_suffix;
 ac_top_srcdir=$srcdir
 ac_abs_top_srcdir=$srcdir ;;
 *) # Relative name.
 ac_srcdir=$ac_top_build_prefix$srcdir$ac_dir_suffix
 ac_top_srcdir=$ac_top_build_prefix$srcdir
 ac_abs_top_srcdir=$ac_pwd/$srcdir ;;
esac
ac_abs_srcdir=$ac_abs_top_srcdir$ac_dir_suffix

 cd "$ac_dir" || { ac_status=$?; continue; }
 # Check for guested configure.
 if test -f "$ac_srcdir/configure.gnu"; then
 echo &&
 $SHELL "$ac_srcdir/configure.gnu" --help=recursive
 elif test -f "$ac_srcdir/configure"; then
 echo &&
 $SHELL "$ac_srcdir/configure" --help=recursive
 else
 $as_echo "$as_me: WARNING: no configuration information is in $ac_dir" >&2
 fi || ac_status=$?
 cd "$ac_pwd" || { ac_status=$?; break; }
 done
fi

test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
 cat <<_ACEOF
qpdf configure 7.1.0
generated by GNU Autoconf 2.69

Copyright (C) 2012 Free Software Foundation, Inc.
This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.
_ACEOF
 exit
fi

Autoconf initialization.

ac_fn_c_try_compile LINENO

Try to compile conftest.$ac_ext, and return whether this succeeded.
ac_fn_c_try_compile ()
{
 as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
 rm -f conftest.$ac_objext
 if { { ac_try="$ac_compile"
case "(($ac_try" in
 \" | *\`* | **) ac_try_echo=\$ac_try;;
 *) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
$as_echo "$ac_try_echo"; } >&5
 (eval "$ac_compile") 2>conftest.err
 ac_status=$?
 if test -s conftest.err; then
 grep -v '^ *+' conftest.err >conftest.er1
 cat conftest.er1 >&5
 mv -f conftest.er1 conftest.err
 fi
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; } && {
	 test -z "$ac_c_werror_flag" ||
	 test ! -s conftest.err
 } && test -s conftest.$ac_objext; then :
 ac_retval=0
else
 $as_echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5

	ac_retval=1
fi
 eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno
 as_fn_set_status $ac_retval

} # ac_fn_c_try_compile

ac_fn_cxx_try_compile LINENO

Try to compile conftest.$ac_ext, and return whether this succeeded.
ac_fn_cxx_try_compile ()
{
 as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
 rm -f conftest.$ac_objext
 if { { ac_try="$ac_compile"
case "(($ac_try" in
 \" | *\`* | **) ac_try_echo=\$ac_try;;
 *) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
$as_echo "$ac_try_echo"; } >&5
 (eval "$ac_compile") 2>conftest.err
 ac_status=$?
 if test -s conftest.err; then
 grep -v '^ *+' conftest.err >conftest.er1
 cat conftest.er1 >&5
 mv -f conftest.er1 conftest.err
 fi
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; } && {
	 test -z "$ac_cxx_werror_flag" ||
	 test ! -s conftest.err
 } && test -s conftest.$ac_objext; then :
 ac_retval=0
else
 $as_echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5

	ac_retval=1
fi
 eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno
 as_fn_set_status $ac_retval

} # ac_fn_cxx_try_compile

ac_fn_c_try_cpp LINENO

Try to preprocess conftest.$ac_ext, and return whether this succeeded.
ac_fn_c_try_cpp ()
{
 as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
 if { { ac_try="$ac_cpp conftest.$ac_ext"
case "(($ac_try" in
 \" | *\`* | **) ac_try_echo=\$ac_try;;
 *) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
$as_echo "$ac_try_echo"; } >&5
 (eval "$ac_cpp conftest.$ac_ext") 2>conftest.err
 ac_status=$?
 if test -s conftest.err; then
 grep -v '^ *+' conftest.err >conftest.er1
 cat conftest.er1 >&5
 mv -f conftest.er1 conftest.err
 fi
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; } > conftest.i && {
	 test -z "$ac_c_preproc_warn_flag$ac_c_werror_flag" ||
	 test ! -s conftest.err
 }; then :
 ac_retval=0
else
 $as_echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5

 ac_retval=1
fi
 eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno
 as_fn_set_status $ac_retval

} # ac_fn_c_try_cpp

ac_fn_c_try_run LINENO

Try to link conftest.$ac_ext, and return whether this succeeded. Assumes
that executables *can* be run.
ac_fn_c_try_run ()
{
 as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
 if { { ac_try="$ac_link"
case "(($ac_try" in
 \" | *\`* | **) ac_try_echo=\$ac_try;;
 *) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
$as_echo "$ac_try_echo"; } >&5
 (eval "$ac_link") 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; } && { ac_try='./conftest$ac_exeext'
 { { case "(($ac_try" in
 \" | *\`* | **) ac_try_echo=\$ac_try;;
 *) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
$as_echo "$ac_try_echo"; } >&5
 (eval "$ac_try") 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }; }; then :
 ac_retval=0
else
 $as_echo "$as_me: program exited with status $ac_status" >&5
 $as_echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5

 ac_retval=$ac_status
fi
 rm -rf conftest.dSYM conftest_ipa8_conftest.oo
 eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno
 as_fn_set_status $ac_retval

} # ac_fn_c_try_run

ac_fn_c_try_link LINENO

Try to link conftest.$ac_ext, and return whether this succeeded.
ac_fn_c_try_link ()
{
 as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
 rm -f conftest.$ac_objext conftest$ac_exeext
 if { { ac_try="$ac_link"
case "(($ac_try" in
 \" | *\`* | **) ac_try_echo=\$ac_try;;
 *) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
$as_echo "$ac_try_echo"; } >&5
 (eval "$ac_link") 2>conftest.err
 ac_status=$?
 if test -s conftest.err; then
 grep -v '^ *+' conftest.err >conftest.er1
 cat conftest.er1 >&5
 mv -f conftest.er1 conftest.err
 fi
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; } && {
	 test -z "$ac_c_werror_flag" ||
	 test ! -s conftest.err
 } && test -s conftest$ac_exeext && {
	 test "$cross_compiling" = yes ||
	 test -x conftest$ac_exeext
 }; then :
 ac_retval=0
else
 $as_echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5

	ac_retval=1
fi
 # Delete the IPA/IPO (Inter Procedural Analysis/Optimization) information
 # created by the PGI compiler (conftest_ipa8_conftest.oo), as it would
 # interfere with the next link command; also delete a directory that is
 # left behind by Apple's compiler. We do this before executing the actions.
 rm -rf conftest.dSYM conftest_ipa8_conftest.oo
 eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno
 as_fn_set_status $ac_retval

} # ac_fn_c_try_link

ac_fn_c_check_header_compile LINENO HEADER VAR INCLUDES

Tests whether HEADER exists and can be compiled using the include files in
INCLUDES, setting the cache variable VAR accordingly.
ac_fn_c_check_header_compile ()
{
 as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5
$as_echo_n "checking for $2... " >&6; }
if eval \${$3+:} false; then :
 $as_echo_n "(cached) " >&6
else
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
$4
#include <$2>
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :
 eval "$3=yes"
else
 eval "$3=no"
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
fi
eval ac_res=\$$3
	 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5
$as_echo "$ac_res" >&6; }
 eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno

} # ac_fn_c_check_header_compile

ac_fn_c_check_func LINENO FUNC VAR

Tests whether FUNC exists, setting the cache variable VAR accordingly
ac_fn_c_check_func ()
{
 as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5
$as_echo_n "checking for $2... " >&6; }
if eval \${$3+:} false; then :
 $as_echo_n "(cached) " >&6
else
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
/* Define $2 to an innocuous variant, in case <limits.h> declares $2.
 For example, HP-UX 11i <limits.h> declares gettimeofday. */
#define $2 innocuous_$2

/* System header to define __stub macros and hopefully few prototypes,
 which can conflict with char $2 (); below.
 Prefer <limits.h> to <assert.h> if __STDC__ is defined, since
 <limits.h> exists even on freestanding compilers. */

#ifdef __STDC__
include <limits.h>
#else
include <assert.h>
#endif

#undef $2

/* Override any GCC internal prototype to avoid an error.
 Use char because int might match the return type of a GCC
 builtin and then its argument prototype would still apply. */
#ifdef __cplusplus
extern "C"
#endif
char $2 ();
/* The GNU C library defines this for functions which it implements
 to always fail with ENOSYS. Some functions are actually named
 something starting with __ and the normal name is an alias. */
#if defined __stub_$2 || defined __stub___$2
choke me
#endif

int
main ()
{
return $2 ();
 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_link "$LINENO"; then :
 eval "$3=yes"
else
 eval "$3=no"
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
fi
eval ac_res=\$$3
	 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5
$as_echo "$ac_res" >&6; }
 eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno

} # ac_fn_c_check_func

ac_fn_cxx_try_cpp LINENO

Try to preprocess conftest.$ac_ext, and return whether this succeeded.
ac_fn_cxx_try_cpp ()
{
 as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
 if { { ac_try="$ac_cpp conftest.$ac_ext"
case "(($ac_try" in
 \" | *\`* | **) ac_try_echo=\$ac_try;;
 *) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
$as_echo "$ac_try_echo"; } >&5
 (eval "$ac_cpp conftest.$ac_ext") 2>conftest.err
 ac_status=$?
 if test -s conftest.err; then
 grep -v '^ *+' conftest.err >conftest.er1
 cat conftest.er1 >&5
 mv -f conftest.er1 conftest.err
 fi
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; } > conftest.i && {
	 test -z "$ac_cxx_preproc_warn_flag$ac_cxx_werror_flag" ||
	 test ! -s conftest.err
 }; then :
 ac_retval=0
else
 $as_echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5

 ac_retval=1
fi
 eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno
 as_fn_set_status $ac_retval

} # ac_fn_cxx_try_cpp

ac_fn_cxx_try_link LINENO

Try to link conftest.$ac_ext, and return whether this succeeded.
ac_fn_cxx_try_link ()
{
 as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
 rm -f conftest.$ac_objext conftest$ac_exeext
 if { { ac_try="$ac_link"
case "(($ac_try" in
 \" | *\`* | **) ac_try_echo=\$ac_try;;
 *) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
$as_echo "$ac_try_echo"; } >&5
 (eval "$ac_link") 2>conftest.err
 ac_status=$?
 if test -s conftest.err; then
 grep -v '^ *+' conftest.err >conftest.er1
 cat conftest.er1 >&5
 mv -f conftest.er1 conftest.err
 fi
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; } && {
	 test -z "$ac_cxx_werror_flag" ||
	 test ! -s conftest.err
 } && test -s conftest$ac_exeext && {
	 test "$cross_compiling" = yes ||
	 test -x conftest$ac_exeext
 }; then :
 ac_retval=0
else
 $as_echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5

	ac_retval=1
fi
 # Delete the IPA/IPO (Inter Procedural Analysis/Optimization) information
 # created by the PGI compiler (conftest_ipa8_conftest.oo), as it would
 # interfere with the next link command; also delete a directory that is
 # left behind by Apple's compiler. We do this before executing the actions.
 rm -rf conftest.dSYM conftest_ipa8_conftest.oo
 eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno
 as_fn_set_status $ac_retval

} # ac_fn_cxx_try_link

ac_fn_c_check_header_mongrel LINENO HEADER VAR INCLUDES

Tests whether HEADER exists, giving a warning if it cannot be compiled using
the include files in INCLUDES and setting the cache variable VAR
accordingly.
ac_fn_c_check_header_mongrel ()
{
 as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
 if eval \${$3+:} false; then :
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5
$as_echo_n "checking for $2... " >&6; }
if eval \${$3+:} false; then :
 $as_echo_n "(cached) " >&6
fi
eval ac_res=\$$3
	 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5
$as_echo "$ac_res" >&6; }
else
 # Is the header compilable?
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking $2 usability" >&5
$as_echo_n "checking $2 usability... " >&6; }
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
$4
#include <$2>
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :
 ac_header_compiler=yes
else
 ac_header_compiler=no
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_header_compiler" >&5
$as_echo "$ac_header_compiler" >&6; }

Is the header present?
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking $2 presence" >&5
$as_echo_n "checking $2 presence... " >&6; }
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include <$2>
_ACEOF
if ac_fn_c_try_cpp "$LINENO"; then :
 ac_header_preproc=yes
else
 ac_header_preproc=no
fi
rm -f conftest.err conftest.i conftest.$ac_ext
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_header_preproc" >&5
$as_echo "$ac_header_preproc" >&6; }

So? What about this header?
case $ac_header_compiler:$ac_header_preproc:$ac_c_preproc_warn_flag in #((
 yes:no:)
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: accepted by the compiler, rejected by the preprocessor!" >&5
$as_echo "$as_me: WARNING: $2: accepted by the compiler, rejected by the preprocessor!" >&2;}
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: proceeding with the compiler's result" >&5
$as_echo "$as_me: WARNING: $2: proceeding with the compiler's result" >&2;}
 ;;
 no:yes:*)
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: present but cannot be compiled" >&5
$as_echo "$as_me: WARNING: $2: present but cannot be compiled" >&2;}
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: check for missing prerequisite headers?" >&5
$as_echo "$as_me: WARNING: $2: check for missing prerequisite headers?" >&2;}
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: see the Autoconf documentation" >&5
$as_echo "$as_me: WARNING: $2: see the Autoconf documentation" >&2;}
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: section \"Present But Cannot Be Compiled\"" >&5
$as_echo "$as_me: WARNING: $2: section \"Present But Cannot Be Compiled\"" >&2;}
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: proceeding with the compiler's result" >&5
$as_echo "$as_me: WARNING: $2: proceeding with the compiler's result" >&2;}
 ;;
esac
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5
$as_echo_n "checking for $2... " >&6; }
if eval \${$3+:} false; then :
 $as_echo_n "(cached) " >&6
else
 eval "$3=\$ac_header_compiler"
fi
eval ac_res=\$$3
	 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5
$as_echo "$ac_res" >&6; }
fi
 eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno

} # ac_fn_c_check_header_mongrel

ac_fn_c_find_uintX_t LINENO BITS VAR

Finds an unsigned integer type with width BITS, setting cache variable VAR
accordingly.
ac_fn_c_find_uintX_t ()
{
 as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for uint$2_t" >&5
$as_echo_n "checking for uint$2_t... " >&6; }
if eval \${$3+:} false; then :
 $as_echo_n "(cached) " >&6
else
 eval "$3=no"
 # Order is important - never check a type that is potentially smaller
 # than half of the expected target width.
 for ac_type in uint$2_t 'unsigned int' 'unsigned long int' \
	 'unsigned long long int' 'unsigned short int' 'unsigned char'; do
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
$ac_includes_default
int
main ()
{
static int test_array [1 - 2 * !((($ac_type) -1 >> ($2 / 2 - 1)) >> ($2 / 2 - 1) == 3)];
test_array [0] = 0;
return test_array [0];

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :
 case $ac_type in #(
 uint$2_t) :
 eval "$3=yes" ;; #(
 *) :
 eval "$3=\$ac_type" ;;
esac
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
 if eval test \"x\$"$3"\" = x"no"; then :

else
 break
fi
 done
fi
eval ac_res=\$$3
	 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5
$as_echo "$ac_res" >&6; }
 eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno

} # ac_fn_c_find_uintX_t
cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.

It was created by qpdf $as_me 7.1.0, which was
generated by GNU Autoconf 2.69. Invocation command line was

 $ $0 $@

_ACEOF
exec 5>>config.log
{
cat <<_ASUNAME

Platform.

hostname = `(hostname || uname -n) 2>/dev/null | sed 1q`
uname -m = `(uname -m) 2>/dev/null || echo unknown`
uname -r = `(uname -r) 2>/dev/null || echo unknown`
uname -s = `(uname -s) 2>/dev/null || echo unknown`
uname -v = `(uname -v) 2>/dev/null || echo unknown`

/usr/bin/uname -p = `(/usr/bin/uname -p) 2>/dev/null || echo unknown`
/bin/uname -X = `(/bin/uname -X) 2>/dev/null || echo unknown`

/bin/arch = `(/bin/arch) 2>/dev/null || echo unknown`
/usr/bin/arch -k = `(/usr/bin/arch -k) 2>/dev/null || echo unknown`
/usr/convex/getsysinfo = `(/usr/convex/getsysinfo) 2>/dev/null || echo unknown`
/usr/bin/hostinfo = `(/usr/bin/hostinfo) 2>/dev/null || echo unknown`
/bin/machine = `(/bin/machine) 2>/dev/null || echo unknown`
/usr/bin/oslevel = `(/usr/bin/oslevel) 2>/dev/null || echo unknown`
/bin/universe = `(/bin/universe) 2>/dev/null || echo unknown`

_ASUNAME

as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 $as_echo "PATH: $as_dir"
 done
IFS=$as_save_IFS

} >&5

cat >&5 <<_ACEOF

Core tests.

_ACEOF

Keep a trace of the command line.
Strip out --no-create and --no-recursion so they do not pile up.
Strip out --silent because we don't want to record it for future runs.
Also quote any args containing shell meta-characters.
Make two passes to allow for proper duplicate-argument suppression.
ac_configure_args=
ac_configure_args0=
ac_configure_args1=
ac_must_keep_next=false
for ac_pass in 1 2
do
 for ac_arg
 do
 case $ac_arg in
 -no-create | --no-c* | -n | -no-recursion | --no-r*) continue ;;
 -q | -quiet | --quiet | --quie | --qui | --qu | --q \
 | -silent | --silent | --silen | --sile | --sil)
 continue ;;
 \')
 ac_arg=`$as_echo "$ac_arg" | sed "s/'/'\\\\\\\\''/g"` ;;
 esac
 case $ac_pass in
 1) as_fn_append ac_configure_args0 " '$ac_arg'" ;;
 2)
 as_fn_append ac_configure_args1 " '$ac_arg'"
 if test $ac_must_keep_next = true; then
	ac_must_keep_next=false # Got value, back to normal.
 else
	case $ac_arg in
	 = | --config-cache | -C | -disable-* | --disable-* \
	 | -enable-* | --enable-* | -gas | --g* | -nfp | --nf* \
	 | -q | -quiet | --q* | -silent | --sil* | -v | -verb* \
	 | -with-* | --with-* | -without-* | --without-* | --x)
	 case "$ac_configure_args0 " in
	 "$ac_configure_args1"*" '$ac_arg' "*) continue ;;
	 esac
	 ;;
	 -*) ac_must_keep_next=true ;;
	esac
 fi
 as_fn_append ac_configure_args " '$ac_arg'"
 ;;
 esac
 done
done
{ ac_configure_args0=; unset ac_configure_args0;}
{ ac_configure_args1=; unset ac_configure_args1;}

When interrupted or exit'd, cleanup temporary files, and complete
config.log. We remove comments because anyway the quotes in there
would cause problems or look ugly.
WARNING: Use '\'' to represent an apostrophe within the trap.
WARNING: Do not start the trap code with a newline, due to a FreeBSD 4.0 bug.
trap 'exit_status=$?
 # Save into config.log some information that might help in debugging.
 {
 echo

 $as_echo "## ---------------- ##
Cache variables.
---------------- ##"
 echo
 # The following way of writing the cache mishandles newlines in values,
(
 for ac_var in `(set) 2>&1 | sed -n '\''s/^\([a-zA-Z_][a-zA-Z0-9_]*\)=.*/\1/p'\''`; do
 eval ac_val=\$$ac_var
 case $ac_val in #(
 ${as_nl})
 case $ac_var in #(
 cv) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: cache variable $ac_var contains a newline" >&5
$as_echo "$as_me: WARNING: cache variable $ac_var contains a newline" >&2;} ;;
 esac
 case $ac_var in #(
 _ | IFS | as_nl) ;; #(
 BASH_ARGV | BASH_SOURCE) eval $ac_var= ;; #(
 *) { eval $ac_var=; unset $ac_var;} ;;
 esac ;;
 esac
 done
 (set) 2>&1 |
 case $as_nl`(ac_space='\'' '\''; set) 2>&1` in #(
 *${as_nl}ac_space=\ *)
 sed -n \
	"s/'\''/'\''\\\\'\'''\''/g;
	 s/^\\([_$as_cr_alnum]*_cv_[_$as_cr_alnum]*\\)=\\(.*\\)/\\1='\''\\2'\''/p"
 ;; #(
 *)
 sed -n "/^[_$as_cr_alnum]*_cv_[_$as_cr_alnum]*=/p"
 ;;
 esac |
 sort
)
 echo

 $as_echo "## ----------------- ##
Output variables.
----------------- ##"
 echo
 for ac_var in $ac_subst_vars
 do
 eval ac_val=\$$ac_var
 case $ac_val in
 \'\'') ac_val=`$as_echo "$ac_val" | sed "s/'\''/'\''\\\\\\\\'\'''\''/g"`;;
 esac
 $as_echo "$ac_var='\''$ac_val'\''"
 done | sort
 echo

 if test -n "$ac_subst_files"; then
 $as_echo "## ------------------- ##
File substitutions.
------------------- ##"
 echo
 for ac_var in $ac_subst_files
 do
	eval ac_val=\$$ac_var
	case $ac_val in
	\'\'') ac_val=`$as_echo "$ac_val" | sed "s/'\''/'\''\\\\\\\\'\'''\''/g"`;;
	esac
	$as_echo "$ac_var='\''$ac_val'\''"
 done | sort
 echo
 fi

 if test -s confdefs.h; then
 $as_echo "## ----------- ##
confdefs.h.
----------- ##"
 echo
 cat confdefs.h
 echo
 fi
 test "$ac_signal" != 0 &&
 $as_echo "$as_me: caught signal $ac_signal"
 $as_echo "$as_me: exit $exit_status"
 } >&5
 rm -f core *.core core.conftest.* &&
 rm -f -r conftest* confdefs* conf$$* $ac_clean_files &&
 exit $exit_status
' 0
for ac_signal in 1 2 13 15; do
 trap 'ac_signal='$ac_signal'; as_fn_exit 1' $ac_signal
done
ac_signal=0

confdefs.h avoids OS command line length limits that DEFS can exceed.
rm -f -r conftest* confdefs.h

$as_echo "/* confdefs.h */" > confdefs.h

Predefined preprocessor variables.

cat >>confdefs.h <<_ACEOF
#define PACKAGE_NAME "$PACKAGE_NAME"
_ACEOF

cat >>confdefs.h <<_ACEOF
#define PACKAGE_TARNAME "$PACKAGE_TARNAME"
_ACEOF

cat >>confdefs.h <<_ACEOF
#define PACKAGE_VERSION "$PACKAGE_VERSION"
_ACEOF

cat >>confdefs.h <<_ACEOF
#define PACKAGE_STRING "$PACKAGE_STRING"
_ACEOF

cat >>confdefs.h <<_ACEOF
#define PACKAGE_BUGREPORT "$PACKAGE_BUGREPORT"
_ACEOF

cat >>confdefs.h <<_ACEOF
#define PACKAGE_URL "$PACKAGE_URL"
_ACEOF

Let the site file select an alternate cache file if it wants to.
Prefer an explicitly selected file to automatically selected ones.
ac_site_file1=NONE
ac_site_file2=NONE
if test -n "$CONFIG_SITE"; then
 # We do not want a PATH search for config.site.
 case $CONFIG_SITE in #((
 -*) ac_site_file1=./$CONFIG_SITE;;
 /) ac_site_file1=$CONFIG_SITE;;
 *) ac_site_file1=./$CONFIG_SITE;;
 esac
elif test "x$prefix" != xNONE; then
 ac_site_file1=$prefix/share/config.site
 ac_site_file2=$prefix/etc/config.site
else
 ac_site_file1=$ac_default_prefix/share/config.site
 ac_site_file2=$ac_default_prefix/etc/config.site
fi
for ac_site_file in "$ac_site_file1" "$ac_site_file2"
do
 test "x$ac_site_file" = xNONE && continue
 if test /dev/null != "$ac_site_file" && test -r "$ac_site_file"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: loading site script $ac_site_file" >&5
$as_echo "$as_me: loading site script $ac_site_file" >&6;}
 sed 's/^/| /' "$ac_site_file" >&5
 . "$ac_site_file" \
 || { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5
$as_echo "$as_me: error: in \`$ac_pwd':" >&2;}
as_fn_error $? "failed to load site script $ac_site_file
See \`config.log' for more details" "$LINENO" 5; }
 fi
done

if test -r "$cache_file"; then
 # Some versions of bash will fail to source /dev/null (special files
 # actually), so we avoid doing that. DJGPP emulates it as a regular file.
 if test /dev/null != "$cache_file" && test -f "$cache_file"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: loading cache $cache_file" >&5
$as_echo "$as_me: loading cache $cache_file" >&6;}
 case $cache_file in
 [\\/]* | ?:[\\/]*) . "$cache_file";;
 *) . "./$cache_file";;
 esac
 fi
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: creating cache $cache_file" >&5
$as_echo "$as_me: creating cache $cache_file" >&6;}
 >$cache_file
fi

Check that the precious variables saved in the cache have kept the same
value.
ac_cache_corrupted=false
for ac_var in $ac_precious_vars; do
 eval ac_old_set=\$ac_cv_env_${ac_var}_set
 eval ac_new_set=\$ac_env_${ac_var}_set
 eval ac_old_val=\$ac_cv_env_${ac_var}_value
 eval ac_new_val=\$ac_env_${ac_var}_value
 case $ac_old_set,$ac_new_set in
 set,)
 { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' was set to \`$ac_old_val' in the previous run" >&5
$as_echo "$as_me: error: \`$ac_var' was set to \`$ac_old_val' in the previous run" >&2;}
 ac_cache_corrupted=: ;;
 ,set)
 { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' was not set in the previous run" >&5
$as_echo "$as_me: error: \`$ac_var' was not set in the previous run" >&2;}
 ac_cache_corrupted=: ;;
 ,);;
 *)
 if test "x$ac_old_val" != "x$ac_new_val"; then
	# differences in whitespace do not lead to failure.
	ac_old_val_w=`echo x $ac_old_val`
	ac_new_val_w=`echo x $ac_new_val`
	if test "$ac_old_val_w" != "$ac_new_val_w"; then
	 { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' has changed since the previous run:" >&5
$as_echo "$as_me: error: \`$ac_var' has changed since the previous run:" >&2;}
	 ac_cache_corrupted=:
	else
	 { $as_echo "$as_me:${as_lineno-$LINENO}: warning: ignoring whitespace changes in \`$ac_var' since the previous run:" >&5
$as_echo "$as_me: warning: ignoring whitespace changes in \`$ac_var' since the previous run:" >&2;}
	 eval $ac_var=\$ac_old_val
	fi
	{ $as_echo "$as_me:${as_lineno-$LINENO}: former value: \`$ac_old_val'" >&5
$as_echo "$as_me: former value: \`$ac_old_val'" >&2;}
	{ $as_echo "$as_me:${as_lineno-$LINENO}: current value: \`$ac_new_val'" >&5
$as_echo "$as_me: current value: \`$ac_new_val'" >&2;}
 fi;;
 esac
 # Pass precious variables to config.status.
 if test "$ac_new_set" = set; then
 case $ac_new_val in
 \') ac_arg=$ac_var=`$as_echo "$ac_new_val" | sed "s/'/'\\\\\\\\''/g"` ;;
 *) ac_arg=$ac_var=$ac_new_val ;;
 esac
 case " $ac_configure_args " in
 " '$ac_arg' ") ;; # Avoid dups. Use of quotes ensures accuracy.
 *) as_fn_append ac_configure_args " '$ac_arg'" ;;
 esac
 fi
done
if $ac_cache_corrupted; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5
$as_echo "$as_me: error: in \`$ac_pwd':" >&2;}
 { $as_echo "$as_me:${as_lineno-$LINENO}: error: changes in the environment can compromise the build" >&5
$as_echo "$as_me: error: changes in the environment can compromise the build" >&2;}
 as_fn_error $? "run \`make distclean' and/or \`rm $cache_file' and start over" "$LINENO" 5
fi

Main body of script.

ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu

ac_config_files="$ac_config_files autoconf.mk"

ac_config_files="$ac_config_files manual/html.xsl manual/print.xsl"

ac_config_files="$ac_config_files libqpdf.pc"

ac_config_files="$ac_config_files libqpdf.map"

ac_config_headers="$ac_config_headers libqpdf/qpdf/qpdf-config.h"

ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu
if test -n "$ac_tool_prefix"; then
 # Extract the first word of "${ac_tool_prefix}gcc", so it can be a program name with args.
set dummy ${ac_tool_prefix}gcc; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_CC+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$CC"; then
 ac_cv_prog_CC="$CC" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_CC="${ac_tool_prefix}gcc"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
CC=$ac_cv_prog_CC
if test -n "$CC"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5
$as_echo "$CC" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

fi
if test -z "$ac_cv_prog_CC"; then
 ac_ct_CC=$CC
 # Extract the first word of "gcc", so it can be a program name with args.
set dummy gcc; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_CC+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_CC"; then
 ac_cv_prog_ac_ct_CC="$ac_ct_CC" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_CC="gcc"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_CC=$ac_cv_prog_ac_ct_CC
if test -n "$ac_ct_CC"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CC" >&5
$as_echo "$ac_ct_CC" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 if test "x$ac_ct_CC" = x; then
 CC=""
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 CC=$ac_ct_CC
 fi
else
 CC="$ac_cv_prog_CC"
fi

if test -z "$CC"; then
 if test -n "$ac_tool_prefix"; then
 # Extract the first word of "${ac_tool_prefix}cc", so it can be a program name with args.
set dummy ${ac_tool_prefix}cc; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_CC+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$CC"; then
 ac_cv_prog_CC="$CC" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_CC="${ac_tool_prefix}cc"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
CC=$ac_cv_prog_CC
if test -n "$CC"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5
$as_echo "$CC" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 fi
fi
if test -z "$CC"; then
 # Extract the first word of "cc", so it can be a program name with args.
set dummy cc; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_CC+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$CC"; then
 ac_cv_prog_CC="$CC" # Let the user override the test.
else
 ac_prog_rejected=no
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 if test "$as_dir/$ac_word$ac_exec_ext" = "/usr/ucb/cc"; then
 ac_prog_rejected=yes
 continue
 fi
 ac_cv_prog_CC="cc"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

if test $ac_prog_rejected = yes; then
 # We found a bogon in the path, so make sure we never use it.
 set dummy $ac_cv_prog_CC
 shift
 if test $# != 0; then
 # We chose a different compiler from the bogus one.
 # However, it has the same basename, so the bogon will be chosen
 # first if we set CC to just the basename; use the full file name.
 shift
 ac_cv_prog_CC="$as_dir/$ac_word${1+' '}$@"
 fi
fi
fi
fi
CC=$ac_cv_prog_CC
if test -n "$CC"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5
$as_echo "$CC" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

fi
if test -z "$CC"; then
 if test -n "$ac_tool_prefix"; then
 for ac_prog in cl.exe
 do
 # Extract the first word of "ac_tool_prefixac_prog", so it can be a program name with args.
set dummy ac_tool_prefixac_prog; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_CC+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$CC"; then
 ac_cv_prog_CC="$CC" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_CC="ac_tool_prefixac_prog"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
CC=$ac_cv_prog_CC
if test -n "$CC"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5
$as_echo "$CC" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 test -n "$CC" && break
 done
fi
if test -z "$CC"; then
 ac_ct_CC=$CC
 for ac_prog in cl.exe
do
 # Extract the first word of "$ac_prog", so it can be a program name with args.
set dummy $ac_prog; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_CC+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_CC"; then
 ac_cv_prog_ac_ct_CC="$ac_ct_CC" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_CC="$ac_prog"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_CC=$ac_cv_prog_ac_ct_CC
if test -n "$ac_ct_CC"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CC" >&5
$as_echo "$ac_ct_CC" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 test -n "$ac_ct_CC" && break
done

 if test "x$ac_ct_CC" = x; then
 CC=""
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 CC=$ac_ct_CC
 fi
fi

fi

test -z "$CC" && { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5
$as_echo "$as_me: error: in \`$ac_pwd':" >&2;}
as_fn_error $? "no acceptable C compiler found in \$PATH
See \`config.log' for more details" "$LINENO" 5; }

Provide some information about the compiler.
$as_echo "$as_me:${as_lineno-$LINENO}: checking for C compiler version" >&5
set X $ac_compile
ac_compiler=$2
for ac_option in --version -v -V -qversion; do
 { { ac_try="$ac_compiler $ac_option >&5"
case "(($ac_try" in
 \" | *\`* | **) ac_try_echo=\$ac_try;;
 *) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
$as_echo "$ac_try_echo"; } >&5
 (eval "$ac_compiler $ac_option >&5") 2>conftest.err
 ac_status=$?
 if test -s conftest.err; then
 sed '10a\
... rest of stderr output deleted ...
 10q' conftest.err >conftest.er1
 cat conftest.er1 >&5
 fi
 rm -f conftest.er1 conftest.err
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }
done

cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
ac_clean_files_save=$ac_clean_files
ac_clean_files="$ac_clean_files a.out a.out.dSYM a.exe b.out"
Try to create an executable without -o first, disregard a.out.
It will help us diagnose broken compilers, and finding out an intuition
of exeext.
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the C compiler works" >&5
$as_echo_n "checking whether the C compiler works... " >&6; }
ac_link_default=`$as_echo "$ac_link" | sed 's/ -o *conftest[^]*//'`

The possible output files:
ac_files="a.out conftest.exe conftest a.exe a_out.exe b.out conftest.*"

ac_rmfiles=
for ac_file in $ac_files
do
 case $ac_file in
 *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj) ;;
 *) ac_rmfiles="$ac_rmfiles $ac_file";;
 esac
done
rm -f $ac_rmfiles

if { { ac_try="$ac_link_default"
case "(($ac_try" in
 \" | *\`* | **) ac_try_echo=\$ac_try;;
 *) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
$as_echo "$ac_try_echo"; } >&5
 (eval "$ac_link_default") 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }; then :
 # Autoconf-2.13 could set the ac_cv_exeext variable to `no'.
So ignore a value of `no', otherwise this would lead to `EXEEXT = no'
in a Makefile. We should not override ac_cv_exeext if it was cached,
so that the user can short-circuit this test for compilers unknown to
Autoconf.
for ac_file in $ac_files ''
do
 test -f "$ac_file" || continue
 case $ac_file in
 *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj)
	;;
 [ab].out)
	# We found the default executable, but exeext='' is most
	# certainly right.
	break;;
 .)
	if test "${ac_cv_exeext+set}" = set && test "$ac_cv_exeext" != no;
	then :; else
	 ac_cv_exeext=`expr "$ac_file" : '[^.]*\(\..*\)'`
	fi
	# We set ac_cv_exeext here because the later test for it is not
	# safe: cross compilers may not add the suffix if given an `-o'
	# argument, so we may need to know it at that point already.
	# Even if this section looks crufty: it has the advantage of
	# actually working.
	break;;
 *)
	break;;
 esac
done
test "$ac_cv_exeext" = no && ac_cv_exeext=

else
 ac_file=''
fi
if test -z "$ac_file"; then :
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
$as_echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5

{ { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5
$as_echo "$as_me: error: in \`$ac_pwd':" >&2;}
as_fn_error 77 "C compiler cannot create executables
See \`config.log' for more details" "$LINENO" 5; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5
$as_echo "yes" >&6; }
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for C compiler default output file name" >&5
$as_echo_n "checking for C compiler default output file name... " >&6; }
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_file" >&5
$as_echo "$ac_file" >&6; }
ac_exeext=$ac_cv_exeext

rm -f -r a.out a.out.dSYM a.exe conftest$ac_cv_exeext b.out
ac_clean_files=$ac_clean_files_save
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for suffix of executables" >&5
$as_echo_n "checking for suffix of executables... " >&6; }
if { { ac_try="$ac_link"
case "(($ac_try" in
 \" | *\`* | **) ac_try_echo=\$ac_try;;
 *) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
$as_echo "$ac_try_echo"; } >&5
 (eval "$ac_link") 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }; then :
 # If both `conftest.exe' and `conftest' are `present' (well, observable)
catch `conftest.exe'. For instance with Cygwin, `ls conftest' will
work properly (i.e., refer to `conftest.exe'), while it won't with
`rm'.
for ac_file in conftest.exe conftest conftest.*; do
 test -f "$ac_file" || continue
 case $ac_file in
 *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj) ;;
 .) ac_cv_exeext=`expr "$ac_file" : '[^.]*\(\..*\)'`
	 break;;
 *) break;;
 esac
done
else
 { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5
$as_echo "$as_me: error: in \`$ac_pwd':" >&2;}
as_fn_error $? "cannot compute suffix of executables: cannot compile and link
See \`config.log' for more details" "$LINENO" 5; }
fi
rm -f conftest conftest$ac_cv_exeext
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_exeext" >&5
$as_echo "$ac_cv_exeext" >&6; }

rm -f conftest.$ac_ext
EXEEXT=$ac_cv_exeext
ac_exeext=$EXEEXT
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include <stdio.h>
int
main ()
{
FILE *f = fopen ("conftest.out", "w");
 return ferror (f) || fclose (f) != 0;

 ;
 return 0;
}
_ACEOF
ac_clean_files="$ac_clean_files conftest.out"
Check that the compiler produces executables we can run. If not, either
the compiler is broken, or we cross compile.
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are cross compiling" >&5
$as_echo_n "checking whether we are cross compiling... " >&6; }
if test "$cross_compiling" != yes; then
 { { ac_try="$ac_link"
case "(($ac_try" in
 \" | *\`* | **) ac_try_echo=\$ac_try;;
 *) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
$as_echo "$ac_try_echo"; } >&5
 (eval "$ac_link") 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }
 if { ac_try='./conftest$ac_cv_exeext'
 { { case "(($ac_try" in
 \" | *\`* | **) ac_try_echo=\$ac_try;;
 *) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
$as_echo "$ac_try_echo"; } >&5
 (eval "$ac_try") 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }; }; then
 cross_compiling=no
 else
 if test "$cross_compiling" = maybe; then
	cross_compiling=yes
 else
	{ { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5
$as_echo "$as_me: error: in \`$ac_pwd':" >&2;}
as_fn_error $? "cannot run C compiled programs.
If you meant to cross compile, use \`--host'.
See \`config.log' for more details" "$LINENO" 5; }
 fi
 fi
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $cross_compiling" >&5
$as_echo "$cross_compiling" >&6; }

rm -f conftest.$ac_ext conftest$ac_cv_exeext conftest.out
ac_clean_files=$ac_clean_files_save
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for suffix of object files" >&5
$as_echo_n "checking for suffix of object files... " >&6; }
if ${ac_cv_objext+:} false; then :
 $as_echo_n "(cached) " >&6
else
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
rm -f conftest.o conftest.obj
if { { ac_try="$ac_compile"
case "(($ac_try" in
 \" | *\`* | **) ac_try_echo=\$ac_try;;
 *) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
$as_echo "$ac_try_echo"; } >&5
 (eval "$ac_compile") 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }; then :
 for ac_file in conftest.o conftest.obj conftest.*; do
 test -f "$ac_file" || continue;
 case $ac_file in
 *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM) ;;
) ac_cv_objext=`expr "$ac_file" : '.\.\(.*\)'`
 break;;
 esac
done
else
 $as_echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5

{ { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5
$as_echo "$as_me: error: in \`$ac_pwd':" >&2;}
as_fn_error $? "cannot compute suffix of object files: cannot compile
See \`config.log' for more details" "$LINENO" 5; }
fi
rm -f conftest.$ac_cv_objext conftest.$ac_ext
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_objext" >&5
$as_echo "$ac_cv_objext" >&6; }
OBJEXT=$ac_cv_objext
ac_objext=$OBJEXT
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are using the GNU C compiler" >&5
$as_echo_n "checking whether we are using the GNU C compiler... " >&6; }
if ${ac_cv_c_compiler_gnu+:} false; then :
 $as_echo_n "(cached) " >&6
else
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{
#ifndef __GNUC__
 choke me
#endif

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :
 ac_compiler_gnu=yes
else
 ac_compiler_gnu=no
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
ac_cv_c_compiler_gnu=$ac_compiler_gnu

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_compiler_gnu" >&5
$as_echo "$ac_cv_c_compiler_gnu" >&6; }
if test $ac_compiler_gnu = yes; then
 GCC=yes
else
 GCC=
fi
ac_test_CFLAGS=${CFLAGS+set}
ac_save_CFLAGS=$CFLAGS
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $CC accepts -g" >&5
$as_echo_n "checking whether $CC accepts -g... " >&6; }
if ${ac_cv_prog_cc_g+:} false; then :
 $as_echo_n "(cached) " >&6
else
 ac_save_c_werror_flag=$ac_c_werror_flag
 ac_c_werror_flag=yes
 ac_cv_prog_cc_g=no
 CFLAGS="-g"
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :
 ac_cv_prog_cc_g=yes
else
 CFLAGS=""
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :

else
 ac_c_werror_flag=$ac_save_c_werror_flag
	 CFLAGS="-g"
	 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :
 ac_cv_prog_cc_g=yes
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
 ac_c_werror_flag=$ac_save_c_werror_flag
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cc_g" >&5
$as_echo "$ac_cv_prog_cc_g" >&6; }
if test "$ac_test_CFLAGS" = set; then
 CFLAGS=$ac_save_CFLAGS
elif test $ac_cv_prog_cc_g = yes; then
 if test "$GCC" = yes; then
 CFLAGS="-g -O2"
 else
 CFLAGS="-g"
 fi
else
 if test "$GCC" = yes; then
 CFLAGS="-O2"
 else
 CFLAGS=
 fi
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $CC option to accept ISO C89" >&5
$as_echo_n "checking for $CC option to accept ISO C89... " >&6; }
if ${ac_cv_prog_cc_c89+:} false; then :
 $as_echo_n "(cached) " >&6
else
 ac_cv_prog_cc_c89=no
ac_save_CC=$CC
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include <stdarg.h>
#include <stdio.h>
struct stat;
/* Most of the following tests are stolen from RCS 5.7's src/conf.sh. */
struct buf { int x; };
FILE * (*rcsopen) (struct buf *, struct stat *, int);
static char *e (p, i)
 char **p;
 int i;
{
 return p[i];
}
static char *f (char * (*g) (char **, int), char **p, ...)
{
 char *s;
 va_list v;
 va_start (v,p);
 s = g (p, va_arg (v,int));
 va_end (v);
 return s;
}

/* OSF 4.0 Compaq cc is some sort of almost-ANSI by default. It has
 function prototypes and stuff, but not '\xHH' hex character constants.
 These don't provoke an error unfortunately, instead are silently treated
 as 'x'. The following induces an error, until -std is added to get
 proper ANSI mode. Curiously '\x00'!='x' always comes out true, for an
 array size at least. It's necessary to write '\x00'==0 to get something
 that's true only with -std. */
int osf4_cc_array ['\x00' == 0 ? 1 : -1];

/* IBM C 6 for AIX is almost-ANSI by default, but it replaces macro parameters
 inside strings and character constants. */
#define FOO(x) 'x'
int xlc6_cc_array[FOO(a) == 'x' ? 1 : -1];

int test (int i, double x);
struct s1 {int (*f) (int a);};
struct s2 {int (*f) (double a);};
int pairnames (int, char **, FILE *(*)(struct buf *, struct stat *, int), int, int);
int argc;
char **argv;
int
main ()
{
return f (e, argv, 0) != argv[0] || f (e, argv, 1) != argv[1];
 ;
 return 0;
}
_ACEOF
for ac_arg in '' -qlanglvl=extc89 -qlanglvl=ansi -std \
	-Ae "-Aa -D_HPUX_SOURCE" "-Xc -D__EXTENSIONS__"
do
 CC="$ac_save_CC $ac_arg"
 if ac_fn_c_try_compile "$LINENO"; then :
 ac_cv_prog_cc_c89=$ac_arg
fi
rm -f core conftest.err conftest.$ac_objext
 test "x$ac_cv_prog_cc_c89" != "xno" && break
done
rm -f conftest.$ac_ext
CC=$ac_save_CC

fi
AC_CACHE_VAL
case "x$ac_cv_prog_cc_c89" in
 x)
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: none needed" >&5
$as_echo "none needed" >&6; } ;;
 xno)
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: unsupported" >&5
$as_echo "unsupported" >&6; } ;;
 *)
 CC="$CC $ac_cv_prog_cc_c89"
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cc_c89" >&5
$as_echo "$ac_cv_prog_cc_c89" >&6; } ;;
esac
if test "x$ac_cv_prog_cc_c89" != xno; then :

fi

ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $CC option to accept ISO C99" >&5
$as_echo_n "checking for $CC option to accept ISO C99... " >&6; }
if ${ac_cv_prog_cc_c99+:} false; then :
 $as_echo_n "(cached) " >&6
else
 ac_cv_prog_cc_c99=no
ac_save_CC=$CC
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include <stdarg.h>
#include <stdbool.h>
#include <stdlib.h>
#include <wchar.h>
#include <stdio.h>

// Check varargs macros. These examples are taken from C99 6.10.3.5.
#define debug(...) fprintf (stderr, __VA_ARGS__)
#define showlist(...) puts (#__VA_ARGS__)
#define report(test,...) ((test) ? puts (#test) : printf (__VA_ARGS__))
static void
test_varargs_macros (void)
{
 int x = 1234;
 int y = 5678;
 debug ("Flag");
 debug ("X = %d\n", x);
 showlist (The first, second, and third items.);
 report (x>y, "x is %d but y is %d", x, y);
}

// Check long long types.
#define BIG64 18446744073709551615ull
#define BIG32 4294967295ul
#define BIG_OK (BIG64 / BIG32 == 4294967297ull && BIG64 % BIG32 == 0)
#if !BIG_OK
 your preprocessor is broken;
#endif
#if BIG_OK
#else
 your preprocessor is broken;
#endif
static long long int bignum = -9223372036854775807LL;
static unsigned long long int ubignum = BIG64;

struct incomplete_array
{
 int datasize;
 double data[];
};

struct named_init {
 int number;
 const wchar_t *name;
 double average;
};

typedef const char *ccp;

static inline int
test_restrict (ccp restrict text)
{
 // See if C++-style comments work.
 // Iterate through items via the restricted pointer.
 // Also check for declarations in for loops.
 for (unsigned int i = 0; *(text+i) != '\0'; ++i)
 continue;
 return 0;
}

// Check varargs and va_copy.
static void
test_varargs (const char *format, ...)
{
 va_list args;
 va_start (args, format);
 va_list args_copy;
 va_copy (args_copy, args);

 const char *str;
 int number;
 float fnumber;

 while (*format)
 {
 switch (*format++)
	{
	case 's': // string
	 str = va_arg (args_copy, const char *);
	 break;
	case 'd': // int
	 number = va_arg (args_copy, int);
	 break;
	case 'f': // float
	 fnumber = va_arg (args_copy, double);
	 break;
	default:
	 break;
	}
 }
 va_end (args_copy);
 va_end (args);
}

int
main ()
{

 // Check bool.
 _Bool success = false;

 // Check restrict.
 if (test_restrict ("String literal") == 0)
 success = true;
 char *restrict newvar = "Another string";

 // Check varargs.
 test_varargs ("s, d' f .", "string", 65, 34.234);
 test_varargs_macros ();

 // Check flexible array members.
 struct incomplete_array *ia =
 malloc (sizeof (struct incomplete_array) + (sizeof (double) * 10));
 ia->datasize = 10;
 for (int i = 0; i < ia->datasize; ++i)
 ia->data[i] = i * 1.234;

 // Check named initializers.
 struct named_init ni = {
 .number = 34,
 .name = L"Test wide string",
 .average = 543.34343,
 };

 ni.number = 58;

 int dynamic_array[ni.number];
 dynamic_array[ni.number - 1] = 543;

 // work around unused variable warnings
 return (!success || bignum == 0LL || ubignum == 0uLL || newvar[0] == 'x'
	 || dynamic_array[ni.number - 1] != 543);

 ;
 return 0;
}
_ACEOF
for ac_arg in '' -std=gnu99 -std=c99 -c99 -AC99 -D_STDC_C99= -qlanglvl=extc99
do
 CC="$ac_save_CC $ac_arg"
 if ac_fn_c_try_compile "$LINENO"; then :
 ac_cv_prog_cc_c99=$ac_arg
fi
rm -f core conftest.err conftest.$ac_objext
 test "x$ac_cv_prog_cc_c99" != "xno" && break
done
rm -f conftest.$ac_ext
CC=$ac_save_CC

fi
AC_CACHE_VAL
case "x$ac_cv_prog_cc_c99" in
 x)
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: none needed" >&5
$as_echo "none needed" >&6; } ;;
 xno)
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: unsupported" >&5
$as_echo "unsupported" >&6; } ;;
 *)
 CC="$CC $ac_cv_prog_cc_c99"
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cc_c99" >&5
$as_echo "$ac_cv_prog_cc_c99" >&6; } ;;
esac
if test "x$ac_cv_prog_cc_c99" != xno; then :

fi

ac_ext=cpp
ac_cpp='$CXXCPP $CPPFLAGS'
ac_compile='$CXX -c $CXXFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CXX -o conftest$ac_exeext $CXXFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_cxx_compiler_gnu
if test -z "$CXX"; then
 if test -n "$CCC"; then
 CXX=$CCC
 else
 if test -n "$ac_tool_prefix"; then
 for ac_prog in g++ c++ gpp aCC CC cxx cc++ cl.exe FCC KCC RCC xlC_r xlC
 do
 # Extract the first word of "ac_tool_prefixac_prog", so it can be a program name with args.
set dummy ac_tool_prefixac_prog; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_CXX+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$CXX"; then
 ac_cv_prog_CXX="$CXX" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_CXX="ac_tool_prefixac_prog"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
CXX=$ac_cv_prog_CXX
if test -n "$CXX"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CXX" >&5
$as_echo "$CXX" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 test -n "$CXX" && break
 done
fi
if test -z "$CXX"; then
 ac_ct_CXX=$CXX
 for ac_prog in g++ c++ gpp aCC CC cxx cc++ cl.exe FCC KCC RCC xlC_r xlC
do
 # Extract the first word of "$ac_prog", so it can be a program name with args.
set dummy $ac_prog; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_CXX+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_CXX"; then
 ac_cv_prog_ac_ct_CXX="$ac_ct_CXX" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_CXX="$ac_prog"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_CXX=$ac_cv_prog_ac_ct_CXX
if test -n "$ac_ct_CXX"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CXX" >&5
$as_echo "$ac_ct_CXX" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 test -n "$ac_ct_CXX" && break
done

 if test "x$ac_ct_CXX" = x; then
 CXX="g++"
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 CXX=$ac_ct_CXX
 fi
fi

 fi
fi
Provide some information about the compiler.
$as_echo "$as_me:${as_lineno-$LINENO}: checking for C++ compiler version" >&5
set X $ac_compile
ac_compiler=$2
for ac_option in --version -v -V -qversion; do
 { { ac_try="$ac_compiler $ac_option >&5"
case "(($ac_try" in
 \" | *\`* | **) ac_try_echo=\$ac_try;;
 *) ac_try_echo=$ac_try;;
esac
eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\""
$as_echo "$ac_try_echo"; } >&5
 (eval "$ac_compiler $ac_option >&5") 2>conftest.err
 ac_status=$?
 if test -s conftest.err; then
 sed '10a\
... rest of stderr output deleted ...
 10q' conftest.err >conftest.er1
 cat conftest.er1 >&5
 fi
 rm -f conftest.er1 conftest.err
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }
done

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are using the GNU C++ compiler" >&5
$as_echo_n "checking whether we are using the GNU C++ compiler... " >&6; }
if ${ac_cv_cxx_compiler_gnu+:} false; then :
 $as_echo_n "(cached) " >&6
else
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{
#ifndef __GNUC__
 choke me
#endif

 ;
 return 0;
}
_ACEOF
if ac_fn_cxx_try_compile "$LINENO"; then :
 ac_compiler_gnu=yes
else
 ac_compiler_gnu=no
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
ac_cv_cxx_compiler_gnu=$ac_compiler_gnu

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_cxx_compiler_gnu" >&5
$as_echo "$ac_cv_cxx_compiler_gnu" >&6; }
if test $ac_compiler_gnu = yes; then
 GXX=yes
else
 GXX=
fi
ac_test_CXXFLAGS=${CXXFLAGS+set}
ac_save_CXXFLAGS=$CXXFLAGS
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $CXX accepts -g" >&5
$as_echo_n "checking whether $CXX accepts -g... " >&6; }
if ${ac_cv_prog_cxx_g+:} false; then :
 $as_echo_n "(cached) " >&6
else
 ac_save_cxx_werror_flag=$ac_cxx_werror_flag
 ac_cxx_werror_flag=yes
 ac_cv_prog_cxx_g=no
 CXXFLAGS="-g"
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_cxx_try_compile "$LINENO"; then :
 ac_cv_prog_cxx_g=yes
else
 CXXFLAGS=""
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_cxx_try_compile "$LINENO"; then :

else
 ac_cxx_werror_flag=$ac_save_cxx_werror_flag
	 CXXFLAGS="-g"
	 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_cxx_try_compile "$LINENO"; then :
 ac_cv_prog_cxx_g=yes
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
 ac_cxx_werror_flag=$ac_save_cxx_werror_flag
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cxx_g" >&5
$as_echo "$ac_cv_prog_cxx_g" >&6; }
if test "$ac_test_CXXFLAGS" = set; then
 CXXFLAGS=$ac_save_CXXFLAGS
elif test $ac_cv_prog_cxx_g = yes; then
 if test "$GXX" = yes; then
 CXXFLAGS="-g -O2"
 else
 CXXFLAGS="-g"
 fi
else
 if test "$GXX" = yes; then
 CXXFLAGS="-O2"
 else
 CXXFLAGS=
 fi
fi
ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu

ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking how to run the C preprocessor" >&5
$as_echo_n "checking how to run the C preprocessor... " >&6; }
On Suns, sometimes $CPP names a directory.
if test -n "$CPP" && test -d "$CPP"; then
 CPP=
fi
if test -z "$CPP"; then
 if ${ac_cv_prog_CPP+:} false; then :
 $as_echo_n "(cached) " >&6
else
 # Double quotes because CPP needs to be expanded
 for CPP in "$CC -E" "$CC -E -traditional-cpp" "/lib/cpp"
 do
 ac_preproc_ok=false
for ac_c_preproc_warn_flag in '' yes
do
 # Use a header file that comes with gcc, so configuring glibc
 # with a fresh cross-compiler works.
 # Prefer <limits.h> to <assert.h> if __STDC__ is defined, since
 # <limits.h> exists even on freestanding compilers.
 # On the NeXT, cc -E runs the code through the compiler's parser,
 # not just through cpp. "Syntax error" is here to catch this case.
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#ifdef __STDC__
include <limits.h>
#else
include <assert.h>
#endif
		 Syntax error
_ACEOF
if ac_fn_c_try_cpp "$LINENO"; then :

else
 # Broken: fails on valid input.
continue
fi
rm -f conftest.err conftest.i conftest.$ac_ext

 # OK, works on sane cases. Now check whether nonexistent headers
 # can be detected and how.
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include <ac_nonexistent.h>
_ACEOF
if ac_fn_c_try_cpp "$LINENO"; then :
 # Broken: success on invalid input.
continue
else
 # Passes both tests.
ac_preproc_ok=:
break
fi
rm -f conftest.err conftest.i conftest.$ac_ext

done
Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped.
rm -f conftest.i conftest.err conftest.$ac_ext
if $ac_preproc_ok; then :
 break
fi

 done
 ac_cv_prog_CPP=$CPP

fi
 CPP=$ac_cv_prog_CPP
else
 ac_cv_prog_CPP=$CPP
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $CPP" >&5
$as_echo "$CPP" >&6; }
ac_preproc_ok=false
for ac_c_preproc_warn_flag in '' yes
do
 # Use a header file that comes with gcc, so configuring glibc
 # with a fresh cross-compiler works.
 # Prefer <limits.h> to <assert.h> if __STDC__ is defined, since
 # <limits.h> exists even on freestanding compilers.
 # On the NeXT, cc -E runs the code through the compiler's parser,
 # not just through cpp. "Syntax error" is here to catch this case.
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#ifdef __STDC__
include <limits.h>
#else
include <assert.h>
#endif
		 Syntax error
_ACEOF
if ac_fn_c_try_cpp "$LINENO"; then :

else
 # Broken: fails on valid input.
continue
fi
rm -f conftest.err conftest.i conftest.$ac_ext

 # OK, works on sane cases. Now check whether nonexistent headers
 # can be detected and how.
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include <ac_nonexistent.h>
_ACEOF
if ac_fn_c_try_cpp "$LINENO"; then :
 # Broken: success on invalid input.
continue
else
 # Passes both tests.
ac_preproc_ok=:
break
fi
rm -f conftest.err conftest.i conftest.$ac_ext

done
Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped.
rm -f conftest.i conftest.err conftest.$ac_ext
if $ac_preproc_ok; then :

else
 { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5
$as_echo "$as_me: error: in \`$ac_pwd':" >&2;}
as_fn_error $? "C preprocessor \"$CPP\" fails sanity check
See \`config.log' for more details" "$LINENO" 5; }
fi

ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for grep that handles long lines and -e" >&5
$as_echo_n "checking for grep that handles long lines and -e... " >&6; }
if ${ac_cv_path_GREP+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -z "$GREP"; then
 ac_path_GREP_found=false
 # Loop through the user's path and test for each of PROGNAME-LIST
 as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_prog in grep ggrep; do
 for ac_exec_ext in '' $ac_executable_extensions; do
 ac_path_GREP="$as_dir/$ac_prog$ac_exec_ext"
 as_fn_executable_p "$ac_path_GREP" || continue
Check for GNU ac_path_GREP and select it if it is found.
 # Check for GNU $ac_path_GREP
case `"$ac_path_GREP" --version 2>&1` in
GNU)
 ac_cv_path_GREP="$ac_path_GREP" ac_path_GREP_found=:;;
*)
 ac_count=0
 $as_echo_n 0123456789 >"conftest.in"
 while :
 do
 cat "conftest.in" "conftest.in" >"conftest.tmp"
 mv "conftest.tmp" "conftest.in"
 cp "conftest.in" "conftest.nl"
 $as_echo 'GREP' >> "conftest.nl"
 "$ac_path_GREP" -e 'GREP$' -e '-(cannot match)-' < "conftest.nl" >"conftest.out" 2>/dev/null || break
 diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break
 as_fn_arith $ac_count + 1 && ac_count=$as_val
 if test $ac_count -gt ${ac_path_GREP_max-0}; then
 # Best one so far, save it but keep looking for a better one
 ac_cv_path_GREP="$ac_path_GREP"
 ac_path_GREP_max=$ac_count
 fi
 # 10*(2^10) chars as input seems more than enough
 test $ac_count -gt 10 && break
 done
 rm -f conftest.in conftest.tmp conftest.nl conftest.out;;
esac

 $ac_path_GREP_found && break 3
 done
 done
 done
IFS=$as_save_IFS
 if test -z "$ac_cv_path_GREP"; then
 as_fn_error $? "no acceptable grep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5
 fi
else
 ac_cv_path_GREP=$GREP
fi

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_GREP" >&5
$as_echo "$ac_cv_path_GREP" >&6; }
 GREP="$ac_cv_path_GREP"

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for egrep" >&5
$as_echo_n "checking for egrep... " >&6; }
if ${ac_cv_path_EGREP+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if echo a | $GREP -E '(a|b)' >/dev/null 2>&1
 then ac_cv_path_EGREP="$GREP -E"
 else
 if test -z "$EGREP"; then
 ac_path_EGREP_found=false
 # Loop through the user's path and test for each of PROGNAME-LIST
 as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_prog in egrep; do
 for ac_exec_ext in '' $ac_executable_extensions; do
 ac_path_EGREP="$as_dir/$ac_prog$ac_exec_ext"
 as_fn_executable_p "$ac_path_EGREP" || continue
Check for GNU ac_path_EGREP and select it if it is found.
 # Check for GNU $ac_path_EGREP
case `"$ac_path_EGREP" --version 2>&1` in
GNU)
 ac_cv_path_EGREP="$ac_path_EGREP" ac_path_EGREP_found=:;;
*)
 ac_count=0
 $as_echo_n 0123456789 >"conftest.in"
 while :
 do
 cat "conftest.in" "conftest.in" >"conftest.tmp"
 mv "conftest.tmp" "conftest.in"
 cp "conftest.in" "conftest.nl"
 $as_echo 'EGREP' >> "conftest.nl"
 "$ac_path_EGREP" 'EGREP$' < "conftest.nl" >"conftest.out" 2>/dev/null || break
 diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break
 as_fn_arith $ac_count + 1 && ac_count=$as_val
 if test $ac_count -gt ${ac_path_EGREP_max-0}; then
 # Best one so far, save it but keep looking for a better one
 ac_cv_path_EGREP="$ac_path_EGREP"
 ac_path_EGREP_max=$ac_count
 fi
 # 10*(2^10) chars as input seems more than enough
 test $ac_count -gt 10 && break
 done
 rm -f conftest.in conftest.tmp conftest.nl conftest.out;;
esac

 $ac_path_EGREP_found && break 3
 done
 done
 done
IFS=$as_save_IFS
 if test -z "$ac_cv_path_EGREP"; then
 as_fn_error $? "no acceptable egrep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5
 fi
else
 ac_cv_path_EGREP=$EGREP
fi

 fi
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_EGREP" >&5
$as_echo "$ac_cv_path_EGREP" >&6; }
 EGREP="$ac_cv_path_EGREP"

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for ANSI C header files" >&5
$as_echo_n "checking for ANSI C header files... " >&6; }
if ${ac_cv_header_stdc+:} false; then :
 $as_echo_n "(cached) " >&6
else
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <float.h>

int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :
 ac_cv_header_stdc=yes
else
 ac_cv_header_stdc=no
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext

if test $ac_cv_header_stdc = yes; then
 # SunOS 4.x string.h does not declare mem*, contrary to ANSI.
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include <string.h>

_ACEOF
if (eval "$ac_cpp conftest.$ac_ext") 2>&5 |
 $EGREP "memchr" >/dev/null 2>&1; then :

else
 ac_cv_header_stdc=no
fi
rm -f conftest*

fi

if test $ac_cv_header_stdc = yes; then
 # ISC 2.0.2 stdlib.h does not declare free, contrary to ANSI.
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include <stdlib.h>

_ACEOF
if (eval "$ac_cpp conftest.$ac_ext") 2>&5 |
 $EGREP "free" >/dev/null 2>&1; then :

else
 ac_cv_header_stdc=no
fi
rm -f conftest*

fi

if test $ac_cv_header_stdc = yes; then
 # /bin/cc in Irix-4.0.5 gets non-ANSI ctype macros unless using -ansi.
 if test "$cross_compiling" = yes; then :
 :
else
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include <ctype.h>
#include <stdlib.h>
#if ((' ' & 0x0FF) == 0x020)
define ISLOWER(c) ('a' <= (c) && (c) <= 'z')
define TOUPPER(c) (ISLOWER(c) ? 'A' + ((c) - 'a') : (c))
#else
define ISLOWER(c) \
		 (('a' <= (c) && (c) <= 'i') \
		 || ('j' <= (c) && (c) <= 'r') \
		 || ('s' <= (c) && (c) <= 'z'))
define TOUPPER(c) (ISLOWER(c) ? ((c) | 0x40) : (c))
#endif

#define XOR(e, f) (((e) && !(f)) || (!(e) && (f)))
int
main ()
{
 int i;
 for (i = 0; i < 256; i++)
 if (XOR (islower (i), ISLOWER (i))
	|| toupper (i) != TOUPPER (i))
 return 2;
 return 0;
}
_ACEOF
if ac_fn_c_try_run "$LINENO"; then :

else
 ac_cv_header_stdc=no
fi
rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \
 conftest.$ac_objext conftest.beam conftest.$ac_ext
fi

fi
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_header_stdc" >&5
$as_echo "$ac_cv_header_stdc" >&6; }
if test $ac_cv_header_stdc = yes; then

$as_echo "#define STDC_HEADERS 1" >>confdefs.h

fi

ac_aux_dir=
for ac_dir in "$srcdir" "$srcdir/.." "$srcdir/../.."; do
 if test -f "$ac_dir/install-sh"; then
 ac_aux_dir=$ac_dir
 ac_install_sh="$ac_aux_dir/install-sh -c"
 break
 elif test -f "$ac_dir/install.sh"; then
 ac_aux_dir=$ac_dir
 ac_install_sh="$ac_aux_dir/install.sh -c"
 break
 elif test -f "$ac_dir/shtool"; then
 ac_aux_dir=$ac_dir
 ac_install_sh="$ac_aux_dir/shtool install -c"
 break
 fi
done
if test -z "$ac_aux_dir"; then
 as_fn_error $? "cannot find install-sh, install.sh, or shtool in \"$srcdir\" \"$srcdir/..\" \"$srcdir/../..\"" "$LINENO" 5
fi

These three variables are undocumented and unsupported,
and are intended to be withdrawn in a future Autoconf release.
They can cause serious problems if a builder's source tree is in a directory
whose full name contains unusual characters.
ac_config_guess="$SHELL $ac_aux_dir/config.guess" # Please don't use this var.
ac_config_sub="$SHELL $ac_aux_dir/config.sub" # Please don't use this var.
ac_configure="$SHELL $ac_aux_dir/configure" # Please don't use this var.

case `pwd` in
 *\ * | *\	*)
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: Libtool does not cope well with whitespace in \`pwd\`" >&5
$as_echo "$as_me: WARNING: Libtool does not cope well with whitespace in \`pwd\`" >&2;} ;;
esac

macro_version='2.4.6'
macro_revision='2.4.6'

ltmain=$ac_aux_dir/ltmain.sh

Make sure we can run config.sub.
$SHELL "$ac_aux_dir/config.sub" sun4 >/dev/null 2>&1 ||
 as_fn_error $? "cannot run $SHELL $ac_aux_dir/config.sub" "$LINENO" 5

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking build system type" >&5
$as_echo_n "checking build system type... " >&6; }
if ${ac_cv_build+:} false; then :
 $as_echo_n "(cached) " >&6
else
 ac_build_alias=$build_alias
test "x$ac_build_alias" = x &&
 ac_build_alias=`$SHELL "$ac_aux_dir/config.guess"`
test "x$ac_build_alias" = x &&
 as_fn_error $? "cannot guess build type; you must specify one" "$LINENO" 5
ac_cv_build=`$SHELL "$ac_aux_dir/config.sub" $ac_build_alias` ||
 as_fn_error $? "$SHELL $ac_aux_dir/config.sub $ac_build_alias failed" "$LINENO" 5

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_build" >&5
$as_echo "$ac_cv_build" >&6; }
case $ac_cv_build in
--*) ;;
*) as_fn_error $? "invalid value of canonical build" "$LINENO" 5;;
esac
build=$ac_cv_build
ac_save_IFS=$IFS; IFS='-'
set x $ac_cv_build
shift
build_cpu=$1
build_vendor=$2
shift; shift
Remember, the first character of IFS is used to create $*,
except with old shells:
build_os=$*
IFS=$ac_save_IFS
case $build_os in *\ *) build_os=`echo "$build_os" | sed 's/ /-/g'`;; esac

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking host system type" >&5
$as_echo_n "checking host system type... " >&6; }
if ${ac_cv_host+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test "x$host_alias" = x; then
 ac_cv_host=$ac_cv_build
else
 ac_cv_host=`$SHELL "$ac_aux_dir/config.sub" $host_alias` ||
 as_fn_error $? "$SHELL $ac_aux_dir/config.sub $host_alias failed" "$LINENO" 5
fi

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_host" >&5
$as_echo "$ac_cv_host" >&6; }
case $ac_cv_host in
--*) ;;
*) as_fn_error $? "invalid value of canonical host" "$LINENO" 5;;
esac
host=$ac_cv_host
ac_save_IFS=$IFS; IFS='-'
set x $ac_cv_host
shift
host_cpu=$1
host_vendor=$2
shift; shift
Remember, the first character of IFS is used to create $*,
except with old shells:
host_os=$*
IFS=$ac_save_IFS
case $host_os in *\ *) host_os=`echo "$host_os" | sed 's/ /-/g'`;; esac

Backslashify metacharacters that are still active within
double-quoted strings.
sed_quote_subst='s/\(["`$\\]\)/\\\1/g'

Same as above, but do not quote variable references.
double_quote_subst='s/\(["`\\]\)/\\\1/g'

Sed substitution to delay expansion of an escaped shell variable in a
double_quote_subst'ed string.
delay_variable_subst='s/\\\\\\\\\\\$/\\\\\\$/g'

Sed substitution to delay expansion of an escaped single quote.
delay_single_quote_subst='s/'\''/'\'\\\\\\\'\''/g'

Sed substitution to avoid accidental globbing in evaled expressions
no_glob_subst='s/*/*/g'

ECHO='\\\'
ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO
ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO$ECHO

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking how to print strings" >&5
$as_echo_n "checking how to print strings... " >&6; }
Test print first, because it will be a builtin if present.
if test "X`(print -r -- -n) 2>/dev/null`" = X-n && \
 test "X`print -r -- $ECHO 2>/dev/null`" = "X$ECHO"; then
 ECHO='print -r --'
elif test "X`printf %s $ECHO 2>/dev/null`" = "X$ECHO"; then
 ECHO='printf %s\n'
else
 # Use this function as a fallback that always works.
 func_fallback_echo ()
 {
 eval 'cat <<_LTECHO_EOF
$1
_LTECHO_EOF'
 }
 ECHO='func_fallback_echo'
fi

func_echo_all arg...
Invoke $ECHO with all args, space-separated.
func_echo_all ()
{
 $ECHO ""
}

case $ECHO in
 printf*) { $as_echo "$as_me:${as_lineno-$LINENO}: result: printf" >&5
$as_echo "printf" >&6; } ;;
 print*) { $as_echo "$as_me:${as_lineno-$LINENO}: result: print -r" >&5
$as_echo "print -r" >&6; } ;;
 *) { $as_echo "$as_me:${as_lineno-$LINENO}: result: cat" >&5
$as_echo "cat" >&6; } ;;
esac

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for a sed that does not truncate output" >&5
$as_echo_n "checking for a sed that does not truncate output... " >&6; }
if ${ac_cv_path_SED+:} false; then :
 $as_echo_n "(cached) " >&6
else
 ac_script=s/aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb/
 for ac_i in 1 2 3 4 5 6 7; do
 ac_script="ac_scriptas_nl$ac_script"
 done
 echo "$ac_script" 2>/dev/null | sed 99q >conftest.sed
 { ac_script=; unset ac_script;}
 if test -z "$SED"; then
 ac_path_SED_found=false
 # Loop through the user's path and test for each of PROGNAME-LIST
 as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_prog in sed gsed; do
 for ac_exec_ext in '' $ac_executable_extensions; do
 ac_path_SED="$as_dir/$ac_prog$ac_exec_ext"
 as_fn_executable_p "$ac_path_SED" || continue
Check for GNU ac_path_SED and select it if it is found.
 # Check for GNU $ac_path_SED
case `"$ac_path_SED" --version 2>&1` in
GNU)
 ac_cv_path_SED="$ac_path_SED" ac_path_SED_found=:;;
*)
 ac_count=0
 $as_echo_n 0123456789 >"conftest.in"
 while :
 do
 cat "conftest.in" "conftest.in" >"conftest.tmp"
 mv "conftest.tmp" "conftest.in"
 cp "conftest.in" "conftest.nl"
 $as_echo '' >> "conftest.nl"
 "$ac_path_SED" -f conftest.sed < "conftest.nl" >"conftest.out" 2>/dev/null || break
 diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break
 as_fn_arith $ac_count + 1 && ac_count=$as_val
 if test $ac_count -gt ${ac_path_SED_max-0}; then
 # Best one so far, save it but keep looking for a better one
 ac_cv_path_SED="$ac_path_SED"
 ac_path_SED_max=$ac_count
 fi
 # 10*(2^10) chars as input seems more than enough
 test $ac_count -gt 10 && break
 done
 rm -f conftest.in conftest.tmp conftest.nl conftest.out;;
esac

 $ac_path_SED_found && break 3
 done
 done
 done
IFS=$as_save_IFS
 if test -z "$ac_cv_path_SED"; then
 as_fn_error $? "no acceptable sed could be found in \$PATH" "$LINENO" 5
 fi
else
 ac_cv_path_SED=$SED
fi

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_SED" >&5
$as_echo "$ac_cv_path_SED" >&6; }
 SED="$ac_cv_path_SED"
 rm -f conftest.sed

test -z "$SED" && SED=sed
Xsed="$SED -e 1s/^X//"

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for fgrep" >&5
$as_echo_n "checking for fgrep... " >&6; }
if ${ac_cv_path_FGREP+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if echo 'ab*c' | $GREP -F 'ab*c' >/dev/null 2>&1
 then ac_cv_path_FGREP="$GREP -F"
 else
 if test -z "$FGREP"; then
 ac_path_FGREP_found=false
 # Loop through the user's path and test for each of PROGNAME-LIST
 as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_prog in fgrep; do
 for ac_exec_ext in '' $ac_executable_extensions; do
 ac_path_FGREP="$as_dir/$ac_prog$ac_exec_ext"
 as_fn_executable_p "$ac_path_FGREP" || continue
Check for GNU ac_path_FGREP and select it if it is found.
 # Check for GNU $ac_path_FGREP
case `"$ac_path_FGREP" --version 2>&1` in
GNU)
 ac_cv_path_FGREP="$ac_path_FGREP" ac_path_FGREP_found=:;;
*)
 ac_count=0
 $as_echo_n 0123456789 >"conftest.in"
 while :
 do
 cat "conftest.in" "conftest.in" >"conftest.tmp"
 mv "conftest.tmp" "conftest.in"
 cp "conftest.in" "conftest.nl"
 $as_echo 'FGREP' >> "conftest.nl"
 "$ac_path_FGREP" FGREP < "conftest.nl" >"conftest.out" 2>/dev/null || break
 diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break
 as_fn_arith $ac_count + 1 && ac_count=$as_val
 if test $ac_count -gt ${ac_path_FGREP_max-0}; then
 # Best one so far, save it but keep looking for a better one
 ac_cv_path_FGREP="$ac_path_FGREP"
 ac_path_FGREP_max=$ac_count
 fi
 # 10*(2^10) chars as input seems more than enough
 test $ac_count -gt 10 && break
 done
 rm -f conftest.in conftest.tmp conftest.nl conftest.out;;
esac

 $ac_path_FGREP_found && break 3
 done
 done
 done
IFS=$as_save_IFS
 if test -z "$ac_cv_path_FGREP"; then
 as_fn_error $? "no acceptable fgrep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5
 fi
else
 ac_cv_path_FGREP=$FGREP
fi

 fi
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_FGREP" >&5
$as_echo "$ac_cv_path_FGREP" >&6; }
 FGREP="$ac_cv_path_FGREP"

test -z "$GREP" && GREP=grep

Check whether --with-gnu-ld was given.
if test "${with_gnu_ld+set}" = set; then :
 withval=$with_gnu_ld; test no = "$withval" || with_gnu_ld=yes
else
 with_gnu_ld=no
fi

ac_prog=ld
if test yes = "$GCC"; then
 # Check if gcc -print-prog-name=ld gives a path.
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for ld used by $CC" >&5
$as_echo_n "checking for ld used by $CC... " >&6; }
 case $host in
 --mingw*)
 # gcc leaves a trailing carriage return, which upsets mingw
 ac_prog=`($CC -print-prog-name=ld) 2>&5 | tr -d '\015'` ;;
 *)
 ac_prog=`($CC -print-prog-name=ld) 2>&5` ;;
 esac
 case $ac_prog in
 # Accept absolute paths.
 [\\/]* | ?:[\\/]*)
 re_direlt='/[^/][^/]*/\.\./'
 # Canonicalize the pathname of ld
 ac_prog=`$ECHO "$ac_prog"| $SED 's%\\\\%/%g'`
 while $ECHO "$ac_prog" | $GREP "$re_direlt" > /dev/null 2>&1; do
	ac_prog=`$ECHO $ac_prog| $SED "s%$re_direlt%/%"`
 done
 test -z "$LD" && LD=$ac_prog
 ;;
 "")
 # If it fails, then pretend we aren't using GCC.
 ac_prog=ld
 ;;
 *)
 # If it is relative, then search for the first ld in PATH.
 with_gnu_ld=unknown
 ;;
 esac
elif test yes = "$with_gnu_ld"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for GNU ld" >&5
$as_echo_n "checking for GNU ld... " >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for non-GNU ld" >&5
$as_echo_n "checking for non-GNU ld... " >&6; }
fi
if ${lt_cv_path_LD+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -z "$LD"; then
 lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR
 for ac_dir in $PATH; do
 IFS=$lt_save_ifs
 test -z "$ac_dir" && ac_dir=.
 if test -f "$ac_dir/$ac_prog" || test -f "$ac_dir/$ac_prog$ac_exeext"; then
 lt_cv_path_LD=$ac_dir/$ac_prog
 # Check to see if the program is GNU ld. I'd rather use --version,
 # but apparently some variants of GNU ld only accept -v.
 # Break only if it was the GNU/non-GNU ld that we prefer.
 case `"$lt_cv_path_LD" -v 2>&1 </dev/null` in
 GNU | *'with BFD'*)
	test no != "$with_gnu_ld" && break
	;;
 *)
	test yes != "$with_gnu_ld" && break
	;;
 esac
 fi
 done
 IFS=$lt_save_ifs
else
 lt_cv_path_LD=$LD # Let the user override the test with a path.
fi
fi

LD=$lt_cv_path_LD
if test -n "$LD"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $LD" >&5
$as_echo "$LD" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi
test -z "$LD" && as_fn_error $? "no acceptable ld found in \$PATH" "$LINENO" 5
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking if the linker ($LD) is GNU ld" >&5
$as_echo_n "checking if the linker ($LD) is GNU ld... " >&6; }
if ${lt_cv_prog_gnu_ld+:} false; then :
 $as_echo_n "(cached) " >&6
else
 # I'd rather use --version here, but apparently some GNU lds only accept -v.
case `$LD -v 2>&1 </dev/null` in
GNU | *'with BFD'*)
 lt_cv_prog_gnu_ld=yes
 ;;
*)
 lt_cv_prog_gnu_ld=no
 ;;
esac
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_gnu_ld" >&5
$as_echo "$lt_cv_prog_gnu_ld" >&6; }
with_gnu_ld=$lt_cv_prog_gnu_ld

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for BSD- or MS-compatible name lister (nm)" >&5
$as_echo_n "checking for BSD- or MS-compatible name lister (nm)... " >&6; }
if ${lt_cv_path_NM+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$NM"; then
 # Let the user override the test.
 lt_cv_path_NM=$NM
else
 lt_nm_to_check=${ac_tool_prefix}nm
 if test -n "$ac_tool_prefix" && test "$build" = "$host"; then
 lt_nm_to_check="$lt_nm_to_check nm"
 fi
 for lt_tmp_nm in $lt_nm_to_check; do
 lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR
 for ac_dir in $PATH /usr/ccs/bin/elf /usr/ccs/bin /usr/ucb /bin; do
 IFS=$lt_save_ifs
 test -z "$ac_dir" && ac_dir=.
 tmp_nm=$ac_dir/$lt_tmp_nm
 if test -f "$tmp_nm" || test -f "$tmp_nm$ac_exeext"; then
	# Check to see if the nm accepts a BSD-compat flag.
	# Adding the 'sed 1q' prevents false positives on HP-UX, which says:
	# nm: unknown option "B" ignored
	# Tru64's nm complains that /dev/null is an invalid object file
	# MSYS converts /dev/null to NUL, MinGW nm treats NUL as empty
	case $build_os in
	mingw*) lt_bad_file=conftest.nm/nofile ;;
	*) lt_bad_file=/dev/null ;;
	esac
	case `"$tmp_nm" -B $lt_bad_file 2>&1 | sed '1q'` in
	$lt_bad_file | *'Invalid file or object type'*)
	 lt_cv_path_NM="$tmp_nm -B"
	 break 2
	 ;;
	*)
	 case `"$tmp_nm" -p /dev/null 2>&1 | sed '1q'` in
	 /dev/null)
	 lt_cv_path_NM="$tmp_nm -p"
	 break 2
	 ;;
	 *)
	 lt_cv_path_NM=${lt_cv_path_NM="$tmp_nm"} # keep the first match, but
	 continue # so that we can try to find one that supports BSD flags
	 ;;
	 esac
	 ;;
	esac
 fi
 done
 IFS=$lt_save_ifs
 done
 : ${lt_cv_path_NM=no}
fi
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_path_NM" >&5
$as_echo "$lt_cv_path_NM" >&6; }
if test no != "$lt_cv_path_NM"; then
 NM=$lt_cv_path_NM
else
 # Didn't find any BSD compatible name lister, look for dumpbin.
 if test -n "$DUMPBIN"; then :
 # Let the user override the test.
 else
 if test -n "$ac_tool_prefix"; then
 for ac_prog in dumpbin "link -dump"
 do
 # Extract the first word of "ac_tool_prefixac_prog", so it can be a program name with args.
set dummy ac_tool_prefixac_prog; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_DUMPBIN+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$DUMPBIN"; then
 ac_cv_prog_DUMPBIN="$DUMPBIN" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_DUMPBIN="ac_tool_prefixac_prog"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
DUMPBIN=$ac_cv_prog_DUMPBIN
if test -n "$DUMPBIN"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $DUMPBIN" >&5
$as_echo "$DUMPBIN" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 test -n "$DUMPBIN" && break
 done
fi
if test -z "$DUMPBIN"; then
 ac_ct_DUMPBIN=$DUMPBIN
 for ac_prog in dumpbin "link -dump"
do
 # Extract the first word of "$ac_prog", so it can be a program name with args.
set dummy $ac_prog; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_DUMPBIN+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_DUMPBIN"; then
 ac_cv_prog_ac_ct_DUMPBIN="$ac_ct_DUMPBIN" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_DUMPBIN="$ac_prog"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_DUMPBIN=$ac_cv_prog_ac_ct_DUMPBIN
if test -n "$ac_ct_DUMPBIN"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_DUMPBIN" >&5
$as_echo "$ac_ct_DUMPBIN" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 test -n "$ac_ct_DUMPBIN" && break
done

 if test "x$ac_ct_DUMPBIN" = x; then
 DUMPBIN=":"
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 DUMPBIN=$ac_ct_DUMPBIN
 fi
fi

 case `$DUMPBIN -symbols -headers /dev/null 2>&1 | sed '1q'` in
 COFF)
 DUMPBIN="$DUMPBIN -symbols -headers"
 ;;
 *)
 DUMPBIN=:
 ;;
 esac
 fi

 if test : != "$DUMPBIN"; then
 NM=$DUMPBIN
 fi
fi
test -z "$NM" && NM=nm

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking the name lister ($NM) interface" >&5
$as_echo_n "checking the name lister ($NM) interface... " >&6; }
if ${lt_cv_nm_interface+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_nm_interface="BSD nm"
 echo "int some_variable = 0;" > conftest.$ac_ext
 (eval echo "\"\$as_me:$LINENO: $ac_compile\"" >&5)
 (eval "$ac_compile" 2>conftest.err)
 cat conftest.err >&5
 (eval echo "\"\$as_me:$LINENO: $NM \\\"conftest.$ac_objext\\\"\"" >&5)
 (eval "$NM \"conftest.$ac_objext\"" 2>conftest.err > conftest.out)
 cat conftest.err >&5
 (eval echo "\"\$as_me:$LINENO: output\"" >&5)
 cat conftest.out >&5
 if $GREP 'External.*some_variable' conftest.out > /dev/null; then
 lt_cv_nm_interface="MS dumpbin"
 fi
 rm -f conftest*
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_nm_interface" >&5
$as_echo "$lt_cv_nm_interface" >&6; }

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking whether ln -s works" >&5
$as_echo_n "checking whether ln -s works... " >&6; }
LN_S=$as_ln_s
if test "$LN_S" = "ln -s"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5
$as_echo "yes" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no, using $LN_S" >&5
$as_echo "no, using $LN_S" >&6; }
fi

find the maximum length of command line arguments
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking the maximum length of command line arguments" >&5
$as_echo_n "checking the maximum length of command line arguments... " >&6; }
if ${lt_cv_sys_max_cmd_len+:} false; then :
 $as_echo_n "(cached) " >&6
else
 i=0
 teststring=ABCD

 case $build_os in
 msdosdjgpp*)
 # On DJGPP, this test can blow up pretty badly due to problems in libc
 # (any single argument exceeding 2000 bytes causes a buffer overrun
 # during glob expansion). Even if it were fixed, the result of this
 # check would be larger than it should be.
 lt_cv_sys_max_cmd_len=12288; # 12K is about right
 ;;

 gnu*)
 # Under GNU Hurd, this test is not required because there is
 # no limit to the length of command line arguments.
 # Libtool will interpret -1 as no limit whatsoever
 lt_cv_sys_max_cmd_len=-1;
 ;;

 cygwin* | mingw* | cegcc*)
 # On Win9x/ME, this test blows up -- it succeeds, but takes
 # about 5 minutes as the teststring grows exponentially.
 # Worse, since 9x/ME are not pre-emptively multitasking,
 # you end up with a "frozen" computer, even though with patience
 # the test eventually succeeds (with a max line length of 256k).
 # Instead, let's just punt: use the minimum linelength reported by
 # all of the supported platforms: 8192 (on NT/2K/XP).
 lt_cv_sys_max_cmd_len=8192;
 ;;

 mint*)
 # On MiNT this can take a long time and run out of memory.
 lt_cv_sys_max_cmd_len=8192;
 ;;

 amigaos*)
 # On AmigaOS with pdksh, this test takes hours, literally.
 # So we just punt and use a minimum line length of 8192.
 lt_cv_sys_max_cmd_len=8192;
 ;;

 bitrig* | darwin* | dragonfly* | freebsd* | netbsd* | openbsd*)
 # This has been around since 386BSD, at least. Likely further.
 if test -x /sbin/sysctl; then
 lt_cv_sys_max_cmd_len=`/sbin/sysctl -n kern.argmax`
 elif test -x /usr/sbin/sysctl; then
 lt_cv_sys_max_cmd_len=`/usr/sbin/sysctl -n kern.argmax`
 else
 lt_cv_sys_max_cmd_len=65536	# usable default for all BSDs
 fi
 # And add a safety zone
 lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 4`
 lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len * 3`
 ;;

 interix*)
 # We know the value 262144 and hardcode it with a safety zone (like BSD)
 lt_cv_sys_max_cmd_len=196608
 ;;

 os2*)
 # The test takes a long time on OS/2.
 lt_cv_sys_max_cmd_len=8192
 ;;

 osf*)
 # Dr. Hans Ekkehard Plesser reports seeing a kernel panic running configure
 # due to this test when exec_disable_arg_limit is 1 on Tru64. It is not
 # nice to cause kernel panics so lets avoid the loop below.
 # First set a reasonable default.
 lt_cv_sys_max_cmd_len=16384
 #
 if test -x /sbin/sysconfig; then
 case `/sbin/sysconfig -q proc exec_disable_arg_limit` in
 1) lt_cv_sys_max_cmd_len=-1 ;;
 esac
 fi
 ;;
 sco3.2v5*)
 lt_cv_sys_max_cmd_len=102400
 ;;
 sysv5* | sco5v6* | sysv4.2uw2*)
 kargmax=`grep ARG_MAX /etc/conf/cf.d/stune 2>/dev/null`
 if test -n "$kargmax"; then
 lt_cv_sys_max_cmd_len=`echo $kargmax | sed 's/.*[]//'`
 else
 lt_cv_sys_max_cmd_len=32768
 fi
 ;;
 *)
 lt_cv_sys_max_cmd_len=`(getconf ARG_MAX) 2> /dev/null`
 if test -n "$lt_cv_sys_max_cmd_len" && \
 test undefined != "$lt_cv_sys_max_cmd_len"; then
 lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 4`
 lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len * 3`
 else
 # Make teststring a little bigger before we do anything with it.
 # a 1K string should be a reasonable start.
 for i in 1 2 3 4 5 6 7 8; do
 teststring=$teststring$teststring
 done
 SHELL=${SHELL-${CONFIG_SHELL-/bin/sh}}
 # If test is not a shell built-in, we'll probably end up computing a
 # maximum length that is only half of the actual maximum length, but
 # we can't tell.
 while { test X`env echo "$teststring$teststring" 2>/dev/null` \
	 = "X$teststring$teststring"; } >/dev/null 2>&1 &&
	 test 17 != "$i" # 1/2 MB should be enough
 do
 i=`expr $i + 1`
 teststring=$teststring$teststring
 done
 # Only check the string length outside the loop.
 lt_cv_sys_max_cmd_len=`expr "X$teststring" : ".*" 2>&1`
 teststring=
 # Add a significant safety factor because C++ compilers can tack on
 # massive amounts of additional arguments before passing them to the
 # linker. It appears as though 1/2 is a usable value.
 lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 2`
 fi
 ;;
 esac

fi

if test -n "$lt_cv_sys_max_cmd_len"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_sys_max_cmd_len" >&5
$as_echo "$lt_cv_sys_max_cmd_len" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: none" >&5
$as_echo "none" >&6; }
fi
max_cmd_len=$lt_cv_sys_max_cmd_len

: ${CP="cp -f"}
: ${MV="mv -f"}
: ${RM="rm -f"}

if ((MAIL=60; unset MAIL) || exit) >/dev/null 2>&1; then
 lt_unset=unset
else
 lt_unset=false
fi

test EBCDIC or ASCII
case `echo X|tr X '\101'` in
 A) # ASCII based system
 # \n is not interpreted correctly by Solaris 8 /usr/ucb/tr
 lt_SP2NL='tr \040 \012'
 lt_NL2SP='tr \015\012 \040\040'
 ;;
 *) # EBCDIC based system
 lt_SP2NL='tr \100 \n'
 lt_NL2SP='tr \r\n \100\100'
 ;;
esac

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking how to convert $build file names to $host format" >&5
$as_echo_n "checking how to convert $build file names to $host format... " >&6; }
if ${lt_cv_to_host_file_cmd+:} false; then :
 $as_echo_n "(cached) " >&6
else
 case $host in
 --mingw*)
 case $build in
 --mingw*) # actually msys
 lt_cv_to_host_file_cmd=func_convert_file_msys_to_w32
 ;;
 --cygwin*)
 lt_cv_to_host_file_cmd=func_convert_file_cygwin_to_w32
 ;;
 *) # otherwise, assume *nix
 lt_cv_to_host_file_cmd=func_convert_file_nix_to_w32
 ;;
 esac
 ;;
 --cygwin*)
 case $build in
 --mingw*) # actually msys
 lt_cv_to_host_file_cmd=func_convert_file_msys_to_cygwin
 ;;
 --cygwin*)
 lt_cv_to_host_file_cmd=func_convert_file_noop
 ;;
 *) # otherwise, assume *nix
 lt_cv_to_host_file_cmd=func_convert_file_nix_to_cygwin
 ;;
 esac
 ;;
 *) # unhandled hosts (and "normal" native builds)
 lt_cv_to_host_file_cmd=func_convert_file_noop
 ;;
esac

fi

to_host_file_cmd=$lt_cv_to_host_file_cmd
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_to_host_file_cmd" >&5
$as_echo "$lt_cv_to_host_file_cmd" >&6; }

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking how to convert $build file names to toolchain format" >&5
$as_echo_n "checking how to convert $build file names to toolchain format... " >&6; }
if ${lt_cv_to_tool_file_cmd+:} false; then :
 $as_echo_n "(cached) " >&6
else
 #assume ordinary cross tools, or native build.
lt_cv_to_tool_file_cmd=func_convert_file_noop
case $host in
 --mingw*)
 case $build in
 --mingw*) # actually msys
 lt_cv_to_tool_file_cmd=func_convert_file_msys_to_w32
 ;;
 esac
 ;;
esac

fi

to_tool_file_cmd=$lt_cv_to_tool_file_cmd
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_to_tool_file_cmd" >&5
$as_echo "$lt_cv_to_tool_file_cmd" >&6; }

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $LD option to reload object files" >&5
$as_echo_n "checking for $LD option to reload object files... " >&6; }
if ${lt_cv_ld_reload_flag+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_ld_reload_flag='-r'
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_ld_reload_flag" >&5
$as_echo "$lt_cv_ld_reload_flag" >&6; }
reload_flag=$lt_cv_ld_reload_flag
case $reload_flag in
"" | " "*) ;;
*) reload_flag=" $reload_flag" ;;
esac
reload_cmds='LDreload_flag -o $output$reload_objs'
case $host_os in
 cygwin* | mingw* | pw32* | cegcc*)
 if test yes != "$GCC"; then
 reload_cmds=false
 fi
 ;;
 darwin*)
 if test yes = "$GCC"; then
 reload_cmds='$LTCC $LTCFLAGS -nostdlib $wl-r -o $output$reload_objs'
 else
 reload_cmds='LDreload_flag -o $output$reload_objs'
 fi
 ;;
esac

if test -n "$ac_tool_prefix"; then
 # Extract the first word of "${ac_tool_prefix}objdump", so it can be a program name with args.
set dummy ${ac_tool_prefix}objdump; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_OBJDUMP+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$OBJDUMP"; then
 ac_cv_prog_OBJDUMP="$OBJDUMP" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_OBJDUMP="${ac_tool_prefix}objdump"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
OBJDUMP=$ac_cv_prog_OBJDUMP
if test -n "$OBJDUMP"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $OBJDUMP" >&5
$as_echo "$OBJDUMP" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

fi
if test -z "$ac_cv_prog_OBJDUMP"; then
 ac_ct_OBJDUMP=$OBJDUMP
 # Extract the first word of "objdump", so it can be a program name with args.
set dummy objdump; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_OBJDUMP+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_OBJDUMP"; then
 ac_cv_prog_ac_ct_OBJDUMP="$ac_ct_OBJDUMP" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_OBJDUMP="objdump"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_OBJDUMP=$ac_cv_prog_ac_ct_OBJDUMP
if test -n "$ac_ct_OBJDUMP"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_OBJDUMP" >&5
$as_echo "$ac_ct_OBJDUMP" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 if test "x$ac_ct_OBJDUMP" = x; then
 OBJDUMP="false"
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 OBJDUMP=$ac_ct_OBJDUMP
 fi
else
 OBJDUMP="$ac_cv_prog_OBJDUMP"
fi

test -z "$OBJDUMP" && OBJDUMP=objdump

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking how to recognize dependent libraries" >&5
$as_echo_n "checking how to recognize dependent libraries... " >&6; }
if ${lt_cv_deplibs_check_method+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_file_magic_cmd='$MAGIC_CMD'
lt_cv_file_magic_test_file=
lt_cv_deplibs_check_method='unknown'
Need to set the preceding variable on all platforms that support
interlibrary dependencies.
'none' -- dependencies not supported.
'unknown' -- same as none, but documents that we really don't know.
'pass_all' -- all dependencies passed with no checks.
'test_compile' -- check by making test program.
'file_magic [[regex]]' -- check by looking for files in library path
that responds to the $file_magic_cmd with a given extended regex.
If you have 'file' or equivalent on your system and you're not sure
whether 'pass_all' will *always* work, you probably want this one.

case $host_os in
aix[4-9]*)
 lt_cv_deplibs_check_method=pass_all
 ;;

beos*)
 lt_cv_deplibs_check_method=pass_all
 ;;

bsdi[45]*)
 lt_cv_deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [ML]SB (shared object|dynamic lib)'
 lt_cv_file_magic_cmd='/usr/bin/file -L'
 lt_cv_file_magic_test_file=/shlib/libc.so
 ;;

cygwin*)
 # func_win32_libid is a shell function defined in ltmain.sh
 lt_cv_deplibs_check_method='file_magic ^x86 archive import|^x86 DLL'
 lt_cv_file_magic_cmd='func_win32_libid'
 ;;

mingw* | pw32*)
 # Base MSYS/MinGW do not provide the 'file' command needed by
 # func_win32_libid shell function, so use a weaker test based on 'objdump',
 # unless we find 'file', for example because we are cross-compiling.
 if (file /) >/dev/null 2>&1; then
 lt_cv_deplibs_check_method='file_magic ^x86 archive import|^x86 DLL'
 lt_cv_file_magic_cmd='func_win32_libid'
 else
 # Keep this pattern in sync with the one in func_win32_libid.
 lt_cv_deplibs_check_method='file_magic file format (pei*-i386(.*architecture: i386)?|pe-arm-wince|pe-x86-64)'
 lt_cv_file_magic_cmd='$OBJDUMP -f'
 fi
 ;;

cegcc*)
 # use the weaker test based on 'objdump'. See mingw*.
 lt_cv_deplibs_check_method='file_magic file format pe-arm-.*little(.*architecture: arm)?'
 lt_cv_file_magic_cmd='$OBJDUMP -f'
 ;;

darwin* | rhapsody*)
 lt_cv_deplibs_check_method=pass_all
 ;;

freebsd* | dragonfly*)
 if echo __ELF__ | $CC -E - | $GREP __ELF__ > /dev/null; then
 case $host_cpu in
 i*86)
 # Not sure whether the presence of OpenBSD here was a mistake.
 # Let's accept both of them until this is cleared up.
 lt_cv_deplibs_check_method='file_magic (FreeBSD|OpenBSD|DragonFly)/i[3-9]86 (compact)?demand paged shared library'
 lt_cv_file_magic_cmd=/usr/bin/file
 lt_cv_file_magic_test_file=`echo /usr/lib/libc.so.*`
 ;;
 esac
 else
 lt_cv_deplibs_check_method=pass_all
 fi
 ;;

haiku*)
 lt_cv_deplibs_check_method=pass_all
 ;;

hpux10.20* | hpux11*)
 lt_cv_file_magic_cmd=/usr/bin/file
 case $host_cpu in
 ia64*)
 lt_cv_deplibs_check_method='file_magic (s[0-9][0-9][0-9]|ELF-[0-9][0-9]) shared object file - IA64'
 lt_cv_file_magic_test_file=/usr/lib/hpux32/libc.so
 ;;
 hppa*64*)
 lt_cv_deplibs_check_method='file_magic (s[0-9][0-9][0-9]|ELF[-][0-9][0-9])(-bit)?([LM]SB)? shared object(file)?[, -]* PA-RISC [0-9]\.[0-9]'
 lt_cv_file_magic_test_file=/usr/lib/pa20_64/libc.sl
 ;;
 *)
 lt_cv_deplibs_check_method='file_magic (s[0-9][0-9][0-9]|PA-RISC[0-9]\.[0-9]) shared library'
 lt_cv_file_magic_test_file=/usr/lib/libc.sl
 ;;
 esac
 ;;

interix[3-9]*)
 # PIC code is broken on Interix 3.x, that's why |\.a not |_pic\.a here
 lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so|\.a)$'
 ;;

irix5* | irix6* | nonstopux*)
 case $LD in
 -32|"-32 ") libmagic=32-bit;;
 -n32|"-n32 ") libmagic=N32;;
 -64|"-64 ") libmagic=64-bit;;
 *) libmagic=never-match;;
 esac
 lt_cv_deplibs_check_method=pass_all
 ;;

This must be glibc/ELF.
linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*)
 lt_cv_deplibs_check_method=pass_all
 ;;

netbsd* | netbsdelf*-gnu)
 if echo __ELF__ | $CC -E - | $GREP __ELF__ > /dev/null; then
 lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so\.[0-9]+\.[0-9]+|_pic\.a)$'
 else
 lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so|_pic\.a)$'
 fi
 ;;

newos6*)
 lt_cv_deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [ML]SB (executable|dynamic lib)'
 lt_cv_file_magic_cmd=/usr/bin/file
 lt_cv_file_magic_test_file=/usr/lib/libnls.so
 ;;

nto | *qnx*)
 lt_cv_deplibs_check_method=pass_all
 ;;

openbsd* | bitrig*)
 if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then
 lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so\.[0-9]+\.[0-9]+|\.so|_pic\.a)$'
 else
 lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so\.[0-9]+\.[0-9]+|_pic\.a)$'
 fi
 ;;

osf3* | osf4* | osf5*)
 lt_cv_deplibs_check_method=pass_all
 ;;

rdos*)
 lt_cv_deplibs_check_method=pass_all
 ;;

solaris*)
 lt_cv_deplibs_check_method=pass_all
 ;;

sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*)
 lt_cv_deplibs_check_method=pass_all
 ;;

sysv4 | sysv4.3*)
 case $host_vendor in
 motorola)
 lt_cv_deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [ML]SB (shared object|dynamic lib) M[0-9][0-9]* Version [0-9]'
 lt_cv_file_magic_test_file=`echo /usr/lib/libc.so*`
 ;;
 ncr)
 lt_cv_deplibs_check_method=pass_all
 ;;
 sequent)
 lt_cv_file_magic_cmd='/bin/file'
 lt_cv_deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [LM]SB (shared object|dynamic lib)'
 ;;
 sni)
 lt_cv_file_magic_cmd='/bin/file'
 lt_cv_deplibs_check_method="file_magic ELF [0-9][0-9]*-bit [LM]SB dynamic lib"
 lt_cv_file_magic_test_file=/lib/libc.so
 ;;
 siemens)
 lt_cv_deplibs_check_method=pass_all
 ;;
 pc)
 lt_cv_deplibs_check_method=pass_all
 ;;
 esac
 ;;

tpf*)
 lt_cv_deplibs_check_method=pass_all
 ;;
os2*)
 lt_cv_deplibs_check_method=pass_all
 ;;
esac

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_deplibs_check_method" >&5
$as_echo "$lt_cv_deplibs_check_method" >&6; }

file_magic_glob=
want_nocaseglob=no
if test "$build" = "$host"; then
 case $host_os in
 mingw* | pw32*)
 if (shopt | grep nocaseglob) >/dev/null 2>&1; then
 want_nocaseglob=yes
 else
 file_magic_glob=`echo aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ | $SED -e "s/\(..\)/s\/[\1]\/[\1]\/g;/g"`
 fi
 ;;
 esac
fi

file_magic_cmd=$lt_cv_file_magic_cmd
deplibs_check_method=$lt_cv_deplibs_check_method
test -z "$deplibs_check_method" && deplibs_check_method=unknown

if test -n "$ac_tool_prefix"; then
 # Extract the first word of "${ac_tool_prefix}dlltool", so it can be a program name with args.
set dummy ${ac_tool_prefix}dlltool; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_DLLTOOL+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$DLLTOOL"; then
 ac_cv_prog_DLLTOOL="$DLLTOOL" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_DLLTOOL="${ac_tool_prefix}dlltool"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
DLLTOOL=$ac_cv_prog_DLLTOOL
if test -n "$DLLTOOL"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $DLLTOOL" >&5
$as_echo "$DLLTOOL" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

fi
if test -z "$ac_cv_prog_DLLTOOL"; then
 ac_ct_DLLTOOL=$DLLTOOL
 # Extract the first word of "dlltool", so it can be a program name with args.
set dummy dlltool; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_DLLTOOL+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_DLLTOOL"; then
 ac_cv_prog_ac_ct_DLLTOOL="$ac_ct_DLLTOOL" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_DLLTOOL="dlltool"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_DLLTOOL=$ac_cv_prog_ac_ct_DLLTOOL
if test -n "$ac_ct_DLLTOOL"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_DLLTOOL" >&5
$as_echo "$ac_ct_DLLTOOL" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 if test "x$ac_ct_DLLTOOL" = x; then
 DLLTOOL="false"
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 DLLTOOL=$ac_ct_DLLTOOL
 fi
else
 DLLTOOL="$ac_cv_prog_DLLTOOL"
fi

test -z "$DLLTOOL" && DLLTOOL=dlltool

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking how to associate runtime and link libraries" >&5
$as_echo_n "checking how to associate runtime and link libraries... " >&6; }
if ${lt_cv_sharedlib_from_linklib_cmd+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_sharedlib_from_linklib_cmd='unknown'

case $host_os in
cygwin* | mingw* | pw32* | cegcc*)
 # two different shell functions defined in ltmain.sh;
 # decide which one to use based on capabilities of $DLLTOOL
 case `$DLLTOOL --help 2>&1` in
 --identify-strict)
 lt_cv_sharedlib_from_linklib_cmd=func_cygming_dll_for_implib
 ;;
 *)
 lt_cv_sharedlib_from_linklib_cmd=func_cygming_dll_for_implib_fallback
 ;;
 esac
 ;;
*)
 # fallback: assume linklib IS sharedlib
 lt_cv_sharedlib_from_linklib_cmd=$ECHO
 ;;
esac

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_sharedlib_from_linklib_cmd" >&5
$as_echo "$lt_cv_sharedlib_from_linklib_cmd" >&6; }
sharedlib_from_linklib_cmd=$lt_cv_sharedlib_from_linklib_cmd
test -z "$sharedlib_from_linklib_cmd" && sharedlib_from_linklib_cmd=$ECHO

if test -n "$ac_tool_prefix"; then
 for ac_prog in ar
 do
 # Extract the first word of "ac_tool_prefixac_prog", so it can be a program name with args.
set dummy ac_tool_prefixac_prog; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_AR+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$AR"; then
 ac_cv_prog_AR="$AR" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_AR="ac_tool_prefixac_prog"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
AR=$ac_cv_prog_AR
if test -n "$AR"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $AR" >&5
$as_echo "$AR" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 test -n "$AR" && break
 done
fi
if test -z "$AR"; then
 ac_ct_AR=$AR
 for ac_prog in ar
do
 # Extract the first word of "$ac_prog", so it can be a program name with args.
set dummy $ac_prog; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_AR+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_AR"; then
 ac_cv_prog_ac_ct_AR="$ac_ct_AR" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_AR="$ac_prog"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_AR=$ac_cv_prog_ac_ct_AR
if test -n "$ac_ct_AR"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_AR" >&5
$as_echo "$ac_ct_AR" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 test -n "$ac_ct_AR" && break
done

 if test "x$ac_ct_AR" = x; then
 AR="false"
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 AR=$ac_ct_AR
 fi
fi

: ${AR=ar}
: ${AR_FLAGS=cru}

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for archiver @FILE support" >&5
$as_echo_n "checking for archiver @FILE support... " >&6; }
if ${lt_cv_ar_at_file+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_ar_at_file=no
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :
 echo conftest.$ac_objext > conftest.lst
 lt_ar_try='$AR $AR_FLAGS libconftest.a @conftest.lst >&5'
 { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$lt_ar_try\""; } >&5
 (eval $lt_ar_try) 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }
 if test 0 -eq "$ac_status"; then
	# Ensure the archiver fails upon bogus file names.
	rm -f conftest.$ac_objext libconftest.a
	{ { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$lt_ar_try\""; } >&5
 (eval $lt_ar_try) 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }
	if test 0 -ne "$ac_status"; then
 lt_cv_ar_at_file=@
 fi
 fi
 rm -f conftest.* libconftest.a

fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_ar_at_file" >&5
$as_echo "$lt_cv_ar_at_file" >&6; }

if test no = "$lt_cv_ar_at_file"; then
 archiver_list_spec=
else
 archiver_list_spec=$lt_cv_ar_at_file
fi

if test -n "$ac_tool_prefix"; then
 # Extract the first word of "${ac_tool_prefix}strip", so it can be a program name with args.
set dummy ${ac_tool_prefix}strip; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_STRIP+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$STRIP"; then
 ac_cv_prog_STRIP="$STRIP" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_STRIP="${ac_tool_prefix}strip"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
STRIP=$ac_cv_prog_STRIP
if test -n "$STRIP"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $STRIP" >&5
$as_echo "$STRIP" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

fi
if test -z "$ac_cv_prog_STRIP"; then
 ac_ct_STRIP=$STRIP
 # Extract the first word of "strip", so it can be a program name with args.
set dummy strip; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_STRIP+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_STRIP"; then
 ac_cv_prog_ac_ct_STRIP="$ac_ct_STRIP" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_STRIP="strip"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_STRIP=$ac_cv_prog_ac_ct_STRIP
if test -n "$ac_ct_STRIP"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_STRIP" >&5
$as_echo "$ac_ct_STRIP" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 if test "x$ac_ct_STRIP" = x; then
 STRIP=":"
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 STRIP=$ac_ct_STRIP
 fi
else
 STRIP="$ac_cv_prog_STRIP"
fi

test -z "$STRIP" && STRIP=:

if test -n "$ac_tool_prefix"; then
 # Extract the first word of "${ac_tool_prefix}ranlib", so it can be a program name with args.
set dummy ${ac_tool_prefix}ranlib; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_RANLIB+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$RANLIB"; then
 ac_cv_prog_RANLIB="$RANLIB" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_RANLIB="${ac_tool_prefix}ranlib"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
RANLIB=$ac_cv_prog_RANLIB
if test -n "$RANLIB"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $RANLIB" >&5
$as_echo "$RANLIB" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

fi
if test -z "$ac_cv_prog_RANLIB"; then
 ac_ct_RANLIB=$RANLIB
 # Extract the first word of "ranlib", so it can be a program name with args.
set dummy ranlib; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_RANLIB+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_RANLIB"; then
 ac_cv_prog_ac_ct_RANLIB="$ac_ct_RANLIB" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_RANLIB="ranlib"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_RANLIB=$ac_cv_prog_ac_ct_RANLIB
if test -n "$ac_ct_RANLIB"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_RANLIB" >&5
$as_echo "$ac_ct_RANLIB" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 if test "x$ac_ct_RANLIB" = x; then
 RANLIB=":"
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 RANLIB=$ac_ct_RANLIB
 fi
else
 RANLIB="$ac_cv_prog_RANLIB"
fi

test -z "$RANLIB" && RANLIB=:

Determine commands to create old-style static archives.
old_archive_cmds='$AR $AR_FLAGS $oldlib$oldobjs'
old_postinstall_cmds='chmod 644 $oldlib'
old_postuninstall_cmds=

if test -n "$RANLIB"; then
 case $host_os in
 bitrig* | openbsd*)
 old_postinstall_cmds="$old_postinstall_cmds~\$RANLIB -t \$tool_oldlib"
 ;;
 *)
 old_postinstall_cmds="$old_postinstall_cmds~\$RANLIB \$tool_oldlib"
 ;;
 esac
 old_archive_cmds="$old_archive_cmds~\$RANLIB \$tool_oldlib"
fi

case $host_os in
 darwin*)
 lock_old_archive_extraction=yes ;;
 *)
 lock_old_archive_extraction=no ;;
esac

for ac_prog in gawk mawk nawk awk
do
 # Extract the first word of "$ac_prog", so it can be a program name with args.
set dummy $ac_prog; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_AWK+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$AWK"; then
 ac_cv_prog_AWK="$AWK" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_AWK="$ac_prog"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
AWK=$ac_cv_prog_AWK
if test -n "$AWK"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $AWK" >&5
$as_echo "$AWK" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 test -n "$AWK" && break
done

If no C compiler was specified, use CC.
LTCC=${LTCC-"$CC"}

If no C compiler flags were specified, use CFLAGS.
LTCFLAGS=${LTCFLAGS-"$CFLAGS"}

Allow CC to be a program name with arguments.
compiler=$CC

Check for command to grab the raw symbol name followed by C symbol from nm.
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking command to parse $NM output from $compiler object" >&5
$as_echo_n "checking command to parse $NM output from $compiler object... " >&6; }
if ${lt_cv_sys_global_symbol_pipe+:} false; then :
 $as_echo_n "(cached) " >&6
else

These are sane defaults that work on at least a few old systems.
[They come from Ultrix. What could be older than Ultrix?!! ;)]

Character class describing NM global symbol codes.
symcode='[BCDEGRST]'

Regexp to match symbols that can be accessed directly from C.
sympat='\([_A-Za-z][_A-Za-z0-9]*\)'

Define system-specific variables.
case $host_os in
aix*)
 symcode='[BCDT]'
 ;;
cygwin* | mingw* | pw32* | cegcc*)
 symcode='[ABCDGISTW]'
 ;;
hpux*)
 if test ia64 = "$host_cpu"; then
 symcode='[ABCDEGRST]'
 fi
 ;;
irix* | nonstopux*)
 symcode='[BCDEGRST]'
 ;;
osf*)
 symcode='[BCDEGQRST]'
 ;;
solaris*)
 symcode='[BDRT]'
 ;;
sco3.2v5*)
 symcode='[DT]'
 ;;
sysv4.2uw2*)
 symcode='[DT]'
 ;;
sysv5* | sco5v6* | unixware* | OpenUNIX*)
 symcode='[ABDT]'
 ;;
sysv4)
 symcode='[DFNSTU]'
 ;;
esac

If we're using GNU nm, then use its standard symbol codes.
case `$NM -V 2>&1` in
GNU | *'with BFD'*)
 symcode='[ABCDGIRSTW]' ;;
esac

if test "$lt_cv_nm_interface" = "MS dumpbin"; then
 # Gets list of data symbols to import.
 lt_cv_sys_global_symbol_to_import="sed -n -e 's/^I .* \(.*\)$/\1/p'"
 # Adjust the below global symbol transforms to fixup imported variables.
 lt_cdecl_hook=" -e 's/^I .* \(.*\)$/extern __declspec(dllimport) char \1;/p'"
 lt_c_name_hook=" -e 's/^I .* \(.*\)$/ {\"\1\", (void *) 0},/p'"
 lt_c_name_lib_hook="\
 -e 's/^I .* \(lib.*\)$/ {\"\1\", (void *) 0},/p'\
 -e 's/^I .* \(.*\)$/ {\"lib\1\", (void *) 0},/p'"
else
 # Disable hooks by default.
 lt_cv_sys_global_symbol_to_import=
 lt_cdecl_hook=
 lt_c_name_hook=
 lt_c_name_lib_hook=
fi

Transform an extracted symbol line into a proper C declaration.
Some systems (esp. on ia64) link data and code symbols differently,
so use this general approach.
lt_cv_sys_global_symbol_to_cdecl="sed -n"\
$lt_cdecl_hook\
" -e 's/^T .* \(.*\)$/extern int \1();/p'"\
" -e 's/^$symcode$symcode* .* \(.*\)$/extern char \1;/p'"

Transform an extracted symbol line into symbol name and symbol address
lt_cv_sys_global_symbol_to_c_name_address="sed -n"\
$lt_c_name_hook\
" -e 's/^: \(.*\) .*$/ {\"\1\", (void *) 0},/p'"\
" -e 's/^$symcode$symcode* .* \(.*\)$/ {\"\1\", (void *) \&\1},/p'"

Transform an extracted symbol line into symbol name with lib prefix and
symbol address.
lt_cv_sys_global_symbol_to_c_name_address_lib_prefix="sed -n"\
$lt_c_name_lib_hook\
" -e 's/^: \(.*\) .*$/ {\"\1\", (void *) 0},/p'"\
" -e 's/^$symcode$symcode* .* \(lib.*\)$/ {\"\1\", (void *) \&\1},/p'"\
" -e 's/^$symcode$symcode* .* \(.*\)$/ {\"lib\1\", (void *) \&\1},/p'"

Handle CRLF in mingw tool chain
opt_cr=
case $build_os in
mingw*)
 opt_cr=`$ECHO 'x\{0,1\}' | tr x '\015'` # option cr in regexp
 ;;
esac

Try without a prefix underscore, then with it.
for ac_symprfx in "" "_"; do

 # Transform symcode, sympat, and symprfx into a raw symbol and a C symbol.
 symxfrm="\\1 $ac_symprfx\\2 \\2"

 # Write the raw and C identifiers.
 if test "$lt_cv_nm_interface" = "MS dumpbin"; then
 # Fake it for dumpbin and say T for any non-static function,
 # D for any global variable and I for any imported variable.
 # Also find C++ and __fastcall symbols from MSVC++,
 # which start with @ or ?.
 lt_cv_sys_global_symbol_pipe="$AWK '"\
" {last_section=section; section=\$ 3};"\
" /^COFF SYMBOL TABLE/{for(i in hide) delete hide[i]};"\
" /Section length .*#relocs.*(pick any)/{hide[last_section]=1};"\
" /^ *Symbol name *: /{split(\$ 0,sn,\":\"); si=substr(sn[2],2)};"\
" /^ *Type *: code/{print \"T\",si,substr(si,length(prfx))};"\
" /^ *Type *: data/{print \"I\",si,substr(si,length(prfx))};"\
" \$ 0!~/External *\|/{next};"\
" / 0+ UNDEF /{next}; / UNDEF \([^|]\)*()/{next};"\
" {if(hide[section]) next};"\
" {f=\"D\"}; \$ 0~/\(\).*\|/{f=\"T\"};"\
" {split(\$ 0,a,/\||\r/); split(a[2],s)};"\
" s[1]~/^[@?]/{print f,s[1],s[1]; next};"\
" s[1]~prfx {split(s[1],t,\"@\"); print f,t[1],substr(t[1],length(prfx))}"\
" ' prfx=^$ac_symprfx"
 else
 lt_cv_sys_global_symbol_pipe="sed -n -e 's/^.*[]\($symcode$symcode*\)[][]*$ac_symprfx$sympatopt_cr/$symxfrm/p'"
 fi
 lt_cv_sys_global_symbol_pipe="$lt_cv_sys_global_symbol_pipe | sed '/ __gnu_lto/d'"

 # Check to see that the pipe works correctly.
 pipe_works=no

 rm -f conftest*
 cat > conftest.$ac_ext <<_LT_EOF
#ifdef __cplusplus
extern "C" {
#endif
char nm_test_var;
void nm_test_func(void);
void nm_test_func(void){}
#ifdef __cplusplus
}
#endif
int main(){nm_test_var='a';nm_test_func();return(0);}
_LT_EOF

 if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5
 (eval $ac_compile) 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }; then
 # Now try to grab the symbols.
 nlist=conftest.nm
 if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$NM conftest.$ac_objext \| "$lt_cv_sys_global_symbol_pipe" \> $nlist\""; } >&5
 (eval $NM conftest.$ac_objext \| "$lt_cv_sys_global_symbol_pipe" \> $nlist) 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; } && test -s "$nlist"; then
 # Try sorting and uniquifying the output.
 if sort "$nlist" | uniq > "$nlist"T; then
	mv -f "$nlist"T "$nlist"
 else
	rm -f "$nlist"T
 fi

 # Make sure that we snagged all the symbols we need.
 if $GREP ' nm_test_var$' "$nlist" >/dev/null; then
	if $GREP ' nm_test_func$' "$nlist" >/dev/null; then
	 cat <<_LT_EOF > conftest.$ac_ext
/* Keep this code in sync between libtool.m4, ltmain, lt_system.h, and tests. */
#if defined _WIN32 || defined __CYGWIN__ || defined _WIN32_WCE
/* DATA imports from DLLs on WIN32 can't be const, because runtime
 relocations are performed -- see ld's documentation on pseudo-relocs. */
define LT_DLSYM_CONST
#elif defined __osf__
/* This system does not cope well with relocations in const data. */
define LT_DLSYM_CONST
#else
define LT_DLSYM_CONST const
#endif

#ifdef __cplusplus
extern "C" {
#endif

_LT_EOF
	 # Now generate the symbol file.
	 eval "$lt_cv_sys_global_symbol_to_cdecl"' < "$nlist" | $GREP -v main >> conftest.$ac_ext'

	 cat <<_LT_EOF >> conftest.$ac_ext

/* The mapping between symbol names and symbols. */
LT_DLSYM_CONST struct {
 const char *name;
 void *address;
}
lt__PROGRAM__LTX_preloaded_symbols[] =
{
 { "@PROGRAM@", (void *) 0 },
_LT_EOF
	 $SED "s/^$symcode$symcode* .* \(.*\)$/ {\"\1\", (void *) \&\1},/" < "$nlist" | $GREP -v main >> conftest.$ac_ext
	 cat <<_LT_EOF >> conftest.$ac_ext
 {0, (void *) 0}
};

/* This works around a problem in FreeBSD linker */
#ifdef FREEBSD_WORKAROUND
static const void *lt_preloaded_setup() {
 return lt__PROGRAM__LTX_preloaded_symbols;
}
#endif

#ifdef __cplusplus
}
#endif
_LT_EOF
	 # Now try linking the two files.
	 mv conftest.$ac_objext conftstm.$ac_objext
	 lt_globsym_save_LIBS=$LIBS
	 lt_globsym_save_CFLAGS=$CFLAGS
	 LIBS=conftstm.$ac_objext
	 CFLAGS="$CFLAGS$lt_prog_compiler_no_builtin_flag"
	 if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_link\""; } >&5
 (eval $ac_link) 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; } && test -s conftest$ac_exeext; then
	 pipe_works=yes
	 fi
	 LIBS=$lt_globsym_save_LIBS
	 CFLAGS=$lt_globsym_save_CFLAGS
	else
	 echo "cannot find nm_test_func in $nlist" >&5
	fi
 else
	echo "cannot find nm_test_var in $nlist" >&5
 fi
 else
 echo "cannot run $lt_cv_sys_global_symbol_pipe" >&5
 fi
 else
 echo "$progname: failed program was:" >&5
 cat conftest.$ac_ext >&5
 fi
 rm -rf conftest* conftst*

 # Do not use the global_symbol_pipe unless it works.
 if test yes = "$pipe_works"; then
 break
 else
 lt_cv_sys_global_symbol_pipe=
 fi
done

fi

if test -z "$lt_cv_sys_global_symbol_pipe"; then
 lt_cv_sys_global_symbol_to_cdecl=
fi
if test -z "$lt_cv_sys_global_symbol_pipe$lt_cv_sys_global_symbol_to_cdecl"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: failed" >&5
$as_echo "failed" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: ok" >&5
$as_echo "ok" >&6; }
fi

Response file support.
if test "$lt_cv_nm_interface" = "MS dumpbin"; then
 nm_file_list_spec='@'
elif $NM --help 2>/dev/null | grep '[@]FILE' >/dev/null; then
 nm_file_list_spec='@'
fi

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for sysroot" >&5
$as_echo_n "checking for sysroot... " >&6; }

Check whether --with-sysroot was given.
if test "${with_sysroot+set}" = set; then :
 withval=$with_sysroot;
else
 with_sysroot=no
fi

lt_sysroot=
case $with_sysroot in #(
 yes)
 if test yes = "$GCC"; then
 lt_sysroot=`$CC --print-sysroot 2>/dev/null`
 fi
 ;; #(
 /*)
 lt_sysroot=`echo "$with_sysroot" | sed -e "$sed_quote_subst"`
 ;; #(
 no|'')
 ;; #(
 *)
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $with_sysroot" >&5
$as_echo "$with_sysroot" >&6; }
 as_fn_error $? "The sysroot must be an absolute path." "$LINENO" 5
 ;;
esac

 { $as_echo "$as_me:${as_lineno-$LINENO}: result: ${lt_sysroot:-no}" >&5
$as_echo "${lt_sysroot:-no}" >&6; }

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for a working dd" >&5
$as_echo_n "checking for a working dd... " >&6; }
if ${ac_cv_path_lt_DD+:} false; then :
 $as_echo_n "(cached) " >&6
else
 printf 0123456789abcdef0123456789abcdef >conftest.i
cat conftest.i conftest.i >conftest2.i
: ${lt_DD:=$DD}
if test -z "$lt_DD"; then
 ac_path_lt_DD_found=false
 # Loop through the user's path and test for each of PROGNAME-LIST
 as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_prog in dd; do
 for ac_exec_ext in '' $ac_executable_extensions; do
 ac_path_lt_DD="$as_dir/$ac_prog$ac_exec_ext"
 as_fn_executable_p "$ac_path_lt_DD" || continue
if "$ac_path_lt_DD" bs=32 count=1 <conftest2.i >conftest.out 2>/dev/null; then
 cmp -s conftest.i conftest.out \
 && ac_cv_path_lt_DD="$ac_path_lt_DD" ac_path_lt_DD_found=:
fi
 $ac_path_lt_DD_found && break 3
 done
 done
 done
IFS=$as_save_IFS
 if test -z "$ac_cv_path_lt_DD"; then
 :
 fi
else
 ac_cv_path_lt_DD=$lt_DD
fi

rm -f conftest.i conftest2.i conftest.out
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_lt_DD" >&5
$as_echo "$ac_cv_path_lt_DD" >&6; }

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking how to truncate binary pipes" >&5
$as_echo_n "checking how to truncate binary pipes... " >&6; }
if ${lt_cv_truncate_bin+:} false; then :
 $as_echo_n "(cached) " >&6
else
 printf 0123456789abcdef0123456789abcdef >conftest.i
cat conftest.i conftest.i >conftest2.i
lt_cv_truncate_bin=
if "$ac_cv_path_lt_DD" bs=32 count=1 <conftest2.i >conftest.out 2>/dev/null; then
 cmp -s conftest.i conftest.out \
 && lt_cv_truncate_bin="$ac_cv_path_lt_DD bs=4096 count=1"
fi
rm -f conftest.i conftest2.i conftest.out
test -z "$lt_cv_truncate_bin" && lt_cv_truncate_bin="$SED -e 4q"
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_truncate_bin" >&5
$as_echo "$lt_cv_truncate_bin" >&6; }

Calculate cc_basename. Skip known compiler wrappers and cross-prefix.
func_cc_basename ()
{
 for cc_temp in $*""; do
 case $cc_temp in
 compile | *[\\/]compile | ccache | *[\\/]ccache) ;;
 distcc | *[\\/]distcc | purify | *[\\/]purify) ;;
 \-*) ;;
 *) break;;
 esac
 done
 func_cc_basename_result=`$ECHO "$cc_temp" | $SED "s%.*/%%; s%^$host_alias-%%"`
}

Check whether --enable-libtool-lock was given.
if test "${enable_libtool_lock+set}" = set; then :
 enableval=$enable_libtool_lock;
fi

test no = "$enable_libtool_lock" || enable_libtool_lock=yes

Some flags need to be propagated to the compiler or linker for good
libtool support.
case $host in
ia64-*-hpux*)
 # Find out what ABI is being produced by ac_compile, and set mode
 # options accordingly.
 echo 'int i;' > conftest.$ac_ext
 if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5
 (eval $ac_compile) 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }; then
 case `/usr/bin/file conftest.$ac_objext` in
 ELF-32)
	HPUX_IA64_MODE=32
	;;
 ELF-64)
	HPUX_IA64_MODE=64
	;;
 esac
 fi
 rm -rf conftest*
 ;;
--irix6*)
 # Find out what ABI is being produced by ac_compile, and set linker
 # options accordingly.
 echo '#line '$LINENO' "configure"' > conftest.$ac_ext
 if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5
 (eval $ac_compile) 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }; then
 if test yes = "$lt_cv_prog_gnu_ld"; then
 case `/usr/bin/file conftest.$ac_objext` in
	32-bit)
	 LD="${LD-ld} -melf32bsmip"
	 ;;
	N32)
	 LD="${LD-ld} -melf32bmipn32"
	 ;;
	64-bit)
	 LD="${LD-ld} -melf64bmip"
	;;
 esac
 else
 case `/usr/bin/file conftest.$ac_objext` in
	32-bit)
	 LD="${LD-ld} -32"
	 ;;
	N32)
	 LD="${LD-ld} -n32"
	 ;;
	64-bit)
	 LD="${LD-ld} -64"
	 ;;
 esac
 fi
 fi
 rm -rf conftest*
 ;;

mips64*-*linux*)
 # Find out what ABI is being produced by ac_compile, and set linker
 # options accordingly.
 echo '#line '$LINENO' "configure"' > conftest.$ac_ext
 if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5
 (eval $ac_compile) 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }; then
 emul=elf
 case `/usr/bin/file conftest.$ac_objext` in
 32-bit)
	emul="${emul}32"
	;;
 64-bit)
	emul="${emul}64"
	;;
 esac
 case `/usr/bin/file conftest.$ac_objext` in
 MSB)
	emul="${emul}btsmip"
	;;
 LSB)
	emul="${emul}ltsmip"
	;;
 esac
 case `/usr/bin/file conftest.$ac_objext` in
 N32)
	emul="${emul}n32"
	;;
 esac
 LD="${LD-ld} -m $emul"
 fi
 rm -rf conftest*
 ;;

x86_64-*kfreebsd*-gnu|x86_64-*linux*|powerpc*-*linux*| \
s390*-*linux*|s390*-*tpf*|sparc*-*linux*)
 # Find out what ABI is being produced by ac_compile, and set linker
 # options accordingly. Note that the listed cases only cover the
 # situations where additional linker options are needed (such as when
 # doing 32-bit compilation for a host where ld defaults to 64-bit, or
 # vice versa); the common cases where no linker options are needed do
 # not appear in the list.
 echo 'int i;' > conftest.$ac_ext
 if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5
 (eval $ac_compile) 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }; then
 case `/usr/bin/file conftest.o` in
 32-bit)
	case $host in
	 x86_64-*kfreebsd*-gnu)
	 LD="${LD-ld} -m elf_i386_fbsd"
	 ;;
	 x86_64-*linux*)
	 case `/usr/bin/file conftest.o` in
	 x86-64)
		LD="${LD-ld} -m elf32_x86_64"
		;;
	 *)
		LD="${LD-ld} -m elf_i386"
		;;
	 esac
	 ;;
	 powerpc64le-*linux*)
	 LD="${LD-ld} -m elf32lppclinux"
	 ;;
	 powerpc64-*linux*)
	 LD="${LD-ld} -m elf32ppclinux"
	 ;;
	 s390x-*linux*)
	 LD="${LD-ld} -m elf_s390"
	 ;;
	 sparc64-*linux*)
	 LD="${LD-ld} -m elf32_sparc"
	 ;;
	esac
	;;
 64-bit)
	case $host in
	 x86_64-*kfreebsd*-gnu)
	 LD="${LD-ld} -m elf_x86_64_fbsd"
	 ;;
	 x86_64-*linux*)
	 LD="${LD-ld} -m elf_x86_64"
	 ;;
	 powerpcle-*linux*)
	 LD="${LD-ld} -m elf64lppc"
	 ;;
	 powerpc-*linux*)
	 LD="${LD-ld} -m elf64ppc"
	 ;;
	 s390*-*linux*|s390*-*tpf*)
	 LD="${LD-ld} -m elf64_s390"
	 ;;
	 sparc*-*linux*)
	 LD="${LD-ld} -m elf64_sparc"
	 ;;
	esac
	;;
 esac
 fi
 rm -rf conftest*
 ;;

--sco3.2v5*)
 # On SCO OpenServer 5, we need -belf to get full-featured binaries.
 SAVE_CFLAGS=$CFLAGS
 CFLAGS="$CFLAGS -belf"
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the C compiler needs -belf" >&5
$as_echo_n "checking whether the C compiler needs -belf... " >&6; }
if ${lt_cv_cc_needs_belf+:} false; then :
 $as_echo_n "(cached) " >&6
else
 ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu

 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_link "$LINENO"; then :
 lt_cv_cc_needs_belf=yes
else
 lt_cv_cc_needs_belf=no
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
 ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_cc_needs_belf" >&5
$as_echo "$lt_cv_cc_needs_belf" >&6; }
 if test yes != "$lt_cv_cc_needs_belf"; then
 # this is probably gcc 2.8.0, egcs 1.0 or newer; no need for -belf
 CFLAGS=$SAVE_CFLAGS
 fi
 ;;
*-*solaris*)
 # Find out what ABI is being produced by ac_compile, and set linker
 # options accordingly.
 echo 'int i;' > conftest.$ac_ext
 if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5
 (eval $ac_compile) 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }; then
 case `/usr/bin/file conftest.o` in
 64-bit)
 case $lt_cv_prog_gnu_ld in
 yes*)
 case $host in
 i?86-*-solaris*|x86_64-*-solaris*)
 LD="${LD-ld} -m elf_x86_64"
 ;;
 sparc*-*-solaris*)
 LD="${LD-ld} -m elf64_sparc"
 ;;
 esac
 # GNU ld 2.21 introduced _sol2 emulations. Use them if available.
 if ${LD-ld} -V | grep _sol2 >/dev/null 2>&1; then
 LD=${LD-ld}_sol2
 fi
 ;;
 *)
	if ${LD-ld} -64 -r -o conftest2.o conftest.o >/dev/null 2>&1; then
	 LD="${LD-ld} -64"
	fi
	;;
 esac
 ;;
 esac
 fi
 rm -rf conftest*
 ;;
esac

need_locks=$enable_libtool_lock

if test -n "$ac_tool_prefix"; then
 # Extract the first word of "${ac_tool_prefix}mt", so it can be a program name with args.
set dummy ${ac_tool_prefix}mt; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_MANIFEST_TOOL+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$MANIFEST_TOOL"; then
 ac_cv_prog_MANIFEST_TOOL="$MANIFEST_TOOL" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_MANIFEST_TOOL="${ac_tool_prefix}mt"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
MANIFEST_TOOL=$ac_cv_prog_MANIFEST_TOOL
if test -n "$MANIFEST_TOOL"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $MANIFEST_TOOL" >&5
$as_echo "$MANIFEST_TOOL" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

fi
if test -z "$ac_cv_prog_MANIFEST_TOOL"; then
 ac_ct_MANIFEST_TOOL=$MANIFEST_TOOL
 # Extract the first word of "mt", so it can be a program name with args.
set dummy mt; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_MANIFEST_TOOL+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_MANIFEST_TOOL"; then
 ac_cv_prog_ac_ct_MANIFEST_TOOL="$ac_ct_MANIFEST_TOOL" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_MANIFEST_TOOL="mt"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_MANIFEST_TOOL=$ac_cv_prog_ac_ct_MANIFEST_TOOL
if test -n "$ac_ct_MANIFEST_TOOL"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_MANIFEST_TOOL" >&5
$as_echo "$ac_ct_MANIFEST_TOOL" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 if test "x$ac_ct_MANIFEST_TOOL" = x; then
 MANIFEST_TOOL=":"
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 MANIFEST_TOOL=$ac_ct_MANIFEST_TOOL
 fi
else
 MANIFEST_TOOL="$ac_cv_prog_MANIFEST_TOOL"
fi

test -z "$MANIFEST_TOOL" && MANIFEST_TOOL=mt
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking if $MANIFEST_TOOL is a manifest tool" >&5
$as_echo_n "checking if $MANIFEST_TOOL is a manifest tool... " >&6; }
if ${lt_cv_path_mainfest_tool+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_path_mainfest_tool=no
 echo "$as_me:$LINENO: $MANIFEST_TOOL '-?'" >&5
 $MANIFEST_TOOL '-?' 2>conftest.err > conftest.out
 cat conftest.err >&5
 if $GREP 'Manifest Tool' conftest.out > /dev/null; then
 lt_cv_path_mainfest_tool=yes
 fi
 rm -f conftest*
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_path_mainfest_tool" >&5
$as_echo "$lt_cv_path_mainfest_tool" >&6; }
if test yes != "$lt_cv_path_mainfest_tool"; then
 MANIFEST_TOOL=:
fi

 case $host_os in
 rhapsody* | darwin*)
 if test -n "$ac_tool_prefix"; then
 # Extract the first word of "${ac_tool_prefix}dsymutil", so it can be a program name with args.
set dummy ${ac_tool_prefix}dsymutil; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_DSYMUTIL+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$DSYMUTIL"; then
 ac_cv_prog_DSYMUTIL="$DSYMUTIL" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_DSYMUTIL="${ac_tool_prefix}dsymutil"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
DSYMUTIL=$ac_cv_prog_DSYMUTIL
if test -n "$DSYMUTIL"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $DSYMUTIL" >&5
$as_echo "$DSYMUTIL" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

fi
if test -z "$ac_cv_prog_DSYMUTIL"; then
 ac_ct_DSYMUTIL=$DSYMUTIL
 # Extract the first word of "dsymutil", so it can be a program name with args.
set dummy dsymutil; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_DSYMUTIL+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_DSYMUTIL"; then
 ac_cv_prog_ac_ct_DSYMUTIL="$ac_ct_DSYMUTIL" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_DSYMUTIL="dsymutil"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_DSYMUTIL=$ac_cv_prog_ac_ct_DSYMUTIL
if test -n "$ac_ct_DSYMUTIL"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_DSYMUTIL" >&5
$as_echo "$ac_ct_DSYMUTIL" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 if test "x$ac_ct_DSYMUTIL" = x; then
 DSYMUTIL=":"
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 DSYMUTIL=$ac_ct_DSYMUTIL
 fi
else
 DSYMUTIL="$ac_cv_prog_DSYMUTIL"
fi

 if test -n "$ac_tool_prefix"; then
 # Extract the first word of "${ac_tool_prefix}nmedit", so it can be a program name with args.
set dummy ${ac_tool_prefix}nmedit; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_NMEDIT+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$NMEDIT"; then
 ac_cv_prog_NMEDIT="$NMEDIT" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_NMEDIT="${ac_tool_prefix}nmedit"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
NMEDIT=$ac_cv_prog_NMEDIT
if test -n "$NMEDIT"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $NMEDIT" >&5
$as_echo "$NMEDIT" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

fi
if test -z "$ac_cv_prog_NMEDIT"; then
 ac_ct_NMEDIT=$NMEDIT
 # Extract the first word of "nmedit", so it can be a program name with args.
set dummy nmedit; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_NMEDIT+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_NMEDIT"; then
 ac_cv_prog_ac_ct_NMEDIT="$ac_ct_NMEDIT" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_NMEDIT="nmedit"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_NMEDIT=$ac_cv_prog_ac_ct_NMEDIT
if test -n "$ac_ct_NMEDIT"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_NMEDIT" >&5
$as_echo "$ac_ct_NMEDIT" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 if test "x$ac_ct_NMEDIT" = x; then
 NMEDIT=":"
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 NMEDIT=$ac_ct_NMEDIT
 fi
else
 NMEDIT="$ac_cv_prog_NMEDIT"
fi

 if test -n "$ac_tool_prefix"; then
 # Extract the first word of "${ac_tool_prefix}lipo", so it can be a program name with args.
set dummy ${ac_tool_prefix}lipo; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_LIPO+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$LIPO"; then
 ac_cv_prog_LIPO="$LIPO" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_LIPO="${ac_tool_prefix}lipo"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
LIPO=$ac_cv_prog_LIPO
if test -n "$LIPO"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $LIPO" >&5
$as_echo "$LIPO" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

fi
if test -z "$ac_cv_prog_LIPO"; then
 ac_ct_LIPO=$LIPO
 # Extract the first word of "lipo", so it can be a program name with args.
set dummy lipo; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_LIPO+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_LIPO"; then
 ac_cv_prog_ac_ct_LIPO="$ac_ct_LIPO" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_LIPO="lipo"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_LIPO=$ac_cv_prog_ac_ct_LIPO
if test -n "$ac_ct_LIPO"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_LIPO" >&5
$as_echo "$ac_ct_LIPO" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 if test "x$ac_ct_LIPO" = x; then
 LIPO=":"
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 LIPO=$ac_ct_LIPO
 fi
else
 LIPO="$ac_cv_prog_LIPO"
fi

 if test -n "$ac_tool_prefix"; then
 # Extract the first word of "${ac_tool_prefix}otool", so it can be a program name with args.
set dummy ${ac_tool_prefix}otool; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_OTOOL+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$OTOOL"; then
 ac_cv_prog_OTOOL="$OTOOL" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_OTOOL="${ac_tool_prefix}otool"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
OTOOL=$ac_cv_prog_OTOOL
if test -n "$OTOOL"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $OTOOL" >&5
$as_echo "$OTOOL" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

fi
if test -z "$ac_cv_prog_OTOOL"; then
 ac_ct_OTOOL=$OTOOL
 # Extract the first word of "otool", so it can be a program name with args.
set dummy otool; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_OTOOL+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_OTOOL"; then
 ac_cv_prog_ac_ct_OTOOL="$ac_ct_OTOOL" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_OTOOL="otool"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_OTOOL=$ac_cv_prog_ac_ct_OTOOL
if test -n "$ac_ct_OTOOL"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_OTOOL" >&5
$as_echo "$ac_ct_OTOOL" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 if test "x$ac_ct_OTOOL" = x; then
 OTOOL=":"
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 OTOOL=$ac_ct_OTOOL
 fi
else
 OTOOL="$ac_cv_prog_OTOOL"
fi

 if test -n "$ac_tool_prefix"; then
 # Extract the first word of "${ac_tool_prefix}otool64", so it can be a program name with args.
set dummy ${ac_tool_prefix}otool64; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_OTOOL64+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$OTOOL64"; then
 ac_cv_prog_OTOOL64="$OTOOL64" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_OTOOL64="${ac_tool_prefix}otool64"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
OTOOL64=$ac_cv_prog_OTOOL64
if test -n "$OTOOL64"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $OTOOL64" >&5
$as_echo "$OTOOL64" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

fi
if test -z "$ac_cv_prog_OTOOL64"; then
 ac_ct_OTOOL64=$OTOOL64
 # Extract the first word of "otool64", so it can be a program name with args.
set dummy otool64; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_OTOOL64+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_OTOOL64"; then
 ac_cv_prog_ac_ct_OTOOL64="$ac_ct_OTOOL64" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_OTOOL64="otool64"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_OTOOL64=$ac_cv_prog_ac_ct_OTOOL64
if test -n "$ac_ct_OTOOL64"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_OTOOL64" >&5
$as_echo "$ac_ct_OTOOL64" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 if test "x$ac_ct_OTOOL64" = x; then
 OTOOL64=":"
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 OTOOL64=$ac_ct_OTOOL64
 fi
else
 OTOOL64="$ac_cv_prog_OTOOL64"
fi

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for -single_module linker flag" >&5
$as_echo_n "checking for -single_module linker flag... " >&6; }
if ${lt_cv_apple_cc_single_mod+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_apple_cc_single_mod=no
 if test -z "$LT_MULTI_MODULE"; then
	# By default we will add the -single_module flag. You can override
	# by either setting the environment variable LT_MULTI_MODULE
	# non-empty at configure time, or by adding -multi_module to the
	# link flags.
	rm -rf libconftest.dylib*
	echo "int foo(void){return 1;}" > conftest.c
	echo "$LTCC $LTCFLAGS $LDFLAGS -o libconftest.dylib \
-dynamiclib -Wl,-single_module conftest.c" >&5
	$LTCC $LTCFLAGS $LDFLAGS -o libconftest.dylib \
	 -dynamiclib -Wl,-single_module conftest.c 2>conftest.err
 _lt_result=$?
	# If there is a non-empty error log, and "single_module"
	# appears in it, assume the flag caused a linker warning
 if test -s conftest.err && $GREP single_module conftest.err; then
	 cat conftest.err >&5
	# Otherwise, if the output was created with a 0 exit code from
	# the compiler, it worked.
	elif test -f libconftest.dylib && test 0 = "$_lt_result"; then
	 lt_cv_apple_cc_single_mod=yes
	else
	 cat conftest.err >&5
	fi
	rm -rf libconftest.dylib*
	rm -f conftest.*
 fi
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_apple_cc_single_mod" >&5
$as_echo "$lt_cv_apple_cc_single_mod" >&6; }

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for -exported_symbols_list linker flag" >&5
$as_echo_n "checking for -exported_symbols_list linker flag... " >&6; }
if ${lt_cv_ld_exported_symbols_list+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_ld_exported_symbols_list=no
 save_LDFLAGS=$LDFLAGS
 echo "_main" > conftest.sym
 LDFLAGS="$LDFLAGS -Wl,-exported_symbols_list,conftest.sym"
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_link "$LINENO"; then :
 lt_cv_ld_exported_symbols_list=yes
else
 lt_cv_ld_exported_symbols_list=no
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
	LDFLAGS=$save_LDFLAGS

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_ld_exported_symbols_list" >&5
$as_echo "$lt_cv_ld_exported_symbols_list" >&6; }

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for -force_load linker flag" >&5
$as_echo_n "checking for -force_load linker flag... " >&6; }
if ${lt_cv_ld_force_load+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_ld_force_load=no
 cat > conftest.c << _LT_EOF
int forced_loaded() { return 2;}
_LT_EOF
 echo "$LTCC $LTCFLAGS -c -o conftest.o conftest.c" >&5
 $LTCC $LTCFLAGS -c -o conftest.o conftest.c 2>&5
 echo "$AR cru libconftest.a conftest.o" >&5
 $AR cru libconftest.a conftest.o 2>&5
 echo "$RANLIB libconftest.a" >&5
 $RANLIB libconftest.a 2>&5
 cat > conftest.c << _LT_EOF
int main() { return 0;}
_LT_EOF
 echo "$LTCC $LTCFLAGS $LDFLAGS -o conftest conftest.c -Wl,-force_load,./libconftest.a" >&5
 $LTCC $LTCFLAGS $LDFLAGS -o conftest conftest.c -Wl,-force_load,./libconftest.a 2>conftest.err
 _lt_result=$?
 if test -s conftest.err && $GREP force_load conftest.err; then
	cat conftest.err >&5
 elif test -f conftest && test 0 = "$_lt_result" && $GREP forced_load conftest >/dev/null 2>&1; then
	lt_cv_ld_force_load=yes
 else
	cat conftest.err >&5
 fi
 rm -f conftest.err libconftest.a conftest conftest.c
 rm -rf conftest.dSYM

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_ld_force_load" >&5
$as_echo "$lt_cv_ld_force_load" >&6; }
 case $host_os in
 rhapsody* | darwin1.[012])
 _lt_dar_allow_undefined='$wl-undefined ${wl}suppress' ;;
 darwin1.*)
 _lt_dar_allow_undefined='$wl-flat_namespace $wl-undefined ${wl}suppress' ;;
 darwin*) # darwin 5.x on
 # if running on 10.5 or later, the deployment target defaults
 # to the OS version, if on x86, and 10.4, the deployment
 # target defaults to 10.4. Don't you love it?
 case ${MACOSX_DEPLOYMENT_TARGET-10.0},$host in
	10.0,*86*-darwin8*|10.0,*-darwin[91]*)
	 _lt_dar_allow_undefined='$wl-undefined ${wl}dynamic_lookup' ;;
	10.[012][,.]*)
	 _lt_dar_allow_undefined='$wl-flat_namespace $wl-undefined ${wl}suppress' ;;
	10.*)
	 _lt_dar_allow_undefined='$wl-undefined ${wl}dynamic_lookup' ;;
 esac
 ;;
 esac
 if test yes = "$lt_cv_apple_cc_single_mod"; then
 _lt_dar_single_mod='$single_module'
 fi
 if test yes = "$lt_cv_ld_exported_symbols_list"; then
 _lt_dar_export_syms=' $wl-exported_symbols_list,$output_objdir/$libname-symbols.expsym'
 else
 _lt_dar_export_syms='~$NMEDIT -s $output_objdir/$libname-symbols.expsym $lib'
 fi
 if test : != "$DSYMUTIL" && test no = "$lt_cv_ld_force_load"; then
 _lt_dsymutil='~$DSYMUTIL $lib || :'
 else
 _lt_dsymutil=
 fi
 ;;
 esac

func_munge_path_list VARIABLE PATH

VARIABLE is name of variable containing _space_ separated list of
directories to be munged by the contents of PATH, which is string
having a format:
"DIR[:DIR]:"
string "DIR[DIR]" will be prepended to VARIABLE
":DIR[:DIR]"
string "DIR[DIR]" will be appended to VARIABLE
"DIRP[:DIRP]::[DIRA:]DIRA"
string "DIRP[DIRP]" will be prepended to VARIABLE and string
"DIRA[DIRA]" will be appended to VARIABLE
"DIR[:DIR]"
VARIABLE will be replaced by "DIR[DIR]"
func_munge_path_list ()
{
 case x$2 in
 x)
 ;;
 *:)
 eval $1=\"`$ECHO $2 | $SED 's/:/ /g'` \$$1\"
 ;;
 x:*)
 eval $1=\"\$$1 `$ECHO $2 | $SED 's/:/ /g'`\"
 ;;
 ::)
 eval $1=\"\$$1\ `$ECHO $2 | $SED -e 's/.*:://' -e 's/:/ /g'`\"
 eval $1=\"`$ECHO $2 | $SED -e 's/::.*//' -e 's/:/ /g'`\ \$$1\"
 ;;
 *)
 eval $1=\"`$ECHO $2 | $SED 's/:/ /g'`\"
 ;;
 esac
}

On IRIX 5.3, sys/types and inttypes.h are conflicting.
for ac_header in sys/types.h sys/stat.h stdlib.h string.h memory.h strings.h \
		 inttypes.h stdint.h unistd.h
do :
 as_ac_Header=`$as_echo "ac_cv_header_$ac_header" | $as_tr_sh`
ac_fn_c_check_header_compile "$LINENO" "$ac_header" "$as_ac_Header" "$ac_includes_default
"
if eval test \"x\$"$as_ac_Header"\" = x"yes"; then :
 cat >>confdefs.h <<_ACEOF
#define `$as_echo "HAVE_$ac_header" | $as_tr_cpp` 1
_ACEOF

fi

done

for ac_header in dlfcn.h
do :
 ac_fn_c_check_header_compile "$LINENO" "dlfcn.h" "ac_cv_header_dlfcn_h" "$ac_includes_default
"
if test "x$ac_cv_header_dlfcn_h" = xyes; then :
 cat >>confdefs.h <<_ACEOF
#define HAVE_DLFCN_H 1
_ACEOF

fi

done

func_stripname_cnf ()
{
 case $2 in
 .*) func_stripname_result=`$ECHO "$3" | $SED "s%^$1%%; s%\\\\$2\$%%"`;;
 *) func_stripname_result=`$ECHO "$3" | $SED "s%^$1%%; s%$2\$%%"`;;
 esac
} # func_stripname_cnf

Set options
enable_win32_dll=yes

case $host in
--cygwin* | *-*-mingw* | *-*-pw32* | *-*-cegcc*)
 if test -n "$ac_tool_prefix"; then
 # Extract the first word of "${ac_tool_prefix}as", so it can be a program name with args.
set dummy ${ac_tool_prefix}as; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_AS+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$AS"; then
 ac_cv_prog_AS="$AS" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_AS="${ac_tool_prefix}as"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
AS=$ac_cv_prog_AS
if test -n "$AS"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $AS" >&5
$as_echo "$AS" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

fi
if test -z "$ac_cv_prog_AS"; then
 ac_ct_AS=$AS
 # Extract the first word of "as", so it can be a program name with args.
set dummy as; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_AS+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_AS"; then
 ac_cv_prog_ac_ct_AS="$ac_ct_AS" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_AS="as"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_AS=$ac_cv_prog_ac_ct_AS
if test -n "$ac_ct_AS"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_AS" >&5
$as_echo "$ac_ct_AS" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 if test "x$ac_ct_AS" = x; then
 AS="false"
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 AS=$ac_ct_AS
 fi
else
 AS="$ac_cv_prog_AS"
fi

 if test -n "$ac_tool_prefix"; then
 # Extract the first word of "${ac_tool_prefix}dlltool", so it can be a program name with args.
set dummy ${ac_tool_prefix}dlltool; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_DLLTOOL+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$DLLTOOL"; then
 ac_cv_prog_DLLTOOL="$DLLTOOL" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_DLLTOOL="${ac_tool_prefix}dlltool"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
DLLTOOL=$ac_cv_prog_DLLTOOL
if test -n "$DLLTOOL"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $DLLTOOL" >&5
$as_echo "$DLLTOOL" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

fi
if test -z "$ac_cv_prog_DLLTOOL"; then
 ac_ct_DLLTOOL=$DLLTOOL
 # Extract the first word of "dlltool", so it can be a program name with args.
set dummy dlltool; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_DLLTOOL+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_DLLTOOL"; then
 ac_cv_prog_ac_ct_DLLTOOL="$ac_ct_DLLTOOL" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_DLLTOOL="dlltool"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_DLLTOOL=$ac_cv_prog_ac_ct_DLLTOOL
if test -n "$ac_ct_DLLTOOL"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_DLLTOOL" >&5
$as_echo "$ac_ct_DLLTOOL" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 if test "x$ac_ct_DLLTOOL" = x; then
 DLLTOOL="false"
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 DLLTOOL=$ac_ct_DLLTOOL
 fi
else
 DLLTOOL="$ac_cv_prog_DLLTOOL"
fi

 if test -n "$ac_tool_prefix"; then
 # Extract the first word of "${ac_tool_prefix}objdump", so it can be a program name with args.
set dummy ${ac_tool_prefix}objdump; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_OBJDUMP+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$OBJDUMP"; then
 ac_cv_prog_OBJDUMP="$OBJDUMP" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_OBJDUMP="${ac_tool_prefix}objdump"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
OBJDUMP=$ac_cv_prog_OBJDUMP
if test -n "$OBJDUMP"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $OBJDUMP" >&5
$as_echo "$OBJDUMP" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

fi
if test -z "$ac_cv_prog_OBJDUMP"; then
 ac_ct_OBJDUMP=$OBJDUMP
 # Extract the first word of "objdump", so it can be a program name with args.
set dummy objdump; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_ac_ct_OBJDUMP+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$ac_ct_OBJDUMP"; then
 ac_cv_prog_ac_ct_OBJDUMP="$ac_ct_OBJDUMP" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_ac_ct_OBJDUMP="objdump"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
ac_ct_OBJDUMP=$ac_cv_prog_ac_ct_OBJDUMP
if test -n "$ac_ct_OBJDUMP"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_OBJDUMP" >&5
$as_echo "$ac_ct_OBJDUMP" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 if test "x$ac_ct_OBJDUMP" = x; then
 OBJDUMP="false"
 else
 case $cross_compiling:$ac_tool_warned in
yes:)
{ $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5
$as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;}
ac_tool_warned=yes ;;
esac
 OBJDUMP=$ac_ct_OBJDUMP
 fi
else
 OBJDUMP="$ac_cv_prog_OBJDUMP"
fi

 ;;
esac

test -z "$AS" && AS=as

test -z "$DLLTOOL" && DLLTOOL=dlltool

test -z "$OBJDUMP" && OBJDUMP=objdump

 enable_dlopen=no

 # Check whether --enable-shared was given.
if test "${enable_shared+set}" = set; then :
 enableval=$enable_shared; p=${PACKAGE-default}
 case $enableval in
 yes) enable_shared=yes ;;
 no) enable_shared=no ;;
 *)
 enable_shared=no
 # Look at the argument we got. We use all the common list separators.
 lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR,
 for pkg in $enableval; do
	IFS=$lt_save_ifs
	if test "X$pkg" = "X$p"; then
	 enable_shared=yes
	fi
 done
 IFS=$lt_save_ifs
 ;;
 esac
else
 enable_shared=yes
fi

 # Check whether --enable-static was given.
if test "${enable_static+set}" = set; then :
 enableval=$enable_static; p=${PACKAGE-default}
 case $enableval in
 yes) enable_static=yes ;;
 no) enable_static=no ;;
 *)
 enable_static=no
 # Look at the argument we got. We use all the common list separators.
 lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR,
 for pkg in $enableval; do
	IFS=$lt_save_ifs
	if test "X$pkg" = "X$p"; then
	 enable_static=yes
	fi
 done
 IFS=$lt_save_ifs
 ;;
 esac
else
 enable_static=yes
fi

Check whether --with-pic was given.
if test "${with_pic+set}" = set; then :
 withval=$with_pic; lt_p=${PACKAGE-default}
 case $withval in
 yes|no) pic_mode=$withval ;;
 *)
 pic_mode=default
 # Look at the argument we got. We use all the common list separators.
 lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR,
 for lt_pkg in $withval; do
	IFS=$lt_save_ifs
	if test "X$lt_pkg" = "X$lt_p"; then
	 pic_mode=yes
	fi
 done
 IFS=$lt_save_ifs
 ;;
 esac
else
 pic_mode=default
fi

 # Check whether --enable-fast-install was given.
if test "${enable_fast_install+set}" = set; then :
 enableval=$enable_fast_install; p=${PACKAGE-default}
 case $enableval in
 yes) enable_fast_install=yes ;;
 no) enable_fast_install=no ;;
 *)
 enable_fast_install=no
 # Look at the argument we got. We use all the common list separators.
 lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR,
 for pkg in $enableval; do
	IFS=$lt_save_ifs
	if test "X$pkg" = "X$p"; then
	 enable_fast_install=yes
	fi
 done
 IFS=$lt_save_ifs
 ;;
 esac
else
 enable_fast_install=yes
fi

 shared_archive_member_spec=
case $host,$enable_shared in
power*-*-aix[5-9]*,yes)
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking which variant of shared library versioning to provide" >&5
$as_echo_n "checking which variant of shared library versioning to provide... " >&6; }

Check whether --with-aix-soname was given.
if test "${with_aix_soname+set}" = set; then :
 withval=$with_aix_soname; case $withval in
 aix|svr4|both)
 ;;
 *)
 as_fn_error $? "Unknown argument to --with-aix-soname" "$LINENO" 5
 ;;
 esac
 lt_cv_with_aix_soname=$with_aix_soname
else
 if ${lt_cv_with_aix_soname+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_with_aix_soname=aix
fi

 with_aix_soname=$lt_cv_with_aix_soname
fi

 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $with_aix_soname" >&5
$as_echo "$with_aix_soname" >&6; }
 if test aix != "$with_aix_soname"; then
 # For the AIX way of multilib, we name the shared archive member
 # based on the bitwidth used, traditionally 'shr.o' or 'shr_64.o',
 # and 'shr.imp' or 'shr_64.imp', respectively, for the Import File.
 # Even when GNU compilers ignore OBJECT_MODE but need '-maix64' flag,
 # the AIX toolchain works better with OBJECT_MODE set (default 32).
 if test 64 = "${OBJECT_MODE-32}"; then
 shared_archive_member_spec=shr_64
 else
 shared_archive_member_spec=shr
 fi
 fi
 ;;
*)
 with_aix_soname=aix
 ;;
esac

This can be used to rebuild libtool when needed
LIBTOOL_DEPS=$ltmain

Always use our own libtool.
LIBTOOL='$(SHELL) $(top_builddir)/libtool'

test -z "$LN_S" && LN_S="ln -s"

if test -n "${ZSH_VERSION+set}"; then
 setopt NO_GLOB_SUBST
fi

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for objdir" >&5
$as_echo_n "checking for objdir... " >&6; }
if ${lt_cv_objdir+:} false; then :
 $as_echo_n "(cached) " >&6
else
 rm -f .libs 2>/dev/null
mkdir .libs 2>/dev/null
if test -d .libs; then
 lt_cv_objdir=.libs
else
 # MS-DOS does not allow filenames that begin with a dot.
 lt_cv_objdir=_libs
fi
rmdir .libs 2>/dev/null
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_objdir" >&5
$as_echo "$lt_cv_objdir" >&6; }
objdir=$lt_cv_objdir

cat >>confdefs.h <<_ACEOF
#define LT_OBJDIR "$lt_cv_objdir/"
_ACEOF

case $host_os in
aix3*)
 # AIX sometimes has problems with the GCC collect2 program. For some
 # reason, if we set the COLLECT_NAMES environment variable, the problems
 # vanish in a puff of smoke.
 if test set != "${COLLECT_NAMES+set}"; then
 COLLECT_NAMES=
 export COLLECT_NAMES
 fi
 ;;
esac

Global variables:
ofile=libtool
can_build_shared=yes

All known linkers require a '.a' archive for static linking (except MSVC,
which needs '.lib').
libext=a

with_gnu_ld=$lt_cv_prog_gnu_ld

old_CC=$CC
old_CFLAGS=$CFLAGS

Set sane defaults for various variables
test -z "$CC" && CC=cc
test -z "$LTCC" && LTCC=$CC
test -z "$LTCFLAGS" && LTCFLAGS=$CFLAGS
test -z "$LD" && LD=ld
test -z "$ac_objext" && ac_objext=o

func_cc_basename $compiler
cc_basename=$func_cc_basename_result

Only perform the check for file, if the check method requires it
test -z "$MAGIC_CMD" && MAGIC_CMD=file
case $deplibs_check_method in
file_magic*)
 if test "$file_magic_cmd" = '$MAGIC_CMD'; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for ${ac_tool_prefix}file" >&5
$as_echo_n "checking for ${ac_tool_prefix}file... " >&6; }
if ${lt_cv_path_MAGIC_CMD+:} false; then :
 $as_echo_n "(cached) " >&6
else
 case $MAGIC_CMD in
[\\/*] | ?:[\\/]*)
 lt_cv_path_MAGIC_CMD=$MAGIC_CMD # Let the user override the test with a path.
 ;;
*)
 lt_save_MAGIC_CMD=$MAGIC_CMD
 lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR
 ac_dummy="/usr/bin$PATH_SEPARATOR$PATH"
 for ac_dir in $ac_dummy; do
 IFS=$lt_save_ifs
 test -z "$ac_dir" && ac_dir=.
 if test -f "$ac_dir/${ac_tool_prefix}file"; then
 lt_cv_path_MAGIC_CMD=$ac_dir/"${ac_tool_prefix}file"
 if test -n "$file_magic_test_file"; then
	case $deplibs_check_method in
	"file_magic "*)
	 file_magic_regex=`expr "$deplibs_check_method" : "file_magic \(.*\)"`
	 MAGIC_CMD=$lt_cv_path_MAGIC_CMD
	 if eval $file_magic_cmd \$file_magic_test_file 2> /dev/null |
	 $EGREP "$file_magic_regex" > /dev/null; then
	 :
	 else
	 cat <<_LT_EOF 1>&2

*** Warning: the command libtool uses to detect shared libraries,
*** $file_magic_cmd, produces output that libtool cannot recognize.
*** The result is that libtool may fail to recognize shared libraries
*** as such. This will affect the creation of libtool libraries that
*** depend on shared libraries, but programs linked with such libtool
*** libraries will work regardless of this problem. Nevertheless, you
*** may want to report the problem to your system manager and/or to
*** bug-libtool@gnu.org

_LT_EOF
	 fi ;;
	esac
 fi
 break
 fi
 done
 IFS=$lt_save_ifs
 MAGIC_CMD=$lt_save_MAGIC_CMD
 ;;
esac
fi

MAGIC_CMD=$lt_cv_path_MAGIC_CMD
if test -n "$MAGIC_CMD"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $MAGIC_CMD" >&5
$as_echo "$MAGIC_CMD" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

if test -z "$lt_cv_path_MAGIC_CMD"; then
 if test -n "$ac_tool_prefix"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for file" >&5
$as_echo_n "checking for file... " >&6; }
if ${lt_cv_path_MAGIC_CMD+:} false; then :
 $as_echo_n "(cached) " >&6
else
 case $MAGIC_CMD in
[\\/*] | ?:[\\/]*)
 lt_cv_path_MAGIC_CMD=$MAGIC_CMD # Let the user override the test with a path.
 ;;
*)
 lt_save_MAGIC_CMD=$MAGIC_CMD
 lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR
 ac_dummy="/usr/bin$PATH_SEPARATOR$PATH"
 for ac_dir in $ac_dummy; do
 IFS=$lt_save_ifs
 test -z "$ac_dir" && ac_dir=.
 if test -f "$ac_dir/file"; then
 lt_cv_path_MAGIC_CMD=$ac_dir/"file"
 if test -n "$file_magic_test_file"; then
	case $deplibs_check_method in
	"file_magic "*)
	 file_magic_regex=`expr "$deplibs_check_method" : "file_magic \(.*\)"`
	 MAGIC_CMD=$lt_cv_path_MAGIC_CMD
	 if eval $file_magic_cmd \$file_magic_test_file 2> /dev/null |
	 $EGREP "$file_magic_regex" > /dev/null; then
	 :
	 else
	 cat <<_LT_EOF 1>&2

*** Warning: the command libtool uses to detect shared libraries,
*** $file_magic_cmd, produces output that libtool cannot recognize.
*** The result is that libtool may fail to recognize shared libraries
*** as such. This will affect the creation of libtool libraries that
*** depend on shared libraries, but programs linked with such libtool
*** libraries will work regardless of this problem. Nevertheless, you
*** may want to report the problem to your system manager and/or to
*** bug-libtool@gnu.org

_LT_EOF
	 fi ;;
	esac
 fi
 break
 fi
 done
 IFS=$lt_save_ifs
 MAGIC_CMD=$lt_save_MAGIC_CMD
 ;;
esac
fi

MAGIC_CMD=$lt_cv_path_MAGIC_CMD
if test -n "$MAGIC_CMD"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $MAGIC_CMD" >&5
$as_echo "$MAGIC_CMD" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

 else
 MAGIC_CMD=:
 fi
fi

 fi
 ;;
esac

Use C for the default configuration in the libtool script

lt_save_CC=$CC
ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu

Source file extension for C test sources.
ac_ext=c

Object file extension for compiled C test sources.
objext=o
objext=$objext

Code to be used in simple compile tests
lt_simple_compile_test_code="int some_variable = 0;"

Code to be used in simple link tests
lt_simple_link_test_code='int main(){return(0);}'

If no C compiler was specified, use CC.
LTCC=${LTCC-"$CC"}

If no C compiler flags were specified, use CFLAGS.
LTCFLAGS=${LTCFLAGS-"$CFLAGS"}

Allow CC to be a program name with arguments.
compiler=$CC

Save the default compiler, since it gets overwritten when the other
tags are being tested, and _LT_TAGVAR(compiler, []) is a NOP.
compiler_DEFAULT=$CC

save warnings/boilerplate of simple test code
ac_outfile=conftest.$ac_objext
echo "$lt_simple_compile_test_code" >conftest.$ac_ext
eval "$ac_compile" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err
_lt_compiler_boilerplate=`cat conftest.err`
$RM conftest*

ac_outfile=conftest.$ac_objext
echo "$lt_simple_link_test_code" >conftest.$ac_ext
eval "$ac_link" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err
_lt_linker_boilerplate=`cat conftest.err`
$RM -r conftest*

CAVEAT EMPTOR:
There is no encapsulation within the following macros, do not change
the running order or otherwise move them around unless you know exactly
what you are doing...
if test -n "$compiler"; then

lt_prog_compiler_no_builtin_flag=

if test yes = "$GCC"; then
 case $cc_basename in
 nvcc*)
 lt_prog_compiler_no_builtin_flag=' -Xcompiler -fno-builtin' ;;
 *)
 lt_prog_compiler_no_builtin_flag=' -fno-builtin' ;;
 esac

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler supports -fno-rtti -fno-exceptions" >&5
$as_echo_n "checking if $compiler supports -fno-rtti -fno-exceptions... " >&6; }
if ${lt_cv_prog_compiler_rtti_exceptions+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_prog_compiler_rtti_exceptions=no
 ac_outfile=conftest.$ac_objext
 echo "$lt_simple_compile_test_code" > conftest.$ac_ext
 lt_compiler_flag="-fno-rtti -fno-exceptions" ## exclude from sc_useless_quotes_in_assignment
 # Insert the option either (1) after the last *FLAGS variable, or
 # (2) before a word containing "conftest.", or (3) at the end.
 # Note that $ac_compile itself does not contain backslashes and begins
 # with a dollar sign (not a hyphen), so the echo should work correctly.
 # The option is referenced via a variable to avoid confusing sed.
 lt_compile=`echo "$ac_compile" | $SED \
 -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
 -e 's: [^]*conftest\.: $lt_compiler_flag&:; t' \
 -e 's:$: $lt_compiler_flag:'`
 (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5)
 (eval "$lt_compile" 2>conftest.err)
 ac_status=$?
 cat conftest.err >&5
 echo "$as_me:$LINENO: \$? = $ac_status" >&5
 if (exit $ac_status) && test -s "$ac_outfile"; then
 # The compiler can only warn and ignore the option if not recognized
 # So say no if there are warnings other than the usual output.
 $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' >conftest.exp
 $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then
 lt_cv_prog_compiler_rtti_exceptions=yes
 fi
 fi
 $RM conftest*

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_rtti_exceptions" >&5
$as_echo "$lt_cv_prog_compiler_rtti_exceptions" >&6; }

if test yes = "$lt_cv_prog_compiler_rtti_exceptions"; then
 lt_prog_compiler_no_builtin_flag="$lt_prog_compiler_no_builtin_flag -fno-rtti -fno-exceptions"
else
 :
fi

fi

 lt_prog_compiler_wl=
lt_prog_compiler_pic=
lt_prog_compiler_static=

 if test yes = "$GCC"; then
 lt_prog_compiler_wl='-Wl,'
 lt_prog_compiler_static='-static'

 case $host_os in
 aix*)
 # All AIX code is PIC.
 if test ia64 = "$host_cpu"; then
	# AIX 5 now supports IA64 processor
	lt_prog_compiler_static='-Bstatic'
 fi
 lt_prog_compiler_pic='-fPIC'
 ;;

 amigaos*)
 case $host_cpu in
 powerpc)
 # see comment about AmigaOS4 .so support
 lt_prog_compiler_pic='-fPIC'
 ;;
 m68k)
 # FIXME: we need at least 68020 code to build shared libraries, but
 # adding the '-m68020' flag to GCC prevents building anything better,
 # like '-m68040'.
 lt_prog_compiler_pic='-m68020 -resident32 -malways-restore-a4'
 ;;
 esac
 ;;

 beos* | irix5* | irix6* | nonstopux* | osf3* | osf4* | osf5*)
 # PIC is the default for these OSes.
 ;;

 mingw* | cygwin* | pw32* | os2* | cegcc*)
 # This hack is so that the source file can tell whether it is being
 # built for inclusion in a dll (and should export symbols for example).
 # Although the cygwin gcc ignores -fPIC, still need this for old-style
 # (--disable-auto-import) libraries
 lt_prog_compiler_pic='-DDLL_EXPORT'
 case $host_os in
 os2*)
	lt_prog_compiler_static='$wl-static'
	;;
 esac
 ;;

 darwin* | rhapsody*)
 # PIC is the default on this platform
 # Common symbols not allowed in MH_DYLIB files
 lt_prog_compiler_pic='-fno-common'
 ;;

 haiku*)
 # PIC is the default for Haiku.
 # The "-static" flag exists, but is broken.
 lt_prog_compiler_static=
 ;;

 hpux*)
 # PIC is the default for 64-bit PA HP-UX, but not for 32-bit
 # PA HP-UX. On IA64 HP-UX, PIC is the default but the pic flag
 # sets the default TLS model and affects inlining.
 case $host_cpu in
 hppa*64*)
	# +Z the default
	;;
 *)
	lt_prog_compiler_pic='-fPIC'
	;;
 esac
 ;;

 interix[3-9]*)
 # Interix 3.x gcc -fpic/-fPIC options generate broken code.
 # Instead, we relocate shared libraries at runtime.
 ;;

 msdosdjgpp*)
 # Just because we use GCC doesn't mean we suddenly get shared libraries
 # on systems that don't support them.
 lt_prog_compiler_can_build_shared=no
 enable_shared=no
 ;;

 nto | *qnx*)
 # QNX uses GNU C++, but need to define -shared option too, otherwise
 # it will coredump.
 lt_prog_compiler_pic='-fPIC -shared'
 ;;

 sysv4*MP*)
 if test -d /usr/nec; then
	lt_prog_compiler_pic=-Kconform_pic
 fi
 ;;

 *)
 lt_prog_compiler_pic='-fPIC'
 ;;
 esac

 case $cc_basename in
 nvcc*) # Cuda Compiler Driver 2.2
 lt_prog_compiler_wl='-Xlinker '
 if test -n "$lt_prog_compiler_pic"; then
 lt_prog_compiler_pic="-Xcompiler $lt_prog_compiler_pic"
 fi
 ;;
 esac
 else
 # PORTME Check for flag to pass linker flags through the system compiler.
 case $host_os in
 aix*)
 lt_prog_compiler_wl='-Wl,'
 if test ia64 = "$host_cpu"; then
	# AIX 5 now supports IA64 processor
	lt_prog_compiler_static='-Bstatic'
 else
	lt_prog_compiler_static='-bnso -bI:/lib/syscalls.exp'
 fi
 ;;

 darwin* | rhapsody*)
 # PIC is the default on this platform
 # Common symbols not allowed in MH_DYLIB files
 lt_prog_compiler_pic='-fno-common'
 case $cc_basename in
 nagfor*)
 # NAG Fortran compiler
 lt_prog_compiler_wl='-Wl,-Wl,,'
 lt_prog_compiler_pic='-PIC'
 lt_prog_compiler_static='-Bstatic'
 ;;
 esac
 ;;

 mingw* | cygwin* | pw32* | os2* | cegcc*)
 # This hack is so that the source file can tell whether it is being
 # built for inclusion in a dll (and should export symbols for example).
 lt_prog_compiler_pic='-DDLL_EXPORT'
 case $host_os in
 os2*)
	lt_prog_compiler_static='$wl-static'
	;;
 esac
 ;;

 hpux9* | hpux10* | hpux11*)
 lt_prog_compiler_wl='-Wl,'
 # PIC is the default for IA64 HP-UX and 64-bit HP-UX, but
 # not for PA HP-UX.
 case $host_cpu in
 hppa*64*|ia64*)
	# +Z the default
	;;
 *)
	lt_prog_compiler_pic='+Z'
	;;
 esac
 # Is there a better lt_prog_compiler_static that works with the bundled CC?
 lt_prog_compiler_static='$wl-a ${wl}archive'
 ;;

 irix5* | irix6* | nonstopux*)
 lt_prog_compiler_wl='-Wl,'
 # PIC (with -KPIC) is the default.
 lt_prog_compiler_static='-non_shared'
 ;;

 linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*)
 case $cc_basename in
 # old Intel for x86_64, which still supported -KPIC.
 ecc*)
	lt_prog_compiler_wl='-Wl,'
	lt_prog_compiler_pic='-KPIC'
	lt_prog_compiler_static='-static'
 ;;
 # icc used to be incompatible with GCC.
 # ICC 10 doesn't accept -KPIC any more.
 icc* | ifort*)
	lt_prog_compiler_wl='-Wl,'
	lt_prog_compiler_pic='-fPIC'
	lt_prog_compiler_static='-static'
 ;;
 # Lahey Fortran 8.1.
 lf95*)
	lt_prog_compiler_wl='-Wl,'
	lt_prog_compiler_pic='--shared'
	lt_prog_compiler_static='--static'
	;;
 nagfor*)
	# NAG Fortran compiler
	lt_prog_compiler_wl='-Wl,-Wl,,'
	lt_prog_compiler_pic='-PIC'
	lt_prog_compiler_static='-Bstatic'
	;;
 tcc*)
	# Fabrice Bellard et al's Tiny C Compiler
	lt_prog_compiler_wl='-Wl,'
	lt_prog_compiler_pic='-fPIC'
	lt_prog_compiler_static='-static'
	;;
 pgcc* | pgf77* | pgf90* | pgf95* | pgfortran*)
 # Portland Group compilers (*not* the Pentium gcc compiler,
	# which looks to be a dead project)
	lt_prog_compiler_wl='-Wl,'
	lt_prog_compiler_pic='-fpic'
	lt_prog_compiler_static='-Bstatic'
 ;;
 ccc*)
 lt_prog_compiler_wl='-Wl,'
 # All Alpha code is PIC.
 lt_prog_compiler_static='-non_shared'
 ;;
 xl* | bgxl* | bgf* | mpixl*)
	# IBM XL C 8.0/Fortran 10.1, 11.1 on PPC and BlueGene
	lt_prog_compiler_wl='-Wl,'
	lt_prog_compiler_pic='-qpic'
	lt_prog_compiler_static='-qstaticlink'
	;;
 *)
	case `$CC -V 2>&1 | sed 5q` in
	Sun\ Ceres\ Fortran | *Sun*Fortran*\ [1-7].* | *Sun*Fortran*\ 8.[0-3]*)
	 # Sun Fortran 8.3 passes all unrecognized flags to the linker
	 lt_prog_compiler_pic='-KPIC'
	 lt_prog_compiler_static='-Bstatic'
	 lt_prog_compiler_wl=''
	 ;;
	Sun\ F | *Sun*Fortran*)
	 lt_prog_compiler_pic='-KPIC'
	 lt_prog_compiler_static='-Bstatic'
	 lt_prog_compiler_wl='-Qoption ld '
	 ;;
	Sun\ C)
	 # Sun C 5.9
	 lt_prog_compiler_pic='-KPIC'
	 lt_prog_compiler_static='-Bstatic'
	 lt_prog_compiler_wl='-Wl,'
	 ;;
 Intel\ [CF]*Compiler*)
	 lt_prog_compiler_wl='-Wl,'
	 lt_prog_compiler_pic='-fPIC'
	 lt_prog_compiler_static='-static'
	 ;;
	Portland\ Group)
	 lt_prog_compiler_wl='-Wl,'
	 lt_prog_compiler_pic='-fpic'
	 lt_prog_compiler_static='-Bstatic'
	 ;;
	esac
	;;
 esac
 ;;

 newsos6)
 lt_prog_compiler_pic='-KPIC'
 lt_prog_compiler_static='-Bstatic'
 ;;

 nto | *qnx*)
 # QNX uses GNU C++, but need to define -shared option too, otherwise
 # it will coredump.
 lt_prog_compiler_pic='-fPIC -shared'
 ;;

 osf3* | osf4* | osf5*)
 lt_prog_compiler_wl='-Wl,'
 # All OSF/1 code is PIC.
 lt_prog_compiler_static='-non_shared'
 ;;

 rdos*)
 lt_prog_compiler_static='-non_shared'
 ;;

 solaris*)
 lt_prog_compiler_pic='-KPIC'
 lt_prog_compiler_static='-Bstatic'
 case $cc_basename in
 f77* | f90* | f95* | sunf77* | sunf90* | sunf95*)
	lt_prog_compiler_wl='-Qoption ld ';;
 *)
	lt_prog_compiler_wl='-Wl,';;
 esac
 ;;

 sunos4*)
 lt_prog_compiler_wl='-Qoption ld '
 lt_prog_compiler_pic='-PIC'
 lt_prog_compiler_static='-Bstatic'
 ;;

 sysv4 | sysv4.2uw2* | sysv4.3*)
 lt_prog_compiler_wl='-Wl,'
 lt_prog_compiler_pic='-KPIC'
 lt_prog_compiler_static='-Bstatic'
 ;;

 sysv4*MP*)
 if test -d /usr/nec; then
	lt_prog_compiler_pic='-Kconform_pic'
	lt_prog_compiler_static='-Bstatic'
 fi
 ;;

 sysv5* | unixware* | sco3.2v5* | sco5v6* | OpenUNIX*)
 lt_prog_compiler_wl='-Wl,'
 lt_prog_compiler_pic='-KPIC'
 lt_prog_compiler_static='-Bstatic'
 ;;

 unicos*)
 lt_prog_compiler_wl='-Wl,'
 lt_prog_compiler_can_build_shared=no
 ;;

 uts4*)
 lt_prog_compiler_pic='-pic'
 lt_prog_compiler_static='-Bstatic'
 ;;

 *)
 lt_prog_compiler_can_build_shared=no
 ;;
 esac
 fi

case $host_os in
 # For platforms that do not support PIC, -DPIC is meaningless:
 djgpp)
 lt_prog_compiler_pic=
 ;;
 *)
 lt_prog_compiler_pic="$lt_prog_compiler_pic -DPIC"
 ;;
esac

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $compiler option to produce PIC" >&5
$as_echo_n "checking for $compiler option to produce PIC... " >&6; }
if ${lt_cv_prog_compiler_pic+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_prog_compiler_pic=$lt_prog_compiler_pic
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_pic" >&5
$as_echo "$lt_cv_prog_compiler_pic" >&6; }
lt_prog_compiler_pic=$lt_cv_prog_compiler_pic

#
Check to make sure the PIC flag actually works.
#
if test -n "$lt_prog_compiler_pic"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler PIC flag $lt_prog_compiler_pic works" >&5
$as_echo_n "checking if $compiler PIC flag $lt_prog_compiler_pic works... " >&6; }
if ${lt_cv_prog_compiler_pic_works+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_prog_compiler_pic_works=no
 ac_outfile=conftest.$ac_objext
 echo "$lt_simple_compile_test_code" > conftest.$ac_ext
 lt_compiler_flag="$lt_prog_compiler_pic -DPIC" ## exclude from sc_useless_quotes_in_assignment
 # Insert the option either (1) after the last *FLAGS variable, or
 # (2) before a word containing "conftest.", or (3) at the end.
 # Note that $ac_compile itself does not contain backslashes and begins
 # with a dollar sign (not a hyphen), so the echo should work correctly.
 # The option is referenced via a variable to avoid confusing sed.
 lt_compile=`echo "$ac_compile" | $SED \
 -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
 -e 's: [^]*conftest\.: $lt_compiler_flag&:; t' \
 -e 's:$: $lt_compiler_flag:'`
 (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5)
 (eval "$lt_compile" 2>conftest.err)
 ac_status=$?
 cat conftest.err >&5
 echo "$as_me:$LINENO: \$? = $ac_status" >&5
 if (exit $ac_status) && test -s "$ac_outfile"; then
 # The compiler can only warn and ignore the option if not recognized
 # So say no if there are warnings other than the usual output.
 $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' >conftest.exp
 $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then
 lt_cv_prog_compiler_pic_works=yes
 fi
 fi
 $RM conftest*

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_pic_works" >&5
$as_echo "$lt_cv_prog_compiler_pic_works" >&6; }

if test yes = "$lt_cv_prog_compiler_pic_works"; then
 case $lt_prog_compiler_pic in
 "" | " "*) ;;
 *) lt_prog_compiler_pic=" $lt_prog_compiler_pic" ;;
 esac
else
 lt_prog_compiler_pic=
 lt_prog_compiler_can_build_shared=no
fi

fi

#
Check to make sure the static flag actually works.
#
wl=$lt_prog_compiler_wl eval lt_tmp_static_flag=\"$lt_prog_compiler_static\"
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler static flag $lt_tmp_static_flag works" >&5
$as_echo_n "checking if $compiler static flag $lt_tmp_static_flag works... " >&6; }
if ${lt_cv_prog_compiler_static_works+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_prog_compiler_static_works=no
 save_LDFLAGS=$LDFLAGS
 LDFLAGS="$LDFLAGS $lt_tmp_static_flag"
 echo "$lt_simple_link_test_code" > conftest.$ac_ext
 if (eval $ac_link 2>conftest.err) && test -s conftest$ac_exeext; then
 # The linker can only warn and ignore the option if not recognized
 # So say no if there are warnings
 if test -s conftest.err; then
 # Append any errors to the config.log.
 cat conftest.err 1>&5
 $ECHO "$_lt_linker_boilerplate" | $SED '/^$/d' > conftest.exp
 $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
 if diff conftest.exp conftest.er2 >/dev/null; then
 lt_cv_prog_compiler_static_works=yes
 fi
 else
 lt_cv_prog_compiler_static_works=yes
 fi
 fi
 $RM -r conftest*
 LDFLAGS=$save_LDFLAGS

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_static_works" >&5
$as_echo "$lt_cv_prog_compiler_static_works" >&6; }

if test yes = "$lt_cv_prog_compiler_static_works"; then
 :
else
 lt_prog_compiler_static=
fi

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler supports -c -o file.$ac_objext" >&5
$as_echo_n "checking if $compiler supports -c -o file.$ac_objext... " >&6; }
if ${lt_cv_prog_compiler_c_o+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_prog_compiler_c_o=no
 $RM -r conftest 2>/dev/null
 mkdir conftest
 cd conftest
 mkdir out
 echo "$lt_simple_compile_test_code" > conftest.$ac_ext

 lt_compiler_flag="-o out/conftest2.$ac_objext"
 # Insert the option either (1) after the last *FLAGS variable, or
 # (2) before a word containing "conftest.", or (3) at the end.
 # Note that $ac_compile itself does not contain backslashes and begins
 # with a dollar sign (not a hyphen), so the echo should work correctly.
 lt_compile=`echo "$ac_compile" | $SED \
 -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
 -e 's: [^]*conftest\.: $lt_compiler_flag&:; t' \
 -e 's:$: $lt_compiler_flag:'`
 (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5)
 (eval "$lt_compile" 2>out/conftest.err)
 ac_status=$?
 cat out/conftest.err >&5
 echo "$as_me:$LINENO: \$? = $ac_status" >&5
 if (exit $ac_status) && test -s out/conftest2.$ac_objext
 then
 # The compiler can only warn and ignore the option if not recognized
 # So say no if there are warnings
 $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' > out/conftest.exp
 $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2
 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then
 lt_cv_prog_compiler_c_o=yes
 fi
 fi
 chmod u+w . 2>&5
 $RM conftest*
 # SGI C++ compiler will create directory out/ii_files/ for
 # template instantiation
 test -d out/ii_files && $RM out/ii_files/* && rmdir out/ii_files
 $RM out/* && rmdir out
 cd ..
 $RM -r conftest
 $RM conftest*

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_c_o" >&5
$as_echo "$lt_cv_prog_compiler_c_o" >&6; }

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler supports -c -o file.$ac_objext" >&5
$as_echo_n "checking if $compiler supports -c -o file.$ac_objext... " >&6; }
if ${lt_cv_prog_compiler_c_o+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_prog_compiler_c_o=no
 $RM -r conftest 2>/dev/null
 mkdir conftest
 cd conftest
 mkdir out
 echo "$lt_simple_compile_test_code" > conftest.$ac_ext

 lt_compiler_flag="-o out/conftest2.$ac_objext"
 # Insert the option either (1) after the last *FLAGS variable, or
 # (2) before a word containing "conftest.", or (3) at the end.
 # Note that $ac_compile itself does not contain backslashes and begins
 # with a dollar sign (not a hyphen), so the echo should work correctly.
 lt_compile=`echo "$ac_compile" | $SED \
 -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
 -e 's: [^]*conftest\.: $lt_compiler_flag&:; t' \
 -e 's:$: $lt_compiler_flag:'`
 (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5)
 (eval "$lt_compile" 2>out/conftest.err)
 ac_status=$?
 cat out/conftest.err >&5
 echo "$as_me:$LINENO: \$? = $ac_status" >&5
 if (exit $ac_status) && test -s out/conftest2.$ac_objext
 then
 # The compiler can only warn and ignore the option if not recognized
 # So say no if there are warnings
 $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' > out/conftest.exp
 $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2
 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then
 lt_cv_prog_compiler_c_o=yes
 fi
 fi
 chmod u+w . 2>&5
 $RM conftest*
 # SGI C++ compiler will create directory out/ii_files/ for
 # template instantiation
 test -d out/ii_files && $RM out/ii_files/* && rmdir out/ii_files
 $RM out/* && rmdir out
 cd ..
 $RM -r conftest
 $RM conftest*

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_c_o" >&5
$as_echo "$lt_cv_prog_compiler_c_o" >&6; }

hard_links=nottested
if test no = "$lt_cv_prog_compiler_c_o" && test no != "$need_locks"; then
 # do not overwrite the value of need_locks provided by the user
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking if we can lock with hard links" >&5
$as_echo_n "checking if we can lock with hard links... " >&6; }
 hard_links=yes
 $RM conftest*
 ln conftest.a conftest.b 2>/dev/null && hard_links=no
 touch conftest.a
 ln conftest.a conftest.b 2>&5 || hard_links=no
 ln conftest.a conftest.b 2>/dev/null && hard_links=no
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $hard_links" >&5
$as_echo "$hard_links" >&6; }
 if test no = "$hard_links"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: '$CC' does not support '-c -o', so 'make -j' may be unsafe" >&5
$as_echo "$as_me: WARNING: '$CC' does not support '-c -o', so 'make -j' may be unsafe" >&2;}
 need_locks=warn
 fi
else
 need_locks=no
fi

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the $compiler linker ($LD) supports shared libraries" >&5
$as_echo_n "checking whether the $compiler linker ($LD) supports shared libraries... " >&6; }

 runpath_var=
 allow_undefined_flag=
 always_export_symbols=no
 archive_cmds=
 archive_expsym_cmds=
 compiler_needs_object=no
 enable_shared_with_static_runtimes=no
 export_dynamic_flag_spec=
 export_symbols_cmds='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols'
 hardcode_automatic=no
 hardcode_direct=no
 hardcode_direct_absolute=no
 hardcode_libdir_flag_spec=
 hardcode_libdir_separator=
 hardcode_minus_L=no
 hardcode_shlibpath_var=unsupported
 inherit_rpath=no
 link_all_deplibs=unknown
 module_cmds=
 module_expsym_cmds=
 old_archive_from_new_cmds=
 old_archive_from_expsyms_cmds=
 thread_safe_flag_spec=
 whole_archive_flag_spec=
 # include_expsyms should be a list of space-separated symbols to be *always*
 # included in the symbol list
 include_expsyms=
 # exclude_expsyms can be an extended regexp of symbols to exclude
 # it will be wrapped by ' (' and ')$', so one must not match beginning or
 # end of line. Example: 'a|bc|.*d.*' will exclude the symbols 'a' and 'bc',
 # as well as any symbol that contains 'd'.
 exclude_expsyms='_GLOBAL_OFFSET_TABLE_|_GLOBAL__F[ID]_.*'
 # Although _GLOBAL_OFFSET_TABLE_ is a valid symbol C name, most a.out
 # platforms (ab)use it in PIC code, but their linkers get confused if
 # the symbol is explicitly referenced. Since portable code cannot
 # rely on this symbol name, it's probably fine to never include it in
 # preloaded symbol tables.
 # Exclude shared library initialization/finalization symbols.
 extract_expsyms_cmds=

 case $host_os in
 cygwin* | mingw* | pw32* | cegcc*)
 # FIXME: the MSVC++ port hasn't been tested in a loooong time
 # When not using gcc, we currently assume that we are using
 # Microsoft Visual C++.
 if test yes != "$GCC"; then
 with_gnu_ld=no
 fi
 ;;
 interix*)
 # we just hope/assume this is gcc and not c89 (= MSVC++)
 with_gnu_ld=yes
 ;;
 openbsd* | bitrig*)
 with_gnu_ld=no
 ;;
 linux* | k*bsd*-gnu | gnu*)
 link_all_deplibs=no
 ;;
 esac

 ld_shlibs=yes

 # On some targets, GNU ld is compatible enough with the native linker
 # that we're better off using the native interface for both.
 lt_use_gnu_ld_interface=no
 if test yes = "$with_gnu_ld"; then
 case $host_os in
 aix*)
	# The AIX port of GNU ld has always aspired to compatibility
	# with the native linker. However, as the warning in the GNU ld
	# block says, versions before 2.19.5* couldn't really create working
	# shared libraries, regardless of the interface used.
	case `$LD -v 2>&1` in
	 \ \(GNU\ Binutils\)\ 2.19.5) ;;
	 \ \(GNU\ Binutils\)\ 2.[2-9]) ;;
	 \ \(GNU\ Binutils\)\ [3-9]) ;;
	 *)
	 lt_use_gnu_ld_interface=yes
	 ;;
	esac
	;;
 *)
	lt_use_gnu_ld_interface=yes
	;;
 esac
 fi

 if test yes = "$lt_use_gnu_ld_interface"; then
 # If archive_cmds runs LD, not CC, wlarc should be empty
 wlarc='$wl'

 # Set some defaults for GNU ld with shared library support. These
 # are reset later if shared libraries are not supported. Putting them
 # here allows them to be overridden if necessary.
 runpath_var=LD_RUN_PATH
 hardcode_libdir_flag_spec='$wl-rpath wllibdir'
 export_dynamic_flag_spec='$wl--export-dynamic'
 # ancient GNU ld didn't support --whole-archive et. al.
 if $LD --help 2>&1 | $GREP 'no-whole-archive' > /dev/null; then
 whole_archive_flag_spec=$wlarc'--whole-archive$convenience '$wlarc'--no-whole-archive'
 else
 whole_archive_flag_spec=
 fi
 supports_anon_versioning=no
 case `$LD -v | $SED -e 's/(^)\+)\s\+//' 2>&1` in
 GNU\ gold) supports_anon_versioning=yes ;;
 \ [01]. | *\ 2.[0-9].* | *\ 2.10.*) ;; # catch versions < 2.11
 *\ 2.11.93.0.2\ *) supports_anon_versioning=yes ;; # RH7.3 ...
 *\ 2.11.92.0.12\ *) supports_anon_versioning=yes ;; # Mandrake 8.2 ...
 \ 2.11.) ;; # other 2.11 versions
 *) supports_anon_versioning=yes ;;
 esac

 # See if GNU ld supports shared libraries.
 case $host_os in
 aix[3-9]*)
 # On AIX/PPC, the GNU linker is very broken
 if test ia64 != "$host_cpu"; then
	ld_shlibs=no
	cat <<_LT_EOF 1>&2

*** Warning: the GNU linker, at least up to release 2.19, is reported
*** to be unable to reliably create shared libraries on AIX.
*** Therefore, libtool is disabling shared libraries support. If you
*** really care for shared libraries, you may want to install binutils
*** 2.20 or above, or modify your PATH so that a non-GNU linker is found.
*** You will then need to restart the configuration process.

_LT_EOF
 fi
 ;;

 amigaos*)
 case $host_cpu in
 powerpc)
 # see comment about AmigaOS4 .so support
 archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
 archive_expsym_cmds=''
 ;;
 m68k)
 archive_cmds='$RM $output_objdir/a2ixlibrary.data~$ECHO "#define NAME $libname" > $output_objdir/a2ixlibrary.data~$ECHO "#define LIBRARY_ID 1" >> $output_objdir/a2ixlibrary.data~$ECHO "#define VERSION $major" >> $output_objdir/a2ixlibrary.data~$ECHO "#define REVISION $revision" >> $output_objdir/a2ixlibrary.data~$AR $AR_FLAGS $lib $libobjs~$RANLIB $lib~(cd $output_objdir && a2ixlibrary -32)'
 hardcode_libdir_flag_spec='-L$libdir'
 hardcode_minus_L=yes
 ;;
 esac
 ;;

 beos*)
 if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then
	allow_undefined_flag=unsupported
	# Joseph Beckenbach <jrb3@best.com> says some releases of gcc
	# support --undefined. This deserves some investigation. FIXME
	archive_cmds='$CC -nostart $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
 else
	ld_shlibs=no
 fi
 ;;

 cygwin* | mingw* | pw32* | cegcc*)
 # _LT_TAGVAR(hardcode_libdir_flag_spec,) is actually meaningless,
 # as there is no search path for DLLs.
 hardcode_libdir_flag_spec='-L$libdir'
 export_dynamic_flag_spec='$wl--export-all-symbols'
 allow_undefined_flag=unsupported
 always_export_symbols=no
 enable_shared_with_static_runtimes=yes
 export_symbols_cmds='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[BCDGRS][]/s/.*[]\([^]*\)/\1 DATA/;s/^.*[]__nm__\([^]*\)[][^]*/\1 DATA/;/^I[]/d;/^[AITW][]/s/.* //'\'' | sort | uniq > $export_symbols'
 exclude_expsyms='[_]+GLOBAL_OFFSET_TABLE_|[_]+GLOBAL__[FID]_.*|[_]+head_[A-Za-z0-9_]+_dll|[A-Za-z0-9_]+_dll_iname'

 if $LD --help 2>&1 | $GREP 'auto-import' > /dev/null; then
 archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib'
	# If the export-symbols file already is a .def file, use it as
	# is; otherwise, prepend EXPORTS...
	archive_expsym_cmds='if test DEF = "`$SED -n -e '\''s/^[]*//'\'' -e '\''/^\(;.*\)*$/d'\'' -e '\''s/^\(EXPORTS\|LIBRARY\)\([].*\)*$/DEF/p'\'' -e q $export_symbols`" ; then
 cp $export_symbols $output_objdir/$soname.def;
 else
 echo EXPORTS > $output_objdir/$soname.def;
 cat $export_symbols >> $output_objdir/$soname.def;
 fi~
 $CC -shared $output_objdir/$soname.def $libobjs $deplibs $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib'
 else
	ld_shlibs=no
 fi
 ;;

 haiku*)
 archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
 link_all_deplibs=yes
 ;;

 os2*)
 hardcode_libdir_flag_spec='-L$libdir'
 hardcode_minus_L=yes
 allow_undefined_flag=unsupported
 shrext_cmds=.dll
 archive_cmds='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~
	$ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~
	$ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~
	$ECHO EXPORTS >> $output_objdir/$libname.def~
	emxexp $libobjs | $SED /"_DLL_InitTerm"/d >> $output_objdir/$libname.def~
	$CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~
	emximp -o $lib $output_objdir/$libname.def'
 archive_expsym_cmds='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~
	$ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~
	$ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~
	$ECHO EXPORTS >> $output_objdir/$libname.def~
	prefix_cmds="$SED"~
	if test EXPORTS = "`$SED 1q $export_symbols`"; then
	 prefix_cmds="$prefix_cmds -e 1d";
	fi~
	prefix_cmds="$prefix_cmds -e \"s/^\(.*\)$/_\1/g\""~
	cat $export_symbols | $prefix_cmds >> $output_objdir/$libname.def~
	$CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~
	emximp -o $lib $output_objdir/$libname.def'
 old_archive_From_new_cmds='emximp -o $output_objdir/${libname}_dll.a $output_objdir/$libname.def'
 enable_shared_with_static_runtimes=yes
 ;;

 interix[3-9]*)
 hardcode_direct=no
 hardcode_shlibpath_var=no
 hardcode_libdir_flag_spec='$wl-rpath,$libdir'
 export_dynamic_flag_spec='$wl-E'
 # Hack: On Interix 3.x, we cannot compile PIC because of a broken gcc.
 # Instead, shared libraries are loaded at an image base (0x10000000 by
 # default) and relocated if they conflict, which is a slow very memory
 # consuming and fragmenting process. To avoid this, we pick a random,
 # 256 KiB-aligned image base between 0x50000000 and 0x6FFC0000 at link
 # time. Moving up from 0x10000000 also allows more sbrk(2) space.
 archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 * 262144 + 1342177280` -o $lib'
 archive_expsym_cmds='sed "s|^|_|" $export_symbols >$output_objdir/$soname.expsym~$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--retain-symbols-file,$output_objdir/$soname.expsym $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 * 262144 + 1342177280` -o $lib'
 ;;

 gnu* | linux* | tpf* | k*bsd*-gnu | kopensolaris*-gnu)
 tmp_diet=no
 if test linux-dietlibc = "$host_os"; then
	case $cc_basename in
	 diet\ *) tmp_diet=yes;;	# linux-dietlibc with static linking (!diet-dyn)
	esac
 fi
 if $LD --help 2>&1 | $EGREP ': supported targets:.* elf' > /dev/null \
	 && test no = "$tmp_diet"
 then
	tmp_addflag=' $pic_flag'
	tmp_sharedflag='-shared'
	case $cc_basename,$host_cpu in
 pgcc*)				# Portland Group C compiler
	 whole_archive_flag_spec='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive'
	 tmp_addflag=' $pic_flag'
	 ;;
	pgf77* | pgf90* | pgf95* | pgfortran*)
					# Portland Group f77 and f90 compilers
	 whole_archive_flag_spec='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive'
	 tmp_addflag=' $pic_flag -Mnomain' ;;
	ecc*,ia64* | icc*,ia64*)	# Intel C compiler on ia64
	 tmp_addflag=' -i_dynamic' ;;
	efc*,ia64* | ifort*,ia64*)	# Intel Fortran compiler on ia64
	 tmp_addflag=' -i_dynamic -nofor_main' ;;
	ifc* | ifort*)			# Intel Fortran compiler
	 tmp_addflag=' -nofor_main' ;;
	lf95*)				# Lahey Fortran 8.1
	 whole_archive_flag_spec=
	 tmp_sharedflag='--shared' ;;
 nagfor*) # NAGFOR 5.3
 tmp_sharedflag='-Wl,-shared' ;;
	xl[cC]* | bgxl[cC]* | mpixl[cC]*) # IBM XL C 8.0 on PPC (deal with xlf below)
	 tmp_sharedflag='-qmkshrobj'
	 tmp_addflag= ;;
	nvcc*)	# Cuda Compiler Driver 2.2
	 whole_archive_flag_spec='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive'
	 compiler_needs_object=yes
	 ;;
	esac
	case `$CC -V 2>&1 | sed 5q` in
	Sun\ C)			# Sun C 5.9
	 whole_archive_flag_spec='$wl--whole-archive`new_convenience=; for conv in $convenience\"\"; do test -z \"$conv\" || new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive'
	 compiler_needs_object=yes
	 tmp_sharedflag='-G' ;;
	Sun\ F)			# Sun Fortran 8.3
	 tmp_sharedflag='-G' ;;
	esac
	archive_cmds='$CC '"$tmp_sharedflag""$tmp_addflag"' $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'

 if test yes = "$supports_anon_versioning"; then
 archive_expsym_cmds='echo "{ global:" > $output_objdir/$libname.ver~
 cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~
 echo "local: *; };" >> $output_objdir/$libname.ver~
 $CC '"$tmp_sharedflag""$tmp_addflag"' $libobjs $deplibs $compiler_flags $wl-soname wlsoname $wl-version-script wloutput_objdir/$libname.ver -o $lib'
 fi

	case $cc_basename in
	tcc*)
	 export_dynamic_flag_spec='-rdynamic'
	 ;;
	xlf* | bgf* | bgxlf* | mpixlf*)
	 # IBM XL Fortran 10.1 on PPC cannot create shared libs itself
	 whole_archive_flag_spec='--whole-archive$convenience --no-whole-archive'
	 hardcode_libdir_flag_spec='$wl-rpath wllibdir'
	 archive_cmds='$LD -shared $libobjs $deplibs $linker_flags -soname $soname -o $lib'
	 if test yes = "$supports_anon_versioning"; then
	 archive_expsym_cmds='echo "{ global:" > $output_objdir/$libname.ver~
 cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~
 echo "local: *; };" >> $output_objdir/$libname.ver~
 $LD -shared $libobjs $deplibs $linker_flags -soname $soname -version-script $output_objdir/$libname.ver -o $lib'
	 fi
	 ;;
	esac
 else
 ld_shlibs=no
 fi
 ;;

 netbsd* | netbsdelf*-gnu)
 if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then
	archive_cmds='$LD -Bshareable $libobjs $deplibs $linker_flags -o $lib'
	wlarc=
 else
	archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
	archive_expsym_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'
 fi
 ;;

 solaris*)
 if $LD -v 2>&1 | $GREP 'BFD 2\.8' > /dev/null; then
	ld_shlibs=no
	cat <<_LT_EOF 1>&2

*** Warning: The releases 2.8.* of the GNU linker cannot reliably
*** create shared libraries on Solaris systems. Therefore, libtool
*** is disabling shared libraries support. We urge you to upgrade GNU
*** binutils to release 2.9.1 or newer. Another option is to modify
*** your PATH or compiler configuration so that the native linker is
*** used, and then restart.

_LT_EOF
 elif $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then
	archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
	archive_expsym_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'
 else
	ld_shlibs=no
 fi
 ;;

 sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX*)
 case `$LD -v 2>&1` in
 \ [01]. | *\ 2.[0-9].* | *\ 2.1[0-5].*)
	ld_shlibs=no
	cat <<_LT_EOF 1>&2

*** Warning: Releases of the GNU linker prior to 2.16.91.0.3 cannot
*** reliably create shared libraries on SCO systems. Therefore, libtool
*** is disabling shared libraries support. We urge you to upgrade GNU
*** binutils to release 2.16.91.0.3 or newer. Another option is to modify
*** your PATH or compiler configuration so that the native linker is
*** used, and then restart.

_LT_EOF
	;;
	*)
	 # For security reasons, it is highly recommended that you always
	 # use absolute paths for naming shared libraries, and exclude the
	 # DT_RUNPATH tag from executables and libraries. But doing so
	 # requires that you compile everything twice, which is a pain.
	 if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then
	 hardcode_libdir_flag_spec='$wl-rpath wllibdir'
	 archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
	 archive_expsym_cmds='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'
	 else
	 ld_shlibs=no
	 fi
	;;
 esac
 ;;

 sunos4*)
 archive_cmds='$LD -assert pure-text -Bshareable -o $lib $libobjs $deplibs $linker_flags'
 wlarc=
 hardcode_direct=yes
 hardcode_shlibpath_var=no
 ;;

 *)
 if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then
	archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
	archive_expsym_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'
 else
	ld_shlibs=no
 fi
 ;;
 esac

 if test no = "$ld_shlibs"; then
 runpath_var=
 hardcode_libdir_flag_spec=
 export_dynamic_flag_spec=
 whole_archive_flag_spec=
 fi
 else
 # PORTME fill in a description of your system's linker (not GNU ld)
 case $host_os in
 aix3*)
 allow_undefined_flag=unsupported
 always_export_symbols=yes
 archive_expsym_cmds='$LD -o $output_objdir/$soname $libobjs $deplibs $linker_flags -bE:$export_symbols -T512 -H512 -bM:SRE~$AR $AR_FLAGS $lib $output_objdir/$soname'
 # Note: this linker hardcodes the directories in LIBPATH if there
 # are no directories specified by -L.
 hardcode_minus_L=yes
 if test yes = "$GCC" && test -z "$lt_prog_compiler_static"; then
	# Neither direct hardcoding nor static linking is supported with a
	# broken collect2.
	hardcode_direct=unsupported
 fi
 ;;

 aix[4-9]*)
 if test ia64 = "$host_cpu"; then
	# On IA64, the linker does run time linking by default, so we don't
	# have to do anything special.
	aix_use_runtimelinking=no
	exp_sym_flag='-Bexport'
	no_entry_flag=
 else
	# If we're using GNU nm, then we don't want the "-C" option.
	# -C means demangle to GNU nm, but means don't demangle to AIX nm.
	# Without the "-l" option, or with the "-B" option, AIX nm treats
	# weak defined symbols like other global defined symbols, whereas
	# GNU nm marks them as "W".
	# While the 'weak' keyword is ignored in the Export File, we need
	# it in the Import File for the 'aix-soname' feature, so we have
	# to replace the "-B" option with "-P" for AIX nm.
	if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then
	 export_symbols_cmds='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && (substr(\$ 3,1,1) != ".")) { if (\$ 2 == "W") { print \$ 3 " weak" } else { print \$ 3 } } }'\'' | sort -u > $export_symbols'
	else
	 export_symbols_cmds='`func_echo_all $NM | $SED -e '\''s/B\([^B]*\)$/P\1/'\''` -PCpgl $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W") || (\$ 2 == "V") || (\$ 2 == "Z")) && (substr(\$ 1,1,1) != ".")) { if ((\$ 2 == "W") || (\$ 2 == "V") || (\$ 2 == "Z")) { print \$ 1 " weak" } else { print \$ 1 } } }'\'' | sort -u > $export_symbols'
	fi
	aix_use_runtimelinking=no

	# Test if we are trying to use run time linking or normal
	# AIX style linking. If -brtl is somewhere in LDFLAGS, we
	# have runtime linking enabled, and use it for executables.
	# For shared libraries, we enable/disable runtime linking
	# depending on the kind of the shared library created -
	# when "with_aix_soname,aix_use_runtimelinking" is:
	# "aix,no" lib.a(lib.so.V) shared, rtl:no, for executables
	# "aix,yes" lib.so shared, rtl:yes, for executables
	# lib.a static archive
	# "both,no" lib.so.V(shr.o) shared, rtl:yes
	# lib.a(lib.so.V) shared, rtl:no, for executables
	# "both,yes" lib.so.V(shr.o) shared, rtl:yes, for executables
	# lib.a(lib.so.V) shared, rtl:no
	# "svr4,*" lib.so.V(shr.o) shared, rtl:yes, for executables
	# lib.a static archive
	case $host_os in aix4.[23]|aix4.[23].*|aix[5-9]*)
	 for ld_flag in $LDFLAGS; do
	 if (test x-brtl = "x$ld_flag" || test x-Wl,-brtl = "x$ld_flag"); then
	 aix_use_runtimelinking=yes
	 break
	 fi
	 done
	 if test svr4,no = "$with_aix_soname,$aix_use_runtimelinking"; then
	 # With aix-soname=svr4, we create the lib.so.V shared archives only,
	 # so we don't have lib.a shared libs to link our executables.
	 # We have to force runtime linking in this case.
	 aix_use_runtimelinking=yes
	 LDFLAGS="$LDFLAGS -Wl,-brtl"
	 fi
	 ;;
	esac

	exp_sym_flag='-bexport'
	no_entry_flag='-bnoentry'
 fi

 # When large executables or shared objects are built, AIX ld can
 # have problems creating the table of contents. If linking a library
 # or program results in "error TOC overflow" add -mminimal-toc to
 # CXXFLAGS/CFLAGS for g++/gcc. In the cases where that is not
 # enough to fix the problem, add -Wl,-bbigtoc to LDFLAGS.

 archive_cmds=''
 hardcode_direct=yes
 hardcode_direct_absolute=yes
 hardcode_libdir_separator=':'
 link_all_deplibs=yes
 file_list_spec='$wl-f,'
 case $with_aix_soname,$aix_use_runtimelinking in
 aix,*) ;; # traditional, no import file
 svr4,* | *,yes) # use import file
	# The Import File defines what to hardcode.
	hardcode_direct=no
	hardcode_direct_absolute=no
	;;
 esac

 if test yes = "$GCC"; then
	case $host_os in aix4.[012]|aix4.[012].*)
	# We only want to do this on AIX 4.2 and lower, the check
	# below for broken collect2 doesn't work under 4.3+
	 collect2name=`$CC -print-prog-name=collect2`
	 if test -f "$collect2name" &&
	 strings "$collect2name" | $GREP resolve_lib_name >/dev/null
	 then
	 # We have reworked collect2
	 :
	 else
	 # We have old collect2
	 hardcode_direct=unsupported
	 # It fails to find uninstalled libraries when the uninstalled
	 # path is not listed in the libpath. Setting hardcode_minus_L
	 # to unsupported forces relinking
	 hardcode_minus_L=yes
	 hardcode_libdir_flag_spec='-L$libdir'
	 hardcode_libdir_separator=
	 fi
	 ;;
	esac
	shared_flag='-shared'
	if test yes = "$aix_use_runtimelinking"; then
	 shared_flag="$shared_flag "'$wl-G'
	fi
	# Need to ensure runtime linking is disabled for the traditional
	# shared library, or the linker may eventually find shared libraries
	# /with/ Import File - we do not want to mix them.
	shared_flag_aix='-shared'
	shared_flag_svr4='-shared $wl-G'
 else
	# not using gcc
	if test ia64 = "$host_cpu"; then
	# VisualAge C++, Version 5.5 for AIX 5L for IA-64, Beta 3 Release
	# chokes on -Wl,-G. The following line is correct:
	 shared_flag='-G'
	else
	 if test yes = "$aix_use_runtimelinking"; then
	 shared_flag='$wl-G'
	 else
	 shared_flag='$wl-bM:SRE'
	 fi
	 shared_flag_aix='$wl-bM:SRE'
	 shared_flag_svr4='$wl-G'
	fi
 fi

 export_dynamic_flag_spec='$wl-bexpall'
 # It seems that -bexpall does not export symbols beginning with
 # underscore (_), so it is better to generate a list of symbols to export.
 always_export_symbols=yes
 if test aix,yes = "$with_aix_soname,$aix_use_runtimelinking"; then
	# Warning - without using the other runtime loading flags (-brtl),
	# -berok will link without error, but may produce a broken library.
	allow_undefined_flag='-berok'
 # Determine the default libpath from the value encoded in an
 # empty executable.
 if test set = "${lt_cv_aix_libpath+set}"; then
 aix_libpath=$lt_cv_aix_libpath
else
 if ${lt_cv_aix_libpath_+:} false; then :
 $as_echo_n "(cached) " >&6
else
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_link "$LINENO"; then :

 lt_aix_libpath_sed='
 /Import File Strings/,/^$/ {
	 /^0/ {
	 s/^0 *\([^]*\) *$/\1/
	 p
	 }
 }'
 lt_cv_aix_libpath_=`dump -H conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"`
 # Check for a 64-bit object if we didn't find anything.
 if test -z "$lt_cv_aix_libpath_"; then
 lt_cv_aix_libpath_=`dump -HX64 conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"`
 fi
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
 if test -z "$lt_cv_aix_libpath_"; then
 lt_cv_aix_libpath_=/usr/lib:/lib
 fi

fi

 aix_libpath=$lt_cv_aix_libpath_
fi

 hardcode_libdir_flag_spec='$wl-blibpath:$libdir:'"$aix_libpath"
 archive_expsym_cmds='$CC -o $output_objdir/$soname $libobjs $deplibs wl'no_entry_flag' $compiler_flags `if test -n "$allow_undefined_flag"; then func_echo_all "wlallow_undefined_flag"; else :; fi` wl'exp_sym_flag:\$export_symbols' '$shared_flag
 else
	if test ia64 = "$host_cpu"; then
	 hardcode_libdir_flag_spec='$wl-R $libdir:/usr/lib:/lib'
	 allow_undefined_flag="-z nodefs"
	 archive_expsym_cmds="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs '"\$wl$no_entry_flag"' $compiler_flags wlallow_undefined_flag '"\wlexp_sym_flag:\$export_symbols"
	else
	 # Determine the default libpath from the value encoded in an
	 # empty executable.
	 if test set = "${lt_cv_aix_libpath+set}"; then
 aix_libpath=$lt_cv_aix_libpath
else
 if ${lt_cv_aix_libpath_+:} false; then :
 $as_echo_n "(cached) " >&6
else
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_link "$LINENO"; then :

 lt_aix_libpath_sed='
 /Import File Strings/,/^$/ {
	 /^0/ {
	 s/^0 *\([^]*\) *$/\1/
	 p
	 }
 }'
 lt_cv_aix_libpath_=`dump -H conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"`
 # Check for a 64-bit object if we didn't find anything.
 if test -z "$lt_cv_aix_libpath_"; then
 lt_cv_aix_libpath_=`dump -HX64 conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"`
 fi
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
 if test -z "$lt_cv_aix_libpath_"; then
 lt_cv_aix_libpath_=/usr/lib:/lib
 fi

fi

 aix_libpath=$lt_cv_aix_libpath_
fi

	 hardcode_libdir_flag_spec='$wl-blibpath:$libdir:'"$aix_libpath"
	 # Warning - without using the other run time loading flags,
	 # -berok will link without error, but may produce a broken library.
	 no_undefined_flag=' $wl-bernotok'
	 allow_undefined_flag=' $wl-berok'
	 if test yes = "$with_gnu_ld"; then
	 # We only use this code for GNU lds that support --whole-archive.
	 whole_archive_flag_spec='$wl--whole-archive$convenience $wl--no-whole-archive'
	 else
	 # Exported symbols can be pulled into shared objects from archives
	 whole_archive_flag_spec='$convenience'
	 fi
	 archive_cmds_need_lc=yes
	 archive_expsym_cmds='$RM -r $output_objdir/$realname.d~$MKDIR $output_objdir/$realname.d'
	 # -brtl affects multiple linker settings, -berok does not and is overridden later
	 compiler_flags_filtered='`func_echo_all "$compiler_flags " | $SED -e "s%-brtl\\([,]\\)%-berok\\1%g"`'
	 if test svr4 != "$with_aix_soname"; then
	 # This is similar to how AIX traditionally builds its shared libraries.
	 archive_expsym_cmds="$archive_expsym_cmds"'~$CC '$shared_flag_aix' -o $output_objdir/$realname.d/$soname $libobjs $deplibs $wl-bnoentry '$compiler_flags_filtered'$wl-bE:$export_symbols$allow_undefined_flag~$AR $AR_FLAGS $output_objdir/$libname$release.a $output_objdir/$realname.d/$soname'
	 fi
	 if test aix != "$with_aix_soname"; then
	 archive_expsym_cmds="$archive_expsym_cmds"'~$CC '$shared_flag_svr4' -o $output_objdir/$realname.d/$shared_archive_member_spec.o $libobjs $deplibs $wl-bnoentry '$compiler_flags_filtered'$wl-bE:$export_symbols$allow_undefined_flag~$STRIP -e $output_objdir/$realname.d/$shared_archive_member_spec.o~(func_echo_all "#! $soname($shared_archive_member_spec.o)"; if test shr_64 = "$shared_archive_member_spec"; then func_echo_all "# 64"; else func_echo_all "# 32"; fi; cat $export_symbols) > $output_objdir/$realname.d/$shared_archive_member_spec.imp~$AR $AR_FLAGS $output_objdir/$soname $output_objdir/$realname.d/$shared_archive_member_spec.o $output_objdir/$realname.d/$shared_archive_member_spec.imp'
	 else
	 # used by -dlpreopen to get the symbols
	 archive_expsym_cmds="$archive_expsym_cmds"'~$MV $output_objdir/$realname.d/$soname $output_objdir'
	 fi
	 archive_expsym_cmds="$archive_expsym_cmds"'~$RM -r $output_objdir/$realname.d'
	fi
 fi
 ;;

 amigaos*)
 case $host_cpu in
 powerpc)
 # see comment about AmigaOS4 .so support
 archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
 archive_expsym_cmds=''
 ;;
 m68k)
 archive_cmds='$RM $output_objdir/a2ixlibrary.data~$ECHO "#define NAME $libname" > $output_objdir/a2ixlibrary.data~$ECHO "#define LIBRARY_ID 1" >> $output_objdir/a2ixlibrary.data~$ECHO "#define VERSION $major" >> $output_objdir/a2ixlibrary.data~$ECHO "#define REVISION $revision" >> $output_objdir/a2ixlibrary.data~$AR $AR_FLAGS $lib $libobjs~$RANLIB $lib~(cd $output_objdir && a2ixlibrary -32)'
 hardcode_libdir_flag_spec='-L$libdir'
 hardcode_minus_L=yes
 ;;
 esac
 ;;

 bsdi[45]*)
 export_dynamic_flag_spec=-rdynamic
 ;;

 cygwin* | mingw* | pw32* | cegcc*)
 # When not using gcc, we currently assume that we are using
 # Microsoft Visual C++.
 # hardcode_libdir_flag_spec is actually meaningless, as there is
 # no search path for DLLs.
 case $cc_basename in
 cl*)
	# Native MSVC
	hardcode_libdir_flag_spec=' '
	allow_undefined_flag=unsupported
	always_export_symbols=yes
	file_list_spec='@'
	# Tell ltmain to make .lib files, not .a files.
	libext=lib
	# Tell ltmain to make .dll files, not .so files.
	shrext_cmds=.dll
	# FIXME: Setting linknames here is a bad hack.
	archive_cmds='$CC -o $output_objdir/$soname $libobjs $compiler_flags $deplibs -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~linknames='
	archive_expsym_cmds='if test DEF = "`$SED -n -e '\''s/^[]*//'\'' -e '\''/^\(;.*\)*$/d'\'' -e '\''s/^\(EXPORTS\|LIBRARY\)\([].*\)*$/DEF/p'\'' -e q $export_symbols`" ; then
 cp "$export_symbols" "$output_objdir/$soname.def";
 echo "$tool_output_objdir$soname.def" > "$output_objdir/$soname.exp";
 else
 $SED -e '\''s/^/-link -EXPORT:/'\'' < $export_symbols > $output_objdir/$soname.exp;
 fi~
 $CC -o $tool_output_objdir$soname $libobjs $compiler_flags $deplibs "@$tool_output_objdir$soname.exp" -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~
 linknames='
	# The linker will not automatically build a static lib if we build a DLL.
	# _LT_TAGVAR(old_archive_from_new_cmds,)='true'
	enable_shared_with_static_runtimes=yes
	exclude_expsyms='_NULL_IMPORT_DESCRIPTOR|_IMPORT_DESCRIPTOR_.*'
	export_symbols_cmds='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[BCDGRS][]/s/.*[]\([^]*\)/\1,DATA/'\'' | $SED -e '\''/^[AITW][]/s/.*[]//'\'' | sort | uniq > $export_symbols'
	# Don't use ranlib
	old_postinstall_cmds='chmod 644 $oldlib'
	postlink_cmds='lt_outputfile="@OUTPUT@"~
 lt_tool_outputfile="@TOOL_OUTPUT@"~
 case $lt_outputfile in
 .exe|.EXE) ;;
 *)
 lt_outputfile=$lt_outputfile.exe
 lt_tool_outputfile=$lt_tool_outputfile.exe
 ;;
 esac~
 if test : != "$MANIFEST_TOOL" && test -f "$lt_outputfile.manifest"; then
 $MANIFEST_TOOL -manifest "$lt_tool_outputfile.manifest" -outputresource:"$lt_tool_outputfile" || exit 1;
 $RM "$lt_outputfile.manifest";
 fi'
	;;
 *)
	# Assume MSVC wrapper
	hardcode_libdir_flag_spec=' '
	allow_undefined_flag=unsupported
	# Tell ltmain to make .lib files, not .a files.
	libext=lib
	# Tell ltmain to make .dll files, not .so files.
	shrext_cmds=.dll
	# FIXME: Setting linknames here is a bad hack.
	archive_cmds='$CC -o $lib $libobjs $compiler_flags `func_echo_all "$deplibs" | $SED '\''s/ -lc$//'\''` -link -dll~linknames='
	# The linker will automatically build a .lib file if we build a DLL.
	old_archive_from_new_cmds='true'
	# FIXME: Should let the user specify the lib program.
	old_archive_cmds='lib -OUT:$oldlib$oldobjs$old_deplibs'
	enable_shared_with_static_runtimes=yes
	;;
 esac
 ;;

 darwin* | rhapsody*)

 archive_cmds_need_lc=no
 hardcode_direct=no
 hardcode_automatic=yes
 hardcode_shlibpath_var=unsupported
 if test yes = "$lt_cv_ld_force_load"; then
 whole_archive_flag_spec='`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience $wl-force_load,$conv\"; done; func_echo_all \"$new_convenience\"`'

 else
 whole_archive_flag_spec=''
 fi
 link_all_deplibs=yes
 allow_undefined_flag=$_lt_dar_allow_undefined
 case $cc_basename in
 ifort*|nagfor*) _lt_dar_can_shared=yes ;;
 *) _lt_dar_can_shared=$GCC ;;
 esac
 if test yes = "$_lt_dar_can_shared"; then
 output_verbose_link_cmd=func_echo_all
 archive_cmds="\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod$_lt_dsymutil"
 module_cmds="\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags$_lt_dsymutil"
 archive_expsym_cmds="sed 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod$_lt_dar_export_syms$_lt_dsymutil"
 module_expsym_cmds="sed -e 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags$_lt_dar_export_syms$_lt_dsymutil"

 else
 ld_shlibs=no
 fi

 ;;

 dgux*)
 archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags'
 hardcode_libdir_flag_spec='-L$libdir'
 hardcode_shlibpath_var=no
 ;;

 # FreeBSD 2.2.[012] allows us to include c++rt0.o to get C++ constructor
 # support. Future versions do this automatically, but an explicit c++rt0.o
 # does not break anything, and helps significantly (at the cost of a little
 # extra space).
 freebsd2.2*)
 archive_cmds='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags /usr/lib/c++rt0.o'
 hardcode_libdir_flag_spec='-R$libdir'
 hardcode_direct=yes
 hardcode_shlibpath_var=no
 ;;

 # Unfortunately, older versions of FreeBSD 2 do not have this feature.
 freebsd2.*)
 archive_cmds='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags'
 hardcode_direct=yes
 hardcode_minus_L=yes
 hardcode_shlibpath_var=no
 ;;

 # FreeBSD 3 and greater uses gcc -shared to do shared libraries.
 freebsd* | dragonfly*)
 archive_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags'
 hardcode_libdir_flag_spec='-R$libdir'
 hardcode_direct=yes
 hardcode_shlibpath_var=no
 ;;

 hpux9*)
 if test yes = "$GCC"; then
	archive_cmds='$RM $output_objdir/$soname~$CC -shared $pic_flag $wl+b wlinstall_libdir -o $output_objdir/$soname $libobjs $deplibs $compiler_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib'
 else
	archive_cmds='$RM $output_objdir/$soname~$LD -b +b $install_libdir -o $output_objdir/$soname $libobjs $deplibs $linker_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib'
 fi
 hardcode_libdir_flag_spec='$wl+b wllibdir'
 hardcode_libdir_separator=:
 hardcode_direct=yes

 # hardcode_minus_L: Not really in the search PATH,
 # but as the default location of the library.
 hardcode_minus_L=yes
 export_dynamic_flag_spec='$wl-E'
 ;;

 hpux10*)
 if test yes,no = "$GCC,$with_gnu_ld"; then
	archive_cmds='$CC -shared $pic_flag $wl+h wlsoname $wl+b wlinstall_libdir -o $lib $libobjs $deplibs $compiler_flags'
 else
	archive_cmds='$LD -b +h $soname +b $install_libdir -o $lib $libobjs $deplibs $linker_flags'
 fi
 if test no = "$with_gnu_ld"; then
	hardcode_libdir_flag_spec='$wl+b wllibdir'
	hardcode_libdir_separator=:
	hardcode_direct=yes
	hardcode_direct_absolute=yes
	export_dynamic_flag_spec='$wl-E'
	# hardcode_minus_L: Not really in the search PATH,
	# but as the default location of the library.
	hardcode_minus_L=yes
 fi
 ;;

 hpux11*)
 if test yes,no = "$GCC,$with_gnu_ld"; then
	case $host_cpu in
	hppa*64*)
	 archive_cmds='$CC -shared $wl+h wlsoname -o $lib $libobjs $deplibs $compiler_flags'
	 ;;
	ia64*)
	 archive_cmds='$CC -shared $pic_flag $wl+h wlsoname $wl+nodefaultrpath -o $lib $libobjs $deplibs $compiler_flags'
	 ;;
	*)
	 archive_cmds='$CC -shared $pic_flag $wl+h wlsoname $wl+b wlinstall_libdir -o $lib $libobjs $deplibs $compiler_flags'
	 ;;
	esac
 else
	case $host_cpu in
	hppa*64*)
	 archive_cmds='$CC -b $wl+h wlsoname -o $lib $libobjs $deplibs $compiler_flags'
	 ;;
	ia64*)
	 archive_cmds='$CC -b $wl+h wlsoname $wl+nodefaultrpath -o $lib $libobjs $deplibs $compiler_flags'
	 ;;
	*)

	 # Older versions of the 11.00 compiler do not understand -b yet
	 # (HP92453-01 A.11.01.20 doesn't, HP92453-01 B.11.X.35175-35176.GP does)
	 { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $CC understands -b" >&5
$as_echo_n "checking if $CC understands -b... " >&6; }
if ${lt_cv_prog_compiler__b+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_prog_compiler__b=no
 save_LDFLAGS=$LDFLAGS
 LDFLAGS="$LDFLAGS -b"
 echo "$lt_simple_link_test_code" > conftest.$ac_ext
 if (eval $ac_link 2>conftest.err) && test -s conftest$ac_exeext; then
 # The linker can only warn and ignore the option if not recognized
 # So say no if there are warnings
 if test -s conftest.err; then
 # Append any errors to the config.log.
 cat conftest.err 1>&5
 $ECHO "$_lt_linker_boilerplate" | $SED '/^$/d' > conftest.exp
 $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
 if diff conftest.exp conftest.er2 >/dev/null; then
 lt_cv_prog_compiler__b=yes
 fi
 else
 lt_cv_prog_compiler__b=yes
 fi
 fi
 $RM -r conftest*
 LDFLAGS=$save_LDFLAGS

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler__b" >&5
$as_echo "$lt_cv_prog_compiler__b" >&6; }

if test yes = "$lt_cv_prog_compiler__b"; then
 archive_cmds='$CC -b $wl+h wlsoname $wl+b wlinstall_libdir -o $lib $libobjs $deplibs $compiler_flags'
else
 archive_cmds='$LD -b +h $soname +b $install_libdir -o $lib $libobjs $deplibs $linker_flags'
fi

	 ;;
	esac
 fi
 if test no = "$with_gnu_ld"; then
	hardcode_libdir_flag_spec='$wl+b wllibdir'
	hardcode_libdir_separator=:

	case $host_cpu in
	hppa*64*|ia64*)
	 hardcode_direct=no
	 hardcode_shlibpath_var=no
	 ;;
	*)
	 hardcode_direct=yes
	 hardcode_direct_absolute=yes
	 export_dynamic_flag_spec='$wl-E'

	 # hardcode_minus_L: Not really in the search PATH,
	 # but as the default location of the library.
	 hardcode_minus_L=yes
	 ;;
	esac
 fi
 ;;

 irix5* | irix6* | nonstopux*)
 if test yes = "$GCC"; then
	archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname `test -n "$verstring" && func_echo_all "$wl-set_version wlverstring"` $wl-update_registry wloutput_objdir/so_locations -o $lib'
	# Try to use the -exported_symbol ld option, if it does not
	# work, assume that -exports_file does not work either and
	# implicitly export all symbols.
	# This should be the same for all languages, so no per-tag cache variable.
	{ $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the $host_os linker accepts -exported_symbol" >&5
$as_echo_n "checking whether the $host_os linker accepts -exported_symbol... " >&6; }
if ${lt_cv_irix_exported_symbol+:} false; then :
 $as_echo_n "(cached) " >&6
else
 save_LDFLAGS=$LDFLAGS
	 LDFLAGS="$LDFLAGS -shared $wl-exported_symbol ${wl}foo $wl-update_registry $wl/dev/null"
	 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
int foo (void) { return 0; }
_ACEOF
if ac_fn_c_try_link "$LINENO"; then :
 lt_cv_irix_exported_symbol=yes
else
 lt_cv_irix_exported_symbol=no
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
 LDFLAGS=$save_LDFLAGS
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_irix_exported_symbol" >&5
$as_echo "$lt_cv_irix_exported_symbol" >&6; }
	if test yes = "$lt_cv_irix_exported_symbol"; then
 archive_expsym_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname `test -n "$verstring" && func_echo_all "$wl-set_version wlverstring"` $wl-update_registry wloutput_objdir/so_locations $wl-exports_file wlexport_symbols -o $lib'
	fi
	link_all_deplibs=no
 else
	archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib'
	archive_expsym_cmds='$CC -shared $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -exports_file $export_symbols -o $lib'
 fi
 archive_cmds_need_lc='no'
 hardcode_libdir_flag_spec='$wl-rpath wllibdir'
 hardcode_libdir_separator=:
 inherit_rpath=yes
 link_all_deplibs=yes
 ;;

 linux*)
 case $cc_basename in
 tcc*)
	# Fabrice Bellard et al's Tiny C Compiler
	ld_shlibs=yes
	archive_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags'
	;;
 esac
 ;;

 netbsd* | netbsdelf*-gnu)
 if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then
	archive_cmds='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags' # a.out
 else
	archive_cmds='$LD -shared -o $lib $libobjs $deplibs $linker_flags' # ELF
 fi
 hardcode_libdir_flag_spec='-R$libdir'
 hardcode_direct=yes
 hardcode_shlibpath_var=no
 ;;

 newsos6)
 archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags'
 hardcode_direct=yes
 hardcode_libdir_flag_spec='$wl-rpath wllibdir'
 hardcode_libdir_separator=:
 hardcode_shlibpath_var=no
 ;;

 nto | *qnx*)
 ;;

 openbsd* | bitrig*)
 if test -f /usr/libexec/ld.so; then
	hardcode_direct=yes
	hardcode_shlibpath_var=no
	hardcode_direct_absolute=yes
	if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then
	 archive_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags'
	 archive_expsym_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags $wl-retain-symbols-file,$export_symbols'
	 hardcode_libdir_flag_spec='$wl-rpath,$libdir'
	 export_dynamic_flag_spec='$wl-E'
	else
	 archive_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags'
	 hardcode_libdir_flag_spec='$wl-rpath,$libdir'
	fi
 else
	ld_shlibs=no
 fi
 ;;

 os2*)
 hardcode_libdir_flag_spec='-L$libdir'
 hardcode_minus_L=yes
 allow_undefined_flag=unsupported
 shrext_cmds=.dll
 archive_cmds='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~
	$ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~
	$ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~
	$ECHO EXPORTS >> $output_objdir/$libname.def~
	emxexp $libobjs | $SED /"_DLL_InitTerm"/d >> $output_objdir/$libname.def~
	$CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~
	emximp -o $lib $output_objdir/$libname.def'
 archive_expsym_cmds='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~
	$ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~
	$ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~
	$ECHO EXPORTS >> $output_objdir/$libname.def~
	prefix_cmds="$SED"~
	if test EXPORTS = "`$SED 1q $export_symbols`"; then
	 prefix_cmds="$prefix_cmds -e 1d";
	fi~
	prefix_cmds="$prefix_cmds -e \"s/^\(.*\)$/_\1/g\""~
	cat $export_symbols | $prefix_cmds >> $output_objdir/$libname.def~
	$CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~
	emximp -o $lib $output_objdir/$libname.def'
 old_archive_From_new_cmds='emximp -o $output_objdir/${libname}_dll.a $output_objdir/$libname.def'
 enable_shared_with_static_runtimes=yes
 ;;

 osf3*)
 if test yes = "$GCC"; then
	allow_undefined_flag=' $wl-expect_unresolved $wl*'
	archive_cmds='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname `test -n "$verstring" && func_echo_all "$wl-set_version wlverstring"` $wl-update_registry wloutput_objdir/so_locations -o $lib'
 else
	allow_undefined_flag=' -expect_unresolved *'
	archive_cmds='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib'
 fi
 archive_cmds_need_lc='no'
 hardcode_libdir_flag_spec='$wl-rpath wllibdir'
 hardcode_libdir_separator=:
 ;;

 osf4* | osf5*)	# as osf3* with the addition of -msym flag
 if test yes = "$GCC"; then
	allow_undefined_flag=' $wl-expect_unresolved $wl*'
	archive_cmds='$CC -shared$allow_undefined_flag $pic_flag $libobjs $deplibs $compiler_flags $wl-msym $wl-soname wlsoname `test -n "$verstring" && func_echo_all "$wl-set_version wlverstring"` $wl-update_registry wloutput_objdir/so_locations -o $lib'
	hardcode_libdir_flag_spec='$wl-rpath wllibdir'
 else
	allow_undefined_flag=' -expect_unresolved *'
	archive_cmds='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags -msym -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib'
	archive_expsym_cmds='for i in `cat $export_symbols`; do printf "%s %s\\n" -exported_symbol "\$i" >> $lib.exp; done; printf "%s\\n" "-hidden">> $lib.exp~
 $CC -shared$allow_undefined_flag $wl-input wllib.exp $compiler_flags $libobjs $deplibs -soname $soname `test -n "$verstring" && $ECHO "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib~$RM $lib.exp'

	# Both c and cxx compiler support -rpath directly
	hardcode_libdir_flag_spec='-rpath $libdir'
 fi
 archive_cmds_need_lc='no'
 hardcode_libdir_separator=:
 ;;

 solaris*)
 no_undefined_flag=' -z defs'
 if test yes = "$GCC"; then
	wlarc='$wl'
	archive_cmds='$CC -shared $pic_flag $wl-z ${wl}text $wl-h wlsoname -o $lib $libobjs $deplibs $compiler_flags'
	archive_expsym_cmds='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~
 $CC -shared $pic_flag $wl-z ${wl}text $wl-M wllib.exp $wl-h wlsoname -o $lib $libobjs $deplibs $compiler_flags~$RM $lib.exp'
 else
	case `$CC -V 2>&1` in
	"Compilers 5.0")
	 wlarc=''
	 archive_cmds='$LD -G$allow_undefined_flag -h $soname -o $lib $libobjs $deplibs $linker_flags'
	 archive_expsym_cmds='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~
 $LD -G$allow_undefined_flag -M $lib.exp -h $soname -o $lib $libobjs $deplibs $linker_flags~$RM $lib.exp'
	 ;;
	*)
	 wlarc='$wl'
	 archive_cmds='$CC -G$allow_undefined_flag -h $soname -o $lib $libobjs $deplibs $compiler_flags'
	 archive_expsym_cmds='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~
 $CC -G$allow_undefined_flag -M $lib.exp -h $soname -o $lib $libobjs $deplibs $compiler_flags~$RM $lib.exp'
	 ;;
	esac
 fi
 hardcode_libdir_flag_spec='-R$libdir'
 hardcode_shlibpath_var=no
 case $host_os in
 solaris2.[0-5] | solaris2.[0-5].*) ;;
 *)
	# The compiler driver will combine and reorder linker options,
	# but understands '-z linker_flag'. GCC discards it without '$wl',
	# but is careful enough not to reorder.
	# Supported since Solaris 2.6 (maybe 2.5.1?)
	if test yes = "$GCC"; then
	 whole_archive_flag_spec='$wl-z ${wl}allextract$convenience $wl-z ${wl}defaultextract'
	else
	 whole_archive_flag_spec='-z allextract$convenience -z defaultextract'
	fi
	;;
 esac
 link_all_deplibs=yes
 ;;

 sunos4*)
 if test sequent = "$host_vendor"; then
	# Use $CC to link under sequent, because it throws in some extra .o
	# files that make .init and .fini sections work.
	archive_cmds='$CC -G $wl-h $soname -o $lib $libobjs $deplibs $compiler_flags'
 else
	archive_cmds='$LD -assert pure-text -Bstatic -o $lib $libobjs $deplibs $linker_flags'
 fi
 hardcode_libdir_flag_spec='-L$libdir'
 hardcode_direct=yes
 hardcode_minus_L=yes
 hardcode_shlibpath_var=no
 ;;

 sysv4)
 case $host_vendor in
	sni)
	 archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags'
	 hardcode_direct=yes # is this really true???
	;;
	siemens)
	 ## LD is ld it makes a PLAMLIB
	 ## CC just makes a GrossModule.
	 archive_cmds='$LD -G -o $lib $libobjs $deplibs $linker_flags'
	 reload_cmds='$CC -r -o $output$reload_objs'
	 hardcode_direct=no
 ;;
	motorola)
	 archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags'
	 hardcode_direct=no #Motorola manual says yes, but my tests say they lie
	;;
 esac
 runpath_var='LD_RUN_PATH'
 hardcode_shlibpath_var=no
 ;;

 sysv4.3*)
 archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags'
 hardcode_shlibpath_var=no
 export_dynamic_flag_spec='-Bexport'
 ;;

 sysv4*MP*)
 if test -d /usr/nec; then
	archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags'
	hardcode_shlibpath_var=no
	runpath_var=LD_RUN_PATH
	hardcode_runpath_var=yes
	ld_shlibs=yes
 fi
 ;;

 sysv4*uw2* | sysv5OpenUNIX* | sysv5UnixWare7.[01].[10]* | unixware7* | sco3.2v5.0.[024]*)
 no_undefined_flag='$wl-z,text'
 archive_cmds_need_lc=no
 hardcode_shlibpath_var=no
 runpath_var='LD_RUN_PATH'

 if test yes = "$GCC"; then
	archive_cmds='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	archive_expsym_cmds='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
 else
	archive_cmds='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	archive_expsym_cmds='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
 fi
 ;;

 sysv5* | sco3.2v5* | sco5v6*)
 # Note: We CANNOT use -z defs as we might desire, because we do not
 # link with -lc, and that would cause any symbols used from libc to
 # always be unresolved, which means just about no library would
 # ever link correctly. If we're not using GNU ld we use -z text
 # though, which does catch some bad symbols but isn't as heavy-handed
 # as -z defs.
 no_undefined_flag='$wl-z,text'
 allow_undefined_flag='$wl-z,nodefs'
 archive_cmds_need_lc=no
 hardcode_shlibpath_var=no
 hardcode_libdir_flag_spec='$wl-R,$libdir'
 hardcode_libdir_separator=':'
 link_all_deplibs=yes
 export_dynamic_flag_spec='$wl-Bexport'
 runpath_var='LD_RUN_PATH'

 if test yes = "$GCC"; then
	archive_cmds='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	archive_expsym_cmds='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
 else
	archive_cmds='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	archive_expsym_cmds='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
 fi
 ;;

 uts4*)
 archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags'
 hardcode_libdir_flag_spec='-L$libdir'
 hardcode_shlibpath_var=no
 ;;

 *)
 ld_shlibs=no
 ;;
 esac

 if test sni = "$host_vendor"; then
 case $host in
 sysv4 | sysv4.2uw2* | sysv4.3* | sysv5*)
	export_dynamic_flag_spec='$wl-Blargedynsym'
	;;
 esac
 fi
 fi

{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ld_shlibs" >&5
$as_echo "$ld_shlibs" >&6; }
test no = "$ld_shlibs" && can_build_shared=no

with_gnu_ld=$with_gnu_ld

#
Do we need to explicitly link libc?
#
case "x$archive_cmds_need_lc" in
x|xyes)
 # Assume -lc should be added
 archive_cmds_need_lc=yes

 if test yes,yes = "$GCC,$enable_shared"; then
 case $archive_cmds in
 '~')
 # FIXME: we may have to deal with multi-command sequences.
 ;;
 '$CC '*)
 # Test whether the compiler implicitly links with -lc since on some
 # systems, -lgcc has to come before -lc. If gcc already passes -lc
 # to ld, don't add -lc before -lgcc.
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether -lc should be explicitly linked in" >&5
$as_echo_n "checking whether -lc should be explicitly linked in... " >&6; }
if ${lt_cv_archive_cmds_need_lc+:} false; then :
 $as_echo_n "(cached) " >&6
else
 $RM conftest*
	echo "$lt_simple_compile_test_code" > conftest.$ac_ext

	if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5
 (eval $ac_compile) 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; } 2>conftest.err; then
	 soname=conftest
	 lib=conftest
	 libobjs=conftest.$ac_objext
	 deplibs=
	 wl=$lt_prog_compiler_wl
	 pic_flag=$lt_prog_compiler_pic
	 compiler_flags=-v
	 linker_flags=-v
	 verstring=
	 output_objdir=.
	 libname=conftest
	 lt_save_allow_undefined_flag=$allow_undefined_flag
	 allow_undefined_flag=
	 if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$archive_cmds 2\>\&1 \| $GREP \" -lc \" \>/dev/null 2\>\&1\""; } >&5
 (eval $archive_cmds 2\>\&1 \| $GREP \" -lc \" \>/dev/null 2\>\&1) 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }
	 then
	 lt_cv_archive_cmds_need_lc=no
	 else
	 lt_cv_archive_cmds_need_lc=yes
	 fi
	 allow_undefined_flag=$lt_save_allow_undefined_flag
	else
	 cat conftest.err 1>&5
	fi
	$RM conftest*

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_archive_cmds_need_lc" >&5
$as_echo "$lt_cv_archive_cmds_need_lc" >&6; }
 archive_cmds_need_lc=$lt_cv_archive_cmds_need_lc
 ;;
 esac
 fi
 ;;
esac

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking dynamic linker characteristics" >&5
$as_echo_n "checking dynamic linker characteristics... " >&6; }

if test yes = "$GCC"; then
 case $host_os in
 darwin*) lt_awk_arg='/^libraries:/,/LR/' ;;
 *) lt_awk_arg='/^libraries:/' ;;
 esac
 case $host_os in
 mingw* | cegcc*) lt_sed_strip_eq='s|=\([A-Za-z]:\)|\1|g' ;;
 *) lt_sed_strip_eq='s|=/|/|g' ;;
 esac
 lt_search_path_spec=`$CC -print-search-dirs | awk $lt_awk_arg | $SED -e "s/^libraries://" -e $lt_sed_strip_eq`
 case $lt_search_path_spec in
 \;)
 # if the path contains ";" then we assume it to be the separator
 # otherwise default to the standard path separator (i.e. ":") - it is
 # assumed that no part of a normal pathname contains ";" but that should
 # okay in the real world where ";" in dirpaths is itself problematic.
 lt_search_path_spec=`$ECHO "$lt_search_path_spec" | $SED 's/;/ /g'`
 ;;
 *)
 lt_search_path_spec=`$ECHO "$lt_search_path_spec" | $SED "s/$PATH_SEPARATOR/ /g"`
 ;;
 esac
 # Ok, now we have the path, separated by spaces, we can step through it
 # and add multilib dir if necessary...
 lt_tmp_lt_search_path_spec=
 lt_multi_os_dir=/`$CC $CPPFLAGS $CFLAGS $LDFLAGS -print-multi-os-directory 2>/dev/null`
 # ...but if some path component already ends with the multilib dir we assume
 # that all is fine and trust -print-search-dirs as is (GCC 4.2? or newer).
 case "$lt_multi_os_dir; $lt_search_path_spec " in
 "/; "* | "/.; "* | "/./; "* | *"$lt_multi_os_dir "* | *"$lt_multi_os_dir/ "*)
 lt_multi_os_dir=
 ;;
 esac
 for lt_sys_path in $lt_search_path_spec; do
 if test -d "lt_sys_pathlt_multi_os_dir"; then
 lt_tmp_lt_search_path_spec="$lt_tmp_lt_search_path_spec lt_sys_pathlt_multi_os_dir"
 elif test -n "$lt_multi_os_dir"; then
 test -d "$lt_sys_path" && \
	lt_tmp_lt_search_path_spec="$lt_tmp_lt_search_path_spec $lt_sys_path"
 fi
 done
 lt_search_path_spec=`$ECHO "$lt_tmp_lt_search_path_spec" | awk '
BEGIN {RS = " "; FS = "/|\n";} {
 lt_foo = "";
 lt_count = 0;
 for (lt_i = NF; lt_i > 0; lt_i--) {
 if ($lt_i != "" && $lt_i != ".") {
 if ($lt_i == "..") {
 lt_count++;
 } else {
 if (lt_count == 0) {
 lt_foo = "/" $lt_i lt_foo;
 } else {
 lt_count--;
 }
 }
 }
 }
 if (lt_foo != "") { lt_freq[lt_foo]++; }
 if (lt_freq[lt_foo] == 1) { print lt_foo; }
}'`
 # AWK program above erroneously prepends '/' to C:/dos/paths
 # for these hosts.
 case $host_os in
 mingw* | cegcc*) lt_search_path_spec=`$ECHO "$lt_search_path_spec" |\
 $SED 's|/\([A-Za-z]:\)|\1|g'` ;;
 esac
 sys_lib_search_path_spec=`$ECHO "$lt_search_path_spec" | $lt_NL2SP`
else
 sys_lib_search_path_spec="/lib /usr/lib /usr/local/lib"
fi
library_names_spec=
libname_spec='lib$name'
soname_spec=
shrext_cmds=.so
postinstall_cmds=
postuninstall_cmds=
finish_cmds=
finish_eval=
shlibpath_var=
shlibpath_overrides_runpath=unknown
version_type=none
dynamic_linker="$host_os ld.so"
sys_lib_dlsearch_path_spec="/lib /usr/lib"
need_lib_prefix=unknown
hardcode_into_libs=no

when you set need_version to no, make sure it does not cause -set_version
flags to be left without arguments
need_version=unknown

case $host_os in
aix3*)
 version_type=linux # correct to gnu/linux during the next big refactor
 library_names_spec='$libname$release$shared_ext$versuffix $libname.a'
 shlibpath_var=LIBPATH

 # AIX 3 has no versioning support, so we append a major version to the name.
 soname_spec='$libname$release$shared_ext$major'
 ;;

aix[4-9]*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 hardcode_into_libs=yes
 if test ia64 = "$host_cpu"; then
 # AIX 5 supports IA64
 library_names_spec='$libname$release$shared_ext$major $libname$release$shared_ext$versuffix $libname$shared_ext'
 shlibpath_var=LD_LIBRARY_PATH
 else
 # With GCC up to 2.95.x, collect2 would create an import file
 # for dependence libraries. The import file would start with
 # the line '#! .'. This would cause the generated library to
 # depend on '.', always an invalid library. This was fixed in
 # development snapshots of GCC prior to 3.0.
 case $host_os in
 aix4 | aix4.[01] | aix4.[01].*)
 if { echo '#if __GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 97)'
	 echo ' yes '
	 echo '#endif'; } | $CC -E - | $GREP yes > /dev/null; then
	:
 else
	can_build_shared=no
 fi
 ;;
 esac
 # Using Import Files as archive members, it is possible to support
 # filename-based versioning of shared library archives on AIX. While
 # this would work for both with and without runtime linking, it will
 # prevent static linking of such archives. So we do filename-based
 # shared library versioning with .so extension only, which is used
 # when both runtime linking and shared linking is enabled.
 # Unfortunately, runtime linking may impact performance, so we do
 # not want this to be the default eventually. Also, we use the
 # versioned .so libs for executables only if there is the -brtl
 # linker flag in LDFLAGS as well, or --with-aix-soname=svr4 only.
 # To allow for filename-based versioning support, we need to create
 # libNAME.so.V as an archive file, containing:
 # *) an Import File, referring to the versioned filename of the
 # archive as well as the shared archive member, telling the
 # bitwidth (32 or 64) of that shared object, and providing the
 # list of exported symbols of that shared object, eventually
 # decorated with the 'weak' keyword
 # *) the shared object with the F_LOADONLY flag set, to really avoid
 # it being seen by the linker.
 # At run time we better use the real file rather than another symlink,
 # but for link time we create the symlink libNAME.so -> libNAME.so.V

 case $with_aix_soname,$aix_use_runtimelinking in
 # AIX (on Power*) has no versioning support, so currently we cannot hardcode correct
 # soname into executable. Probably we can add versioning support to
 # collect2, so additional links can be useful in future.
 aix,yes) # traditional libtool
 dynamic_linker='AIX unversionable lib.so'
 # If using run time linking (on AIX 4.2 or later) use lib<name>.so
 # instead of lib<name>.a to let people know that these are not
 # typical AIX shared libraries.
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 ;;
 aix,no) # traditional AIX only
 dynamic_linker='AIX lib.a(lib.so.V)'
 # We preserve .a as extension for shared libraries through AIX4.2
 # and later when we are not doing run time linking.
 library_names_spec='$libname$release.a $libname.a'
 soname_spec='$libname$release$shared_ext$major'
 ;;
 svr4,*) # full svr4 only
 dynamic_linker="AIX lib.so.V($shared_archive_member_spec.o)"
 library_names_spec='$libname$release$shared_ext$major $libname$shared_ext'
 # We do not specify a path in Import Files, so LIBPATH fires.
 shlibpath_overrides_runpath=yes
 ;;
 *,yes) # both, prefer svr4
 dynamic_linker="AIX lib.so.V($shared_archive_member_spec.o), lib.a(lib.so.V)"
 library_names_spec='$libname$release$shared_ext$major $libname$shared_ext'
 # unpreferred sharedlib libNAME.a needs extra handling
 postinstall_cmds='test -n "$linkname" || linkname="$realname"~func_stripname "" ".so" "$linkname"~$install_shared_prog "$dir/$func_stripname_result.$libext" "$destdir/$func_stripname_result.$libext"~test -z "$tstripme" || test -z "$striplib" || $striplib "$destdir/$func_stripname_result.$libext"'
 postuninstall_cmds='for n in $library_names $old_library; do :; done~func_stripname "" ".so" "$n"~test "$func_stripname_result" = "$n" || func_append rmfiles " $odir/$func_stripname_result.$libext"'
 # We do not specify a path in Import Files, so LIBPATH fires.
 shlibpath_overrides_runpath=yes
 ;;
 *,no) # both, prefer aix
 dynamic_linker="AIX lib.a(lib.so.V), lib.so.V($shared_archive_member_spec.o)"
 library_names_spec='$libname$release.a $libname.a'
 soname_spec='$libname$release$shared_ext$major'
 # unpreferred sharedlib libNAME.so.V and symlink libNAME.so need extra handling
 postinstall_cmds='test -z "$dlname" || $install_shared_prog $dir/$dlname $destdir/$dlname~test -z "$tstripme" || test -z "$striplib" || $striplib $destdir/$dlname~test -n "$linkname" || linkname=$realname~func_stripname "" ".a" "$linkname"~(cd "$destdir" && $LN_S -f $dlname $func_stripname_result.so)'
 postuninstall_cmds='test -z "$dlname" || func_append rmfiles " $odir/$dlname"~for n in $old_library $library_names; do :; done~func_stripname "" ".a" "$n"~func_append rmfiles " $odir/$func_stripname_result.so"'
 ;;
 esac
 shlibpath_var=LIBPATH
 fi
 ;;

amigaos*)
 case $host_cpu in
 powerpc)
 # Since July 2007 AmigaOS4 officially supports .so libraries.
 # When compiling the executable, add -use-dynld -Lsobjs: to the compileline.
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 ;;
 m68k)
 library_names_spec='$libname.ixlibrary $libname.a'
 # Create ${libname}_ixlibrary.a entries in /sys/libs.
 finish_eval='for lib in `ls $libdir/*.ixlibrary 2>/dev/null`; do libname=`func_echo_all "$lib" | $SED '\''s%^.*/\([^/]*\)\.ixlibrary$%\1%'\''`; $RM /sys/libs/${libname}_ixlibrary.a; $show "cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a"; cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a || exit 1; done'
 ;;
 esac
 ;;

beos*)
 library_names_spec='$libname$shared_ext'
 dynamic_linker="$host_os ld.so"
 shlibpath_var=LIBRARY_PATH
 ;;

bsdi[45]*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 finish_cmds='PATH="\$PATH:/sbin" ldconfig $libdir'
 shlibpath_var=LD_LIBRARY_PATH
 sys_lib_search_path_spec="/shlib /usr/lib /usr/X11/lib /usr/contrib/lib /lib /usr/local/lib"
 sys_lib_dlsearch_path_spec="/shlib /usr/lib /usr/local/lib"
 # the default ld.so.conf also contains /usr/contrib/lib and
 # /usr/X11R6/lib (/usr/X11 is a link to /usr/X11R6), but let us allow
 # libtool to hard-code these into programs
 ;;

cygwin* | mingw* | pw32* | cegcc*)
 version_type=windows
 shrext_cmds=.dll
 need_version=no
 need_lib_prefix=no

 case $GCC,$cc_basename in
 yes,*)
 # gcc
 library_names_spec='$libname.dll.a'
 # DLL is installed to $(libdir)/../bin by postinstall_cmds
 postinstall_cmds='base_file=`basename \$file`~
 dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; echo \$dlname'\''`~
 dldir=$destdir/`dirname \$dlpath`~
 test -d \$dldir || mkdir -p \$dldir~
 $install_prog $dir/$dlname \$dldir/$dlname~
 chmod a+x \$dldir/$dlname~
 if test -n '\''$stripme'\'' && test -n '\''$striplib'\''; then
 eval '\''$striplib \$dldir/$dlname'\'' || exit \$?;
 fi'
 postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~
 dlpath=$dir/\$dldll~
 $RM \$dlpath'
 shlibpath_overrides_runpath=yes

 case $host_os in
 cygwin*)
 # Cygwin DLLs use 'cyg' prefix rather than 'lib'
 soname_spec='`echo $libname | sed -e 's/^lib/cyg/'``echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext'

 sys_lib_search_path_spec="$sys_lib_search_path_spec /usr/lib/w32api"
 ;;
 mingw* | cegcc*)
 # MinGW DLLs use traditional 'lib' prefix
 soname_spec='$libname`echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext'
 ;;
 pw32*)
 # pw32 DLLs use 'pw' prefix rather than 'lib'
 library_names_spec='`echo $libname | sed -e 's/^lib/pw/'``echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext'
 ;;
 esac
 dynamic_linker='Win32 ld.exe'
 ;;

 ,cl)
 # Native MSVC
 libname_spec='$name'
 soname_spec='$libname`echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext'
 library_names_spec='$libname.dll.lib'

 case $build_os in
 mingw*)
 sys_lib_search_path_spec=
 lt_save_ifs=$IFS
 IFS=';'
 for lt_path in $LIB
 do
 IFS=$lt_save_ifs
 # Let DOS variable expansion print the short 8.3 style file name.
 lt_path=`cd "$lt_path" 2>/dev/null && cmd //C "for %i in (".") do @echo %~si"`
 sys_lib_search_path_spec="$sys_lib_search_path_spec $lt_path"
 done
 IFS=$lt_save_ifs
 # Convert to MSYS style.
 sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | sed -e 's|\\\\|/|g' -e 's| \\([a-zA-Z]\\):| /\\1|g' -e 's|^ ||'`
 ;;
 cygwin*)
 # Convert to unix form, then to dos form, then back to unix form
 # but this time dos style (no spaces!) so that the unix form looks
 # like /cygdrive/c/PROGRA~1:/cygdr...
 sys_lib_search_path_spec=`cygpath --path --unix "$LIB"`
 sys_lib_search_path_spec=`cygpath --path --dos "$sys_lib_search_path_spec" 2>/dev/null`
 sys_lib_search_path_spec=`cygpath --path --unix "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"`
 ;;
 *)
 sys_lib_search_path_spec=$LIB
 if $ECHO "$sys_lib_search_path_spec" | $GREP ';[c-zC-Z]:/' >/dev/null; then
 # It is most probably a Windows format PATH.
 sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e 's/;/ /g'`
 else
 sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"`
 fi
 # FIXME: find the short name or the path components, as spaces are
 # common. (e.g. "Program Files" -> "PROGRA~1")
 ;;
 esac

 # DLL is installed to $(libdir)/../bin by postinstall_cmds
 postinstall_cmds='base_file=`basename \$file`~
 dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; echo \$dlname'\''`~
 dldir=$destdir/`dirname \$dlpath`~
 test -d \$dldir || mkdir -p \$dldir~
 $install_prog $dir/$dlname \$dldir/$dlname'
 postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~
 dlpath=$dir/\$dldll~
 $RM \$dlpath'
 shlibpath_overrides_runpath=yes
 dynamic_linker='Win32 link.exe'
 ;;

 *)
 # Assume MSVC wrapper
 library_names_spec='$libname`echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext $libname.lib'
 dynamic_linker='Win32 ld.exe'
 ;;
 esac
 # FIXME: first we should search . and the directory the executable is in
 shlibpath_var=PATH
 ;;

darwin* | rhapsody*)
 dynamic_linker="$host_os dyld"
 version_type=darwin
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$major$shared_ext $libname$shared_ext'
 soname_spec='$libname$release$major$shared_ext'
 shlibpath_overrides_runpath=yes
 shlibpath_var=DYLD_LIBRARY_PATH
 shrext_cmds='`test .$module = .yes && echo .so || echo .dylib`'

 sys_lib_search_path_spec="$sys_lib_search_path_spec /usr/local/lib"
 sys_lib_dlsearch_path_spec='/usr/local/lib /lib /usr/lib'
 ;;

dgux*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 ;;

freebsd* | dragonfly*)
 # DragonFly does not have aout. When/if they implement a new
 # versioning mechanism, adjust this.
 if test -x /usr/bin/objformat; then
 objformat=`/usr/bin/objformat`
 else
 case $host_os in
 freebsd[23].*) objformat=aout ;;
 *) objformat=elf ;;
 esac
 fi
 version_type=freebsd-$objformat
 case $version_type in
 freebsd-elf*)
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 need_version=no
 need_lib_prefix=no
 ;;
 freebsd-*)
 library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix'
 need_version=yes
 ;;
 esac
 shlibpath_var=LD_LIBRARY_PATH
 case $host_os in
 freebsd2.*)
 shlibpath_overrides_runpath=yes
 ;;
 freebsd3.[01]* | freebsdelf3.[01]*)
 shlibpath_overrides_runpath=yes
 hardcode_into_libs=yes
 ;;
 freebsd3.[2-9]* | freebsdelf3.[2-9]* | \
 freebsd4.[0-5] | freebsdelf4.[0-5] | freebsd4.1.1 | freebsdelf4.1.1)
 shlibpath_overrides_runpath=no
 hardcode_into_libs=yes
 ;;
 *) # from 4.6 on, and DragonFly
 shlibpath_overrides_runpath=yes
 hardcode_into_libs=yes
 ;;
 esac
 ;;

haiku*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 dynamic_linker="$host_os runtime_loader"
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LIBRARY_PATH
 shlibpath_overrides_runpath=no
 sys_lib_dlsearch_path_spec='/boot/home/config/lib /boot/common/lib /boot/system/lib'
 hardcode_into_libs=yes
 ;;

hpux9* | hpux10* | hpux11*)
 # Give a soname corresponding to the major version so that dld.sl refuses to
 # link against other versions.
 version_type=sunos
 need_lib_prefix=no
 need_version=no
 case $host_cpu in
 ia64*)
 shrext_cmds='.so'
 hardcode_into_libs=yes
 dynamic_linker="$host_os dld.so"
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes # Unless +noenvvar is specified.
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 if test 32 = "$HPUX_IA64_MODE"; then
 sys_lib_search_path_spec="/usr/lib/hpux32 /usr/local/lib/hpux32 /usr/local/lib"
 sys_lib_dlsearch_path_spec=/usr/lib/hpux32
 else
 sys_lib_search_path_spec="/usr/lib/hpux64 /usr/local/lib/hpux64"
 sys_lib_dlsearch_path_spec=/usr/lib/hpux64
 fi
 ;;
 hppa*64*)
 shrext_cmds='.sl'
 hardcode_into_libs=yes
 dynamic_linker="$host_os dld.sl"
 shlibpath_var=LD_LIBRARY_PATH # How should we handle SHLIB_PATH
 shlibpath_overrides_runpath=yes # Unless +noenvvar is specified.
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 sys_lib_search_path_spec="/usr/lib/pa20_64 /usr/ccs/lib/pa20_64"
 sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec
 ;;
 *)
 shrext_cmds='.sl'
 dynamic_linker="$host_os dld.sl"
 shlibpath_var=SHLIB_PATH
 shlibpath_overrides_runpath=no # +s is required to enable SHLIB_PATH
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 ;;
 esac
 # HP-UX runs *really* slowly unless shared libraries are mode 555, ...
 postinstall_cmds='chmod 555 $lib'
 # or fails outright, so override atomically:
 install_override_mode=555
 ;;

interix[3-9]*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 dynamic_linker='Interix 3.x ld.so.1 (PE, like ELF)'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=no
 hardcode_into_libs=yes
 ;;

irix5* | irix6* | nonstopux*)
 case $host_os in
 nonstopux*) version_type=nonstopux ;;
 *)
	if test yes = "$lt_cv_prog_gnu_ld"; then
		version_type=linux # correct to gnu/linux during the next big refactor
	else
		version_type=irix
	fi ;;
 esac
 need_lib_prefix=no
 need_version=no
 soname_spec='$libname$release$shared_ext$major'
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$release$shared_ext $libname$shared_ext'
 case $host_os in
 irix5* | nonstopux*)
 libsuff= shlibsuff=
 ;;
 *)
 case $LD in # libtool.m4 will add one of these switches to LD
 -32|"-32 "|*-melf32bsmip|*"-melf32bsmip ")
 libsuff= shlibsuff= libmagic=32-bit;;
 -n32|"-n32 "|*-melf32bmipn32|*"-melf32bmipn32 ")
 libsuff=32 shlibsuff=N32 libmagic=N32;;
 -64|"-64 "|*-melf64bmip|*"-melf64bmip ")
 libsuff=64 shlibsuff=64 libmagic=64-bit;;
 *) libsuff= shlibsuff= libmagic=never-match;;
 esac
 ;;
 esac
 shlibpath_var=LD_LIBRARY${shlibsuff}_PATH
 shlibpath_overrides_runpath=no
 sys_lib_search_path_spec="/usr/lib$libsuff /lib$libsuff /usr/local/lib$libsuff"
 sys_lib_dlsearch_path_spec="/usr/lib$libsuff /lib$libsuff"
 hardcode_into_libs=yes
 ;;

No shared lib support for Linux oldld, aout, or coff.
linux*oldld* | linux*aout* | linux*coff*)
 dynamic_linker=no
 ;;

linux*android*)
 version_type=none # Android doesn't support versioned libraries.
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext'
 soname_spec='$libname$release$shared_ext'
 finish_cmds=
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes

 # This implies no fast_install, which is unacceptable.
 # Some rework will be needed to allow for fast_install
 # before this can be enabled.
 hardcode_into_libs=yes

 dynamic_linker='Android linker'
 # Don't embed -rpath directories since the linker doesn't support them.
 hardcode_libdir_flag_spec='-L$libdir'
 ;;

This must be glibc/ELF.
linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 finish_cmds='PATH="\$PATH:/sbin" ldconfig -n $libdir'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=no

 # Some binutils ld are patched to set DT_RUNPATH
 if ${lt_cv_shlibpath_overrides_runpath+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_shlibpath_overrides_runpath=no
 save_LDFLAGS=$LDFLAGS
 save_libdir=$libdir
 eval "libdir=/foo; wl=\"$lt_prog_compiler_wl\"; \
	 LDFLAGS=\"\$LDFLAGS $hardcode_libdir_flag_spec\""
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_link "$LINENO"; then :
 if ($OBJDUMP -p conftest$ac_exeext) 2>/dev/null | grep "RUNPATH.*$libdir" >/dev/null; then :
 lt_cv_shlibpath_overrides_runpath=yes
fi
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
 LDFLAGS=$save_LDFLAGS
 libdir=$save_libdir

fi

 shlibpath_overrides_runpath=$lt_cv_shlibpath_overrides_runpath

 # This implies no fast_install, which is unacceptable.
 # Some rework will be needed to allow for fast_install
 # before this can be enabled.
 hardcode_into_libs=yes

 # Ideally, we could use ldconfig to report *all* directores which are
 # searched for libraries, however this is still not possible. Aside from not
 # being certain /sbin/ldconfig is available, command
 # 'ldconfig -N -X -v | grep ^/' on 64bit Fedora does not report /usr/lib64,
 # even though it is searched at run-time. Try to do the best guess by
 # appending ld.so.conf contents (and includes) to the search path.
 if test -f /etc/ld.so.conf; then
 lt_ld_extra=`awk '/^include / { system(sprintf("cd /etc; cat %s 2>/dev/null", \$2)); skip = 1; } { if (!skip) print \$0; skip = 0; }' < /etc/ld.so.conf | $SED -e 's/#.*//;/^[]*hwcap[]/d;s/[:,]/ /g;s/=[^=]*$//;s/=[^=]* / /g;s/"//g;/^$/d' | tr '\n' ' '`
 sys_lib_dlsearch_path_spec="/lib /usr/lib $lt_ld_extra"
 fi

 # We used to test for /lib/ld.so.1 and disable shared libraries on
 # powerpc, because MkLinux only supported shared libraries with the
 # GNU dynamic linker. Since this was broken with cross compilers,
 # most powerpc-linux boxes support dynamic linking these days and
 # people can always --disable-shared, the test was removed, and we
 # assume the GNU/Linux dynamic linker is in use.
 dynamic_linker='GNU/Linux ld.so'
 ;;

netbsdelf*-gnu)
 version_type=linux
 need_lib_prefix=no
 need_version=no
 library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major ${libname}${shared_ext}'
 soname_spec='${libname}${release}${shared_ext}$major'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=no
 hardcode_into_libs=yes
 dynamic_linker='NetBSD ld.elf_so'
 ;;

netbsd*)
 version_type=sunos
 need_lib_prefix=no
 need_version=no
 if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then
 library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix'
 finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir'
 dynamic_linker='NetBSD (a.out) ld.so'
 else
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 dynamic_linker='NetBSD ld.elf_so'
 fi
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 hardcode_into_libs=yes
 ;;

newsos6)
 version_type=linux # correct to gnu/linux during the next big refactor
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 ;;

nto | *qnx*)
 version_type=qnx
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=no
 hardcode_into_libs=yes
 dynamic_linker='ldqnx.so'
 ;;

openbsd* | bitrig*)
 version_type=sunos
 sys_lib_dlsearch_path_spec=/usr/lib
 need_lib_prefix=no
 if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then
 need_version=no
 else
 need_version=yes
 fi
 library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix'
 finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 ;;

os2*)
 libname_spec='$name'
 version_type=windows
 shrext_cmds=.dll
 need_version=no
 need_lib_prefix=no
 # OS/2 can only load a DLL with a base name of 8 characters or less.
 soname_spec='`test -n "$os2dllname" && libname="$os2dllname";
 v=$($ECHO $release$versuffix | tr -d .-);
 n=$($ECHO $libname | cut -b -$((8 - ${#v})) | tr . _);
 $ECHO nv`$shared_ext'
 library_names_spec='${libname}_dll.$libext'
 dynamic_linker='OS/2 ld.exe'
 shlibpath_var=BEGINLIBPATH
 sys_lib_search_path_spec="/lib /usr/lib /usr/local/lib"
 sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec
 postinstall_cmds='base_file=`basename \$file`~
 dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; $ECHO \$dlname'\''`~
 dldir=$destdir/`dirname \$dlpath`~
 test -d \$dldir || mkdir -p \$dldir~
 $install_prog $dir/$dlname \$dldir/$dlname~
 chmod a+x \$dldir/$dlname~
 if test -n '\''$stripme'\'' && test -n '\''$striplib'\''; then
 eval '\''$striplib \$dldir/$dlname'\'' || exit \$?;
 fi'
 postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; $ECHO \$dlname'\''`~
 dlpath=$dir/\$dldll~
 $RM \$dlpath'
 ;;

osf3* | osf4* | osf5*)
 version_type=osf
 need_lib_prefix=no
 need_version=no
 soname_spec='$libname$release$shared_ext$major'
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 shlibpath_var=LD_LIBRARY_PATH
 sys_lib_search_path_spec="/usr/shlib /usr/ccs/lib /usr/lib/cmplrs/cc /usr/lib /usr/local/lib /var/shlib"
 sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec
 ;;

rdos*)
 dynamic_linker=no
 ;;

solaris*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 hardcode_into_libs=yes
 # ldd complains unless libraries are executable
 postinstall_cmds='chmod +x $lib'
 ;;

sunos4*)
 version_type=sunos
 library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix'
 finish_cmds='PATH="\$PATH:/usr/etc" ldconfig $libdir'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 if test yes = "$with_gnu_ld"; then
 need_lib_prefix=no
 fi
 need_version=yes
 ;;

sysv4 | sysv4.3*)
 version_type=linux # correct to gnu/linux during the next big refactor
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 case $host_vendor in
 sni)
 shlibpath_overrides_runpath=no
 need_lib_prefix=no
 runpath_var=LD_RUN_PATH
 ;;
 siemens)
 need_lib_prefix=no
 ;;
 motorola)
 need_lib_prefix=no
 need_version=no
 shlibpath_overrides_runpath=no
 sys_lib_search_path_spec='/lib /usr/lib /usr/ccs/lib'
 ;;
 esac
 ;;

sysv4*MP*)
 if test -d /usr/nec; then
 version_type=linux # correct to gnu/linux during the next big refactor
 library_names_spec='$libname$shared_ext.$versuffix $libname$shared_ext.$major $libname$shared_ext'
 soname_spec='$libname$shared_ext.$major'
 shlibpath_var=LD_LIBRARY_PATH
 fi
 ;;

sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*)
 version_type=sco
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 hardcode_into_libs=yes
 if test yes = "$with_gnu_ld"; then
 sys_lib_search_path_spec='/usr/local/lib /usr/gnu/lib /usr/ccs/lib /usr/lib /lib'
 else
 sys_lib_search_path_spec='/usr/ccs/lib /usr/lib'
 case $host_os in
 sco3.2v5*)
 sys_lib_search_path_spec="$sys_lib_search_path_spec /lib"
	;;
 esac
 fi
 sys_lib_dlsearch_path_spec='/usr/lib'
 ;;

tpf*)
 # TPF is a cross-target only. Preferred cross-host = GNU/Linux.
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=no
 hardcode_into_libs=yes
 ;;

uts4*)
 version_type=linux # correct to gnu/linux during the next big refactor
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 ;;

*)
 dynamic_linker=no
 ;;
esac
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $dynamic_linker" >&5
$as_echo "$dynamic_linker" >&6; }
test no = "$dynamic_linker" && can_build_shared=no

variables_saved_for_relink="PATH $shlibpath_var $runpath_var"
if test yes = "$GCC"; then
 variables_saved_for_relink="$variables_saved_for_relink GCC_EXEC_PREFIX COMPILER_PATH LIBRARY_PATH"
fi

if test set = "${lt_cv_sys_lib_search_path_spec+set}"; then
 sys_lib_search_path_spec=$lt_cv_sys_lib_search_path_spec
fi

if test set = "${lt_cv_sys_lib_dlsearch_path_spec+set}"; then
 sys_lib_dlsearch_path_spec=$lt_cv_sys_lib_dlsearch_path_spec
fi

remember unaugmented sys_lib_dlsearch_path content for libtool script decls...
configure_time_dlsearch_path=$sys_lib_dlsearch_path_spec

... but it needs LT_SYS_LIBRARY_PATH munging for other configure-time code
func_munge_path_list sys_lib_dlsearch_path_spec "$LT_SYS_LIBRARY_PATH"

to be used as default LT_SYS_LIBRARY_PATH value in generated libtool
configure_time_lt_sys_library_path=$LT_SYS_LIBRARY_PATH

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to hardcode library paths into programs" >&5
$as_echo_n "checking how to hardcode library paths into programs... " >&6; }
hardcode_action=
if test -n "$hardcode_libdir_flag_spec" ||
 test -n "$runpath_var" ||
 test yes = "$hardcode_automatic"; then

 # We can hardcode non-existent directories.
 if test no != "$hardcode_direct" &&
 # If the only mechanism to avoid hardcoding is shlibpath_var, we
 # have to relink, otherwise we might link with an installed library
 # when we should be linking with a yet-to-be-installed one
 ## test no != "$_LT_TAGVAR(hardcode_shlibpath_var,)" &&
 test no != "$hardcode_minus_L"; then
 # Linking always hardcodes the temporary library directory.
 hardcode_action=relink
 else
 # We can link without hardcoding, and we can hardcode nonexisting dirs.
 hardcode_action=immediate
 fi
else
 # We cannot hardcode anything, or else we can only hardcode existing
 # directories.
 hardcode_action=unsupported
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $hardcode_action" >&5
$as_echo "$hardcode_action" >&6; }

if test relink = "$hardcode_action" ||
 test yes = "$inherit_rpath"; then
 # Fast installation is not supported
 enable_fast_install=no
elif test yes = "$shlibpath_overrides_runpath" ||
 test no = "$enable_shared"; then
 # Fast installation is not necessary
 enable_fast_install=needless
fi

 if test yes != "$enable_dlopen"; then
 enable_dlopen=unknown
 enable_dlopen_self=unknown
 enable_dlopen_self_static=unknown
else
 lt_cv_dlopen=no
 lt_cv_dlopen_libs=

 case $host_os in
 beos*)
 lt_cv_dlopen=load_add_on
 lt_cv_dlopen_libs=
 lt_cv_dlopen_self=yes
 ;;

 mingw* | pw32* | cegcc*)
 lt_cv_dlopen=LoadLibrary
 lt_cv_dlopen_libs=
 ;;

 cygwin*)
 lt_cv_dlopen=dlopen
 lt_cv_dlopen_libs=
 ;;

 darwin*)
 # if libdl is installed we need to link against it
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for dlopen in -ldl" >&5
$as_echo_n "checking for dlopen in -ldl... " >&6; }
if ${ac_cv_lib_dl_dlopen+:} false; then :
 $as_echo_n "(cached) " >&6
else
 ac_check_lib_save_LIBS=$LIBS
LIBS="-ldl $LIBS"
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

/* Override any GCC internal prototype to avoid an error.
 Use char because int might match the return type of a GCC
 builtin and then its argument prototype would still apply. */
#ifdef __cplusplus
extern "C"
#endif
char dlopen ();
int
main ()
{
return dlopen ();
 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_link "$LINENO"; then :
 ac_cv_lib_dl_dlopen=yes
else
 ac_cv_lib_dl_dlopen=no
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
LIBS=$ac_check_lib_save_LIBS
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_dl_dlopen" >&5
$as_echo "$ac_cv_lib_dl_dlopen" >&6; }
if test "x$ac_cv_lib_dl_dlopen" = xyes; then :
 lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-ldl
else

 lt_cv_dlopen=dyld
 lt_cv_dlopen_libs=
 lt_cv_dlopen_self=yes

fi

 ;;

 tpf*)
 # Don't try to run any link tests for TPF. We know it's impossible
 # because TPF is a cross-compiler, and we know how we open DSOs.
 lt_cv_dlopen=dlopen
 lt_cv_dlopen_libs=
 lt_cv_dlopen_self=no
 ;;

 *)
 ac_fn_c_check_func "$LINENO" "shl_load" "ac_cv_func_shl_load"
if test "x$ac_cv_func_shl_load" = xyes; then :
 lt_cv_dlopen=shl_load
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for shl_load in -ldld" >&5
$as_echo_n "checking for shl_load in -ldld... " >&6; }
if ${ac_cv_lib_dld_shl_load+:} false; then :
 $as_echo_n "(cached) " >&6
else
 ac_check_lib_save_LIBS=$LIBS
LIBS="-ldld $LIBS"
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

/* Override any GCC internal prototype to avoid an error.
 Use char because int might match the return type of a GCC
 builtin and then its argument prototype would still apply. */
#ifdef __cplusplus
extern "C"
#endif
char shl_load ();
int
main ()
{
return shl_load ();
 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_link "$LINENO"; then :
 ac_cv_lib_dld_shl_load=yes
else
 ac_cv_lib_dld_shl_load=no
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
LIBS=$ac_check_lib_save_LIBS
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_dld_shl_load" >&5
$as_echo "$ac_cv_lib_dld_shl_load" >&6; }
if test "x$ac_cv_lib_dld_shl_load" = xyes; then :
 lt_cv_dlopen=shl_load lt_cv_dlopen_libs=-ldld
else
 ac_fn_c_check_func "$LINENO" "dlopen" "ac_cv_func_dlopen"
if test "x$ac_cv_func_dlopen" = xyes; then :
 lt_cv_dlopen=dlopen
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for dlopen in -ldl" >&5
$as_echo_n "checking for dlopen in -ldl... " >&6; }
if ${ac_cv_lib_dl_dlopen+:} false; then :
 $as_echo_n "(cached) " >&6
else
 ac_check_lib_save_LIBS=$LIBS
LIBS="-ldl $LIBS"
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

/* Override any GCC internal prototype to avoid an error.
 Use char because int might match the return type of a GCC
 builtin and then its argument prototype would still apply. */
#ifdef __cplusplus
extern "C"
#endif
char dlopen ();
int
main ()
{
return dlopen ();
 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_link "$LINENO"; then :
 ac_cv_lib_dl_dlopen=yes
else
 ac_cv_lib_dl_dlopen=no
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
LIBS=$ac_check_lib_save_LIBS
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_dl_dlopen" >&5
$as_echo "$ac_cv_lib_dl_dlopen" >&6; }
if test "x$ac_cv_lib_dl_dlopen" = xyes; then :
 lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-ldl
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for dlopen in -lsvld" >&5
$as_echo_n "checking for dlopen in -lsvld... " >&6; }
if ${ac_cv_lib_svld_dlopen+:} false; then :
 $as_echo_n "(cached) " >&6
else
 ac_check_lib_save_LIBS=$LIBS
LIBS="-lsvld $LIBS"
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

/* Override any GCC internal prototype to avoid an error.
 Use char because int might match the return type of a GCC
 builtin and then its argument prototype would still apply. */
#ifdef __cplusplus
extern "C"
#endif
char dlopen ();
int
main ()
{
return dlopen ();
 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_link "$LINENO"; then :
 ac_cv_lib_svld_dlopen=yes
else
 ac_cv_lib_svld_dlopen=no
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
LIBS=$ac_check_lib_save_LIBS
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_svld_dlopen" >&5
$as_echo "$ac_cv_lib_svld_dlopen" >&6; }
if test "x$ac_cv_lib_svld_dlopen" = xyes; then :
 lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-lsvld
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for dld_link in -ldld" >&5
$as_echo_n "checking for dld_link in -ldld... " >&6; }
if ${ac_cv_lib_dld_dld_link+:} false; then :
 $as_echo_n "(cached) " >&6
else
 ac_check_lib_save_LIBS=$LIBS
LIBS="-ldld $LIBS"
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

/* Override any GCC internal prototype to avoid an error.
 Use char because int might match the return type of a GCC
 builtin and then its argument prototype would still apply. */
#ifdef __cplusplus
extern "C"
#endif
char dld_link ();
int
main ()
{
return dld_link ();
 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_link "$LINENO"; then :
 ac_cv_lib_dld_dld_link=yes
else
 ac_cv_lib_dld_dld_link=no
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
LIBS=$ac_check_lib_save_LIBS
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_dld_dld_link" >&5
$as_echo "$ac_cv_lib_dld_dld_link" >&6; }
if test "x$ac_cv_lib_dld_dld_link" = xyes; then :
 lt_cv_dlopen=dld_link lt_cv_dlopen_libs=-ldld
fi

fi

fi

fi

fi

fi

 ;;
 esac

 if test no = "$lt_cv_dlopen"; then
 enable_dlopen=no
 else
 enable_dlopen=yes
 fi

 case $lt_cv_dlopen in
 dlopen)
 save_CPPFLAGS=$CPPFLAGS
 test yes = "$ac_cv_header_dlfcn_h" && CPPFLAGS="$CPPFLAGS -DHAVE_DLFCN_H"

 save_LDFLAGS=$LDFLAGS
 wl=$lt_prog_compiler_wl eval LDFLAGS=\"\$LDFLAGS $export_dynamic_flag_spec\"

 save_LIBS=$LIBS
 LIBS="$lt_cv_dlopen_libs $LIBS"

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether a program can dlopen itself" >&5
$as_echo_n "checking whether a program can dlopen itself... " >&6; }
if ${lt_cv_dlopen_self+:} false; then :
 $as_echo_n "(cached) " >&6
else
 	 if test yes = "$cross_compiling"; then :
 lt_cv_dlopen_self=cross
else
 lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
 lt_status=$lt_dlunknown
 cat > conftest.$ac_ext <<_LT_EOF
#line $LINENO "configure"
#include "confdefs.h"

#if HAVE_DLFCN_H
#include <dlfcn.h>
#endif

#include <stdio.h>

#ifdef RTLD_GLOBAL
# define LT_DLGLOBAL		RTLD_GLOBAL
#else
ifdef DL_GLOBAL
# define LT_DLGLOBAL		DL_GLOBAL
else
# define LT_DLGLOBAL		0
endif
#endif

/* We may have to define LT_DLLAZY_OR_NOW in the command line if we
 find out it does not work in some platform. */
#ifndef LT_DLLAZY_OR_NOW
ifdef RTLD_LAZY
# define LT_DLLAZY_OR_NOW		RTLD_LAZY
else
ifdef DL_LAZY
# define LT_DLLAZY_OR_NOW		DL_LAZY
else
ifdef RTLD_NOW
# define LT_DLLAZY_OR_NOW	RTLD_NOW
else
ifdef DL_NOW
# define LT_DLLAZY_OR_NOW	DL_NOW
else
# define LT_DLLAZY_OR_NOW	0
endif
endif
endif
endif
#endif

/* When -fvisibility=hidden is used, assume the code has been annotated
 correspondingly for the symbols needed. */
#if defined __GNUC__ && (((__GNUC__ == 3) && (__GNUC_MINOR__ >= 3)) || (__GNUC__ > 3))
int fnord () __attribute__((visibility("default")));
#endif

int fnord () { return 42; }
int main ()
{
 void *self = dlopen (0, LT_DLGLOBAL|LT_DLLAZY_OR_NOW);
 int status = $lt_dlunknown;

 if (self)
 {
 if (dlsym (self,"fnord")) status = $lt_dlno_uscore;
 else
 {
	 if (dlsym(self,"_fnord")) status = $lt_dlneed_uscore;
 else puts (dlerror ());
	}
 /* dlclose (self); */
 }
 else
 puts (dlerror ());

 return status;
}
_LT_EOF
 if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_link\""; } >&5
 (eval $ac_link) 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; } && test -s "conftest$ac_exeext" 2>/dev/null; then
 (./conftest; exit;) >&5 2>/dev/null
 lt_status=$?
 case x$lt_status in
 x$lt_dlno_uscore) lt_cv_dlopen_self=yes ;;
 x$lt_dlneed_uscore) lt_cv_dlopen_self=yes ;;
 x$lt_dlunknown|x*) lt_cv_dlopen_self=no ;;
 esac
 else :
 # compilation failed
 lt_cv_dlopen_self=no
 fi
fi
rm -fr conftest*

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_dlopen_self" >&5
$as_echo "$lt_cv_dlopen_self" >&6; }

 if test yes = "$lt_cv_dlopen_self"; then
 wl=$lt_prog_compiler_wl eval LDFLAGS=\"\$LDFLAGS $lt_prog_compiler_static\"
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether a statically linked program can dlopen itself" >&5
$as_echo_n "checking whether a statically linked program can dlopen itself... " >&6; }
if ${lt_cv_dlopen_self_static+:} false; then :
 $as_echo_n "(cached) " >&6
else
 	 if test yes = "$cross_compiling"; then :
 lt_cv_dlopen_self_static=cross
else
 lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
 lt_status=$lt_dlunknown
 cat > conftest.$ac_ext <<_LT_EOF
#line $LINENO "configure"
#include "confdefs.h"

#if HAVE_DLFCN_H
#include <dlfcn.h>
#endif

#include <stdio.h>

#ifdef RTLD_GLOBAL
# define LT_DLGLOBAL		RTLD_GLOBAL
#else
ifdef DL_GLOBAL
# define LT_DLGLOBAL		DL_GLOBAL
else
# define LT_DLGLOBAL		0
endif
#endif

/* We may have to define LT_DLLAZY_OR_NOW in the command line if we
 find out it does not work in some platform. */
#ifndef LT_DLLAZY_OR_NOW
ifdef RTLD_LAZY
# define LT_DLLAZY_OR_NOW		RTLD_LAZY
else
ifdef DL_LAZY
# define LT_DLLAZY_OR_NOW		DL_LAZY
else
ifdef RTLD_NOW
# define LT_DLLAZY_OR_NOW	RTLD_NOW
else
ifdef DL_NOW
# define LT_DLLAZY_OR_NOW	DL_NOW
else
# define LT_DLLAZY_OR_NOW	0
endif
endif
endif
endif
#endif

/* When -fvisibility=hidden is used, assume the code has been annotated
 correspondingly for the symbols needed. */
#if defined __GNUC__ && (((__GNUC__ == 3) && (__GNUC_MINOR__ >= 3)) || (__GNUC__ > 3))
int fnord () __attribute__((visibility("default")));
#endif

int fnord () { return 42; }
int main ()
{
 void *self = dlopen (0, LT_DLGLOBAL|LT_DLLAZY_OR_NOW);
 int status = $lt_dlunknown;

 if (self)
 {
 if (dlsym (self,"fnord")) status = $lt_dlno_uscore;
 else
 {
	 if (dlsym(self,"_fnord")) status = $lt_dlneed_uscore;
 else puts (dlerror ());
	}
 /* dlclose (self); */
 }
 else
 puts (dlerror ());

 return status;
}
_LT_EOF
 if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_link\""; } >&5
 (eval $ac_link) 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; } && test -s "conftest$ac_exeext" 2>/dev/null; then
 (./conftest; exit;) >&5 2>/dev/null
 lt_status=$?
 case x$lt_status in
 x$lt_dlno_uscore) lt_cv_dlopen_self_static=yes ;;
 x$lt_dlneed_uscore) lt_cv_dlopen_self_static=yes ;;
 x$lt_dlunknown|x*) lt_cv_dlopen_self_static=no ;;
 esac
 else :
 # compilation failed
 lt_cv_dlopen_self_static=no
 fi
fi
rm -fr conftest*

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_dlopen_self_static" >&5
$as_echo "$lt_cv_dlopen_self_static" >&6; }
 fi

 CPPFLAGS=$save_CPPFLAGS
 LDFLAGS=$save_LDFLAGS
 LIBS=$save_LIBS
 ;;
 esac

 case $lt_cv_dlopen_self in
 yes|no) enable_dlopen_self=$lt_cv_dlopen_self ;;
 *) enable_dlopen_self=unknown ;;
 esac

 case $lt_cv_dlopen_self_static in
 yes|no) enable_dlopen_self_static=$lt_cv_dlopen_self_static ;;
 *) enable_dlopen_self_static=unknown ;;
 esac
fi

striplib=
old_striplib=
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking whether stripping libraries is possible" >&5
$as_echo_n "checking whether stripping libraries is possible... " >&6; }
if test -n "$STRIP" && $STRIP -V 2>&1 | $GREP "GNU strip" >/dev/null; then
 test -z "$old_striplib" && old_striplib="$STRIP --strip-debug"
 test -z "$striplib" && striplib="$STRIP --strip-unneeded"
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5
$as_echo "yes" >&6; }
else
FIXME - insert some real tests, host_os isn't really good enough
 case $host_os in
 darwin*)
 if test -n "$STRIP"; then
 striplib="$STRIP -x"
 old_striplib="$STRIP -S"
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5
$as_echo "yes" >&6; }
 else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
 fi
 ;;
 *)
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
 ;;
 esac
fi

 # Report what library types will actually be built
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking if libtool supports shared libraries" >&5
$as_echo_n "checking if libtool supports shared libraries... " >&6; }
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $can_build_shared" >&5
$as_echo "$can_build_shared" >&6; }

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether to build shared libraries" >&5
$as_echo_n "checking whether to build shared libraries... " >&6; }
 test no = "$can_build_shared" && enable_shared=no

 # On AIX, shared libraries and static libraries use the same namespace, and
 # are all built from PIC.
 case $host_os in
 aix3*)
 test yes = "$enable_shared" && enable_static=no
 if test -n "$RANLIB"; then
 archive_cmds="$archive_cmds~\$RANLIB \$lib"
 postinstall_cmds='$RANLIB $lib'
 fi
 ;;

 aix[4-9]*)
 if test ia64 != "$host_cpu"; then
 case $enable_shared,$with_aix_soname,$aix_use_runtimelinking in
 yes,aix,yes) ;;			# shared object as lib.so file only
 yes,svr4,*) ;;			# shared object as lib.so archive member only
 yes,*) enable_static=no ;;	# shared object in lib.a archive as well
 esac
 fi
 ;;
 esac
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $enable_shared" >&5
$as_echo "$enable_shared" >&6; }

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether to build static libraries" >&5
$as_echo_n "checking whether to build static libraries... " >&6; }
 # Make sure either enable_shared or enable_static is yes.
 test yes = "$enable_shared" || enable_static=yes
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $enable_static" >&5
$as_echo "$enable_static" >&6; }

fi
ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu

CC=$lt_save_CC

 if test -n "$CXX" && (test no != "$CXX" &&
 ((test g++ = "$CXX" && `g++ -v >/dev/null 2>&1`) ||
 (test g++ != "$CXX"))); then
 ac_ext=cpp
ac_cpp='$CXXCPP $CPPFLAGS'
ac_compile='$CXX -c $CXXFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CXX -o conftest$ac_exeext $CXXFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_cxx_compiler_gnu
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking how to run the C++ preprocessor" >&5
$as_echo_n "checking how to run the C++ preprocessor... " >&6; }
if test -z "$CXXCPP"; then
 if ${ac_cv_prog_CXXCPP+:} false; then :
 $as_echo_n "(cached) " >&6
else
 # Double quotes because CXXCPP needs to be expanded
 for CXXCPP in "$CXX -E" "/lib/cpp"
 do
 ac_preproc_ok=false
for ac_cxx_preproc_warn_flag in '' yes
do
 # Use a header file that comes with gcc, so configuring glibc
 # with a fresh cross-compiler works.
 # Prefer <limits.h> to <assert.h> if __STDC__ is defined, since
 # <limits.h> exists even on freestanding compilers.
 # On the NeXT, cc -E runs the code through the compiler's parser,
 # not just through cpp. "Syntax error" is here to catch this case.
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#ifdef __STDC__
include <limits.h>
#else
include <assert.h>
#endif
		 Syntax error
_ACEOF
if ac_fn_cxx_try_cpp "$LINENO"; then :

else
 # Broken: fails on valid input.
continue
fi
rm -f conftest.err conftest.i conftest.$ac_ext

 # OK, works on sane cases. Now check whether nonexistent headers
 # can be detected and how.
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include <ac_nonexistent.h>
_ACEOF
if ac_fn_cxx_try_cpp "$LINENO"; then :
 # Broken: success on invalid input.
continue
else
 # Passes both tests.
ac_preproc_ok=:
break
fi
rm -f conftest.err conftest.i conftest.$ac_ext

done
Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped.
rm -f conftest.i conftest.err conftest.$ac_ext
if $ac_preproc_ok; then :
 break
fi

 done
 ac_cv_prog_CXXCPP=$CXXCPP

fi
 CXXCPP=$ac_cv_prog_CXXCPP
else
 ac_cv_prog_CXXCPP=$CXXCPP
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $CXXCPP" >&5
$as_echo "$CXXCPP" >&6; }
ac_preproc_ok=false
for ac_cxx_preproc_warn_flag in '' yes
do
 # Use a header file that comes with gcc, so configuring glibc
 # with a fresh cross-compiler works.
 # Prefer <limits.h> to <assert.h> if __STDC__ is defined, since
 # <limits.h> exists even on freestanding compilers.
 # On the NeXT, cc -E runs the code through the compiler's parser,
 # not just through cpp. "Syntax error" is here to catch this case.
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#ifdef __STDC__
include <limits.h>
#else
include <assert.h>
#endif
		 Syntax error
_ACEOF
if ac_fn_cxx_try_cpp "$LINENO"; then :

else
 # Broken: fails on valid input.
continue
fi
rm -f conftest.err conftest.i conftest.$ac_ext

 # OK, works on sane cases. Now check whether nonexistent headers
 # can be detected and how.
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include <ac_nonexistent.h>
_ACEOF
if ac_fn_cxx_try_cpp "$LINENO"; then :
 # Broken: success on invalid input.
continue
else
 # Passes both tests.
ac_preproc_ok=:
break
fi
rm -f conftest.err conftest.i conftest.$ac_ext

done
Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped.
rm -f conftest.i conftest.err conftest.$ac_ext
if $ac_preproc_ok; then :

else
 { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5
$as_echo "$as_me: error: in \`$ac_pwd':" >&2;}
as_fn_error $? "C++ preprocessor \"$CXXCPP\" fails sanity check
See \`config.log' for more details" "$LINENO" 5; }
fi

ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu

else
 _lt_caught_CXX_error=yes
fi

ac_ext=cpp
ac_cpp='$CXXCPP $CPPFLAGS'
ac_compile='$CXX -c $CXXFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CXX -o conftest$ac_exeext $CXXFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_cxx_compiler_gnu

archive_cmds_need_lc_CXX=no
allow_undefined_flag_CXX=
always_export_symbols_CXX=no
archive_expsym_cmds_CXX=
compiler_needs_object_CXX=no
export_dynamic_flag_spec_CXX=
hardcode_direct_CXX=no
hardcode_direct_absolute_CXX=no
hardcode_libdir_flag_spec_CXX=
hardcode_libdir_separator_CXX=
hardcode_minus_L_CXX=no
hardcode_shlibpath_var_CXX=unsupported
hardcode_automatic_CXX=no
inherit_rpath_CXX=no
module_cmds_CXX=
module_expsym_cmds_CXX=
link_all_deplibs_CXX=unknown
old_archive_cmds_CXX=$old_archive_cmds
reload_flag_CXX=$reload_flag
reload_cmds_CXX=$reload_cmds
no_undefined_flag_CXX=
whole_archive_flag_spec_CXX=
enable_shared_with_static_runtimes_CXX=no

Source file extension for C++ test sources.
ac_ext=cpp

Object file extension for compiled C++ test sources.
objext=o
objext_CXX=$objext

No sense in running all these tests if we already determined that
the CXX compiler isn't working. Some variables (like enable_shared)
are currently assumed to apply to all compilers on this platform,
and will be corrupted by setting them based on a non-working compiler.
if test yes != "$_lt_caught_CXX_error"; then
 # Code to be used in simple compile tests
 lt_simple_compile_test_code="int some_variable = 0;"

 # Code to be used in simple link tests
 lt_simple_link_test_code='int main(int, char *[]) { return(0); }'

 # ltmain only uses $CC for tagged configurations so make sure $CC is set.

If no C compiler was specified, use CC.
LTCC=${LTCC-"$CC"}

If no C compiler flags were specified, use CFLAGS.
LTCFLAGS=${LTCFLAGS-"$CFLAGS"}

Allow CC to be a program name with arguments.
compiler=$CC

 # save warnings/boilerplate of simple test code
 ac_outfile=conftest.$ac_objext
echo "$lt_simple_compile_test_code" >conftest.$ac_ext
eval "$ac_compile" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err
_lt_compiler_boilerplate=`cat conftest.err`
$RM conftest*

 ac_outfile=conftest.$ac_objext
echo "$lt_simple_link_test_code" >conftest.$ac_ext
eval "$ac_link" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err
_lt_linker_boilerplate=`cat conftest.err`
$RM -r conftest*

 # Allow CC to be a program name with arguments.
 lt_save_CC=$CC
 lt_save_CFLAGS=$CFLAGS
 lt_save_LD=$LD
 lt_save_GCC=$GCC
 GCC=$GXX
 lt_save_with_gnu_ld=$with_gnu_ld
 lt_save_path_LD=$lt_cv_path_LD
 if test -n "${lt_cv_prog_gnu_ldcxx+set}"; then
 lt_cv_prog_gnu_ld=$lt_cv_prog_gnu_ldcxx
 else
 $as_unset lt_cv_prog_gnu_ld
 fi
 if test -n "${lt_cv_path_LDCXX+set}"; then
 lt_cv_path_LD=$lt_cv_path_LDCXX
 else
 $as_unset lt_cv_path_LD
 fi
 test -z "${LDCXX+set}" || LD=$LDCXX
 CC=${CXX-"c++"}
 CFLAGS=$CXXFLAGS
 compiler=$CC
 compiler_CXX=$CC
 func_cc_basename $compiler
cc_basename=$func_cc_basename_result

 if test -n "$compiler"; then
 # We don't want -fno-exception when compiling C++ code, so set the
 # no_builtin_flag separately
 if test yes = "$GXX"; then
 lt_prog_compiler_no_builtin_flag_CXX=' -fno-builtin'
 else
 lt_prog_compiler_no_builtin_flag_CXX=
 fi

 if test yes = "$GXX"; then
 # Set up default GNU C++ configuration

Check whether --with-gnu-ld was given.
if test "${with_gnu_ld+set}" = set; then :
 withval=$with_gnu_ld; test no = "$withval" || with_gnu_ld=yes
else
 with_gnu_ld=no
fi

ac_prog=ld
if test yes = "$GCC"; then
 # Check if gcc -print-prog-name=ld gives a path.
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for ld used by $CC" >&5
$as_echo_n "checking for ld used by $CC... " >&6; }
 case $host in
 --mingw*)
 # gcc leaves a trailing carriage return, which upsets mingw
 ac_prog=`($CC -print-prog-name=ld) 2>&5 | tr -d '\015'` ;;
 *)
 ac_prog=`($CC -print-prog-name=ld) 2>&5` ;;
 esac
 case $ac_prog in
 # Accept absolute paths.
 [\\/]* | ?:[\\/]*)
 re_direlt='/[^/][^/]*/\.\./'
 # Canonicalize the pathname of ld
 ac_prog=`$ECHO "$ac_prog"| $SED 's%\\\\%/%g'`
 while $ECHO "$ac_prog" | $GREP "$re_direlt" > /dev/null 2>&1; do
	ac_prog=`$ECHO $ac_prog| $SED "s%$re_direlt%/%"`
 done
 test -z "$LD" && LD=$ac_prog
 ;;
 "")
 # If it fails, then pretend we aren't using GCC.
 ac_prog=ld
 ;;
 *)
 # If it is relative, then search for the first ld in PATH.
 with_gnu_ld=unknown
 ;;
 esac
elif test yes = "$with_gnu_ld"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for GNU ld" >&5
$as_echo_n "checking for GNU ld... " >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for non-GNU ld" >&5
$as_echo_n "checking for non-GNU ld... " >&6; }
fi
if ${lt_cv_path_LD+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -z "$LD"; then
 lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR
 for ac_dir in $PATH; do
 IFS=$lt_save_ifs
 test -z "$ac_dir" && ac_dir=.
 if test -f "$ac_dir/$ac_prog" || test -f "$ac_dir/$ac_prog$ac_exeext"; then
 lt_cv_path_LD=$ac_dir/$ac_prog
 # Check to see if the program is GNU ld. I'd rather use --version,
 # but apparently some variants of GNU ld only accept -v.
 # Break only if it was the GNU/non-GNU ld that we prefer.
 case `"$lt_cv_path_LD" -v 2>&1 </dev/null` in
 GNU | *'with BFD'*)
	test no != "$with_gnu_ld" && break
	;;
 *)
	test yes != "$with_gnu_ld" && break
	;;
 esac
 fi
 done
 IFS=$lt_save_ifs
else
 lt_cv_path_LD=$LD # Let the user override the test with a path.
fi
fi

LD=$lt_cv_path_LD
if test -n "$LD"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $LD" >&5
$as_echo "$LD" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi
test -z "$LD" && as_fn_error $? "no acceptable ld found in \$PATH" "$LINENO" 5
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking if the linker ($LD) is GNU ld" >&5
$as_echo_n "checking if the linker ($LD) is GNU ld... " >&6; }
if ${lt_cv_prog_gnu_ld+:} false; then :
 $as_echo_n "(cached) " >&6
else
 # I'd rather use --version here, but apparently some GNU lds only accept -v.
case `$LD -v 2>&1 </dev/null` in
GNU | *'with BFD'*)
 lt_cv_prog_gnu_ld=yes
 ;;
*)
 lt_cv_prog_gnu_ld=no
 ;;
esac
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_gnu_ld" >&5
$as_echo "$lt_cv_prog_gnu_ld" >&6; }
with_gnu_ld=$lt_cv_prog_gnu_ld

 # Check if GNU C++ uses GNU ld as the underlying linker, since the
 # archiving commands below assume that GNU ld is being used.
 if test yes = "$with_gnu_ld"; then
 archive_cmds_CXX='$CC $pic_flag -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname -o $lib'
 archive_expsym_cmds_CXX='$CC $pic_flag -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'

 hardcode_libdir_flag_spec_CXX='$wl-rpath wllibdir'
 export_dynamic_flag_spec_CXX='$wl--export-dynamic'

 # If archive_cmds runs LD, not CC, wlarc should be empty
 # XXX I think wlarc can be eliminated in ltcf-cxx, but I need to
 # investigate it a little bit more. (MM)
 wlarc='$wl'

 # ancient GNU ld didn't support --whole-archive et. al.
 if eval "`$CC -print-prog-name=ld` --help 2>&1" |
	 $GREP 'no-whole-archive' > /dev/null; then
 whole_archive_flag_spec_CXX=$wlarc'--whole-archive$convenience '$wlarc'--no-whole-archive'
 else
 whole_archive_flag_spec_CXX=
 fi
 else
 with_gnu_ld=no
 wlarc=

 # A generic and very simple default shared library creation
 # command for GNU C++ for the case where it uses the native
 # linker, instead of GNU ld. If possible, this setting should
 # overridden to take advantage of the native linker features on
 # the platform it is being used on.
 archive_cmds_CXX='$CC -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $lib'
 fi

 # Commands to make compiler produce verbose output that lists
 # what "hidden" libraries, object files and flags are used when
 # linking a shared library.
 output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"'

 else
 GXX=no
 with_gnu_ld=no
 wlarc=
 fi

 # PORTME: fill in a description of your system's C++ link characteristics
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the $compiler linker ($LD) supports shared libraries" >&5
$as_echo_n "checking whether the $compiler linker ($LD) supports shared libraries... " >&6; }
 ld_shlibs_CXX=yes
 case $host_os in
 aix3*)
 # FIXME: insert proper C++ library support
 ld_shlibs_CXX=no
 ;;
 aix[4-9]*)
 if test ia64 = "$host_cpu"; then
 # On IA64, the linker does run time linking by default, so we don't
 # have to do anything special.
 aix_use_runtimelinking=no
 exp_sym_flag='-Bexport'
 no_entry_flag=
 else
 aix_use_runtimelinking=no

 # Test if we are trying to use run time linking or normal
 # AIX style linking. If -brtl is somewhere in LDFLAGS, we
 # have runtime linking enabled, and use it for executables.
 # For shared libraries, we enable/disable runtime linking
 # depending on the kind of the shared library created -
 # when "with_aix_soname,aix_use_runtimelinking" is:
 # "aix,no" lib.a(lib.so.V) shared, rtl:no, for executables
 # "aix,yes" lib.so shared, rtl:yes, for executables
 # lib.a static archive
 # "both,no" lib.so.V(shr.o) shared, rtl:yes
 # lib.a(lib.so.V) shared, rtl:no, for executables
 # "both,yes" lib.so.V(shr.o) shared, rtl:yes, for executables
 # lib.a(lib.so.V) shared, rtl:no
 # "svr4,*" lib.so.V(shr.o) shared, rtl:yes, for executables
 # lib.a static archive
 case $host_os in aix4.[23]|aix4.[23].*|aix[5-9]*)
	 for ld_flag in $LDFLAGS; do
	 case $ld_flag in
	 -brtl)
	 aix_use_runtimelinking=yes
	 break
	 ;;
	 esac
	 done
	 if test svr4,no = "$with_aix_soname,$aix_use_runtimelinking"; then
	 # With aix-soname=svr4, we create the lib.so.V shared archives only,
	 # so we don't have lib.a shared libs to link our executables.
	 # We have to force runtime linking in this case.
	 aix_use_runtimelinking=yes
	 LDFLAGS="$LDFLAGS -Wl,-brtl"
	 fi
	 ;;
 esac

 exp_sym_flag='-bexport'
 no_entry_flag='-bnoentry'
 fi

 # When large executables or shared objects are built, AIX ld can
 # have problems creating the table of contents. If linking a library
 # or program results in "error TOC overflow" add -mminimal-toc to
 # CXXFLAGS/CFLAGS for g++/gcc. In the cases where that is not
 # enough to fix the problem, add -Wl,-bbigtoc to LDFLAGS.

 archive_cmds_CXX=''
 hardcode_direct_CXX=yes
 hardcode_direct_absolute_CXX=yes
 hardcode_libdir_separator_CXX=':'
 link_all_deplibs_CXX=yes
 file_list_spec_CXX='$wl-f,'
 case $with_aix_soname,$aix_use_runtimelinking in
 aix,*) ;;	# no import file
 svr4,* | *,yes) # use import file
 # The Import File defines what to hardcode.
 hardcode_direct_CXX=no
 hardcode_direct_absolute_CXX=no
 ;;
 esac

 if test yes = "$GXX"; then
 case $host_os in aix4.[012]|aix4.[012].*)
 # We only want to do this on AIX 4.2 and lower, the check
 # below for broken collect2 doesn't work under 4.3+
	 collect2name=`$CC -print-prog-name=collect2`
	 if test -f "$collect2name" &&
	 strings "$collect2name" | $GREP resolve_lib_name >/dev/null
	 then
	 # We have reworked collect2
	 :
	 else
	 # We have old collect2
	 hardcode_direct_CXX=unsupported
	 # It fails to find uninstalled libraries when the uninstalled
	 # path is not listed in the libpath. Setting hardcode_minus_L
	 # to unsupported forces relinking
	 hardcode_minus_L_CXX=yes
	 hardcode_libdir_flag_spec_CXX='-L$libdir'
	 hardcode_libdir_separator_CXX=
	 fi
 esac
 shared_flag='-shared'
	 if test yes = "$aix_use_runtimelinking"; then
	 shared_flag=$shared_flag' $wl-G'
	 fi
	 # Need to ensure runtime linking is disabled for the traditional
	 # shared library, or the linker may eventually find shared libraries
	 # /with/ Import File - we do not want to mix them.
	 shared_flag_aix='-shared'
	 shared_flag_svr4='-shared $wl-G'
 else
 # not using gcc
 if test ia64 = "$host_cpu"; then
	 # VisualAge C++, Version 5.5 for AIX 5L for IA-64, Beta 3 Release
	 # chokes on -Wl,-G. The following line is correct:
	 shared_flag='-G'
 else
	 if test yes = "$aix_use_runtimelinking"; then
	 shared_flag='$wl-G'
	 else
	 shared_flag='$wl-bM:SRE'
	 fi
	 shared_flag_aix='$wl-bM:SRE'
	 shared_flag_svr4='$wl-G'
 fi
 fi

 export_dynamic_flag_spec_CXX='$wl-bexpall'
 # It seems that -bexpall does not export symbols beginning with
 # underscore (_), so it is better to generate a list of symbols to
	# export.
 always_export_symbols_CXX=yes
	if test aix,yes = "$with_aix_soname,$aix_use_runtimelinking"; then
 # Warning - without using the other runtime loading flags (-brtl),
 # -berok will link without error, but may produce a broken library.
 # The "-G" linker flag allows undefined symbols.
 no_undefined_flag_CXX='-bernotok'
 # Determine the default libpath from the value encoded in an empty
 # executable.
 if test set = "${lt_cv_aix_libpath+set}"; then
 aix_libpath=$lt_cv_aix_libpath
else
 if ${lt_cv_aix_libpath__CXX+:} false; then :
 $as_echo_n "(cached) " >&6
else
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_cxx_try_link "$LINENO"; then :

 lt_aix_libpath_sed='
 /Import File Strings/,/^$/ {
	 /^0/ {
	 s/^0 *\([^]*\) *$/\1/
	 p
	 }
 }'
 lt_cv_aix_libpath__CXX=`dump -H conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"`
 # Check for a 64-bit object if we didn't find anything.
 if test -z "$lt_cv_aix_libpath__CXX"; then
 lt_cv_aix_libpath__CXX=`dump -HX64 conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"`
 fi
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
 if test -z "$lt_cv_aix_libpath__CXX"; then
 lt_cv_aix_libpath__CXX=/usr/lib:/lib
 fi

fi

 aix_libpath=$lt_cv_aix_libpath__CXX
fi

 hardcode_libdir_flag_spec_CXX='$wl-blibpath:$libdir:'"$aix_libpath"

 archive_expsym_cmds_CXX='$CC -o $output_objdir/$soname $libobjs $deplibs wl'no_entry_flag' $compiler_flags `if test -n "$allow_undefined_flag"; then func_echo_all "wlallow_undefined_flag"; else :; fi` wl'exp_sym_flag:\$export_symbols' '$shared_flag
 else
 if test ia64 = "$host_cpu"; then
	 hardcode_libdir_flag_spec_CXX='$wl-R $libdir:/usr/lib:/lib'
	 allow_undefined_flag_CXX="-z nodefs"
	 archive_expsym_cmds_CXX="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs '"\$wl$no_entry_flag"' $compiler_flags wlallow_undefined_flag '"\wlexp_sym_flag:\$export_symbols"
 else
	 # Determine the default libpath from the value encoded in an
	 # empty executable.
	 if test set = "${lt_cv_aix_libpath+set}"; then
 aix_libpath=$lt_cv_aix_libpath
else
 if ${lt_cv_aix_libpath__CXX+:} false; then :
 $as_echo_n "(cached) " >&6
else
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_cxx_try_link "$LINENO"; then :

 lt_aix_libpath_sed='
 /Import File Strings/,/^$/ {
	 /^0/ {
	 s/^0 *\([^]*\) *$/\1/
	 p
	 }
 }'
 lt_cv_aix_libpath__CXX=`dump -H conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"`
 # Check for a 64-bit object if we didn't find anything.
 if test -z "$lt_cv_aix_libpath__CXX"; then
 lt_cv_aix_libpath__CXX=`dump -HX64 conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"`
 fi
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
 if test -z "$lt_cv_aix_libpath__CXX"; then
 lt_cv_aix_libpath__CXX=/usr/lib:/lib
 fi

fi

 aix_libpath=$lt_cv_aix_libpath__CXX
fi

	 hardcode_libdir_flag_spec_CXX='$wl-blibpath:$libdir:'"$aix_libpath"
	 # Warning - without using the other run time loading flags,
	 # -berok will link without error, but may produce a broken library.
	 no_undefined_flag_CXX=' $wl-bernotok'
	 allow_undefined_flag_CXX=' $wl-berok'
	 if test yes = "$with_gnu_ld"; then
	 # We only use this code for GNU lds that support --whole-archive.
	 whole_archive_flag_spec_CXX='$wl--whole-archive$convenience $wl--no-whole-archive'
	 else
	 # Exported symbols can be pulled into shared objects from archives
	 whole_archive_flag_spec_CXX='$convenience'
	 fi
	 archive_cmds_need_lc_CXX=yes
	 archive_expsym_cmds_CXX='$RM -r $output_objdir/$realname.d~$MKDIR $output_objdir/$realname.d'
	 # -brtl affects multiple linker settings, -berok does not and is overridden later
	 compiler_flags_filtered='`func_echo_all "$compiler_flags " | $SED -e "s%-brtl\\([,]\\)%-berok\\1%g"`'
	 if test svr4 != "$with_aix_soname"; then
	 # This is similar to how AIX traditionally builds its shared
	 # libraries. Need -bnortl late, we may have -brtl in LDFLAGS.
	 archive_expsym_cmds_CXX="$archive_expsym_cmds_CXX"'~$CC '$shared_flag_aix' -o $output_objdir/$realname.d/$soname $libobjs $deplibs $wl-bnoentry '$compiler_flags_filtered'$wl-bE:$export_symbols$allow_undefined_flag~$AR $AR_FLAGS $output_objdir/$libname$release.a $output_objdir/$realname.d/$soname'
	 fi
	 if test aix != "$with_aix_soname"; then
	 archive_expsym_cmds_CXX="$archive_expsym_cmds_CXX"'~$CC '$shared_flag_svr4' -o $output_objdir/$realname.d/$shared_archive_member_spec.o $libobjs $deplibs $wl-bnoentry '$compiler_flags_filtered'$wl-bE:$export_symbols$allow_undefined_flag~$STRIP -e $output_objdir/$realname.d/$shared_archive_member_spec.o~(func_echo_all "#! $soname($shared_archive_member_spec.o)"; if test shr_64 = "$shared_archive_member_spec"; then func_echo_all "# 64"; else func_echo_all "# 32"; fi; cat $export_symbols) > $output_objdir/$realname.d/$shared_archive_member_spec.imp~$AR $AR_FLAGS $output_objdir/$soname $output_objdir/$realname.d/$shared_archive_member_spec.o $output_objdir/$realname.d/$shared_archive_member_spec.imp'
	 else
	 # used by -dlpreopen to get the symbols
	 archive_expsym_cmds_CXX="$archive_expsym_cmds_CXX"'~$MV $output_objdir/$realname.d/$soname $output_objdir'
	 fi
	 archive_expsym_cmds_CXX="$archive_expsym_cmds_CXX"'~$RM -r $output_objdir/$realname.d'
 fi
 fi
 ;;

 beos*)
	if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then
	 allow_undefined_flag_CXX=unsupported
	 # Joseph Beckenbach <jrb3@best.com> says some releases of gcc
	 # support --undefined. This deserves some investigation. FIXME
	 archive_cmds_CXX='$CC -nostart $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
	else
	 ld_shlibs_CXX=no
	fi
	;;

 chorus*)
 case $cc_basename in
 *)
	 # FIXME: insert proper C++ library support
	 ld_shlibs_CXX=no
	 ;;
 esac
 ;;

 cygwin* | mingw* | pw32* | cegcc*)
	case $GXX,$cc_basename in
	,cl* | no,cl*)
	 # Native MSVC
	 # hardcode_libdir_flag_spec is actually meaningless, as there is
	 # no search path for DLLs.
	 hardcode_libdir_flag_spec_CXX=' '
	 allow_undefined_flag_CXX=unsupported
	 always_export_symbols_CXX=yes
	 file_list_spec_CXX='@'
	 # Tell ltmain to make .lib files, not .a files.
	 libext=lib
	 # Tell ltmain to make .dll files, not .so files.
	 shrext_cmds=.dll
	 # FIXME: Setting linknames here is a bad hack.
	 archive_cmds_CXX='$CC -o $output_objdir/$soname $libobjs $compiler_flags $deplibs -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~linknames='
	 archive_expsym_cmds_CXX='if test DEF = "`$SED -n -e '\''s/^[]*//'\'' -e '\''/^\(;.*\)*$/d'\'' -e '\''s/^\(EXPORTS\|LIBRARY\)\([].*\)*$/DEF/p'\'' -e q $export_symbols`" ; then
 cp "$export_symbols" "$output_objdir/$soname.def";
 echo "$tool_output_objdir$soname.def" > "$output_objdir/$soname.exp";
 else
 $SED -e '\''s/^/-link -EXPORT:/'\'' < $export_symbols > $output_objdir/$soname.exp;
 fi~
 $CC -o $tool_output_objdir$soname $libobjs $compiler_flags $deplibs "@$tool_output_objdir$soname.exp" -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~
 linknames='
	 # The linker will not automatically build a static lib if we build a DLL.
	 # _LT_TAGVAR(old_archive_from_new_cmds, CXX)='true'
	 enable_shared_with_static_runtimes_CXX=yes
	 # Don't use ranlib
	 old_postinstall_cmds_CXX='chmod 644 $oldlib'
	 postlink_cmds_CXX='lt_outputfile="@OUTPUT@"~
 lt_tool_outputfile="@TOOL_OUTPUT@"~
 case $lt_outputfile in
 .exe|.EXE) ;;
 *)
 lt_outputfile=$lt_outputfile.exe
 lt_tool_outputfile=$lt_tool_outputfile.exe
 ;;
 esac~
 func_to_tool_file "$lt_outputfile"~
 if test : != "$MANIFEST_TOOL" && test -f "$lt_outputfile.manifest"; then
 $MANIFEST_TOOL -manifest "$lt_tool_outputfile.manifest" -outputresource:"$lt_tool_outputfile" || exit 1;
 $RM "$lt_outputfile.manifest";
 fi'
	 ;;
	*)
	 # g++
	 # _LT_TAGVAR(hardcode_libdir_flag_spec, CXX) is actually meaningless,
	 # as there is no search path for DLLs.
	 hardcode_libdir_flag_spec_CXX='-L$libdir'
	 export_dynamic_flag_spec_CXX='$wl--export-all-symbols'
	 allow_undefined_flag_CXX=unsupported
	 always_export_symbols_CXX=no
	 enable_shared_with_static_runtimes_CXX=yes

	 if $LD --help 2>&1 | $GREP 'auto-import' > /dev/null; then
	 archive_cmds_CXX='$CC -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib'
	 # If the export-symbols file already is a .def file, use it as
	 # is; otherwise, prepend EXPORTS...
	 archive_expsym_cmds_CXX='if test DEF = "`$SED -n -e '\''s/^[]*//'\'' -e '\''/^\(;.*\)*$/d'\'' -e '\''s/^\(EXPORTS\|LIBRARY\)\([].*\)*$/DEF/p'\'' -e q $export_symbols`" ; then
 cp $export_symbols $output_objdir/$soname.def;
 else
 echo EXPORTS > $output_objdir/$soname.def;
 cat $export_symbols >> $output_objdir/$soname.def;
 fi~
 $CC -shared -nostdlib $output_objdir/$soname.def $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib'
	 else
	 ld_shlibs_CXX=no
	 fi
	 ;;
	esac
	;;
 darwin* | rhapsody*)

 archive_cmds_need_lc_CXX=no
 hardcode_direct_CXX=no
 hardcode_automatic_CXX=yes
 hardcode_shlibpath_var_CXX=unsupported
 if test yes = "$lt_cv_ld_force_load"; then
 whole_archive_flag_spec_CXX='`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience $wl-force_load,$conv\"; done; func_echo_all \"$new_convenience\"`'

 else
 whole_archive_flag_spec_CXX=''
 fi
 link_all_deplibs_CXX=yes
 allow_undefined_flag_CXX=$_lt_dar_allow_undefined
 case $cc_basename in
 ifort*|nagfor*) _lt_dar_can_shared=yes ;;
 *) _lt_dar_can_shared=$GCC ;;
 esac
 if test yes = "$_lt_dar_can_shared"; then
 output_verbose_link_cmd=func_echo_all
 archive_cmds_CXX="\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod$_lt_dsymutil"
 module_cmds_CXX="\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags$_lt_dsymutil"
 archive_expsym_cmds_CXX="sed 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod$_lt_dar_export_syms$_lt_dsymutil"
 module_expsym_cmds_CXX="sed -e 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags$_lt_dar_export_syms$_lt_dsymutil"
 if test yes != "$lt_cv_apple_cc_single_mod"; then
 archive_cmds_CXX="\$CC -r -keep_private_externs -nostdlib -o \$lib-master.o \$libobjs~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$lib-master.o \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring$_lt_dsymutil"
 archive_expsym_cmds_CXX="sed 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC -r -keep_private_externs -nostdlib -o \$lib-master.o \$libobjs~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$lib-master.o \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring$_lt_dar_export_syms$_lt_dsymutil"
 fi

 else
 ld_shlibs_CXX=no
 fi

	;;

 os2*)
	hardcode_libdir_flag_spec_CXX='-L$libdir'
	hardcode_minus_L_CXX=yes
	allow_undefined_flag_CXX=unsupported
	shrext_cmds=.dll
	archive_cmds_CXX='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~
	 $ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~
	 $ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~
	 $ECHO EXPORTS >> $output_objdir/$libname.def~
	 emxexp $libobjs | $SED /"_DLL_InitTerm"/d >> $output_objdir/$libname.def~
	 $CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~
	 emximp -o $lib $output_objdir/$libname.def'
	archive_expsym_cmds_CXX='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~
	 $ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~
	 $ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~
	 $ECHO EXPORTS >> $output_objdir/$libname.def~
	 prefix_cmds="$SED"~
	 if test EXPORTS = "`$SED 1q $export_symbols`"; then
	 prefix_cmds="$prefix_cmds -e 1d";
	 fi~
	 prefix_cmds="$prefix_cmds -e \"s/^\(.*\)$/_\1/g\""~
	 cat $export_symbols | $prefix_cmds >> $output_objdir/$libname.def~
	 $CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~
	 emximp -o $lib $output_objdir/$libname.def'
	old_archive_From_new_cmds_CXX='emximp -o $output_objdir/${libname}_dll.a $output_objdir/$libname.def'
	enable_shared_with_static_runtimes_CXX=yes
	;;

 dgux*)
 case $cc_basename in
 ec++*)
	 # FIXME: insert proper C++ library support
	 ld_shlibs_CXX=no
	 ;;
 ghcx*)
	 # Green Hills C++ Compiler
	 # FIXME: insert proper C++ library support
	 ld_shlibs_CXX=no
	 ;;
 *)
	 # FIXME: insert proper C++ library support
	 ld_shlibs_CXX=no
	 ;;
 esac
 ;;

 freebsd2.*)
 # C++ shared libraries reported to be fairly broken before
	# switch to ELF
 ld_shlibs_CXX=no
 ;;

 freebsd-elf*)
 archive_cmds_need_lc_CXX=no
 ;;

 freebsd* | dragonfly*)
 # FreeBSD 3 and later use GNU C++ and GNU ld with standard ELF
 # conventions
 ld_shlibs_CXX=yes
 ;;

 haiku*)
 archive_cmds_CXX='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
 link_all_deplibs_CXX=yes
 ;;

 hpux9*)
 hardcode_libdir_flag_spec_CXX='$wl+b wllibdir'
 hardcode_libdir_separator_CXX=:
 export_dynamic_flag_spec_CXX='$wl-E'
 hardcode_direct_CXX=yes
 hardcode_minus_L_CXX=yes # Not in the search PATH,
				 # but as the default
				 # location of the library.

 case $cc_basename in
 CC*)
 # FIXME: insert proper C++ library support
 ld_shlibs_CXX=no
 ;;
 aCC*)
 archive_cmds_CXX='$RM $output_objdir/$soname~$CC -b $wl+b wlinstall_libdir -o $output_objdir/$soname $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib'
 # Commands to make compiler produce verbose output that lists
 # what "hidden" libraries, object files and flags are used when
 # linking a shared library.
 #
 # There doesn't appear to be a way to prevent this compiler from
 # explicitly linking system object files so we need to strip them
 # from the output so that they don't get included in the library
 # dependencies.
 output_verbose_link_cmd='templist=`($CC -b $CFLAGS -v conftest.$objext 2>&1) | $EGREP "\-L"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"'
 ;;
 *)
 if test yes = "$GXX"; then
 archive_cmds_CXX='$RM $output_objdir/$soname~$CC -shared -nostdlib $pic_flag $wl+b wlinstall_libdir -o $output_objdir/$soname $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib'
 else
 # FIXME: insert proper C++ library support
 ld_shlibs_CXX=no
 fi
 ;;
 esac
 ;;

 hpux10*|hpux11*)
 if test no = "$with_gnu_ld"; then
	 hardcode_libdir_flag_spec_CXX='$wl+b wllibdir'
	 hardcode_libdir_separator_CXX=:

 case $host_cpu in
 hppa*64*|ia64*)
 ;;
 *)
	 export_dynamic_flag_spec_CXX='$wl-E'
 ;;
 esac
 fi
 case $host_cpu in
 hppa*64*|ia64*)
 hardcode_direct_CXX=no
 hardcode_shlibpath_var_CXX=no
 ;;
 *)
 hardcode_direct_CXX=yes
 hardcode_direct_absolute_CXX=yes
 hardcode_minus_L_CXX=yes # Not in the search PATH,
					 # but as the default
					 # location of the library.
 ;;
 esac

 case $cc_basename in
 CC*)
	 # FIXME: insert proper C++ library support
	 ld_shlibs_CXX=no
	 ;;
 aCC*)
	 case $host_cpu in
	 hppa*64*)
	 archive_cmds_CXX='$CC -b $wl+h wlsoname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags'
	 ;;
	 ia64*)
	 archive_cmds_CXX='$CC -b $wl+h wlsoname $wl+nodefaultrpath -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags'
	 ;;
	 *)
	 archive_cmds_CXX='$CC -b $wl+h wlsoname $wl+b wlinstall_libdir -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags'
	 ;;
	 esac
	 # Commands to make compiler produce verbose output that lists
	 # what "hidden" libraries, object files and flags are used when
	 # linking a shared library.
	 #
	 # There doesn't appear to be a way to prevent this compiler from
	 # explicitly linking system object files so we need to strip them
	 # from the output so that they don't get included in the library
	 # dependencies.
	 output_verbose_link_cmd='templist=`($CC -b $CFLAGS -v conftest.$objext 2>&1) | $GREP "\-L"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"'
	 ;;
 *)
	 if test yes = "$GXX"; then
	 if test no = "$with_gnu_ld"; then
	 case $host_cpu in
	 hppa*64*)
	 archive_cmds_CXX='$CC -shared -nostdlib -fPIC $wl+h wlsoname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags'
	 ;;
	 ia64*)
	 archive_cmds_CXX='$CC -shared -nostdlib $pic_flag $wl+h wlsoname $wl+nodefaultrpath -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags'
	 ;;
	 *)
	 archive_cmds_CXX='$CC -shared -nostdlib $pic_flag $wl+h wlsoname $wl+b wlinstall_libdir -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags'
	 ;;
	 esac
	 fi
	 else
	 # FIXME: insert proper C++ library support
	 ld_shlibs_CXX=no
	 fi
	 ;;
 esac
 ;;

 interix[3-9]*)
	hardcode_direct_CXX=no
	hardcode_shlibpath_var_CXX=no
	hardcode_libdir_flag_spec_CXX='$wl-rpath,$libdir'
	export_dynamic_flag_spec_CXX='$wl-E'
	# Hack: On Interix 3.x, we cannot compile PIC because of a broken gcc.
	# Instead, shared libraries are loaded at an image base (0x10000000 by
	# default) and relocated if they conflict, which is a slow very memory
	# consuming and fragmenting process. To avoid this, we pick a random,
	# 256 KiB-aligned image base between 0x50000000 and 0x6FFC0000 at link
	# time. Moving up from 0x10000000 also allows more sbrk(2) space.
	archive_cmds_CXX='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 * 262144 + 1342177280` -o $lib'
	archive_expsym_cmds_CXX='sed "s|^|_|" $export_symbols >$output_objdir/$soname.expsym~$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--retain-symbols-file,$output_objdir/$soname.expsym $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 * 262144 + 1342177280` -o $lib'
	;;
 irix5* | irix6*)
 case $cc_basename in
 CC*)
	 # SGI C++
	 archive_cmds_CXX='$CC -shared -all -multigot $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib'

	 # Archives containing C++ object files must be created using
	 # "CC -ar", where "CC" is the IRIX C++ compiler. This is
	 # necessary to make sure instantiated templates are included
	 # in the archive.
	 old_archive_cmds_CXX='$CC -ar -WR,-u -o $oldlib $oldobjs'
	 ;;
 *)
	 if test yes = "$GXX"; then
	 if test no = "$with_gnu_ld"; then
	 archive_cmds_CXX='$CC -shared $pic_flag -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname `test -n "$verstring" && func_echo_all "$wl-set_version wlverstring"` $wl-update_registry wloutput_objdir/so_locations -o $lib'
	 else
	 archive_cmds_CXX='$CC -shared $pic_flag -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname `test -n "$verstring" && func_echo_all "$wl-set_version wlverstring"` -o $lib'
	 fi
	 fi
	 link_all_deplibs_CXX=yes
	 ;;
 esac
 hardcode_libdir_flag_spec_CXX='$wl-rpath wllibdir'
 hardcode_libdir_separator_CXX=:
 inherit_rpath_CXX=yes
 ;;

 linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*)
 case $cc_basename in
 KCC*)
	 # Kuck and Associates, Inc. (KAI) C++ Compiler

	 # KCC will only create a shared library if the output file
	 # ends with ".so" (or ".sl" for HP-UX), so rename the library
	 # to its proper name (with version) after linking.
	 archive_cmds_CXX='tempext=`echo $shared_ext | $SED -e '\''s/\([^()0-9A-Za-z{}]\)/\\\\\1/g'\''`; templib=`echo $lib | $SED -e "s/\$tempext\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib; mv \$templib $lib'
	 archive_expsym_cmds_CXX='tempext=`echo $shared_ext | $SED -e '\''s/\([^()0-9A-Za-z{}]\)/\\\\\1/g'\''`; templib=`echo $lib | $SED -e "s/\$tempext\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib $wl-retain-symbols-file,$export_symbols; mv \$templib $lib'
	 # Commands to make compiler produce verbose output that lists
	 # what "hidden" libraries, object files and flags are used when
	 # linking a shared library.
	 #
	 # There doesn't appear to be a way to prevent this compiler from
	 # explicitly linking system object files so we need to strip them
	 # from the output so that they don't get included in the library
	 # dependencies.
	 output_verbose_link_cmd='templist=`$CC $CFLAGS -v conftest.$objext -o libconftest$shared_ext 2>&1 | $GREP "ld"`; rm -f libconftest$shared_ext; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"'

	 hardcode_libdir_flag_spec_CXX='$wl-rpath,$libdir'
	 export_dynamic_flag_spec_CXX='$wl--export-dynamic'

	 # Archives containing C++ object files must be created using
	 # "CC -Bstatic", where "CC" is the KAI C++ compiler.
	 old_archive_cmds_CXX='$CC -Bstatic -o $oldlib $oldobjs'
	 ;;
	 icpc* | ecpc*)
	 # Intel C++
	 with_gnu_ld=yes
	 # version 8.0 and above of icpc choke on multiply defined symbols
	 # if we add $predep_objects and $postdep_objects, however 7.1 and
	 # earlier do not add the objects themselves.
	 case `$CC -V 2>&1` in
	 "Version 7.")
	 archive_cmds_CXX='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname -o $lib'
		archive_expsym_cmds_CXX='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'
		;;
	 *) # Version 8.0 or newer
	 tmp_idyn=
	 case $host_cpu in
		 ia64*) tmp_idyn=' -i_dynamic';;
		esac
	 archive_cmds_CXX='$CC -shared'"$tmp_idyn"' $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
		archive_expsym_cmds_CXX='$CC -shared'"$tmp_idyn"' $libobjs $deplibs $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'
		;;
	 esac
	 archive_cmds_need_lc_CXX=no
	 hardcode_libdir_flag_spec_CXX='$wl-rpath,$libdir'
	 export_dynamic_flag_spec_CXX='$wl--export-dynamic'
	 whole_archive_flag_spec_CXX='$wl--whole-archive$convenience $wl--no-whole-archive'
	 ;;
 pgCC* | pgcpp*)
 # Portland Group C++ compiler
	 case `$CC -V` in
	 pgCC\ [1-5]. | *pgcpp\ [1-5].*)
	 prelink_cmds_CXX='tpldir=Template.dir~
 rm -rf $tpldir~
 $CC --prelink_objects --instantiation_dir $tpldir $objs $libobjs $compile_deplibs~
 compile_command="$compile_command `find $tpldir -name *.o | sort | $NL2SP`"'
	 old_archive_cmds_CXX='tpldir=Template.dir~
 rm -rf $tpldir~
 $CC --prelink_objects --instantiation_dir $tpldir $oldobjs$old_deplibs~
 $AR $AR_FLAGS $oldlib$oldobjs$old_deplibs `find $tpldir -name *.o | sort | $NL2SP`~
 $RANLIB $oldlib'
	 archive_cmds_CXX='tpldir=Template.dir~
 rm -rf $tpldir~
 $CC --prelink_objects --instantiation_dir $tpldir $predep_objects $libobjs $deplibs $convenience $postdep_objects~
 $CC -shared $pic_flag $predep_objects $libobjs $deplibs `find $tpldir -name *.o | sort | $NL2SP` $postdep_objects $compiler_flags $wl-soname wlsoname -o $lib'
	 archive_expsym_cmds_CXX='tpldir=Template.dir~
 rm -rf $tpldir~
 $CC --prelink_objects --instantiation_dir $tpldir $predep_objects $libobjs $deplibs $convenience $postdep_objects~
 $CC -shared $pic_flag $predep_objects $libobjs $deplibs `find $tpldir -name *.o | sort | $NL2SP` $postdep_objects $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'
	 ;;
	 *) # Version 6 and above use weak symbols
	 archive_cmds_CXX='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname -o $lib'
	 archive_expsym_cmds_CXX='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'
	 ;;
	 esac

	 hardcode_libdir_flag_spec_CXX='$wl--rpath wllibdir'
	 export_dynamic_flag_spec_CXX='$wl--export-dynamic'
	 whole_archive_flag_spec_CXX='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive'
 ;;
	 cxx*)
	 # Compaq C++
	 archive_cmds_CXX='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname -o $lib'
	 archive_expsym_cmds_CXX='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname -o $lib $wl-retain-symbols-file wlexport_symbols'

	 runpath_var=LD_RUN_PATH
	 hardcode_libdir_flag_spec_CXX='-rpath $libdir'
	 hardcode_libdir_separator_CXX=:

	 # Commands to make compiler produce verbose output that lists
	 # what "hidden" libraries, object files and flags are used when
	 # linking a shared library.
	 #
	 # There doesn't appear to be a way to prevent this compiler from
	 # explicitly linking system object files so we need to strip them
	 # from the output so that they don't get included in the library
	 # dependencies.
	 output_verbose_link_cmd='templist=`$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP "ld"`; templist=`func_echo_all "$templist" | $SED "s/\(^.*ld.*\)\(.*ld .*$\)/\1/"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "X$list" | $Xsed'
	 ;;
	 xl* | mpixl* | bgxl*)
	 # IBM XL 8.0 on PPC, with GNU ld
	 hardcode_libdir_flag_spec_CXX='$wl-rpath wllibdir'
	 export_dynamic_flag_spec_CXX='$wl--export-dynamic'
	 archive_cmds_CXX='$CC -qmkshrobj $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
	 if test yes = "$supports_anon_versioning"; then
	 archive_expsym_cmds_CXX='echo "{ global:" > $output_objdir/$libname.ver~
 cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~
 echo "local: *; };" >> $output_objdir/$libname.ver~
 $CC -qmkshrobj $libobjs $deplibs $compiler_flags $wl-soname wlsoname $wl-version-script wloutput_objdir/$libname.ver -o $lib'
	 fi
	 ;;
	 *)
	 case `$CC -V 2>&1 | sed 5q` in
	 Sun\ C)
	 # Sun C++ 5.9
	 no_undefined_flag_CXX=' -zdefs'
	 archive_cmds_CXX='$CC -G$allow_undefined_flag -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags'
	 archive_expsym_cmds_CXX='$CC -G$allow_undefined_flag -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-retain-symbols-file wlexport_symbols'
	 hardcode_libdir_flag_spec_CXX='-R$libdir'
	 whole_archive_flag_spec_CXX='$wl--whole-archive`new_convenience=; for conv in $convenience\"\"; do test -z \"$conv\" || new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive'
	 compiler_needs_object_CXX=yes

	 # Not sure whether something based on
	 # $CC $CFLAGS -v conftest.$objext -o libconftest$shared_ext 2>&1
	 # would be better.
	 output_verbose_link_cmd='func_echo_all'

	 # Archives containing C++ object files must be created using
	 # "CC -xar", where "CC" is the Sun C++ compiler. This is
	 # necessary to make sure instantiated templates are included
	 # in the archive.
	 old_archive_cmds_CXX='$CC -xar -o $oldlib $oldobjs'
	 ;;
	 esac
	 ;;
	esac
	;;

 lynxos*)
 # FIXME: insert proper C++ library support
	ld_shlibs_CXX=no
	;;

 m88k*)
 # FIXME: insert proper C++ library support
 ld_shlibs_CXX=no
	;;

 mvs*)
 case $cc_basename in
 cxx*)
	 # FIXME: insert proper C++ library support
	 ld_shlibs_CXX=no
	 ;;
	 *)
	 # FIXME: insert proper C++ library support
	 ld_shlibs_CXX=no
	 ;;
	esac
	;;

 netbsd*)
 if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then
	 archive_cmds_CXX='$LD -Bshareable -o $lib $predep_objects $libobjs $deplibs $postdep_objects $linker_flags'
	 wlarc=
	 hardcode_libdir_flag_spec_CXX='-R$libdir'
	 hardcode_direct_CXX=yes
	 hardcode_shlibpath_var_CXX=no
	fi
	# Workaround some broken pre-1.5 toolchains
	output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP conftest.$objext | $SED -e "s:-lgcc -lc -lgcc::"'
	;;

 nto | *qnx*)
 ld_shlibs_CXX=yes
	;;

 openbsd* | bitrig*)
	if test -f /usr/libexec/ld.so; then
	 hardcode_direct_CXX=yes
	 hardcode_shlibpath_var_CXX=no
	 hardcode_direct_absolute_CXX=yes
	 archive_cmds_CXX='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $lib'
	 hardcode_libdir_flag_spec_CXX='$wl-rpath,$libdir'
	 if test -z "`echo __ELF__ | $CC -E - | grep __ELF__`"; then
	 archive_expsym_cmds_CXX='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-retain-symbols-file,$export_symbols -o $lib'
	 export_dynamic_flag_spec_CXX='$wl-E'
	 whole_archive_flag_spec_CXX=$wlarc'--whole-archive$convenience '$wlarc'--no-whole-archive'
	 fi
	 output_verbose_link_cmd=func_echo_all
	else
	 ld_shlibs_CXX=no
	fi
	;;

 osf3* | osf4* | osf5*)
 case $cc_basename in
 KCC*)
	 # Kuck and Associates, Inc. (KAI) C++ Compiler

	 # KCC will only create a shared library if the output file
	 # ends with ".so" (or ".sl" for HP-UX), so rename the library
	 # to its proper name (with version) after linking.
	 archive_cmds_CXX='tempext=`echo $shared_ext | $SED -e '\''s/\([^()0-9A-Za-z{}]\)/\\\\\1/g'\''`; templib=`echo "$lib" | $SED -e "s/\$tempext\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib; mv \$templib $lib'

	 hardcode_libdir_flag_spec_CXX='$wl-rpath,$libdir'
	 hardcode_libdir_separator_CXX=:

	 # Archives containing C++ object files must be created using
	 # the KAI C++ compiler.
	 case $host in
	 osf3*) old_archive_cmds_CXX='$CC -Bstatic -o $oldlib $oldobjs' ;;
	 *) old_archive_cmds_CXX='$CC -o $oldlib $oldobjs' ;;
	 esac
	 ;;
 RCC*)
	 # Rational C++ 2.4.1
	 # FIXME: insert proper C++ library support
	 ld_shlibs_CXX=no
	 ;;
 cxx*)
	 case $host in
	 osf3*)
	 allow_undefined_flag_CXX=' $wl-expect_unresolved $wl*'
	 archive_cmds_CXX='$CC -shared$allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $soname `test -n "$verstring" && func_echo_all "$wl-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib'
	 hardcode_libdir_flag_spec_CXX='$wl-rpath wllibdir'
		;;
	 *)
	 allow_undefined_flag_CXX=' -expect_unresolved *'
	 archive_cmds_CXX='$CC -shared$allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -msym -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib'
	 archive_expsym_cmds_CXX='for i in `cat $export_symbols`; do printf "%s %s\\n" -exported_symbol "\$i" >> $lib.exp; done~
 echo "-hidden">> $lib.exp~
 $CC -shared$allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -msym -soname $soname $wl-input wllib.exp `test -n "$verstring" && $ECHO "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib~
 $RM $lib.exp'
	 hardcode_libdir_flag_spec_CXX='-rpath $libdir'
		;;
	 esac

	 hardcode_libdir_separator_CXX=:

	 # Commands to make compiler produce verbose output that lists
	 # what "hidden" libraries, object files and flags are used when
	 # linking a shared library.
	 #
	 # There doesn't appear to be a way to prevent this compiler from
	 # explicitly linking system object files so we need to strip them
	 # from the output so that they don't get included in the library
	 # dependencies.
	 output_verbose_link_cmd='templist=`$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP "ld" | $GREP -v "ld:"`; templist=`func_echo_all "$templist" | $SED "s/\(^.*ld.*\)\(.*ld.*$\)/\1/"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"'
	 ;;
	 *)
	 if test yes,no = "$GXX,$with_gnu_ld"; then
	 allow_undefined_flag_CXX=' $wl-expect_unresolved $wl*'
	 case $host in
	 osf3*)
	 archive_cmds_CXX='$CC -shared -nostdlib $allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname `test -n "$verstring" && func_echo_all "$wl-set_version wlverstring"` $wl-update_registry wloutput_objdir/so_locations -o $lib'
		 ;;
	 *)
	 archive_cmds_CXX='$CC -shared $pic_flag -nostdlib $allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-msym $wl-soname wlsoname `test -n "$verstring" && func_echo_all "$wl-set_version wlverstring"` $wl-update_registry wloutput_objdir/so_locations -o $lib'
		 ;;
	 esac

	 hardcode_libdir_flag_spec_CXX='$wl-rpath wllibdir'
	 hardcode_libdir_separator_CXX=:

	 # Commands to make compiler produce verbose output that lists
	 # what "hidden" libraries, object files and flags are used when
	 # linking a shared library.
	 output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"'

	 else
	 # FIXME: insert proper C++ library support
	 ld_shlibs_CXX=no
	 fi
	 ;;
 esac
 ;;

 psos*)
 # FIXME: insert proper C++ library support
 ld_shlibs_CXX=no
 ;;

 sunos4*)
 case $cc_basename in
 CC*)
	 # Sun C++ 4.x
	 # FIXME: insert proper C++ library support
	 ld_shlibs_CXX=no
	 ;;
 lcc*)
	 # Lucid
	 # FIXME: insert proper C++ library support
	 ld_shlibs_CXX=no
	 ;;
 *)
	 # FIXME: insert proper C++ library support
	 ld_shlibs_CXX=no
	 ;;
 esac
 ;;

 solaris*)
 case $cc_basename in
 CC* | sunCC*)
	 # Sun C++ 4.2, 5.x and Centerline C++
 archive_cmds_need_lc_CXX=yes
	 no_undefined_flag_CXX=' -zdefs'
	 archive_cmds_CXX='$CC -G$allow_undefined_flag -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags'
	 archive_expsym_cmds_CXX='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~
 $CC -G$allow_undefined_flag $wl-M wllib.exp -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp'

	 hardcode_libdir_flag_spec_CXX='-R$libdir'
	 hardcode_shlibpath_var_CXX=no
	 case $host_os in
	 solaris2.[0-5] | solaris2.[0-5].*) ;;
	 *)
		# The compiler driver will combine and reorder linker options,
		# but understands '-z linker_flag'.
	 # Supported since Solaris 2.6 (maybe 2.5.1?)
		whole_archive_flag_spec_CXX='-z allextract$convenience -z defaultextract'
	 ;;
	 esac
	 link_all_deplibs_CXX=yes

	 output_verbose_link_cmd='func_echo_all'

	 # Archives containing C++ object files must be created using
	 # "CC -xar", where "CC" is the Sun C++ compiler. This is
	 # necessary to make sure instantiated templates are included
	 # in the archive.
	 old_archive_cmds_CXX='$CC -xar -o $oldlib $oldobjs'
	 ;;
 gcx*)
	 # Green Hills C++ Compiler
	 archive_cmds_CXX='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-h wlsoname -o $lib'

	 # The C++ compiler must be used to create the archive.
	 old_archive_cmds_CXX='$CC $LDFLAGS -archive -o $oldlib $oldobjs'
	 ;;
 *)
	 # GNU C++ compiler with Solaris linker
	 if test yes,no = "$GXX,$with_gnu_ld"; then
	 no_undefined_flag_CXX=' $wl-z ${wl}defs'
	 if $CC --version | $GREP -v '^2\.7' > /dev/null; then
	 archive_cmds_CXX='$CC -shared $pic_flag -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-h wlsoname -o $lib'
	 archive_expsym_cmds_CXX='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~
 $CC -shared $pic_flag -nostdlib $wl-M wllib.exp $wl-h wlsoname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp'

	 # Commands to make compiler produce verbose output that lists
	 # what "hidden" libraries, object files and flags are used when
	 # linking a shared library.
	 output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"'
	 else
	 # g++ 2.7 appears to require '-G' NOT '-shared' on this
	 # platform.
	 archive_cmds_CXX='$CC -G -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-h wlsoname -o $lib'
	 archive_expsym_cmds_CXX='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~
 $CC -G -nostdlib $wl-M wllib.exp $wl-h wlsoname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp'

	 # Commands to make compiler produce verbose output that lists
	 # what "hidden" libraries, object files and flags are used when
	 # linking a shared library.
	 output_verbose_link_cmd='$CC -G $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"'
	 fi

	 hardcode_libdir_flag_spec_CXX='$wl-R wllibdir'
	 case $host_os in
		solaris2.[0-5] | solaris2.[0-5].*) ;;
		*)
		 whole_archive_flag_spec_CXX='$wl-z ${wl}allextract$convenience $wl-z ${wl}defaultextract'
		 ;;
	 esac
	 fi
	 ;;
 esac
 ;;

 sysv4*uw2* | sysv5OpenUNIX* | sysv5UnixWare7.[01].[10]* | unixware7* | sco3.2v5.0.[024]*)
 no_undefined_flag_CXX='$wl-z,text'
 archive_cmds_need_lc_CXX=no
 hardcode_shlibpath_var_CXX=no
 runpath_var='LD_RUN_PATH'

 case $cc_basename in
 CC*)
	 archive_cmds_CXX='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	 archive_expsym_cmds_CXX='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	 ;;
	*)
	 archive_cmds_CXX='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	 archive_expsym_cmds_CXX='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	 ;;
 esac
 ;;

 sysv5* | sco3.2v5* | sco5v6*)
	# Note: We CANNOT use -z defs as we might desire, because we do not
	# link with -lc, and that would cause any symbols used from libc to
	# always be unresolved, which means just about no library would
	# ever link correctly. If we're not using GNU ld we use -z text
	# though, which does catch some bad symbols but isn't as heavy-handed
	# as -z defs.
	no_undefined_flag_CXX='$wl-z,text'
	allow_undefined_flag_CXX='$wl-z,nodefs'
	archive_cmds_need_lc_CXX=no
	hardcode_shlibpath_var_CXX=no
	hardcode_libdir_flag_spec_CXX='$wl-R,$libdir'
	hardcode_libdir_separator_CXX=':'
	link_all_deplibs_CXX=yes
	export_dynamic_flag_spec_CXX='$wl-Bexport'
	runpath_var='LD_RUN_PATH'

	case $cc_basename in
 CC*)
	 archive_cmds_CXX='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	 archive_expsym_cmds_CXX='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	 old_archive_cmds_CXX='$CC -Tprelink_objects $oldobjs~
 '"$old_archive_cmds_CXX"
	 reload_cmds_CXX='$CC -Tprelink_objects $reload_objs~
 '"$reload_cmds_CXX"
	 ;;
	 *)
	 archive_cmds_CXX='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	 archive_expsym_cmds_CXX='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	 ;;
	esac
 ;;

 tandem*)
 case $cc_basename in
 NCC*)
	 # NonStop-UX NCC 3.20
	 # FIXME: insert proper C++ library support
	 ld_shlibs_CXX=no
	 ;;
 *)
	 # FIXME: insert proper C++ library support
	 ld_shlibs_CXX=no
	 ;;
 esac
 ;;

 vxworks*)
 # FIXME: insert proper C++ library support
 ld_shlibs_CXX=no
 ;;

 *)
 # FIXME: insert proper C++ library support
 ld_shlibs_CXX=no
 ;;
 esac

 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ld_shlibs_CXX" >&5
$as_echo "$ld_shlibs_CXX" >&6; }
 test no = "$ld_shlibs_CXX" && can_build_shared=no

 GCC_CXX=$GXX
 LD_CXX=$LD

 ## CAVEAT EMPTOR:
 ## There is no encapsulation within the following macros, do not change
 ## the running order or otherwise move them around unless you know exactly
 ## what you are doing...
 # Dependencies to place before and after the object being linked:
predep_objects_CXX=
postdep_objects_CXX=
predeps_CXX=
postdeps_CXX=
compiler_lib_search_path_CXX=

cat > conftest.$ac_ext <<_LT_EOF
class Foo
{
public:
 Foo (void) { a = 0; }
private:
 int a;
};
_LT_EOF

_lt_libdeps_save_CFLAGS=$CFLAGS
case "$CC $CFLAGS " in #(
\ -flto\ *) CFLAGS="$CFLAGS -fno-lto" ;;
\ -fwhopr\ *) CFLAGS="$CFLAGS -fno-whopr" ;;
\ -fuse-linker-plugin\ *) CFLAGS="$CFLAGS -fno-use-linker-plugin" ;;
esac

if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5
 (eval $ac_compile) 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }; then
 # Parse the compiler output and extract the necessary
 # objects, libraries and library flags.

 # Sentinel used to keep track of whether or not we are before
 # the conftest object file.
 pre_test_object_deps_done=no

 for p in `eval "$output_verbose_link_cmd"`; do
 case $prev$p in

 -L* | -R* | -l*)
 # Some compilers place space between "-{L,R}" and the path.
 # Remove the space.
 if test x-L = "$p" ||
 test x-R = "$p"; then
	 prev=$p
	 continue
 fi

 # Expand the sysroot to ease extracting the directories later.
 if test -z "$prev"; then
 case $p in
 -L*) func_stripname_cnf '-L' '' "$p"; prev=-L; p=$func_stripname_result ;;
 -R*) func_stripname_cnf '-R' '' "$p"; prev=-R; p=$func_stripname_result ;;
 -l*) func_stripname_cnf '-l' '' "$p"; prev=-l; p=$func_stripname_result ;;
 esac
 fi
 case $p in
 =*) func_stripname_cnf '=' '' "$p"; p=$lt_sysroot$func_stripname_result ;;
 esac
 if test no = "$pre_test_object_deps_done"; then
	 case $prev in
	 -L | -R)
	 # Internal compiler library paths should come after those
	 # provided the user. The postdeps already come after the
	 # user supplied libs so there is no need to process them.
	 if test -z "$compiler_lib_search_path_CXX"; then
	 compiler_lib_search_path_CXX=$prev$p
	 else
	 compiler_lib_search_path_CXX="${compiler_lib_search_path_CXX} $prev$p"
	 fi
	 ;;
	 # The "-l" case would never come before the object being
	 # linked, so don't bother handling this case.
	 esac
 else
	 if test -z "$postdeps_CXX"; then
	 postdeps_CXX=$prev$p
	 else
	 postdeps_CXX="${postdeps_CXX} $prev$p"
	 fi
 fi
 prev=
 ;;

 *.lto.$objext) ;; # Ignore GCC LTO objects
 *.$objext)
 # This assumes that the test object file only shows up
 # once in the compiler output.
 if test "$p" = "conftest.$objext"; then
	 pre_test_object_deps_done=yes
	 continue
 fi

 if test no = "$pre_test_object_deps_done"; then
	 if test -z "$predep_objects_CXX"; then
	 predep_objects_CXX=$p
	 else
	 predep_objects_CXX="$predep_objects_CXX $p"
	 fi
 else
	 if test -z "$postdep_objects_CXX"; then
	 postdep_objects_CXX=$p
	 else
	 postdep_objects_CXX="$postdep_objects_CXX $p"
	 fi
 fi
 ;;

 *) ;; # Ignore the rest.

 esac
 done

 # Clean up.
 rm -f a.out a.exe
else
 echo "libtool.m4: error: problem compiling CXX test program"
fi

$RM -f confest.$objext
CFLAGS=$_lt_libdeps_save_CFLAGS

PORTME: override above test on systems where it is broken
case $host_os in
interix[3-9]*)
 # Interix 3.5 installs completely hosed .la files for C++, so rather than
 # hack all around it, let's just trust "g++" to DTRT.
 predep_objects_CXX=
 postdep_objects_CXX=
 postdeps_CXX=
 ;;
esac

case " $postdeps_CXX " in
" -lc ") archive_cmds_need_lc_CXX=no ;;
esac
 compiler_lib_search_dirs_CXX=
if test -n "${compiler_lib_search_path_CXX}"; then
 compiler_lib_search_dirs_CXX=`echo " ${compiler_lib_search_path_CXX}" | $SED -e 's! -L! !g' -e 's!^ !!'`
fi

 lt_prog_compiler_wl_CXX=
lt_prog_compiler_pic_CXX=
lt_prog_compiler_static_CXX=

 # C++ specific cases for pic, static, wl, etc.
 if test yes = "$GXX"; then
 lt_prog_compiler_wl_CXX='-Wl,'
 lt_prog_compiler_static_CXX='-static'

 case $host_os in
 aix*)
 # All AIX code is PIC.
 if test ia64 = "$host_cpu"; then
	# AIX 5 now supports IA64 processor
	lt_prog_compiler_static_CXX='-Bstatic'
 fi
 lt_prog_compiler_pic_CXX='-fPIC'
 ;;

 amigaos*)
 case $host_cpu in
 powerpc)
 # see comment about AmigaOS4 .so support
 lt_prog_compiler_pic_CXX='-fPIC'
 ;;
 m68k)
 # FIXME: we need at least 68020 code to build shared libraries, but
 # adding the '-m68020' flag to GCC prevents building anything better,
 # like '-m68040'.
 lt_prog_compiler_pic_CXX='-m68020 -resident32 -malways-restore-a4'
 ;;
 esac
 ;;

 beos* | irix5* | irix6* | nonstopux* | osf3* | osf4* | osf5*)
 # PIC is the default for these OSes.
 ;;
 mingw* | cygwin* | os2* | pw32* | cegcc*)
 # This hack is so that the source file can tell whether it is being
 # built for inclusion in a dll (and should export symbols for example).
 # Although the cygwin gcc ignores -fPIC, still need this for old-style
 # (--disable-auto-import) libraries
 lt_prog_compiler_pic_CXX='-DDLL_EXPORT'
 case $host_os in
 os2*)
	lt_prog_compiler_static_CXX='$wl-static'
	;;
 esac
 ;;
 darwin* | rhapsody*)
 # PIC is the default on this platform
 # Common symbols not allowed in MH_DYLIB files
 lt_prog_compiler_pic_CXX='-fno-common'
 ;;
 djgpp)
 # DJGPP does not support shared libraries at all
 lt_prog_compiler_pic_CXX=
 ;;
 haiku*)
 # PIC is the default for Haiku.
 # The "-static" flag exists, but is broken.
 lt_prog_compiler_static_CXX=
 ;;
 interix[3-9]*)
 # Interix 3.x gcc -fpic/-fPIC options generate broken code.
 # Instead, we relocate shared libraries at runtime.
 ;;
 sysv4*MP*)
 if test -d /usr/nec; then
	lt_prog_compiler_pic_CXX=-Kconform_pic
 fi
 ;;
 hpux*)
 # PIC is the default for 64-bit PA HP-UX, but not for 32-bit
 # PA HP-UX. On IA64 HP-UX, PIC is the default but the pic flag
 # sets the default TLS model and affects inlining.
 case $host_cpu in
 hppa*64*)
	;;
 *)
	lt_prog_compiler_pic_CXX='-fPIC'
	;;
 esac
 ;;
 qnx | *nto*)
 # QNX uses GNU C++, but need to define -shared option too, otherwise
 # it will coredump.
 lt_prog_compiler_pic_CXX='-fPIC -shared'
 ;;
 *)
 lt_prog_compiler_pic_CXX='-fPIC'
 ;;
 esac
 else
 case $host_os in
 aix[4-9]*)
	# All AIX code is PIC.
	if test ia64 = "$host_cpu"; then
	 # AIX 5 now supports IA64 processor
	 lt_prog_compiler_static_CXX='-Bstatic'
	else
	 lt_prog_compiler_static_CXX='-bnso -bI:/lib/syscalls.exp'
	fi
	;;
 chorus*)
	case $cc_basename in
	cxch68*)
	 # Green Hills C++ Compiler
	 # _LT_TAGVAR(lt_prog_compiler_static, CXX)="--no_auto_instantiation -u __main -u __premain -u _abort -r $COOL_DIR/lib/libOrb.a $MVME_DIR/lib/CC/libC.a $MVME_DIR/lib/classix/libcx.s.a"
	 ;;
	esac
	;;
 mingw* | cygwin* | os2* | pw32* | cegcc*)
	# This hack is so that the source file can tell whether it is being
	# built for inclusion in a dll (and should export symbols for example).
	lt_prog_compiler_pic_CXX='-DDLL_EXPORT'
	;;
 dgux*)
	case $cc_basename in
	 ec++*)
	 lt_prog_compiler_pic_CXX='-KPIC'
	 ;;
	 ghcx*)
	 # Green Hills C++ Compiler
	 lt_prog_compiler_pic_CXX='-pic'
	 ;;
	 *)
	 ;;
	esac
	;;
 freebsd* | dragonfly*)
	# FreeBSD uses GNU C++
	;;
 hpux9* | hpux10* | hpux11*)
	case $cc_basename in
	 CC*)
	 lt_prog_compiler_wl_CXX='-Wl,'
	 lt_prog_compiler_static_CXX='$wl-a ${wl}archive'
	 if test ia64 != "$host_cpu"; then
	 lt_prog_compiler_pic_CXX='+Z'
	 fi
	 ;;
	 aCC*)
	 lt_prog_compiler_wl_CXX='-Wl,'
	 lt_prog_compiler_static_CXX='$wl-a ${wl}archive'
	 case $host_cpu in
	 hppa*64*|ia64*)
	 # +Z the default
	 ;;
	 *)
	 lt_prog_compiler_pic_CXX='+Z'
	 ;;
	 esac
	 ;;
	 *)
	 ;;
	esac
	;;
 interix*)
	# This is c89, which is MS Visual C++ (no shared libs)
	# Anyone wants to do a port?
	;;
 irix5* | irix6* | nonstopux*)
	case $cc_basename in
	 CC*)
	 lt_prog_compiler_wl_CXX='-Wl,'
	 lt_prog_compiler_static_CXX='-non_shared'
	 # CC pic flag -KPIC is the default.
	 ;;
	 *)
	 ;;
	esac
	;;
 linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*)
	case $cc_basename in
	 KCC*)
	 # KAI C++ Compiler
	 lt_prog_compiler_wl_CXX='--backend -Wl,'
	 lt_prog_compiler_pic_CXX='-fPIC'
	 ;;
	 ecpc*)
	 # old Intel C++ for x86_64, which still supported -KPIC.
	 lt_prog_compiler_wl_CXX='-Wl,'
	 lt_prog_compiler_pic_CXX='-KPIC'
	 lt_prog_compiler_static_CXX='-static'
	 ;;
	 icpc*)
	 # Intel C++, used to be incompatible with GCC.
	 # ICC 10 doesn't accept -KPIC any more.
	 lt_prog_compiler_wl_CXX='-Wl,'
	 lt_prog_compiler_pic_CXX='-fPIC'
	 lt_prog_compiler_static_CXX='-static'
	 ;;
	 pgCC* | pgcpp*)
	 # Portland Group C++ compiler
	 lt_prog_compiler_wl_CXX='-Wl,'
	 lt_prog_compiler_pic_CXX='-fpic'
	 lt_prog_compiler_static_CXX='-Bstatic'
	 ;;
	 cxx*)
	 # Compaq C++
	 # Make sure the PIC flag is empty. It appears that all Alpha
	 # Linux and Compaq Tru64 Unix objects are PIC.
	 lt_prog_compiler_pic_CXX=
	 lt_prog_compiler_static_CXX='-non_shared'
	 ;;
	 xlc* | xlC* | bgxl[cC]* | mpixl[cC]*)
	 # IBM XL 8.0, 9.0 on PPC and BlueGene
	 lt_prog_compiler_wl_CXX='-Wl,'
	 lt_prog_compiler_pic_CXX='-qpic'
	 lt_prog_compiler_static_CXX='-qstaticlink'
	 ;;
	 *)
	 case `$CC -V 2>&1 | sed 5q` in
	 Sun\ C)
	 # Sun C++ 5.9
	 lt_prog_compiler_pic_CXX='-KPIC'
	 lt_prog_compiler_static_CXX='-Bstatic'
	 lt_prog_compiler_wl_CXX='-Qoption ld '
	 ;;
	 esac
	 ;;
	esac
	;;
 lynxos*)
	;;
 m88k*)
	;;
 mvs*)
	case $cc_basename in
	 cxx*)
	 lt_prog_compiler_pic_CXX='-W c,exportall'
	 ;;
	 *)
	 ;;
	esac
	;;
 netbsd* | netbsdelf*-gnu)
	;;
 qnx | *nto*)
 # QNX uses GNU C++, but need to define -shared option too, otherwise
 # it will coredump.
 lt_prog_compiler_pic_CXX='-fPIC -shared'
 ;;
 osf3* | osf4* | osf5*)
	case $cc_basename in
	 KCC*)
	 lt_prog_compiler_wl_CXX='--backend -Wl,'
	 ;;
	 RCC*)
	 # Rational C++ 2.4.1
	 lt_prog_compiler_pic_CXX='-pic'
	 ;;
	 cxx*)
	 # Digital/Compaq C++
	 lt_prog_compiler_wl_CXX='-Wl,'
	 # Make sure the PIC flag is empty. It appears that all Alpha
	 # Linux and Compaq Tru64 Unix objects are PIC.
	 lt_prog_compiler_pic_CXX=
	 lt_prog_compiler_static_CXX='-non_shared'
	 ;;
	 *)
	 ;;
	esac
	;;
 psos*)
	;;
 solaris*)
	case $cc_basename in
	 CC* | sunCC*)
	 # Sun C++ 4.2, 5.x and Centerline C++
	 lt_prog_compiler_pic_CXX='-KPIC'
	 lt_prog_compiler_static_CXX='-Bstatic'
	 lt_prog_compiler_wl_CXX='-Qoption ld '
	 ;;
	 gcx*)
	 # Green Hills C++ Compiler
	 lt_prog_compiler_pic_CXX='-PIC'
	 ;;
	 *)
	 ;;
	esac
	;;
 sunos4*)
	case $cc_basename in
	 CC*)
	 # Sun C++ 4.x
	 lt_prog_compiler_pic_CXX='-pic'
	 lt_prog_compiler_static_CXX='-Bstatic'
	 ;;
	 lcc*)
	 # Lucid
	 lt_prog_compiler_pic_CXX='-pic'
	 ;;
	 *)
	 ;;
	esac
	;;
 sysv5* | unixware* | sco3.2v5* | sco5v6* | OpenUNIX*)
	case $cc_basename in
	 CC*)
	 lt_prog_compiler_wl_CXX='-Wl,'
	 lt_prog_compiler_pic_CXX='-KPIC'
	 lt_prog_compiler_static_CXX='-Bstatic'
	 ;;
	esac
	;;
 tandem*)
	case $cc_basename in
	 NCC*)
	 # NonStop-UX NCC 3.20
	 lt_prog_compiler_pic_CXX='-KPIC'
	 ;;
	 *)
	 ;;
	esac
	;;
 vxworks*)
	;;
 *)
	lt_prog_compiler_can_build_shared_CXX=no
	;;
 esac
 fi

case $host_os in
 # For platforms that do not support PIC, -DPIC is meaningless:
 djgpp)
 lt_prog_compiler_pic_CXX=
 ;;
 *)
 lt_prog_compiler_pic_CXX="$lt_prog_compiler_pic_CXX -DPIC"
 ;;
esac

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $compiler option to produce PIC" >&5
$as_echo_n "checking for $compiler option to produce PIC... " >&6; }
if ${lt_cv_prog_compiler_pic_CXX+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_prog_compiler_pic_CXX=$lt_prog_compiler_pic_CXX
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_pic_CXX" >&5
$as_echo "$lt_cv_prog_compiler_pic_CXX" >&6; }
lt_prog_compiler_pic_CXX=$lt_cv_prog_compiler_pic_CXX

#
Check to make sure the PIC flag actually works.
#
if test -n "$lt_prog_compiler_pic_CXX"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler PIC flag $lt_prog_compiler_pic_CXX works" >&5
$as_echo_n "checking if $compiler PIC flag $lt_prog_compiler_pic_CXX works... " >&6; }
if ${lt_cv_prog_compiler_pic_works_CXX+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_prog_compiler_pic_works_CXX=no
 ac_outfile=conftest.$ac_objext
 echo "$lt_simple_compile_test_code" > conftest.$ac_ext
 lt_compiler_flag="$lt_prog_compiler_pic_CXX -DPIC" ## exclude from sc_useless_quotes_in_assignment
 # Insert the option either (1) after the last *FLAGS variable, or
 # (2) before a word containing "conftest.", or (3) at the end.
 # Note that $ac_compile itself does not contain backslashes and begins
 # with a dollar sign (not a hyphen), so the echo should work correctly.
 # The option is referenced via a variable to avoid confusing sed.
 lt_compile=`echo "$ac_compile" | $SED \
 -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
 -e 's: [^]*conftest\.: $lt_compiler_flag&:; t' \
 -e 's:$: $lt_compiler_flag:'`
 (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5)
 (eval "$lt_compile" 2>conftest.err)
 ac_status=$?
 cat conftest.err >&5
 echo "$as_me:$LINENO: \$? = $ac_status" >&5
 if (exit $ac_status) && test -s "$ac_outfile"; then
 # The compiler can only warn and ignore the option if not recognized
 # So say no if there are warnings other than the usual output.
 $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' >conftest.exp
 $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then
 lt_cv_prog_compiler_pic_works_CXX=yes
 fi
 fi
 $RM conftest*

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_pic_works_CXX" >&5
$as_echo "$lt_cv_prog_compiler_pic_works_CXX" >&6; }

if test yes = "$lt_cv_prog_compiler_pic_works_CXX"; then
 case $lt_prog_compiler_pic_CXX in
 "" | " "*) ;;
 *) lt_prog_compiler_pic_CXX=" $lt_prog_compiler_pic_CXX" ;;
 esac
else
 lt_prog_compiler_pic_CXX=
 lt_prog_compiler_can_build_shared_CXX=no
fi

fi

#
Check to make sure the static flag actually works.
#
wl=$lt_prog_compiler_wl_CXX eval lt_tmp_static_flag=\"$lt_prog_compiler_static_CXX\"
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler static flag $lt_tmp_static_flag works" >&5
$as_echo_n "checking if $compiler static flag $lt_tmp_static_flag works... " >&6; }
if ${lt_cv_prog_compiler_static_works_CXX+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_prog_compiler_static_works_CXX=no
 save_LDFLAGS=$LDFLAGS
 LDFLAGS="$LDFLAGS $lt_tmp_static_flag"
 echo "$lt_simple_link_test_code" > conftest.$ac_ext
 if (eval $ac_link 2>conftest.err) && test -s conftest$ac_exeext; then
 # The linker can only warn and ignore the option if not recognized
 # So say no if there are warnings
 if test -s conftest.err; then
 # Append any errors to the config.log.
 cat conftest.err 1>&5
 $ECHO "$_lt_linker_boilerplate" | $SED '/^$/d' > conftest.exp
 $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
 if diff conftest.exp conftest.er2 >/dev/null; then
 lt_cv_prog_compiler_static_works_CXX=yes
 fi
 else
 lt_cv_prog_compiler_static_works_CXX=yes
 fi
 fi
 $RM -r conftest*
 LDFLAGS=$save_LDFLAGS

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_static_works_CXX" >&5
$as_echo "$lt_cv_prog_compiler_static_works_CXX" >&6; }

if test yes = "$lt_cv_prog_compiler_static_works_CXX"; then
 :
else
 lt_prog_compiler_static_CXX=
fi

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler supports -c -o file.$ac_objext" >&5
$as_echo_n "checking if $compiler supports -c -o file.$ac_objext... " >&6; }
if ${lt_cv_prog_compiler_c_o_CXX+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_prog_compiler_c_o_CXX=no
 $RM -r conftest 2>/dev/null
 mkdir conftest
 cd conftest
 mkdir out
 echo "$lt_simple_compile_test_code" > conftest.$ac_ext

 lt_compiler_flag="-o out/conftest2.$ac_objext"
 # Insert the option either (1) after the last *FLAGS variable, or
 # (2) before a word containing "conftest.", or (3) at the end.
 # Note that $ac_compile itself does not contain backslashes and begins
 # with a dollar sign (not a hyphen), so the echo should work correctly.
 lt_compile=`echo "$ac_compile" | $SED \
 -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
 -e 's: [^]*conftest\.: $lt_compiler_flag&:; t' \
 -e 's:$: $lt_compiler_flag:'`
 (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5)
 (eval "$lt_compile" 2>out/conftest.err)
 ac_status=$?
 cat out/conftest.err >&5
 echo "$as_me:$LINENO: \$? = $ac_status" >&5
 if (exit $ac_status) && test -s out/conftest2.$ac_objext
 then
 # The compiler can only warn and ignore the option if not recognized
 # So say no if there are warnings
 $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' > out/conftest.exp
 $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2
 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then
 lt_cv_prog_compiler_c_o_CXX=yes
 fi
 fi
 chmod u+w . 2>&5
 $RM conftest*
 # SGI C++ compiler will create directory out/ii_files/ for
 # template instantiation
 test -d out/ii_files && $RM out/ii_files/* && rmdir out/ii_files
 $RM out/* && rmdir out
 cd ..
 $RM -r conftest
 $RM conftest*

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_c_o_CXX" >&5
$as_echo "$lt_cv_prog_compiler_c_o_CXX" >&6; }

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler supports -c -o file.$ac_objext" >&5
$as_echo_n "checking if $compiler supports -c -o file.$ac_objext... " >&6; }
if ${lt_cv_prog_compiler_c_o_CXX+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_prog_compiler_c_o_CXX=no
 $RM -r conftest 2>/dev/null
 mkdir conftest
 cd conftest
 mkdir out
 echo "$lt_simple_compile_test_code" > conftest.$ac_ext

 lt_compiler_flag="-o out/conftest2.$ac_objext"
 # Insert the option either (1) after the last *FLAGS variable, or
 # (2) before a word containing "conftest.", or (3) at the end.
 # Note that $ac_compile itself does not contain backslashes and begins
 # with a dollar sign (not a hyphen), so the echo should work correctly.
 lt_compile=`echo "$ac_compile" | $SED \
 -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
 -e 's: [^]*conftest\.: $lt_compiler_flag&:; t' \
 -e 's:$: $lt_compiler_flag:'`
 (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5)
 (eval "$lt_compile" 2>out/conftest.err)
 ac_status=$?
 cat out/conftest.err >&5
 echo "$as_me:$LINENO: \$? = $ac_status" >&5
 if (exit $ac_status) && test -s out/conftest2.$ac_objext
 then
 # The compiler can only warn and ignore the option if not recognized
 # So say no if there are warnings
 $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' > out/conftest.exp
 $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2
 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then
 lt_cv_prog_compiler_c_o_CXX=yes
 fi
 fi
 chmod u+w . 2>&5
 $RM conftest*
 # SGI C++ compiler will create directory out/ii_files/ for
 # template instantiation
 test -d out/ii_files && $RM out/ii_files/* && rmdir out/ii_files
 $RM out/* && rmdir out
 cd ..
 $RM -r conftest
 $RM conftest*

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_c_o_CXX" >&5
$as_echo "$lt_cv_prog_compiler_c_o_CXX" >&6; }

hard_links=nottested
if test no = "$lt_cv_prog_compiler_c_o_CXX" && test no != "$need_locks"; then
 # do not overwrite the value of need_locks provided by the user
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking if we can lock with hard links" >&5
$as_echo_n "checking if we can lock with hard links... " >&6; }
 hard_links=yes
 $RM conftest*
 ln conftest.a conftest.b 2>/dev/null && hard_links=no
 touch conftest.a
 ln conftest.a conftest.b 2>&5 || hard_links=no
 ln conftest.a conftest.b 2>/dev/null && hard_links=no
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $hard_links" >&5
$as_echo "$hard_links" >&6; }
 if test no = "$hard_links"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: '$CC' does not support '-c -o', so 'make -j' may be unsafe" >&5
$as_echo "$as_me: WARNING: '$CC' does not support '-c -o', so 'make -j' may be unsafe" >&2;}
 need_locks=warn
 fi
else
 need_locks=no
fi

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the $compiler linker ($LD) supports shared libraries" >&5
$as_echo_n "checking whether the $compiler linker ($LD) supports shared libraries... " >&6; }

 export_symbols_cmds_CXX='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols'
 exclude_expsyms_CXX='_GLOBAL_OFFSET_TABLE_|_GLOBAL__F[ID]_.*'
 case $host_os in
 aix[4-9]*)
 # If we're using GNU nm, then we don't want the "-C" option.
 # -C means demangle to GNU nm, but means don't demangle to AIX nm.
 # Without the "-l" option, or with the "-B" option, AIX nm treats
 # weak defined symbols like other global defined symbols, whereas
 # GNU nm marks them as "W".
 # While the 'weak' keyword is ignored in the Export File, we need
 # it in the Import File for the 'aix-soname' feature, so we have
 # to replace the "-B" option with "-P" for AIX nm.
 if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then
 export_symbols_cmds_CXX='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && (substr(\$ 3,1,1) != ".")) { if (\$ 2 == "W") { print \$ 3 " weak" } else { print \$ 3 } } }'\'' | sort -u > $export_symbols'
 else
 export_symbols_cmds_CXX='`func_echo_all $NM | $SED -e '\''s/B\([^B]*\)$/P\1/'\''` -PCpgl $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W") || (\$ 2 == "V") || (\$ 2 == "Z")) && (substr(\$ 1,1,1) != ".")) { if ((\$ 2 == "W") || (\$ 2 == "V") || (\$ 2 == "Z")) { print \$ 1 " weak" } else { print \$ 1 } } }'\'' | sort -u > $export_symbols'
 fi
 ;;
 pw32*)
 export_symbols_cmds_CXX=$ltdll_cmds
 ;;
 cygwin* | mingw* | cegcc*)
 case $cc_basename in
 cl*)
 exclude_expsyms_CXX='_NULL_IMPORT_DESCRIPTOR|_IMPORT_DESCRIPTOR_.*'
 ;;
 *)
 export_symbols_cmds_CXX='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[BCDGRS][]/s/.*[]\([^]*\)/\1 DATA/;s/^.*[]__nm__\([^]*\)[][^]*/\1 DATA/;/^I[]/d;/^[AITW][]/s/.* //'\'' | sort | uniq > $export_symbols'
 exclude_expsyms_CXX='[_]+GLOBAL_OFFSET_TABLE_|[_]+GLOBAL__[FID]_.*|[_]+head_[A-Za-z0-9_]+_dll|[A-Za-z0-9_]+_dll_iname'
 ;;
 esac
 ;;
 linux* | k*bsd*-gnu | gnu*)
 link_all_deplibs_CXX=no
 ;;
 *)
 export_symbols_cmds_CXX='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols'
 ;;
 esac

{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ld_shlibs_CXX" >&5
$as_echo "$ld_shlibs_CXX" >&6; }
test no = "$ld_shlibs_CXX" && can_build_shared=no

with_gnu_ld_CXX=$with_gnu_ld

#
Do we need to explicitly link libc?
#
case "x$archive_cmds_need_lc_CXX" in
x|xyes)
 # Assume -lc should be added
 archive_cmds_need_lc_CXX=yes

 if test yes,yes = "$GCC,$enable_shared"; then
 case $archive_cmds_CXX in
 '~')
 # FIXME: we may have to deal with multi-command sequences.
 ;;
 '$CC '*)
 # Test whether the compiler implicitly links with -lc since on some
 # systems, -lgcc has to come before -lc. If gcc already passes -lc
 # to ld, don't add -lc before -lgcc.
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether -lc should be explicitly linked in" >&5
$as_echo_n "checking whether -lc should be explicitly linked in... " >&6; }
if ${lt_cv_archive_cmds_need_lc_CXX+:} false; then :
 $as_echo_n "(cached) " >&6
else
 $RM conftest*
	echo "$lt_simple_compile_test_code" > conftest.$ac_ext

	if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5
 (eval $ac_compile) 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; } 2>conftest.err; then
	 soname=conftest
	 lib=conftest
	 libobjs=conftest.$ac_objext
	 deplibs=
	 wl=$lt_prog_compiler_wl_CXX
	 pic_flag=$lt_prog_compiler_pic_CXX
	 compiler_flags=-v
	 linker_flags=-v
	 verstring=
	 output_objdir=.
	 libname=conftest
	 lt_save_allow_undefined_flag=$allow_undefined_flag_CXX
	 allow_undefined_flag_CXX=
	 if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$archive_cmds_CXX 2\>\&1 \| $GREP \" -lc \" \>/dev/null 2\>\&1\""; } >&5
 (eval $archive_cmds_CXX 2\>\&1 \| $GREP \" -lc \" \>/dev/null 2\>\&1) 2>&5
 ac_status=$?
 $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
 test $ac_status = 0; }
	 then
	 lt_cv_archive_cmds_need_lc_CXX=no
	 else
	 lt_cv_archive_cmds_need_lc_CXX=yes
	 fi
	 allow_undefined_flag_CXX=$lt_save_allow_undefined_flag
	else
	 cat conftest.err 1>&5
	fi
	$RM conftest*

fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_archive_cmds_need_lc_CXX" >&5
$as_echo "$lt_cv_archive_cmds_need_lc_CXX" >&6; }
 archive_cmds_need_lc_CXX=$lt_cv_archive_cmds_need_lc_CXX
 ;;
 esac
 fi
 ;;
esac

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking dynamic linker characteristics" >&5
$as_echo_n "checking dynamic linker characteristics... " >&6; }

library_names_spec=
libname_spec='lib$name'
soname_spec=
shrext_cmds=.so
postinstall_cmds=
postuninstall_cmds=
finish_cmds=
finish_eval=
shlibpath_var=
shlibpath_overrides_runpath=unknown
version_type=none
dynamic_linker="$host_os ld.so"
sys_lib_dlsearch_path_spec="/lib /usr/lib"
need_lib_prefix=unknown
hardcode_into_libs=no

when you set need_version to no, make sure it does not cause -set_version
flags to be left without arguments
need_version=unknown

case $host_os in
aix3*)
 version_type=linux # correct to gnu/linux during the next big refactor
 library_names_spec='$libname$release$shared_ext$versuffix $libname.a'
 shlibpath_var=LIBPATH

 # AIX 3 has no versioning support, so we append a major version to the name.
 soname_spec='$libname$release$shared_ext$major'
 ;;

aix[4-9]*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 hardcode_into_libs=yes
 if test ia64 = "$host_cpu"; then
 # AIX 5 supports IA64
 library_names_spec='$libname$release$shared_ext$major $libname$release$shared_ext$versuffix $libname$shared_ext'
 shlibpath_var=LD_LIBRARY_PATH
 else
 # With GCC up to 2.95.x, collect2 would create an import file
 # for dependence libraries. The import file would start with
 # the line '#! .'. This would cause the generated library to
 # depend on '.', always an invalid library. This was fixed in
 # development snapshots of GCC prior to 3.0.
 case $host_os in
 aix4 | aix4.[01] | aix4.[01].*)
 if { echo '#if __GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 97)'
	 echo ' yes '
	 echo '#endif'; } | $CC -E - | $GREP yes > /dev/null; then
	:
 else
	can_build_shared=no
 fi
 ;;
 esac
 # Using Import Files as archive members, it is possible to support
 # filename-based versioning of shared library archives on AIX. While
 # this would work for both with and without runtime linking, it will
 # prevent static linking of such archives. So we do filename-based
 # shared library versioning with .so extension only, which is used
 # when both runtime linking and shared linking is enabled.
 # Unfortunately, runtime linking may impact performance, so we do
 # not want this to be the default eventually. Also, we use the
 # versioned .so libs for executables only if there is the -brtl
 # linker flag in LDFLAGS as well, or --with-aix-soname=svr4 only.
 # To allow for filename-based versioning support, we need to create
 # libNAME.so.V as an archive file, containing:
 # *) an Import File, referring to the versioned filename of the
 # archive as well as the shared archive member, telling the
 # bitwidth (32 or 64) of that shared object, and providing the
 # list of exported symbols of that shared object, eventually
 # decorated with the 'weak' keyword
 # *) the shared object with the F_LOADONLY flag set, to really avoid
 # it being seen by the linker.
 # At run time we better use the real file rather than another symlink,
 # but for link time we create the symlink libNAME.so -> libNAME.so.V

 case $with_aix_soname,$aix_use_runtimelinking in
 # AIX (on Power*) has no versioning support, so currently we cannot hardcode correct
 # soname into executable. Probably we can add versioning support to
 # collect2, so additional links can be useful in future.
 aix,yes) # traditional libtool
 dynamic_linker='AIX unversionable lib.so'
 # If using run time linking (on AIX 4.2 or later) use lib<name>.so
 # instead of lib<name>.a to let people know that these are not
 # typical AIX shared libraries.
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 ;;
 aix,no) # traditional AIX only
 dynamic_linker='AIX lib.a(lib.so.V)'
 # We preserve .a as extension for shared libraries through AIX4.2
 # and later when we are not doing run time linking.
 library_names_spec='$libname$release.a $libname.a'
 soname_spec='$libname$release$shared_ext$major'
 ;;
 svr4,*) # full svr4 only
 dynamic_linker="AIX lib.so.V($shared_archive_member_spec.o)"
 library_names_spec='$libname$release$shared_ext$major $libname$shared_ext'
 # We do not specify a path in Import Files, so LIBPATH fires.
 shlibpath_overrides_runpath=yes
 ;;
 *,yes) # both, prefer svr4
 dynamic_linker="AIX lib.so.V($shared_archive_member_spec.o), lib.a(lib.so.V)"
 library_names_spec='$libname$release$shared_ext$major $libname$shared_ext'
 # unpreferred sharedlib libNAME.a needs extra handling
 postinstall_cmds='test -n "$linkname" || linkname="$realname"~func_stripname "" ".so" "$linkname"~$install_shared_prog "$dir/$func_stripname_result.$libext" "$destdir/$func_stripname_result.$libext"~test -z "$tstripme" || test -z "$striplib" || $striplib "$destdir/$func_stripname_result.$libext"'
 postuninstall_cmds='for n in $library_names $old_library; do :; done~func_stripname "" ".so" "$n"~test "$func_stripname_result" = "$n" || func_append rmfiles " $odir/$func_stripname_result.$libext"'
 # We do not specify a path in Import Files, so LIBPATH fires.
 shlibpath_overrides_runpath=yes
 ;;
 *,no) # both, prefer aix
 dynamic_linker="AIX lib.a(lib.so.V), lib.so.V($shared_archive_member_spec.o)"
 library_names_spec='$libname$release.a $libname.a'
 soname_spec='$libname$release$shared_ext$major'
 # unpreferred sharedlib libNAME.so.V and symlink libNAME.so need extra handling
 postinstall_cmds='test -z "$dlname" || $install_shared_prog $dir/$dlname $destdir/$dlname~test -z "$tstripme" || test -z "$striplib" || $striplib $destdir/$dlname~test -n "$linkname" || linkname=$realname~func_stripname "" ".a" "$linkname"~(cd "$destdir" && $LN_S -f $dlname $func_stripname_result.so)'
 postuninstall_cmds='test -z "$dlname" || func_append rmfiles " $odir/$dlname"~for n in $old_library $library_names; do :; done~func_stripname "" ".a" "$n"~func_append rmfiles " $odir/$func_stripname_result.so"'
 ;;
 esac
 shlibpath_var=LIBPATH
 fi
 ;;

amigaos*)
 case $host_cpu in
 powerpc)
 # Since July 2007 AmigaOS4 officially supports .so libraries.
 # When compiling the executable, add -use-dynld -Lsobjs: to the compileline.
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 ;;
 m68k)
 library_names_spec='$libname.ixlibrary $libname.a'
 # Create ${libname}_ixlibrary.a entries in /sys/libs.
 finish_eval='for lib in `ls $libdir/*.ixlibrary 2>/dev/null`; do libname=`func_echo_all "$lib" | $SED '\''s%^.*/\([^/]*\)\.ixlibrary$%\1%'\''`; $RM /sys/libs/${libname}_ixlibrary.a; $show "cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a"; cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a || exit 1; done'
 ;;
 esac
 ;;

beos*)
 library_names_spec='$libname$shared_ext'
 dynamic_linker="$host_os ld.so"
 shlibpath_var=LIBRARY_PATH
 ;;

bsdi[45]*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 finish_cmds='PATH="\$PATH:/sbin" ldconfig $libdir'
 shlibpath_var=LD_LIBRARY_PATH
 sys_lib_search_path_spec="/shlib /usr/lib /usr/X11/lib /usr/contrib/lib /lib /usr/local/lib"
 sys_lib_dlsearch_path_spec="/shlib /usr/lib /usr/local/lib"
 # the default ld.so.conf also contains /usr/contrib/lib and
 # /usr/X11R6/lib (/usr/X11 is a link to /usr/X11R6), but let us allow
 # libtool to hard-code these into programs
 ;;

cygwin* | mingw* | pw32* | cegcc*)
 version_type=windows
 shrext_cmds=.dll
 need_version=no
 need_lib_prefix=no

 case $GCC,$cc_basename in
 yes,*)
 # gcc
 library_names_spec='$libname.dll.a'
 # DLL is installed to $(libdir)/../bin by postinstall_cmds
 postinstall_cmds='base_file=`basename \$file`~
 dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; echo \$dlname'\''`~
 dldir=$destdir/`dirname \$dlpath`~
 test -d \$dldir || mkdir -p \$dldir~
 $install_prog $dir/$dlname \$dldir/$dlname~
 chmod a+x \$dldir/$dlname~
 if test -n '\''$stripme'\'' && test -n '\''$striplib'\''; then
 eval '\''$striplib \$dldir/$dlname'\'' || exit \$?;
 fi'
 postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~
 dlpath=$dir/\$dldll~
 $RM \$dlpath'
 shlibpath_overrides_runpath=yes

 case $host_os in
 cygwin*)
 # Cygwin DLLs use 'cyg' prefix rather than 'lib'
 soname_spec='`echo $libname | sed -e 's/^lib/cyg/'``echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext'

 ;;
 mingw* | cegcc*)
 # MinGW DLLs use traditional 'lib' prefix
 soname_spec='$libname`echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext'
 ;;
 pw32*)
 # pw32 DLLs use 'pw' prefix rather than 'lib'
 library_names_spec='`echo $libname | sed -e 's/^lib/pw/'``echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext'
 ;;
 esac
 dynamic_linker='Win32 ld.exe'
 ;;

 ,cl)
 # Native MSVC
 libname_spec='$name'
 soname_spec='$libname`echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext'
 library_names_spec='$libname.dll.lib'

 case $build_os in
 mingw*)
 sys_lib_search_path_spec=
 lt_save_ifs=$IFS
 IFS=';'
 for lt_path in $LIB
 do
 IFS=$lt_save_ifs
 # Let DOS variable expansion print the short 8.3 style file name.
 lt_path=`cd "$lt_path" 2>/dev/null && cmd //C "for %i in (".") do @echo %~si"`
 sys_lib_search_path_spec="$sys_lib_search_path_spec $lt_path"
 done
 IFS=$lt_save_ifs
 # Convert to MSYS style.
 sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | sed -e 's|\\\\|/|g' -e 's| \\([a-zA-Z]\\):| /\\1|g' -e 's|^ ||'`
 ;;
 cygwin*)
 # Convert to unix form, then to dos form, then back to unix form
 # but this time dos style (no spaces!) so that the unix form looks
 # like /cygdrive/c/PROGRA~1:/cygdr...
 sys_lib_search_path_spec=`cygpath --path --unix "$LIB"`
 sys_lib_search_path_spec=`cygpath --path --dos "$sys_lib_search_path_spec" 2>/dev/null`
 sys_lib_search_path_spec=`cygpath --path --unix "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"`
 ;;
 *)
 sys_lib_search_path_spec=$LIB
 if $ECHO "$sys_lib_search_path_spec" | $GREP ';[c-zC-Z]:/' >/dev/null; then
 # It is most probably a Windows format PATH.
 sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e 's/;/ /g'`
 else
 sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"`
 fi
 # FIXME: find the short name or the path components, as spaces are
 # common. (e.g. "Program Files" -> "PROGRA~1")
 ;;
 esac

 # DLL is installed to $(libdir)/../bin by postinstall_cmds
 postinstall_cmds='base_file=`basename \$file`~
 dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; echo \$dlname'\''`~
 dldir=$destdir/`dirname \$dlpath`~
 test -d \$dldir || mkdir -p \$dldir~
 $install_prog $dir/$dlname \$dldir/$dlname'
 postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~
 dlpath=$dir/\$dldll~
 $RM \$dlpath'
 shlibpath_overrides_runpath=yes
 dynamic_linker='Win32 link.exe'
 ;;

 *)
 # Assume MSVC wrapper
 library_names_spec='$libname`echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext $libname.lib'
 dynamic_linker='Win32 ld.exe'
 ;;
 esac
 # FIXME: first we should search . and the directory the executable is in
 shlibpath_var=PATH
 ;;

darwin* | rhapsody*)
 dynamic_linker="$host_os dyld"
 version_type=darwin
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$major$shared_ext $libname$shared_ext'
 soname_spec='$libname$release$major$shared_ext'
 shlibpath_overrides_runpath=yes
 shlibpath_var=DYLD_LIBRARY_PATH
 shrext_cmds='`test .$module = .yes && echo .so || echo .dylib`'

 sys_lib_dlsearch_path_spec='/usr/local/lib /lib /usr/lib'
 ;;

dgux*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 ;;

freebsd* | dragonfly*)
 # DragonFly does not have aout. When/if they implement a new
 # versioning mechanism, adjust this.
 if test -x /usr/bin/objformat; then
 objformat=`/usr/bin/objformat`
 else
 case $host_os in
 freebsd[23].*) objformat=aout ;;
 *) objformat=elf ;;
 esac
 fi
 version_type=freebsd-$objformat
 case $version_type in
 freebsd-elf*)
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 need_version=no
 need_lib_prefix=no
 ;;
 freebsd-*)
 library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix'
 need_version=yes
 ;;
 esac
 shlibpath_var=LD_LIBRARY_PATH
 case $host_os in
 freebsd2.*)
 shlibpath_overrides_runpath=yes
 ;;
 freebsd3.[01]* | freebsdelf3.[01]*)
 shlibpath_overrides_runpath=yes
 hardcode_into_libs=yes
 ;;
 freebsd3.[2-9]* | freebsdelf3.[2-9]* | \
 freebsd4.[0-5] | freebsdelf4.[0-5] | freebsd4.1.1 | freebsdelf4.1.1)
 shlibpath_overrides_runpath=no
 hardcode_into_libs=yes
 ;;
 *) # from 4.6 on, and DragonFly
 shlibpath_overrides_runpath=yes
 hardcode_into_libs=yes
 ;;
 esac
 ;;

haiku*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 dynamic_linker="$host_os runtime_loader"
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LIBRARY_PATH
 shlibpath_overrides_runpath=no
 sys_lib_dlsearch_path_spec='/boot/home/config/lib /boot/common/lib /boot/system/lib'
 hardcode_into_libs=yes
 ;;

hpux9* | hpux10* | hpux11*)
 # Give a soname corresponding to the major version so that dld.sl refuses to
 # link against other versions.
 version_type=sunos
 need_lib_prefix=no
 need_version=no
 case $host_cpu in
 ia64*)
 shrext_cmds='.so'
 hardcode_into_libs=yes
 dynamic_linker="$host_os dld.so"
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes # Unless +noenvvar is specified.
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 if test 32 = "$HPUX_IA64_MODE"; then
 sys_lib_search_path_spec="/usr/lib/hpux32 /usr/local/lib/hpux32 /usr/local/lib"
 sys_lib_dlsearch_path_spec=/usr/lib/hpux32
 else
 sys_lib_search_path_spec="/usr/lib/hpux64 /usr/local/lib/hpux64"
 sys_lib_dlsearch_path_spec=/usr/lib/hpux64
 fi
 ;;
 hppa*64*)
 shrext_cmds='.sl'
 hardcode_into_libs=yes
 dynamic_linker="$host_os dld.sl"
 shlibpath_var=LD_LIBRARY_PATH # How should we handle SHLIB_PATH
 shlibpath_overrides_runpath=yes # Unless +noenvvar is specified.
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 sys_lib_search_path_spec="/usr/lib/pa20_64 /usr/ccs/lib/pa20_64"
 sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec
 ;;
 *)
 shrext_cmds='.sl'
 dynamic_linker="$host_os dld.sl"
 shlibpath_var=SHLIB_PATH
 shlibpath_overrides_runpath=no # +s is required to enable SHLIB_PATH
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 ;;
 esac
 # HP-UX runs *really* slowly unless shared libraries are mode 555, ...
 postinstall_cmds='chmod 555 $lib'
 # or fails outright, so override atomically:
 install_override_mode=555
 ;;

interix[3-9]*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 dynamic_linker='Interix 3.x ld.so.1 (PE, like ELF)'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=no
 hardcode_into_libs=yes
 ;;

irix5* | irix6* | nonstopux*)
 case $host_os in
 nonstopux*) version_type=nonstopux ;;
 *)
	if test yes = "$lt_cv_prog_gnu_ld"; then
		version_type=linux # correct to gnu/linux during the next big refactor
	else
		version_type=irix
	fi ;;
 esac
 need_lib_prefix=no
 need_version=no
 soname_spec='$libname$release$shared_ext$major'
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$release$shared_ext $libname$shared_ext'
 case $host_os in
 irix5* | nonstopux*)
 libsuff= shlibsuff=
 ;;
 *)
 case $LD in # libtool.m4 will add one of these switches to LD
 -32|"-32 "|*-melf32bsmip|*"-melf32bsmip ")
 libsuff= shlibsuff= libmagic=32-bit;;
 -n32|"-n32 "|*-melf32bmipn32|*"-melf32bmipn32 ")
 libsuff=32 shlibsuff=N32 libmagic=N32;;
 -64|"-64 "|*-melf64bmip|*"-melf64bmip ")
 libsuff=64 shlibsuff=64 libmagic=64-bit;;
 *) libsuff= shlibsuff= libmagic=never-match;;
 esac
 ;;
 esac
 shlibpath_var=LD_LIBRARY${shlibsuff}_PATH
 shlibpath_overrides_runpath=no
 sys_lib_search_path_spec="/usr/lib$libsuff /lib$libsuff /usr/local/lib$libsuff"
 sys_lib_dlsearch_path_spec="/usr/lib$libsuff /lib$libsuff"
 hardcode_into_libs=yes
 ;;

No shared lib support for Linux oldld, aout, or coff.
linux*oldld* | linux*aout* | linux*coff*)
 dynamic_linker=no
 ;;

linux*android*)
 version_type=none # Android doesn't support versioned libraries.
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext'
 soname_spec='$libname$release$shared_ext'
 finish_cmds=
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes

 # This implies no fast_install, which is unacceptable.
 # Some rework will be needed to allow for fast_install
 # before this can be enabled.
 hardcode_into_libs=yes

 dynamic_linker='Android linker'
 # Don't embed -rpath directories since the linker doesn't support them.
 hardcode_libdir_flag_spec_CXX='-L$libdir'
 ;;

This must be glibc/ELF.
linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 finish_cmds='PATH="\$PATH:/sbin" ldconfig -n $libdir'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=no

 # Some binutils ld are patched to set DT_RUNPATH
 if ${lt_cv_shlibpath_overrides_runpath+:} false; then :
 $as_echo_n "(cached) " >&6
else
 lt_cv_shlibpath_overrides_runpath=no
 save_LDFLAGS=$LDFLAGS
 save_libdir=$libdir
 eval "libdir=/foo; wl=\"$lt_prog_compiler_wl_CXX\"; \
	 LDFLAGS=\"\$LDFLAGS $hardcode_libdir_flag_spec_CXX\""
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_cxx_try_link "$LINENO"; then :
 if ($OBJDUMP -p conftest$ac_exeext) 2>/dev/null | grep "RUNPATH.*$libdir" >/dev/null; then :
 lt_cv_shlibpath_overrides_runpath=yes
fi
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
 LDFLAGS=$save_LDFLAGS
 libdir=$save_libdir

fi

 shlibpath_overrides_runpath=$lt_cv_shlibpath_overrides_runpath

 # This implies no fast_install, which is unacceptable.
 # Some rework will be needed to allow for fast_install
 # before this can be enabled.
 hardcode_into_libs=yes

 # Ideally, we could use ldconfig to report *all* directores which are
 # searched for libraries, however this is still not possible. Aside from not
 # being certain /sbin/ldconfig is available, command
 # 'ldconfig -N -X -v | grep ^/' on 64bit Fedora does not report /usr/lib64,
 # even though it is searched at run-time. Try to do the best guess by
 # appending ld.so.conf contents (and includes) to the search path.
 if test -f /etc/ld.so.conf; then
 lt_ld_extra=`awk '/^include / { system(sprintf("cd /etc; cat %s 2>/dev/null", \$2)); skip = 1; } { if (!skip) print \$0; skip = 0; }' < /etc/ld.so.conf | $SED -e 's/#.*//;/^[]*hwcap[]/d;s/[:,]/ /g;s/=[^=]*$//;s/=[^=]* / /g;s/"//g;/^$/d' | tr '\n' ' '`
 sys_lib_dlsearch_path_spec="/lib /usr/lib $lt_ld_extra"
 fi

 # We used to test for /lib/ld.so.1 and disable shared libraries on
 # powerpc, because MkLinux only supported shared libraries with the
 # GNU dynamic linker. Since this was broken with cross compilers,
 # most powerpc-linux boxes support dynamic linking these days and
 # people can always --disable-shared, the test was removed, and we
 # assume the GNU/Linux dynamic linker is in use.
 dynamic_linker='GNU/Linux ld.so'
 ;;

netbsdelf*-gnu)
 version_type=linux
 need_lib_prefix=no
 need_version=no
 library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major ${libname}${shared_ext}'
 soname_spec='${libname}${release}${shared_ext}$major'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=no
 hardcode_into_libs=yes
 dynamic_linker='NetBSD ld.elf_so'
 ;;

netbsd*)
 version_type=sunos
 need_lib_prefix=no
 need_version=no
 if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then
 library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix'
 finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir'
 dynamic_linker='NetBSD (a.out) ld.so'
 else
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 dynamic_linker='NetBSD ld.elf_so'
 fi
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 hardcode_into_libs=yes
 ;;

newsos6)
 version_type=linux # correct to gnu/linux during the next big refactor
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 ;;

nto | *qnx*)
 version_type=qnx
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=no
 hardcode_into_libs=yes
 dynamic_linker='ldqnx.so'
 ;;

openbsd* | bitrig*)
 version_type=sunos
 sys_lib_dlsearch_path_spec=/usr/lib
 need_lib_prefix=no
 if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then
 need_version=no
 else
 need_version=yes
 fi
 library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix'
 finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 ;;

os2*)
 libname_spec='$name'
 version_type=windows
 shrext_cmds=.dll
 need_version=no
 need_lib_prefix=no
 # OS/2 can only load a DLL with a base name of 8 characters or less.
 soname_spec='`test -n "$os2dllname" && libname="$os2dllname";
 v=$($ECHO $release$versuffix | tr -d .-);
 n=$($ECHO $libname | cut -b -$((8 - ${#v})) | tr . _);
 $ECHO nv`$shared_ext'
 library_names_spec='${libname}_dll.$libext'
 dynamic_linker='OS/2 ld.exe'
 shlibpath_var=BEGINLIBPATH
 sys_lib_search_path_spec="/lib /usr/lib /usr/local/lib"
 sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec
 postinstall_cmds='base_file=`basename \$file`~
 dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; $ECHO \$dlname'\''`~
 dldir=$destdir/`dirname \$dlpath`~
 test -d \$dldir || mkdir -p \$dldir~
 $install_prog $dir/$dlname \$dldir/$dlname~
 chmod a+x \$dldir/$dlname~
 if test -n '\''$stripme'\'' && test -n '\''$striplib'\''; then
 eval '\''$striplib \$dldir/$dlname'\'' || exit \$?;
 fi'
 postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; $ECHO \$dlname'\''`~
 dlpath=$dir/\$dldll~
 $RM \$dlpath'
 ;;

osf3* | osf4* | osf5*)
 version_type=osf
 need_lib_prefix=no
 need_version=no
 soname_spec='$libname$release$shared_ext$major'
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 shlibpath_var=LD_LIBRARY_PATH
 sys_lib_search_path_spec="/usr/shlib /usr/ccs/lib /usr/lib/cmplrs/cc /usr/lib /usr/local/lib /var/shlib"
 sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec
 ;;

rdos*)
 dynamic_linker=no
 ;;

solaris*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 hardcode_into_libs=yes
 # ldd complains unless libraries are executable
 postinstall_cmds='chmod +x $lib'
 ;;

sunos4*)
 version_type=sunos
 library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix'
 finish_cmds='PATH="\$PATH:/usr/etc" ldconfig $libdir'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 if test yes = "$with_gnu_ld"; then
 need_lib_prefix=no
 fi
 need_version=yes
 ;;

sysv4 | sysv4.3*)
 version_type=linux # correct to gnu/linux during the next big refactor
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 case $host_vendor in
 sni)
 shlibpath_overrides_runpath=no
 need_lib_prefix=no
 runpath_var=LD_RUN_PATH
 ;;
 siemens)
 need_lib_prefix=no
 ;;
 motorola)
 need_lib_prefix=no
 need_version=no
 shlibpath_overrides_runpath=no
 sys_lib_search_path_spec='/lib /usr/lib /usr/ccs/lib'
 ;;
 esac
 ;;

sysv4*MP*)
 if test -d /usr/nec; then
 version_type=linux # correct to gnu/linux during the next big refactor
 library_names_spec='$libname$shared_ext.$versuffix $libname$shared_ext.$major $libname$shared_ext'
 soname_spec='$libname$shared_ext.$major'
 shlibpath_var=LD_LIBRARY_PATH
 fi
 ;;

sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*)
 version_type=sco
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 hardcode_into_libs=yes
 if test yes = "$with_gnu_ld"; then
 sys_lib_search_path_spec='/usr/local/lib /usr/gnu/lib /usr/ccs/lib /usr/lib /lib'
 else
 sys_lib_search_path_spec='/usr/ccs/lib /usr/lib'
 case $host_os in
 sco3.2v5*)
 sys_lib_search_path_spec="$sys_lib_search_path_spec /lib"
	;;
 esac
 fi
 sys_lib_dlsearch_path_spec='/usr/lib'
 ;;

tpf*)
 # TPF is a cross-target only. Preferred cross-host = GNU/Linux.
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=no
 hardcode_into_libs=yes
 ;;

uts4*)
 version_type=linux # correct to gnu/linux during the next big refactor
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 ;;

*)
 dynamic_linker=no
 ;;
esac
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $dynamic_linker" >&5
$as_echo "$dynamic_linker" >&6; }
test no = "$dynamic_linker" && can_build_shared=no

variables_saved_for_relink="PATH $shlibpath_var $runpath_var"
if test yes = "$GCC"; then
 variables_saved_for_relink="$variables_saved_for_relink GCC_EXEC_PREFIX COMPILER_PATH LIBRARY_PATH"
fi

if test set = "${lt_cv_sys_lib_search_path_spec+set}"; then
 sys_lib_search_path_spec=$lt_cv_sys_lib_search_path_spec
fi

if test set = "${lt_cv_sys_lib_dlsearch_path_spec+set}"; then
 sys_lib_dlsearch_path_spec=$lt_cv_sys_lib_dlsearch_path_spec
fi

remember unaugmented sys_lib_dlsearch_path content for libtool script decls...
configure_time_dlsearch_path=$sys_lib_dlsearch_path_spec

... but it needs LT_SYS_LIBRARY_PATH munging for other configure-time code
func_munge_path_list sys_lib_dlsearch_path_spec "$LT_SYS_LIBRARY_PATH"

to be used as default LT_SYS_LIBRARY_PATH value in generated libtool
configure_time_lt_sys_library_path=$LT_SYS_LIBRARY_PATH

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to hardcode library paths into programs" >&5
$as_echo_n "checking how to hardcode library paths into programs... " >&6; }
hardcode_action_CXX=
if test -n "$hardcode_libdir_flag_spec_CXX" ||
 test -n "$runpath_var_CXX" ||
 test yes = "$hardcode_automatic_CXX"; then

 # We can hardcode non-existent directories.
 if test no != "$hardcode_direct_CXX" &&
 # If the only mechanism to avoid hardcoding is shlibpath_var, we
 # have to relink, otherwise we might link with an installed library
 # when we should be linking with a yet-to-be-installed one
 ## test no != "$_LT_TAGVAR(hardcode_shlibpath_var, CXX)" &&
 test no != "$hardcode_minus_L_CXX"; then
 # Linking always hardcodes the temporary library directory.
 hardcode_action_CXX=relink
 else
 # We can link without hardcoding, and we can hardcode nonexisting dirs.
 hardcode_action_CXX=immediate
 fi
else
 # We cannot hardcode anything, or else we can only hardcode existing
 # directories.
 hardcode_action_CXX=unsupported
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $hardcode_action_CXX" >&5
$as_echo "$hardcode_action_CXX" >&6; }

if test relink = "$hardcode_action_CXX" ||
 test yes = "$inherit_rpath_CXX"; then
 # Fast installation is not supported
 enable_fast_install=no
elif test yes = "$shlibpath_overrides_runpath" ||
 test no = "$enable_shared"; then
 # Fast installation is not necessary
 enable_fast_install=needless
fi

 fi # test -n "$compiler"

 CC=$lt_save_CC
 CFLAGS=$lt_save_CFLAGS
 LDCXX=$LD
 LD=$lt_save_LD
 GCC=$lt_save_GCC
 with_gnu_ld=$lt_save_with_gnu_ld
 lt_cv_path_LDCXX=$lt_cv_path_LD
 lt_cv_path_LD=$lt_save_path_LD
 lt_cv_prog_gnu_ldcxx=$lt_cv_prog_gnu_ld
 lt_cv_prog_gnu_ld=$lt_save_with_gnu_ld
fi # test yes != "$_lt_caught_CXX_error"

ac_ext=c
ac_cpp='$CPP $CPPFLAGS'
ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5'
ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5'
ac_compiler_gnu=$ac_cv_c_compiler_gnu

 ac_config_commands="$ac_config_commands libtool"

Only expand once:

* If any interfaces have been removed or changed, or if any private
member variables or virtual functions have been added to any
class, we are not binary compatible. Increment LT_CURRENT, and set
LT_AGE and LT_REVISION to 0.
#
* Otherwise, if any interfaces have been added since the last public
release, then increment LT_CURRENT and LT_AGE, and set LT_REVISION
to 0.
#
* Otherwise, increment LT_REVISION

LT = libtool
LT_CURRENT=20
LT_AGE=2
LT_REVISION=0

LT_SONAME=$(expr $LT_CURRENT - $LT_AGE)
BEGIN LT_SONAME WORKAROUND
For elf versioned symbols, get the soname version. Unfortunately,
there was a mistake at one point where we had 19 when we should have
had 18, so make this a special case until the next ABI change. At
that point, just remove the code deliminated by the LT_SONAME
WORKAROUND comments.
if test $LT_SONAME = 18; then
 LT_SONAME=19
elif test $LT_SONAME -gt 18; then
 as_fn_error $? "Remove LT_SONAME workaround in configure.ac" "$LINENO" 5
fi
END LT_SONAME WORKAROUND

Check whether --enable-insecure-random was given.
if test "${enable_insecure_random+set}" = set; then :
 enableval=$enable_insecure_random; if test "$enableval" = "yes"; then
 qpdf_INSECURE_RANDOM=1;
 else
 qpdf_INSECURE_RANDOM=0;
 fi
else
 qpdf_INSECURE_RANDOM=0
fi

if test "$qpdf_INSECURE_RANDOM" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5
$as_echo "yes" >&6; }

$as_echo "#define USE_INSECURE_RANDOM 1" >>confdefs.h

else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

Check whether --enable-os-secure-random was given.
if test "${enable_os_secure_random+set}" = set; then :
 enableval=$enable_os_secure_random; if test "$enableval" = "yes"; then
 qpdf_OS_SECURE_RANDOM=1;
 else
 qpdf_OS_SECURE_RANDOM=0;
 fi
else
 qpdf_OS_SECURE_RANDOM=1
fi

if test "$qpdf_OS_SECURE_RANDOM" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5
$as_echo "yes" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }

$as_echo "#define SKIP_OS_SECURE_RANDOM 1" >>confdefs.h

fi

Check whether --with-random was given.
if test "${with_random+set}" = set; then :
 withval=$with_random; RANDOM_DEVICE="$withval"
else
 as_ac_File=`$as_echo "ac_cv_file_"/dev/urandom"" | $as_tr_sh`
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for \"/dev/urandom\"" >&5
$as_echo_n "checking for \"/dev/urandom\"... " >&6; }
if eval \${$as_ac_File+:} false; then :
 $as_echo_n "(cached) " >&6
else
 test "$cross_compiling" = yes &&
 as_fn_error $? "cannot check for file existence when cross compiling" "$LINENO" 5
if test -r ""/dev/urandom""; then
 eval "$as_ac_File=yes"
else
 eval "$as_ac_File=no"
fi
fi
eval ac_res=\$$as_ac_File
	 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5
$as_echo "$ac_res" >&6; }
if eval test \"x\$"$as_ac_File"\" = x"yes"; then :
 RANDOM_DEVICE="/dev/urandom";
else
 as_ac_File=`$as_echo "ac_cv_file_"/dev/arandom"" | $as_tr_sh`
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for \"/dev/arandom\"" >&5
$as_echo_n "checking for \"/dev/arandom\"... " >&6; }
if eval \${$as_ac_File+:} false; then :
 $as_echo_n "(cached) " >&6
else
 test "$cross_compiling" = yes &&
 as_fn_error $? "cannot check for file existence when cross compiling" "$LINENO" 5
if test -r ""/dev/arandom""; then
 eval "$as_ac_File=yes"
else
 eval "$as_ac_File=no"
fi
fi
eval ac_res=\$$as_ac_File
	 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5
$as_echo "$ac_res" >&6; }
if eval test \"x\$"$as_ac_File"\" = x"yes"; then :
 RANDOM_DEVICE="/dev/arandom";
else
 as_ac_File=`$as_echo "ac_cv_file_"/dev/random"" | $as_tr_sh`
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for \"/dev/random\"" >&5
$as_echo_n "checking for \"/dev/random\"... " >&6; }
if eval \${$as_ac_File+:} false; then :
 $as_echo_n "(cached) " >&6
else
 test "$cross_compiling" = yes &&
 as_fn_error $? "cannot check for file existence when cross compiling" "$LINENO" 5
if test -r ""/dev/random""; then
 eval "$as_ac_File=yes"
else
 eval "$as_ac_File=no"
fi
fi
eval ac_res=\$$as_ac_File
	 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5
$as_echo "$ac_res" >&6; }
if eval test \"x\$"$as_ac_File"\" = x"yes"; then :
 RANDOM_DEVICE="/dev/random";
fi

fi

fi

fi

 if test "x$RANDOM_DEVICE" != "x" ; then

$as_echo "#define HAVE_RANDOM_DEVICE 1" >>confdefs.h

cat >>confdefs.h <<_ACEOF
#define RANDOM_DEVICE "$RANDOM_DEVICE"
_ACEOF

 fi

USE_EXTERNAL_LIBS=0
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for whether to use external libraries distribution" >&5
$as_echo_n "checking for whether to use external libraries distribution... " >&6; }
Check whether --enable-external-libs was given.
if test "${enable_external_libs+set}" = set; then :
 enableval=$enable_external_libs; if test "$enableval" = "yes"; then
 USE_EXTERNAL_LIBS=1;
 else
 USE_EXTERNAL_LIBS=0;
 fi
else
 BUILD_INTERNAL_LIBS=0
fi

if test "$BUILD_INTERNAL_LIBS" = "0"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5
$as_echo "yes" >&6; }
fi

WINDOWS_WORDSIZE=

Check whether --with-windows-wordsize was given.
if test "${with_windows_wordsize+set}" = set; then :
 withval=$with_windows_wordsize; WINDOWS_WORDSIZE=$withval
else
 WINDOWS_WORDSIZE=none
fi

if test "$USE_EXTERNAL_LIBS" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for windows wordsize" >&5
$as_echo_n "checking for windows wordsize... " >&6; }
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $WINDOWS_WORDSIZE" >&5
$as_echo "$WINDOWS_WORDSIZE" >&6; }
 if ! test "$WINDOWS_WORDSIZE" = "32" -o "$WINDOWS_WORDSIZE" = "64"; then
 as_fn_error $? "Windows wordsize of 32 or 64 must be specified if external libs are being used." "$LINENO" 5
 fi
fi

if test "$BUILD_INTERNAL_LIBS" = "0"; then
 ac_fn_c_check_header_mongrel "$LINENO" "zlib.h" "ac_cv_header_zlib_h" "$ac_includes_default"
if test "x$ac_cv_header_zlib_h" = xyes; then :

else
 MISSING_ZLIB_H=1; MISSING_ANY=1
fi

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing deflate" >&5
$as_echo_n "checking for library containing deflate... " >&6; }
if ${ac_cv_search_deflate+:} false; then :
 $as_echo_n "(cached) " >&6
else
 ac_func_search_save_LIBS=$LIBS
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

/* Override any GCC internal prototype to avoid an error.
 Use char because int might match the return type of a GCC
 builtin and then its argument prototype would still apply. */
#ifdef __cplusplus
extern "C"
#endif
char deflate ();
int
main ()
{
return deflate ();
 ;
 return 0;
}
_ACEOF
for ac_lib in '' z zlib; do
 if test -z "$ac_lib"; then
 ac_res="none required"
 else
 ac_res=-l$ac_lib
 LIBS="-l$ac_lib $ac_func_search_save_LIBS"
 fi
 if ac_fn_c_try_link "$LINENO"; then :
 ac_cv_search_deflate=$ac_res
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext
 if ${ac_cv_search_deflate+:} false; then :
 break
fi
done
if ${ac_cv_search_deflate+:} false; then :

else
 ac_cv_search_deflate=no
fi
rm conftest.$ac_ext
LIBS=$ac_func_search_save_LIBS
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_deflate" >&5
$as_echo "$ac_cv_search_deflate" >&6; }
ac_res=$ac_cv_search_deflate
if test "$ac_res" != no; then :
 test "$ac_res" = "none required" || LIBS="$ac_res $LIBS"

else
 MISSING_ZLIB=1; MISSING_ANY=1
fi

 ac_fn_c_check_header_mongrel "$LINENO" "jpeglib.h" "ac_cv_header_jpeglib_h" "$ac_includes_default"
if test "x$ac_cv_header_jpeglib_h" = xyes; then :

else
 MISSING_JPEG_H=1; MISSING_ANY=1
fi

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing jpeg_destroy" >&5
$as_echo_n "checking for library containing jpeg_destroy... " >&6; }
if ${ac_cv_search_jpeg_destroy+:} false; then :
 $as_echo_n "(cached) " >&6
else
 ac_func_search_save_LIBS=$LIBS
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

/* Override any GCC internal prototype to avoid an error.
 Use char because int might match the return type of a GCC
 builtin and then its argument prototype would still apply. */
#ifdef __cplusplus
extern "C"
#endif
char jpeg_destroy ();
int
main ()
{
return jpeg_destroy ();
 ;
 return 0;
}
_ACEOF
for ac_lib in '' jpeg; do
 if test -z "$ac_lib"; then
 ac_res="none required"
 else
 ac_res=-l$ac_lib
 LIBS="-l$ac_lib $ac_func_search_save_LIBS"
 fi
 if ac_fn_c_try_link "$LINENO"; then :
 ac_cv_search_jpeg_destroy=$ac_res
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext
 if ${ac_cv_search_jpeg_destroy+:} false; then :
 break
fi
done
if ${ac_cv_search_jpeg_destroy+:} false; then :

else
 ac_cv_search_jpeg_destroy=no
fi
rm conftest.$ac_ext
LIBS=$ac_func_search_save_LIBS
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_jpeg_destroy" >&5
$as_echo "$ac_cv_search_jpeg_destroy" >&6; }
ac_res=$ac_cv_search_jpeg_destroy
if test "$ac_res" != no; then :
 test "$ac_res" = "none required" || LIBS="$ac_res $LIBS"

else
 MISSING_JPEG=1; MISSING_ANY=1
fi

fi

if test "x$qpdf_OS_SECURE_RANDOM" = "x1"; then
 OLIBS=$LIBS
 LIBS="$LIBS Advapi32.lib"
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for Advapi32 library" >&5
$as_echo_n "checking for Advapi32 library... " >&6; }
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#pragma comment(lib, "crypt32.lib")
 #include <windows.h>
 #include <wincrypt.h>
 HCRYPTPROV cp;
int
main ()
{
CryptAcquireContext(&cp, NULL, NULL, PROV_RSA_FULL, 0);

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_link "$LINENO"; then :
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5
$as_echo "yes" >&6; }
 LIBS="$OLIBS -lAdvapi32"
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
 LIBS=$OLIBS
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
fi

QPDF_LARGE_FILE_TEST_PATH=

Check whether --with-large-file-test-path was given.
if test "${with_large_file_test_path+set}" = set; then :
 withval=$with_large_file_test_path; QPDF_LARGE_FILE_TEST_PATH=$withval
else
 QPDF_LARGE_FILE_TEST_PATH=
fi

Check whether --enable-largefile was given.
if test "${enable_largefile+set}" = set; then :
 enableval=$enable_largefile;
fi

if test "$enable_largefile" != no; then

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for special C compiler options needed for large files" >&5
$as_echo_n "checking for special C compiler options needed for large files... " >&6; }
if ${ac_cv_sys_largefile_CC+:} false; then :
 $as_echo_n "(cached) " >&6
else
 ac_cv_sys_largefile_CC=no
 if test "$GCC" != yes; then
 ac_save_CC=$CC
 while :; do
	 # IRIX 6.2 and later do not support large files by default,
	 # so use the C compiler's -n32 option if that helps.
	 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include <sys/types.h>
 /* Check that off_t can represent 2**63 - 1 correctly.
 We can't simply define LARGE_OFF_T to be 9223372036854775807,
 since some C++ compilers masquerading as C compilers
 incorrectly reject 9223372036854775807. */
#define LARGE_OFF_T ((((off_t) 1 << 31) << 31) - 1 + (((off_t) 1 << 31) << 31))
 int off_t_is_large[(LARGE_OFF_T % 2147483629 == 721
		 && LARGE_OFF_T % 2147483647 == 1)
		 ? 1 : -1];
int
main ()
{

 ;
 return 0;
}
_ACEOF
	 if ac_fn_c_try_compile "$LINENO"; then :
 break
fi
rm -f core conftest.err conftest.$ac_objext
	 CC="$CC -n32"
	 if ac_fn_c_try_compile "$LINENO"; then :
 ac_cv_sys_largefile_CC=' -n32'; break
fi
rm -f core conftest.err conftest.$ac_objext
	 break
 done
 CC=$ac_save_CC
 rm -f conftest.$ac_ext
 fi
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_sys_largefile_CC" >&5
$as_echo "$ac_cv_sys_largefile_CC" >&6; }
 if test "$ac_cv_sys_largefile_CC" != no; then
 CC=CCac_cv_sys_largefile_CC
 fi

 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for _FILE_OFFSET_BITS value needed for large files" >&5
$as_echo_n "checking for _FILE_OFFSET_BITS value needed for large files... " >&6; }
if ${ac_cv_sys_file_offset_bits+:} false; then :
 $as_echo_n "(cached) " >&6
else
 while :; do
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include <sys/types.h>
 /* Check that off_t can represent 2**63 - 1 correctly.
 We can't simply define LARGE_OFF_T to be 9223372036854775807,
 since some C++ compilers masquerading as C compilers
 incorrectly reject 9223372036854775807. */
#define LARGE_OFF_T ((((off_t) 1 << 31) << 31) - 1 + (((off_t) 1 << 31) << 31))
 int off_t_is_large[(LARGE_OFF_T % 2147483629 == 721
		 && LARGE_OFF_T % 2147483647 == 1)
		 ? 1 : -1];
int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :
 ac_cv_sys_file_offset_bits=no; break
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#define _FILE_OFFSET_BITS 64
#include <sys/types.h>
 /* Check that off_t can represent 2**63 - 1 correctly.
 We can't simply define LARGE_OFF_T to be 9223372036854775807,
 since some C++ compilers masquerading as C compilers
 incorrectly reject 9223372036854775807. */
#define LARGE_OFF_T ((((off_t) 1 << 31) << 31) - 1 + (((off_t) 1 << 31) << 31))
 int off_t_is_large[(LARGE_OFF_T % 2147483629 == 721
		 && LARGE_OFF_T % 2147483647 == 1)
		 ? 1 : -1];
int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :
 ac_cv_sys_file_offset_bits=64; break
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
 ac_cv_sys_file_offset_bits=unknown
 break
done
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_sys_file_offset_bits" >&5
$as_echo "$ac_cv_sys_file_offset_bits" >&6; }
case $ac_cv_sys_file_offset_bits in #(
 no | unknown) ;;
 *)
cat >>confdefs.h <<_ACEOF
#define _FILE_OFFSET_BITS $ac_cv_sys_file_offset_bits
_ACEOF
;;
esac
rm -rf conftest*
 if test $ac_cv_sys_file_offset_bits = unknown; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for _LARGE_FILES value needed for large files" >&5
$as_echo_n "checking for _LARGE_FILES value needed for large files... " >&6; }
if ${ac_cv_sys_large_files+:} false; then :
 $as_echo_n "(cached) " >&6
else
 while :; do
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include <sys/types.h>
 /* Check that off_t can represent 2**63 - 1 correctly.
 We can't simply define LARGE_OFF_T to be 9223372036854775807,
 since some C++ compilers masquerading as C compilers
 incorrectly reject 9223372036854775807. */
#define LARGE_OFF_T ((((off_t) 1 << 31) << 31) - 1 + (((off_t) 1 << 31) << 31))
 int off_t_is_large[(LARGE_OFF_T % 2147483629 == 721
		 && LARGE_OFF_T % 2147483647 == 1)
		 ? 1 : -1];
int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :
 ac_cv_sys_large_files=no; break
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#define _LARGE_FILES 1
#include <sys/types.h>
 /* Check that off_t can represent 2**63 - 1 correctly.
 We can't simply define LARGE_OFF_T to be 9223372036854775807,
 since some C++ compilers masquerading as C compilers
 incorrectly reject 9223372036854775807. */
#define LARGE_OFF_T ((((off_t) 1 << 31) << 31) - 1 + (((off_t) 1 << 31) << 31))
 int off_t_is_large[(LARGE_OFF_T % 2147483629 == 721
		 && LARGE_OFF_T % 2147483647 == 1)
		 ? 1 : -1];
int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :
 ac_cv_sys_large_files=1; break
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
 ac_cv_sys_large_files=unknown
 break
done
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_sys_large_files" >&5
$as_echo "$ac_cv_sys_large_files" >&6; }
case $ac_cv_sys_large_files in #(
 no | unknown) ;;
 *)
cat >>confdefs.h <<_ACEOF
#define _LARGE_FILES $ac_cv_sys_large_files
_ACEOF
;;
esac
rm -rf conftest*
 fi

fi

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for _LARGEFILE_SOURCE value needed for large files" >&5
$as_echo_n "checking for _LARGEFILE_SOURCE value needed for large files... " >&6; }
if ${ac_cv_sys_largefile_source+:} false; then :
 $as_echo_n "(cached) " >&6
else
 while :; do
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include <sys/types.h> /* for off_t */
 #include <stdio.h>
int
main ()
{
int (*fp) (FILE *, off_t, int) = fseeko;
 return fseeko (stdin, 0, 0) && fp (stdin, 0, 0);
 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_link "$LINENO"; then :
 ac_cv_sys_largefile_source=no; break
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#define _LARGEFILE_SOURCE 1
#include <sys/types.h> /* for off_t */
 #include <stdio.h>
int
main ()
{
int (*fp) (FILE *, off_t, int) = fseeko;
 return fseeko (stdin, 0, 0) && fp (stdin, 0, 0);
 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_link "$LINENO"; then :
 ac_cv_sys_largefile_source=1; break
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
 ac_cv_sys_largefile_source=unknown
 break
done
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_sys_largefile_source" >&5
$as_echo "$ac_cv_sys_largefile_source" >&6; }
case $ac_cv_sys_largefile_source in #(
 no | unknown) ;;
 *)
cat >>confdefs.h <<_ACEOF
#define _LARGEFILE_SOURCE $ac_cv_sys_largefile_source
_ACEOF
;;
esac
rm -rf conftest*

We used to try defining _XOPEN_SOURCE=500 too, to work around a bug
in glibc 2.1.3, but that breaks too many other things.
If you want fseeko and ftello with glibc, upgrade to a fixed glibc.
if test $ac_cv_sys_largefile_source != unknown; then

$as_echo "#define HAVE_FSEEKO 1" >>confdefs.h

fi

for ac_func in fseeko64
do :
 ac_fn_c_check_func "$LINENO" "fseeko64" "ac_cv_func_fseeko64"
if test "x$ac_cv_func_fseeko64" = xyes; then :
 cat >>confdefs.h <<_ACEOF
#define HAVE_FSEEKO64 1
_ACEOF

fi
done

ac_fn_c_find_uintX_t "$LINENO" "16" "ac_cv_c_uint16_t"
case $ac_cv_c_uint16_t in #(
 no|yes) ;; #(
 *)

cat >>confdefs.h <<_ACEOF
#define uint16_t $ac_cv_c_uint16_t
_ACEOF
;;
 esac

ac_fn_c_find_uintX_t "$LINENO" "32" "ac_cv_c_uint32_t"
case $ac_cv_c_uint32_t in #(
 no|yes) ;; #(
 *)

$as_echo "#define _UINT32_T 1" >>confdefs.h

cat >>confdefs.h <<_ACEOF
#define uint32_t $ac_cv_c_uint32_t
_ACEOF
;;
 esac

for ac_func in random
do :
 ac_fn_c_check_func "$LINENO" "random" "ac_cv_func_random"
if test "x$ac_cv_func_random" = xyes; then :
 cat >>confdefs.h <<_ACEOF
#define HAVE_RANDOM 1
_ACEOF

fi
done

Check if LD supports linker scripts, and define conditional
HAVE_LD_VERSION_SCRIPT if so. This functionality is currently
constrained to compilers using GNU ld on ELF systems or systems
which provide an adequate emulation thereof.
Check whether --enable-ld-version-script was given.
if test "${enable_ld_version_script+set}" = set; then :
 enableval=$enable_ld_version_script; have_ld_version_script=$enableval
else
 have_ld_version_script=yes
fi

if test "$have_ld_version_script" != no; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking if LD -Wl,--version-script works" >&5
$as_echo_n "checking if LD -Wl,--version-script works... " >&6; }
 save_LDFLAGS="$LDFLAGS"
 LDFLAGS="$LDFLAGS -Wl,--version-script=conftest.map"
 cat > conftest.map <<EOF
VERS_1 {
 global: sym;
};

VERS_2 {
 global: sym;
} VERS_1;
EOF
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_link "$LINENO"; then :
 have_ld_version_script=yes
else
 have_ld_version_script=no
fi
rm -f core conftest.err conftest.$ac_objext \
 conftest$ac_exeext conftest.$ac_ext
 rm -f conftest.map
 LDFLAGS="$save_LDFLAGS"
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $have_ld_version_script" >&5
$as_echo "$have_ld_version_script" >&6; }
fi
if test "$have_ld_version_script" = "yes"; then
 HAVE_LD_VERSION_SCRIPT=1
else
 HAVE_LD_VERSION_SCRIPT=0
fi

make_okay=0
for make_prog in make gmake; do
 this_make_okay=0
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for gnu make >= 3.81 ($make_prog)" >&5
$as_echo_n "checking for gnu make >= 3.81 ($make_prog)... " >&6; }
 if $make_prog --version >/dev/null 2>&1; then
 v=`$make_prog --version | grep 'GNU Make' | sed -e 's/.*Make //'`
 maj=`echo $v | cut -d. -f 1`
 min=`echo $v | cut -d. -f 2`
 if test $maj -gt 3 -o '(' $maj -eq 3 -a $min -ge 81 ')'; then
 this_make_okay=1
 make_okay=1
 fi
 fi
 if test "$this_make_okay" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5
$as_echo "yes" >&6; }
 else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
 fi
done

if test "$make_okay" = "0"; then
 MISSING_MAKE_381=1
 ISSUE_WARNINGS=1
fi

GENDEPS=0
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for whether $CC supports -MD -MF x.dep -MP" >&5
$as_echo_n "checking for whether $CC supports -MD -MF x.dep -MP... " >&6; }
oCFLAGS=$CFLAGS
rm -f x.dep
CFLAGS="$CFLAGS -MD -MF x.dep -MP"
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */
#include <stdio.h>
int
main ()
{
FILE* a = stdout

 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :
 qpdf_DEPFLAGS=yes
else
 qpdf_DEPFLAGS=no
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
CFLAGS=$oCFLAGS
if test "$qpdf_DEPFLAGS" = "yes"; then
 if ! grep stdio.h x.dep >/dev/null 2>&1; then
 qpdf_DEPFLAGS=no
 fi
fi
rm -f x.dep
if test "$qpdf_DEPFLAGS" = "yes"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5
$as_echo "yes" >&6; }
 GENDEPS=1
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking which build rules to use" >&5
$as_echo_n "checking which build rules to use... " >&6; }

Check whether --with-buildrules was given.
if test "${with_buildrules+set}" = set; then :
 withval=$with_buildrules; BUILDRULES=$withval
else
 BUILDRULES=libtool
fi

{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $BUILDRULES" >&5
$as_echo "$BUILDRULES" >&6; }

qpdf_USE_EXTRA_WARNINGS=0
if test "$BUILDRULES" = "msvc"; then
 try_flags="-w14996"
else
 try_flags="-Wall"
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for whether $CC supports $try_flags" >&5
$as_echo_n "checking for whether $CC supports $try_flags... " >&6; }
oCFLAGS=$CFLAGS
CFLAGS="$CFLAGS $try_flags"
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{
int a = 1; int b = a; a = b;
 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :
 qpdf_USE_EXTRA_WARNINGS=1
else
 qpdf_USE_EXTRA_WARNINGS=0
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
CFLAGS=$oCFLAGS
if test "$qpdf_USE_EXTRA_WARNINGS" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5
$as_echo "yes" >&6; }
 WFLAGS="$try_flags"
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi
if test "$BUILDRULES" != "msvc"; then
 qpdf_USE_EXTRA_WARNINGS=0
 try_flags="-Wold-style-cast"
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for whether $CXX supports $try_flags" >&5
$as_echo_n "checking for whether $CXX supports $try_flags... " >&6; }
 oCXXFLAGS=$CXXFLAGS
 CXXFLAGS="$CXXFLAGS $try_flags"
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{
int a = 1; int b = a; a = b;
 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :
 qpdf_USE_EXTRA_WARNINGS=1
else
 qpdf_USE_EXTRA_WARNINGS=0
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
 CXXFLAGS=$oCXXFLAGS
 if test "$qpdf_USE_EXTRA_WARNINGS" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5
$as_echo "yes" >&6; }
 CXXWFLAGS="$try_flags"
 else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
 fi
fi

if test "$BUILDRULES" = "msvc"; then
 try_flags=-FS
 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for whether $CC supports $try_flags" >&5
$as_echo_n "checking for whether $CC supports $try_flags... " >&6; }
 oCFLAGS=$CFLAGS
 CFLAGS="$CFLAGS $try_flags"
 cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h. */

int
main ()
{
int a = 1; int b = a; a = b;
 ;
 return 0;
}
_ACEOF
if ac_fn_c_try_compile "$LINENO"; then :
 qpdf_USE_FS=1
else
 qpdf_USE_FS=0
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
 if test "$qpdf_USE_FS" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5
$as_echo "yes" >&6; }
 CXXFLAGS="$CXXFLAGS $try_flags"
 else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
 CFLAGS=$oCFLAGS
 fi
fi

if test "$BUILDRULES" = "msvc"; then
 try_flags="-WX"
else
 try_flags="-Werror"
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for whether to use $try_flags" >&5
$as_echo_n "checking for whether to use $try_flags... " >&6; }
Check whether --enable-werror was given.
if test "${enable_werror+set}" = set; then :
 enableval=$enable_werror; if test "$enableval" = "yes"; then
 qpdf_USE_WERROR=1;
 else
 qpdf_USE_WERROR=0;
 fi
else
 qpdf_USE_WERROR=0
fi

if test "$qpdf_USE_WERROR" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5
$as_echo "yes" >&6; }
 WFLAGS="$WFLAGS $try_flags"
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

Check whether --enable-test-compare-images was given.
if test "${enable_test_compare_images+set}" = set; then :
 enableval=$enable_test_compare_images; if test "$enableval" = "no"; then
 QPDF_SKIP_TEST_COMPARE_IMAGES=1
 else
 QPDF_SKIP_TEST_COMPARE_IMAGES=0
 fi
else
 QPDF_SKIP_TEST_COMPARE_IMAGES=1
fi

Check whether --enable-show-failed-test-output was given.
if test "${enable_show_failed_test_output+set}" = set; then :
 enableval=$enable_show_failed_test_output; if test "$enableval" = "no"; then
 SHOW_FAILED_TEST_OUTPUT=0
 else
 SHOW_FAILED_TEST_OUTPUT=1
 fi
else
 SHOW_FAILED_TEST_OUTPUT=0
fi

Check whether --with-docbook-xsl was given.
if test "${with_docbook_xsl+set}" = set; then :
 withval=$with_docbook_xsl; DOCBOOK_XSL=$withval
else
 DOCBOOK_XSL=/usr/share/xml/docbook/stylesheet/nwalsh
fi

DOCBOOK_XHTML=

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for xml to xhtml docbook stylesheets" >&5
$as_echo_n "checking for xml to xhtml docbook stylesheets... " >&6; }
if test -f "$DOCBOOK_XSL/xhtml/docbook.xsl"; then
 DOCBOOK_XHTML="$DOCBOOK_XSL/xhtml/docbook.xsl"
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $DOCBOOK_XHTML" >&5
$as_echo "$DOCBOOK_XHTML" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi
DOCBOOK_FO=

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for xml to fo docbook stylesheets" >&5
$as_echo_n "checking for xml to fo docbook stylesheets... " >&6; }
if test -f "$DOCBOOK_XSL/fo/docbook.xsl"; then
 DOCBOOK_FO="$DOCBOOK_XSL/fo/docbook.xsl"
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $DOCBOOK_FO" >&5
$as_echo "$DOCBOOK_FO" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

DOCBOOKX_DTD=

Check whether --with-docbookx-dtd was given.
if test "${with_docbookx_dtd+set}" = set; then :
 withval=$with_docbookx_dtd; DOCBOOKX_DTD=$withval
else
 DOCBOOKX_DTD=/usr/share/xml/docbook/schema/dtd/4/docbookx.dtd
fi

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for docbook 4.x xml DTD" >&5
$as_echo_n "checking for docbook 4.x xml DTD... " >&6; }
if test -f "$DOCBOOKX_DTD"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $DOCBOOKX_DTD" >&5
$as_echo "$DOCBOOKX_DTD" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

Extract the first word of "fop", so it can be a program name with args.
set dummy fop; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_FOP+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$FOP"; then
 ac_cv_prog_FOP="$FOP" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_FOP="fop"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
FOP=$ac_cv_prog_FOP
if test -n "$FOP"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $FOP" >&5
$as_echo "$FOP" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

Extract the first word of "xsltproc", so it can be a program name with args.
set dummy xsltproc; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_XSLTPROC+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$XSLTPROC"; then
 ac_cv_prog_XSLTPROC="$XSLTPROC" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_XSLTPROC="xsltproc"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
XSLTPROC=$ac_cv_prog_XSLTPROC
if test -n "$XSLTPROC"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $XSLTPROC" >&5
$as_echo "$XSLTPROC" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

Extract the first word of "xmllint", so it can be a program name with args.
set dummy xmllint; ac_word=$2
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5
$as_echo_n "checking for $ac_word... " >&6; }
if ${ac_cv_prog_XMLLINT+:} false; then :
 $as_echo_n "(cached) " >&6
else
 if test -n "$XMLLINT"; then
 ac_cv_prog_XMLLINT="$XMLLINT" # Let the user override the test.
else
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for ac_exec_ext in '' $ac_executable_extensions; do
 if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then
 ac_cv_prog_XMLLINT="xmllint"
 $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5
 break 2
 fi
done
 done
IFS=$as_save_IFS

fi
fi
XMLLINT=$ac_cv_prog_XMLLINT
if test -n "$XMLLINT"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $XMLLINT" >&5
$as_echo "$XMLLINT" >&6; }
else
 { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5
$as_echo "no" >&6; }
fi

Check whether --enable-doc-maintenance was given.
if test "${enable_doc_maintenance+set}" = set; then :
 enableval=$enable_doc_maintenance; if test "$enableval" = "yes"; then
 doc_default=1;
 else
 doc_default=0;
 fi
else
 doc_default=0
fi

BUILD_HTML=0

Check whether --enable-html-doc was given.
if test "${enable_html_doc+set}" = set; then :
 enableval=$enable_html_doc; if test "$enableval" = "yes"; then
 BUILD_HTML=1;
 else
 BUILD_HTML=0;
 fi
else
 BUILD_HTML=$doc_default
fi

BUILD_PDF=0

Check whether --enable-pdf-doc was given.
if test "${enable_pdf_doc+set}" = set; then :
 enableval=$enable_pdf_doc; if test "$enableval" = "yes"; then
 BUILD_PDF=1;
 else
 BUILD_PDF=0;
 fi
else
 BUILD_PDF=$doc_default
fi

VALIDATE_DOC=0

Check whether --enable-validate-doc was given.
if test "${enable_validate_doc+set}" = set; then :
 enableval=$enable_validate_doc; if test "$enableval" = "yes"; then
 VALIDATE_DOC=1;
 else
 VALIDATE_DOC=0;
 fi
else
 VALIDATE_DOC=$doc_default
fi

if test "$VALIDATE_DOC" = "1"; then
 if test "$XMLLINT" = ""; then
 MISSING_XMLLINT=1
 MISSING_ANY=1
 fi
fi
if test "$BUILD_HTML" = "1"; then
 if test "$XSLTPROC" = ""; then
 MISSING_XSLTPROC=1
 MISSING_ANY=1
 fi
 if test "$DOCBOOK_XHTML" = ""; then
 MISSING_DOCBOOK_XHTML=1
 MISSING_ANY=1
 fi
fi
if test "$BUILD_PDF" = "1"; then
 if test "$XSLTPROC" = ""; then
 MISSING_XSLTPROC=1
 MISSING_ANY=1
 fi
 if test "$DOCBOOK_FO" = ""; then
 MISSING_DOCBOOK_FO=1
 MISSING_ANY=1
 fi
 if test "$FOP" = ""; then
 MISSING_FOP=1
 MISSING_ANY=1
 fi
fi

if test "$MISSING_ANY" = "1"; then
 ISSUE_WARNINGS=1
fi
if test "$ISSUE_WARNINGS" = "1"; then
 echo ""
 echo ""
fi

if test "$MISSING_MAKE_381" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: gnu make >= 3.81 is required" >&5
$as_echo "$as_me: WARNING: gnu make >= 3.81 is required" >&2;}
fi

if test "$MISSING_ZLIB_H" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: unable to find required header zlib.h" >&5
$as_echo "$as_me: WARNING: unable to find required header zlib.h" >&2;}
fi

if test "$MISSING_ZLIB" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: unable to find required library z (or zlib)" >&5
$as_echo "$as_me: WARNING: unable to find required library z (or zlib)" >&2;}
fi

if test "$MISSING_JPEG_H" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: unable to find required header jpeglib.h" >&5
$as_echo "$as_me: WARNING: unable to find required header jpeglib.h" >&2;}
fi

if test "$MISSING_JPEG" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: unable to find required library jpeg" >&5
$as_echo "$as_me: WARNING: unable to find required library jpeg" >&2;}
fi

if test "$MISSING_DOCBOOK_FO" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: docbook fo stylesheets are required to build PDF documentation" >&5
$as_echo "$as_me: WARNING: docbook fo stylesheets are required to build PDF documentation" >&2;}
fi

if test "$MISSING_DOCBOOK_XHTML" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: docbook xhmtl stylesheets are required to build HTML documentation" >&5
$as_echo "$as_me: WARNING: docbook xhmtl stylesheets are required to build HTML documentation" >&2;}
fi

if test "$MISSING_FOP" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: apache fop is required to build PDF documentation" >&5
$as_echo "$as_me: WARNING: apache fop is required to build PDF documentation" >&2;}
fi

if test "$MISSING_XMLLINT" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: xmllint is required to validate documentation" >&5
$as_echo "$as_me: WARNING: xmllint is required to validate documentation" >&2;}
fi

if test "$MISSING_XSLTPROC" = "1"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: xsltproc is required to build documentation" >&5
$as_echo "$as_me: WARNING: xsltproc is required to build documentation" >&2;}
fi

if test "$ISSUE_WARNINGS" = "1"; then
 echo ""
 echo ""
fi

if test "$MISSING_ANY" = "1"; then
 as_fn_error $? "some required prerequisites were not found" "$LINENO" 5
fi

Do this last so it doesn't interfere with other tests.
if test "$USE_EXTERNAL_LIBS" = "1"; then
 # Don't actually check for the presence of this -- we document that
 # the user can run this and then edit autoconf.mk if they have too
 # much trouble getting it to work with a different compiler.
 CPPFLAGS="$CPPFLAGS -Iexternal-libs/include"
 LDFLAGS="$LDFLAGS -Lexternal-libs/lib-$BUILDRULES$WINDOWS_WORDSIZE"
 LIBS="$LIBS -lz -ljpeg"
fi

cat >confcache <<_ACEOF
This file is a shell script that caches the results of configure
tests run on this system so they can be shared between configure
scripts and configure runs, see configure's option --config-cache.
It is not useful on other systems. If it contains results you don't
want to keep, you may remove or edit it.
#
config.status only pays attention to the cache file if you give it
the --recheck option to rerun configure.
#
`ac_cv_env_foo' variables (set or unset) will be overridden when
loading this file, other *unset* `ac_cv_foo' will be assigned the
following values.

_ACEOF

The following way of writing the cache mishandles newlines in values,
but we know of no workaround that is simple, portable, and efficient.
So, we kill variables containing newlines.
Ultrix sh set writes to stderr and can't be redirected directly,
and sets the high bit in the cache file unless we assign to the vars.
(
 for ac_var in `(set) 2>&1 | sed -n 's/^\([a-zA-Z_][a-zA-Z0-9_]*\)=.*/\1/p'`; do
 eval ac_val=\$$ac_var
 case $ac_val in #(
 ${as_nl})
 case $ac_var in #(
 cv) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: cache variable $ac_var contains a newline" >&5
$as_echo "$as_me: WARNING: cache variable $ac_var contains a newline" >&2;} ;;
 esac
 case $ac_var in #(
 _ | IFS | as_nl) ;; #(
 BASH_ARGV | BASH_SOURCE) eval $ac_var= ;; #(
 *) { eval $ac_var=; unset $ac_var;} ;;
 esac ;;
 esac
 done

 (set) 2>&1 |
 case $as_nl`(ac_space=' '; set) 2>&1` in #(
 *${as_nl}ac_space=\ *)
 # `set' does not quote correctly, so add quotes: double-quote
 # substitution turns \\\\ into \\, and sed turns \\ into \.
 sed -n \
	"s/'/'\\\\''/g;
	 s/^\\([_$as_cr_alnum]*_cv_[_$as_cr_alnum]*\\)=\\(.*\\)/\\1='\\2'/p"
 ;; #(
 *)
 # `set' quotes correctly as required by POSIX, so do not add quotes.
 sed -n "/^[_$as_cr_alnum]*_cv_[_$as_cr_alnum]*=/p"
 ;;
 esac |
 sort
) |
 sed '
 /^ac_cv_env_/b end
 t clear
 :clear
 s/^\([^=]*\)=\(.*[{}].*\)$/test "${\1+set}" = set || &/
 t end
 s/^\([^=]*\)=\(.*\)$/\1=${\1=\2}/
 :end' >>confcache
if diff "$cache_file" confcache >/dev/null 2>&1; then :; else
 if test -w "$cache_file"; then
 if test "x$cache_file" != "x/dev/null"; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: updating cache $cache_file" >&5
$as_echo "$as_me: updating cache $cache_file" >&6;}
 if test ! -f "$cache_file" || test -h "$cache_file"; then
	cat confcache >"$cache_file"
 else
 case $cache_file in #(
 / | ?:*)
	 mv -f confcache "$cache_file"$$ &&
	 mv -f "$cache_file"$$ "$cache_file" ;; #(
 *)
	 mv -f confcache "$cache_file" ;;
	esac
 fi
 fi
 else
 { $as_echo "$as_me:${as_lineno-$LINENO}: not updating unwritable cache $cache_file" >&5
$as_echo "$as_me: not updating unwritable cache $cache_file" >&6;}
 fi
fi
rm -f confcache

test "x$prefix" = xNONE && prefix=$ac_default_prefix
Let make expand exec_prefix.
test "x$exec_prefix" = xNONE && exec_prefix='${prefix}'

DEFS=-DHAVE_CONFIG_H

ac_libobjs=
ac_ltlibobjs=
U=
for ac_i in : $LIBOBJS; do test "x$ac_i" = x: && continue
 # 1. Remove the extension, and $U if already installed.
 ac_script='s/\$U\././;s/\.o$//;s/\.obj$//'
 ac_i=`$as_echo "$ac_i" | sed "$ac_script"`
 # 2. Prepend LIBOBJDIR. When used with automake>=1.10 LIBOBJDIR
 # will be set to the directory where LIBOBJS objects are built.
 as_fn_append ac_libobjs " \${LIBOBJDIR}$ac_i\$U.$ac_objext"
 as_fn_append ac_ltlibobjs " \${LIBOBJDIR}$ac_i"'$U.lo'
done
LIBOBJS=$ac_libobjs

LTLIBOBJS=$ac_ltlibobjs

: "${CONFIG_STATUS=./config.status}"
ac_write_fail=0
ac_clean_files_save=$ac_clean_files
ac_clean_files="$ac_clean_files $CONFIG_STATUS"
{ $as_echo "$as_me:${as_lineno-$LINENO}: creating $CONFIG_STATUS" >&5
$as_echo "$as_me: creating $CONFIG_STATUS" >&6;}
as_write_fail=0
cat >$CONFIG_STATUS <<_ASEOF || as_write_fail=1
#! $SHELL
Generated by $as_me.
Run this file to recreate the current configuration.
Compiler output produced by configure, useful for debugging
configure, is in config.log if it exists.

debug=false
ac_cs_recheck=false
ac_cs_silent=false

SHELL=\${CONFIG_SHELL-$SHELL}
export SHELL
_ASEOF
cat >>$CONFIG_STATUS <<_ASEOF || as_write_fail=1

M4sh Initialization.

Be more Bourne compatible
DUALCASE=1; export DUALCASE # for MKS sh
if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then :
 emulate sh
 NULLCMD=:
 # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which
 # is contrary to our usage. Disable this feature.
 alias -g '${1+"$@"}'='"$@"'
 setopt NO_GLOB_SUBST
else
 case `(set -o) 2>/dev/null` in #(
 posix) :
 set -o posix ;; #(
 *) :
 ;;
esac
fi

as_nl='
'
export as_nl
Printing a long string crashes Solaris 7 /usr/bin/printf.
as_echo='\\\'
as_echo=as_echoas_echoas_echoas_echo$as_echo
as_echo=as_echoas_echoas_echoas_echoas_echoas_echo
Prefer a ksh shell builtin over an external printf program on Solaris,
but without wasting forks for bash or zsh.
if test -z "$BASH_VERSION$ZSH_VERSION" \
 && (test "X`print -r -- $as_echo`" = "X$as_echo") 2>/dev/null; then
 as_echo='print -r --'
 as_echo_n='print -rn --'
elif (test "X`printf %s $as_echo`" = "X$as_echo") 2>/dev/null; then
 as_echo='printf %s\n'
 as_echo_n='printf %s'
else
 if test "X`(/usr/ucb/echo -n -n $as_echo) 2>/dev/null`" = "X-n $as_echo"; then
 as_echo_body='eval /usr/ucb/echo -n "1as_nl"'
 as_echo_n='/usr/ucb/echo -n'
 else
 as_echo_body='eval expr "X$1" : "X\\(.*\\)"'
 as_echo_n_body='eval
 arg=$1;
 case $arg in #(
 "$as_nl")
	expr "X$arg" : "X\\(.*\\)$as_nl";
	arg=`expr "X$arg" : ".*$as_nl\\(.*\\)"`;;
 esac;
 expr "X$arg" : "X\\(.*\\)" | tr -d "$as_nl"
 '
 export as_echo_n_body
 as_echo_n='sh -c $as_echo_n_body as_echo'
 fi
 export as_echo_body
 as_echo='sh -c $as_echo_body as_echo'
fi

The user is always right.
if test "${PATH_SEPARATOR+set}" != set; then
 PATH_SEPARATOR=:
 (PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && {
 (PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 ||
 PATH_SEPARATOR=';'
 }
fi

IFS
We need space, tab and new line, in precisely that order. Quoting is
there to prevent editors from complaining about space-tab.
(If _AS_PATH_WALK were called with IFS unset, it would disable word
splitting by setting IFS to empty value.)
IFS=" ""	$as_nl"

Find who we are. Look in the path if we contain no directory separator.
as_myself=
case $0 in #((
 [\\/]) as_myself=$0 ;;
 *) as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 test -r "$as_dir/$0" && as_myself=$as_dir/$0 && break
 done
IFS=$as_save_IFS

 ;;
esac
We did not find ourselves, most probably we were run as `sh COMMAND'
in which case we are not to be found in the path.
if test "x$as_myself" = x; then
 as_myself=$0
fi
if test ! -f "$as_myself"; then
 $as_echo "$as_myself: error: cannot find myself; rerun with an absolute file name" >&2
 exit 1
fi

Unset variables that we do not need and which cause bugs (e.g. in
pre-3.0 UWIN ksh). But do not cause bugs in bash 2.01; the "|| exit 1"
suppresses any "Segmentation fault" message there. '((' could
trigger a bug in pdksh 5.2.14.
for as_var in BASH_ENV ENV MAIL MAILPATH
do eval test x\${$as_var+set} = xset \
 && ((unset $as_var) || exit 1) >/dev/null 2>&1 && unset $as_var || :
done
PS1='$ '
PS2='> '
PS4='+ '

NLS nuisances.
LC_ALL=C
export LC_ALL
LANGUAGE=C
export LANGUAGE

CDPATH.
(unset CDPATH) >/dev/null 2>&1 && unset CDPATH

as_fn_error STATUS ERROR [LINENO LOG_FD]
--
Output "`basename $0`: error: ERROR" to stderr. If LINENO and LOG_FD are
provided, also output the error to LOG_FD, referencing LINENO. Then exit the
script with STATUS, using 1 if that was 0.
as_fn_error ()
{
 as_status=$1; test $as_status -eq 0 && as_status=1
 if test "$4"; then
 as_lineno=${as_lineno-"$3"} as_lineno_stack=as_lineno_stack=$as_lineno_stack
 $as_echo "$as_me:${as_lineno-$LINENO}: error: $2" >&$4
 fi
 $as_echo "$as_me: error: $2" >&2
 as_fn_exit $as_status
} # as_fn_error

as_fn_set_status STATUS

Set $? to STATUS, without forking.
as_fn_set_status ()
{
 return $1
} # as_fn_set_status

as_fn_exit STATUS

Exit the shell with STATUS, even in a "trap 0" or "set -e" context.
as_fn_exit ()
{
 set +e
 as_fn_set_status $1
 exit $1
} # as_fn_exit

as_fn_unset VAR

Portably unset VAR.
as_fn_unset ()
{
 { eval $1=; unset $1;}
}
as_unset=as_fn_unset
as_fn_append VAR VALUE

Append the text in VALUE to the end of the definition contained in VAR. Take
advantage of any shell optimizations that allow amortized linear growth over
repeated appends, instead of the typical quadratic growth present in naive
implementations.
if (eval "as_var=1; as_var+=2; test x\$as_var = x12") 2>/dev/null; then :
 eval 'as_fn_append ()
 {
 eval $1+=\$2
 }'
else
 as_fn_append ()
 {
 eval $1=\$$1\$2
 }
fi # as_fn_append

as_fn_arith ARG...

Perform arithmetic evaluation on the ARGs, and store the result in the
global $as_val. Take advantage of shells that can avoid forks. The arguments
must be portable across $(()) and expr.
if (eval "test \$((1 + 1)) = 2") 2>/dev/null; then :
 eval 'as_fn_arith ()
 {
 as_val=$(($*))
 }'
else
 as_fn_arith ()
 {
 as_val=`expr "$@" || test $? -eq 1`
 }
fi # as_fn_arith

if expr a : '\(a\)' >/dev/null 2>&1 &&
 test "X`expr 00001 : '.*\(...\)'`" = X001; then
 as_expr=expr
else
 as_expr=false
fi

if (basename -- /) >/dev/null 2>&1 && test "X`basename -- / 2>&1`" = "X/"; then
 as_basename=basename
else
 as_basename=false
fi

if (as_dir=`dirname -- /` && test "X$as_dir" = X/) >/dev/null 2>&1; then
 as_dirname=dirname
else
 as_dirname=false
fi

as_me=`$as_basename -- "$0" ||
$as_expr X/"$0" : '.*/\([^/][^/]*\)/*$' \| \
	 X"$0" : 'X\(//\)$' \| \
	 X"$0" : 'X\(/\)' \| . 2>/dev/null ||
$as_echo X/"$0" |
 sed '/^.*\/\([^/][^/]*\)\/*$/{
	 s//\1/
	 q
	 }
	 /^X\/\(\/\/\)$/{
	 s//\1/
	 q
	 }
	 /^X\/\(\/\).*/{
	 s//\1/
	 q
	 }
	 s/.*/./; q'`

Avoid depending upon Character Ranges.
as_cr_letters='abcdefghijklmnopqrstuvwxyz'
as_cr_LETTERS='ABCDEFGHIJKLMNOPQRSTUVWXYZ'
as_cr_Letters=$as_cr_letters$as_cr_LETTERS
as_cr_digits='0123456789'
as_cr_alnum=$as_cr_Letters$as_cr_digits

ECHO_C= ECHO_N= ECHO_T=
case `echo -n x` in #(((((
-n*)
 case `echo 'xy\c'` in
 c) ECHO_T='	';;	# ECHO_T is single tab character.
 xy) ECHO_C='\c';;
 *) echo `echo ksh88 bug on AIX 6.1` > /dev/null
 ECHO_T='	';;
 esac;;
*)
 ECHO_N='-n';;
esac

rm -f conf$$ conf$$.exe conf$$.file
if test -d conf$$.dir; then
 rm -f conf$$.dir/conf$$.file
else
 rm -f conf$$.dir
 mkdir conf$$.dir 2>/dev/null
fi
if (echo >conf$$.file) 2>/dev/null; then
 if ln -s conf$$.file conf$$ 2>/dev/null; then
 as_ln_s='ln -s'
 # ... but there are two gotchas:
 # 1) On MSYS, both `ln -s file dir' and `ln file dir' fail.
 # 2) DJGPP < 2.04 has no symlinks; `ln -s' creates a wrapper executable.
 # In both cases, we have to default to `cp -pR'.
 ln -s conf$$.file conf$$.dir 2>/dev/null && test ! -f conf$$.exe ||
 as_ln_s='cp -pR'
 elif ln conf$$.file conf$$ 2>/dev/null; then
 as_ln_s=ln
 else
 as_ln_s='cp -pR'
 fi
else
 as_ln_s='cp -pR'
fi
rm -f conf$$ conf$$.exe conf$$.dir/conf$$.file conf$$.file
rmdir conf$$.dir 2>/dev/null

as_fn_mkdir_p

Create "$as_dir" as a directory, including parents if necessary.
as_fn_mkdir_p ()
{

 case $as_dir in #(
 -*) as_dir=./$as_dir;;
 esac
 test -d "$as_dir" || eval $as_mkdir_p || {
 as_dirs=
 while :; do
 case $as_dir in #(
 \') as_qdir=`$as_echo "$as_dir" | sed "s/'/'\\\\\\\\''/g"`;; #'(
 *) as_qdir=$as_dir;;
 esac
 as_dirs="'$as_qdir' $as_dirs"
 as_dir=`$as_dirname -- "$as_dir" ||
$as_expr X"$as_dir" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \
	 X"$as_dir" : 'X\(//\)[^/]' \| \
	 X"$as_dir" : 'X\(//\)$' \| \
	 X"$as_dir" : 'X\(/\)' \| . 2>/dev/null ||
$as_echo X"$as_dir" |
 sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{
	 s//\1/
	 q
	 }
	 /^X\(\/\/\)[^/].*/{
	 s//\1/
	 q
	 }
	 /^X\(\/\/\)$/{
	 s//\1/
	 q
	 }
	 /^X\(\/\).*/{
	 s//\1/
	 q
	 }
	 s/.*/./; q'`
 test -d "$as_dir" && break
 done
 test -z "$as_dirs" || eval "mkdir $as_dirs"
 } || test -d "$as_dir" || as_fn_error $? "cannot create directory $as_dir"

} # as_fn_mkdir_p
if mkdir -p . 2>/dev/null; then
 as_mkdir_p='mkdir -p "$as_dir"'
else
 test -d ./-p && rmdir ./-p
 as_mkdir_p=false
fi

as_fn_executable_p FILE

Test if FILE is an executable regular file.
as_fn_executable_p ()
{
 test -f "$1" && test -x "$1"
} # as_fn_executable_p
as_test_x='test -x'
as_executable_p=as_fn_executable_p

Sed expression to map a string onto a valid CPP name.
as_tr_cpp="eval sed 'y%*$as_cr_letters%P$as_cr_LETTERS%;s%[^_$as_cr_alnum]%_%g'"

Sed expression to map a string onto a valid variable name.
as_tr_sh="eval sed 'y%*+%pp%;s%[^_$as_cr_alnum]%_%g'"

exec 6>&1

Main body of $CONFIG_STATUS script.

_ASEOF
test $as_write_fail = 0 && chmod +x $CONFIG_STATUS || ac_write_fail=1

cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
Save the log message, to keep $0 and so on meaningful, and to
report actual input values of CONFIG_FILES etc. instead of their
values after options handling.
ac_log="
This file was extended by qpdf $as_me 7.1.0, which was
generated by GNU Autoconf 2.69. Invocation command line was

 CONFIG_FILES = $CONFIG_FILES
 CONFIG_HEADERS = $CONFIG_HEADERS
 CONFIG_LINKS = $CONFIG_LINKS
 CONFIG_COMMANDS = $CONFIG_COMMANDS
 $ $0 $@

on `(hostname || uname -n) 2>/dev/null | sed 1q`
"

_ACEOF

case $ac_config_files in *"
"*) set x $ac_config_files; shift; ac_config_files=$*;;
esac

case $ac_config_headers in *"
"*) set x $ac_config_headers; shift; ac_config_headers=$*;;
esac

cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
Files that config.status was made for.
config_files="$ac_config_files"
config_headers="$ac_config_headers"
config_commands="$ac_config_commands"

_ACEOF

cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_usage="\
\`$as_me' instantiates files and other configuration actions
from templates according to the current configuration. Unless the files
and actions are specified as TAGs, all are instantiated by default.

Usage: $0 [OPTION]... [TAG]...

 -h, --help print this help, then exit
 -V, --version print version number and configuration settings, then exit
 --config print configuration, then exit
 -q, --quiet, --silent
 do not print progress messages
 -d, --debug don't remove temporary files
 --recheck update $as_me by reconfiguring in the same conditions
 --file=FILE[:TEMPLATE]
 instantiate the configuration file FILE
 --header=FILE[:TEMPLATE]
 instantiate the configuration header FILE

Configuration files:
$config_files

Configuration headers:
$config_headers

Configuration commands:
$config_commands

Report bugs to the package provider."

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`"
ac_cs_version="\\
qpdf config.status 7.1.0
configured by $0, generated by GNU Autoconf 2.69,
 with options \\"\$ac_cs_config\\"

Copyright (C) 2012 Free Software Foundation, Inc.
This config.status script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it."

ac_pwd='$ac_pwd'
srcdir='$srcdir'
AWK='$AWK'
test -n "\$AWK" || AWK=awk
_ACEOF

cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
The default lists apply if the user does not specify any file.
ac_need_defaults=:
while test $# != 0
do
 case $1 in
 --*=?*)
 ac_option=`expr "X$1" : 'X\([^=]*\)='`
 ac_optarg=`expr "X$1" : 'X[^=]*=\(.*\)'`
 ac_shift=:
 ;;
 --*=)
 ac_option=`expr "X$1" : 'X\([^=]*\)='`
 ac_optarg=
 ac_shift=:
 ;;
 *)
 ac_option=$1
 ac_optarg=$2
 ac_shift=shift
 ;;
 esac

 case $ac_option in
 # Handling of the options.
 -recheck | --recheck | --rechec | --reche | --rech | --rec | --re | --r)
 ac_cs_recheck=: ;;
 --version | --versio | --versi | --vers | --ver | --ve | --v | -V)
 $as_echo "$ac_cs_version"; exit ;;
 --config | --confi | --conf | --con | --co | --c)
 $as_echo "$ac_cs_config"; exit ;;
 --debug | --debu | --deb | --de | --d | -d)
 debug=: ;;
 --file | --fil | --fi | --f)
 $ac_shift
 case $ac_optarg in
 \') ac_optarg=`$as_echo "$ac_optarg" | sed "s/'/'\\\\\\\\''/g"` ;;
 '') as_fn_error $? "missing file argument" ;;
 esac
 as_fn_append CONFIG_FILES " '$ac_optarg'"
 ac_need_defaults=false;;
 --header | --heade | --head | --hea)
 $ac_shift
 case $ac_optarg in
 \') ac_optarg=`$as_echo "$ac_optarg" | sed "s/'/'\\\\\\\\''/g"` ;;
 esac
 as_fn_append CONFIG_HEADERS " '$ac_optarg'"
 ac_need_defaults=false;;
 --he | --h)
 # Conflict between --help and --header
 as_fn_error $? "ambiguous option: \`$1'
Try \`$0 --help' for more information.";;
 --help | --hel | -h)
 $as_echo "$ac_cs_usage"; exit ;;
 -q | -quiet | --quiet | --quie | --qui | --qu | --q \
 | -silent | --silent | --silen | --sile | --sil | --si | --s)
 ac_cs_silent=: ;;

 # This is an error.
 -*) as_fn_error $? "unrecognized option: \`$1'
Try \`$0 --help' for more information." ;;

 *) as_fn_append ac_config_targets " $1"
 ac_need_defaults=false ;;

 esac
 shift
done

ac_configure_extra_args=

if $ac_cs_silent; then
 exec 6>/dev/null
 ac_configure_extra_args="$ac_configure_extra_args --silent"
fi

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
if \$ac_cs_recheck; then
 set X $SHELL '$0' $ac_configure_args \$ac_configure_extra_args --no-create --no-recursion
 shift
 \$as_echo "running CONFIG_SHELL=$SHELL \$*" >&6
 CONFIG_SHELL='$SHELL'
 export CONFIG_SHELL
 exec "\$@"
fi

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
exec 5>>config.log
{
 echo
 sed 'h;s/./-/g;s/^.../## /;s/...$/ ##/;p;x;p;x' <<_ASBOX
Running $as_me.
_ASBOX
 $as_echo "$ac_log"
} >&5

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
#
INIT-COMMANDS
#

The HP-UX ksh and POSIX shell print the target directory to stdout
if CDPATH is set.
(unset CDPATH) >/dev/null 2>&1 && unset CDPATH

sed_quote_subst='$sed_quote_subst'
double_quote_subst='$double_quote_subst'
delay_variable_subst='$delay_variable_subst'
macro_version='`$ECHO "$macro_version" | $SED "$delay_single_quote_subst"`'
macro_revision='`$ECHO "$macro_revision" | $SED "$delay_single_quote_subst"`'
AS='`$ECHO "$AS" | $SED "$delay_single_quote_subst"`'
DLLTOOL='`$ECHO "$DLLTOOL" | $SED "$delay_single_quote_subst"`'
OBJDUMP='`$ECHO "$OBJDUMP" | $SED "$delay_single_quote_subst"`'
enable_shared='`$ECHO "$enable_shared" | $SED "$delay_single_quote_subst"`'
enable_static='`$ECHO "$enable_static" | $SED "$delay_single_quote_subst"`'
pic_mode='`$ECHO "$pic_mode" | $SED "$delay_single_quote_subst"`'
enable_fast_install='`$ECHO "$enable_fast_install" | $SED "$delay_single_quote_subst"`'
shared_archive_member_spec='`$ECHO "$shared_archive_member_spec" | $SED "$delay_single_quote_subst"`'
SHELL='`$ECHO "$SHELL" | $SED "$delay_single_quote_subst"`'
ECHO='`$ECHO "$ECHO" | $SED "$delay_single_quote_subst"`'
PATH_SEPARATOR='`$ECHO "$PATH_SEPARATOR" | $SED "$delay_single_quote_subst"`'
host_alias='`$ECHO "$host_alias" | $SED "$delay_single_quote_subst"`'
host='`$ECHO "$host" | $SED "$delay_single_quote_subst"`'
host_os='`$ECHO "$host_os" | $SED "$delay_single_quote_subst"`'
build_alias='`$ECHO "$build_alias" | $SED "$delay_single_quote_subst"`'
build='`$ECHO "$build" | $SED "$delay_single_quote_subst"`'
build_os='`$ECHO "$build_os" | $SED "$delay_single_quote_subst"`'
SED='`$ECHO "$SED" | $SED "$delay_single_quote_subst"`'
Xsed='`$ECHO "$Xsed" | $SED "$delay_single_quote_subst"`'
GREP='`$ECHO "$GREP" | $SED "$delay_single_quote_subst"`'
EGREP='`$ECHO "$EGREP" | $SED "$delay_single_quote_subst"`'
FGREP='`$ECHO "$FGREP" | $SED "$delay_single_quote_subst"`'
LD='`$ECHO "$LD" | $SED "$delay_single_quote_subst"`'
NM='`$ECHO "$NM" | $SED "$delay_single_quote_subst"`'
LN_S='`$ECHO "$LN_S" | $SED "$delay_single_quote_subst"`'
max_cmd_len='`$ECHO "$max_cmd_len" | $SED "$delay_single_quote_subst"`'
ac_objext='`$ECHO "$ac_objext" | $SED "$delay_single_quote_subst"`'
exeext='`$ECHO "$exeext" | $SED "$delay_single_quote_subst"`'
lt_unset='`$ECHO "$lt_unset" | $SED "$delay_single_quote_subst"`'
lt_SP2NL='`$ECHO "$lt_SP2NL" | $SED "$delay_single_quote_subst"`'
lt_NL2SP='`$ECHO "$lt_NL2SP" | $SED "$delay_single_quote_subst"`'
lt_cv_to_host_file_cmd='`$ECHO "$lt_cv_to_host_file_cmd" | $SED "$delay_single_quote_subst"`'
lt_cv_to_tool_file_cmd='`$ECHO "$lt_cv_to_tool_file_cmd" | $SED "$delay_single_quote_subst"`'
reload_flag='`$ECHO "$reload_flag" | $SED "$delay_single_quote_subst"`'
reload_cmds='`$ECHO "$reload_cmds" | $SED "$delay_single_quote_subst"`'
deplibs_check_method='`$ECHO "$deplibs_check_method" | $SED "$delay_single_quote_subst"`'
file_magic_cmd='`$ECHO "$file_magic_cmd" | $SED "$delay_single_quote_subst"`'
file_magic_glob='`$ECHO "$file_magic_glob" | $SED "$delay_single_quote_subst"`'
want_nocaseglob='`$ECHO "$want_nocaseglob" | $SED "$delay_single_quote_subst"`'
sharedlib_from_linklib_cmd='`$ECHO "$sharedlib_from_linklib_cmd" | $SED "$delay_single_quote_subst"`'
AR='`$ECHO "$AR" | $SED "$delay_single_quote_subst"`'
AR_FLAGS='`$ECHO "$AR_FLAGS" | $SED "$delay_single_quote_subst"`'
archiver_list_spec='`$ECHO "$archiver_list_spec" | $SED "$delay_single_quote_subst"`'
STRIP='`$ECHO "$STRIP" | $SED "$delay_single_quote_subst"`'
RANLIB='`$ECHO "$RANLIB" | $SED "$delay_single_quote_subst"`'
old_postinstall_cmds='`$ECHO "$old_postinstall_cmds" | $SED "$delay_single_quote_subst"`'
old_postuninstall_cmds='`$ECHO "$old_postuninstall_cmds" | $SED "$delay_single_quote_subst"`'
old_archive_cmds='`$ECHO "$old_archive_cmds" | $SED "$delay_single_quote_subst"`'
lock_old_archive_extraction='`$ECHO "$lock_old_archive_extraction" | $SED "$delay_single_quote_subst"`'
CC='`$ECHO "$CC" | $SED "$delay_single_quote_subst"`'
CFLAGS='`$ECHO "$CFLAGS" | $SED "$delay_single_quote_subst"`'
compiler='`$ECHO "$compiler" | $SED "$delay_single_quote_subst"`'
GCC='`$ECHO "$GCC" | $SED "$delay_single_quote_subst"`'
lt_cv_sys_global_symbol_pipe='`$ECHO "$lt_cv_sys_global_symbol_pipe" | $SED "$delay_single_quote_subst"`'
lt_cv_sys_global_symbol_to_cdecl='`$ECHO "$lt_cv_sys_global_symbol_to_cdecl" | $SED "$delay_single_quote_subst"`'
lt_cv_sys_global_symbol_to_import='`$ECHO "$lt_cv_sys_global_symbol_to_import" | $SED "$delay_single_quote_subst"`'
lt_cv_sys_global_symbol_to_c_name_address='`$ECHO "$lt_cv_sys_global_symbol_to_c_name_address" | $SED "$delay_single_quote_subst"`'
lt_cv_sys_global_symbol_to_c_name_address_lib_prefix='`$ECHO "$lt_cv_sys_global_symbol_to_c_name_address_lib_prefix" | $SED "$delay_single_quote_subst"`'
lt_cv_nm_interface='`$ECHO "$lt_cv_nm_interface" | $SED "$delay_single_quote_subst"`'
nm_file_list_spec='`$ECHO "$nm_file_list_spec" | $SED "$delay_single_quote_subst"`'
lt_sysroot='`$ECHO "$lt_sysroot" | $SED "$delay_single_quote_subst"`'
lt_cv_truncate_bin='`$ECHO "$lt_cv_truncate_bin" | $SED "$delay_single_quote_subst"`'
objdir='`$ECHO "$objdir" | $SED "$delay_single_quote_subst"`'
MAGIC_CMD='`$ECHO "$MAGIC_CMD" | $SED "$delay_single_quote_subst"`'
lt_prog_compiler_no_builtin_flag='`$ECHO "$lt_prog_compiler_no_builtin_flag" | $SED "$delay_single_quote_subst"`'
lt_prog_compiler_pic='`$ECHO "$lt_prog_compiler_pic" | $SED "$delay_single_quote_subst"`'
lt_prog_compiler_wl='`$ECHO "$lt_prog_compiler_wl" | $SED "$delay_single_quote_subst"`'
lt_prog_compiler_static='`$ECHO "$lt_prog_compiler_static" | $SED "$delay_single_quote_subst"`'
lt_cv_prog_compiler_c_o='`$ECHO "$lt_cv_prog_compiler_c_o" | $SED "$delay_single_quote_subst"`'
need_locks='`$ECHO "$need_locks" | $SED "$delay_single_quote_subst"`'
MANIFEST_TOOL='`$ECHO "$MANIFEST_TOOL" | $SED "$delay_single_quote_subst"`'
DSYMUTIL='`$ECHO "$DSYMUTIL" | $SED "$delay_single_quote_subst"`'
NMEDIT='`$ECHO "$NMEDIT" | $SED "$delay_single_quote_subst"`'
LIPO='`$ECHO "$LIPO" | $SED "$delay_single_quote_subst"`'
OTOOL='`$ECHO "$OTOOL" | $SED "$delay_single_quote_subst"`'
OTOOL64='`$ECHO "$OTOOL64" | $SED "$delay_single_quote_subst"`'
libext='`$ECHO "$libext" | $SED "$delay_single_quote_subst"`'
shrext_cmds='`$ECHO "$shrext_cmds" | $SED "$delay_single_quote_subst"`'
extract_expsyms_cmds='`$ECHO "$extract_expsyms_cmds" | $SED "$delay_single_quote_subst"`'
archive_cmds_need_lc='`$ECHO "$archive_cmds_need_lc" | $SED "$delay_single_quote_subst"`'
enable_shared_with_static_runtimes='`$ECHO "$enable_shared_with_static_runtimes" | $SED "$delay_single_quote_subst"`'
export_dynamic_flag_spec='`$ECHO "$export_dynamic_flag_spec" | $SED "$delay_single_quote_subst"`'
whole_archive_flag_spec='`$ECHO "$whole_archive_flag_spec" | $SED "$delay_single_quote_subst"`'
compiler_needs_object='`$ECHO "$compiler_needs_object" | $SED "$delay_single_quote_subst"`'
old_archive_from_new_cmds='`$ECHO "$old_archive_from_new_cmds" | $SED "$delay_single_quote_subst"`'
old_archive_from_expsyms_cmds='`$ECHO "$old_archive_from_expsyms_cmds" | $SED "$delay_single_quote_subst"`'
archive_cmds='`$ECHO "$archive_cmds" | $SED "$delay_single_quote_subst"`'
archive_expsym_cmds='`$ECHO "$archive_expsym_cmds" | $SED "$delay_single_quote_subst"`'
module_cmds='`$ECHO "$module_cmds" | $SED "$delay_single_quote_subst"`'
module_expsym_cmds='`$ECHO "$module_expsym_cmds" | $SED "$delay_single_quote_subst"`'
with_gnu_ld='`$ECHO "$with_gnu_ld" | $SED "$delay_single_quote_subst"`'
allow_undefined_flag='`$ECHO "$allow_undefined_flag" | $SED "$delay_single_quote_subst"`'
no_undefined_flag='`$ECHO "$no_undefined_flag" | $SED "$delay_single_quote_subst"`'
hardcode_libdir_flag_spec='`$ECHO "$hardcode_libdir_flag_spec" | $SED "$delay_single_quote_subst"`'
hardcode_libdir_separator='`$ECHO "$hardcode_libdir_separator" | $SED "$delay_single_quote_subst"`'
hardcode_direct='`$ECHO "$hardcode_direct" | $SED "$delay_single_quote_subst"`'
hardcode_direct_absolute='`$ECHO "$hardcode_direct_absolute" | $SED "$delay_single_quote_subst"`'
hardcode_minus_L='`$ECHO "$hardcode_minus_L" | $SED "$delay_single_quote_subst"`'
hardcode_shlibpath_var='`$ECHO "$hardcode_shlibpath_var" | $SED "$delay_single_quote_subst"`'
hardcode_automatic='`$ECHO "$hardcode_automatic" | $SED "$delay_single_quote_subst"`'
inherit_rpath='`$ECHO "$inherit_rpath" | $SED "$delay_single_quote_subst"`'
link_all_deplibs='`$ECHO "$link_all_deplibs" | $SED "$delay_single_quote_subst"`'
always_export_symbols='`$ECHO "$always_export_symbols" | $SED "$delay_single_quote_subst"`'
export_symbols_cmds='`$ECHO "$export_symbols_cmds" | $SED "$delay_single_quote_subst"`'
exclude_expsyms='`$ECHO "$exclude_expsyms" | $SED "$delay_single_quote_subst"`'
include_expsyms='`$ECHO "$include_expsyms" | $SED "$delay_single_quote_subst"`'
prelink_cmds='`$ECHO "$prelink_cmds" | $SED "$delay_single_quote_subst"`'
postlink_cmds='`$ECHO "$postlink_cmds" | $SED "$delay_single_quote_subst"`'
file_list_spec='`$ECHO "$file_list_spec" | $SED "$delay_single_quote_subst"`'
variables_saved_for_relink='`$ECHO "$variables_saved_for_relink" | $SED "$delay_single_quote_subst"`'
need_lib_prefix='`$ECHO "$need_lib_prefix" | $SED "$delay_single_quote_subst"`'
need_version='`$ECHO "$need_version" | $SED "$delay_single_quote_subst"`'
version_type='`$ECHO "$version_type" | $SED "$delay_single_quote_subst"`'
runpath_var='`$ECHO "$runpath_var" | $SED "$delay_single_quote_subst"`'
shlibpath_var='`$ECHO "$shlibpath_var" | $SED "$delay_single_quote_subst"`'
shlibpath_overrides_runpath='`$ECHO "$shlibpath_overrides_runpath" | $SED "$delay_single_quote_subst"`'
libname_spec='`$ECHO "$libname_spec" | $SED "$delay_single_quote_subst"`'
library_names_spec='`$ECHO "$library_names_spec" | $SED "$delay_single_quote_subst"`'
soname_spec='`$ECHO "$soname_spec" | $SED "$delay_single_quote_subst"`'
install_override_mode='`$ECHO "$install_override_mode" | $SED "$delay_single_quote_subst"`'
postinstall_cmds='`$ECHO "$postinstall_cmds" | $SED "$delay_single_quote_subst"`'
postuninstall_cmds='`$ECHO "$postuninstall_cmds" | $SED "$delay_single_quote_subst"`'
finish_cmds='`$ECHO "$finish_cmds" | $SED "$delay_single_quote_subst"`'
finish_eval='`$ECHO "$finish_eval" | $SED "$delay_single_quote_subst"`'
hardcode_into_libs='`$ECHO "$hardcode_into_libs" | $SED "$delay_single_quote_subst"`'
sys_lib_search_path_spec='`$ECHO "$sys_lib_search_path_spec" | $SED "$delay_single_quote_subst"`'
configure_time_dlsearch_path='`$ECHO "$configure_time_dlsearch_path" | $SED "$delay_single_quote_subst"`'
configure_time_lt_sys_library_path='`$ECHO "$configure_time_lt_sys_library_path" | $SED "$delay_single_quote_subst"`'
hardcode_action='`$ECHO "$hardcode_action" | $SED "$delay_single_quote_subst"`'
enable_dlopen='`$ECHO "$enable_dlopen" | $SED "$delay_single_quote_subst"`'
enable_dlopen_self='`$ECHO "$enable_dlopen_self" | $SED "$delay_single_quote_subst"`'
enable_dlopen_self_static='`$ECHO "$enable_dlopen_self_static" | $SED "$delay_single_quote_subst"`'
old_striplib='`$ECHO "$old_striplib" | $SED "$delay_single_quote_subst"`'
striplib='`$ECHO "$striplib" | $SED "$delay_single_quote_subst"`'
compiler_lib_search_dirs='`$ECHO "$compiler_lib_search_dirs" | $SED "$delay_single_quote_subst"`'
predep_objects='`$ECHO "$predep_objects" | $SED "$delay_single_quote_subst"`'
postdep_objects='`$ECHO "$postdep_objects" | $SED "$delay_single_quote_subst"`'
predeps='`$ECHO "$predeps" | $SED "$delay_single_quote_subst"`'
postdeps='`$ECHO "$postdeps" | $SED "$delay_single_quote_subst"`'
compiler_lib_search_path='`$ECHO "$compiler_lib_search_path" | $SED "$delay_single_quote_subst"`'
LD_CXX='`$ECHO "$LD_CXX" | $SED "$delay_single_quote_subst"`'
reload_flag_CXX='`$ECHO "$reload_flag_CXX" | $SED "$delay_single_quote_subst"`'
reload_cmds_CXX='`$ECHO "$reload_cmds_CXX" | $SED "$delay_single_quote_subst"`'
old_archive_cmds_CXX='`$ECHO "$old_archive_cmds_CXX" | $SED "$delay_single_quote_subst"`'
compiler_CXX='`$ECHO "$compiler_CXX" | $SED "$delay_single_quote_subst"`'
GCC_CXX='`$ECHO "$GCC_CXX" | $SED "$delay_single_quote_subst"`'
lt_prog_compiler_no_builtin_flag_CXX='`$ECHO "$lt_prog_compiler_no_builtin_flag_CXX" | $SED "$delay_single_quote_subst"`'
lt_prog_compiler_pic_CXX='`$ECHO "$lt_prog_compiler_pic_CXX" | $SED "$delay_single_quote_subst"`'
lt_prog_compiler_wl_CXX='`$ECHO "$lt_prog_compiler_wl_CXX" | $SED "$delay_single_quote_subst"`'
lt_prog_compiler_static_CXX='`$ECHO "$lt_prog_compiler_static_CXX" | $SED "$delay_single_quote_subst"`'
lt_cv_prog_compiler_c_o_CXX='`$ECHO "$lt_cv_prog_compiler_c_o_CXX" | $SED "$delay_single_quote_subst"`'
archive_cmds_need_lc_CXX='`$ECHO "$archive_cmds_need_lc_CXX" | $SED "$delay_single_quote_subst"`'
enable_shared_with_static_runtimes_CXX='`$ECHO "$enable_shared_with_static_runtimes_CXX" | $SED "$delay_single_quote_subst"`'
export_dynamic_flag_spec_CXX='`$ECHO "$export_dynamic_flag_spec_CXX" | $SED "$delay_single_quote_subst"`'
whole_archive_flag_spec_CXX='`$ECHO "$whole_archive_flag_spec_CXX" | $SED "$delay_single_quote_subst"`'
compiler_needs_object_CXX='`$ECHO "$compiler_needs_object_CXX" | $SED "$delay_single_quote_subst"`'
old_archive_from_new_cmds_CXX='`$ECHO "$old_archive_from_new_cmds_CXX" | $SED "$delay_single_quote_subst"`'
old_archive_from_expsyms_cmds_CXX='`$ECHO "$old_archive_from_expsyms_cmds_CXX" | $SED "$delay_single_quote_subst"`'
archive_cmds_CXX='`$ECHO "$archive_cmds_CXX" | $SED "$delay_single_quote_subst"`'
archive_expsym_cmds_CXX='`$ECHO "$archive_expsym_cmds_CXX" | $SED "$delay_single_quote_subst"`'
module_cmds_CXX='`$ECHO "$module_cmds_CXX" | $SED "$delay_single_quote_subst"`'
module_expsym_cmds_CXX='`$ECHO "$module_expsym_cmds_CXX" | $SED "$delay_single_quote_subst"`'
with_gnu_ld_CXX='`$ECHO "$with_gnu_ld_CXX" | $SED "$delay_single_quote_subst"`'
allow_undefined_flag_CXX='`$ECHO "$allow_undefined_flag_CXX" | $SED "$delay_single_quote_subst"`'
no_undefined_flag_CXX='`$ECHO "$no_undefined_flag_CXX" | $SED "$delay_single_quote_subst"`'
hardcode_libdir_flag_spec_CXX='`$ECHO "$hardcode_libdir_flag_spec_CXX" | $SED "$delay_single_quote_subst"`'
hardcode_libdir_separator_CXX='`$ECHO "$hardcode_libdir_separator_CXX" | $SED "$delay_single_quote_subst"`'
hardcode_direct_CXX='`$ECHO "$hardcode_direct_CXX" | $SED "$delay_single_quote_subst"`'
hardcode_direct_absolute_CXX='`$ECHO "$hardcode_direct_absolute_CXX" | $SED "$delay_single_quote_subst"`'
hardcode_minus_L_CXX='`$ECHO "$hardcode_minus_L_CXX" | $SED "$delay_single_quote_subst"`'
hardcode_shlibpath_var_CXX='`$ECHO "$hardcode_shlibpath_var_CXX" | $SED "$delay_single_quote_subst"`'
hardcode_automatic_CXX='`$ECHO "$hardcode_automatic_CXX" | $SED "$delay_single_quote_subst"`'
inherit_rpath_CXX='`$ECHO "$inherit_rpath_CXX" | $SED "$delay_single_quote_subst"`'
link_all_deplibs_CXX='`$ECHO "$link_all_deplibs_CXX" | $SED "$delay_single_quote_subst"`'
always_export_symbols_CXX='`$ECHO "$always_export_symbols_CXX" | $SED "$delay_single_quote_subst"`'
export_symbols_cmds_CXX='`$ECHO "$export_symbols_cmds_CXX" | $SED "$delay_single_quote_subst"`'
exclude_expsyms_CXX='`$ECHO "$exclude_expsyms_CXX" | $SED "$delay_single_quote_subst"`'
include_expsyms_CXX='`$ECHO "$include_expsyms_CXX" | $SED "$delay_single_quote_subst"`'
prelink_cmds_CXX='`$ECHO "$prelink_cmds_CXX" | $SED "$delay_single_quote_subst"`'
postlink_cmds_CXX='`$ECHO "$postlink_cmds_CXX" | $SED "$delay_single_quote_subst"`'
file_list_spec_CXX='`$ECHO "$file_list_spec_CXX" | $SED "$delay_single_quote_subst"`'
hardcode_action_CXX='`$ECHO "$hardcode_action_CXX" | $SED "$delay_single_quote_subst"`'
compiler_lib_search_dirs_CXX='`$ECHO "$compiler_lib_search_dirs_CXX" | $SED "$delay_single_quote_subst"`'
predep_objects_CXX='`$ECHO "$predep_objects_CXX" | $SED "$delay_single_quote_subst"`'
postdep_objects_CXX='`$ECHO "$postdep_objects_CXX" | $SED "$delay_single_quote_subst"`'
predeps_CXX='`$ECHO "$predeps_CXX" | $SED "$delay_single_quote_subst"`'
postdeps_CXX='`$ECHO "$postdeps_CXX" | $SED "$delay_single_quote_subst"`'
compiler_lib_search_path_CXX='`$ECHO "$compiler_lib_search_path_CXX" | $SED "$delay_single_quote_subst"`'

LTCC='$LTCC'
LTCFLAGS='$LTCFLAGS'
compiler='$compiler_DEFAULT'

A function that is used when there is no print builtin or printf.
func_fallback_echo ()
{
 eval 'cat <<_LTECHO_EOF
\$1
_LTECHO_EOF'
}

Quote evaled strings.
for var in AS \
DLLTOOL \
OBJDUMP \
SHELL \
ECHO \
PATH_SEPARATOR \
SED \
GREP \
EGREP \
FGREP \
LD \
NM \
LN_S \
lt_SP2NL \
lt_NL2SP \
reload_flag \
deplibs_check_method \
file_magic_cmd \
file_magic_glob \
want_nocaseglob \
sharedlib_from_linklib_cmd \
AR \
AR_FLAGS \
archiver_list_spec \
STRIP \
RANLIB \
CC \
CFLAGS \
compiler \
lt_cv_sys_global_symbol_pipe \
lt_cv_sys_global_symbol_to_cdecl \
lt_cv_sys_global_symbol_to_import \
lt_cv_sys_global_symbol_to_c_name_address \
lt_cv_sys_global_symbol_to_c_name_address_lib_prefix \
lt_cv_nm_interface \
nm_file_list_spec \
lt_cv_truncate_bin \
lt_prog_compiler_no_builtin_flag \
lt_prog_compiler_pic \
lt_prog_compiler_wl \
lt_prog_compiler_static \
lt_cv_prog_compiler_c_o \
need_locks \
MANIFEST_TOOL \
DSYMUTIL \
NMEDIT \
LIPO \
OTOOL \
OTOOL64 \
shrext_cmds \
export_dynamic_flag_spec \
whole_archive_flag_spec \
compiler_needs_object \
with_gnu_ld \
allow_undefined_flag \
no_undefined_flag \
hardcode_libdir_flag_spec \
hardcode_libdir_separator \
exclude_expsyms \
include_expsyms \
file_list_spec \
variables_saved_for_relink \
libname_spec \
library_names_spec \
soname_spec \
install_override_mode \
finish_eval \
old_striplib \
striplib \
compiler_lib_search_dirs \
predep_objects \
postdep_objects \
predeps \
postdeps \
compiler_lib_search_path \
LD_CXX \
reload_flag_CXX \
compiler_CXX \
lt_prog_compiler_no_builtin_flag_CXX \
lt_prog_compiler_pic_CXX \
lt_prog_compiler_wl_CXX \
lt_prog_compiler_static_CXX \
lt_cv_prog_compiler_c_o_CXX \
export_dynamic_flag_spec_CXX \
whole_archive_flag_spec_CXX \
compiler_needs_object_CXX \
with_gnu_ld_CXX \
allow_undefined_flag_CXX \
no_undefined_flag_CXX \
hardcode_libdir_flag_spec_CXX \
hardcode_libdir_separator_CXX \
exclude_expsyms_CXX \
include_expsyms_CXX \
file_list_spec_CXX \
compiler_lib_search_dirs_CXX \
predep_objects_CXX \
postdep_objects_CXX \
predeps_CXX \
postdeps_CXX \
compiler_lib_search_path_CXX; do
 case \`eval \\\\\$ECHO \\\\""\\\\\$\$var"\\\\"\` in
 [\\\\\\\`\\"\\\$])
 eval "lt_\$var=\\\\\\"\\\`\\\$ECHO \\"\\\$\$var\\" | \\\$SED \\"\\\$sed_quote_subst\\"\\\`\\\\\\"" ## exclude from sc_prohibit_nested_quotes
 ;;
 *)
 eval "lt_\$var=\\\\\\"\\\$\$var\\\\\\""
 ;;
 esac
done

Double-quote double-evaled strings.
for var in reload_cmds \
old_postinstall_cmds \
old_postuninstall_cmds \
old_archive_cmds \
extract_expsyms_cmds \
old_archive_from_new_cmds \
old_archive_from_expsyms_cmds \
archive_cmds \
archive_expsym_cmds \
module_cmds \
module_expsym_cmds \
export_symbols_cmds \
prelink_cmds \
postlink_cmds \
postinstall_cmds \
postuninstall_cmds \
finish_cmds \
sys_lib_search_path_spec \
configure_time_dlsearch_path \
configure_time_lt_sys_library_path \
reload_cmds_CXX \
old_archive_cmds_CXX \
old_archive_from_new_cmds_CXX \
old_archive_from_expsyms_cmds_CXX \
archive_cmds_CXX \
archive_expsym_cmds_CXX \
module_cmds_CXX \
module_expsym_cmds_CXX \
export_symbols_cmds_CXX \
prelink_cmds_CXX \
postlink_cmds_CXX; do
 case \`eval \\\\\$ECHO \\\\""\\\\\$\$var"\\\\"\` in
 [\\\\\\\`\\"\\\$])
 eval "lt_\$var=\\\\\\"\\\`\\\$ECHO \\"\\\$\$var\\" | \\\$SED -e \\"\\\$double_quote_subst\\" -e \\"\\\$sed_quote_subst\\" -e \\"\\\$delay_variable_subst\\"\\\`\\\\\\"" ## exclude from sc_prohibit_nested_quotes
 ;;
 *)
 eval "lt_\$var=\\\\\\"\\\$\$var\\\\\\""
 ;;
 esac
done

ac_aux_dir='$ac_aux_dir'

See if we are running on zsh, and set the options that allow our
commands through without removal of \ escapes INIT.
if test -n "\${ZSH_VERSION+set}"; then
 setopt NO_GLOB_SUBST
fi

 PACKAGE='$PACKAGE'
 VERSION='$VERSION'
 RM='$RM'
 ofile='$ofile'

_ACEOF

cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1

Handling of arguments.
for ac_config_target in $ac_config_targets
do
 case $ac_config_target in
 "autoconf.mk") CONFIG_FILES="$CONFIG_FILES autoconf.mk" ;;
 "manual/html.xsl") CONFIG_FILES="$CONFIG_FILES manual/html.xsl" ;;
 "manual/print.xsl") CONFIG_FILES="$CONFIG_FILES manual/print.xsl" ;;
 "libqpdf.pc") CONFIG_FILES="$CONFIG_FILES libqpdf.pc" ;;
 "libqpdf.map") CONFIG_FILES="$CONFIG_FILES libqpdf.map" ;;
 "libqpdf/qpdf/qpdf-config.h") CONFIG_HEADERS="$CONFIG_HEADERS libqpdf/qpdf/qpdf-config.h" ;;
 "libtool") CONFIG_COMMANDS="$CONFIG_COMMANDS libtool" ;;

 *) as_fn_error $? "invalid argument: \`$ac_config_target'" "$LINENO" 5;;
 esac
done

If the user did not use the arguments to specify the items to instantiate,
then the envvar interface is used. Set only those that are not.
We use the long form for the default assignment because of an extremely
bizarre bug on SunOS 4.1.3.
if $ac_need_defaults; then
 test "${CONFIG_FILES+set}" = set || CONFIG_FILES=$config_files
 test "${CONFIG_HEADERS+set}" = set || CONFIG_HEADERS=$config_headers
 test "${CONFIG_COMMANDS+set}" = set || CONFIG_COMMANDS=$config_commands
fi

Have a temporary directory for convenience. Make it in the build tree
simply because there is no reason against having it here, and in addition,
creating and moving files from /tmp can sometimes cause problems.
Hook for its removal unless debugging.
Note that there is a small window in which the directory will not be cleaned:
after its creation but before its name has been assigned to `$tmp'.
$debug ||
{
 tmp= ac_tmp=
 trap 'exit_status=$?
 : "${ac_tmp:=$tmp}"
 { test ! -d "$ac_tmp" || rm -fr "$ac_tmp"; } && exit $exit_status
' 0
 trap 'as_fn_exit 1' 1 2 13 15
}
Create a (secure) tmp directory for tmp files.

{
 tmp=`(umask 077 && mktemp -d "./confXXXXXX") 2>/dev/null` &&
 test -d "$tmp"
} ||
{
 tmp=./conf$$-$RANDOM
 (umask 077 && mkdir "$tmp")
} || as_fn_error $? "cannot create a temporary directory in ." "$LINENO" 5
ac_tmp=$tmp

Set up the scripts for CONFIG_FILES section.
No need to generate them if there are no CONFIG_FILES.
This happens for instance with `./config.status config.h'.
if test -n "$CONFIG_FILES"; then

ac_cr=`echo X | tr X '\015'`
On cygwin, bash can eat \r inside `` if the user requested igncr.
But we know of no other shell where ac_cr would be empty at this
point, so we can use a bashism as a fallback.
if test "x$ac_cr" = x; then
 eval ac_cr=\$\'\\r\'
fi
ac_cs_awk_cr=`$AWK 'BEGIN { print "a\rb" }' </dev/null 2>/dev/null`
if test "$ac_cs_awk_cr" = "a${ac_cr}b"; then
 ac_cs_awk_cr='\\r'
else
 ac_cs_awk_cr=$ac_cr
fi

echo 'BEGIN {' >"$ac_tmp/subs1.awk" &&
_ACEOF

{
 echo "cat >conf$$subs.awk <<_ACEOF" &&
 echo "$ac_subst_vars" | sed 's/.*/&!$&$ac_delim/' &&
 echo "_ACEOF"
} >conf$$subs.sh ||
 as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5
ac_delim_num=`echo "$ac_subst_vars" | grep -c '^'`
ac_delim='%!_!# '
for ac_last_try in false false false false false :; do
 . ./conf$$subs.sh ||
 as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5

 ac_delim_n=`sed -n "s/.*$ac_delim\$/X/p" conf$$subs.awk | grep -c X`
 if test $ac_delim_n = $ac_delim_num; then
 break
 elif $ac_last_try; then
 as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5
 else
 ac_delim="$ac_delim!$ac_delim _$ac_delim!! "
 fi
done
rm -f conf$$subs.sh

cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
cat >>"\$ac_tmp/subs1.awk" <<_ACAWK &&
_ACEOF
sed -n '
h
s/^/S["/; s/!.*/"]=/
p
g
s/^[^!]*!//
:repl
t repl
s/'"$ac_delim"'$//
t delim
:nl
h
s/\(.\{148\}\)..*/\1/
t more1
s/["\\]/\\&/g; s/^/"/; s/$/\\n"\\/
p
n
b repl
:more1
s/["\\]/\\&/g; s/^/"/; s/$/"\\/
p
g
s/.\{148\}//
t nl
:delim
h
s/\(.\{148\}\)..*/\1/
t more2
s/["\\]/\\&/g; s/^/"/; s/$/"/
p
b
:more2
s/["\\]/\\&/g; s/^/"/; s/$/"\\/
p
g
s/.\{148\}//
t delim
' <conf$$subs.awk | sed '
/^[^""]/{
 N
 s/\n//
}
' >>$CONFIG_STATUS || ac_write_fail=1
rm -f conf$$subs.awk
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
_ACAWK
cat >>"\$ac_tmp/subs1.awk" <<_ACAWK &&
 for (key in S) S_is_set[key] = 1
 FS = "�"

}
{
 line = $ 0
 nfields = split(line, field, "@")
 substed = 0
 len = length(field[1])
 for (i = 2; i < nfields; i++) {
 key = field[i]
 keylen = length(key)
 if (S_is_set[key]) {
 value = S[key]
 line = substr(line, 1, len) "" value "" substr(line, len + keylen + 3)
 len += length(value) + length(field[++i])
 substed = 1
 } else
 len += 1 + keylen
 }

 print line
}

_ACAWK
_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
if sed "s/$ac_cr//" < /dev/null > /dev/null 2>&1; then
 sed "s/$ac_cr\$//; s/$ac_cr/$ac_cs_awk_cr/g"
else
 cat
fi < "$ac_tmp/subs1.awk" > "$ac_tmp/subs.awk" \
 || as_fn_error $? "could not setup config files machinery" "$LINENO" 5
_ACEOF

VPATH may cause trouble with some makes, so we remove sole $(srcdir),
${srcdir} and @srcdir@ entries from VPATH if srcdir is ".", strip leading and
trailing colons and then remove the whole line if VPATH becomes empty
(actually we leave an empty line to preserve line numbers).
if test "x$srcdir" = x.; then
 ac_vpsub='/^[]*VPATH[]*=[]*/{
h
s///
s/^/:/
s/[]*$/:/
s/:\$(srcdir):/:/g
s/:\${srcdir}:/:/g
s/:@srcdir@:/:/g
s/^:*//
s/:*$//
x
s/\(=[]*\).*/\1/
G
s/\n//
s/^[^=]*=[]*$//
}'
fi

cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
fi # test -n "$CONFIG_FILES"

Set up the scripts for CONFIG_HEADERS section.
No need to generate them if there are no CONFIG_HEADERS.
This happens for instance with `./config.status Makefile'.
if test -n "$CONFIG_HEADERS"; then
cat >"$ac_tmp/defines.awk" <<_ACAWK ||
BEGIN {
_ACEOF

Transform confdefs.h into an awk script `defines.awk', embedded as
here-document in config.status, that substitutes the proper values into
config.h.in to produce config.h.

Create a delimiter string that does not exist in confdefs.h, to ease
handling of long lines.
ac_delim='%!_!# '
for ac_last_try in false false :; do
 ac_tt=`sed -n "/$ac_delim/p" confdefs.h`
 if test -z "$ac_tt"; then
 break
 elif $ac_last_try; then
 as_fn_error $? "could not make $CONFIG_HEADERS" "$LINENO" 5
 else
 ac_delim="$ac_delim!$ac_delim _$ac_delim!! "
 fi
done

For the awk script, D is an array of macro values keyed by name,
likewise P contains macro parameters if any. Preserve backslash
newline sequences.

ac_word_re=[_$as_cr_Letters][_$as_cr_alnum]*
sed -n '
s/.\{148\}/&'"$ac_delim"'/g
t rset
:rset
s/^[]*#[]*define[][]*/ /
t def
d
:def
s/\\$//
t bsnl
s/["\\]/\\&/g
s/^ \('"$ac_word_re"'\)\(([^()]*)\)[]*\(.*\)/P["\1"]="\2"\
D["\1"]=" \3"/p
s/^ \('"$ac_word_re"'\)[]*\(.*\)/D["\1"]=" \2"/p
d
:bsnl
s/["\\]/\\&/g
s/^ \('"$ac_word_re"'\)\(([^()]*)\)[]*\(.*\)/P["\1"]="\2"\
D["\1"]=" \3\\\\\\n"\\/p
t cont
s/^ \('"$ac_word_re"'\)[]*\(.*\)/D["\1"]=" \2\\\\\\n"\\/p
t cont
d
:cont
n
s/.\{148\}/&'"$ac_delim"'/g
t clear
:clear
s/\\$//
t bsnlc
s/["\\]/\\&/g; s/^/"/; s/$/"/p
d
:bsnlc
s/["\\]/\\&/g; s/^/"/; s/$/\\\\\\n"\\/p
b cont
' <confdefs.h | sed '
s/'"$ac_delim"'/"\\\
"/g' >>$CONFIG_STATUS || ac_write_fail=1

cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
 for (key in D) D_is_set[key] = 1
 FS = "�"
}
/^[\t]*#[\t]*(define|undef)[\t]+$ac_word_re([\t (]|\$)/ {
 line = \$ 0
 split(line, arg, " ")
 if (arg[1] == "#") {
 defundef = arg[2]
 mac1 = arg[3]
 } else {
 defundef = substr(arg[1], 2)
 mac1 = arg[2]
 }
 split(mac1, mac2, "(") #)
 macro = mac2[1]
 prefix = substr(line, 1, index(line, defundef) - 1)
 if (D_is_set[macro]) {
 # Preserve the white space surrounding the "#".
 print prefix "define", macro P[macro] D[macro]
 next
 } else {
 # Replace #undef with comments. This is necessary, for example,
 # in the case of _POSIX_SOURCE, which is predefined and required
 # on some systems where configure will not decide to define it.
 if (defundef == "undef") {
 print "/*", prefix defundef, macro, "*/"
 next
 }
 }
}
{ print }
_ACAWK
_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
 as_fn_error $? "could not setup config headers machinery" "$LINENO" 5
fi # test -n "$CONFIG_HEADERS"

eval set X " :F $CONFIG_FILES :H $CONFIG_HEADERS :C $CONFIG_COMMANDS"
shift
for ac_tag
do
 case $ac_tag in
 :[FHLC]) ac_mode=$ac_tag; continue;;
 esac
 case ac_modeac_tag in
 :[FHL]*:*);;
 :L* | :C*:*) as_fn_error $? "invalid tag \`$ac_tag'" "$LINENO" 5;;
 :[FH]-) ac_tag=-:-;;
 :[FH]*) ac_tag=$ac_tag:$ac_tag.in;;
 esac
 ac_save_IFS=$IFS
 IFS=:
 set x $ac_tag
 IFS=$ac_save_IFS
 shift
 ac_file=$1
 shift

 case $ac_mode in
 :L) ac_source=$1;;
 :[FH])
 ac_file_inputs=
 for ac_f
 do
 case $ac_f in
 -) ac_f="$ac_tmp/stdin";;
 *) # Look for the file first in the build tree, then in the source tree
	 # (if the path is not absolute). The absolute path cannot be DOS-style,
	 # because $ac_f cannot contain `:'.
	 test -f "$ac_f" ||
	 case $ac_f in
	 [\\/$]*) false;;
	 *) test -f "$srcdir/$ac_f" && ac_f="$srcdir/$ac_f";;
	 esac ||
	 as_fn_error 1 "cannot find input file: \`$ac_f'" "$LINENO" 5;;
 esac
 case $ac_f in *\'*) ac_f=`$as_echo "$ac_f" | sed "s/'/'\\\\\\\\''/g"`;; esac
 as_fn_append ac_file_inputs " '$ac_f'"
 done

 # Let's still pretend it is `configure' which instantiates (i.e., don't
 # use $as_me), people would be surprised to read:
 # /* config.h. Generated by config.status. */
 configure_input='Generated from '`
	 $as_echo "$*" | sed 's|^[^:]*/||;s|:[^:]*/|, |g'
	`' by configure.'
 if test x"$ac_file" != x-; then
 configure_input="$ac_file. $configure_input"
 { $as_echo "$as_me:${as_lineno-$LINENO}: creating $ac_file" >&5
$as_echo "$as_me: creating $ac_file" >&6;}
 fi
 # Neutralize special characters interpreted by sed in replacement strings.
 case $configure_input in #(
 \& | *\|* | **)
 ac_sed_conf_input=`$as_echo "$configure_input" |
 sed 's/[\\\\&|]/\\\\&/g'`;; #(
 *) ac_sed_conf_input=$configure_input;;
 esac

 case $ac_tag in
 :-: | *:-) cat >"$ac_tmp/stdin" \
 || as_fn_error $? "could not create $ac_file" "$LINENO" 5 ;;
 esac
 ;;
 esac

 ac_dir=`$as_dirname -- "$ac_file" ||
$as_expr X"$ac_file" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \
	 X"$ac_file" : 'X\(//\)[^/]' \| \
	 X"$ac_file" : 'X\(//\)$' \| \
	 X"$ac_file" : 'X\(/\)' \| . 2>/dev/null ||
$as_echo X"$ac_file" |
 sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{
	 s//\1/
	 q
	 }
	 /^X\(\/\/\)[^/].*/{
	 s//\1/
	 q
	 }
	 /^X\(\/\/\)$/{
	 s//\1/
	 q
	 }
	 /^X\(\/\).*/{
	 s//\1/
	 q
	 }
	 s/.*/./; q'`
 as_dir="$ac_dir"; as_fn_mkdir_p
 ac_builddir=.

case "$ac_dir" in
.) ac_dir_suffix= ac_top_builddir_sub=. ac_top_build_prefix= ;;
*)
 ac_dir_suffix=/`$as_echo "$ac_dir" | sed 's|^\.[\\/]||'`
 # A ".." for each directory in $ac_dir_suffix.
 ac_top_builddir_sub=`$as_echo "$ac_dir_suffix" | sed 's|/[^\\/]*|/..|g;s|/||'`
 case $ac_top_builddir_sub in
 "") ac_top_builddir_sub=. ac_top_build_prefix= ;;
 *) ac_top_build_prefix=$ac_top_builddir_sub/ ;;
 esac ;;
esac
ac_abs_top_builddir=$ac_pwd
ac_abs_builddir=ac_pwdac_dir_suffix
for backward compatibility:
ac_top_builddir=$ac_top_build_prefix

case $srcdir in
 .) # We are building in place.
 ac_srcdir=.
 ac_top_srcdir=$ac_top_builddir_sub
 ac_abs_top_srcdir=$ac_pwd ;;
 [\\/]* | ?:[\\/]*) # Absolute name.
 ac_srcdir=$srcdir$ac_dir_suffix;
 ac_top_srcdir=$srcdir
 ac_abs_top_srcdir=$srcdir ;;
 *) # Relative name.
 ac_srcdir=$ac_top_build_prefix$srcdir$ac_dir_suffix
 ac_top_srcdir=$ac_top_build_prefix$srcdir
 ac_abs_top_srcdir=$ac_pwd/$srcdir ;;
esac
ac_abs_srcdir=$ac_abs_top_srcdir$ac_dir_suffix

 case $ac_mode in
 :F)
 #
 # CONFIG_FILE
 #

_ACEOF

cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
If the template does not know about datarootdir, expand it.
FIXME: This hack should be removed a few years after 2.60.
ac_datarootdir_hack=; ac_datarootdir_seen=
ac_sed_dataroot='
/datarootdir/ {
 p
 q
}
/@datadir@/p
/@docdir@/p
/@infodir@/p
/@localedir@/p
/@mandir@/p'
case `eval "sed -n \"\$ac_sed_dataroot\" $ac_file_inputs"` in
datarootdir) ac_datarootdir_seen=yes;;
@datadir@|*@docdir@*|*@infodir@*|*@localedir@*|*@mandir@*)
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $ac_file_inputs seems to ignore the --datarootdir setting" >&5
$as_echo "$as_me: WARNING: $ac_file_inputs seems to ignore the --datarootdir setting" >&2;}
_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
 ac_datarootdir_hack='
 s&@datadir@&$datadir&g
 s&@docdir@&$docdir&g
 s&@infodir@&$infodir&g
 s&@localedir@&$localedir&g
 s&@mandir@&$mandir&g
 s&\\\${datarootdir}&$datarootdir&g' ;;
esac
_ACEOF

Neutralize VPATH when `$srcdir' = `.'.
Shell code in configure.ac might set extrasub.
FIXME: do we really want to maintain this feature?
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_sed_extra="$ac_vpsub
$extrasub
_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
:t
/@[a-zA-Z_][a-zA-Z_0-9]*@/!b
s|@configure_input@|$ac_sed_conf_input|;t t
s&@top_builddir@&$ac_top_builddir_sub&;t t
s&@top_build_prefix@&$ac_top_build_prefix&;t t
s&@srcdir@&$ac_srcdir&;t t
s&@abs_srcdir@&$ac_abs_srcdir&;t t
s&@top_srcdir@&$ac_top_srcdir&;t t
s&@abs_top_srcdir@&$ac_abs_top_srcdir&;t t
s&@builddir@&$ac_builddir&;t t
s&@abs_builddir@&$ac_abs_builddir&;t t
s&@abs_top_builddir@&$ac_abs_top_builddir&;t t
$ac_datarootdir_hack
"
eval sed \"\$ac_sed_extra\" "$ac_file_inputs" | $AWK -f "$ac_tmp/subs.awk" \
 >$ac_tmp/out || as_fn_error $? "could not create $ac_file" "$LINENO" 5

test -z "$ac_datarootdir_hack$ac_datarootdir_seen" &&
 { ac_out=`sed -n '/\${datarootdir}/p' "$ac_tmp/out"`; test -n "$ac_out"; } &&
 { ac_out=`sed -n '/^[]*datarootdir[]*:*=/p' \
 "$ac_tmp/out"`; test -z "$ac_out"; } &&
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $ac_file contains a reference to the variable \`datarootdir'
which seems to be undefined. Please make sure it is defined" >&5
$as_echo "$as_me: WARNING: $ac_file contains a reference to the variable \`datarootdir'
which seems to be undefined. Please make sure it is defined" >&2;}

 rm -f "$ac_tmp/stdin"
 case $ac_file in
 -) cat "$ac_tmp/out" && rm -f "$ac_tmp/out";;
 *) rm -f "$ac_file" && mv "$ac_tmp/out" "$ac_file";;
 esac \
 || as_fn_error $? "could not create $ac_file" "$LINENO" 5
 ;;
 :H)
 #
 # CONFIG_HEADER
 #
 if test x"$ac_file" != x-; then
 {
 $as_echo "/* $configure_input */" \
 && eval '$AWK -f "$ac_tmp/defines.awk"' "$ac_file_inputs"
 } >"$ac_tmp/config.h" \
 || as_fn_error $? "could not create $ac_file" "$LINENO" 5
 if diff "$ac_file" "$ac_tmp/config.h" >/dev/null 2>&1; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: $ac_file is unchanged" >&5
$as_echo "$as_me: $ac_file is unchanged" >&6;}
 else
 rm -f "$ac_file"
 mv "$ac_tmp/config.h" "$ac_file" \
	|| as_fn_error $? "could not create $ac_file" "$LINENO" 5
 fi
 else
 $as_echo "/* $configure_input */" \
 && eval '$AWK -f "$ac_tmp/defines.awk"' "$ac_file_inputs" \
 || as_fn_error $? "could not create -" "$LINENO" 5
 fi
 ;;

 :C) { $as_echo "$as_me:${as_lineno-$LINENO}: executing $ac_file commands" >&5
$as_echo "$as_me: executing $ac_file commands" >&6;}
 ;;
 esac

 case ac_fileac_mode in
 "libtool":C)

 # See if we are running on zsh, and set the options that allow our
 # commands through without removal of \ escapes.
 if test -n "${ZSH_VERSION+set}"; then
 setopt NO_GLOB_SUBST
 fi

 cfgfile=${ofile}T
 trap "$RM \"$cfgfile\"; exit 1" 1 2 15
 $RM "$cfgfile"

 cat <<_LT_EOF >> "$cfgfile"
#! $SHELL
Generated automatically by $as_me ($PACKAGE) $VERSION
NOTE: Changes made to this file will be lost: look at ltmain.sh.

Provide generalized library-building support services.
Written by Gordon Matzigkeit, 1996

Copyright (C) 2014 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

GNU Libtool is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of of the License, or
(at your option) any later version.
#
As a special exception to the GNU General Public License, if you
distribute this file as part of a program or library that is built
using GNU Libtool, you may include this file under the same
distribution terms that you use for the rest of that program.
#
GNU Libtool is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

The names of the tagged configurations supported by this script.
available_tags='CXX '

Configured defaults for sys_lib_dlsearch_path munging.
: \${LT_SYS_LIBRARY_PATH="$configure_time_lt_sys_library_path"}

BEGIN LIBTOOL CONFIG

Which release of libtool.m4 was used?
macro_version=$macro_version
macro_revision=$macro_revision

Assembler program.
AS=$lt_AS

DLL creation program.
DLLTOOL=$lt_DLLTOOL

Object dumper program.
OBJDUMP=$lt_OBJDUMP

Whether or not to build shared libraries.
build_libtool_libs=$enable_shared

Whether or not to build static libraries.
build_old_libs=$enable_static

What type of objects to build.
pic_mode=$pic_mode

Whether or not to optimize for fast installation.
fast_install=$enable_fast_install

Shared archive member basename,for filename based shared library versioning on AIX.
shared_archive_member_spec=$shared_archive_member_spec

Shell to use when invoking shell scripts.
SHELL=$lt_SHELL

An echo program that protects backslashes.
ECHO=$lt_ECHO

The PATH separator for the build system.
PATH_SEPARATOR=$lt_PATH_SEPARATOR

The host system.
host_alias=$host_alias
host=$host
host_os=$host_os

The build system.
build_alias=$build_alias
build=$build
build_os=$build_os

A sed program that does not truncate output.
SED=$lt_SED

Sed that helps us avoid accidentally triggering echo(1) options like -n.
Xsed="\$SED -e 1s/^X//"

A grep program that handles long lines.
GREP=$lt_GREP

An ERE matcher.
EGREP=$lt_EGREP

A literal string matcher.
FGREP=$lt_FGREP

A BSD- or MS-compatible name lister.
NM=$lt_NM

Whether we need soft or hard links.
LN_S=$lt_LN_S

What is the maximum length of a command?
max_cmd_len=$max_cmd_len

Object file suffix (normally "o").
objext=$ac_objext

Executable file suffix (normally "").
exeext=$exeext

whether the shell understands "unset".
lt_unset=$lt_unset

turn spaces into newlines.
SP2NL=$lt_lt_SP2NL

turn newlines into spaces.
NL2SP=$lt_lt_NL2SP

convert \$build file names to \$host format.
to_host_file_cmd=$lt_cv_to_host_file_cmd

convert \$build files to toolchain format.
to_tool_file_cmd=$lt_cv_to_tool_file_cmd

Method to check whether dependent libraries are shared objects.
deplibs_check_method=$lt_deplibs_check_method

Command to use when deplibs_check_method = "file_magic".
file_magic_cmd=$lt_file_magic_cmd

How to find potential files when deplibs_check_method = "file_magic".
file_magic_glob=$lt_file_magic_glob

Find potential files using nocaseglob when deplibs_check_method = "file_magic".
want_nocaseglob=$lt_want_nocaseglob

Command to associate shared and link libraries.
sharedlib_from_linklib_cmd=$lt_sharedlib_from_linklib_cmd

The archiver.
AR=$lt_AR

Flags to create an archive.
AR_FLAGS=$lt_AR_FLAGS

How to feed a file listing to the archiver.
archiver_list_spec=$lt_archiver_list_spec

A symbol stripping program.
STRIP=$lt_STRIP

Commands used to install an old-style archive.
RANLIB=$lt_RANLIB
old_postinstall_cmds=$lt_old_postinstall_cmds
old_postuninstall_cmds=$lt_old_postuninstall_cmds

Whether to use a lock for old archive extraction.
lock_old_archive_extraction=$lock_old_archive_extraction

A C compiler.
LTCC=$lt_CC

LTCC compiler flags.
LTCFLAGS=$lt_CFLAGS

Take the output of nm and produce a listing of raw symbols and C names.
global_symbol_pipe=$lt_lt_cv_sys_global_symbol_pipe

Transform the output of nm in a proper C declaration.
global_symbol_to_cdecl=$lt_lt_cv_sys_global_symbol_to_cdecl

Transform the output of nm into a list of symbols to manually relocate.
global_symbol_to_import=$lt_lt_cv_sys_global_symbol_to_import

Transform the output of nm in a C name address pair.
global_symbol_to_c_name_address=$lt_lt_cv_sys_global_symbol_to_c_name_address

Transform the output of nm in a C name address pair when lib prefix is needed.
global_symbol_to_c_name_address_lib_prefix=$lt_lt_cv_sys_global_symbol_to_c_name_address_lib_prefix

The name lister interface.
nm_interface=$lt_lt_cv_nm_interface

Specify filename containing input files for \$NM.
nm_file_list_spec=$lt_nm_file_list_spec

The root where to search for dependent libraries,and where our libraries should be installed.
lt_sysroot=$lt_sysroot

Command to truncate a binary pipe.
lt_truncate_bin=$lt_lt_cv_truncate_bin

The name of the directory that contains temporary libtool files.
objdir=$objdir

Used to examine libraries when file_magic_cmd begins with "file".
MAGIC_CMD=$MAGIC_CMD

Must we lock files when doing compilation?
need_locks=$lt_need_locks

Manifest tool.
MANIFEST_TOOL=$lt_MANIFEST_TOOL

Tool to manipulate archived DWARF debug symbol files on Mac OS X.
DSYMUTIL=$lt_DSYMUTIL

Tool to change global to local symbols on Mac OS X.
NMEDIT=$lt_NMEDIT

Tool to manipulate fat objects and archives on Mac OS X.
LIPO=$lt_LIPO

ldd/readelf like tool for Mach-O binaries on Mac OS X.
OTOOL=$lt_OTOOL

ldd/readelf like tool for 64 bit Mach-O binaries on Mac OS X 10.4.
OTOOL64=$lt_OTOOL64

Old archive suffix (normally "a").
libext=$libext

Shared library suffix (normally ".so").
shrext_cmds=$lt_shrext_cmds

The commands to extract the exported symbol list from a shared archive.
extract_expsyms_cmds=$lt_extract_expsyms_cmds

Variables whose values should be saved in libtool wrapper scripts and
restored at link time.
variables_saved_for_relink=$lt_variables_saved_for_relink

Do we need the "lib" prefix for modules?
need_lib_prefix=$need_lib_prefix

Do we need a version for libraries?
need_version=$need_version

Library versioning type.
version_type=$version_type

Shared library runtime path variable.
runpath_var=$runpath_var

Shared library path variable.
shlibpath_var=$shlibpath_var

Is shlibpath searched before the hard-coded library search path?
shlibpath_overrides_runpath=$shlibpath_overrides_runpath

Format of library name prefix.
libname_spec=$lt_libname_spec

List of archive names. First name is the real one, the rest are links.
The last name is the one that the linker finds with -lNAME
library_names_spec=$lt_library_names_spec

The coded name of the library, if different from the real name.
soname_spec=$lt_soname_spec

Permission mode override for installation of shared libraries.
install_override_mode=$lt_install_override_mode

Command to use after installation of a shared archive.
postinstall_cmds=$lt_postinstall_cmds

Command to use after uninstallation of a shared archive.
postuninstall_cmds=$lt_postuninstall_cmds

Commands used to finish a libtool library installation in a directory.
finish_cmds=$lt_finish_cmds

As "finish_cmds", except a single script fragment to be evaled but
not shown.
finish_eval=$lt_finish_eval

Whether we should hardcode library paths into libraries.
hardcode_into_libs=$hardcode_into_libs

Compile-time system search path for libraries.
sys_lib_search_path_spec=$lt_sys_lib_search_path_spec

Detected run-time system search path for libraries.
sys_lib_dlsearch_path_spec=$lt_configure_time_dlsearch_path

Explicit LT_SYS_LIBRARY_PATH set during ./configure time.
configure_time_lt_sys_library_path=$lt_configure_time_lt_sys_library_path

Whether dlopen is supported.
dlopen_support=$enable_dlopen

Whether dlopen of programs is supported.
dlopen_self=$enable_dlopen_self

Whether dlopen of statically linked programs is supported.
dlopen_self_static=$enable_dlopen_self_static

Commands to strip libraries.
old_striplib=$lt_old_striplib
striplib=$lt_striplib

The linker used to build libraries.
LD=$lt_LD

How to create reloadable object files.
reload_flag=$lt_reload_flag
reload_cmds=$lt_reload_cmds

Commands used to build an old-style archive.
old_archive_cmds=$lt_old_archive_cmds

A language specific compiler.
CC=$lt_compiler

Is the compiler the GNU compiler?
with_gcc=$GCC

Compiler flag to turn off builtin functions.
no_builtin_flag=$lt_lt_prog_compiler_no_builtin_flag

Additional compiler flags for building library objects.
pic_flag=$lt_lt_prog_compiler_pic

How to pass a linker flag through the compiler.
wl=$lt_lt_prog_compiler_wl

Compiler flag to prevent dynamic linking.
link_static_flag=$lt_lt_prog_compiler_static

Does compiler simultaneously support -c and -o options?
compiler_c_o=$lt_lt_cv_prog_compiler_c_o

Whether or not to add -lc for building shared libraries.
build_libtool_need_lc=$archive_cmds_need_lc

Whether or not to disallow shared libs when runtime libs are static.
allow_libtool_libs_with_static_runtimes=$enable_shared_with_static_runtimes

Compiler flag to allow reflexive dlopens.
export_dynamic_flag_spec=$lt_export_dynamic_flag_spec

Compiler flag to generate shared objects directly from archives.
whole_archive_flag_spec=$lt_whole_archive_flag_spec

Whether the compiler copes with passing no objects directly.
compiler_needs_object=$lt_compiler_needs_object

Create an old-style archive from a shared archive.
old_archive_from_new_cmds=$lt_old_archive_from_new_cmds

Create a temporary old-style archive to link instead of a shared archive.
old_archive_from_expsyms_cmds=$lt_old_archive_from_expsyms_cmds

Commands used to build a shared archive.
archive_cmds=$lt_archive_cmds
archive_expsym_cmds=$lt_archive_expsym_cmds

Commands used to build a loadable module if different from building
a shared archive.
module_cmds=$lt_module_cmds
module_expsym_cmds=$lt_module_expsym_cmds

Whether we are building with GNU ld or not.
with_gnu_ld=$lt_with_gnu_ld

Flag that allows shared libraries with undefined symbols to be built.
allow_undefined_flag=$lt_allow_undefined_flag

Flag that enforces no undefined symbols.
no_undefined_flag=$lt_no_undefined_flag

Flag to hardcode \$libdir into a binary during linking.
This must work even if \$libdir does not exist
hardcode_libdir_flag_spec=$lt_hardcode_libdir_flag_spec

Whether we need a single "-rpath" flag with a separated argument.
hardcode_libdir_separator=$lt_hardcode_libdir_separator

Set to "yes" if using DIR/libNAME\$shared_ext during linking hardcodes
DIR into the resulting binary.
hardcode_direct=$hardcode_direct

Set to "yes" if using DIR/libNAME\$shared_ext during linking hardcodes
DIR into the resulting binary and the resulting library dependency is
"absolute",i.e impossible to change by setting \$shlibpath_var if the
library is relocated.
hardcode_direct_absolute=$hardcode_direct_absolute

Set to "yes" if using the -LDIR flag during linking hardcodes DIR
into the resulting binary.
hardcode_minus_L=$hardcode_minus_L

Set to "yes" if using SHLIBPATH_VAR=DIR during linking hardcodes DIR
into the resulting binary.
hardcode_shlibpath_var=$hardcode_shlibpath_var

Set to "yes" if building a shared library automatically hardcodes DIR
into the library and all subsequent libraries and executables linked
against it.
hardcode_automatic=$hardcode_automatic

Set to yes if linker adds runtime paths of dependent libraries
to runtime path list.
inherit_rpath=$inherit_rpath

Whether libtool must link a program against all its dependency libraries.
link_all_deplibs=$link_all_deplibs

Set to "yes" if exported symbols are required.
always_export_symbols=$always_export_symbols

The commands to list exported symbols.
export_symbols_cmds=$lt_export_symbols_cmds

Symbols that should not be listed in the preloaded symbols.
exclude_expsyms=$lt_exclude_expsyms

Symbols that must always be exported.
include_expsyms=$lt_include_expsyms

Commands necessary for linking programs (against libraries) with templates.
prelink_cmds=$lt_prelink_cmds

Commands necessary for finishing linking programs.
postlink_cmds=$lt_postlink_cmds

Specify filename containing input files.
file_list_spec=$lt_file_list_spec

How to hardcode a shared library path into an executable.
hardcode_action=$hardcode_action

The directories searched by this compiler when creating a shared library.
compiler_lib_search_dirs=$lt_compiler_lib_search_dirs

Dependencies to place before and after the objects being linked to
create a shared library.
predep_objects=$lt_predep_objects
postdep_objects=$lt_postdep_objects
predeps=$lt_predeps
postdeps=$lt_postdeps

The library search path used internally by the compiler when linking
a shared library.
compiler_lib_search_path=$lt_compiler_lib_search_path

END LIBTOOL CONFIG

_LT_EOF

 cat <<'_LT_EOF' >> "$cfgfile"

BEGIN FUNCTIONS SHARED WITH CONFIGURE

func_munge_path_list VARIABLE PATH

VARIABLE is name of variable containing _space_ separated list of
directories to be munged by the contents of PATH, which is string
having a format:
"DIR[:DIR]:"
string "DIR[DIR]" will be prepended to VARIABLE
":DIR[:DIR]"
string "DIR[DIR]" will be appended to VARIABLE
"DIRP[:DIRP]::[DIRA:]DIRA"
string "DIRP[DIRP]" will be prepended to VARIABLE and string
"DIRA[DIRA]" will be appended to VARIABLE
"DIR[:DIR]"
VARIABLE will be replaced by "DIR[DIR]"
func_munge_path_list ()
{
 case x$2 in
 x)
 ;;
 *:)
 eval $1=\"`$ECHO $2 | $SED 's/:/ /g'` \$$1\"
 ;;
 x:*)
 eval $1=\"\$$1 `$ECHO $2 | $SED 's/:/ /g'`\"
 ;;
 ::)
 eval $1=\"\$$1\ `$ECHO $2 | $SED -e 's/.*:://' -e 's/:/ /g'`\"
 eval $1=\"`$ECHO $2 | $SED -e 's/::.*//' -e 's/:/ /g'`\ \$$1\"
 ;;
 *)
 eval $1=\"`$ECHO $2 | $SED 's/:/ /g'`\"
 ;;
 esac
}

Calculate cc_basename. Skip known compiler wrappers and cross-prefix.
func_cc_basename ()
{
 for cc_temp in $*""; do
 case $cc_temp in
 compile | *[\\/]compile | ccache | *[\\/]ccache) ;;
 distcc | *[\\/]distcc | purify | *[\\/]purify) ;;
 \-*) ;;
 *) break;;
 esac
 done
 func_cc_basename_result=`$ECHO "$cc_temp" | $SED "s%.*/%%; s%^$host_alias-%%"`
}

END FUNCTIONS SHARED WITH CONFIGURE

_LT_EOF

 case $host_os in
 aix3*)
 cat <<_LT_EOF >> "$cfgfile"
AIX sometimes has problems with the GCC collect2 program. For some
reason, if we set the COLLECT_NAMES environment variable, the problems
vanish in a puff of smoke.
if test set != "${COLLECT_NAMES+set}"; then
 COLLECT_NAMES=
 export COLLECT_NAMES
fi
_LT_EOF
 ;;
 esac

ltmain=$ac_aux_dir/ltmain.sh

 # We use sed instead of cat because bash on DJGPP gets confused if
 # if finds mixed CR/LF and LF-only lines. Since sed operates in
 # text mode, it properly converts lines to CR/LF. This bash problem
 # is reportedly fixed, but why not run on old versions too?
 sed '$q' "$ltmain" >> "$cfgfile" \
 || (rm -f "$cfgfile"; exit 1)

 mv -f "$cfgfile" "$ofile" ||
 (rm -f "$ofile" && cp "$cfgfile" "$ofile" && rm -f "$cfgfile")
 chmod +x "$ofile"

 cat <<_LT_EOF >> "$ofile"

BEGIN LIBTOOL TAG CONFIG: CXX

The linker used to build libraries.
LD=$lt_LD_CXX

How to create reloadable object files.
reload_flag=$lt_reload_flag_CXX
reload_cmds=$lt_reload_cmds_CXX

Commands used to build an old-style archive.
old_archive_cmds=$lt_old_archive_cmds_CXX

A language specific compiler.
CC=$lt_compiler_CXX

Is the compiler the GNU compiler?
with_gcc=$GCC_CXX

Compiler flag to turn off builtin functions.
no_builtin_flag=$lt_lt_prog_compiler_no_builtin_flag_CXX

Additional compiler flags for building library objects.
pic_flag=$lt_lt_prog_compiler_pic_CXX

How to pass a linker flag through the compiler.
wl=$lt_lt_prog_compiler_wl_CXX

Compiler flag to prevent dynamic linking.
link_static_flag=$lt_lt_prog_compiler_static_CXX

Does compiler simultaneously support -c and -o options?
compiler_c_o=$lt_lt_cv_prog_compiler_c_o_CXX

Whether or not to add -lc for building shared libraries.
build_libtool_need_lc=$archive_cmds_need_lc_CXX

Whether or not to disallow shared libs when runtime libs are static.
allow_libtool_libs_with_static_runtimes=$enable_shared_with_static_runtimes_CXX

Compiler flag to allow reflexive dlopens.
export_dynamic_flag_spec=$lt_export_dynamic_flag_spec_CXX

Compiler flag to generate shared objects directly from archives.
whole_archive_flag_spec=$lt_whole_archive_flag_spec_CXX

Whether the compiler copes with passing no objects directly.
compiler_needs_object=$lt_compiler_needs_object_CXX

Create an old-style archive from a shared archive.
old_archive_from_new_cmds=$lt_old_archive_from_new_cmds_CXX

Create a temporary old-style archive to link instead of a shared archive.
old_archive_from_expsyms_cmds=$lt_old_archive_from_expsyms_cmds_CXX

Commands used to build a shared archive.
archive_cmds=$lt_archive_cmds_CXX
archive_expsym_cmds=$lt_archive_expsym_cmds_CXX

Commands used to build a loadable module if different from building
a shared archive.
module_cmds=$lt_module_cmds_CXX
module_expsym_cmds=$lt_module_expsym_cmds_CXX

Whether we are building with GNU ld or not.
with_gnu_ld=$lt_with_gnu_ld_CXX

Flag that allows shared libraries with undefined symbols to be built.
allow_undefined_flag=$lt_allow_undefined_flag_CXX

Flag that enforces no undefined symbols.
no_undefined_flag=$lt_no_undefined_flag_CXX

Flag to hardcode \$libdir into a binary during linking.
This must work even if \$libdir does not exist
hardcode_libdir_flag_spec=$lt_hardcode_libdir_flag_spec_CXX

Whether we need a single "-rpath" flag with a separated argument.
hardcode_libdir_separator=$lt_hardcode_libdir_separator_CXX

Set to "yes" if using DIR/libNAME\$shared_ext during linking hardcodes
DIR into the resulting binary.
hardcode_direct=$hardcode_direct_CXX

Set to "yes" if using DIR/libNAME\$shared_ext during linking hardcodes
DIR into the resulting binary and the resulting library dependency is
"absolute",i.e impossible to change by setting \$shlibpath_var if the
library is relocated.
hardcode_direct_absolute=$hardcode_direct_absolute_CXX

Set to "yes" if using the -LDIR flag during linking hardcodes DIR
into the resulting binary.
hardcode_minus_L=$hardcode_minus_L_CXX

Set to "yes" if using SHLIBPATH_VAR=DIR during linking hardcodes DIR
into the resulting binary.
hardcode_shlibpath_var=$hardcode_shlibpath_var_CXX

Set to "yes" if building a shared library automatically hardcodes DIR
into the library and all subsequent libraries and executables linked
against it.
hardcode_automatic=$hardcode_automatic_CXX

Set to yes if linker adds runtime paths of dependent libraries
to runtime path list.
inherit_rpath=$inherit_rpath_CXX

Whether libtool must link a program against all its dependency libraries.
link_all_deplibs=$link_all_deplibs_CXX

Set to "yes" if exported symbols are required.
always_export_symbols=$always_export_symbols_CXX

The commands to list exported symbols.
export_symbols_cmds=$lt_export_symbols_cmds_CXX

Symbols that should not be listed in the preloaded symbols.
exclude_expsyms=$lt_exclude_expsyms_CXX

Symbols that must always be exported.
include_expsyms=$lt_include_expsyms_CXX

Commands necessary for linking programs (against libraries) with templates.
prelink_cmds=$lt_prelink_cmds_CXX

Commands necessary for finishing linking programs.
postlink_cmds=$lt_postlink_cmds_CXX

Specify filename containing input files.
file_list_spec=$lt_file_list_spec_CXX

How to hardcode a shared library path into an executable.
hardcode_action=$hardcode_action_CXX

The directories searched by this compiler when creating a shared library.
compiler_lib_search_dirs=$lt_compiler_lib_search_dirs_CXX

Dependencies to place before and after the objects being linked to
create a shared library.
predep_objects=$lt_predep_objects_CXX
postdep_objects=$lt_postdep_objects_CXX
predeps=$lt_predeps_CXX
postdeps=$lt_postdeps_CXX

The library search path used internally by the compiler when linking
a shared library.
compiler_lib_search_path=$lt_compiler_lib_search_path_CXX

END LIBTOOL TAG CONFIG: CXX
_LT_EOF

 ;;

 esac
done # for ac_tag

as_fn_exit 0
_ACEOF
ac_clean_files=$ac_clean_files_save

test $ac_write_fail = 0 ||
 as_fn_error $? "write failure creating $CONFIG_STATUS" "$LINENO" 5

configure is writing to config.log, and then calls config.status.
config.status does its own redirection, appending to config.log.
Unfortunately, on DOS this fails, as config.log is still kept open
by configure, so config.status won't be able to write to it; its
output is simply discarded. So we exec the FD to /dev/null,
effectively closing config.log, so it can be properly (re)opened and
appended to by config.status. When coming back to configure, we
need to make the FD available again.
if test "$no_create" != yes; then
 ac_cs_success=:
 ac_config_status_args=
 test "$silent" = yes &&
 ac_config_status_args="$ac_config_status_args --quiet"
 exec 5>/dev/null
 $SHELL $CONFIG_STATUS $ac_config_status_args || ac_cs_success=false
 exec 5>>config.log
 # Use ||, not &&, to avoid exiting from the if with $? = 1, which
 # would make configure fail if this is the last instruction.
 $ac_cs_success || as_fn_exit 1
fi
if test -n "$ac_unrecognized_opts" && test "$enable_option_checking" != no; then
 { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: unrecognized options: $ac_unrecognized_opts" >&5
$as_echo "$as_me: WARNING: unrecognized options: $ac_unrecognized_opts" >&2;}
fi

qpdf-7.1.0/libqpdf.pc.in

prefix=@prefix@
exec_prefix=@exec_prefix@
libdir=@libdir@
includedir=@includedir@

Name: libqpdf
Description: PDF transformation library
Version: @PACKAGE_VERSION@
Requires.private: zlib, libjpeg
Libs: -L${libdir} -lqpdf
Cflags: -I${includedir}

qpdf-7.1.0/libtests/ascii85.cc

#include <qpdf/Pl_ASCII85Decoder.hh>

#include <qpdf/Pl_StdioFile.hh>
#include <iostream>
#include <stdlib.h>

int main()
{
 Pl_StdioFile out("stdout", stdout);
 Pl_ASCII85Decoder decode("decode", &out);

 try
 {
	unsigned char buf[10000];
	bool done = false;
	while (! done)
	{
	 size_t len = fread(buf, 1, sizeof(buf), stdin);
	 if (len <= 0)
	 {
		done = true;
	 }
	 else
	 {
		decode.write(buf, len);
	 }
	}
	decode.finish();
 }
 catch (std::exception& e)
 {
	std::cerr << e.what() << std::endl;
	exit(2);
 }

 return 0;
}

qpdf-7.1.0/libtests/concatenate.cc

#include <qpdf/Pl_Concatenate.hh>
#include <qpdf/Pl_Flate.hh>
#include <qpdf/Pl_Buffer.hh>
#include <qpdf/QUtil.hh>
#include <iostream>
#include <assert.h>

static void pipeStringAndFinish(Pipeline* p, std::string const& str)
{
 p->write(QUtil::unsigned_char_pointer(str), str.length());
 p->finish();
}

int main(int argc, char* argv[])
{
 Pl_Buffer b1("compressed");
 Pl_Flate deflate("compress", &b1, Pl_Flate::a_deflate);
 Pl_Concatenate concat("concat", &deflate);
 pipeStringAndFinish(&concat, "-one-");
 pipeStringAndFinish(&concat, "-two-");
 concat.manualFinish();

 PointerHolder<Buffer> b1_buf = b1.getBuffer();
 Pl_Buffer b2("uncompressed");
 Pl_Flate inflate("uncompress", &b2, Pl_Flate::a_inflate);
 inflate.write(b1_buf->getBuffer(), b1_buf->getSize());
 inflate.finish();
 PointerHolder<Buffer> b2_buf = b2.getBuffer();
 std::string result(reinterpret_cast<char*>(b2_buf->getBuffer()),
 b2_buf->getSize());
 if (result == "-one--two-")
 {
 std::cout << "concatenate test passed" << std::endl;
 }
 else
 {
 std::cout << "concatenate test failed: " << result << std::endl;
 }
 return 0;
}

qpdf-7.1.0/libtests/build.mk

BINS_libtests = \
	aes \
	ascii85 \
	bits \
	buffer \
	concatenate \
	dct_compress \
	dct_uncompress \
	flate \
	hex \
	input_source \
	lzw \
	md5 \
	pointer_holder \
	predictors \
	qutil \
	random \
	rc4 \
	runlength \
	sha2

TARGETS_libtests = $(foreach B,$(BINS_libtests),libtests/$(OUTPUT_DIR)/$(call binname,$(B)))

$(TARGETS_libtests): $(TARGETS_libqpdf)

INCLUDES_libtests = include libqpdf

TC_SRCS_libtests = $(wildcard libqpdf/*.cc) $(wildcard libtests/*.cc) \
	libqpdf/bits.icc

$(foreach B,$(BINS_libtests),$(eval \
 OBJS_$(B) = $(call src_to_obj,libtests/$(B).cc)))

ifeq ($(GENDEPS),1)
-include $(foreach B,$(BINS_libtests),$(call obj_to_dep,$(OBJS_$(B))))
endif

$(foreach B,$(BINS_libtests),$(eval \
 $(OBJS_$(B)): libtests/$(OUTPUT_DIR)/%.$(OBJ): libtests/$(B).cc ; \
	$(call compile,libtests/$(B).cc,$(INCLUDES_libtests))))

$(foreach B,$(BINS_libtests),$(eval \
 libtests/$(OUTPUT_DIR)/$(call binname,$(B)): $(OBJS_$(B)) ; \
	$(call makebin,$(OBJS_$(B)),$$@,$(LDFLAGS_libqpdf) $(LDFLAGS),$(LIBS) $(LIBS_libqpdf))))

qpdf-7.1.0/libtests/buffer.cc

#include <qpdf/Pl_Buffer.hh>
#include <qpdf/Pl_Count.hh>
#include <qpdf/Pl_Discard.hh>
#include <qpdf/QUtil.hh>
#include <stdlib.h>
#include <stdexcept>
#include <iostream>

static unsigned char* uc(char const* s)
{
 return QUtil::unsigned_char_pointer(s);
}

int main()
{
 try
 {
	Pl_Discard discard;
	Pl_Count count("count", &discard);
	Pl_Buffer bp1("bp1", &count);
	bp1.write(uc("12345"), 5);
	bp1.write(uc("67890"), 5);
	bp1.finish();
	std::cout << "count: " << count.getCount() << std::endl;
	bp1.write(uc("abcde"), 5);
	bp1.write(uc("fghij"), 6);
	bp1.finish();
	std::cout << "count: " << count.getCount() << std::endl;
	Buffer* b = bp1.getBuffer();
	std::cout << "size: " << b->getSize() << std::endl;
	std::cout << "data: " << b->getBuffer() << std::endl;
	delete b;
	bp1.write(uc("qwert"), 5);
	bp1.write(uc("yuiop"), 6);
	bp1.finish();
	std::cout << "count: " << count.getCount() << std::endl;
	b = bp1.getBuffer();
	std::cout << "size: " << b->getSize() << std::endl;
	std::cout << "data: " << b->getBuffer() << std::endl;
	delete b;

	Pl_Buffer bp2("bp2");
	bp2.write(uc("moo"), 3);
	bp2.write(uc("quack"), 6);
	try
	{
	 delete bp2.getBuffer();
	}
	catch (std::exception& e)
	{
	 std::cout << e.what() << std::endl;
	}
	bp2.finish();
	b = bp2.getBuffer();
	std::cout << "size: " << b->getSize() << std::endl;
	std::cout << "data: " << b->getBuffer() << std::endl;
	delete b;

	unsigned char lbuf[10];
	Buffer b1(lbuf, 10);
	if (! ((b1.getBuffer() == lbuf) &&
	 (b1.getSize() == 10)))
	{
	 throw std::logic_error("hand-created buffer is not as expected");
	}
 }
 catch (std::exception& e)
 {
	std::cout << "unexpected exception: " << e.what() << std::endl;
	exit(2);
 }

 std::cout << "done" << std::endl;
 return 0;
}

qpdf-7.1.0/libtests/predictors.cc

#include <qpdf/Pl_PNGFilter.hh>
#include <qpdf/Pl_TIFFPredictor.hh>
#include <qpdf/Pl_StdioFile.hh>
#include <qpdf/QUtil.hh>

#include <iostream>
#include <errno.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>

void run(char const* filename, char const* filter,
 bool encode, unsigned int columns,
 int bits_per_sample, int samples_per_pixel)
{
 FILE* in = QUtil::safe_fopen(filename, "rb");
 FILE* o1 = QUtil::safe_fopen("out", "wb");
 Pipeline* out = new Pl_StdioFile("out", o1);
 Pipeline* pl = 0;
 if (strcmp(filter, "png") == 0)
 {
 pl = new Pl_PNGFilter(
 "png", out,
 encode ? Pl_PNGFilter::a_encode : Pl_PNGFilter::a_decode,
 columns, samples_per_pixel, bits_per_sample);
 }
 else if (strcmp(filter, "tiff") == 0)
 {
 pl = new Pl_TIFFPredictor(
 "png", out,
 encode ? Pl_TIFFPredictor::a_encode : Pl_TIFFPredictor::a_decode,
 columns, samples_per_pixel, bits_per_sample);
 }
 else
 {
 std::cerr << "unknown filter " << filter << std::endl;
 exit(2);
 }
 assert((2 * (columns + 1)) < 1024);
 unsigned char buf[1024];
 size_t len;
 while (true)
 {
	len = fread(buf, 1, (2 * columns) + 1, in);
	if (len == 0)
	{
	 break;
	}
	pl->write(buf, len);
	len = fread(buf, 1, 1, in);
	if (len == 0)
	{
	 break;
	}
	pl->write(buf, len);
	len = fread(buf, 1, 1, in);
	if (len == 0)
	{
	 break;
	}
	pl->write(buf, len);
 }

 pl->finish();
 delete pl;
 delete out;
 fclose(o1);
 fclose(in);

 std::cout << "done" << std::endl;
}

int main(int argc, char* argv[])
{
 if (argc != 7)
 {
	std::cerr << "Usage: predictor {png|tiff} {en,de}code filename"
 << " columns samples-per-pixel bits-per-sample"
 << std::endl;
	exit(2);
 }
 char* filter = argv[1];
 bool encode = (strcmp(argv[2], "encode") == 0);
 char* filename = argv[3];
 int columns = QUtil::string_to_int(argv[4]);
 int samples_per_pixel = QUtil::string_to_int(argv[5]);
 int bits_per_sample = QUtil::string_to_int(argv[6]);

 try
 {
	run(filename, filter, encode,
 columns, bits_per_sample, samples_per_pixel);
 }
 catch (std::exception& e)
 {
	std::cout << e.what() << std::endl;
 }
 return 0;
}

qpdf-7.1.0/libtests/Makefile

include ../make/proxy.mk

qpdf-7.1.0/libtests/qutil.cc

#include <iostream>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <qpdf/QUtil.hh>
#include <qpdf/PointerHolder.hh>
#include <string.h>
#include <limits.h>

#ifdef _WIN32
include <io.h>
#else
include <unistd.h>
#endif

template <class int_T>
void test_to_number(char const* str, int_T wanted, bool error,
 int_T (*fn)(char const*))
{
 bool threw = false;
 bool worked = false;
 int_T result = 0;
 try
 {
 result = fn(str);
 worked = (wanted == result);
 }
 catch (std::runtime_error)
 {
 threw = true;
 }
 if (threw)
 {
 if (error)
 {
 std::cout << str << " to int threw: PASSED" << std::endl;
 }
 else
 {
 std::cout << str << " to int threw but wanted "
 << wanted << std::endl;
 }
 }
 else
 {
 if (worked)
 {
 std::cout << str << " to int: PASSED" << std::endl;
 }
 else
 {
 std::cout << str << " to int failed; got " << result << std::endl;
 }
 }
}

void test_to_int(char const* str, int wanted, bool error)
{
 test_to_number(str, wanted, error, QUtil::string_to_int);
}

void test_to_ll(char const* str, long long wanted, bool error)
{
 test_to_number(str, wanted, error, QUtil::string_to_ll);
}

void string_conversion_test()
{
 std::cout << QUtil::int_to_string(16059) << std::endl
	 << QUtil::int_to_string(16059, 7) << std::endl
	 << QUtil::int_to_string(16059, -7) << std::endl
	 << QUtil::double_to_string(3.14159) << std::endl
	 << QUtil::double_to_string(3.14159, 3) << std::endl
	 << QUtil::double_to_string(1000.123, -1024) << std::endl
 << QUtil::double_to_string(.1234, 5) << std::endl
 << QUtil::double_to_string(.0001234, 5) << std::endl
 << QUtil::double_to_string(.123456, 5) << std::endl
 << QUtil::double_to_string(.000123456, 5) << std::endl
 << QUtil::int_to_string_base(16059, 10) << std::endl
 << QUtil::int_to_string_base(16059, 8) << std::endl
 << QUtil::int_to_string_base(16059, 16) << std::endl;

 std::string embedded_null = "one";
 embedded_null += '\0';
 embedded_null += "two";
 std::cout << embedded_null.c_str() << std::endl;
 std::cout << embedded_null.length() << std::endl;
 char* tmp = QUtil::copy_string(embedded_null);
 if (memcmp(tmp, embedded_null.c_str(), 7) == 0)
 {
	std::cout << "compare okay" << std::endl;
 }
 else
 {
	std::cout << "compare failed" << std::endl;
 }
 delete [] tmp;

 std::string int_max_str = QUtil::int_to_string(INT_MAX);
 std::string int_min_str = QUtil::int_to_string(INT_MIN);
 long long int_max_plus_1 = static_cast<long long>(INT_MAX) + 1;
 long long int_min_minus_1 = static_cast<long long>(INT_MIN) - 1;
 std::string int_max_plus_1_str = QUtil::int_to_string(int_max_plus_1);
 std::string int_min_minus_1_str = QUtil::int_to_string(int_min_minus_1);
 test_to_int(int_min_str.c_str(), INT_MIN, false);
 test_to_int(int_max_str.c_str(), INT_MAX, false);
 test_to_int(int_max_plus_1_str.c_str(), 0, true);
 test_to_int(int_min_minus_1_str.c_str(), 0, true);
 test_to_int("9999999999999999999999999", 0, true);
 test_to_ll(int_max_plus_1_str.c_str(), int_max_plus_1, false);
 test_to_ll(int_min_minus_1_str.c_str(), int_min_minus_1, false);
 test_to_ll("99", 0, true);
}

void os_wrapper_test()
{
 try
 {
	std::cout << "before remove" << std::endl;
	QUtil::os_wrapper("remove file",
 remove("/this/file/does/not/exist"));
	std::cout << "after remove" << std::endl;
 }
 catch (std::runtime_error& s)
 {
	std::cout << "exception: " << s.what() << std::endl;
 }
}

void fopen_wrapper_test()
{
 try
 {
	std::cout << "before fopen" << std::endl;
	FILE* f = QUtil::safe_fopen("/this/file/does/not/exist", "r");
	std::cout << "after fopen" << std::endl;
	(void) fclose(f);
 }
 catch (std::runtime_error& s)
 {
	std::cout << "exception: " << s.what() << std::endl;
 }
}

void getenv_test()
{
 std::string val;
 std::cout << "IN_TESTSUITE: " << QUtil::get_env("IN_TESTSUITE", &val)
	 << ": " << val << std::endl;
 // Hopefully this environment variable is not defined.
 std::cout << "HAGOOGAMAGOOGLE: " << QUtil::get_env("HAGOOGAMAGOOGLE")
	 << std::endl;
}

static void print_utf8(unsigned long val)
{
 std::string result = QUtil::toUTF8(val);
 std::cout << "0x" << QUtil::int_to_string_base(val, 16) << " ->";
 if (val < 0xfffe)
 {
	std::cout << " " << result;
 }
 else
 {
	// Emacs has trouble with utf-8 encoding files with characters
	// outside the 16-bit portion, so just show the character
	// values.
	for (std::string::iterator iter = result.begin();
	 iter != result.end(); ++iter)
	{
	 std::cout << " " << QUtil::int_to_string_base(
 static_cast<int>(static_cast<unsigned char>(*iter)), 16, 2);
	}
 }
 std::cout << std::endl;
}

void to_utf8_test()
{
 print_utf8(0x41UL);
 print_utf8(0xF7UL);
 print_utf8(0x3c0UL);
 print_utf8(0x16059UL);
 print_utf8(0x7fffffffUL);
 try
 {
	print_utf8(0x80000000UL);
 }
 catch (std::runtime_error& e)
 {
	std::cout << "0x80000000: " << e.what() << std::endl;
 }
}

void print_whoami(char const* str)
{
 PointerHolder<char> dup(true, QUtil::copy_string(str));
 std::cout << QUtil::getWhoami(dup.getPointer()) << std::endl;
}

void get_whoami_test()
{
 print_whoami("a/b/c/quack1");
 print_whoami("a/b/c/quack2.exe");
 print_whoami("a\\b\\c\\quack3");
 print_whoami("a\\b\\c\\quack4.exe");
}

void assert_same_file(char const* file1, char const* file2, bool expected)
{
 bool actual = QUtil::same_file(file1, file2);
 std::cout << "file1: -" << (file1 ? file1 : "(null)") << "-, file2: -"
 << (file2 ? file2 : "(null)") << "-; same: "
 << actual << ": " << ((actual == expected) ? "PASS" : "FAIL")
 << std::endl;
}

void same_file_test()
{
 try
 {
 fclose(QUtil::safe_fopen("qutil.out", "r"));
 fclose(QUtil::safe_fopen("other-file", "r"));
 }
 catch (std::exception)
 {
 std::cout << "same_file_test expects to have qutil.out and other-file"
 " exist in the current directory\n";
 return;
 }
 assert_same_file("qutil.out", "./qutil.out", true);
 assert_same_file("qutil.out", "qutil.out", true);
 assert_same_file("qutil.out", "other-file", false);
 assert_same_file("qutil.out", "", false);
 assert_same_file("qutil.out", 0, false);
 assert_same_file("", "qutil.out", false);
}

void read_lines_from_file_test()
{
 std::list<std::string> lines = QUtil::read_lines_from_file("other-file");
 for (std::list<std::string>::iterator iter = lines.begin();
 iter != lines.end(); ++iter)
 {
 std::cout << *iter << std::endl;
 }
}

void assert_hex_encode(std::string const& input, std::string const& expected)
{
 std::string actual = QUtil::hex_encode(input);
 if (expected != actual)
 {
 std::cout << "hex encode " << input
 << ": expected = " << expected
 << "; actual = " << actual
 << std::endl;
 }
}

void assert_hex_decode(std::string const& input, std::string const& expected)
{
 std::string actual = QUtil::hex_decode(input);
 if (expected != actual)
 {
 std::cout << "hex encode " << input
 << ": expected = " << expected
 << "; actual = " << actual
 << std::endl;
 }
}

void hex_encode_decode_test()
{
 std::cout << "begin hex encode/decode\n";
 assert_hex_encode("", "");
 assert_hex_encode("Potato", "506f7461746f");
 std::string with_null("a\367" "00w");
 with_null[3] = '\0';
 assert_hex_encode(with_null, "61f7300077");
 assert_hex_decode("", "");
 assert_hex_decode("61F7-3000-77", with_null);
 assert_hex_decode("41455", "AEP");
 std::cout << "end hex encode/decode\n";
}

int main(int argc, char* argv[])
{
 try
 {
	string_conversion_test();
	std::cout << "----" << std::endl;
	os_wrapper_test();
	std::cout << "----" << std::endl;
	fopen_wrapper_test();
	std::cout << "----" << std::endl;
	getenv_test();
	std::cout << "----" << std::endl;
	to_utf8_test();
	std::cout << "----" << std::endl;
	get_whoami_test();
	std::cout << "----" << std::endl;
	same_file_test();
	std::cout << "----" << std::endl;
	read_lines_from_file_test();
	std::cout << "----" << std::endl;
	hex_encode_decode_test();
 }
 catch (std::exception& e)
 {
	std::cout << "unexpected exception: " << e.what() << std::endl;
 }

 return 0;
}

qpdf-7.1.0/libtests/libtests.testcov

ignored-scope: qpdf
Pl_LZWDecoder intermediate reset 0
Pl_LZWDecoder last was table size 0
Pl_ASCII85Decoder ignore space 0
Pl_ASCII85Decoder read z 0
Pl_ASCII85Decoder no-op flush 0
Pl_ASCII85Decoder partial flush 1
bits leftover 1
bits bit_offset 2
bits iterations 2
bits zero bits wanted 0
bits write iterations 2
bits write leftover 0
bits write pipeline 0
bits write zero bits 0
Pl_ASCIIHexDecoder ignore space 0
Pl_ASCIIHexDecoder no-op flush 0
Pl_ASCIIHexDecoder partial flush 1
InputSource read next block 1
InputSource find EOF 1
InputSource out of range 0
InputSource first char matched but not string 0
InputSource start_chars matched but not check 0
InputSource not enough bytes 0
InputSource findLast found more than one 0
InputSource found match at buf[0] 0
Pl_RunLength: switch to run 1
Pl_RunLength flush full buffer 1
Pl_RunLength flush empty buffer 0
Pl_DCT empty_pipeline_output_buffer 0
Pl_DCT term_pipeline_destination 0
Pl_PNGFilter decodeSub 0
Pl_PNGFilter decodeUp 0
Pl_PNGFilter decodeAverage 0
Pl_PNGFilter decodePaeth 0
Pl_TIFFPredictor processRow 1

qpdf-7.1.0/libtests/aes.cc

#include <qpdf/Pl_AES_PDF.hh>
#include <qpdf/Pl_StdioFile.hh>
#include <qpdf/QUtil.hh>

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <stdlib.h>

static void usage()
{
 std::cerr << "Usage: aes options hex-key infile outfile" << std::endl
 << " -cbc -- disable CBC mode" << std::endl
 << " +cbc -- enable CBC mode" << std::endl
 << " -encrypt -- encrypt" << std::endl
 << " -decrypt -- decrypt CBC mode" << std::endl
 << " -zero-iv -- use zero initialization vector" << std::endl
 << " -static-iv -- use static initialization vector" << std::endl
 << " -no-padding -- disable padding" << std::endl
 << "Options must precede key and file names." << std::endl;
 exit(2);
}

int main(int argc, char* argv[])
{
 bool encrypt = true;
 bool cbc_mode = true;
 char* hexkey = 0;
 char* infilename = 0;
 char* outfilename = 0;
 bool zero_iv = false;
 bool static_iv = false;
 bool disable_padding = false;

 for (int i = 1; i < argc; ++i)
 {
 char* arg = argv[i];
 if ((arg[0] == '-') || (arg[0] == '+'))
 {
 if (strcmp(arg, "-cbc") == 0)
 {
 cbc_mode = false;
 }
 else if (strcmp(arg, "+cbc") == 0)
 {
 cbc_mode = true;
 }
 else if (strcmp(arg, "-decrypt") == 0)
 {
 encrypt = false;
 }
 else if (strcmp(arg, "-encrypt") == 0)
 {
 encrypt = true;
 }
 else if (strcmp(arg, "-zero-iv") == 0)
 {
 zero_iv = true;
 }
 else if (strcmp(arg, "-static-iv") == 0)
 {
 static_iv = true;
 }
 else if (strcmp(arg, "-no-padding") == 0)
 {
 disable_padding = true;
 }
 else
 {
 usage();
 }
 }
 else if (argc == i + 3)
 {
 hexkey = argv[i];
 infilename = argv[i+1];
 outfilename = argv[i+2];
 break;
 }
 else
 {
 usage();
 }
 }
 if (outfilename == 0)
 {
 usage();
 }

 unsigned int hexkeylen = strlen(hexkey);
 unsigned int keylen = hexkeylen / 2;

 FILE* infile = QUtil::safe_fopen(infilename, "rb");
 FILE* outfile = QUtil::safe_fopen(outfilename, "wb");
 unsigned char* key = new unsigned char[keylen];
 for (unsigned int i = 0; i < strlen(hexkey); i += 2)
 {
	char t[3];
	t[0] = hexkey[i];
	t[1] = hexkey[i + 1];
	t[2] = '\0';

	long val = strtol(t, 0, 16);
	key[i/2] = static_cast<unsigned char>(val);
 }

 Pl_StdioFile* out = new Pl_StdioFile("stdout", outfile);
 Pl_AES_PDF* aes = new Pl_AES_PDF("aes_128_cbc", out, encrypt, key, keylen);
 delete [] key;
 key = 0;
 if (! cbc_mode)
 {
	aes->disableCBC();
 }
 if (zero_iv)
 {
 aes->useZeroIV();
 }
 else if (static_iv)
 {
 aes->useStaticIV();
 }
 if (disable_padding)
 {
 aes->disablePadding();
 }

 // 16 < buffer size, buffer_size is not a multiple of 8 for testing
 unsigned char buf[83];
 bool done = false;
 while (! done)
 {
	size_t len = fread(buf, 1, sizeof(buf), infile);
	if (len <= 0)
	{
	 done = true;
	}
	else
	{
	 aes->write(buf, len);
	}
 }
 aes->finish();
 delete aes;
 delete out;
 fclose(infile);
 fclose(outfile);
 return 0;
}

qpdf-7.1.0/libtests/dct_uncompress.cc

#include <qpdf/Pl_DCT.hh>
#include <qpdf/Pl_StdioFile.hh>
#include <qpdf/QUtil.hh>

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <stdlib.h>

int main(int argc, char* argv[])
{
 if (argc != 3)
 {
	std::cerr << "Usage: dct_uncompress infile outfile"
 << std::endl;
	exit(2);
 }

 char* infilename = argv[1];
 char* outfilename = argv[2];

 FILE* infile = QUtil::safe_fopen(infilename, "rb");
 FILE* outfile = QUtil::safe_fopen(outfilename, "wb");
 Pl_StdioFile out("stdout", outfile);
 unsigned char buf[100];
 bool done = false;
 Pl_DCT dct("dct", &out);
 while (! done)
 {
	size_t len = fread(buf, 1, sizeof(buf), infile);
	if (len <= 0)
	{
	 done = true;
	}
	else
	{
	 dct.write(buf, len);
	}
 }
 dct.finish();
 fclose(infile);
 fclose(outfile);
 return 0;
}

qpdf-7.1.0/libtests/qtest/lzw.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

chdir("lzw") or die "chdir testdir failed: $!\n";

require TestDriver;

my $td = new TestDriver('lzw');

cleanup();

$td->runtest("decode: early code change",
	 {$td->COMMAND => "lzw lzw1.in tmp"},
	 {$td->STRING => "",
	 $td->EXIT_STATUS => 0});

$td->runtest("check output",
	 {$td->FILE => "tmp"},
	 {$td->FILE => "lzw1.out"});

$td->runtest("decode: no early code change",
	 {$td->COMMAND => "lzw lzw2.in tmp --no-early-code-change"},
	 {$td->STRING => "",
	 $td->EXIT_STATUS => 0});

$td->runtest("check output",
	 {$td->FILE => "tmp"},
	 {$td->FILE => "lzw2.out"});

cleanup();

$td->report(4);

sub cleanup
{
 unlink "tmp";
}

qpdf-7.1.0/libtests/qtest/random.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

require TestDriver;

my $td = new TestDriver('random');

$td->runtest("Random Data Providers",
	 {$td->COMMAND => "random"},
	 {$td->STRING => "random: end of tests\n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->report(1);

qpdf-7.1.0/libtests/qtest/md5.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

chdir("md5") or die "chdir testdir failed: $!\n";

require TestDriver;

my $td = new TestDriver('md5');

$td->runtest("md5",
	 {$td->COMMAND => "md5"},
	 {$td->FILE => "md5.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->report(1);

qpdf-7.1.0/libtests/qtest/dct/big-rawdata

qpdf-7.1.0/libtests/qtest/dct/rawdata

qpdf-7.1.0/libtests/qtest/ph.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

chdir("ph") or die "chdir testdir failed: $!\n";

require TestDriver;

my $td = new TestDriver('ph');

$td->runtest("PointerHolder",
	 {$td->COMMAND => "pointer_holder"},
	 {$td->FILE => "ph.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->report(1);

qpdf-7.1.0/libtests/qtest/hex.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

chdir("hex") or die "chdir testdir failed: $!\n";

require TestDriver;

my $td = new TestDriver('hex');

$td->runtest("decode",
	 {$td->COMMAND => "hex < hex.in"},
	 {$td->FILE => "binary.out",
	 $td->EXIT_STATUS => 0});

$td->runtest("partial decode",
	 {$td->COMMAND => "echo '7a65726F203D203>' | hex"},
	 {$td->STRING => "zero = 0",
	 $td->EXIT_STATUS => 0});

$td->report(2);

qpdf-7.1.0/libtests/qtest/rc4.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

chdir("rc4") or die "chdir testdir failed: $!\n";

require TestDriver;

my $td = new TestDriver('RC4');

cleanup();

my @tests = ('0123456789abcdef',
	 '0123456789abcdef',
	 '0000000000000000',
	 'ef012345',
	 '0123456789abcdef');

my $n = 0;
foreach my $key (@tests)
{
 ++$n;
 $td->runtest("test $n",
		 {$td->COMMAND => "rc4 $key test$n.in tmp1-$n.out"},
		 {$td->STRING => "", $td->EXIT_STATUS => 0});
 $td->runtest("check output",
		 {$td->FILE => "tmp1-$n.out"},
		 {$td->FILE => "test$n.out"});
 $td->runtest("test $n reverse",
		 {$td->COMMAND => "rc4 $key test$n.out tmp2-$n.out"},
		 {$td->STRING => "", $td->EXIT_STATUS => 0});
 $td->runtest("check output",
		 {$td->FILE => "tmp2-$n.out"},
		 {$td->FILE => "test$n.in"});
}

cleanup();

$td->report(4 * scalar(@tests));

sub cleanup
{
 system("rm -f tmp*-*");
}

qpdf-7.1.0/libtests/qtest/flate/compressed

qpdf-7.1.0/libtests/qtest/flate/compressed

qq
ww
ee
rr
tt
yy
uu
ii
oo
pp

qpdf-7.1.0/libtests/qtest/rc4/test1.in

�#Eg‰«Íď

qpdf-7.1.0/libtests/qtest/rc4/test2.in

��

qpdf-7.1.0/libtests/qtest/rc4/test3.in

��

qpdf-7.1.0/libtests/qtest/rc4/test2.out

qpdf-7.1.0/libtests/qtest/rc4/test4.in

���

qpdf-7.1.0/libtests/qtest/rc4/test4.out

ึกAง์<8฿ฝa

qpdf-7.1.0/libtests/qtest/rc4/test5.in

��

qpdf-7.1.0/libtests/qtest/rc4/test1.out

qpdf-7.1.0/libtests/qtest/rc4/test3.out

qpdf-7.1.0/libtests/qtest/rc4/test5.out

qpdf-7.1.0/libtests/qtest/predictors/08--32-1-8.data

�"ﺂ.|ؤاﺑ)¬ةثج¦%?ﺣدذزس،:@@'==""ش"ش���,ﻗفxu÷غﻋrpج����������������������ن���������ث����������������������ﺂ.|ؤاﺑف��D����������������������������*��ﻻ�������������
��������������,��ف����������������������������:��ﻌ����������������������������i���ﻵﻗ|��������������������������ﻬ�"ﺂن�ﻗ|����������������������������ﺂن�ﻗ|�����������������������������ﺂن�.������������������������������A�ﺂ������������������������������E�ﹽ����������������������Aى������I� ����������������������W�ى����r��������������������������W�ىPM؟��?�������������������������W�����-��

qpdf-7.1.0/libtests/qtest/predictors/03--32-3-8.data

ÿ�（ဗ８‧ＩㄷＹ㿿䅇ｊ俿剗ｚ忿执ｪ濿獷ｻ翿莇ﾋ迿钗ﾜ鿿꒧ﾬ꿿뒷ﾽ뿿엇ￍ쿿헗�￮�߿ἈＦⴗＴ㬧ｃ䨷ｑ㿿塇｠俿杗ｮ忿畧ｼ濿葷ﾋ翿銇ﾙ迿ꆗﾨ鿿꾧ﾶ꿿붷ￅ뿿쳇ￓ쿿��ß㜇߿㼈ｅ䬗ｑ圧｝搷ｪ㿿灇ｶ俿籗ﾃ忿襧ﾏ濿長ﾛ翿ꊇﾨ迿꺗ﾴ鿿몧꿿잷ￍ뿿폇쿿￦�큍۟匇߿弈､椗ｮ猧ｸ紷ﾃ㿿衇ﾍ俿鉗ﾗ忿鱧ﾢ濿ꝷﾬ翿놇ﾶ迿뮗鿿욧ￋ꿿킷ￕ뿿�쿿￪�Á怅큧ן漆ۿ缇ﾃ蜗ﾋ輧ﾓ霷ﾛ㿿ꁇﾤ仿ꡗﾬ忿끧ﾴ滿롷ﾼ翿솇ￅ軿즗ￍ鿿톦ￕ껿�뿿￦컿￮�덯Ӂ砅킁ן謆ۿ鼇ﾢꔗﾨﾮ넷ﾴ㿿띇ﾺ仿뵗忿쑧ￇ滿쩷ￍ翿킇ￓ軿횗鿿�￠껿￦뿿￬컿¥簄뎆Ӂ逅킛ן꜆ۿ뼇쌗ￅ윧쬷ￍ㿿콇仿퍗ￕ忿흧滿�翿￢軿￦鿿￪껿￮뿿츀颅ҥ鄄뎜Ӂ꤅킵ן쌆ۿ�￠￢￤￦㿿￨仿￪忿￬滿￮翿軿鿿껿뿿�调题Υꔃ뎳Ӂ섄탐ӟ�＆�６�ỿＦ����������廿ｦ�滿ｶ�绿ﾆ�軿ﾖ�黿ﾦ�껿ﾶ�븀炀ͻ调蚘Αꔃ鶳ҩ섄뛐ӄ�퇮נ＆６������������廬ｦ滮ｶ绰ﾆ軲ﾖ黳ﾦ껶ﾶX甂悀ͩ调玘ͼꔃ螳ґ섄鳐Ҩ�돮׀＆����ÈＦ쫿⻌Ｖ컿㸀����훿廘ｦ�ｶ�绠ﾆ軤ﾖ黨ﾦ글䉪ɉ甂傀ɘ谂徘ɨꔃ炳섃苐Ҍ�问Ѐ��¦５ᶬＥ꿿ⶲＵ뗿㴀��¾ｕ쇿巄･쟿淊ｵ췿緑ﾆ퓿軗ﾖ�ﾦ0弁㕪Ⱥ甂䂀Ɇ谂䲘ɓꔃ媳͡섃棐Ѱ����蓿ඈ５賿ᶐＥ铿ⴀ����꓿䶨ｕ귿嶱･뗿涹ｵ뷿緁ﾆ엿軉ﾖ췿鸀⁕Ĥ弁❪Ȭ甂むȴ谂㦘Ⱦꔃ䎳͈섃仐Ѐ��`％旿൪５濿ᴀ������ｅ軿䶓ｕ飿嶝･ꋿ涧ｵ곿網ﾆ럿躼ﾖ�䰁ᕕĘ弁ᩪȝ甂₀ȣ谂⚘ȩꔃⶳ̰섃���㯮р％䛿ഀ�������毿㵱ｅ矿䵽ｕ菿嶉･郿涖ｵ鳿綢ﾆꣿ踀ࡃĉ䰁Č弁൪Ď甁ႀȑ谂᎘ȔꔂᚳȀ����ᷮ̀����㗿ᰀ��KＴ勿㱙ｄ惿䱧ｔ濿嵶･緿涄ｵ诿經ﾅ�㬀Ń�䰀ŕ�开Ū�甀ʀ�谀ʘ�ꔀ���ϐ�����ࠔ０���⳿⤴Ｑ㳿㥄ａ䳿䩔ｒ巿婥｢淿橵ｳ緿笀4㬇Ńࠁ䰉ŕਁ弋Ūఁ甎ʀ༂谑ʘሀ�������Ϯᴄ？☀��$［⳿䌴ｊ㳿兄ｘ䳿恔ｧ巿湥ｵ淿籵ﾄ�Ⰻ4ఀ㬎Cက䰒ŕᔁ弗Ūᨁ甜ƀἁ谢������ː㌂�ˮ㬃＿���᯿儣ｗ⯿崳､㯿橄ｰ䳿癔ｼ峿荤ﾉ泿輀&Ⱀ4ጀ㬖Cᤀ䰜ŕ 弣Ū✁甫ƀ⼀����ʳ䈂셈ː䴂�ˮ堀���ｩ᯿渣ｳ⯿砳ｽ㯿荄ﾈ䳿赔ﾒ峿靤ﾜ�&ጀⰖ4ᤀ㬝C℀䰦ŕ⨁弯Ū㐁町���Ƙ䰁ꕒʳ夂셠ː朂����茓ﾇ᯿謣ﾏ⯿錳ﾗ㯿魄ﾠ䳿ꑔﾨ峿가�က—&ᜀⰛ4 㬥C⨀䰯ŕ㔁弻Ū䈀����Ƙ弁ꕧʳ漂셸�����ﾟꈓﾥ᯿ꠣﾫ⯿긳ﾱ㯿둄ﾷ䳿메ﾽ�ᔐ�ጀ‘&ᰀⰡ4☀㬬C㈀䰹U䀀彇j伀�������������Ǯ눂૿섒ￃ씢ￇ⫿줲ￋ㯿쵃ￏ䯿턀�ᔒ�ᜀ“&℀Ⱗ4ⴀ㬴C㬀䱃U䬀当j尀���������솩ǐ딁�Ǯ퀂૿￡￣⫿￥㯿��ကᔕ�ᨀ†&☀Ⱜ4㐀㬻C䌀䱌U唀彟j樀畵ƀ老貌Ƙ頁ꖥƳ댁쇁ǐ퀁�Ǯ�૿２�Ｂ�⫿Ｒ�㯿�ऀ�ကሕ�ᨀᰠ!☀✬-㐀㐻;䌀䍌K唀呟]樀晵p耀箌�頀醥�대꧁¶퀀쓟Ñৡ１᧣Ａ⧤Ｒ�І�ऀऍ�ကပ�ᨀᠠ�☀ℬ'㐀ⰻ3䌀㥌@唀䡟O樀塵`耀榌s頀粥�대釁�퀀³샿ূ１쓿ᧆＡ죿⧊�ЀІ�ऀࠍ
ကക�ᨀᐠ�☀ᰬ 㐀┻*䌀が5唀㱟B樀䥵P耀墌_頀梥p대私�퀀賟�ꃿণ１ᦩＡ곿�Ă�Ѐ̆�ऀ؍�ကਕᨀဠ�☀ᘬ�㐀ᴻ"䌀♌+唀た5樀㩵@耀䚌L頀厥Z대懁h퀀烟w胿１裿ᦌ�Ā��ЀȆ�ऀЍ�ကࠕ	ᨀఠ�☀ာ�㐀ᘻ�䌀 唀'樀Ⱶ0耀㒌9頀㺥C대䣁N퀀哟Y惿ࡥ０櫿���Ā��ЀĆ�ऀ̍�ကԕ�ᨀࠠ	☀ବ㐀�䌀ፌ�唀ᡟ�樀ᵵ 耀⎌&頀⦥-대チ4퀀㣟;䃿ࡆ����Ā��Ѐ��ऀč�ကȕ�ᨀР�☀Ԭ�㐀ܻ�䌀ौ
唀樀�耀ᆌ�頀ᒥ�대ᣁ�퀀᳟�

qpdf-7.1.0/libtests/qtest/predictors/out2

qpdf-7.1.0/libtests/qtest/predictors/in1

qpdf-7.1.0/libtests/qtest/predictors/06--32-1-8.decoded

qpdf-7.1.0/libtests/qtest/predictors/12--32-1-4.data

������������������������B���άΠ����������VwwwweA���������S"����οήΛΠ������C"!�����"4�������B���			��ψ�ΰ����B���������!ξΐ����g™«ΌΜΝάΜΛΊ™v0����c""�����ο�ήήΚ―��1����������������4*�
����	ψ�π�οΖ������������ο�ξ�0��x›Όέξξ��ξξέΛΉ‡@��t2!������ποοξέΉ�������������������:��	�	���ψ��οοέ�������������������y«Μήξ����ξνΜΊ—P��t2!������ποοξέΉ���ππ�����π����ππ��+�����ψψ��χψηξΝ�ύο��������π�π�οΠ��F‰«ΜέέξξέέΜΊ�d����c""�����ο�ήήΚ―��ξο�οποπ�ο�οποί�����
��ω�ψ�ποφή¶����Ύ!���ο��οοίά������Fx™���©™‡d��������S"����οήΛΠ������ύΎήξήήίήάΠ��������φΨ�χοξΤΘ����������ύ»���������

qpdf-7.1.0/libtests/qtest/predictors/01--32-3-16.data

�ÿÿÿÿ��ø¾����ø¾����ø¾����÷¾����ø¾����ø¾����ø¾����÷¾����ø¾����ø¾����ø¾����÷¾����ø¾����ø¾����ø¾����÷½����ø¾����ø¾����ø¾����÷¾����ø¾����ø¾����ø¾����÷¾����ø¾����ø¾����ø¾����÷¾����ø¾����ø¾����ø¾�������ø¾���B���ø¾���B�����B���ø¾���B�����B�����B���÷¾���B�����B�����B����	B���ø¾���B�����B�����B����	B�����B���ø¾���B�����B�����B����	B�����B�����B���ø¾���B�����B�����B����	B�����B�����B�����B���÷¾���B�����B�����B����	B�����B�����B�����B����	B���ø¾���B�����B�����B����	B�����B�����B�����B����	B�����B���ø¾���B�����B�����B����	B�����B�����B�����B����	B�����B�����B���ø¾���B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B���÷¾���B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B���ø¾���B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B���ø¾���B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B���ø¾���B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B���÷½���B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	C���ø¾���B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	C�����B���ø¾���B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	C�����B�����B���ø¾���B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	C�����B�����B�����B���÷¾���B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	C�����B�����B�����B����	B���ø¾���B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	C�����B�����B�����B����	B�����B���ø¾���B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	C�����B�����B�����B����	B�����B�����B���ø¾���B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	C�����B�����B�����B����	B�����B�����B�����B���÷¾���B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	C�����B�����B�����B����	B�����B�����B�����B����	B���ø¾���B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	C�����B�����B�����B����	B�����B�����B�����B����	B�����B���ø¾�������������������������������������B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	C�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B���ø¾�������������������������������B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	C�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B���÷¾�������������������������B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	C�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B���ø¾�������������������B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	C�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B���ø¾�������������B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	C�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B���ø¾�������B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	C�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B����	B�����B�����B�����B

qpdf-7.1.0/libtests/qtest/predictors/02--32-1-8.data

������¤«²¸¾������בהטכמספצרת����v�����¤«²¸¾������בהטכמספצרת���ov�����¤«²¸¾������בהטכמספצרת���gov�����¤«²¸¾������בהטכמספצרת���`gov�����¤«²¸¾������בהטכמספצרת���Y`gov�����¤«²¸¾������בהטכמספצרת��RY`gov�����¤«²¸¾������בהטכמספצרת�LRY`gov�����¤«²¸¾������בהטכמספצר�ELRY`gov����������������בהטכמספצ�?ELRY`gov����������������בהטכמספ�:?ELRY`gov�����¤«²��������בהטכמס�4:?ELRY`gov�����¤«²��������בהטכמ�/4:?ELRY`go������¤���¾������בהטכ�*/4:?ELRY`g����������¸¾������בהט�&*/4:?ELRY`��v�������²¸¾������בה�!&*/4:?ELRY��ov������«²¸¾������ב��!&*/4:?ELR��g�������¤«²¸¾���������!&*/4:?EL�����v�����¤«²¸¾���������!&*/4:?E����gov�����¤«²¸¾���������!&*/4:?���Y`gov�����¤«²¸¾���������!&*/4:��LRY`go������¤«²¸¾��������!&*/4���LRY`��������¤«²¸¾��
�����!&*/4��������ov�����¤«²¸¾��
�����!&*/4������`gov�����¤«²¸���
�����!&*/4:?ELRY`gov�����¤«²����
�����!&*/4:?ELRY`gov�����¤«�����
�����!&*/4:?ELRY`gov�����¤������
�����!&*/4:?ELRY`gov������������
�����!&*/4:?ELRY`gov������������
�����!&*/4:?ELRY`gov������������
�����!&*/4:?ELRY`gov������������
�����!&*/4:?ELRY`gov�

qpdf-7.1.0/libtests/qtest/predictors/tiff-02--8-2-4.data

Єсссв�°xЄсссв�°x

qpdf-7.1.0/libtests/qtest/predictors/06--32-1-8.data

��‡�–�₪«²¸¾ִֹ־׃״�בהטכמספצרת����קרשרששששתתת��������������שקרשרששששתתת�������������רשקרשרששששתתת������������שרשקרשרששששתתת�����������ששרשקרשרששששתתת����������שששרשקרשרששששתתת���������תשששרשקרשרששששתתת��������שתשששרשקרשרששUNHB<7�������תשתשששרשקרשרc������7��������תשתשששרשקרr���₪«²��7�������ת�תשתשששרשק���שששש²�����������ת�תשתשששרש��שרשששש��ת����������ת�תשתשששרovרשרששש��תת�����������ת�תשתשששרשקרשרשש��תתת������������ת�תשתשששרשקרשרc��שתתת������������ת�תשתשששרשקרr���ששתתת�������������ת�תשתשששרש����ששששתתת������������ת�תשתששש‘���שרששששתתת�����������ת�תשתש ��oקרשרששששתתת�����������ת�תש®��`רשקרשרששששתתת����������ת�»��Rששרשקרשרששששתתת���������ֶ���®§ ™‘�קרשרששששתתת�����������������שקרשרששששתת������*/4:?ELRY`רשקרשרששששת��������ת�תשתשששרשקרשרשששש���������ת�תשתשששרשקרשרששש����������ת�תשתשששרשקרשרשש�����������ת�תשתשששרשקרשרש������������ת�תשתשששרשקרשר�������������ת�תשתשששרשקרש��������������ת�תשתשששרשקר

qpdf-7.1.0/libtests/qtest/predictors/tiff-02--8-2-4.decoded

qpdf-7.1.0/libtests/qtest/predictors/tiff-03--4-1-16.data

UUÍðd 9[

qpdf-7.1.0/libtests/qtest/predictors/07--32-3-8.data

�������������� '�)/�17�9?�AG�JO�RW�Z_�bg�jo�sw�{��������������¤§�¬¯�´·�½������������‗�זח�מן�צק����ן����ש��ר��ר��ר��ר��ר��ר��ר��ר��ר�ר��ר��ר�	ר�	ר��ר��ר��ר��ר��ר��ר��ר��ר��ר��ר�ר��ר��ר��ר�תר�רר�ס��ן����ש��ר��ר��ר��ר��ר��ר��ר��ר��ר��ר��ר�ר��ר�
ר�	ר�	ר��ר��ר��ר��ר��ר��ר��ר��ר��ר�ר�ר��ר��ר�ס��ס��ן����ש��ר��ר��ר��ר��ר��ר��ר��ר��ר��ר��ר�ר�ר��ר�
ר�	ר��ר��ר��ר��ר��ר��ר��ר��ר��ר��ר�ר�ר�ס��ס�ס��ן���ר��ר��ר��ר��ר��ק��ר��ר��ר��ק��ר��ר��ר�ק��ר��ר��ר�
ק��ר��ר��ק��ק��ר��ר��ק��ק��ר��ר�ע��ס��ס��ס��ן����ר��ר��ר��ר��ש��ק��ר��ר��ש��ק��ר��ר��ש��ק��ר��ר��ש�
ק�	ר��ש��ר��ק��ר��ש��ר��ק��ר�ע�ע��ס��ס��ס��ן����ר��ר��ר��ר��ש��ק��ר��ר��ש��ק��ר��ר��ש��ק��ר�ר�ש��ק��ר�
ש��ר��ק��ר��ש��ר��ק�ף	�ע��ע��ס��ס��ס��ן����ר��ר��ר��ר��ש��ק��ר��ר��ש��ק��ר��ר��ש��ק��ר��ר�ש��ק��ר�
ש�	ר��ק��ר��ש��ר�פ��ף��ע	�ע
�ס��סס��ן���ק��ק��ק��ק��ר��������¹��²��©�����ק��ר��ק��ק��ק��ר��ק�ק��ר��ר�
ק�	ק��ר�הפ�דפ�בף��ע��ע��ס��ס��ס��ן�ב�רג�רד�ר�����������������������¢ל�רם�רם�רן�רנ�רס�רס�רף�רפ�רפ�רץ�רק�ר�טץ�ופ�דפ�גף�‗ע��ע��ס��ס��ס��ן�‗�ר��ך��������&��.��6��>��������¢ך�רל�רל�רם�רמ�רנ�רנ�רס�רף�רפ�רפ�ר�ךץ�יץ�חפ�ופ�דף�בע�‗ע��ס��ס��ס��ן������¦��ב�קג�קד�קה�קµ�=������ט�קי�קך�קכ�קל�קם�קן�רנ�רס�רע�רף�ר�מץ�לץ�ךץ�טפ�חפ�הף�דע�בע�‗ס��ס��ס���������ר‗�רא�רב�רג�רד�ר������ז�רח�רי�רך�רכ�רל�רל�קם�רמ�רן�רנ�ר�נצ�ןץ�םץ�לץ�ךפ�טפ�זף�הע�גע�אס��ס�T‗�Yמ���ר��ר��ר‗�רא�רב�ר������ו�רז�רז�רח�רט�רי�רך�רכ�קם�רמ�רן�ר�ףק�סצ�סץ�מץ�םץ�לפ�ךפ�טף�זע�וע�גס�אס�‗ס��ן���ר��ר��ר��ר‗�ר������ג�רד�רה�רו�רז�רח�רי�רך�רך�קכ�רל�ר�ץק�פק�עצ�עץ�נץ�מץ�םפ�כפ�ךף�חע�זע�הס�גס�בס��ן��ק��ק��ק¨��������א�קב�קג�קד�קה�קז�רז�רח�רט�רי�קכ�ק�רר�רק�קק�ץצ�פץ�ףץ�סץספןפמףלעךעיסחסזסדן���פ��ל������$� ב�ץג�ץד�ץה�ץו�צו�ץח�ץט�ץי�ץך�צך�צ��ש��ר��ק��ק	�צ
�ץ��ץ��ץ��פ��פ��ף��ע��ע��ס��ס��ס������������-ר��ר��ר��ר��ר��ר��ר��ק�ר��ר��ר�	ר�	��ר��ש��ר��ק��ק��צ
�ץ��ץ��ץ�פ��פ��ף��ע��ע��ס�!ו��������?ק��ק��ק��ק��ק��ק��ק��ר��ר��ק��ק��ק�ק����ת��ר��ש��ר��ק��ק��צ	�ץ	�ץ��ץ��פ�פ��ף��ע�?��������‗S�ן�ר��ר��ר��ר��ר��ר��ר��ק��ר��ר��ר��ר��ר���ת��ת��ר��ש��ר��ק��ק��צ��ץ��ץ	�ץ��פ��פ�[���������`�ס��ס��ן�ר��ר��ר��ר��ר��ר��ר��ק��ר��ר��ר��ר����ת��ת��ת��ר��ש��ר��ק��ק��צ��ץ��ץ��ץ	�t»�������¥g�ע��ס��ס��ס��ן�ר��ר��ר��ר��ר��ר��ר��ק��ר��ר��ר�������ת��ת��ת��ר��ש��ר��ק��ק��צ��ץ���¸����������[�M�?�0�!u�lן�ק��ק��ק��ק��ק��ק��ק��ק��ק��ק���������ת��ת��ת��ר��ש��ר��ק��ק��צ��������������������������������ס��ן�ר��ר��ר��ר��ר��ר��ק��ר��ר����������ת�ת��ת��ר��ש��ר��ק��ק��UU�__�jj�uu����������¥¥�³³����ס�ס��ן�ר��ר��ר��ר��ר��ר��ק��ר���������ש��ר��קת�צת�ץת�ףר�עש�סר�ןק�מק�לצ�ךץ�טץ�זץ�הפ�דפ�בף��ע��ע��ס��ס��ס�ןקב�קג�קד�קה�קו�קו�קח����������ת��ש��קת�קת�ץת�פר�ףש�סר�נק�מק�לצ�כץ�יץ�טץ�ופ�דפ�גף�‗ע��ע��ס��ס��ס��ןר‗�רא�רב�רג�רה�קה����������ת��ת��רת�רת�צת�ץר�פש�ער�סק�נק�םצ�םץ�ךץ�יץ�חפ�ופ�דף�בע�‗ע��ס��ס��ס��ןר��ר‗�רא�רב�רג���������������ת��שת�שת�קת�צר�ץש�ףר�עק�סק�ןצ�מץ�לץ�ךץ�טפ�חפ�הף�דע�בע�‗ס��ס��ס��ןר��ר��ר‗�רא�������������������שת�שת�רת�צר�צש�פר�ףק�סק�נצ�ןץ�םץ�לץ�ךפ�טפ�זף�הע�גע�אס��ס��ס��ןק��ק��ק������������������������תת�תת�שת�רר�קש�ץר�ץק�ףק�סצ�סץ�מץ�םץ�לפ�ךפ�טף�זע�וע�גס�אס�‗ס��ןר��ר���������������������������ת��ת�שת�רר�רש�צר�ץק�פק�עצ�עץ�נץ�מץ�םפ�כפ�ךף�חע�זע�הס�גס�בס��ןר��

qpdf-7.1.0/libtests/qtest/predictors/in2

qpdf-7.1.0/libtests/qtest/predictors/10--32-1-8.decoded

qpdf-7.1.0/libtests/qtest/predictors/07--32-3-8.decoded

qpdf-7.1.0/libtests/qtest/predictors/05--32-3-8.data

�����������������	�����������	��������������	�����������	��������������	�����������	�����������	��๎��฿7���ะM���ม`�����������	������������������	�����������	�����������	�����������	�����������	�����������	����ณo��	��	��
��	���������������������	�����������	�����������	�����������	�����������	�����������	�ฅ|��
��
�����������������������������	�����������	�����������	�����������	�����������	��	�����������	�����������	�����������	�����������	��ส�����N���p��ฺ������่�F���Xu����	��
��	����
�������������������<�๊���������ฮ�>���Bj�������������	����	��	��
��	�����`�๛������������ฒ�5�����������������������������	�������������0_�������������������������������!����������x�๋�����-��������������������������������	���������� U��
���������������������������ฒ0����`�������๓���t�%�����������������������������������	��������L��	��
������������������������������������ภ�๛���R��	�����C��	��	��
���������������������������������ใ�����.����������������������������	�����������������;�����	��	��
�������������������������������!������������������	�����������	���	����������	�����4��������	��	��
����������������������������0็������������������������������������	�������������,�����������	��	��
�������������������������?ั����๎;������������������������	�������������������&��������������	��	��
����������������������Mพ����฿S���������������������������	���������������� �����������������	��	��
�������������������[ฎ����ะg��������	���������������������	����������������������������������	��	��
�����������������hก����มx��	��
��	������������������������	����������������������������������	��	��
������ฑ����������������������฿ง�����������������������	�������������������������������������	��	��
��กญ����������������������ะต��������������������������	�����������������������������������		�		�

��	�����	��������������������������������	��	�	
�	��	��
��	���	��	��
����	�����	��
��	����
���	��	��
����������������	����	��	��
��	���	��	��
���������������������������������	��	��	��
��	��	��
��	��	��
�����������������������������������

qpdf-7.1.0/libtests/qtest/predictors/12--32-1-4.decoded

qpdf-7.1.0/libtests/qtest/predictors/09--32-3-8.data

��������������������� �!$�%(�*,�-0�14�58�9<�>@�BD�FH�JL�OP�RT�VX�Z\�^`�cd�gh�kl�op�tt�wx�{|�������o��	ύ��������������������������
��
��	�����	��h)����	�ύ�������������������������
�����
��	��a2�������	�ύ��������������������������
��
��	��
��	��Y:����������	�ύ������������������������������
��	��	��S?������������	�ύ��������������������������
�����
��	��	��������������������������������������LE���������������	�ύ��������������������������
��
��	��	��������������������������������������FG������������������	�ύ�����������������������������
��
��	��	��������������������������������@J��
������������������	�ό��������β��ι��ε��α��έ��Ω��Υ��Ρ��Ν��Ι��3�	�����������������������������*:�χ��φ��υ��τ��σ��ς��ς��π��ψ	ύς����ω���������������������������m�/χ��ω��ω��ω��ω��ϋ��ϋ��ϊ��ϋ��ύ��� 5�χ��φ��φ��τ��υ��σ��ς��ς��ο��φ	ύb��c��d��e��f��g����ε������Τ�Vφ��χ��χ��ψ��ψ��ω��ω��ϊ��ϋ��ϋ��ϋ����0�ψ��χ��χ��υ��υ��τ��σ��ς��ς��ο��υ	όρ��ς��ς��σ��D�Σ������Έ�Eυ��φ��φ��χ��χ��ψ��ψ��ϊ��ϊ��ϊ��ϋ��ϋ����*�ω��ψ��χ��χ��υ��υ��τ��σ��ς��ς��ο��σ	ύρ��ς��f�γ��������5τ��υ��υ��φ��χ��χ��ψ��ψ��ψ��ω��ω��ϊ��ϊ����&�ϊ��ψ��ω��χ��φ��φ��υ��τ��σ��ς��ς��ο��ς	ύ��σ������t�%σ��τ��τ��φ��φ��φ��φ��χ��χ��ψ��ψ��ϊ��ϊ��ϊ����"�ϊ��ϊ��ψ��ψ��ψ��χ��φ��υ��υ��σ��ς��ς��΄�ό���������Ζ�ξΔ�κ���τ��υ��υ��υ��φ��φ��χ��ψ��ψ��ψ��ω��ω������ϋ��ϊ��ϊ��ω��ψ��ψ��φ��φ��τ��τ��σ��ς��σ����� ����
ν�ϊ���Ρ�κ���τ��τ��υ��υ��φ��χ��χ��χ��ψ��ψ��ϊ���ό��ύ��ό��ϋ��ϊ��ϊ��ω��ω��ψ��χ��φ��υ��υ���p��w�ς�ώο	ϊ
��ϊ�ό���ί�κ���υ��φ��φ��χ��χ��ψ��ψ��ω��ω��ω��������������������������������
��
�����������������ύ	
��ϊ�ν�����'����������������
��
��	�����	������������������������������	��
��
����������������ό	���α���	�4�����������������
�����
��	���	�����������������������������	��
��
��������������������Τ�����A���������������������
��
��	��������������������������������	��Ι�΄δ�F.����������������Ι�����O����������������������������
��
	�������������������������������Λί����΄Ϊ�F6��������ώ0�������ώ�^���������������������������
�����������������������������������;,�ΛΩ����΄Ρ��Ν�§Ι� Δ�������ί§���ό	��;3�Λ�����������������Α©��������ύ	��;;�@@�FF�LL�RR�YY��������������ύ	����������������������������ώ��ώ��ώ��ώ��ύ��ύ��ό��ό��ϋ��ϋ��ϊ��ϊ��ω��ψ��χ��χ��φ��υ��τ��σ��ς��ς��π�όψ	�ς��ς��σ��σ��σ��υ������������������ύ��ώ��ύ��ύ��ύ��ϋ��ό��ϊ��ϊ��ϊ��ψ��ω��χ��φ��φ��τ��υ��σ��ς��ς��ο�ύφ	�ρ��ς��ς��σ��σ���������������ώ�����ώ��ώ��ύ��ύ��ό��ό��ϋ��ϋ��ω��ϊ��ψ��ψ��χ��χ��υ��υ��τ��σ��ς��ς��ο�ύυ	�ρ��ς��ς��σ���������������������ώ��ώ��ώ��ύ��ύ��ύ��ϋ��ό��ϋ��ϊ��ϊ��ω��ψ��χ��χ��υ��υ��τ��σ��ς��ς��ο�ύσ	�ρ��ς��ς���������������������������ύ��ώ��ύ��ό��ύ��ό��ϋ��ϊ��ϊ��ϊ��ψ��ω��χ��φ��φ��υ��τ��σ��ς��ς��ο�ός	�ρ��ς������������������������������ώ��ώ��ύ��ύ��ύ��ϋ��ό��ϋ��ϊ��ϊ��ψ��ψ��ψ��χ��φ��υ��υ��σ��ς��ς��ο�όπ	�ρ������������������������������ώ��ώ��ώ��ύ��ύ��ύ��ό��ϋ��ϋ��ϊ��ϊ��ω��ψ��ψ��φ��φ��τ��τ��σ��ς��ς��ο�όο	

qpdf-7.1.0/libtests/qtest/predictors/tiff-01--16-1-8.data

��������������������������������W�˙˙˙˙˙˙˙ööö����

qpdf-7.1.0/libtests/qtest/predictors/03--32-3-8.decoded

qpdf-7.1.0/libtests/qtest/predictors/tiff-01--16-1-8.decoded

qpdf-7.1.0/libtests/qtest/predictors/11--32-3-8.data

�����������������	�����������	��������������	�����������	��������������	�����������	�����������	��ο����ω���ώ��ό��ό��ϋ��������ρ�������ω��ώ��ύ��ό�����ρ����������ω���ώ��ύ��ρ������������	ψ��ς���	��	��
��	���ψ���ς��
��
�����������ψ��σ	�������������������ψ���τ������	��
��������������χ��������������������Α�����N���δτ�������������������������ψ���������������������ι�ψ���θυ����	��
��	�����
������������ψ���������:�Ϊ������ζ�ψ���κυ�������������	�����	��	��
��	����χ������������―�-δ�χ���ξυ����������������������������������	�ψ��σ������α�ψ��πφ���j��ί�ψ��σχ����������������������������������Μ!ό������ά�ψ���υχ���ξ�Ϊ�χ���ψψ�������������������������������ώM�������ζρύ�����τό�τ��������ό��ύ��ύ��ύ��ύ��ώ��ώ	�ύ��ύ��ύ��ώ��ώ��ω���������������������������������ξ����Α��ρ���������γ���ψ��ψ���������������������������������ξ����ς������������γ���χ��ϊ�������������������������������������ώMΤ���������������υ�»υ����i��������������������������������ϊ���ψ����������������������������������ϊ��������������������������������uH��������������ώM�����ί���	ψ����������������������������������ϋ���������������������������������������	��	��	��
�������ρ�������χ������������������������������ϋώ���	�������ρ���������ψ����������������������������ύ���ώ��ώ��ώ��ς
�����������ψ�������������������������ϋό�ώ��ώ��ύ��ύ��ό��ϋ��ϋ��ω��ω��ψ��χ��φ��υ��	��	��
�����������������������χ����������������������όύ����ώ��ώ��ώ��ό��ό��ϋ��ϊ��ϊ��ψ��ψ��������������	�����	��
��	�����
����������ψ������������������ώώ����ώ�����ώ�����ύ�����ϋ��ϋ�����ω�����������������������������	�����	��	��
��	�ψ�����������������ώ�ώ�����������ώ��ύ��ύ�����ό���ψ	����������������ώ����������ώ�����ώ��ό���χ�����������������ώ�������������ώ�����ύ���ψ�����������������ώ���ψ��

qpdf-7.1.0/libtests/qtest/predictors/08--32-1-8.decoded

qpdf-7.1.0/libtests/qtest/predictors/11--32-3-8.decoded

qpdf-7.1.0/libtests/qtest/predictors/10--32-1-8.data

����������������������������������÷������������������������������ÿ�ù��������������������������������ø��������������������������������ù��������������������������������ù��������������������������������ù��������������������������������ú��������������������������������ù��������������N�Ÿ���������������ú����������������ú���������������û�������������c��ú���������������ú���������������€ù���������������û������������y��ù����������������û���������������ù����������������ü��������������ù�����������������û�������������vø�����������������ü����������§��ù��y���������������ü������������`ø����ø�������������ý������������ù�����ù�������������ý������������§�����y�������������ü��������������������ù�����������þü���������:�����§�o�ø�����������ý�ü����������������ø�������������þ��ü���������������ù�������������þ���ü������������L�ù�������������þ����ü���������������������������ÿþ����ü��������������������������ÿ�þ����ü�������������������������ÿ��þ����ü������������������������ÿ���þ����ü������������������������ÿ���þ����ü������������������������ÿ���þ����ü��������������������

qpdf-7.1.0/libtests/qtest/predictors/02--32-1-8.decoded

qpdf-7.1.0/libtests/qtest/predictors/05--32-3-8.decoded

qpdf-7.1.0/libtests/qtest/predictors/09--32-3-8.decoded

qpdf-7.1.0/libtests/qtest/predictors/tiff-03--4-1-16.decoded

םם�הgץ{{

qpdf-7.1.0/libtests/qtest/predictors/01--32-3-16.decoded

0.1402449

qpdf-7.1.0/libtests/qtest/predictors/out1

qpdf-7.1.0/libtests/qtest/predictors/04--32-1-8.decoded

qpdf-7.1.0/libtests/qtest/predictors/04--32-1-8.data

����������������������������������v	�������������������������������o�	������������������������������g��	�����������������������������`���	����������������������������Y����	���������������������������R�����	��������������������������L������	�������������������������E�������	������U�ľ���������������?��������	����c��¸���������������:���������	��r���˛���������������4����������	�����«���������������/����������‘��Žr�¤���������������*����������™���y�ť���������������&�������������	��–���������������!��������������Š�Ž������������������������������‘�‡������������������������������™�������������������������������� �v	�����������������������������§�o�	����������������������������®�g��	��������������������������´�`���	�����������
�����������Ě�������o�	����������������������Ń�������g��	���������������������������������	���������������������������������	���������������������������������	���������������������������������	���������������������������������	���������������������������������	���������������������������������	���������������������������������	

qpdf-7.1.0/libtests/qtest/runlength.test

#!/usr/bin/env perl
require 5.008;
use warnings;
use strict;

chdir("runlength") or die "chdir testdir failed: $!\n";

require TestDriver;

my $td = new TestDriver('runlength');

cleanup();

my @files = (
 "01", # basic case, ends with copy
 "02", # basic case, ends with run
 "03", # long run run
 "04", # ends with copy, length % 128 == 0
 "05", # run starts at byte 128
 "empty", # empty file
);

Create this rather than committing an empty file, which always looks
like an error.
open(F, ">empty");
close(F);

foreach my $f (@files)
{
 $td->runtest("encode $f",
 {$td->COMMAND => "runlength -encode $f a"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
 $td->runtest("check encoded output",
 {$td->FILE => "a"},
 {$td->FILE => "$f.encoded"});
 $td->runtest("decode $f.encoded",
 {$td->COMMAND => "runlength -decode $f.encoded a"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
 $td->runtest("check decoded output",
 {$td->FILE => "a"},
 {$td->FILE => "$f"});
}

concatenate("01.encoded", "02.encoded", "concat.encoded");
concatenate("01", "02", "concat");

$td->runtest("decode with embedded EOD",
 {$td->COMMAND => "runlength -decode concat.encoded a"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check decoded output",
 {$td->FILE => "a"},
 {$td->FILE => "concat"});

cleanup();

$td->report(2 + (4 * scalar(@files)));

sub cleanup
{
 system("rm -f a concat concat.encoded empty");
}

sub concatenate
{
 my ($a, $b, $out) = @_;
 open(F, ">$out");
 foreach my $f ($a, $b)
 {
 local $/ = undef;
 open(G, "<$f");
 print F <G>;
 close(G);
 }
 close(F);
}

qpdf-7.1.0/libtests/qtest/predictors.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;
use File::Copy;
use Digest::MD5;

chdir("predictors") or die "chdir testdir failed: $!\n";

require TestDriver;

my $td = new TestDriver('predictors');

cleanup();

$td->runtest("decode columns = 4",
	 {$td->COMMAND => "predictors png decode in1 4 1 8"},
	 {$td->STRING => "done\n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("check output",
	 {$td->FILE => "out"},
	 {$td->FILE => "out1"});

$td->runtest("decode columns = 5",
	 {$td->COMMAND => "predictors png decode in2 5 1 8"},
	 {$td->STRING => "done\n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("check output",
	 {$td->FILE => "out"},
	 {$td->FILE => "out2"});

$td->runtest("encode columns = 4",
	 {$td->COMMAND => "predictors png encode out1 4 1 8"},
	 {$td->STRING => "done\n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("check output",
	 {$td->FILE => "out"},
	 {$td->FILE => "in1"});

$td->runtest("encode columns = 5",
	 {$td->COMMAND => "predictors png encode out2 5 1 8"},
	 {$td->STRING => "done\n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->runtest("check output",
	 {$td->FILE => "out"},
	 {$td->FILE => "in2"});

my @other_png = (
 '01--32-3-16',
 '02--32-1-8',
 '03--32-3-8',
 '04--32-1-8',
 '05--32-3-8',
 '06--32-1-8',
 '07--32-3-8',
 '08--32-1-8',
 '09--32-3-8',
 '10--32-1-8',
 '11--32-3-8',
 '12--32-1-4',
);

foreach my $i (@other_png)
{
 $i =~ m/^.*?--(\d+)-(\d+)-(\d+)$/ or die;
 my $columns = $1;
 my $samples_per_pixel = $2;
 my $bits_per_sample = $3;
 $td->runtest("decode $i",
 {$td->COMMAND => "predictors png decode $i.data" .
 " $columns $samples_per_pixel $bits_per_sample"},
 {$td->STRING => "done\n",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
 $td->runtest("check output for $i",
 {$td->FILE => "out"},
 {$td->FILE => "$i.decoded"});
}

my @tiff = (
 '01--16-1-8',
 '02--8-2-4',
 '03--4-1-16',
);

foreach my $i (@tiff)
{
 $i =~ m/^.*?--(\d+)-(\d+)-(\d+)$/ or die;
 my $columns = $1;
 my $samples_per_pixel = $2;
 my $bits_per_sample = $3;
 $td->runtest("decode tiff $i",
 {$td->COMMAND => "predictors tiff decode tiff-$i.data" .
 " $columns $samples_per_pixel $bits_per_sample"},
 {$td->STRING => "done\n",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
 $td->runtest("check output for tiff-$i",
 {$td->FILE => "out"},
 {$td->FILE => "tiff-$i.decoded"});
 $td->runtest("encode tiff $i",
 {$td->COMMAND => "predictors tiff encode tiff-$i.decoded" .
 " $columns $samples_per_pixel $bits_per_sample"},
 {$td->STRING => "done\n",
 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);
 $td->runtest("check output for tiff-$i",
 {$td->FILE => "out"},
 {$td->FILE => "tiff-$i.data"});
}

cleanup();

$td->report(8 + (2 * scalar(@other_png)) + (4 * scalar(@tiff)));

sub cleanup
{
 unlink "out";
}

qpdf-7.1.0/libtests/qtest/qutil.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

chdir("qutil") or die "chdir testdir failed: $!\n";

require TestDriver;

my $td = new TestDriver('qutil');

$td->runtest("QUtil",
	 {$td->COMMAND => "qutil"},
	 {$td->FILE => "qutil.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES | $td->RM_WS_ONLY_LINES);

$td->report(1);

qpdf-7.1.0/libtests/qtest/runlength/03.encoded

qpdf-7.1.0/libtests/qtest/runlength/01

wwwwwwwwwwwwwwwwwwwwwwwwwqqqqqrstv

qpdf-7.1.0/libtests/qtest/runlength/05.encoded

~abaûb�

qpdf-7.1.0/libtests/qtest/runlength/02

wwwwwwwwwwwwwwwwwwwwwwwwwqqqqqrstvxxxxxxxxxxxxxxxxxxxxxxx

qpdf-7.1.0/libtests/qtest/runlength/03

qpdf-7.1.0/libtests/qtest/runlength/02.encoded

qpdf-7.1.0/libtests/qtest/runlength/empty.encoded

qpdf-7.1.0/libtests/qtest/runlength/05

abbbbbb

qpdf-7.1.0/libtests/qtest/runlength/04

wwab

qpdf-7.1.0/libtests/qtest/runlength/01.encoded

qpdf-7.1.0/libtests/qtest/runlength/04.encoded

�w�ab�

qpdf-7.1.0/libtests/qtest/input_source/input_source.out

find potato salad: PASS
barely find potato salad: PASS
barely find potato salad: PASS
potato salad is too late: PASS
potato salad is too late: PASS
potato salad not found: PASS
potato salad not found: PASS
potato salad at EOF: PASS
findFirst found first: PASS
findLast found potato salad: PASS
findLast found at EOF: PASS
potato but not salad salad at EOF: PASS
findLast found potato salad: PASS
findLast found first one: PASS

qpdf-7.1.0/libtests/qtest/buffer/buffer.out

count: 10
count: 21
size: 21
data: 1234567890abcdefghij
count: 32
size: 11
data: qwertyuiop
Pl_Buffer::getBuffer() called when not ready
size: 9
data: mooquack
done

qpdf-7.1.0/libtests/qtest/bits/bits.out

byte offset = 0, bit offset = 7, bits available = 64
bits read: 5, result = 30
byte offset = 0, bit offset = 2, bits available = 59
bits read: 4, result = 10
byte offset = 1, bit offset = 6, bits available = 55
bits read: 6, result = 10
byte offset = 1, bit offset = 0, bits available = 49
bits read: 9, result = 357
byte offset = 3, bit offset = 7, bits available = 40
bits read: 9, result = 242
byte offset = 4, bit offset = 6, bits available = 31
bits read: 2, result = 0
byte offset = 4, bit offset = 4, bits available = 29
bits read: 1, result = 1
byte offset = 4, bit offset = 3, bits available = 28
bits read: 0, result = 0
byte offset = 4, bit offset = 3, bits available = 28
bits read: 25, result = 5320361
byte offset = 7, bit offset = 2, bits available = 3
exception: overflow reading bit stream
byte offset = 7, bit offset = 2, bits available = 3
bits read: 3, result = 3
byte offset = 8, bit offset = 7, bits available = 0

byte offset = 0, bit offset = 7, bits available = 64
bits read: 32, result = 4111820153
byte offset = 4, bit offset = 7, bits available = 32
bits read: 32, result = 310998347
byte offset = 8, bit offset = 7, bits available = 0

4111820153
4111820153
310998347

61
21
101

-1
-22
5
0
-39559

ch = f0, bit_offset = 2
ch = 00, bit_offset = 6
ch = 14, bit_offset = 0
ch = 14, bit_offset = 0
ch = 00, bit_offset = 7
f5 15 65

ch = 00, bit_offset = 6
ch = 00, bit_offset = 4
ch = 10, bit_offset = 3
ch = 48, bit_offset = 2
ch = 00, bit_offset = 7
79 12 89 75 4b

ch = 00, bit_offset = 7
ch = 00, bit_offset = 7
f5 15 65 79 12 89 75 4b

f0 ab

fa 49

done

qpdf-7.1.0/libtests/qtest/ascii85.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

chdir("ascii85") or die "chdir testdir failed: $!\n";

require TestDriver;

my $td = new TestDriver('ascii85');

$td->runtest("decode",
	 {$td->COMMAND => "ascii85 < base85.in"},
	 {$td->FILE => "binary.out",
	 $td->EXIT_STATUS => 0});

$td->runtest("partial decode",
	 {$td->COMMAND => "echo '\@<5skEHbu7\$3~>' | ascii85"},
	 {$td->STRING => "asdfqwer\n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->report(2);

qpdf-7.1.0/libtests/qtest/sha2.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

chdir("sha2") or die "chdir testdir failed: $!\n";

require TestDriver;

my $td = new TestDriver('sha2');

$td->runtest("sha2",
	 {$td->COMMAND => "sha2"},
	 {$td->FILE => "sha2.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->report(1);

qpdf-7.1.0/libtests/qtest/buffer.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

chdir("buffer") or die "chdir testdir failed: $!\n";

require TestDriver;

my $td = new TestDriver('buffer');

$td->runtest("buffer",
	 {$td->COMMAND => "buffer"},
	 {$td->FILE => "buffer.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->report(1);

qpdf-7.1.0/libtests/qtest/lzw/lzw1.in

ᖀ؍颓ࢂ〠ຈ历튙演ᰐꛌㅘ䂘၉찘혁․ᨶ䝌䥃Ⲛ衴찙⻮ᴅ另ꐹ淖鰷李ɓ걤Տ頶煍饃�貛Ϣ钱秤ᮐ叩蔂ꍄꨴ㩥沠ᦩ蟪莂衃他骔㙝冟芩뚧땊订땇誅嗥喳㟭斋�론窶蛵�ᖼ뗞띜煤సས笯ൌ헚첅狟屷置ꨡ�ᇳ앾㍫鷗螮ꐷ骷혌㧣펕紻非썛㬶ᚮ涣�럳浽좁燚ᴶྞ笧糹ḽῇ깧ﯥﹻ蟾翇㷷㸝埗첣㫱⍏เ뿭ϓ낾Ṍ㿺ﳜ꿁ො䌊댰೧ᛴ䓿ⰰد꽄䞔봁ஐ퀾є웵鰰Ɂ充ᆜ㼇咏൷焤䜗賐൹敬옗钐ࡻ녂㼴䠔屲⢋㋇罤䜑㑒⦁勈浔䰪籒ᐹ鋈㮄䔩汲酴䘲㒳㪓珎䴸ﳒⷛ鋍뇬찴곲㷇华ǥ쨬巳㔙ቍ↵乃ꗓ〓㍎ㅽ쬾풒亽듑ྍ콌ᗔ䈝ﾼ큏䤇덐呒鴔䕥鑕捽팽嵴䭑啓彝퍑涕䩃癖甭�䩅ᛑ嵭홓攖楋絍�宏뗗翍�慹陚뜥屵嫉痗鵕坤ᴖ媡흘幬淭띝･�봷熕ᛟ뭝婸曘簗㛞뾕�շ泑飠ﷅḘ贷䏮抋ꖸ鋹磻✶镸韵㝢挮嶇蛸鬛歖憝䘸眏멧缆掁캘鉅駥敾ẚ甍ꌎ撏噹骕㩨䄦暤昚멣㼮为鱧穧ꗾ鲻嫭릦ᘚꏁᥥ廛꯱𤋮븺곑篪ꬖ殳럥籯�왚증볰滅라씇ﯭ뗦烊ᛜ싽ᱰ䝯乜쫛ﳰﾾ滆徽㔧珇螜팽᳴斏盔ឝ홳ᱷ濇秣⽞�西ཾ읿᷶넷罽��淟竧콣�篗ﯬힽ鿺絇伟鹹薇緹ޟ퍟緗絯뿱�洞뜽寞竒㛐쀁ﴻ낀ݢ띀ާ갠舞╰뿿㾘ꀀTᑒ棂﵆诠臥섐㿲ৈ℄ᑞ塂ﴤ蟸컰쌠洘ꀅ⑤傈්衃܍呡蠯䈨臨䯬⮊ୁᱢ蝍느䐟矈愒侤ㆄ⹆㣆ᆕ풡蕈빱䘪궸∑擄冋⻆衇ᚽ董豕鸱옹뾘戙泜톏䎺ࡈᣫ㐣該䘺↩挢押ᆍ䭎衈⋹풤鎅Ẓ젽〈攟錌䃪槇␇沣銛㚒䡖㷹ꐩ꿄ን唒쥈⍇閥黒䭐揉ꔨ뾜뎖嘆秉☿㑦隋깒쩊魉뤜鎘塂⥍㖑ꐥ飕娓䱛鴩☮멼뎘呶秌㑻黉艓乥霩☹沚祎㪳�鯪䵶��㎞秒뫐㰝蔨ꈊ☴亊ⷪ⡂咣踚婐䄽Щꓫิ劑䥚⤕㒠涮�䖧鼱쫴卿ﭙ㧥璟緮�엧鱁푻䤍떞蘪㫑䜳ᵩꘪ츔厪番䔕喫ꔢ�֫ꌕ踕톍䷺楽钦黢厍攨ꅱ蛵횧兪⭋啕閭띢句▫걐햵�玅喬ꢖ䫘懵춪ꭜ埁ꝺꭕ酭㚱옂㭘帯㷬꾒틵ퟀ텪污緍疲웖ﯙ模ᶭ뒔㫖埌ᇋ걟걕햳�椷랖芖寍㦋浥輽㚵헞寚灛緭뛌嫡涋굨컍瞷�歜犁ꔭ뛄昗�箛湱㞼筜歧嶮믭뻷忨缛깬�ួ孝疕뷯볔諗廩셋ぼ�ឿｮ�껯섉틷廽�灾ﭭ�毡蛧㸯섞ﭷ⽜ㆃ磄᭠读똯쀊꽗䄼ㆁ㍖ᣁ︺걞虷㺱윤묘感礜ⶾ壆ᪿⱡ葻기쌦ꏸ讼熔䳎ᶋ汤钁ᛲ왊叙搱㧼犊倦맃ᕋ�邏虱쥎錙鍬玝憞㟃ﱥ雛曳쭝ꜙ읜뎞粖᧐⭧뷦騙䚳퉖ᬚ朻ፍ㎘澎᧓걥ꞽ湴킑柺栿ᴭ㎡鞾𢡊䁿ꐇ⺴콥錺楐攽떢车㧖䷯뷨ꕑ횴햫迺橎䏝㖥얞嫗悧淪ꕅ䙴헍鿚汘䯍쥾�絭궏ힹ䟻歯祭뚰쒦篛熫쵭귉��汜ꄽ㚭寞穣ᵮ뛭溷�ퟻ镽쯆믛毃칰븗蹷�턍碶ᠧ�耗㹰옷뺸嬼淚㧉☿篢闯ⷱ쯵躸㬼ᬎ룍볦蓫軰묏熎䖞秉⽧峦黟㹴먍翺笼閮㫍䐏ᷤ頣카푽´枞㧎忟巪궇延캻坻⾝璸섮맑ⵇ鷮뮧빶헱㾻追텾竖抟뷪꾛�鎝疽鶎ﳤ脯㻮뤫濹翻卞磃ﴮ㳡贇维핧鹸㽼㏾諸县緭ꑷ廳츻ཹ߽ꍞ竚猯㷫飇彼䞟ﳡ缟ꚇỻ춗㯟離揟�꿻Ꝿ鿟绠�큧忸ཾ隆ﯖ웯ﻪ푯ß濻雯俺ƭް￠냿̋ᴐ漁Χ⮐퀃ħ︯ヿ?ᕐကɏ厐퀄﹆⋰냼ؑ젏郿ȉ欐〃ɯ凰뀄︤ﳏჿٿ荰〆ɭ᧐逄څ㕐ဇ̍喰ދꄰ퀅筰瀉ҏ꽐퀉Ձ螰뀉չ綐选ॷ椰묰瀌痐ဉൗ꧰瀍ࢭ놐逌ີ뤰ဏ뀊ೃ」ಿ랰逍ෑတ೫촐倎ྥ儍ᄡ倌ထᇹ㕑널္儐༣䎱瀒͑턎ሇ�ᄩ妱ᐽ㇑ၑ喑鄑ᅇ㯑넔ᑝ䇱鄗ᑣ村ᡫ嬱ጿ贱焑ᕥ⭱鄔᚛蟱ㄗ᪉愑儚᪑榑넚᪁淑儘ឝ鼑儗ᮋ厱᩻統ㄙ᳥锑儜Თ馑넜Ჯ뇑ᶳ뜱儝ឹ�ᯛ�ợ爡ḝℒ刡℣⤲툝ℭ⼒‵㧒눠‽䆒爝⁃䕲눤⑉ײ㈥┃땱눥━퇑ㄦ⛿ﵑ넦⛻隣ㄧ⟷넧⟳ㄨ⣇鄨⣭쏱ㄩ⧫᭒爢⌳䞲別♡ꥲ툦❵藒눨⦵霒눫⊛셒눢ⰱ㝲⩍归㈭❩礒ረ⦍ᦒ㈮Ⱏ鼲투║햒눪⯙�툫⧥짒ሪ⿏휒⯝爮ⳅꎲ鈰ヵ돒鈫ㆿճ⪧�〓ᤓ猰⼯ཱི刲Γ툮パ㎳댯⸧᮳㔡䝓録ㅍ㇓錯⼑ᗓ錵⼽欳㌴㐷㮓팲㑹㔓ጷ㈹侳㙓埳댴㡛彳錹㝣蕓ጵ㑭獓팹㩷緓팸㦁椓錸㭡茳㌹㡻鮳댼㫃넳㕧韓댽㶿ꇳ㌾㙿齓錻㫑땳댺㪕錺㳍ꕓ錼㻁Ĕ팻㯱ｳ댻䃓㑁㸟猼㿝᬴琿䈍㎔퍂䏧켓푃㼗䏔둀䄯䮔吾䁇�䗻呁㴅捴瑂䁁喔瑆䄑陸吽䍷佔鑄䕱緔㑂䍹潴둅䕥槴呂䉻⬔푄䔿蜔瑉䪋猴鑉䑿畔푈䪁蕴呉䩭얔䔹褴ᑊ䨻坔둉䢏愴푉䲑殔푌亓㑌仱�䯛�䶱켴둊俇镏䬁꼴畍䴙텔핊倡镎䰓伱릴呋厽᮵㕒匏ﴴ啐倝叿ϵ핓切୕둌哳䆕畒入奕佣㝵畑剑㗕畕呟㥵땕剃枕땘啵茵핔剅ᆵ땙呝懵镙婋齵㕙婽膵嚏篵㕗婿봵핖塹镘嶷압镛囉瞵啕妝焕畘嚡趕한寥㕜寭�廿펵岕留庻괕陡弗啚岿ᕜ寑शᕣ惽ƶ癠挷⽖뙟扃⯖镢擹侖홤弧坶啢旵⏖뙜慣�ᙢ昛ῖ噡杫ፖᙡ崏篖ᙨ恿㥖㙣摅妶晥秶癨崍齶㙠掣䟖噥暕莖陨楁愖险橽㬖뙨栿叶㙩杧眖沥뜶뙬枻픶陪榹器棁凖뙥淩癭櫱쿖뙩泯毑Ꜷ噬沫뷖뙯淥ᙱ泙ᙫ犝୷㙰燣흲焇�陯犵噰烽Ɨ띱獇唷㙱狛ྷ燿睵癓嶷靴焵㧗ᝲ琽䇷㝲略椗坴畳熗ᝳ硯闗띸瘥䍷窉蜷㝸煿懷흴璱㞷瞹붗睷祭ꯗ띳獣췷坻筻묷坷祛ꦷ籽臷㝽秛餗纅�秝篗쟷㝾绫핷㝼胟睻磅韷坺膭翡ླྀ롿茋ᴘ瞁莧⮘�Ｗ㡿耿ᕘᢀ艏厘�⏸롼蘑줗顿舉欘㢃良凸뢄縥虿荸㢆艭᧘预蚅㕘ᢇ茍喸螋ꄸ�筸碉蒏꽘�螸뢉蕹綘颉襷椸詃문碌袕痘উξᛡ�ἀ��ꀔ脛ɬﰡ脋Ǻᡁ쀈द㉡愇낡ꀑӖ틠ꄍາ롁ᠸ䀜ꡠ愀ᰤ㨀䀄ᐠ�Ċ陠뫠Đ૮陁섕ᓜ≁쀝ຐ№ྰꀑᗴ풀༪ꨁꀂኌ쓡ꀖ।ీꄖᳮ쑡愊២晁䄄វ횁쀔䨠ꄙᶨᑡᔾ倠�媀䀔ᨔ㐠耕Ḕᨡ섓ॖꄍਪ氁䀚Ϭ㱀Ğᩴਡᖼ恠‗ᅘᢠބ⚁愙ᯨ訠ꀍᙌ沠䄝ೈ䣁耟ᷲ璁ėᚎ㹁脏ᳶ䛁愇ດ툀耎֨캁耇ᣨ쩠䀏Š怡�ଲ됡섄ம満䀎Ǵ꺠愍श䈠愕০橁ℎl㹠ꀃè泡�᯾Ⱑꀉ൪뢠脝䛡愈Ѐ麡怅ᰲⲡ脕ᶬ좠ăᵠĘ൬谁ℚḚ模愄ໆ꺀쀘෬象ℝݜ鱠ᚺ먡뤎ᠸ㫠ꀗऄ櫁ꄑϜ�ꄛ؊瓠়瘁ěᘤ�ᕾ竡怍ᯬ瀀℆ᦦ櫁䀝ᳮ뫁䀊ᷖ쀊堡ꀋᣚ㨠ꀎ⣡ᆜᛡ쀎낏몡ꄛ௰퉀脊ꌙỀℎꮿ뚀愛឴麡愒ࣖ䉡℈ᴬـᢤℑᆮ鉀ℊݰ︠脛ᜐ嘁愍Ị깡ꀉ�ਸ਼铡ĕᬺ碡怗ἒ䄋ᭀ쑁�ྡྷ嘠ꀙ᭲�态ឌ籁쀘Β䫡㢼怍Ṁꋠ䀟௶ꑡ쓳麁ᝈ绡ꄄ௺�䄈ાĝӞ䣁ꄍ˒ﺠ耍ފ�耕ଡ଼䪡쀘ᒘ�耂ᴴᢠѮ砡脊ዦ�ࣞ猪怄勁ई�脁ᠴ툀쀑㑀ėᡸᑁ䄖ፊ怞냠脈Ḅ搠䄇ᘾ顡ꀌݾ컠쀃൪廡愜ਲ豀䀘ᅜė룠ᙎ ৾麁ꄋ᳔乡⣠န﹠ଦᓡ愒ᰎ䄋ლ⑀ ௴財ຘ怃ᑾ隀䄍಼犠愂࢚㡀脚Ễ�ℜ̐䀉Ḿ욁䀋Ǌ黡쀈ῄᛡ怐ῴ郠�՞婁쀃ज盠愋㡀脉Ĭ䡠�২昀쀆ᴌꄘલ雡๊舠ꄃ̼�෴聠៰谁ꀞȾ䰠ϴ䀆ࠚ쓡ࣄ碀Ăٮ닡섇Ẁ技섒த绡栀脙ᘢڡ№လ쫁΅⣁̼䣁ᅮ裡ؾ�ᑁ耈ގ嫡ʬêꉠ℗٠될�쒡ὶ⃡‑黠ꀌݠ
Ẅ뱡Ĉᡨ㳁ℙȮ⃠ꄘᙎ찁䄃ዪ쀏۰衠䄟Ǹ퓡意௴遀愋ሒ廠脈ࢢ슠ꀃବ糁ėᤂ䩁ሾ溠ꀌṜ炡쀐྾₡ℂា컠‗ê縡怞Ὀ큁ꄙỒ칡ὖ☠밈ꇛ呀ă끻ခ℞ɒ䩀섄ࢸ∁怒ᶐ뻡愉Ш䄜ᴾೡ怙Қ踡脅᷊砠䀏ࢲꋁ思ɰ큡䀚ࠀ頠怗Ṓ悡ꄒ錕哠ꄇବ횢 楂술熭톦̄㡪돎㼾쟑⢢룽ᮧ鬈잧邛뺼ᴽ佟䦧勁≛쎙༌፷ꛋ᭷މ帩厍蕓좘ㅜ캟⪧曌煭逮疍�㞮頷궔쯐ᐵ摹嶜ᗯ춨銪깳샱屴휫珊襢⼲ꆦ騙ふእ刀쒒輰뵂ธꡂⳠ㧩䗉崲쀖茤规惜ᔤ츕타ﴐ䳪㴖舚䦃긕Ɗ鐩뛌⃑㲐⽏肓䊍㱢ҟꎁᖸ邈‒艏�⋥캱푈眤㜧؞撚䁌㳵䒘ꆠ눨⨑अ娅尴᩵젂㘫腪瞺ꝗ芓긨⛼숫䄈痂ก᠄乬ↀ僩輍ࠤ澸ℏ᱔慇Ĉ쉠K䦢丒䂁ݧᡢ崞䞄䩠Ё퀡㼐䈜踆₅આ芚Ѵ椡氒ﳰ褏弆ꊁ蒰६뇦宺솙꒹ᜰ㰎ꘑʐ艺�؍鸱낡糐☋袀陙㧆Ԍ삈۠ᵝ憄᳨茋풑訲ᦦર✆ﰠ镪々嶐ꌘⱡȀ恡❀֙ꑐ酪順☔�骀鰋遃区ꀄ興踮ꃂѾց㲩鉏ꅧ႔֏ᙩᕔ냅瓆↋�ㆅ⾎ꐉ䪩烅坂⠈萈肦煮星陉鍈᎖␓틠靇妣♚ꈐఁ鉬覡ۨ영蔐饤偬䒈聠యꥆˈ賩騌ᣀ䇆̄詐如䧌↔ᨨ褬桂剎ꔈ襒䂦ࠎ֚ᢁȋࠇ䝠趉钘鍺妢␋ᒐт僣↼䌖Ѹ逄ꥠ斄阮允桌삉�豰⇇粀숗邈᠊㡄礮∏䛐찰兤䫮ԋᑙ豬অ䜚茁⨹鐩ꁀ㺦Ꞁ晩鉆턂䨦ꐉ㡢᠃!᷐싩霮䃣Ṇ섉䈸ጣ瀥⥘䅀틑ᄇ냥㶤욈㚩鵌聤ӌ䊅Յ熅ƛꡙഋ傄彨莖ଔꁦ瀘䂓뉸脺�䎒ꀸ豃要爼攎バ̊솂ዐރ䉙ሄꇦ䒐⊔ူሖ䀆ᑢڂ�霃ꁠ䕾쁈鼩⊄䲲䘉뀩轥䟈▉輶脅籼戂繘聊膀儸攖嚀ਉ왁Ի쫀̇ၼ攋ℌ�㡠舂騰䓌䷨战ᫌ킊⍄䃃֊郣�ᱡ蜣ᡈ䁄䂉☘ᢇᎅ胡艳ᡁ䐃㍰ℎ├퀃㤊检沣썙ꣀ씾覐戉擀膉በ偂Ģ䐡൯虐Ľ⊐−㨔冂ภ⣂ј밂Ŧꐱ蘳란̄濈ꀇ쀃ᛚ찢٠䫡䀒怚歘솉ƌ䂀ṩ葋ᚁ萲ᄸ怍䫀焀٤�킠艢㻰䘣㗰‚歄ဍ㪞ဃҜ쀁聘ă耠茊䠼Ĉ㝲郄だі⠠Ȑ裠舒屬億ݾ傇឴鲢Ѿ퉠숳쮈�㽤䆏ᒸꡀᅚल⻐Ĳ瑠䀕傐䂇ⅼ⡁ಾ琮襥걁쀆寀ᑠ倁㌆袁�밃थـ䜕ꔬꀆ动脉ሤ적Ŭ㣁ȶ좰䈡蛠ℋ旌》Ŭљ撡Э�䴈ꌌ䠀ך샀ᤌ좢(ﲠ䈛㴈茎㐠퀂Ḑ惁ԡ զ쨠쀄�ৼ愌Ⓠᗃ䡢舁숞ꁸ䀜↜톃ᛐ础Ҫ࠰頑Ĭ开∌彌ゅٸꣅᐢム蝁㠡萻ᆘ쌛ᢀ₁㋆耇踍씳蛀ȓ竴ᓾ耆؇�轈髐䄏㬠戎䋔げ郄൴退璠䌋湸㚤ㄇፐଐⓢ聧홡萫첀ꀟ猸턃⸄ˠᲂ蘟䈮션愎ረℂᯪࢇᇸ�=첱Ĩ䉀쀆⊀ꀎ㒢䃄Ἑ尢̆풱脙ዀ¶䫘ꆅ㇔졆ᕶ偂ݪ䜊㋈∇䋼熊ဘɄ࠘Ḱ䜿䥰쀂斈↋၆墂ᖨ␁Ц⓰ؔ⠘䈊ᄀ焍ᣦ顃ࠟ鐡ଣ큁䈙永䌂㳘ƅÔ䢅룎蠩㑑茚류脎歨䀌ഘႇ沶쓠茼堐쒸戋刺醉㉖⁀Ⴌ쑠ѵ隡ܧ판∍㍴솄ݎ䠆ሕ泠ꔖ艐䔴ꪘ舂焆㛖 ठࡢꪰ쀌�⺬傊⛤탁ᴄ᱀݈䈗硰ℕᑐ퀋ࣜȻ吁㐰Їഘ�凄ㆎず〆ڡ᱁衤䑠蔃ȟ⼘삁őꂂ⸝䓱윑컈ꀌ湸ႆஊસ㓀ੋ䰱䔝�悬뀌ሂꅃఆ逢༛빀蜐ㅐ‐ቜ₇◶框ݙ큀ɻ䰑舙ꉰ∔爸Ă⫝̸䣂ᰌࠂ͗䠑ԥ̈ꀎ媤뀀͊僁࣊aਸ倐䈀铠舊繐沋⯤怃க撁昃�옑⎰指䥀冃ᵊልၣଔ䪑ȍば턎‐㡁ᤚ怡聐满쀩羰ꈕጼ邍⻨ࣀṭ肃Р蒱ܤ靘순哨킊⪤墆০⑂ཽ媑萡쁸怊㨄愆㖂퀀Яၠ�膞䄜倇఼̞脚ꋁ쐡었䀃ヌ놈ኸ胁დ鰷ࡿ壱䈧胠脎慸삀ැࢂᛗ⃀꓀蔏屐⌒ㆨ悃㠎惄ۊ⒢൜吡윓儈浸怍ᨀ�颂͌쀡䔱稈Ȗ擴炂∖àꃀݲ梡蔠ᒘꈐⅸ倆Ӓ䂄×員Y䋑䔈钨―㐬ąᫀ�ف貣S乑舕㒸̕泀㩢죅ӗఢ౮蘧曘愕乄愉⟸젅)烃ै㊐舚落눉┴톅ೖ삆ฦꂀč柰耀墘좂C糐㢃荖跐ࢇ蕪ᡨꀁ蘟劰腁删ᢃĥ�䢃ȣᮠꠃȎ㷨ࠁՁ壐悁х珀䂁荢弈₇萇洰䠆茎҈�⽸⢃萺䥸䠀萰䚨ᢃS䒸종脼䦀蘣䖋堀蜌砃̪✐倆耼疐킆ԋ䍈順�枸ࠃՎర퀄=ϐ邃ب⾨䠁ܗ冀ࢅ蔣瀀倂脁几ࠀ葖₈աṈ㢇蘀仐�㖰㢇耹沨葛縰颇̂㮨邃茷玐낇蝶Ộ逇蝮眐 虝䖀㢅艭儸老̇奐㢃ՙወꢄ脗㿐킀)ૈ_杨䢁蔣倇ؚ慈᠁̈泘낂腺箈삇ȌĈႁ老Ԉ�昀㢁蝲涀㢄͘癸傀耙䁠袆Գ쇫邁蝌到ܘ°ꮂ虆ᡸࢆ蝼䷰ ͏秐砂艢ኘؗ哀悈Ĩ惨标Ŋΐ䢇ٮဆ蔻㡈逄ѳ⼐젃聘峐ࠅ舆䝸葳᮰렁虱㥈䠅ܒ稨嬁蚻㈐䢂ؽဠꂇ腼˨栄虉厈뢆Ԋ俈쨂耏ِ碅蘂侀蘋䉜瀅脧��艬愀〄Ē睈萦櫠ꢂݵ⽠삂ā瓈肀虉䛘耇脝Ა考蘶᰼ࢃ#怈뢂ѓ䇈耇Պ⃐氁μ뼜ꂂ萈Ẹ킄艁ި怅̓廠�㸸䢆܈㟳킃|䓸悄蘁椰怂聜碀蔡ᅀ뢅ɐ⨠뢆̦尘ꀅ耚⺐蠅Կ㘸蠆蜏ဇԣ崘ꃉŉ猠킃هဘⰃ荐瀨ᢁ͍奠�筘Ѧ㖠렅Ȉ㨰ࢅՒ㯠境у盈ࢁ舡ᖸ좇"ᣰ梇jᾘ倀ȩ㊐耆ح怐�腇晰�ё㜐䠅艌Ę젅ͭ䳀⢁ٵ䟐怂Ĺ拐ႆ蜶常ꂂ懨倅〟Ⲙ袆蘅䐸퀁茢氠⠀荢嘐�蝳Ⳡ肃荓ᗘ虶ጠࢇ脷怘瀅ɨ䙠蕆翀�T帨䂁艶稐ꀂݞ又梇~節傆ę猀者蔢瓰蝄༨꠆ͱ◠ဆ伾ᛘ�荧ᚈ砄ػ甚炆ъ࿐堊蔶䮈⢁�Ỉဂ茼킂م㟵怆蜤ၰ傄ũ㊠肄蔙⍰�䥐ゃЫ习�⏐͟ወက蘣ⴰ좂蘁浈퀄蘽媰뀅3䗨⠃葹㸰袁蔷祀ρ◰젘而0䢄ţ䄐邅pߐ�㮰낆͆帘邀'涘堆
畀倄ȯ㈰좆脙晐ﲃ胋缨炅ͭᅠ墀般猘壨ꂁ蜷┻蔹⇠袃虲㋀ؒ↨⠁航幰㠂蜠Ṹਇ茋ᗠ�щŘ蔑獸䢣荹㪠�⌰�@⅐怆F竀䂆脉ֈ怆茠ᰀ蠄蕐䫠̽ᆠ怄舊噘�簠悃舀㢐頂տኘ墀Ȑ㮢态ѡð倁腼敨傃мӰ傆蘌秨㢀葭ਐ삇ё沐逇�㻸悄�䟸�❘邇,⢠ᢇ蝅匘ࢅŃ澐袂脱䓐碀脶媀삃Ћİ颂艸黼ᶄڃ㋐�ż开 Ĩ【�㇘퀂荙ॐ좄蘛䋠뀀艅湸項腰夠စ良䟐悁葓洐䂇͢╠좆㉆⿈梃荸䞐ࠀ耏垰좂蔋鵻�蕘㎠⢂ݡ㏰ 耾ឨ肅Ğ㶈堁Ĺ妐₀ȟ摀㢀茔巈邂թ締Đ㌈뢂荷㪘炅蕍ᓘ码؎窸聼結뀃色䓨 蕅滘〄Մ㵰倃舽傰�⩨ݒⓨݩ旰묇̎ ထш稸ꢇ茰囨傇ݺ墸䀆ٯᇠ�ﵝԣ灨蕥⪨蔯塀頄葝鳘蠆ő項艃笨ࠃ荈⳨ 聿젂荻夰ꢅ٣㱰렄ݼⱘ퀄葟䪐좃腠喸렀號좁ɴ孰ɫ懨�ᨸ⢀腾篠낃蕟㉐킃Ȼ㥘蠆Ͷ⼀�壨䀂脟楠鰅չߘ炅艦眨堆ȓẈ炅蕧诱렁蝰ڈ᠃{在�ረ舠⾰⢀ͭ䃨梂蘗䯈梃ؿỰ炇ݶ㣰耆荼㿈뢇蝪棰袇䨰�瓸⢄̹烨碁虇翸삇虱圈邇ѧ結�慨㢇͏㣠䀃蔝杨쁘蝓ʨ؞Ј瀁脧᭰䢇营眸 艖䛸蘳犈萳䷘肇蝛纨䠃茉寸䂇蜛㛸뀅舛盐碃ح㭨�粠蔌㟠뢁蘛䷐ݘᄰ�䲸�Ͱ瘨�朘᠇ȯ䠂耷倘�舷Ⳉႃx淸墄蘣䪸�嚰颅晫罠怭㘰葿ᝈやɶ桨堇虢䟨ႅͺ磘ꠅ؎㸠뀁蔹ը⢂蜎♀耀Ű䐨ź怀₃葮碀栄蕄㫘蔂ꮪ㬰葏坨�ݢ͙瀀蘀῀ᢂٞ拈킂譵⮨�ை뀆聂ᡠ葐┨ꢂꀳ恠킇聗筸뀇萇筸좁腥殰㢆腏椀�⎸렆H眘ጃ莭Ṩ肳茺媨炄Վ㠁艳乸逇蜺恐頀ݗ℠렆舜挀蘯Ộ좁̼峘⠀y妸䠃}倀炁М㡀뢀葨ਨ衢݂嶀�晹畸茱孨㠃Ň祀壧̔᷈ꂂ�㷐ࠂ舙䅰ဇ茒⊸蠆蜫揘�眸䂀荖Ⓒ蜌⚬⠀ 䗠�脦團ࠃ蜓㟠ꂁɒ熸瀃聈㕀ႄ萵䀘〃蜾ࠐ悅蔳廠ꂃ蕎憈삃ᙐ砞耤뀇艬న�荊券�Ṡٚ㖘傇脖最ꪄ茑Ҙ䀆聊⤀頂艆萈俈ᡖ̙㞠悃ݿ節䀇腦⽰炢艞緘�笸䂀ȹ៰梁萜楘㠇般劰뢃蜣珘倅ݺР蝇ᓨ뀁ԙ、Т囸⢁ݝᲐꢄص欘킂ܵ嵎墅荻緘碅ĝ缸킃荛峸�㻺뢄ľ拐䠆葅ᛠ딇臙䂨₄ܢ䄰茒⁐㌃ך㍘䢇ɛ剉怃萿撶項8夐炁腄恰Վ叀᠁�⢠ၒѦ⌈᠂̤搠�荢䫰्־耂Ł昈肃营䛀堂Ѯ抸.刈䂂Ԇ燐䢂Ũጸ耀m磈逆Բ兀倀聖ⴘ瀁蘈܍逅艙䊠倅茶恀ꃟА寘䠅ȑр還Ļ➠堾耲椸뀂Ƞ簠킄ܟῐࠇѕ勰ࢅ脄璨萏秸뀂蜢闍栃蘄樀䀇ܜ捰뢂>ᖸ耂ɸ礈⠆葝梐䠅ķ磰䠀̯丨梀՜䵀⢀Џ䐈င蘥Ᏸ저Ԭ䂸碁Չ좆聽㻘倁舷쀆Ցⳗ袀荢⾰退܌Ằ�㈈뀁^咨肇ńㆀゃв慨鈁曐蕋䒰邀ٟཐ䂁@࠸�ȉ㒰者耊⾀倁虫㬘뀃蜑ஐ⠀ඒခ聜ࣘ킇耺勐胗㡐荍熘䂃ع䟐킅蜭猨Ѕ冠좂蜊删砀س⍨瀄葢Აက荞䬨䀆䰨ʈ蚥鲫㚍栘銈鈍┛嬂⻀ୟ蚚되趀≫쫁ꯄ⣠笯솰ᚣ擢ﴈ㜍若帜ᰂꜩⵙ賄ὓ؛臡櫵㒅䠜㇂ᖠⲰ̂惋␠嬭蔪ℋ鱱诨뵻蝉㨦ᘠ㐙妗쐈臺衰鈇ꈍ䪡ີั踜錢╂㔈豘ඍ胅쉽ގ倁ါㄘᜒ��蒸┆䁓㰊㴟솀凷ᐭ䏴蜀錅泩ᓌ逮섒鈳幡婅蕭蜼贴ࣃ䱜㊗풷啎䲂ꋤ虂调偂䩘⾹鴃暋㭀ꅳ蝓၃蘹ቺ隅͋ꐺ䪔둰⅐浦ඁ햊낳ѨἘ뚀蹻褁ₑ닀أ蠦䌺Ԁ码ᝬ솇㝴望陀懁䈦䖂Ⲉ酔줇䶸萄�般准�艵惀⠐�Ȱ蜳楀濐┛뚰赅ᣅ櫢造ଙ֔┎�삠约范⪰蕆%挌�᠘赜Æጊ枂襆뇢㛼怑㫀쀠Њڋ恘阸傁⛀棸騒셃ᚾ䪙ᙸŇᰠ∏ೈᴱ⧀炌ꎃ虸謗䂄䬔䌆㓲ሐ끣塪茙嫸蜰邀⢂望丐領墢䏬撙鰠새烲怖鰨萢ꀤ礚⒚腑Ⴢ㥴씗蓹舦奢𢡄鸿還㛴ꆅ劐鴳餔㔌⒒鐈鉎奠䊨繸ě㣀⭠ꛡ蔴瀃⪜萋倈蔋젥攕ٙ᱇瀀Ꞇ㑹Ὢއഷ灂剦퉸ࡺ탤Ḗꖞ홀齟燣曬驕釃⥒䐈肘虳ጄ䘇⑱蘐聧㽌예낐険祇▲悇堉蹪磦⫔䖁と萀梄㿲䀔ꋉ℁啦䂋蘕ꇀ竖昊ё魎᥇燴䒗昙訢偤ᘨ抂虽倠⿄戍ᰰ鬙偦Ḳ逷롃脋겡脭뇆傦ꊑⱈᴙ颃廮➟赳燥瑜ಈἝ驪߈娉镖㦅缲ꄌ좩ᴕᤇ㪢乹.졅൮ʍᘘܬ兀ࡶ鐀驉㥇㍄₀調脭ᥡЀ䌋㻨ോᇁ⸺昗ᔨ᧔꤇㢰䚎顨蘐僤杆숎㶀悀Ṡ뀅ǂⰣԟ邐䐐饰⌒桴�Ϫࢀ簡豆豠Ԝ⊸⌐䴨Ƈೄႄᨅ⣣耰𢡄䔺반舂⋰倄୲죄ಃⰃ఼纐쌚�ന内Ⓘ퀀ᳲⰂ謦ﺰԬ袘쀖劄쀊⇾Ꮡ谂ึ금섺瘀숕煘낆ᐼ⠅ቐ磡葢쀆Ō뀅ाࡇṙꒂఫ૰䜾ℕ厄ㄉᡦ삄њ邃萕瓡脣ꈆ㐜焀㡘⁀逡萄ę顨̂曼㛂瀁걡腫벰씄計碼㌐颅ஂb腒樀唉Ő戅冄㭢ೖ됂œ㨰쐸붐ȅ䕀쀉㼤聁ऐ䣀聿죰쐪耙䘜삋शᡖೡ譭貱쀍벸愘剀霌ῲ蠆᳁꣠ɱ尰ș㨰ℇ䮔ᷰ졅ૻ챁荻ⓐ숧㞐ཬ冊㒖�ᑁɬ칑脉넨ȝ窴�룂ቀ褊�脆莠ꌌঔ⮺₄಼쐣౨ᩀ茺啸愒䀘傃ᱦ裁ĉめാ싁蜓돀䄍枀悊จ情ฆ贒䢁蘆擀䈉燀ᒎჄꪽ�㻱䋀섘䮔�ご�នಡř�㣀怃䄼뀎ࢦ쁆탣赜홱䘟碈茊䙰퀇㯼砂ᰳ呀踱蠠숩勀愌䶸怍ᕦෳ鑀́誨舐ﻠ̔䷤낌ᰊ逃ԋೣॲҡ茦馐ꌅ⚸憊⭬ኂ鑀荒컰耒ᅰঔ郇ᢗਧ점Ԃࡐ́䶔儅Ժ桅ᡕ�囀ȓ뽈戎ā⌬䃃စ壂ࡏ�╈ꌌ侰စ⦘⢇᧼ꡂգف̕㒨而⭔悊᧪裄ݩ琡踔ແ쀧સȚნᄋ◾棃Ẵ푢譳ᐁ̰㽸瞨넂㕐胅ᑹ뒁蕹ꢑ䌍᪨숆ₔ憂㑦룁ᇨ墂Уᙀ舭妠愌径鄍↰ᢂᵄﱀ๛퉐蘯ᢠą果섌⡂㢂ә炣എ蘥蒨∁欬るⳆ쁀Є쳁Iḑ蜑옸䌜直者Řࢄ᯽䐠Հ츱䘎럐ⱘ冋㣆ა좀轹䈈텘⌂巸ໄ䠂྾㰠襉ᘀ䄟ᮨ愕ᶼ瀅㖶やᰓ쓃贒슱쀔⌁㬈솉Վ䱂褋䐙그脋㍨놂㾼墆û屢輼Р萍�℆䍼ↄ㦸 ១黠֎ಂ茧ꈛ㝰ᆏ㐺Ᏸ撡荫䐡䐗鼐Ēᚔ肂ڴ壇᪥ᢀ襁癡옖錸䄁纤㌆Ẍࡇෛ〠輛왰쌺饰섗群ꂇə遠чﹸ윞뻠䀚痸놏༄큇ඝ褹䊁�鐘怉奠儊↶뢅ƙ찂Ѣ柁쒲䒀䮠醂ⅴ惄ᰠﱃ耢뢁䀂ꐰꌖী䆆ჲ㠅০呢ȃ鰀Ԁ踌ė桨脊নゃᜧ鲃詄恠쀳웠奔䀋㐨⢄ᒲ糣Д噀舻럨섃独炊᳒邅ᡏ좁ͫ倡Ԁ虘舆惴ꆊ⸌큇Ɔ璃ȅ瀡茑曀Ș⻄℅⬘匄ᾢ恃ฮ撑舶㰐茁殴儈ˎ॔ᒃ葒灑쀂蝀茗楤фÃᨣ㡢襬嫐섇۰순ุႉᳲ샂ࡎ逢ŵ呀Љꙸꌁ睴䄎ʆ፫㢃ů茆될�ম码意ᙡ䄜པ졠愋Ნ退愑̨ᚠ耛ᱮ鱁⃮Ǫ⪀�ὒ䊇ాڠℇ⺁耏盠쀞穀脆ᜪﰡ䄅ᰒЀ䄆ᭆ䑡쀐ڴᱡꀘȨઠ“৬ꒁ愂ᶒɶ蓡ᢾ悀ℐƼ쓁쀋ཐ풡䄔ൂ눠̎ꀑᆢ㺠䀈Ѡʁ耜Ⴆ둡쀊ᘢʠꀒᜊ䀀ៜ簡愞᨞꒨愝τ∀䀆៶㢁쀒ݘᎴ䱁怇ǼꘁĔല멡Ćਪﱡܔ깁‘⅒᷎㫁ꄝጔኡ愎಄낁ꄈ᙮죀䀓Ӭ绁홡ᶀ隁耗ῤ㰁쀌ხ䲀愋ت峠怎ᚔ⒠℃ᓬ傠ⳡ윛ݨᘀ耞ު젡ꀓᡶ仠t仠怟ណ习�적섂᥆ɠ耔ᕶ롡愞⋰ਡ쀝ຜ밁�܈氠ꄋຜ죡ꀕᵈ芁„᠔ꉠ섆ϜĒ͖䀐箆‟া䫁愁ᑾ䣡쀎௨몠ꄕꑁ怎ᴦꃠ脍०ꩁėܴ雀ꄙጪ됡怏Ẳ♡‑ᆺ큁ℌዤ穀ᙼ⛀耑ʀ廡ꀖἴ쀖湠 ཨ혡섙ర˥ʹ䉠�ಆᣀꄙ͈ఠਠ뺠ꄕᾤṒ℟Ţ똁ℊῬ撠愊ቬ�ϔ鳁䄚ᑦ雁ℓ߶鲀쀕ᦪ胁䄝ᦜ뱡怛Ớเ섋ָ怍ၬ銠ᄴ撀Һ哀愖ᵘ蛠䄊ຊ葁ࣂڀ�ಲہ䀎⤡∁બ舠ꄛᘘ桠ă蠪ꘀỨ陀䀝梠脊ᯊ両脌ਨꙀ脓穒퐠ᴚ㉡䀗"䀇ᗆ퓠脂০℀ಪʠ―˘ꓠȪ깠�ᯬ㈀耋ᱢ癁耎᭜塀ᛠ愞Ĭ軀䁻᳂둁ꀒှ쀠쀈ʌ溡䀁ℐܸ⨀愁ļᒠ愛ᛢ㡀逝ܞ멀䀙ᢨ意ਫ਼籡쇪Ȑ映ᖐ㈁ℓꁀ ῾กꀕὤᱡꀂ૾⻀怐๔ڡℍᵨ幡�ਈꠡ䀚ᐨꩁ䀉ຠᕠ혁䀆ዸﱁ섙̎ﰀ�ᗐ㓁ϐ阡Ⅳڜ찁ℒΜꃁ䀚ూੀ脈ᆜ⻁℆ᗆ걀者Ծ㈠ࡪ푡䄟ࡖỬ䑠ƈᛁ䀍࣌ℓތﻀĚ찡 ᗦ贈䀏Ỏ﯀脪ᧄ�̞ﳀ�¼┗Ḥ耀 Ⴂꄅ怔ք窀耘ጨ怊Ἠ軠䄍࠘鱀耙8倡ćৼ囡ꀛᛜ㻎⨞ᴞ᪡ᩚđỾ晲⤟᰾泠쀇Ṳ︠䄛Ლ쳁ň盡ℚް닡㌋ஊή∁쀄ಘ눡脓飡�ᚰ岀Ęᧆⲡ怕၈ꘁ�ຜᑁℓẂ탁䀊᷸ḁĘѦ裡ℝ᪒�℘ڒအ愚ᢜ숡섛Ỗ廡쀞舡ďऔ愘ᷴ突ꄇỸ쀡ᴔ䙠ꄌǾꙠ脘à者ᑴﳠ怑ᡪᘮ軠ް感Ỽꨀ ɘ岡耝॔뫏 壠�ᚌ�൘粠愅ເ䄈Ϫ纁愛ᮺ湠䄄Ộ⨀䀃Ἦበ섋᠌ꪀ耓ॖ뚡䄝᙮᠀怘ᕔ㘁怓զ�ຢࠠꄃ〷陀ਖ袡脄ᗔ視ꄗম㫀耊郀ꄕ᭢꣡䀝ૈ桀愈ߢ숁ꀉᙘ⡡́གꀄݐȁĊฎ而ኄむ쀂༾ﳡ䀌ʪﳀꄀദ瀀쀛໐裡ꀅϮ�Ĝ䡀愓ᢞۀ䄒ج軡䀑๐㒁䀓ኈ긡怕આ䂀l蒁Ĉຮ㢡ďࡄ몀ĝܼ샀ꀋꙠ‗ᅦ슁ě@ᡀ亁쀈Ő籁怖机섞ྺ멁䄝ᄀぁ耔黠䄛᪺廡 ⠀ꄁᜤ谠脆ᑠꨡ၎䀘ꄄҢ退섕Җ㘠Ĕኺ됁℃ˠ堁腲ф츂�㢀ᣂ咁‐౬䘁怕Ð타脒艅ʡ፰暡�ጆメ耉˪Ⱑ ࡖム䀄ന愎ࠌڡ怊ᢼ鹿慲ሐ䉁䄟ᾄ�쀂Ų軡耟Ⴀ℘ै홁䄊ݪꡁ耖ຄ쀠脘Ԩ쨀耚ὤ똡ĘŤ⊁ݬ撁脈ᦠąไ灠౦爠䄖ᠪ䠁ꀓ፲ꄀؒڡĀѸṂ ᄌ摁愞᠒嘡ƀ변ꀎᆦ㣠頒ᒐꁀℂᕈ桀脙ሀЀ‖Ф劀℀ၞႀ脝֜쪡脈ᱦ壁섚Ȟ䃀挝ט胠䀜ᕚṀ‗㓡쀉न繠 뫕踀ꀛੈɁ䄚Ỳ죁ᓺ鱡߶�쀃৪裀�ʐ頠脂༄喠䅮Ǧ鈡ꀋᬚ䌗ἠಠ怉᷒ೠ怋ᆾ횁သ㻀ʆ䯡ꄽሢꉡℊḤ脜蚌℉ᶨꋡꄝӴ￡ᨤ㉡耋ା�ߢ耚ᅊ璡ꀂᘸ瑁ĕ੬帡脄።벡쀙ᝊ娀愎်陡㪡”ᚸ䫡怗ֆ婀耜κ걀ꄒ ꄔ᎐ೠ쀕ὖ䨡脄ᥐ绡脀ධ、䀈㹜ɠ愁ኄ媁ꀅ࿀瀡ꅷⳀ怖ᛮℝൠ鹡脗ᜄ쀀쀃렬仠脊پ瓁愍ཪ䉀쀔ዼአĜංﺀᾔ︁ᐎ䄐ꛠ섌糠ꄍೢ铡섟ﻀ愘ݾ훀삱쨁椞Ἶ쳡映>ﺡຎ萁ꄆ۔䄒რⲥೊ칸ᴐ縁耜ᨒ︠䟔捧皁耛ἀꀓ˞柠ƌ᠄쀙ᱶḠ�ᙾ㫡섗ְ鹁ℋ@艡࿐䓡耂ਜ鐀솤ᦾ磀ꀐæ뢠ꀗ൚諠쀁ᮚ⊡愀ᰠᰀᶶ١ᔼ쪡Ṓ⑀�僡ꄏာ슀ꀉӄ㣁쀀Ӱ쀹ᗎ둁䀆Ḗ础℗ᖊ諀怟ጮ蒀쀇ቌ粡�ଊ倠ꀆ캀њꃀ怟ὄ검愁ᷔ穡Ċƨ筈ꀪீ먁―โ쀀ែ氡愀Ẉ–ފ뻀脂ᳲࡠ耆Ǣ틠䄆ႈ�舁脋Ԋღ퓀Ʀ䂠čᙺ䄂Ԥ猪섐໒暀耚ᬈჁ䄃ǘ峠ےℙἴ�ៈ쐁ꀄ෮ੁࡨ麠℆ଦ멠쀛ᥰ搀愅�聁쀜晀ᡆก脈x訡䀏ᓊ︀怌ἂࣀ℄ᕜꎡॠ倐ᠦ鑡䀘碋왠쀚ᄚァꀎ˼賁耋Ǌ⛀㸗ഖᑁᰨ㣭–Ȓ鉀�뫁ல쳀쀄၌⒀쀀Ķр耍ᄶ틡䀘๘隠쀉ς든耞ᓜ࣡”᭪钠�θ塡쀖ƈ࣠䀄݀䀀Ē먠䄀ᨎ㛁䀚ೢࢡ૮ᒀ而൘렡ꄓʠ廠Ğ࠙䀆ឤ䲁섈ढ섉ප녠䆵ٲ躠ऒ쨠脑τáĄᕂ衠愋æ﹠ė᪬큀怖ᢴ벀Ėጂ暠脋ᕸ﨡‘숀−พÐ怚Ỹ蹁Ȁ怞Ὢ躡ᛮჀ섏ࣺ빡ꄌږ䄆ᆦ�䏑쌂ꃬ톸턔ሂ侍ࣳ埣餄홢ⰰ䀖鄥藕퀒庤碜ิ핅冣ﹴ㍘歗充憎櫟辑ၢ臱ﮊ꥟擓�淿�ﰎ陟薏숷ﻁ䚻킳覺绮ᙟ湆뉰擁Ⰷ贩끳帮⩕譳顥坖춼痏촢㽯榗ဴ뛵܈傣䲁ᱮ鉆곃⌂席㿶ྷ뇜蘝⨚ᤑ꺹㞦�⏅짋ᇦ訯舵肘✟֡푃ヂ䟒∮欟᪵渌⎻킿秠켆༹亘舣䚁֎邒蓫鍻䞇�௯䮤b跳ᤍꈣ왵滦䬁ݠ�꠷菄䘈䊨霷ㆀ䡲撝仉മ�㷒枞鵧쥅㝼膉氱餝ㅡ⇒掅郉詻⥠膔뺉ĥ恦莋踍驪 ꖙ䡐譛臄倘▅ډ頝奡௰薂Ⳡइ燎仦䆁蠀酆楣洼ꔍ晈ཟ링棔勰ጧ焅ᇢ씝舘ᅃ�걹鹙馢Ḝ膄㱀蔓ã彾斘샑ᅿã⁸䀏⻡蹏磠庾슛౼恦ᜠؚꊈᠺ䦄撈昋频鹲壢湨ԍ몙耻磤垦؏∘ᅤ鄀ꆘ䑸ᐰ탡ᣬ戎噱ችê䎌萙ጻ恄ᴺ䐁怈茈䄡秼 荒團⒔웙Ḩ㌂┐硱錅ㆀ➔⎛툸蝦䘘숎ࣈ蕨⁅倨檙鹐奠ʼꀗ騶堤䶴抓Ὣ�⒆㒹ॄⳬꘋ먱酇ᣣ定슚䃡⥧䷒Έ㈀᭟쀦剮★Н㣧Ũ㋉茖姅ٖ䄋ᢘ霻嵐ຊ蔷岀वꥣ䱊ꈏ๐蜭녠᪰茅㲨鰮耆爭䘝鑕쥢甘莒ࣰ踲怒囸ꊟダ謼ࣁ疪蘉ꐐݝꥠ偬耋⻠蘐Ⳓԛ嚀鐜뇠ȸ蚘횙०覠愍᪑ᙦ넁ڬ✉퐈ဴš泺̂㪸ᘋ톢嬬뻨谷叨ᠣ壂慜䖂谠㢧伜↟찈탄쐑〡ቡ夡↠⒔⒉ၧメ⠆؇灹ݟ灂䛊䔅黠萩�↋䫑郁պ蠻김숓석妠⠖ჄŰ䠡耧葠䄜㡨ꌏⱬꆈἌ쁆ᵄ桡యࡁ䌈毸挅ᕬ倇ྎࣅᚋ퓀荬늁䜹⼨숞穈ょ㧜恒ḗ桁謟ಁȞ邨愀甀透ْᇣ踓⣡䜉뼈汄䀇ࡐꡄɌ㢀荱ᢐ脤븠䄚旄愆Ჰ죀ᵘ쀀Х졑蘬⍸戎➼낋⛜뀂ࢅ쀠Ƚ鰐脻ᆐ̋㕈❢�团✇䈋戠⌜櫔傊ࠇᙄ좀͑⪀Ȥ⠀脆ͤ쀂⒄죀袠葸峀䀻习ďᰘĊ㺌塆䰀豊䔗䕘舂⟈冉㢆ṵ輵Ƞ옢皰茈�Ƃ〨ꡄᙂ�द晁쀣脍檸ㄊݦ ࿅豠ɜ帰脺ꌖ䷜퀀ᐪ瀂ᝌُﲡ耫鈐舜屌턅୪衅惃ͫ㰀옙Ꮠꈞ⭨�㾒ግ碠脜Ҡ윍紈섋筨섋⪜퀇យꃃ㈁耤鷰℟ឬ䂃ᅾ塆ᅼ찢蘭郀Ė㑐䜒㓨ꆏ♪ゅࢉ怢猐으传䈇٤⼺Ⳁ茚ᆸ耔㙜쀀୬聇Ή죢॰䘡脁Ὸꀅᬤ态⋖ ᣋ呁ђ鰀Ԫꌨȉ籘耊ወ낀഼瀣ĕ汁䔭ᇰ耓쟈悁ⷌ낄ᙦꀁࠌ䘓䰀戛≌耈㩄倁Ϝ胣茪蓠脯谸
悤脊�悃ɷ䑢Ֆ袱,䷠䄒乄ꀀᖾ죅᱉糡т庱茷솰愉憇ᔢ朹큣贸ḁ씳ꑈ老㻐憅┦⡂ƀⱢ轠皀舋ğ䴬悀Ȉ頂ߤ袃茇ⓐ舱笠̊篬퀏㘠ᡀ༂졁Р惁耆ꢘℳ暼膈ᚄ렁ᦁ갂譁☀蔼㚨⌌濰ꂁᑰᐰ␁色騁䐚蚐ꀃℬ툈ㇲ뢄ᡥ䓃腞鑑씧ʐ⌁撐ꄇ⎰ᣄĞ퓂ഠ飑숈쑀ꀖ攠焀ᱮ֡밁茶瀰䘸⭸ἠ턆₆ភ�ꓱ̭Ě�怂ᔄ僂ń벢ࠀ墁ܤ킠ꈂ篔뀁㈚壁ဣః踏 䜰본Āː瀈㰂Ӥ裏ќ㊁<꿘쁢�౾킂ዿ摀̙顰=鍨䈛⯈
⋎䡂ᔲ籁葅Ӂ䘤ॸ脒⽴怆㽖砃͵襋狡Ȋ�섅ꄃ⍆頄ࡼ䉞䌕夘ꌈ杁愅ㅄ젂ല栂蠚詐蘐仐愈নႃ㭆耄ẟ蠎ё섺曐쀌幸킀ࠞ週没謆鉐स�ȅ妬ㄅ㘠ᣄব肢ూ盠䌕ධ섗䄴ᯤ⡂ᜥ낡舰뛐艛㗈쀈⬌ᄍܴű둁葟蘀쐲僈–�⠬�荬舐Ԥ冰윕ⱀ쀆㹔ꠀﰂ̃䂠䔭볘ꈇ䛘�㫸㢃ס氀骰ж老ἴ✸ᅐᓂȣ땰섓匄䆃⾤ႇӨ끀脼舴ℐᛴ耈ℬ蠄ੴ绀쁱벨舑愬䄍ì㶀ᴄ㲃局�鹈┛唔℉�㒡ओ賐숣癸笸�⟚ܻꒂ舜퉐쀍䄐䄍僨怂炃ጶ푡ଞ㪠ԓ변水ܖĎ�谯ԭ蔰耇⍤턅㸐炄ՠᗸむѯ௰쀁ń䉸ػ0墀舳 荠僘悆ꅡ㾘ႀGፈԽ澸ႃ艳ﱋ梁荦夨袀舝甈傆7⽈ꂄݥ晀뀄Ёㆨࢄ̨䪰ゅ艛㯀䂇荈傐脇Ꮠ䀄菷窘삇ͭ㩘耂ěὀ蠁脍र�楘䀀耆ᯨ�͚Ⲱ젆蕇嘨ゃԒᖐ삆ȼ㵀梄艨暀ꂆ蔓你砀聵⚀زψ쀂ͣ⢰耂聮炰〇Ş䑈順ѱ楸怇蔐֠预
墀�؝᠀䂆耐〬뢁蔴젂舫ጰ ܴ篈ĸ哈퀂耇䐘ょ؛⑰ࠂ艫搀⠂蔏㢨ࢳvᆨᨂ蔉籠�የꢁ蔬䑰ႇ虜ѨꀣȬ惰やا礘䂃Єจ梇聯ঀꂂ葱撈邂荴㹀逇虆盈ႆļ䋈ᢂَ㊈堄!樴䢃̋ᖰ颅ĺ汈瀇كຐ萗桰䢁蜷㆐墄䙧缠ࠂݚ䮸�⓰렇ɡቸ怃蔔ન聿⽰젂h२ ɗ着�舙忨倁b砘ꂀ萾寰栃聹噠ż렲袇蝁ᮀ�耉䳘者聸Ո�ඨ퀅Щ绠舆ᵨ栂荨琨肀蔱⦐퀃艎憀砄聃ᘐ榃蝑㓨�蕞궄袡0٨렂И眰ࢂȗ毘逄蕅ᾀႆ葮㵠쀂ܓ㢨、̫猰က荹缀뀇艪װ堅茷㤈傇腦⢃Ɉ矠む萪碈쀻.懀葈ᡘ䠀舢媐ꂄԩ摐ࢁ؇㤰耄脩䳀Ȍ䗰쪅芠 逇葞ᦐ頂ٻఈ䠁聈捨ょ脖�ݶ㙠쪆Ȭ堘倃Їꀅـᓀ₁Խא蠁+睐墂زϠᦀڻ㙐 ȑ㮐袇萚ʠ傆艔熸瀁荀㯰⠄Ž࿐킃ȟḨ堆ť嗠낂⍷ര栆萮璠舷⧈Ⱀŋຘ耦ᚐ좀葕纐₄艗送艢ᇈꠇД⋨`ᢂħ⻰ũ়ꂁɼ➨⢢脅൨砃聲䉨�碅船៨栀聪ゐ䢀Վ乐ࢆɡ᧘낃١牠ഛẀ悆腂㫀㢇ͦᰀ袄艡⪐좀蕤ư倁艾湠堅̹㉈ꢀ;捈ꀅݕ⤐ɹಘ墄腕⺰茮嚈蠁虍⤀〄ԡ歰怅耫䝨虭㶐뀃脒ᝠ㢃蜩慈蕬您렀茖ᡈ�硈栌Ք㙐ꀀ荓斠堇葕㵈�茹⸠　葲Ũ�蔣ࣈ怅茉Ḉ還ў㦐炁ս璸怄蔞㔐袀葞秐蘜㿈颇ݷ瞨䠆ɟ₂蝽儸뢇蜽締袃荾䮸좂葋沸ᢁ蔸⅘⠄՚㑨뢄聼估傁륖㉀碅ԫ榈좇蝰桨墇虮⬘�坰傄蜍台碂茭㮨뢂蝅團낄Ն擸ᢁ蔁Ҹ젆Ŋ坠䀃ɡ≨ᢇ̉䘰聀䩘梃脤ẘဂ聩㊰䀅舫ꢁ舫疸胂$榠�㓈ꂁ蕣ጐ愤苶㤐蘹ࡸꢁ萑曈䠄虒Ơ㠄葟繀悄蜐�頄脹⌐ᢄ丱嬨렃̙൰颅葅秨ࠇĘ妈݃劐ꢄ葃Ა�
Ⴠꀅѳ㥠悄ؠ㠐⢇ъ惀စ왃樈怇蜀媘栆ū嗀ࢄ͢肀葈⼘좀腚塠境ݟΰ₀Ť◘桛ݏꠄŋ㏠龜艧ຐ厅ξ羈⢁Շ瓀⢀虀寰낁ɵᣜ耆蝆⦐ؓ搰䠄艬⾀⠃虓檰젂職☀肀蘪樨₆ؗ地ꬁßྈ䢅ً數䠃茎ᴐ㠂ь暰肁ݙ墆ܝ瘸ꀁ씹ᤨ倆脪丨傅脲丸낄ر㩘�萁䈘邅ٴ睨栃٘�Ɒ͍䨰栁聸न좂痸蜺僈ꀇ̐叀㣡pἠ좁̎梃范䉨̼搰̕ﬣ䢁넙噰᠂蘎槸者蝔㰀ᢆ蔷♨䂃蘖㱘荂ᩰ뢁耓㙨䠅虪㻈ݷ⸸낇耓㿰僈̺熀ꀀضː梅虛孨荝㲸逃ٺ㿐堃ܚ‐瀅蕾ጸ倅葿Ɉ虍沠閁䃃彠耔㽰䂅؝⤠還蘆娀ゃѿ㧨耀Ѭ婨シ虗翸逅茿ᬠ、ݭ᪐袄옴淐逆茎篠ܸ扸䠃腹竘낆艃█蟊买䢄蔈绠삷ſ▨뢃ч㷐舁垸蘰癠傄蔵ᶨ堂蘵Ⱡ렂ю撰傇蔯㺰悅舳籰ࠇْ௸悅Ⱇጅ胇擈ꨅ⚭犘삅蔖尨葐ℨ 虇ڨ삀耮ጘ境݉㪐墡Ȋ綘䀁舙挠艽ט鰇ћ䞰䠂ɱῈࢆ䴀䂂蔲㰰蠃ā燅 ́噸ћۨ⢇݂ᙐ悃腳㓐䀇؈ᙰ�萲ᘘ㢃腖Ԩ蔰⧘⠃摋ᘰ뀂윮ᛸꢀܸ卨ꀀи㪐킄ɉ嗈䢆\��ɘ虀ᖠ삃葊䎨ܩᦘ냆虸拨뢁脣ௐɍ㕈뀀لŠ젃蜬新码蜣䠸⢃茂Ȁ㢇ո❰码ش㇈ࠃټҼ젂葑䮈蠂䩟䣠⢆ݥ㑸肄耞斈š戈�Ѿᣨ墂蔌曀₃Ŋ疐렂țᡈ㢆}睐 蔖䦠墁荄㕐�樰項g≰ꀁ萃㙐ゆ蔐䣠蠆ɢ简桥蜉筘킰蔇抰预ɏ帰粀ጘ㠃聱⪰᠃Ԍ䆱䠂̄澐溁�䬨q㿠삇୕痀�㠹㢁ѥ橐ࠀ聓ࢠႄԧ寘頄脇⳻뢄ū⌀　Ž䙘還Ÿ䖐㠁蜴䷸ 舚⃠᠇耥拠邆`ᔀ납持攘레蝷恰쀅舁䫀ダՍ㾨᠄蔞Ȩ肀茁ઈↃ菣傠逇舽ਈﮀ՜᭰낅葨ⱈ老蕽ൈﬁ蛹声ꂆ們撰삄蕵洀뀂蘖縘梅聩籸やă編悅̟愨悇聱↨傄聅㾨퀀艃砘�脦耎₂蝶㒸䂀脚ト뢅ܠ䁨袀іᓈ튅Ə㭠萼俐碁Ш࠰蠰ɽ枸㠀а═⠃蜛јꢇ腣ᒈ䢀Ԕ儘�澘脩䥰䂂脎数怆ĥ㲸碃ͦ汨렂蝬⮈킁蘸㶐ꢀ܁獰뀆蔚莟ငو峐�Ԩ巈낄虑ࢨ瀀ٖ₅ؾ彨砆萷夸梃[柘⠀浘㟀쀇䱈腓㥠ħ̻瞸更蔦肂̏⥰�ᢠ젃̋̀㠄荍暀頃虨恀态ْภ㠄歋-惠꠆ͪᒐꂃݳ粸悅蝎暈ᢄ聡䪠ꢅ艰亘쀅㠭ð々�⓸ͳͨ焁聄■藴ᔘ㈄薛▸ႃ萋怐욂ʗ█堃쀴ⵈ킅葛̀悃Ěᅀ怃舋䩰耻䯰ꂅ⤕ʸ蘺ᬘ��ڈἁј㺸ᜤ䥀�茋䷨倇ś标 拘쀄耆椐�蘕Ѐꢃ耍亨킇茇嫈蠱ľ縨뢀�ௐ耀艾㨸�聝瀈젇ॵ㚰䠆Ք䳠悄� ȷ咠�蝄聀蘁푆ࡑ첎똁藊ᅅ朋䮇锥堒䤸⡑쏇嬃櫽欀冼➉픑Ꙏꉆછ䏡ꠔ䙦傒Ⴄ�쉾댧➇ᡧ˱䪗옚腁焒綞ꈥ쪅華᭝芨鷃諸뉄哶鬜䵚⢺༧⁄篑툋䊀蠃Ҹ靡ᱵ춠矂琓鲊꠹질膤࣑ň䬡僡액巬㙰╍猡과䩊岼딉짩घ霟憖骷☴絰�얘뱮Ⱍꡅ䑱✑ឹ䚁ᥰ릦ᘩ峨婚ᔣ拭ī謜齄䀊鮔Ⴉ矔픳䈆祊圖ė虉穡ʑ媉소ꁁ鰰ﵴ騾폓ﳍἲ맦悜⚜ሉ蠞셂⚰ꈗ豩茈�̆硈ᥕ裠樐퓁ᡗ큡羮蜒︸ࡹ膆夺꜑鵯놣٦⒟듹鵍㦣叚ꂝﺰၯ磆纆驪䱼芛㱹阬ꅥ၀�⺡訋ဇ燈䀅൬ꂂ䫴Θ렩錨愄ᡆ鵊턆㨼ꐉ⨨ȋ偂䅴果纉इ냣⋾掙苨ൎ煡٤⌯ὶᦥ孆삨ᴵ㑀윞똈य़疴螃籱鑬飦蒈廑靤쀆㳂搇阱鐙짃䧴뒁透퀢掸솂ᲹĘ碆䋈✒쨁ਵ샀⛼薘☠Żᣃឆ茉隐क⤣㔮冚黙ܐኢ悔��⎃灉豀Ⴇ㴤䈘⧐逛巀ꊒベጱョ叒Ԃᒈ阞ၠ⩊✐扸舿룣᭞肅밙遲�Ė悈鱱ꀁ焴수뱱ὼ☉ተ塇啂惘r쀆ᕠ䔎Р阴℅畂ꖚ샑伩燖ꌜ젰阠⣆廔萛湱Ἆ怦ጚ斀峀顬堦瓸悁뫘͚慔⒋ɘᕙ�횡ऋ⿰爰鵤饥嫠枂钙ᙴ胁⪒莐訐虏椐⎑쉈饾ࢄɖ쒍阹५臅፮ꆔ긩鹠탡Ӹ莌鰱魷やᢊ耚㫨᩹炣䟜ℎ虭磡㨸ܐἿꦠ䏚옘炘鴞ꅣ䎸ﹸĊ⯧擤䜟쀱ᵈ熄Ꮤꆋ溩ᕕ깡硐蜜쁁፸砃⋞؇璸萷瀈̈羸ꄆ㜂蠞ᣦ襱ự蜓�ꀇ㊄ꂁŜ蠀រ䲡账詑ȳ掠ͫ䓼倆の䂃শ༱ꑱ�ꂠ笠再ឮꡂׇ铣Ԧ蜙Ᾰ怟罴�Ꮺ쁄ᤊ栢腶�㻸숚曤ᣏᝒ連蕌ꐱ쀸⻈挈,鄀㐢炠ଜ鲱ܔ愆結⧒ꀂ׆⡂茍氡蘆었”ࠄ焅Ȧ䢁ὨჀę⊐ܬ婀쌔慐〃㞮㹹ుť며䘧㝐耘瑨�ବ倇ಁุ쌪屨怐㠨⍾퀃ᒓ㰂葤ᠡȹ愐䌅䪼ꄈᆦ偄ᄍҀ譁䲀蔆펀⌰ڊ䂅ᕰ䃁܌豀䌌㸰脝䳀焎ق죇ऌ䈞듡й脰怔妬ꆉզ惆ᐸ쒃Ԁ쳰䔒酰欤ᅾŇᠡ褋䓀䈟｠⌙ⷜꂏᦰẾﰡ蘙耂츸舁ᇌᆅÅᚐ갡Ũ︁䔂홨⌊ᇨ↉⿂죇ைꀀ蘤籁ܛ謸秄ꆏ┄Ჯ襔惡脗섏濬愀ᖾ젆ᢋӣ聱쏶蛸̞ȼ༲瀃㳢॰ᛰľ퀸樼낎₀쁇ந�豪戰п袘䌚㫈ᇼᣫᾹ�黱䐕샨脈开怌ᣌ샇ǧ萄퉐䌾ꓐ䄍ጜ愁㪬䣄᩺푡ਯ呱䈱봀쌁㗔킅ᑢ碅ꤑ밂Ѱ嬨세礐ꀔᎨℊὬ頇ࡉ찣踉ᚁ̽狘쌈慤⛤⠀ᑿﲂ轚�脎缸쌀Ⱈ儈ଖ聇谣蠥쐰ܑ疈耛碨䆅ᨨꠁቕ䐣蘢⨀䈚⡈ꀅ猤7༘탆ѥ炂࡛ꙁ엯뗨ꈊᚘᆎᙨჅՌ鳣虞仁쐅䟨戌䛬쀆뗅ᣮꡀ艙숑؛癀䀟矤傆㩶䠁ባ䓢虶铁舝尰̔屬쀆ດ�ꃁน瓀䀙鲠畤ᗾ䠱ꮶ撰쐷㉈挂廬ꆁ㧊鋇ᾫ荐훀숲脘䪌ᆎᅞ전頣愕��䑸ↂᦞ顁ꂀി㲑蔤埨脀㯼�᰽㱣豌䈉Ɛ∌嚬愂ᨸ䢇ὁ⒢蕺瘰䜶눐۰ႎ㿐飁ᆓѣ蘋䩱؋氐舐络Ćア䃇ᒁ䃢쳀蔽懐਼̄む⫪ꃅ6屃輲᳑脽ᠨꀉ圬č㉲僅ຓ�㒰䘝㳘怘䬄₈ⵞ袃ᎋҠꜩ쫀䄬쇐怗ව瀂ኸϣ①走‡䐼㰘 摼Ổ怂ϗꠂ걑䈝⤐숙ᴰƈ⩖ᣂ䒠腸㓡蔚호䈇堬 ⨔젃ᨱ摃ѿ骀舣ꢸ怔獬焉㖸᠁ᙓ듂Ի�耮Ὸ섀湜䆍₈뀃ᡂ沠എᨠ耬⨰∐爐�ⷐ쁆ẵ�虴똑萫夨ě祔膍㣨炂ଆﱢ詔壡삒杘 㠤섅㎨ᘱa蔸툡̆乏耄䠜놈ॼ棆ό삀蕾슑Н䣸舖�獚䡇ॾ�"鍠萱尸ᮜ鴄᥆ခ낁轄倠蘼콨⤔憂Պ怟࿃琁䈀ꖀ脊㍬삎∮렃ቅਭ쉰쀍耓τČτჇড郁虤,杻⓬憂ඞ좆ᷞꡁ赎�ꀘ盂础쀐ᓆʀ䄐̔頡耏జ灀섑ὀꚡ�˸蒡쀔Қ⠁䀜Ꮒડ䀌ϸ䰠ࠎତ캡詁 ॾ닁�⨀怂ᒼᒀ�怒ࠨ﹠䄕ດ⺁섓㓠䀀ఘ耡䄀Юᡡ�ᄊ滀䀚Ͼဠ‘ც抠怕ಊ냡ꀙ᠐뉁“᱘쫠↷Ŝ뀀䀋戀Ě䑀䄜ൠꋡꀁᆖ뛠脈Ẍ၀“ᗼ鉠섂ᘞ䈀āڊᒡêᶊ陀섎ᠪ蚁愎ɶ䩀䄍᷀ﺠ脐ᩖ첁䄎೦แ℃ᓄ냠䄖ᒲીꀎቜ≁ąะ퀠䀙ሌ툁䀉ȶ䐀Զ븀 ᣈ牡䄔ᶄ㡁ې䑁쀋ඬ鉡䄝˖愅ਖ㊡䆥Ა됀ꀁɦ칀䄍�ې陠怞़⩀䀃Ԕ溁
ࣖ�ἂ�ēஈઁ䄏ྸ�ज냡�ᥴ阠耟�ᬆ꺁ῠ塀ת磁섛ྚ瑱愄ὸ 磚¶鸠쀍뺆麡뙤 ᶢꀎᕪ㘀ꄈᆰꀊ߮育ꄕࡔခ脗ࢴ谀ꀞᔜ葁愐ၘ�ၬჁ—ᒀ瓀怍ᐠ脋ᴬრ耚ℍ⯁Ⲁ耗À섓Ꮔ늀ꀃं㰁ℜَ戠쀁Ἀ똠ବ艀怔ἲ偀思zಀ䀟ἂĖ͂ꩁ섋ހሡ樞ᒀ傡쀝ט䣀 ޚ컠愊ᰪ�ર꒠℔ၞ䒁�硁�ᄦ鲠ČѪ鑁ℇਞ뻠䄃ᶐᰄĕᬪ쨠ăཛྷ鰡ꄕ纀þ軁ꄖᤎ蓠쀇ᾊﻀ䄇ςᩑẼṡ섇㮋髁绠ᩌ뢡᭼剨፮怚ᛘ㓡脟Ⴂ﹡๎쪴ᷖ철愖ዺ䄀㸠�ᳮ῎亡䀘ᄦ昁℗ݖ�ై老愅ỨŌ㳁�ἸꀁℝᲚ빡ﲀ᩼雡ꄍᶒꫦ䀇ᎀ鴁耕ឬ䠀ᄌ�璠ℇྰ몡 绡Ͼވ嚡ꄟ໔鉠䈞¼ề—ሤኁ�ᛢ橁ꀔࠔ၁ꄛᏦ��०泡愎화鸠쀁Ჺ䙁芡聦ᦠ䓧ઠ耛ዲแĒɠ晠ꌟẀ呀脄B嘁䄅㹐䣁ꀔᳪ뻠怓ፊ麠℀ጔ呀怅ל羠愑ᚄ乁倐ᴾ㫀脃ʚꐁ䄏ᛜࠁᶀ㣁ᕮ큁‑ᥪ첁怑ᘪ晠䄟ᛢቁ䄖ಶ蓁ꀌߜ킁�ᘮȁ椌ౚ衠ᘂ各◟婡愗ᥨ郡ℝཨ爁愥ᘶ䄔ᆲ곀쀒प劀쀜N㋁ͼꡡ脅ᔊᨁꀟᘀ⃡脚ࢦ섊Ӹ⡁ꀔಚ耕ᶚ訁đശ₡℗*拠쀐ऺ僠ℏᥐℏṠ㳠ภ搠쀎諁ឲແգೀ쀂౸㠀耉ᭂ䀊ݬ뒡䀂۔搡䄂᛬貁䄖ఔѡ섌ᡐ瑂섂ݘడ੮뢡ꀌᆞౡ愀㹀䄇脺섓ᳰ媕ꄛᒶ♠愙ᙞ١ᶾﺡĞᓼꀌᗘ킡脓᳤蒠ℛ䩪耂Ꮈ扠脂ሆ怙ར䨁쀟ͨ咠Ầ섂ఒ溁愠ᤞ炷℀ྀ䑁ꄝᓆ陁䀟ުీ샂่㊁ℕࡪ⫁ꀒ‖᭲술耆�嚠䀔ᡒ䛡섁նⳠ脍吡Ďዠℏ쉡脙ὶᓠ感嫠Зം绀ꀍོ쫶ꄘ΅鯡愽ႚ࿚㲀섞۾ࠠ䑁섅᷀빁愇ਲ⚡ĄԜꨡ䀟۰슁ę០ꄒὄa㐍᭐ᚠ考ؔ혠ꀀᵨ虠픝ȊĆᬌ袀�Ą�ꀝႆ蓁怎Ḱ늁레ᢚḀא裁℉��༴ᙀ�Ѯ혁ℂᦈ⢁䄞ᄎ仠ęᾄ퐀�Ꮔ䁡ᾎ愝ᙼ뻠脌ᤲⰀ脞ʰ첡ឪꐁ쀟ਗ਼�ຐ서ࣤꡡ怑ﱰ娀愐ὼ②脄ὺ䪀쐑߀頁䄒٠캡ꀄା䘠섕ὢ�鉠ᡞ抠脅啔⺠ꄐࣘᡡሐ习Ⰾᤊ蒁쀀ᕖ屠섁㠸誷䄖癡Ǆས䃀䀔ᢄ渠脁ᅬ鸡ꀐᘎ�ᩢ뫡ჲ쉠℔ᒔ㑀ℒἐᡀ�ˆﱶꀍᄌ︀�ᗦႠ쬉ᚺꘀℛᨸ㲠ꄚŐ雡ℛྶ梠怓ᡶ灡怀退䀜ᶆ࣡脗Â�˲蘡ঠ섽�脑ᰠ劁愂ሺ諠ꇰǌꡠꀇϖ怗ᔢ�糀䀟ᖨ幡怑ḡąᖘ퀡�෦萡怉ኤ橠�ᠼ鲀�̸雠愆ᛰꀍᕊ﹁섚ᛸ愆ཊ⫁ꀞᘔ휡䄒몡慣햁�Ỽ쪡쀈ᎌ怜༾脉낑욡脒Ӱ꺠ꀄӂ뢠耂Ь曡䄅ᔖ똠ꀒ䈠䰐Ⱡꄄᡖ늀쀕ޒ쑡�ή᪀섘ᇖက耜ሒ摁’ᕦ볁ℂᦖ嚡耍୮겁˨⻀愐倊怜Ṕ⻁℆ࡒ삁 |됀䄛Aꄈ᠆、愕ᐈ쪀耚ᗀ鰠耝ш灀愙ย검ᵤ谀Ꮺ밁쀘ᝨ乁愘ጸ悡섛Ꮒ఼ᡠĄဦ沠Ԩ陁섙ᗼ蓡쀟谑섉ᦀ縀怕ᐒ�ὰ㊁意᯼섟쑡⨁ᾆﻁ�飁ℓ¦惈耋舳ቀ脅Ⴤ�䨠ℊݢℌ༆棡怟Ზ섅Ẕề䄎Ṯ鳀 ፞稁쓴耊ᔠກಈꋡ‗ᐶ躠쀒Ἐ칁ᄤ庠쀀ᡶ蛁쀅ƾ棥怇ԼѠ怌噲챡쀖Ŝﰊ쐔ꡱ蠁䀜ᄸ쳇’ᐠÁ�㱠�ᖼ惀䄗ఎ䪁℃�Π뫠愂Ġҡ䀂氜犁ദ瓠Ȏ煅뺡ꄆℑܶﻠ쀑ᅶ碁怘Ʀﰡꀈᓶ棡ꀐ৬ᛀꀕה�᙮栜䀘ᚌⲠ쀗ൖ신쀉ᙔ㲡ꀒᩮ쀒ᒎ仡쀈ņA怊ڶ䪠쀝ᄦ빁ꄞᔺ媠怖ೈ剠愁ࡾꩀąᤒꚡ‚՜倡Ąા屁怊ᰊሆ咡Ĕើ곡䄜ᐌ℀Ԍⓠ䃊萠�ॎ壀 Ὺૡ蹠 ״᐀ėዠ耆៌橁ꄄᬢ䑠怃ᦆ耠䄙ᰶ蓡噡䀘żⲁꄌᨪѡ℃瓀Ěࢠ᳀耒ᬔ␕ꀘᲂA䄉敂䢡쀊፪탡耋Ȝﰀ䄁ᾼ軁䀕ீ섖੬낁‐ᮼḀǂ뚡脆Fڡĝᮐ僀Ĝၨࢀ䀇௬ᡡ섅鐹銁脊ᑂ븀쀊ᠪ铡ꀔᒼ刡䄐ٚ砡愃ࣴ⡀脔ഞሁไ一섎㰚䱡4䲀�ୂ呀똀섍р烀뉁ă�몠ℑᙰ≁脑ᔚᣁ䄌ᱼ鐡䀂鋡Đὀ蚀쀄�ᲀ섈Ŏ袀䀁เڠ섗₁䄎¸魠쁘 瘉붘ﵰݎꟘ加䑰皾锟鉈鶩ꄹߝ傉㕶ሔۍᙥ浖窰蠍̦北惏蒈㶶ၴ쟛㢡囄泗袋䅠撘詢耩즙ढ竉㚕讀㌋쐰罎㈱҈뮂㻘䃫颍ኂ꒓オٕ杒졠풽尹ࢧȠ╂ㅐ䌗�t즆ь⦣❼ꀼ껀威聙ၨ輴熆ఀ叼๓⠈菄젼趂䍃ಋڴ葠ཱྀ爤ɀ旅ႃÎᣒ떮뜰葉⩢㯸찿铩⦺䫑┺앍绱메空鐋셠鑹퍮렯铼濸嘀퍅肩龲聮ᥔ淪곹䋞�瓪ꒂ돠븂魡컹罡㹙顿쇇᭾䞗溨ᩚ烠啌Б誘Ὕ姥࿚┕㳹ᱫ㵞⊀횡靡冣䮾쀃࠰౫낁̐銀ᰋၤਢ舏牰ॶ煆濘ꖃ竨魬�ꖐ�鑨牎ꘕ䳨᭤〡匈芓۹᠃ᰖ暏쁙轇킠怗岙鈷녥䔊諡ၸ覣夨挞鈶䡊顰䅃Ј℞钐ባť羞昒ﲘ齖짇娖꒕⪀Ȉ傡玂숎䛑魾姇组�͋㠄⚃鲙鈴䂦㋀朚晙ᥭ넦֬諩靂烡ᣬ⎇ꩩਧ쇂ジ䄕ꛀ魴륅挀䎍㪉ᨯヂ⯪✖뀙ဎ䅊氘鉿壂Ĥ昜萂颦⚠ڛꂈ࠼塣汶朌塠ᠮ埂蚗⣙衿妧❾蚒䑩Ȃ熅图슞锜瘶ꖙ娹鱦飆汬�릅㳤ދ㻸Ὣ짠颯솎�識섀笞⌞배艀聄纮섀ʡ¥ᑰℍ葹ཐ燄篆Ѕ⑀茼煁熔䆝鐀葫�∘曑鍠腅഼ꊘ蠨詆观㝪攅본耡Á䯜➈ᑁd梨ᯐ �陋㧢泾ꌇṿꠂ㎚莘恉锋ꦅ㚢씚౨館脠橾⌉廱ᩔ珨䀝칈鴕ᤄ⚜舜ﺑἜ뢇宜꜈鑌⦢Ⲛ쀖嚠陂悢ܚ┚뚉ႇ党숛疑莸悃弖ꆆ냹锷㤁⏀얔�ɘ⇂✸縉൰넁
ƅ蒻鐍ᤆ尸耇ࡎ桀࿇詥籡쐎㕈∝㯈뀆ᓪ顄ਚ碢จ蒡䈚髰ꄜ∰䆌አ᠄ᦉ吠謺졠쀮�ᴰㄌߠ䀅⅃谇廰蔠⎠Ď夼ⷊࠃᤙೣഀ옯茠舆琠ᘂش낂ᝂ��脑듸ℏ湨ခޚꁄඩท裁萾瀈ğ映肁⩂⁃൴那ݧ鱁ĳꦈ℆槔쀄ፔ蠁ᐺ局茨渑ԟ䉸∐眄倀ᘊꁆ璝ᒡ脏⠁䌤널ȗ㓐悇✈䣂ᶨ킃蝽許蜿辘 ᭰ㄛ砃聱恂勱�젠拔炎㣘耆๖聃艏닱ܨ샐䌋ⷰƀ㦺顇௩⑀荿싑씎㹀ᕄᄃ୶炃ឌXꚡ섳㚰∝ᅐやӨ၀ކ連Թ蘼༠愑痘℆뢂ಇ걠੩씣䗘怖⊼邀㎄遃ച摠蔽ᣠ��䈅喈憆ఈ灁咅僃എ㨐쀽᳐挌擴脏ࠒ栅ध₂衙䘙䝘䌉Ḩႅᢠ㣇ႇ烢)윢섨䀆栌态Ђ郇⢩瑀Ѡȫ밐耑⡤ุي퀀襰䁡䐦铈䈃䮘倂ᦄꂀˁᐡା㩐䈲캘Ȗᛴ䀃Ỉၺ璢聀䐡茤ℙ㦔킌㚀凂ʌᢁఽ찡䘡櫰暠턈̊₅ᐁض챱쀡의ċ㣠倈⦶쀃ᜢ⠡赺䄔�नꄈ᎖僄·㠢蹠Ȱ쌰䨨䈘恜䆋⎈᠀׳遂ॼ钰н윐脈䠠ㆌ˪㠃ᥡр༚树숴怘䀛䄜悉㒊ࢶ谀茌囐䈠퓐ᦉᆁ栀ԡꀀ轷왰茷빘茕ீ℈ෂ롂კ鳣Ͷ㢠쐥祩ꈓỘり㝜냃Ꮥ梁๑뒁쌴ꍗ塰ˎꃆϴ烃谸밐䀰뭨舙㚸瀀ϲ㢆ᯱ搠ൔ蘚쥸“寴焍⣊ ਃ鑀萁郀䀛罨⦴ꆏᵄ䂂᪷됂謤⡑茧嘀意紼憅،ᐮ豃}냠䀁ꊀ⌏⊌悆⁰룀ါ怀เ阁䘞䅨⌓䶌やᘒࡄᖗ�詄뒐ț䅠砜㰪ネᇘメୁꨀл廹�儴ᆋ̜倂ᴎ�瑰숊∞殼 㝆ꂂ̨ɗ싰䐀㪘栀愍㠬겡褸Ԭ訸숇删킉ᵠꘂࠔ�အ䐦�䓔ꆁᲀꢃ֯곀蕤ሀ蔠촨䄏Ꮴ老ᯢ獄䁣谱㙐䀤袈䈏㜠ㄆප检Ӻ첁蔁䂁ܕ昰怃ᓸ�⼤梆Ვ邃ग़氀씾빀脞㽔䂌מ塁ᇖ汢୶⒱䔇�Ą滌䆄ᙼᨾᰡ谾ꛠĬ茕Ѱ쀆⒰⠁ᱨ鱃Ĵ䌰呰堓滼鄀⪊ꁆ᎖吁萼ʱ耧䄗攠膉⟨顀쳡葈ꘑ蔫皀䈎4솆ᣠ⠁ڎ耀̛鉀̊浨ℑⶐ悅㙌壅ᠤ怀캡䀁芸耞兰婭᠃ᣄⱣĸ슁蔂͘‑攄愄៰쀃虸䠠蔬ꗠ愘最ႍʺౡ棤ę�䈽니䈔ʘ炎ꀀᕠ쓁茄Ჱɐ抐	⪔ Ů냃ᄒ�英䌒�䪰삉밖㠄Ჟ耂葀겠䀰ᓀ挘偌�⦘蠂٭᮰颀̍坠蘦ᾀ뢄艕♐뀆є嬐墀蔮Ⴀ退?焈耙栰�䡈ꂅ耶簀䂂荙㶀ႄ㔓ྨ炅<ᅘ삆谆Ṹ䆈蓘䂨ൠа　萢ᣈ堄萦ຸ䂆萍⼘�ꗋꀃ贞粈ࢇČ᧐ ⭡楐耆职嗈堇耳涨₂ꉂᄠ뀅蔷♨傆ŵ㶐㢂腘᧰퀇Śㅨꂅ蔸犘䢅⧰눃芴提怀̩媘怄艺ⅸ悀Ԑ䵰뀁蔻༸ꠃ舾勈茽噈놀ʜېͭヰ耱籈ꂁ蘌屈。蘴੨䢄ܔ䘐ꠀ舃䈈脜堁Ѡ䢨炃ݨ❸老腎☀:䟠々蘶⼐荰某뢇蝼䙀퀀ūନx፨ɟ䪘䠃艣竐؉㣀舍ዐ腹ຐ젇ٍ㱠ႅ聇䣠낆Ȏ➠蠇Ս乨㢆ػ嫘퀆蘴獌䂃ᔚ吀肂ի㴸蠂蕇ⴀꠅ̇皈�К瘠㠅蒌￣怅䔪敘᠆о嵰ࠁ蘷❘렅耨娨렅ђ䆰瀀ݰ䎨逆范ᕐꢁ蕔䟨䂇耤濨傇蕪毠 蘃䄰䠁я䗀脆ᲨV⢄蔑嶐⦅蜴洨炆茝㙀ကԭ典ꂇв䂈ū䧘ႃp⥐怀ܮ㌨�ጀ椐蝫濨1抰Ж㰠첇ڙ⋀ꠂ虦و삄脯⢨ꠂ蘹ᦐ倄ٕ䤰䠀蔛㊐삁萱䞈ꀀ耜㥈肄䰗泈逇舊㛘䢂܁⩘碅\俰⢄蕥⡈碂艗䋠ꢇٜ琠頇蝶⥸좂脦ᵸ⢄腪㸰瀆虍窨퀄舨ᛀ䂃ݸ↨ꠂ虙䥰梂ā䇨ꀁ聧墠₆茔⠘᠁葟梀ꢇɾ⌐㠂聹ౘщḨࠆԃ燠ࡆ舓튫ꀆ舍ᣘ⢂蔐夨老蕃䬐瀄ѕ䰸䀆͊㭐耀>⨠碃ȄⲸ젅�䛀ꂥݳ㷘悂ܜᨸ⠁ص噐ڥǘ᠆Ğĸ堄脏ꐒ 茫袑�欸႞B㘐袆腒⑰ꠂݚन梁ٱ䓐₄э㩐�ࢅԠ̎〰ႅ艦䔐聬祈좆m恰쀂葇⪀梃Іㄠႆ卍奘�蘤䎠蠇虊˰�蕒ᡰႅȁ∀塒霖䢈袅ԪⓈ䀆茥㨐ꦆǮ偰뢅腓㊈ ؉又。Ɋ◰₁Ƀ䪐砆̚㩸렅葜㻨䢄ن䌨颂ܶ䈐棈l潰䀁腥扸뀆Ց怸댎႘좃ՏꢃԧӘ쀇耡ϸ좂ɋ澨ဃ̇ᜀ脩腸䀂艬矠瀄Ԝ紸怃Ė㱺䢃ݢ瀸� 킂ѵ硰ゆͱ㏀ႅm㘰墁ѿ䅀老葪⡠뀂şୈ�聫ᒐŔᢨ᠇ॉⱰꠀЎ䏰ࠁխ稀적؋䟸⢄蕏ਐ᠀茎Pဆ䐅冈傂Իᩨࢃ蔘岀ࢀܹ㲨 蕢昘စ脐欀营愘삆艃℀悇ؾ☠ꠄ萹吰悅�翈蠄蘮哸ꢀ葖՛◨ Հ璈ࢁᭉ澰뀄腂欰낃ԔᏈ萉㞸낂n䆘颀虿ĈࠂЬ縨ဇ݃ᇐ领Ṻ㝘᠂٭Ԙခ虦㐈�쀃蝤㴨傆蕌䝨⢁پ䙘⢂͎䝨삅͡㖀⠃蝑☘�舂䱀㠃葆㈘�䵐�㝐낇Ͱ哨。耿䠰㖇؏㚨�ќ簐鐂蛖㢇Ў࿐茙Ὠ瀅ᘵ妠傀䝐㭘聎暸Ъ滀梁ո狐倅虭磀ꠃ݊楈 ͞涨舣叐腛絠倆̬䝸렄脼塀᠆萛綀倄̥⩈梄䨉ⱨ梅锱ᵈ㢃脏碰墀艮┨耢ᡘ삆խ㺐Ѽ䂸梇腏䖠墇蔔椘㢀̐搐⠆脳Ỡ虐矰戅̻邀聤⇠�㯠嬖⧀렂蕅凸ႀŔఘ順艝杠�嵗㢰肀耚㉨考舮めȪ᧠삅6ڈ�攐ꠃ蕣啨悪蘷㖀䂂蜎И₀Ȣ禐젇蕭⺸뢅݆悁ٟṰࠃ耶ǘᢆ茉�䂃ļ嫠ܙ⯰瀁蔜㦠袅Օ帘ࠅѶ←碂깨檐낅ɨ技ࠃܼ械쀆般䄸s뒚᠄Ī映耄腥ᐰ�蕕斐낄蕬ᜠꀄ긐ᑀ᠂彿䵈�肳癸�茎⺰肃挥瞈ѾᤰႁМϠᢆ耰䖈 脀敐も耔夠送٣㩸뀆ɚ䴰ゅŨ䏀怃葸㥸뀆茍緘堅앾ྐ脬䞰頁̆敘넋ׄ蠀ٶ⛀Ѥ♠䀅э丈炄Ԩ坰ခW℘〇̲䕠ょٞ䂈⠁ػ䱨᠅Ȅ⾀d᎘₇耣糐堆̴⊸倀Ȓ恠쀅ѕ灨䂁&䮰㢃腮᷈ꀄٚ䫀堇茼䉠킭͵揰렇ж團뢆舶Ḙ虾暰蠂艕☠ࢂȂ憸還ܗ॰ꀅ腣㊨ 脛䗸�聥掀瀁Զ浠Ȱ⿰耄ٯ⥸栅ɛ㓐倃艚⍸悃ɿ䒐⥷䡘저舱㋘�ી艊ర렂崟匠⢆蜔怐墇5┸⠄ь㒠瀆萆㞸堄蕛ㇰ䡒շ溴ょŉ姸퀃ȹ潘ⵉ㬱뢇u⟐袀Ĉ㛈ܔర쀃̨㍸袂舷₸萮㴐�癐䢇Ԩ媸�㚸킆荭绐ꀂͿ壀ࠅِꡈ挅蓍ɰ�䑈送Փ缘ꂎѷ䉘瀇ٰ敨꠆蔸⻰堀聵敨炁蜾岰傀聪Ṩ颇蕅䪰者{䭈肄耰P颅蝚ᛸ䂅Ă█ࢁ蝳推肇͍Ი蘸湘考荵㾠퀁Ծ毸䢇ݠ寨栀蔱ᢈ�㿈룢Ė縘葊䍐 㠠沨碅ܭ⨐炐ؼ旐저蜔⁀梁܍⡐蠅耚礐聩⭸�ీ茭䛰퀆聼嫀Q䚸袆药だᢼɊ忐沃а侐瀄ѣ䧠 ŋ┸뚂蕟啐々虁椈ٕ䈨瀀Ȝ秘Ŕ⃘墀虝윉 蔖☰耆�㚀ࢀɑၨ퀆I礐뀂蝑稐ꀅ蔒捪ࢇɦ弨预䁜⭈境ꅲΈ领�밃�呣㸘䡭Шㄘ�蝿偠堁萖绘�ሐ㠀艪ᬠ͔恀䀁艽㼨궅ҿṸ谉̕ᒰ邇ࢃݪᆰ碇脗ዐ邇蘪᧐炁蝛枈瀇ɸ㽐蠅聻憰㠄Ѱ礈낄Ŀٰ萌エࢅѵ㎠蔪㰰肃蕊⩘怄艿浸蕶˦롐蕄౨뀕爔睈㠀艐À項ٕࢸ䠆荧屠ꢄ艭涀䂃ݔ㙨䂅虎覽ࢃ́ༀࠁ̌‘ࠂ腤緐뢀舴佨ɓ㪸傆Ŷᖨ䢇蘧新ї澈�͙ᔸ䠆я挨ဂd咠좀聞㋀䠃萳⊠᠄Ԑ寈뀂묍撰�哐茌剠蕨㦘낂̈́⸐퀅̈ὀ꺀蝐渐砅葈¸�妈ܥ蠁虿抸Ք㏐や蕩簈耄耙籰᠄ܓ倀₂脜岐傁祊ീ袀蠁蠁焤Ɏ㣑籑వ쒂磱紌빒ۂ탢멸䴊ឯ얇㰩贔阔穧㯙옟뜄ᔸ埞褐葑退磩ᢐ訨䅩䀊紂Ḁ䱘욥寿䘻ނ夘鬾赱Θၓ⡡蠩쇁ဈ後Ḏ쬋줰㡔Ⴗഃᑥ�ᔏ궄젲怽㾲쌋鏋룙ឨ㼧ㆅ젹喇堡Ï貓훮୷ꉝ䂶푭㫮肯힠楩瀆ً��ᡄ㹻䦙⧢ﺉⲾ徭ꈃ첂댆륑콐쯳퐄兼찯舉�茎빉욆卄仉旘嬷玆⹕柃壒戴す阊焉浈ഐ蝢촒ჵ鰽紕풋ᆦ相ꪁЉ쁧䳪搔ꐡ陈飥剘Ҍ穱逢椆㚶삙蘵놦啐䄐㙰Ȳ慘掃ꨨ餜ၣ媪服ѹᜯॣ⹐ؚጚↇᘂ耆ఠ룁曤ꐛ챁鰶샢⏬婠Փ肢䚆⹉ጓ〧熺옜≀霟㛴蘒ນ聬ႁ4⊒豊ᣠ㔦㣀᩼낣ڈ撅沘馉框䬶쀜舡᭘C咚㣱ᠼ肧♤蔘Դ쀆溺擘餬愔섊뻘鱻쀡䡮䀁걩ԕ怩⟞ᔗ倇ᒠ怘铱鈆栓硚蜑ᄣ�螚Ṉ耣짡冎搐蹑၆䥣ਜ္ᵪĄ啸掞ʩ롥ࢠڑ岐ᡍ醃睌ތ輝惧嚪쀐Ṡࠬ셥㥐얝ب汔ꐉ칹豫煤掞鈩ᡩ覃ᙪތ䡐魵탂珊ꀌ拹ꥦ架훉谻⢧ⶌ憘僁ᅖ᥄ᚮ䀛뉙ฌ考᱈섂雑ᥙ᱔䋡谌采戨挍ꫀĶꡆ繞憕XЫ�␀ᔪ롆业怛臁Შ�՛ǀ緐䒀㣁B憤嵜잀᱁酕ィඊ슏몠͊�ڂ籈ᜠ㥤ၞꈉ踜肆暐蜜꺙蹳ၤ挞ڕꩨ艉줦۪斄尡ᑭ鄣⿸膅鈘鱉䃣檶�呈褩ꂡ䮼삌幘ခ 䙔씏⪱耉懃媈ႈث僢৾ւ᱃堧ᴎ삓ᄭ줆൴–ݍ汢ൺ傐Ȓ咐쀂ᖄ憁Ṱ蠅Ͽ顠記똰ܢ鵰섁ᯔᆅᵪ瀁ᓌ遀谰쒑䜊놰成斀邅᱄磁ڄ恁蝧牁䀰艠成维䀃㈲䁇ᴒ础赁墑순�䄔瀂㩸㡄š衁പ곐舑饀挅樰�‚䂃Ҩꐁŋ㑁숭奨脅䶌ည⭸飅ᩜ㑠݃닀ػ鴀ꀌ୨ꂇ㇞蠁ᡐ鑣९씝섈脗ᚠ熍⏸၄�褚⁰伝쒀ꄝ檠」ය肁९䳂褭敖䔦蓐섗㳀傆⤠聃࣯瀣脟ɡ䌆粠‑⪠炍⽂렀ຕ污\숑윖먈茇⸤₍㶮⠂ᐧ鲢Ю롐貰怕瞌ℍࠆ偀ᴜ␣謽ꪠԼ័⁘冏⥔怂ɺ鰠ऴ媠섊嵀ꂋरᢃẎ쐂蕑搑蔽陠ȕ简၄샂᭟③䀆뒸孜킊㎬䂃ङ衣轤誐䐄䇰奰炅ᳬć�炁蜙툠䘘戔㪠愆㌬郆ޭ飠蕁簐䜏괈‚㞈᧺ף뱂̈顑�师脀㡤⣊邇ᒶ灡m걠䐴擈䈎㯨憎⛰샀ޯ悃酔碐茬ተ숁䚰焃⸆あႩࡁ蔾烁ԣᡀ愄㐌熆Ẇ쀅႖璃蔄竱䐮ڰ怕ߜℇ㭀傁࣪₡虮ࢀ쐀뵸䌉नꂈ剨栃Ĭ䢀W聐Ю兘䈅Ȅℎ㲬ॕ詔钐쀧▀涀ߢꁅᡔ胠W雱씐손쀉㆜ꆆ٪ÃɄ碃萡튁ܐ⍓簸ॴ॒梁蜉擠Ľი쀝ະ�ᣎ႔琢༱⊁䔻編愖⽨ᷤ聆᜴ဂ耢ᨠ锒슀℞占Č熂ᖊ飀舑勡䈹蓐茍灐၂ᢆᎽრ赼庠䜚巨耕ཐ熌㧎䰐ꀁ营뛑䝷죨舌ൠ쀋�塄ઠ砣茏峐䔈ꛀă㹔Ķ၀ 訄溑섖Ȩꈞ⾬朊퀄᳁౽軱М°䀑姘ᄂ㓴颇ቝ䐡蝷㨠蜚贀虨邌遂Ⱐഢ耐ܧ�㓄䀁ೈќ䣁蜸끱䘁ퟸꄓ猘Ѥꠂǣ呁蜲쿈䀜撈逍⋒��༂扱蜞渠�媬「㧮棆ᅙꒃї頑䜶퐸⌔ʸ̤⠂ገ堃ऎ顀Ԯᅐ耞曤낇០쁃l頡�䳰숉焘愰湀焄ڂ送ජ蝾瘁䀡搈�ዌ悁శ鱠腾࣠舼ጨ䄚ࡘ삉✘낆ᘶ謮恑Ķ㞠戙̀딎|뢂ᡀၠԶቑ蔍窰挅⠤₁㫬ငᠣ萡Ŧ퐑蔡넘戌终쀎̜⢀࠽ⰂĊؿ須ĜƄႁᨒ栃ႇᣂക呀쐣珸̟䰐턃瀂ᑼೡ̄呁쀌挌怤ຮ遅ᦩ蒃͖賡䐺綀̊榐ꆁ㩦삂᪡쐀譆탐蔂諐戒┼ဍ㶆䃅ᘈⲂ葩ꢑ쀉㱙戄㴄ᄀᵌ炆Ძ쓣Ջ拠쌋⸨脂棌䂂ᔆ졄ᢁ謻阱䀝뎠수㖴醋⏐恃ฏ撣襗옑䘧蕰ꀎ痰耄ቀ僄ݚá褋撀씁쌍全ąᙆᎧࢣԹ⩑쌗녠հゃ㧴�샡ꄒƶ퐀‟ၮ�ᩢ䑁脋ᘾ老ĝ绀섆᷆炂耜ϼ�ۀ⚀Čඌ梡耟ƒ䢢ꀎᢺ㣁Ęᵲీ者ቦﲀℙబꠀ�ᐦꀠ䀟ࡐ첀脄ᐈ챀᩼䄕ા섐ᦒ푡ꀞಪ뉡ꄒ⩀Ú汀䄙ᕖ퉀耓钀ᴪ⢁脏ᙨ퓠ꄚబ峠脗ம汁ĉᰌ摡䀙ᯪߊ%怎ᗞ⡀愁ᶂ㳀ꄚఒꪡċḬ戡ᅘ 䀙ሶ悠섊ᥰҡ愊ᝒ⻀쀁Ỷ쓠耘Ჰ怔ϴ裠耇ᴘ�℀ὤ퐠℈ǐኁᒊち섔ղ屠ꀜḖ⃠ℜᆰ鑠愍࠴�怏Ѿ쑠ꄑᚚؠ愜ᶶꛠꀓ٢��᭸䱡䄑鸁섁०영쨃ᚨ䁩�㲧䄅῎횀ꀁᓺ룀ℎࢨ鳡䀆ڪ⛠怜ຎ耀ꀇᘦ됀츉ᖐ⑁怆ὤ铀ꀜ֪ಡ ኦ䘠Ďᰆ撪�蛸䀟ļ暠ꀙ٤玡䄎ᶶ雀ᢸ킡 ఔ䰁䀒ረ뀀䀀๊䳁�ڎ搀怉٬婀䀖ᆖ쐀䀎ᯚ㊠�ਘ堠᠀麀䄑˞큁‛಼⻀愂 愔ᜪۘ簁쀝آ粡섌ՠ②쀈᪲℅Გ ඈ㺀ꀐௌᲀ耇ῌ␠ꄑፌ䫁䀔ព�ᢜ䙁䄑┓쩁ꀉ᜶�쀄ۄ剠ꄚ̀Ạ℗ᢐ뚠 ກ蚠耄Ǭఁℝᮨ㺠耜ဲ탒碡ꀟᘶ뉁섉๖㋀䀐ଠ碁怌༐ꩥ쀎ᡔꈠ耆쑠脂࿀〠耎፞�䀦墀�Ỉ軠怆Ԫ糁쀐&ᠡ쀓တ鱠ପ㬠怜È㊁怕뙠Ďb⻀愇ᰱс쀘ᖢꋁꄓऒﳀ‒ூ곀쀑ત䓡ďꢄ瓁怄ᄊ幡而༨ꉠᣴ裠Ċᖘ湀怆̈퉠ᵪ悁Ỡ䫡ᐤ똀ꀎᷢ钀섒ĸ銠ᴾ†ꀐ୬쉠�ޠ怀Რ鰠℞̀᳠䄕⠀Ěፊ㑁愎솄怠怌አ踡̞컡�ʂ郀䀙ጔ⪀࿐석ᕒáꄍю䁝ᜒ爀ꄉҌ䡀ꀄ᤺℁Ჰၞꄃψ躡怘Ủ檀Ėგꙁ怚Ḽ①怂ᚬ橢愕༜绀ꄝܠ陳섔Ȝ䊀怙ᠸీ怐ౠﺁ�ᕆ瓠´␡ ȼ鱀ൔ�‟큠쀇ጼၡ쀒ൂภ�मꩡ脝ᙨ聡愛ᥐ鈡㐖ᑊ䣁ℎᇪ샀�᳤撀ᷞခ�ခꄝᢺ呪�݀쉡ထᑒメ‐ⲋチ�ᘢ쑁섀ᾈ䙁䄙ᬜ琠�Ỷ䀁౦䀎ʜ皀䄗Ḓ㸠൜ﲀ℈ᄞ鈁ĐŰ蛡ꀋ᭨ﺀℐޢ㫁Ę愪서ᒡ℅냁脝ᜄ璠섊Ǽ삠 ᤖ킀ꀏͮちꃫᢲ乀ꀂኰ驡ꄙ㴻㈁䄎Ỷ狠ఆ�դℙሁ䄊Hଠ脶̞ᡡǄ서ᖠအ䀊ᤚ胀耎驘냡‟L嘠怚Ꮐ혠ꄄᮔᡁ脛ዤⲡ섙ྸ꘠쀍ឈ俁/ݶ鱁ℒව㳠䀟Į㰁”᙮虠―Ⴠɡꀁ码‘骁脇߆갠ꀆᩡ㉠đ˼뵁䀦顡ھ틠ℓᔢ탠愈ب쑠ᆞ쀑೬닠쀉Ғ꓁℈ᔜ䋀ꄌ೪⢠ತ눡怆ʪ―ፌ뉀“༸銡섛Ệ愖ᗶ빠켅᷾ꐠ耄ʤ슁愇̄�ᅔ退서뺡愀㩁愐ࡒꚁ耞׆諀ꀆƮ昀䂼H怡’᥆撡่䠡ꀗ౨軡惑খ—Ი�ᴄ닠 ќ蛀Ğȸ乀섉ᗆぬℛẐᰀጒꪡꀉꪀ ᓎ檠 چȠꄆआ곡䀊ᅾ惫䀗ຼ呀怘᷒움䄁隞첁䄃Ҁ鐁း쀑ၘⓁ섗ୄ耞ថ阡脒갡ꀌᅐ麡脏ϕ勡쇧ڼᡠΠೀ섍ᝌ怟Ὴ䀌ۂ癡쀋ᦾ㚡 ლ죁‗瑁��롁ꀄᘈ䀇ࡲ㺠怆ᑼ躠Ů耙ᕢ廀ęᩲ技섌ପ쐠ċᯪ㘡怅ᇂࡠ怌蟍谀䄑᱘Ⰱ䄌ᘆ⣀ꨂኀ컡脁신ଝപ슀쀟᭮ᰠ怓ᢺᘡꀒຮ됍ሌᢀ쀅 ᠸꪠꀇꄈ*灡䄑৲쩡ꀑ琧�感 ꀏࡂ桀ęжႀąᖊ䡠䀘ᖀ�ĝṂ詠�ై䑀Ă͘і蓀䄙ᝰ铁ꀜᐌ䁁ℏ虜ກย蒠䀂ᄴ⩀℀᎖鑀愁ࠀ숡䀄ೀ䩀―ᄔ⻀Єᛁ℉��婀ୀ7ཚ両ꀃ�Ĝ༈둁脏ᱺ⋁愖Դ脃༔帠怔ୂ灀‗ǌꨀꄜגก肛ẌҀ섚ǎ屠ꄀªᩁ誌℔ସ䑁쀑ᡢ䁠�Ƭ銀耔ʢ諁耑՜㒁ℒ᧒퓀ĀᎾ홀䀜ᠲ䓁䀖ᒪ㓁ℎᛖ밠愔�鑀ꄁᏌ♀耈༺怔²蹠„Оⱁꄛै舀℅᧢탁䄆ᒪ䪠섓铡넕鐚象耋䂑냡�ᾶ䐁čம況ꀌ᭞庡ᖶ꺀ꄛ͒왠ᖎ愐볠쀛៶怍ᬶꀑ༺ᚡꀛૠກဈᨆ稀䀏���Ⴆ鉁Ăή戠ℌ൰⫁섔ࠦ倠�ℜŲ⚀ℙỸ怠脋ƞ䠀怛ྒ닁䄝ᜈ�ẆȠྔก愞쁠䀙� ໌ࡡꇎച嘡쀔ៈ刁脄�蹡ꄉຒ†ךⱁ洖⻡态ǂ嫡怆떭뻀䄍ᶬ㑀耋ឲ‟ɜ㣁ꄒ䪁愅͔貀�ଢẫጰ䪀脁ᜊ蓠Ēᰈ葀ည䉁怐Оౠ脑ኪ媁愒ז둡ⅠჁ脇틀倏ؐᏠꂛ⪁䄀�阠脄ૈ⋠怚៖怃ኲ仡䄅ᦚ눀䄋ͺąॄ㙀쀚ᎈᛪℛަℚᶒ詁ބề��踁䄒ꐁ�ᳰꀚડ耕ደ䰁䀗䂁愃ઠ穁‖চсࠈ籡䀒ཌ–՜ề愘ܨ脞ᐨ―ໜ⪀И∡ċឨ삡思ᭀ賡ꄞẈ鳀쀈৸䨡ꀊֈ偁脄ཚꀁỘ碁脍ۈᣠ脝ո悀ꀜڨ�脂ᢾ㋡䄛ਈ�ᢲ⊡쀅Ӯ䀃႞竁Ą륳‐Оⳡఊ�བ☇ꄛਬ愅ะ뙀䄇ͮ�ݲ뙷�ᆄ繀“ኦ䄞ዢむ්鶁䆙ཚ䊀ěꀘᱨ䂡耐ᾶс쀖፼㸡ĈᲖ頁怃ᚨⱡ�一阎ᳪ뫡愜ᶜỀጺᶾ㺠ꘃǂ碠ėὶ銠Ȩ惠ğ힖绠쀟Ự嘁脙Ц︡숏㹸䍝䃶㩉㍖풘㍭࣒鹾ɰຟ鉃籍㑴䬬㓂淌뉑냱식畯媾杢맱澢㵼辖ꏕ體岫䶴牃듛ᯎ魖仓㏓෫讵䊆찻፼ᨈ蜑鯓笛馢ᝏ뱫⃚⸺奱ᠬㇾ�脮◒⾜⭣쨚鯕빙翿䬷뙋뇉ꮆꉿ慧ꀵ拫ڄ舠ﱚ輎ၡ詙͒䩑禘ᤨˤ砓㩈둎欀姠两㾧ᮡᚣㄳࡲ딌耟숓㨰㏇언蝢蛔耡쐞燲偹ⷖ픛㛋에貮ୁ芀删긙℠ힳ؍ཞ㵻룷雥欶펱惬ൢ谈し⽃Ⴓ㳰ṭ亞升檩ፇጼ㡹冧䦀ꆔన鰮à㴲ꎟ�鱻Ƈ烚삂ᙯ础㔠耙脞�䈎၈腗aཾ蘗滰ᙲ⋦⌓餀�ၹ磂ᑈ쌋躐༊ꢥ廾ᩇ턃戮庈Ԧ삥䊜옡脄륇䭂숝鴟獵粴嫶캙蹳秧缬쀘艙蠤졂ᅲ悞婩錏㣣₲쀛�䅤䩖Q襤䞝瘱轾ཪ蒜⫘阦ꁆⲘ䜆Ⱁ腺삊䰴料᠁鵨ࠣ岎惡訸셆ᛘ搖渉젡ࠌ䖙ᨡ脄텢 挅␠በ堁翠⒁ᛸ顎焂ㅒꚞ邸騽ŀ㲨怅葀ᤲ鄧Ⰾ脏瀁鸡偎ꀚ끉ᥭ�ꎖ突ؐ煀様씉⚩ൊᦦえ薊죙錨ꄇ矒␈䃆Ḡ䆢ை	豑ᨎ㱬ꈈ늠鑃ᠴ撘亘鴥쀀菜작쫨ᄜ膁ᨘ욀硰鹱唤䚃좑൸㦧箎䃘݊㥁㟶얛볩鬞礧Ṹ䚜ﲙṰ㠁ଂꘝꈘᧃ硜戊璡鬈釡ࢀ憖퓀ੇ顁乌蚜晡艤餃ᘰ␑鍾ꄅᫎ⎂⠠驡衇Ⴊℜ뛙ᰈ堤湐✇ሀ蹌䀆䉄⊙�慢҆쐁溱᥅↠䰲➔␙晴뇦堸䄜騢夦弐⌉가ٖ䥀䷌䂁☨ı䥀縈果惹谪㦧え܂䲁ط䀥ꄃ鑘鴏烢䙎䂉0䑔쀂᧨壂Ò梡ഞ쫡ȝ絈舎䏄䂄ᰲᭁꀃ襐】옪ꀙ㣠ㄇ☞㠁थ₁䜄ꪸ䄎擸醅㦒၂᠅변轱岰興藘䃄낅ᣆऎ琣0 耖㭈䊈삄ᯖொ墠輕蜦ደ⌔つ뀇δ၄ᏽ琡詭ʀĜ씘∓Ɒჼ⡀ᆲ颀蘫邁䐆놸ę㩔ᜦ校च偰舢賀䈔䭸�Ე硇ᶧ�聪옢ﺀ挕㘠℉၇ཙ䢁腢̐哰∂⺠ᇲ�㓃荌䈺㊸‘㱬놆㸰ᑕ䣃豖䃁蜒蹘ꄌ嚐䀋⻪衇ᦝ둁ึ쳡舷㮜䀌㏸ɋ僡赬ᒠܩ⊰㢨Ↄႆ뒡踕갰䔫ꏰ∅ᕐꄇ㈖僄߶䱣ض吡脱鰘徼㹴ꃇἊ둠̒치∊ၤ�᧸㢃ʫꂣ蹂麁씍뚈ꈒ羸〃㉔ꢀ႔池艪�萙⭈㍘倅ᬲ炙렁Х銱씔འ茊䶈넍⪮灃ᎈ렡Տҡ䄚쒀䀖曌삈㮮낃�ᰠͣ캑ش꒠숈璜䄁⯄碀Ὴ裂轏윷⒘范㤴ꂏẶෛ�響蜵ښ㼸㳊胃ﱩ蝟찡܋枀ℇ㻬飆ῑॹ븰䜕䙐섙更ㆉᱎᣋኒ烣Šᓐ̥尰舎栈膀ᄦ聂ദᢡܟ쐱蘘뿘ⓠွ᠖�저褍䘒π쀙爰憈ⱈꢆᵀ　༫�䌣䶀⌀纘�⬮᳢ᡮԦ乐섵ℚ㌠퀍⊖碆ᮭꡀ؋ቑ�ꭸ䄓匀怃⪰뀀ަᠢ踚Ⓚ脅甸挜栤퀌ᠴ�蕪塑�èꄌைⷴࡄਧ쒠訊䜟꒘舞䜨ꂀ㠐顇ᢘಡ蘆윖莘̉$�⾪ょᐜ倂荑ɡԞ瀘⥠ဎḘ检ᐑ퀡Վ웁舆대氠ㆆ&码ɪቫ긁䔱Ʞ쀍⫤ꂁ〼⢅ីꀣ謬⫡섕㦀̀怈៖᠆ؗ鈁䀺䠀䄋Ŕ䀁ټᰱ쳂訟脹え쀜䎠脂㱪聆ᥰ끠չ䀜�࿘�ǚჀḟ큠ऎ⋰쌀䀅滈䂃మ ඏ褤郑耚蛰ℙᡀ뀌ॸ恁॔倃둱䀊࠘쌛䈄퀉⸘瀆ᘂ벢ܔ僠Ԭገ–礌ꀌ㘞ಆ벀魼䑐䔕ሀ缐ᆉڌ᠀ྜܠ�⦰䄏䃀肂Ⴚ룀ர磃輿傰萘暈�ᛞ�傀葾ᢠ䀪焰挕⥬〇⻰ൌ퀃詔蜱퉐ĕጨႆ㻪ꃀǾヂ๖茕⩐耎଼뀈⦘ษ閃Ӥ嫡윪搨䀅哜ꂏ֜㢅ᄦŮ䲰䘕⤜赢碀Ԇ瑢勁옜춈愍窴↉Ꭲ䃄蕎蓑䄈挞嶸ᆃ㩤梀沢ő糠윝⦀ℌ࿈Ë瀁༶�濰叴倌ᮾ끅ጷ⣖ปﰑ쌓던ꄟ羀톋㌚ᣄỽ飣୶磱舁⿸섂¤憂ؐ뀆ጡヂ蜣�ܦ뾀脏捔焅៤삁�粡གྷ䀅梀怅脧䇠⠃؋㈐瀅茙ರ砄蔡ト⢀聙睨艃淠Є⼘쀄؈拨邆蝩ₘ�漰ကԀႆȄ㥐栅ͅ甈좄ݙ嗀퀄蝄曐蟊狘낁ȵ盨뀂ė常⢂ԥ揘᠃腻璸�٫✰栃荲Ѡ怆Ոᩘ㢇耊書萮ᲈ낄Ṳ棰ꂁ艌㟸瀂蕝媈�퀀͕欸䀅⼂䃨ꀁզ岐င�䘨낀ٶ༐ゆ㷀瀄葮⬀む٥惰䀃܉礨〆9棨�蔦ト怂艅ᔰ碅舟疰⢃脮汸瀅茖揠Ѱ␠墁葦垀Ս枸᠆聢缢Վᓈ瀂蝐䢇聿ྈ㠇蘺㨘葻蝇阺肇Ϳ哹蝹祈㢅蝍缀袇ݶ䅈탆萕淸ꂆ蝿⨸聟盐葧矘ݕᗸꂆ蕁䳈ń簈စ؊嗰䠀ݥѨ℅蘞ঠ䢃̎䷨퀃脟⛐ႄՂ畘ࢀ╎扨ࢅܦ䓐怆荦ഐ态͐ᖨꠇ脺棐킀šば삀蘕㫈萄⾐᠀ȇϐࢆ荚䗐�ଈ킄葨㝀킀䑣䟠砆�伀邬ռ妰虵Ṍࢇͷ㩘炄ܻ⥠㢇腆ᨘ袅耒梈炅ղ戰䠃艘簈膁Ǔ䟐态蝰ᝈ㠃ժᢘࠄ虀�ᢆ艴潠₂ąଘ͔㟠ႆȉὐ倁蝄᪀蠇萺田ࠄ8䥸₄蘙子Ր 邀Ԁ梃?ト㠁蔣Ϙ㢁聣朠項ꔅⰠᢄ蕄䑀ꂅؔ䖈젇١禘瀄荱㧰⢀̎᠂̭湰ꠇ艔∘ܰई킀葽捈�荄嚈领蝼瘈袆虵懨뢂落⟨脖墇舄㘠պ池悅茗笀⢀蔲⊐적Ĝῠ젆脞ퟡā簨㠃J猠ᢄĠ㸠�艑㵈ࠆݫ珰耉䅰項聇�ԃ⯀�ᙸꢅ虡̸ݕ㙸렄ա暨ȡ摈ႆ耯Ⰸ전葑燘预萫滨뢆Д澘腊抰ꢇ؏ň좁į汨炃脈ᗰ梄蜔暀쀁ݰ䠠ゃɧ〆Ÿၨ倂萪姸蒅蝠玈쀇荏㫘䂆Ԧ行�荷庨킁ѣ⨠㠅虹炘�燀ࠁ脩⪘梀Ԭसȍ䄘᠇ؼ獀㲀먊焨栅є地ꀀ聜㦀倇Ѩ䃈ゅɉ␠뢇蕧ᘰг㸸⠀虖鸋�㊈�㦸宄ӣ寸쐇ܹ䧡砆ݍⶨ삄̦玠 茷㳸�湸ᢅ蝛ݸ蔌樘·Ճ¨邅蔲礈炂ݨឈ좁葾劀ꠁ蝍⾈燰艍㯸砄ջ䜈Ŀ᐀聹憐�穐ﲆ蘙䔘종`ݰ砂ɻ㯸낇ܿ洨碀̩♘�葌¸怇脝䃰и柨蠇茧濠ݞ幰�ㆠ砂ܦ૰ŕ㨰ꠃ耍ᣈ颂虻䗰좆՝㾸腟埈倆ķ妰ᢂŋ棈萢䵰涀腟枸쀆萦⦸�䐰₄Ѥ⇈뀅蕢崘砂ē姐頃̙ྠ킂萕怨ꢄؒ勨ႅ蔡ჸ�艴㸰傄荒甐⠁脠㹸茩烀頀Ѱ殐�䥐�耉禐項ų䮀뢅͋暀ࠃݺ⧀�脛颃Ŧ妀栅聏儸ࠆꭴĀ蠀̈́欨砅脷墤蘴笐䰃ȧ昰䀂)技ࠆȦ᠀䠁�勠ꂃȣᩈ�蔭ⴐx嫨킀蔂㰐ꂆٗ涘梇虽棨5紸袃❾疘ꀃ荼䌰᠃܃㿠項蘞ᰨ蠆茙Ԉ저蜙ᴀ퀇Ձ瑈〆葉䷸還�瑐䀀聊₰墂营単邂蔟翠䢇ϕ箨瀂ݿ㞨蝹眘ɿH袂ը㑈뀁с٘砆舼姀瀃蝁凈蠇蘵①虭沰ကت庈腠㎠킂ɣᾈ䠃졋ᡘٹ䒐䢀ɝ˸ɴ庘좘茆娸倄ܔነٴ猸舱ⱐ좏ո䣠�檐킆BԠゃ聝ᣨ逃蘊䱸䢇蜝ᬰကŸᶘ颭葏籸蕹壀ࠃ܆Ứ쀄ن䤈悅ؽⲘࠂ蘺⡠삃й姘낃萫ᮨ뢂腥ـゃՕ嫐ꢆ腅㻘퀂ܢ愸킆͉毈逄耓敘堀艚Ⴈᢇբ㐨考蘳丨ꀆ蝇⍠䠄艕坰㢇聐瑀좁ܓㆠ⠀蝃ㄈࠇ虢邇艧娘՜㻸̍⏐ႅЕ㉠む舋卸ꀆ耂筈�䕐脢璐炄Ө溠ꢇ茌ℸ삆d糰ꢀ脙ᘀ栽耤Ƞ젂�眈耣㎨㢆į㠸뢀蜱呰蜏壠렇w㛨倅ਖὐ艺羸է氰�萳ᵐ뀄݂㵠뢆N휅쀂ԟ♠炃Ȼ啘窀Ү⺠⢄H㬘脌槸炇=꽒�傄虗ư蠁虇Ⲡ悄ܾ䗈䠂絠倄葽ᇘ뢇ſ喰沀ܜ䏘Ø荈䖘퀅تϨ₅ݤㇸ邅腨⤰䀂ٍ瑨㠀Щ羰ࢄ茟禠ٚ囐梆옃涨ꢈͼ嫸�ͨ뢆艷仈偡草⠰聯烈順耂㰐聨新ꀀ聋㣈ܨ㔠涇苋泘�Ԝ倨ᢂ舠拸碃Ԭ退Ⴐ〩а抠⢄艵⣰₅̈́䥠䂇ȕЈ邂葝ʘ蔣ꀆ虻㢰ط㔀瀂腺㚈낀敒࣐悂ؕ瀘 ű᐀蠄خ䉸�.ዸ栄蝡䒹ࢀȀᬘ܍➈᠀荝ᕈ䀃虂紨ࢂ艳䘰�脠䥰쀁蔎ᄀ鄨䢃茏⏠ݞ䙸栂艦㬨⢄聆᳐ꂂȈᨈ邁Ѕ梨䠆ћ宀쀃葓坰ᢆ�ࠀ艫⎰逆蔼㯀뀂ꭿ缠袂艶㸀炆聯抐傇рᦐ퀄萀㌀码葴ب⠁Đ⃠ꠂ蜋㹪쀀�尘⠀݈ኀ᠃Ѩ偀�蔥⠠梅͆攐䂇蝯匨蠄̣呸렄蘗ᧈՊ䱀䢂٣儠킆9垐᠄蕮ୈ悄老子ࢄ謺推ꂃg⦨�茆曠艩墁Џ䮘墁џ开ဂB䕰᠆耑ⱘ砂葶ᴐꀄ艃䦨舍礠
վ㦘좄腸橰䀒ᨘٙࠃ蔚Ⴈ墀蘮⑨좄eш⠆ݫỈ쀁腅櫰傇ད⼨送脃⩈ᢂg攈萆磀킅葋쿭砇腆戠^瘨颂ŷ珨ငᘨ荙Ⱈ蔃膿弈送дࡐꂅ聱ᡠ灸}䠸邁݀兘�聇ᦈ낅耦တ㠄聹㗰ٶ䯰䀑艆ቸ삁興࣠むͅ梸�㿐뀃ч⟃톇ӫ罠ࠃ腟Ὀ颁쉏㠠⢇聈⩨₀葽适ճᛀ묬ᔈ㠎Ы䗨�荶杸�很墀ੀ䭨肂ћ⚈⠅葆器쀇Сʘ脹晈꠆є揰뀃Ў䷠炆♹䡀ࠇ蔎빾젂茼ᘈ邃d䣨뢀٪䮰ꀇ蝘杦ꀆɀ㻨㣧ɦ㖠좄蘷版㠂5侨梁̷檀ࢄŞ枈頂㈂ૈ蝞℀聫䛈预蜋㞀㠄⎀ࡕ袅鑩疢츨ᆉ﵈ⁱ擋ꮔ䄮蒿욌琑❰ᅊ즃厷�䧷ྡ猄솸ೆ뱎ⳃ쁓搅栚儹݄ࢆ谷뢤⬂傅膦鲃狢驆栏勒퀵求�凇⁛쮦㈧䧆䍠䠨燕䄸⟫떹镤ཛྷ萈⡓뱠⋡ᔁ悪怊ᥗ肞如ᐈ坢耻劧ꁹⱢ⍘⪌劣灸ⱑ鲀삢ᡲ曌≐䀗暵䔜쬕脇棡숾ဲⲏﬠ萸Ƹ鐒㌪쨌〭䅂뒤䓖ᔕ䈆肊ぬ虮ꏋ壟욕᳆宑ꂆ�ᵒ覗䨣벘沧�햭ꐘ⟴ḭ藊袴棨沖넍㒇Ⱃ⭬䀍僰ఁ凧휜䒑怑ᱛᥠ搆逈�嵦䔍晙齮倅嗌
룁頦℁㯊䆕襥죢捺И陁Ħ䡥ヘ䒋სᕵ⡂榼슏傁顩砢㊸⌓︀࠼瀀戀軙頣聦Ẵ蔋铘Ĝ탄፸昊Ἀᄘ얗尨鈒邤ᕾꒆ托蘮ဤ㆔옓숐༲�枒늉鸻�䜕ᬪ놦䱦䎅桹靔�ꒅᐊἐ쐐磨褨褣⍪䐚記᠋ᥠ两ꐇ稩ᰐꆀ濤ę豠ᡚ装嘰䆉≸ၟ儥ᐚ䘁䁹ᰩ怅永䄆걐茄ꆢ因愇ᨡǥ⪌ꑨ鹡胂濼鸩脝烄睶�ᥥ㈔戙㐑ᐨ�Ј킩鴘쀣䆲ʑら鰆⇆ᵴꔑﳉḻ䡅侨숈蒁褑줄泦䚌걐ᝂ嫆䙠ᴳ禁孔얌䈑юꤢ粊⁑萭ᥡ毈Ș聡̛�욍ᛠ蹇ᆢ級ژ到ࠖ戋ꈡᅣ䫘ⲱ逑큠㹮ꄉ�ᝋ㠬븸錇凣忎果움ጜ尨ܟ魱ㄡ羺ﹰ鍭楥紎蜼龜呺暞�쀧塒ꘛᠡ頳㠡翞⎖烸酮脥Վ✟쯘鎤뤥ඈҎ吙鵼䤧፦씝铨ᩥ奇縦纜길魎颤圴֟닠阋Ǡ珲曹܈릇✊鳈饳禡⏶顛姥㺆棐衿䃨겸鬫礠⨦砀Ɓ砂褚쀿ꗈ戒䞀┈肁߸Ⴣ塡䀒࢈̒䇼䂂⬒ꢇٝ鐃Ĵ习кᡀ怈䊰놈Ⓚ뢀ეᢠ蹰⠁脀炨ꀄ痸琏ⅰ᠅റ탣噐Ȝ쑈�搘邏ꠈ聆Ⴡ簃Ȯᨐ䔌㟰剨Ↄ⣄ࡸ偡Ȣ᳄2๘脂癸䆅㸲耆-둃༅�설�⢰ↅǐ塄ɷ�ɫ㢠쀺燨㟌醏❮ፗ�छ웰䔯⌂Ⲱ膅ޢࡅደ象䑰䄥䄁纴怊ᾪ탂၇擣脞࣑쐥섔怀肀㭲棂蓣М냀Ԝď䁠ဆ�dర䒑윛ࠈ䀔┤₂ᩀ偁ᖮ䁃耭ఀ쌥䫀樜选Ⱈ䠆Ꮹ롃茌᪰䌀㢠舜䂈」ꣁ곃น쓁茏쀓�솉Შ耀ᢱ頢ࡘ嘀̨濰Јƃ㍺㣂ང겠༺僠蜜샐숁憴소პ　Ίﱃ荌堑耋旀怌㜬�⛶ᯎ⑂܃䑡耝읈숆熔ᦼ롂ⱀĨ섈쌕☄₈㨄�ᄮ譼鲁윏캐愞㡼倌\聇៳㡡䜫⌝卌脃�ࠄ᎓沢褳⛡䍝醐䄞⮨怋⏢�ʦ상ձѐĪ酀䌜䋠넊Ẅ惞᳣襑㐱脢₠�⎆၆衦ʱ䜴䈈恄愇ǀ�㰁Ծ癠䔪➘䈞矬㏞础Ċ峃虗䲰%㍀茄ῄ‘�풠չ킁씬嶘쀖㹀�㱚ᮓ갡见��䄘䄀膇ୖ塃ᴴﱢ腶ﳐؖ耠㡀ೠꁆأ⒢谖亡舻斀䄘㲈ꀃ⽦顃ጝ胃褒䫀섬돨�峌䆂⇦ꣁ೨蹭ฐԪ훠䈕矌醉ϊ郚ᎎ棁਼䫀茢婐Ć䮔㯺⁇ϡ頠蠖昑씔स逞㜨愆ៀ㡇ፁ䀀Ŋ읒殠㈝焅ௌ桀�ಱ䐯ꛨꄑ㡔뀅쵘렅៤ꂂ蹝씘徠怏൴퀎⅄僇ᓵॕ긡씨쫸ꊤ猼送㗨墆层蜢᳡ا螐䌐᧬ㄆŞ샂ଔ뒁舸䈑̾ᷨ舀笠䂃ᷨꡇې豢ѕ僡䜊툸䀔ࣦ�ଙۀ蘨㟀茎ᔰ◈恄ᔈ鑡谜ʑ茲塈䌒汐冏㧞ꀂฦ壀帐茄የ∞挘႒䢂Ԇ〢Ը䃠Ԭ氰䈚瘼ꀅࣇྤ倂ภⁱĤ幰怆᪾䡄ᥨ풁丁渐쀥꩸怌庼퀂㖞送ᢻ뒢Ⱁ䐈�喴ᆃ㴆䣃ϡﰁ荊僡䌵占⌛䄼㧔颇ṗѡ襚窐쐸舗潸ⱪ颇ᢩ怂Ѧ좰䜵嬘茐殰넊ᐤ僁瑁蘩ᙐ섔꧀分潘턍ત碆મ邡蕔䢀䀽ﺀ셾ᣬ᪺Ꭲࡂ陰̳섑䖤킀↪끃ப衢ഴᱡ䄹掘ꀛ懼 ᗼ�ࢽ푁ؾ庡씟窸ꈈ翔悎Þ쀃ΊⱢ聮倰윺團쀎ၬ㬮၎찂詗옌꤀䄞῀�ቌ-ొ멱쀷왘愎れ㮀梇ȁ僠ౝ退쀿㢰–◸ᤂ媀ď࠼䰀୲頣᱖ちᬒ癠ᘡ쀕ాึ걡ꄅ࣐�ꀖจ깡Ć�ઠྶ긡脂⚐耕᳠࣡ꇛኈ䈁ꄛᨨ㋠䀁ৎી䀁ବ�ῦ멁서*‐ஊ�ྤ鳡思؞狠섇䊀䄘ὂ塁᱄㳁쀀ᖪ郀脛ᴶꀣꀚ裡脉ఢ蓁ൌ乃�ᘮ란ĄᵜⳠᮔ峠븀ܴ㸠ꀉᜮ〡쀛ᤶ局쀏Ꭲạęଖ�ယ�섍ඪ悡”ἐ檀茅ڄ�诶稁⸝ዪ粡ඦ簁ꄚ឴㒡�ᘖ낀Ủ壁耑ޜꂡꄁᮺ昁쀇ගິꄖᥜ脖ᯠ䛀䀈皡䀛ࣶ黡යુꄀ賁思棡蚁ℝၤ먀Ďӂꀜព铁섖˸�Ꮺⓠ䤍ሄ聁ᘲ脟ᗨ怊Ῠ㻠Θꄛዸ袁ߞﻀ䄟ᏘⱠ᭪밡ďප湁쀗ᛒ㳁ꀇė㛠爸威῾皡ꀖ᛬뉡쀏�恀椉ᄇ멡℗纁䄁Ų⑁脐ᥒ颀ℌӌ눁℈ฤꄄࣜ쓁쀗ᣎ蛁�ۘ衁ꀝᆘ쭀ᨒ쀎ᐄ뫡Â⸁ěᖂ틡䀀ᮤ諠怈>벁愚Ꮘ례䄂"ꁀ섊죁 Ĕ빠섋`䈠愌ੲ�砸ﰠꫠ섄ၴ币耑Ƹ瑠ꄓᗜ縀℉ῂﻱ脛࣪㸡섅Ẽ쓠Ďኲᙀ耈౨耝ന틁̞怄ᵀ突ꄇỸ쀡뜔룀踡ᚐ큡脛᭴�愐磡䀀રⱁ섎ྀ墠ĉᧄ怡Ꮎ℈Ỽ⸡䄀ጠ暡怕ּ�䀄ચ籠쀋ڄ肠ꄟɖ뒁ℚל㫡癁ᮨꚁ�蒀ꀒኤ脴ས�ᣎ껡怗;캡愐நꁁ䄜ᒠ粁ં캡耂፪蒠Ęฺ盡Ἲ뺠ᯬ㫡耂ઠ愌ଡ଼愇ӂრ怚ޠ蓁脗៶怕୰㡀ℍָ鳀ꀆ។᪀ėឮ븠䀀а繀脐ᐪᵾࢴ룀ėਆੀ쀓ឤ咁脞ﰡ쀕ጄ䛠朏颠쀇ࣘ污쀉ถ�ᢾ鳠―ᜀꛡꀉ΄⠠섌ิ볁ꀝ̼⺡㈞ᥖ傀ĉʤ鱁쀒Ṹﱁɢᚡ‛Έ艁䀉ῂ섞᠐噡䀆Њ縠ᕠ峀愅Ḝềվ움耂ᵖ言ꄂᶰ᳡섛ᴼ�‐՞졡耍V糀䄉ۄ긡䄍㲄雡輾Ⴡ섎ᚲ㈁ℍբႁ耂ࣼ嫀‗͔냴Ďâ풁‒ὲ烡ĕೠ뺡ꄇ璠伏ᎆ屡耛᠆哠 ዶ滠Ӏꀞຒ竁ꄈམ粉�ᗈĂڒ加쀂ࠠ낁䀛䄎㗡噠ࠐ〠䐁섁ᙴ䀎彗℁נ눀怂ᶞ詀脐ĸ䊀ᯀ였”ᎊℝ嫳帀䄈ක悀愄ᆾ愁፴��൲ꨡℂዮ삡‚ᬜ䉡ᾶ両ꀚ഼Ё怐်쐁℅㲀聠ꄓᡸр쀒ĺ逡䄇ᵂ쐁愗Ꮪ䒁섈ᰴ墡‛ɤꪠ怙᳴홀ꀋḶ廡䀅ເ⨁ኄ벰ఙ耕᪤겠ꀇ璀혛ᕂీēŜ⹁䐈ᘘ⩠怐౨鱡ꀂ篞䊁ࠔ츠愐䚡࢞ᡔ縀�ᴸ혁ꄛ⡠脂ዺ币샱Δ剁Ĝ되㺁䀅ࣁ’߲렡怜ᗮỠ䄅ࡒ᜶Ѐᾶ쉠愜ၲ爁脊᧤됡ᴔﺀℓྲྀ溠䜒ᝐ聫᮸﹡䄋涟꺣愞Ŏᾶ적悀ꄟක愚ᢖ㢡쀀銠怑༬衡耄Ἒਖౠ脏ʠ䀁眐싁ℓṜěᆐሁ諡思ᐜꛡ쀟ꎞﱁ꼒᪘뺀䀚ภ퓠ꀗŜ呠’᳢ ᒎ ᆮ陡怑ᨖꡠ섆ᙖ퍁䆅ึ첡脞೮츀‑ムฮ䰍⇠캡䄃ཾ䢡”়縀�።鋀ℙᾒ⸀思ោ⫀䀎ᷖ嫠ℕـ炡ᒨᘀ怈ᐠ萁脑ಂ₠ꀜ
泡䀄ᠸࠀ䀖̠栠ꄉᅚ뙡怅꺀섉Ƙ븀Ԋ訠᱖ቁꄯڸ僀䄈̨㡀䄇Ḩ꒠‗Ɔ㪀᳄瀀怑᥌㊀䄕ူ亁㌚쫁ℒఆɁ脜᠆ꠁℒˢ⻠ꀖؤ벀��ࡡ耑ં㸀䀊ᖾᩀ怑ᝦ犀耏R䭠膓�࣠�ꀘᯢ슀䄖݀⃠怐⣹쪠ēᓾ︡Ěਗ਼恠Ě耂ᢨ䀁΄颀 ᕆ㐁쀁�㛢耝ᱶ ℌ΅、怍ﳠ�᮶فꅕᙼꄏ០僠�ᳺ䲁ꄗఐ낀ᒆᠡꄋऌ듁ꄏ脙ᨾ㉇섉ฮ뫀愎8�鹠ᙺ麡慱覛᳞훪意᧼� ؖ䲁섙༸䁀섓ર졁섉ᬨ虠섕ᆔؠ脋ीځꀞۄᣁꀞԒ먁삎ᖾ耞Ẃꑀ•ͦ詁’࠰�䄄ᇘǠ䁘൞샀ײ䳠ꀟṀ㰡愁ᣖ蘁ꄟېኀ䄒ᓖ怞仠ဎ绠ꐜᰌꀐᨺ㓠ꄄࢊ耖ᮆ⻀ꀟ࢘㚠䄟Ѹᢀဨ脞Դめĉཬ쀀脃ंᑡ№̀ૠΐ섃ྶĔᄒ䰡䄏䋠脕䏫똡䄝ᷢ훁ᄀℌ᪨瓁愂ቬᑀᙞ屠H뱀턋Ᏺ僁 ࡢ湠ꀘ듀ˆ糁䄌ᷰᚁ䀉櫀䀌Դˠ�Ǩ鲠ꄒፖ긁	ੰ䙡䀘ᷴ�ᩰ鐡쀎ᦖᫀ脙赬�ꄗᅌ왡쀇Ⰱ셪ᧂ咁쀒෪⠁섔ರⲠᗘꀁℇᒊ쉀ꄋɒ虭�ᐔ蛠ᾚ㠠愃ಒ繡䀐ތ섎ᅱ쁡愎᪶깠刕д�߀㉀�˞䘠鄟֊刁愐Π怇ᩀ塀意ዢ橁脇ᵮ쀕ᓺ슠괅Ṛ㩡쀄Ểꈁꀗᖤ烠�ᴸďݎ瑡쀕�ᆴ븡ꄍƢ烠Ĉఢ䣠섌̀훁Ğࠈꨁꄁ࠼怀ð頁‐ག哀娑Ҍ搡ꄜ 呠耙ᰞ삡섋ࢠ稠ꀅΨ愔ཬ員�̰ꄄഞɜ竁ℙʐ낀怅Ә뒀뜂Ӻ컠老ᇤ뻠ℚᬆ耘ြ縡ℍზꄞܪ쒡ꀜ̶ಁ㸝Έ��繀℈ଡ଼�줜ኚ恀耕ὲ�ౌ㣠섟წᨡဂᆌ䂁섊ఎ蹀愊癴脛Ꮬ�☍ᤤ껠Ęᣜ狡耗ঀᖶ愊ῖ㛠ᾀ䃼ῴ嫠脏怋ᾠꫡ脙ᨲრ脅ႆ℞ᮌ樠쀃ֈ娡№Ũ䃠墀ꄞ̠먔옽ᮡ鎃瓃릐⩽諟鄡ᩭ䘘Դ딨⡸书꜎軝꺌毿춛䋭쳉빂鑀苍ㄗ笤ᘈ➋Ӫ豆落Ω㲜ジذ摡ㄢ谂␅饇擼愊즣柤ↈ厔ञ䶛�⒩�䷢ࣴ밃䭘꧄擉䆳袟쇉臘↨蠣涂稖㛨玅얃凤祹ￚ㹜쏟筗혴⮜턛ߢ䐘㸖ඞ몐겉ର鈨␥⬊褱˒둀㰦얕䌁邲凚П찀႒ﱌ흙肧워╸䉓⍗䱹㰸爀㇋礄ⅱ憙㍔슈ל喓ꎡ볲䳀⨼을䪲儴⌆᱁哸赺ᥡं蚘ᡯᄢ։q䦀↜⚌뱘姢扄Č粡ၓ碀䉄⎓ꀀᠲ桁㠆莁义ु�쎎衁茋샢簊蜎嫡ᩓ兤塘섚炙衏碀傈䊇웙脽⋤윇䃰逴ड⓶ꈇ蚨饝ႀ㤐쎍ꀘ蠅悅梴⚈Ⱑȃづ愎戃象ै愂㸠Ĉ뺑豹釁ৈ욑∑聡偦嫨蒌桰鰝¤⥾䀕㪘蕝ᦅ祸☇የ䠓쇧癰䒐‑j塢ⷜ⒍탘ᨇꇃぶ況阔僠�鰉衆ⵂ�ॢ僧厼ꈎꁁᔀ懧㖀䆒庉ॄ쇃ز∘鴫�脌恹।槂㰦ꂋ鑠�檔ꔞ䚀贏턆㓒攍ằὫ磆奤ꎑ뱐ܷ꤆娆ꎃ蘒訇㣁ሸꎊ橡魒腁䥔꜔䩁챼衂惈䛐過ᤠ殦舉䓨ܛ内堈昛縁఼袄Ṃ솉㛹ٷ᥅悌✈䪰茍쀅イ쐟ᨉ�ꢃ㙘䆞᳡鈽킢狸쀖≁ᴒ날᰾ꒅ声輽�⌓⺠錒颦Ȍꐆ렩ጀぃǲ撀バ轼ć淶䆈기ԕ肄甼ؔႁ՟磀㵤⒄몹蹸榦㈄莈顡ԟ᧦श쒆䢘ำ矂茌鍝ᆧ嬤쒔䳀赟ს暪ҘᲠᨳ惠✂겱;倆哜�결聘㣂熂蜝ژդ顃╶螄먘葶�쀊푩ቡ装禤ꀐ�䂀炔얔䀨ऄ쀣⡤昙搑Į舆酈耊ꄀݜꁆ͕䢢轞ꪀ茒ര戍ᕔ⥔뀀θࡉ烰舿愒ေ醅రࣤ惣輌騱옫怒䈓㠸ㄋ㸘㣀Ꮎ蜼碱䔑기戎僸憎ⓔᰶ氠ɇ졐숦樈䌛喬膂⺄ᣃ̨ゃ壀䘐瘐戛厤悅ᐾ裄ᱡÃЬ䂁脜洠耓䀋త렃ك쓠च䱠䀹舗禬㟤�踘囁Ƚ覀ꀃᑰ膁Ậめክ壃ࠨ㣡蜧湘䀰邁좀ᖃᠡԹ㉁윗�儏и᠇ᶤᐂ詁퀐옢酰č䯄₈ᔒ타ᗣᲢ脅蔍⼠쀆ൌղ僁֥쳠詴�¸䀕䓔쀅አᡂ។ⲁꨮ﹠܉丠섍㦜鄉ڪ袇ᶻ㱃蕋ᢐ蘃ᄨ舂Ⲩ솋༖恄ܟ�蕼�찿ﰘ⍬ᄋῺᣅ࿕㣀腸쌷ꬰꄟư삏㛾梆ŧ謟䜲ﾸ섛ᣠ턏ᮞ킇槂ಏà脷ꌌ嬐邂㺼怆ю堁࠲幰茂挖ର憈Გ桀ߨ葀赌�옦銰ᑤ耀㓾恂ᠺ葿㠱̽計Ȉ䕰ੀ⠀W籢蜚谇숌❐℀堔脇ᚬ适Ⴉ쌫舀䚇꤀怐䃄冋⒎큆ᣤ⒠�衡萡꩐䀁崤낂Ⳓ蠂ƿ쳠ĕˁ옫떸耗悤
⓬၏밁Ą병蘶䪀䀃tⳊヂᧃ財踻ʁ䔽᷐䄕摰낆ᠾꡄᖜゃ蠾ꐠ萆櫐笌䄄㡌�쳡ท肑蔫뗘‟異邌╶ꢂؒ桂蜔顑̬馘ሐ邇㣔�㣃ؠ䌗⎎⽔ƈኘﲡ蝏ܠᛘ戝㍈脮㘐၁ǎ胒Ȑ蜢炨暐膄Ὲ耆᠖ ก쫑䜸Ǡ愴 ᔦ　፤쒁դᠰ쀆ᥐ怆䓐삅ကႆы쀀謝䙐ĩ蠰쌑獜퀏ࣀ頄᙭搣ࡂ䒁̾준䈔徼悊⟐郅ǿ၀В鋑숋䅜怂㼄膅ឦ룠ౘ튑蜦Ũ耎㋠⠃х衁蘆쑑̶쇈戈歘킆㜚む吣Ԋ혁ԤȐ愙似ᆺ萳擱Нꏈ砘턌Ԗ샃ഹ㱠ܘ빠蔖蓘砌瑴ꄏ㿤瀃᩿ᒣꑡ蘷⃨牐䄋ㅖ肓偠윏⺈섟橐ꄋ࡚惇챞裠༖쓁ș�ꈚ㶄怊૾종⑁耴걡者異숏嶬肏ᒶ㧅່䳡蠉슡䔛Ő䄍⧼憆╶ぃᛦ쐤ɩა옳銐脉㷰炈偆ߙ謽裠옞辘쀎Є炏Ԝᣂغだ脂ั쐡Ꟁ㙼䂏Ⲗ考ؼ㲁ഡ䘑ĸ锨䌒儼ㄋش㡂Ⴁ瓓赼扡섾⼐䈇㲘よ∶죆됢褘䃐崧郐쌑柤攆㯒ꂁఁ쓢ക竰ܧ碰Ă㧘 綶磅Ыს襛嚡蔡⟨戃脆〲磆ῢ詣फ़䢑쐡⻠䀆濔Ↄ㵼ࠇᤢ棢襋‰蘈皸̚億⯔�ᡡ՛䂰䄬蓀战㰈 ヂᐠॸ뙰ȹ부섇⿐ႂඦÈ䠠詢仁䈞�㫤膎ᡢ၆ᴦ桂耬ᡐ墇�⢐邂̣䙐퀃Ķـ�蜡ⅈࢆн䃈뢆腑њ뀅ќ⢀怆ԗ締վ巈퀃Ѵ⟈ꠂ蘳䪘頀虴䅉킄茂⹀袁ɚἘo㩊葼Ẑ쪂گ㕐л攐�յᾘ뢂ݏ䈠�焰炆茴嗠茦犐삃蘃堠碃ɼ⯀퀃蝤ಐࢀث奘逄萁ঐ袂պР᠃Ԉ⣰肆職፠ğᤸ袇聙䚀蝀䥀삹К─退ĥ⒐蠂BƘࢄ茚䤨زⶸ젂腼䈰ᢅĂ䏐ܺﾋ ō䑰ꢄԂ䴘낁ɛ剐蜵㿸堆тǈȘ౨瀃蕎潸砇萸箨₇蜯筸砀蘻相頁葡慘瀄ḝრ쀇聖℈Ȣ䪈㢃艻ᢀ炆葆Ⲁ㢁蔝摠臾㎸炄舧ᓰ颃脒加Ԇ周栀耗橠む͏躙倁̤⯐ 萂Ი⠃;冐碂e㨘〃̩媈䢂R㤸䢇蘒璠退Ȳ↲袅ݦᾠ̕罰�老Შ耆良䄰좁ċ呈 蕭䨐저聼帨�垠�〸ꢇ갔㈸脜墰倆蝁`䢄蘏ᢇԅᓠ。Ę甸耏⌹ ї袀͜⚀傅̃岠ႁШ᪨碄ȩ㌈㢆茗፸렄٠䉨栃蔠禠₄Ⱥ⽬�睩�㍀颂ؔ㋰倇蝺ৈ碅聯僈傆͙籰怂蜓ី堃葾堘炇ѧ㩠墄ٱঀ　脖玈萝ᙰ뀁蝅⢆з么젂葕柈䂃ܻ哸倇جՠ适܇⿈저�Ơ⢃Ě瀀렆؝⽘邅͕ᥨ�䋐怆тǨ՜癰�͡䚈᠂Օը栄蜴菻䢀脭紘ࠅ葘㜘䠁ɰǨ栄݂ᗈ堃ͩ䖀쀅ꍪ䒨ࠂJ嚰ꢄĦ窘킁腔氐炀П埐᠄ّ⌈ꢅ茊筈ႆ؉㳘ゆ؏曈倂聦∘�脦秨᠂Ȭ࢈뀆̻რ뀄脵夳᠇З敨咇苯痐〆脫榨₇葨㜠䠀͘䐠逇ݶ夰领荁嬨ꀆ̇㰘뢁Cꔱ砅ܙ禈뀄艓Ῠ袄蕯Ǡ�蔟ં瀆S㿰ဇы䐨좆�桸騁͔儈�脴⌸뢆蜵㢈标ܕᰈ䀃Бۈ倆茋䤰᠁葵ꂇ葷潈낆3⚐䠀葔䶨⠆Ւ䉰聶Ș�ꀅ虗㭀蠁䵀桸̀䠨₅脅᪀ᢀإ䕸၌่錹囘ف劐᪂Ǵ偀낇ꁤ䶐悄蜬Հ뀆老旈ဂї粸�◘ࠆ̟ྨ䢁脷縘삆m⒐㢇9ゐ낂Ԑ纰ꠃі碇�⁸젃ə䀐⠆蕐曀蠁荺멄者ܾ邃蔰斠将ʐ位젆̂寈렀荪懀배猰⢅茧廨ࢅْ筘袃ȿᩰ炁蜯㨘蝵庈舴იࢇͷⷨ腷⤀墇萾䛠荬箸ᢀ蜽奘肇舐睈ᢆ蝣ᒸ킅虿⪨ࢂ蝏㔰ᢅݼ⯰�廈⠃蝳㓸蔷ᮨͷ滸ゆ腳熰荦ψ肤聜ጐ〇聦椐㥟㻰耇聕⫨쐃Ԙ㘸ꢂՃᶘ倀蝧Ᾰ袅脅Я㸰뒃⠘삄ղ琰葕厐뢆茫䁀袇ŭፐ葖㳐낆艋氠倄蘄燨碃蘻⠠やȿ月뢆蔗牠栅蘹㠰�簨Ĥई䢆蘬䗈や蘋່ႃȣ焨境Čܨ낇职⥘ࠇ耓牀㢆ٟ編낄蔾㦰�u宀倅؛ࣈ삦言움ꠃՠ猨삇蝮潰耮擈蔂у२肃蜇偀젇㬝浨⢺艘䢇蕭Ⴐ㠅ȖҠ�蘩枸쀂耣蚸љԐ㢁茰࠸蘣㛨葊ເ쮀)屸₁ŉ⺸낂ͬↀ蠂腤㷀ࠀ̮炸ᢂѡ筘�Ю寈颂0牠ဈɡ䂨送ͧ⡃䢁ٛ⼨蘭ಀ쀇聅ᝈ䂀̎ὠ⠂䘝ݠ耰㶀逅蔅塸鸇蘯㯨㠅茙ഀ頇蘄础Ňи�㸠䀇͜弰ꠅ+媸腲䪠렃蕅⁐삇ԑ榨脯ؐ㢆Ͷ䃍ݔ撈怀聃䩐˶擈씄脋彠ꂀ耧᱈⢅Ĭ璐 蝘㜰ꢃ萤䙰ငтⲰ삁�䕐�ᑐ뀁̧烨頁ȉଠ蔆咐磥ԏ帰耄b㜰砃脐⁐ Ȧڨ、ܤ㓰䂆蝃忘ظ矐ݑᘸꢇ;㜀뢇м뀅虪愘뢅蝣㽸�葃緘ࠇſ坸碀ԇ㙈堅嬰碂蕦窨颂Ȏ婁䢅蕏㷨sỨ堃蘛浨�忸舞堈�揰�൸悃蝳您袇腤庈堛聾沈ꌃѨӸ쀄ܳ⌘碅荻肀荼礘좁茿䡐ᢇ耧䘸蕞罨䢃ᵠ盐yὸꂁhဍ耢൨᠅蘟埨䀇w㋘خ煨倀蔋締ᤆ蓷痰అܑ眸蠆蜧皀전ݣ狈欇ك㾐퀇ɚ㘈㠁ɹ烈炂܈↠ࢁ茁䝐₇Ț␐㴁çᰨȭච倇茠⣨墀蔬Ƹܥ䇐ဃ蝯⦀삆茖漨䣩脓廸⠄蜸伐ゅ衢暀艼ᤰ暇涳҈袅Ԏ泰ꂀȜ䄀킀蔃Ϡ瀂腅痠䀁^Ộ袄艠㇈စĂ歐、蘢ᴰ怅I牸뢃࢈袇ܞᔈ瀀ռ勐ႂ陃ᆸ肂Б䮰䀇ԫ㮰�Ȩ吀렂艽⌸삌ٴް隂ґ␐舨ᙈ䠅葅⧈ࢃɆ娪蠂蔇≲⠇ّĸࠁ茦ᅐ䠄Ȅ冀炂Ш墸老艨搐㡑Ĕ⒈᠆虥ް〄丼➰�͟ႅ蘓㔈᠂聽䍀堅㧸耇ⴧ斐袆荾笈ꢆ艝烨逆ջ䢰퀃舃Ԙ㠇բɈ킀Ъᜨ砇萵堈袅腆澀砀腂抐境ݺØゅr摘聚Ẑ耇蝒栰뀁萮ム䠇ԅ壐肜Ɒȅ䴀⤐袁ē҆蜴匐ဂᔶ異ႅ�ៀင艼Ӹ塶蜶Ș肂ݚ㉸ꢀĨ标ѷ嘈퀃㠗㾸䀁蝮絈ࢇ葬什邇̿۰堁蜨൞袆؟柠킇Ч㴐㼅葓⊠ᢄ蕩ༀ悂땀瑸碇蔬㼠.�㠃Sヸ뀆њ堄艜�ࢃݝ㷈퀇蝽漸ت猈䀃蝻ᎀ�ٓ㦨䀅聎愠颇Ȉ现傂蜱䞰퀇ͪՐ䂁蘣ࠈ退݁攀ć㬀境葒舡忈ࠁP揠怃�濘腮ୠ䢂艀䨵䀑㚁䂁ȏ拘〇̀䂩킂蘮䋀䢀萖ޠᢇ͕�茋緘ꀂة哸ꠚ茱ධ蔫崀⠆'擠堂虉存쀁хነ䂆ēᦐ쀄聖粠�缸ႀ�殨颂ܠ㐠킁蘄畈죻艾穘頂葱丸ə嬸倄Ͳ秐炄耕₄ͫ涸ꂅщ圐蘓㗀ႀ虪⮀耂ܧ킄蕧彨墀Y≈�Რ瘚ᦓ띯靈ῠ魃列㛝招℄ᒏ炩䨂鰀긙ﯲ䐝ᲶƞO鯄㥶丆顃객⚜茚薭悩ଌ蕈跀᭵㑵匫錃夑꣠꽞ꢓさ惙䱾ἢ糀깲⹆䓜㫃䊕籁⃦굛滔舖泚쥂�㴘伟Ґ攨ꐱő稵捠Ύ펫䓺羀긨洙�拿캐艆ഐ鴾⽵菚ģ页┗သ慤跑�⼷쇆⽪嶆䊋ᗱ㗨됯蔂∱볈㿱弪釉x蔂ᝄ橔䠲�ฉ㓏憋䎚റ곳ᣧ䜶爬碠ڦᝏ⠍�ዥ倛舉摱Ⰶꌝ擘몠ĸ傢⢈䊞퓙ഖ埊戚큹㡇儌ꐄᙈ഻ᮼ愘㊉蔤悤坤֚ꋘṢ㥇ⴖ﨩ଵ噬⃙ቾ⣇䶊蒔ᙘᕛ造ᒜ⚚긹鍍墦滎茏ᥦ绖솙荃档泚蜈뢸ฐ秡篘☛鹐ᐮ젦紖꘏�豵큂矆쒒⩨靝纨㹀ѝ䀆’仉ἃ⊾⚀梀贏婪䐂㉀陝聳⎨琡ࡆ 们搙谹蜂⥆ᔀ䚚걙͜䃄䉞憛婢蹛礄曒쑠ݞ옖♐᭟ㆤ⸐‚ʨᰔ、⃞ꆅጯㆲ攜ᰤꃀ晄쐈쨨ܶ冇厔憃㋡蹫ꇃ㫒ꐃỨཚ롥滊ꂇ蹱闙榇禬抗ᒰ聐桄弨쌎૩逶偦劖ꐁ顁ഔ⇇墒Ēᨑᅙ襦㩒⒂蚩ᵂᡥ拈̀⒁ᴪ뀤䅜ց˹ԉ棂䡤↋ࡁโ衦淈暁䨠蘥솢⺴㈀ᐒ�Н옸股楎쐂艘ǆ棤옖ᨰਂ梦㤨茕퓘靔馂召䜆鄝耥⸂ꌞ㑱िㅂ૦䌀≡键臆↠䌗狸鴯觢强ꘑ컰ᜍ襆綼욑ĳ怔昜ᙉԚ磅㭪Ꚛ顱謂儃㩊ꘉ�ᨒ逧Ὺ䐔沩訷怣㐂ԛ䢡ᑳꠡ嘈↕䁑蘋뤤➤䀍竈蹲䃇ڮ⒐䛘㕐킠刂䞔堰൙ᇦỈ蔞h驨句怎އ겹œ쀀嵪쀌乐뀆㡔ょࠡಡ∐쌐⏐ȍ珠속ណ码Ȝⳣ襪좐舒댘䀚�焁㊨聀ᮂ訣顀蜬ហꈔӘ뀋͚ǐ蠁荹툀쐷虠耍ፀƎ•킃µ裁멠ԧ씐ঘ뀃ึ预ṙ퐀艜茢嵈ꌡ敀Ďɸ遄ඏ될襹谡>躸ᔐ䀂㽶�⡁轢䡀ᐈ�茊塔脃☴怀็⠡蝡ⲱ̑글숂ⱬЖ标⡢ౚᚱЛហ∛咐㩮やᝫ豃Х츁설ꀇ㶐脏ὖ偄蓡耲縁쌼㷈Đ嬮᩼ᣄ᷿ᣠ贿�㞰̘㯼わ㽂鳇ᾕ곁荹曱쌆ƨ숆果ℊ‸码҃⢂舓ڑ섦᳠톌ᱺ 肠轁쉁윘猀戁墘ꀁᓠ䂁ቯ쀡耶�㑠䀃縘ဋ�ᢚᔃ聈̏㉠쀇Ὄ鄀᠆ꀆඁఏ숽挊ឰ悇ំ⢆སࣂݩ⻑䐛萎稤㒍↰ಎ䁥腣�둘䌐膁㽂ヂͧ糣ఏ鉰蘜შ‟ဍ㵎ႇƊ鳡ा屑윗偠䈝焜ㆉ㪮怀ڃ걣൞誱숄付℞䖐冄ැ䃀�あͽˁĖ挠숇恈醇ր큁ᖬ磣橐䔤悘ꈍ址逈⿌ꢇὦ衸᠁䐹㟨挗㫸Ăx픇ା瓀ࠎ﨑䄶逰舄∌⽤�␁蔂骡Ģᔈ�ൠ瀄㞤炄ᵔꒁ୫琰씃縉愁㳂怆ϳ൶뙐䀐厀耜䮄悎⫲ᣣ萣豕囡䐷�ꌋ匘�༎뀅ҁ蹋ﱐ脷糨ꈘ䰔ꂇヶ졂ְ䣡ฟ챀퍘�㘔ႀᆰ瀅-础茁英쀵꼸䌇⹐焈Ỿቯ鲣A誱茚茜熈৮�襞渱윑嫸䌂䮰や끃ӵ벢譧Њ교側ㄈᇲ⠄ڀ砂葀㑱䐕䑘挑Ӥ䄎᳜怀ᴣ灠ź峓̟숖富炅¾碆ໟ档8蠀쌺ᝠꌐ䵌킍磇ॶࠫ≁쀃埀茓ᆸ焂㙺뀄ᕘ貃ࠜ蘫밀�Ꮼ倆⥀耀ᘭԳ䘜ᅀ感㬴『㬆㡃ᔌ쀁ɰ〰茔ꒈꄞደ놌Ĳ᧖삂ت튰䀲耈ᘠ℉ᡈÆۑ葀Ѻ⑰䐻�⋨悍ศ处ห瀃ѳ육✈䌐官瀇ᩂࣄᴷ傁༐䈜Ð䓸퀋㓂ꁁᏏ鐣੪詀脰ᠤ넏⾨㢂੪⑃㰀蘙⍘∁憰䀏ᎈᬱ壁譝늱䔌ર䌙㯘ᤆꣀዃ냃蕠璁숢棈⌀ᜠ በ᭥ꀡ詁డ윥섑牤낇ᖈ䂀Ǿٙ糐ℸ�怗ຸ킁㟜킃䠢虺墐Я뎰�旈醊ꁃg쑂ൔ繐윔ꈄⓘޒ졀ែ谠	渐䈡埈쌚ศ↮遀ṳణꉱ܁㾈쀀▊醆Ϥ큇೧蕧民ğꭸ�࣐熅╨衇㠃ఆ誐䜁ʈ䎸䀊ㄨ�裂ศ䔂暰愀㰐ႈ㑤䀁љ⡢ܰԣ괸쌏䯬ᄆෘ䁆ᑥࠡꭊ⊰ሃ鼘℅ᐌ怃ࡆ壀섕ᘈ찁ର낁ϲቀ쀊푁℀ࠞ㪀ň۪쑠℈ዀሀ脋Ő䄀ࣶⱀ䀛ጢ먠ꀈ灁℁᠀誁怃ږ塁섚᳒颀쀌ᭌ�Ϻᐠ쀈᭺⁁ℐᑪ㓀ꀘᕈ뒡섂В䲠愘۸籁℁ዄ晁脏,였态ᰘ㣡℅ዊ�䄎ᕬ㰀愑ᑒቀℕ렁Ğ䛀ហ肁ꁀ섁ᤰ㢁�ᶖ℄Ĕ愕Ჴ瓠脁ᓼ⢡ಪᐠℋៈ―΄넠愀ᷚ저ᦲቁꄋ섅ɠỠ䀇ଂ뫁Ďዄۀℛឪ쓁愖ᨎ䁠态᭬ࢡ怘ჾ苠ᧆ賀โ怡℄ꎼ㑀䄋蠁瀠섚༦䠀ᄤꂀ怐ᗄ䃎‟͠빁怖д竀서Ĥﲠ䢌耑ᄪ炡䄓ᔶ䑡ꀂސꁡ脚¢∁ꀘྨ摡ꀎݮ什䄖Ὀ툀脀ʦበ脙ᢚ耏ᑄ�,暠 ᰀ萡思ᮄ᪶︡Ęᇎ툠쀝ី骁脏ᰔ愔ତℙ�ꀋ�ℊ㪠ධ㫀耔᩶獡ც삡섆ወ⋠意༶ⲡ愐ᲈ嫡쀂雂Ს&ᦆ큀쀘˚츀섀ྒ踠䄎䲠‑Ꮐ鋡ℐᔦ슀༞ᨸ軡䆸ࡔ鱁䀕ᢠ䠀섁Ć�ꨀ℘ࢊ怏Ćሺ帡意អ㑁℘ᅴ䣳䄓Ӝ耴ᕢ亡䁅᭾∡脞ঘꀀĊᑠᙀ䀊ᕘ䨀ꄋᖮĒѪ㹡쀁௴員䄘ِṁ而त灀ꀄࡲꑡ脝ᒰ艀ꄙ銁Ѥ䰀耜ᣤཁ䄓੮뙀℘դ艁愇ᅰ똀䀌บ堁ꄆᖚ纀섄ឤ�ժ�ᒁ„᳀袀愆냡䀝ᖖ㰁ℑだꀊṂ呠�媀愚ࠡ脋ƾ䉠ꄕቚ蒠䀐D劁脌탘㑀耎ॢ䐡쀊ᜊ㢠ℂ᭲ʠ䀎ᤄⲀ脖٪髀怋ೖ�ᇔခĘǊ㓡耝᷂ీ怙Ỷມ搂ᙴી脆Ӣ怚Ἶᨁ쀆؎”॒泀„ᦨ@�᭜�䄙Ȟແ䄞ࡁ�ඨꄘ΄᱁섚ؚ‘ᑒ︀䀍Լ耡脌쫃–ሼ怑Ķ㚡�䃡䀙ᰚ搡愜ᢊ肠쀄�쀔Ⴎ␁䄓ᯌꩠℐΒꄛᩢ죠ଜʁ“ᶐ庠ꄒୠ㘡쀗ೖꁁ�ں炠愖ᬞ㑁ᰘ訠ꄛ혡甋᠒쨀 �⃀ Ć僠ꀞѢﻠ℃ഐℌஈ䫠脝ᷢ峣섐᱆蹁఼廡섋Ԓ穠쀑ǚ㑡Ěഌ嘡怄ᔺ뛁䀚와ᙊ怡脅ᕴ䚁䄌ӄ᩠‚ᇎ‒ϲ鉠戏֖ᘫ䄂�　ᜰ섗᠂鳁ꀘᰮ䁀Ďᓈ뛁�ന櫀悥ᰘ㚡脁ࡎ쀞ᣄ늡ന墀�ᬘ驡ğᘦ䩡Ďᩨ堀ꀚᩘ詡ꄊʨ섛ૼ橡䄔ᾚ㱡䄎β㙠쀗єⳀĆ۰꺡愒ଚ䐀怍�鲁�ࠬﳀ’,曀ꄎٌ怀怂สᲡ�ႈ髀怄�㸀脂ᱜ쒀쀑ᨒࡠ脈ῂᚡ䀗ᤜР�࡞䃬ꀌᦐ栁考ૺ噁怒࣌᧡䁐ࢌ⃡脂Ჶ钡䀀ɐ볁‖ೀ嫠℅ᮬ⺀똍皠愍њꉠ섅�퀀쀞ী졀�ዚ⣡䄕᱐¡ Ӗအᇄ䄅ᗸવ愁ڌ숀ꄗၖ度ꀟඒ왡℉ᥦ訡耎ʹ숡ꀃض㋀섉ʤЀፈઁĘ樤ు쀅ℜṁ䀔ऺꨀ耄ᾠ⒁ᩬᒠ�๚Ḁ䄔æ裀哗怏ႀℚ࣒젠ӠР砑ឆ墡ఏṌ긠䄂ࡪ梡ąᘮ닡䤛ᜦ쑒ꄆપ핀聄ඖ뱀愊㚒ກꄖẸ籡ꀗᕊ먠ꀋט員<鰡Ğᖰ血�௶偀ॸ⫮ꀝᳶ琀�᧐۠䄎Ȫ∠쀉ᔚ者ᯬ牡ꄌᘺ㡡耗ೄ칁䀖κ墁䀃ॼ胁䄍䶦뻠䄙렀䀙嫒ᾐ盠‖ዤ鲁쀝ଊ�ᮺ롁恃頎烎‛ߔ뛡�ܾ猪섟῀愃̾貉섎ᝦῪ粡ℊᶞ�Ꮂ鹁௶⒠ឌ悠ꀎـ癠Ꮴ㻀쀖ࠪ뺡䄑ᴾ䄏ዪ飡�ᶢࡠꄙኄ쀀ኄ頡xո曡ė࠺�肙ፒ耷섋ଠ琠℆ꘁ‟ᬀꢁ愔่ℙ樹㫀ⅢⓀ�ᐠ풠ĊᎾϠ삥蒀䄕ᡞ硁섔ែ仠Ĕપೡ℀ᴒ틀⼋ᬲ頀�ں摡 ࢸꄏਤ�Đᖒ욠‐א큁意ᬘềđᤒṥꀆᎎ쒀䄄Ⴜ橁怚͔咁䄓Ԗ뱠섀ዮ`섁߀⺁者ᛪ顀�ౘ黁ă෬䀋ሎ신怍і䳀䀂塡䀁ᶐ툁ᤒࣀꄉ裡ꀖᖠ铀耙ƒⓡ䀊�墀�ذ₁�怂ήꀘਗ਼钡ꀈ䁀᎔㣁ꄓ騠서ମ貁ᖔ栂䀈ࠎ遡耎Ĕࠠ怇ׄ䑠愝ṡ b䄒ے䑃詀섊Ꮲ怐ᑞᘁݪ壡态粿耡䀏˔飠怈ᯠ鑁脒ᡈ쳡℞ᙐ縀ᢞ쫠섐ɒ∡섆ᡤ桠怈ᕪ툠ወ�’锧嚠耙ᤂ℀ᒢ든ꄋშ嘡怞ਜ呁쀐࿈啸훡쀋წ陀쀕ᗢ怌ݞ苠怟䨻냂ᡢ걡ꄆആ퀠耗о簡䀄ኞ㈁ℂǪ悀䄉ϸ�២耓<겤Ďતს䀄ሂ嘁ℏ؞ﲠ쀎쁡찓Ȁ㡁ėƮۀꄔᵤၡ℅၂츠�习섒লСǨ盀ꀓפ닖ꀍԪ飡“Ҳ䄞ᱤ첡ꄂ艡ੜ᪡怒�沁䀛Ỿﲠ૾ຠ䄀졁섏ᇦ惁怐먍犀脙ᙾ䪡ꀝྚ霠ꀉ�ሠ℆ಲﰡꄒన蚠䄀ᄴ�竡쀕៘脏ኜ۠�᷐炁愖࣒ꩀ섔ᩬ䘠ꀒො찠䀈ᱲ磀漀昡䀆ᖦ쪠섖െ퉀ቼꉠꄝᐨ狀蘃Ꭾ鋀ꀘሊ�ᩀ섋ក㩠䀙៘�ᔌ鹀㰐Ἴァ䄉Ĩ냠ꄄ᥊’ᑢ岠耓ᤪ銁䄇ᓾ郡脍ݘ裁耇ˌ칁䀍ጾ拡�ᔮ븁怕ꉡ쀆ુ怓፶⫽䀏᧘ڬ긁䀝ৌ䳏脎䷵㲡隠耙ᵸ因�ದ脛Ḩ⩁愚ΐ㱠愕ῲ搡ꄏẨ娠ℋҦạ᙮콁ꃡੜᘠ耉ᴰ棠愔᭺糡쀟Ẩꄋ⑁脘৶䃠耉峬ݯᘲ䫀ꀛὔ븠쀓ତ폁섭ᆲ钠섀൞튡ℇᔪ䡀Đࢮ吁ꀔ惠䀙ཌ庡쀐ඪ䐡Ԇ�ӈ嚀ꄒᛞâ摦鴛፪쑑宼ꉧ䅝쥀ヶ풼嗃八ꈖ汑竂₭䢹ᚳ巨錮⥻ㅦ髍۪올瓡ꢐ㍮᭖⭕寧⢍瞯츔ᤸ뤦뀉줒難滔䷛龎뗦ᗘ鿢⽭ఛ쬷婼罼�탫⁂❧ꨀŤ챕ȶ༗ꝍ밹⥆僱ﻉ龹肐㢰聡䣞䯢꠴摟എ쐊⠱蹲萾蚘魶ࢱ字䔵镍풉귐⼦仑숇葐偘便⒣ㅚ녵쯃�쒉Ꝡ㑩乪뭠┛�䂶弯ꀠ䕡툪页ཆ⃤ᰙ卵ຼ뗦鵪㑴踗쌁寊锧햦톡磂㩂蝏㤐㤎손滋쥠偢蔨奀゠䂍稀ࠌࡂ倌Қ㸨ᴞ℠眘蒁훙ဏᵢ挐뻩Ĺ襧⠺騘阺℀厸膍�范ᦂ⁒ꚏરစ牶ꑩ⠡倂軐舏嫈耉ᥧ恤ᓒ䊒肀ᨤࢧ᪐耝㪁鐤턣浒؟ນ፷죢ᨄԞ⡡騧壇乢Ċੈ炠᷈䔁䃘ఋ†✂쐁鰸ꃧ㱆類へࡋ不捺撍䉡鹙ꤢ榰�Ꚁͧᄀ澌掑ခఔ 먪ԃ䐰陉ƀʌ䎏䀸阠邧溌윀Ჰŀ₦ࢴ쐄좑ሎᅂ䩔枆㗐Ὓ‧儆ؕ咘3상䞐愂q)⦤Ⳣ蒊ь䂧偼ٶ搇琹轮⎴✌昹錦㒪愕긑ऐㅧ٦쎝ꊰဨ⧆慸➘驭滖果娙茇䇸잀阈ਟ僦䑰最蹔Ɗ자折Ȣ慧巸䞀⤘�螂绡锿ࣣ侸숀䩈ы선篘骈ἇ聃䏶憅⸉豐⢇࣠舎욘ȫ躇⃚Ā丹ᤪȰ掜鈨饴醀瑄斃먱Հ烢¸✈⊠警磦ˤ䞜븙萏楤ᄢ䎀梀త㛴ꎏ遁墂樘➁炁J䵞얃Ỹ蠰¤ᄊꘐ쁨ᙈᨚ蚩聈냄䕞蔂싀ᕦ退Ō蔂뛉᠂項畀攞鲨饀롤Δ؈ነᄰ뀤ᜬₒࡨ阰墀ኤ␠蕢ነ�뾰�⓰Ąリ�态襺쐝愉印ဉ疼�넘蓀䌏䗘䄄䡀섃Ѻ适ว⁃e聰숭崠䀅豘톊ᖄꂂᜧ렂蝐嚁䔗泰䄝ظ℈ࣈ䃃പᡡّː䈅緀�愈䄅̈́蠅ԅ 㤾왱䐃㢈 ႋ㥈飀ᛉ峢깐蜄佈䢰熎๎⠂ཻ悁褯隡Ȫ垘숕怈ೢ�ᑍ摣И蹐䌎䩰䌘ᓰ冂Į耀ཛྷ낢ु塠蔳鶸挄䄁ಠ�⢂є씒䠨恿ྌᎎ᐀ꂇݑ烃蝯暱옞䷠䈄癰意㽖䣀ီ谫宨⬠ ⤆ꁄ᎓沠蜊鱑ܗ쐀∘瀜섂᭬桇Ᏼ벃豹Ф꽸䈜䎐ꆏ㱆胂茐麡섓朸茟䏄넏ٰ磀᫇쀡ࡁ㠑蔬ꀀ愌渼炌㓎㡅Ұ磡ԟั耟⃐ꌀ㽸㲐⡂砠譈䳰ؖ룘䄓פ큀뢡ݳ郡-䈅杤┬硇ҳ糂豝ܢ군ꌅ撔⥶쁪�첱̛쀉橘ꂅⷰ䂅ѸⳢХ㨑䐋潀脞榐ↀ↠壅ոⱢ脋脢縷ԌᡂತⲢ॥摱Ԭ혨舌甬炍ƌࡅ࿃Ⰱ蕍萡䔴볠戈֜脁ܪ⇏끀렱푐茈蛰∙䩌ꀆ㣮栅ֆ铡訰晴숙戃䳌᠇ጴⲢ艘�鹰 䋀ㆊⅢ 뉋摢谲긡脯❈ꌜ炨ႀᬒ惇е汁̈́萵氨℃烠✚ょೌ�荞Й㩨怛ᕀ솊௶Ҁਖ਼쑀舻섈耛ᾤ册⺾냅ᯉ飃豓ﲁ쐣쐐茎䷸ႏ⡈쀆᯾냡蘟糰윴ﾰ쌚㟌ꆉ㗚む股譿૱윓ﷰ䴔ⷎٿᢢ蹿⣁䜖ᄀ̐⡸ꆄើ䠅ఉ梂謾䘐쀣쀙笠ྼ遀ি㣂;숢୰舟㜔Ǝジ쀃ྡྷ걡舏조蘾觐舁ᷔ册薚栂检ᤡ薹屢؏焸怈ᯨ놇㐴ߋ볂䳱윣许䀀ⳀᄆN섆蓁蝢䡰쀝ힸ愇癐ƌ㍠ ʤ뀁艩䢁Ȭⓘ怑㴨鄍ⵖ졅ᴠ襒ᛠ쐛볨ꍋ罜ⴖ⣃त밀ٱ硁
⣐耐ᥴ耀ᵌꎄஜ�評だ䔮ℚ敠⣾䢀խ糀เ쌟㧌㕮쀘쉱䟁⸰∀䲬ㆃꂀঞ렀올ꦠ∕缌鄇ᄸ᠇ࢋꠠ謈簐육㢈脘濰Ɔ϶ツᐪ찀聝ځ萗죀쀣⎠섋⡲烂ᖯ찠Հہ䌽礒䀉扄ᆁ│ꡁξ塀ĵ�舝歾섙䊏⺤。ඬ좁蜮ꀰ蜥䂀ꈃ牰ↅ㱸䁀ሙ삣࠲塀̻悠Ȝ㲔肀˜삂᷶血୳ᙁ䄪䘐獤삅㴠�傃끁�吸茏彜솈๖쀇ᙬ㻠躡ȱ쐵咸舛⥠톃♔Eមᰁ̵䛑씾䭸쀝㴀怄Ԕ虥상숪짠‘埄톌⭤倅ᗒ䐡譳ࣰ섶ᇈꌆ愤䆍㟨⁆Ẃ䡁譖ﺁ쀢诰ě䅸醁Ẃ⣄蕵吠項ħ窠킇ɓ朰쀃耪俘䀆萌哐怃̬䁰邅ٻ㕀뢇葳␈袀聙㲘ꂄ̲珸젇荓璐梄Ԣ㐠삇艷䱈脉瑠脲䛀�q⒀⢅脙矰领蕖㝠젇蝱懘ш丘预腾瞸葷盰렃o磰䢇茿粀頄ŀ扐�䐰鮄蕖䠐আ莋䓈퀀蕒ⓀꠁȌ䷸삄؍妀䢆ԈxࢀĈ巀碇艣܈₃ѵૐ㠀ܙഘ렄脽愈렀舣᳐�荂 ࠅĔ岈傄荦䑐䠁蔢ᘠ蠃蘌Ѹࠀ董Ḹ᠆萯⦰삁鐯寠ꂄ>澘뀃Ů买肇鑹⚨順蘟䌘쀆蜞߰�⥰좁舿寀삁腉䧠ЩῘ 葩湈ႃѹ綸₄蝓न쀃̇皸�奰ᢇ虒揨頂腴瞰瀄腨䂁ͳ缈�绠䠃ī嘃�荶傐�㝸碄荦䁸좇Й㺸㠅艎⌘ဆ虎ࡠ뀂ᠬ᳨ؾᡀ�⧐䀆脒✰쀅ݏ䍰順ź㾘䢁荷䈘傁A烨K捠㢆舭懘Ă苲牐젇ā㡀颀虞䵠肇蜊紸ꂁԲ恀䀂şۀ者荨廨葕狠瀂脻㑰も蘑⫘栂؛ⴰゐѷ湠炇A厣㢁舴㽸㤆ڴ㸀렅萡絀⢆̽缰葈嶈态뽾票䠇艪細ࢄ茩䕸죋艅⪸ႆ蜭ၸ�狨|⦐茪昸墅舭Ψ砅؋㭠ꢀ荴ᦈ蕺䪈炀ȫ䊀馅虡☸傃葂獘墁똹璠艆เѯ烐�幰�ῠ蕖ᘐȋῘ老聲䣨 տ犈ဆ虚ⵀႇ葯͠栠ꅠ䪰�℘�⸐梄ɬᱨ낁蜮⒈ꢀ蘽廰ࢃ虘【ᢆ́㻐墀ث愠䀇脬㒸〄ɏ⟈؞湘렀蜅㘐颇虪䷨墀葷籐炇ģ溠碀蜩Ḉ�ݙ蔭Ꮐ렃耍㱠뢁؛崈㢃虤ᯘ�կ灨᠀ͯಠ蠂蜬ᗸ蠃荐澨栁虊㇐倆蜽矐⢄ŉ⌈⢀ԟ۰ᢀͱ㰐ꀃ渐や荰䖀ࠇ՜᷸졑蘱結⢃蔾㇠낇腞⭸㠆퀽䫐ꢇ蕧䅸㠅脏緀瀆Ц箰₄荏⍸렆聾䳐ݧ你렇蝈矨�ͯ⟈め̀礨ꀆ荌㜰낁̰Ꭸ렁͖梈䲇蕶痰砂蝨⟨颇ɝ䍨ႀٯ㩨砀ݚ⛃項艓罨怅虪泠䀃茞㝸蘽䏐쀇蘇佸㌡Ϻ萭罐肇药窘领茛ୈ贀耷楠肇蜠摀삇ͦ䉐栀١ᐈ聲宠좄Ɇ憀嬂Ѫᷨ考荲Ṉՠ炈ݍ玀码耡擠ࢃȞ槠碂̂㐐䢂ݢ㭈�⑸�聶㫸낇կ㳰颇ջᒀȢ磰쮇聨Pg蝼顂ԏ淰堇Ժ漀䀁蘄Ͱࢄل擰も蝉䆠栅蔮㹨뢆̶⏰腏旨碄蜤搈⢂ٿ俈䢆蝗ᖠ㠅ɞꢆ찢澨᠃艼✨悆щ⻀宄̝⦰。腢在낇ɐᐐ쀂腫᪠ꀃ脡恘㠅ċ匰삀葼析梅虀Ā頃سᒰ梃蘑Ꮸ怅荩↨䀂Ȏ⯐傁Ť❀蠄艫䢨领⅐ฐ㢆虑䷒⢃蜆क़Ђ洠쀄ф侠ꀆ䍵䃀ѷᄨ䂀ųຨ렆ȘṘꑄᣘ�茏渠퀀蜺愔肀̖嗰檁苍匐ࢂŕ䤠炁虒嘐ࠄݱ弈耙ި�ѻᓸ蕠甠考蕼澐՛媐좀蜬₈ꠄ役᧠邁Ͱ⤨項艘䝠뀅Ѵݠ傀蘓籸퀅̫榸�䘀쀄脧亰堄̈㢰逄ɂᛘ 蜕Č➐⢂舞∐むᄘ䣈ᢂؾҘ還聹ቈ뀁ܲ匈킆聛ℸꢂծ壨聱窐栅̥ኈဆшᝨ還ռ児ႅ虫憰砂ܣ汐蠀聫猻态耮甈䀃ѭ月�㉸₆腡删ꀃћ䢀䠁葕ㄨ䠁�司᠇لИ좁ɘ悃ܠྀ葳挘墀ɇ⓸퀀ݗ橠퀄đ२▃蛸ᓈ态聙绐₀ݫ⧈蝲犘�垠〃虐㼸䢆ʹ⟐ź৸ᢁэ䓰砂-璸肆պ怰。脡堸⢇腲㸨袇ٹ⚐栀荥嗀ꀆՖﵱ᠆յᥘꢁ݉ਨ�ёᓐ삃虏⣠肁茔楸h合�ı瓸ꀆ蘭㊨堛쑓퀃а࢈렆Ձ䥈炆茐⍐렃Ŧ敐邂Ͳ浰境ٕ珠㵸碇腜禐砆茾㤐璆葮袄ɔ秐٤擨䂅舱Ѡ袅إ⊐〇茥ߘꢁȄ㢀�∨堁ț㲘颁ن㷸倆蔼௨₁舨၀ꯠȨ先墁؇䷐㠳艦癰袇蝪崘�脂㠀鎀Š棐肄蝾繘삁�⣠삅A聾蘚秀꠆еᕘ倂Ț典誁膰簈삃蝾䮈թ�熐堁虶㖠㠃E湈쀁蝷㵠ゃĂ౨頇葤≸₆蔵〃ѯ䕐렃蕙ੀ䀀脓㥰颀W掘᠄؇撸젅ᘨ㭰炅݄䠨䂄Ȓ樰梂G⩐怃腰߰㢂荡ۨ�♀䢁艱ᔘၬ葅ᢆي剨᠁ͨ䗀ࠅ茫䶈肅耼䍠倃Їⶰ傃舃⬡逄舙橠퀂脼鱍袅艵࠸砇ɚ䈰쀀Źጨࢇݸ⇈얂ץᶐ�腮櫰종ɠ㇘蝵䑠䢀ɋݘ悇聳牰Ȍ㑀⢇(ෘ퀄ѓ㛨뢃怸Բ啘�㵀ゆ/☀逇Ј㫺ࠅȄ罈调Ժֈ荿曰㠇Г㈰䢀腿僨�蔈䱈㠅ȷ㛸邾著燨颀�墠뢇ݻ烨䢂ěಸꢀ虁拨�局뢇虇❰碇萻⽸栆耣 蔦汘㠁葸胀�

qpdf-7.1.0/libtests/qtest/lzw/lzw2.out

qpdf-7.1.0/libtests/qtest/lzw/lzw2.in

ႀ偠ഖ萇慂롐㙤༝䒈兢ꐸⵖ谗捆롑巤ꐌ될䈄⠔䒅끒㻺Ṝ⎘厦᭵鬷Σ즈ᬶ큅呃ᨺ㌨䑇円됴扈ᢜ퐋䡪ꁺ걚䌖欅ꑕ琭弩ℊ⠬驀찎ঃ做둖䘐滝�łԄǑݷ俞냷縜惀ꀁగ،ㄟ뱀Ⱡ篶搅奏頼Ⱗ㰉珦谠⃠鿱ļⅽොΧ됝揧ឰ깝鴺魀餽淓ƶ캀で牼᳠₀輓谗潱仲댜箃캝뵛궷㛗㮷뙆矗檼磰ḛ첧歩춵ꌞ坃簳餶ﱥ娙뽟郙탈₀踁考愘₂蒑菎彼愳䠘蕝팅ᜮֆ櫈㈛ꆌὪ谖誘ᘣ兢읤ಊ扱謫挌嘘⎌ᘓ贳堣㟚薍夀ᨠ₊ೄ瀓輦ᦃꄘΒ쀀⢠車⸸숧䣩閞䤧닐❛쀉微ꠐ☪馂馘চꂐ鮘숦潞舉婢╲傧▔✉劒ࡻ㋂罎숤䨢ࢂቂ酄⠈䂒䢐퓒辸卌픴ܸ吩㿹ᑐ桀冊ꖔ䴵ࠆ覊啑甈虘ᕖ疵堦䃖꽎噙ꦅѭ╗盍^ﻱᾺ훗茅ᡡⅶ掋਼갞嶆暚ꊅ驨굖殬囀듅孭溻ퟛ쌁ᱱⅇ㟊폜텹鵴愷㟙묆�幷ꠑ䝯⼚糰䞟彿ࣨ臐氠ࠚ悃㻈蔓捡ᬮ℗竘蠠飌⦞ꊊ쒲잴성樨燇࣐ⱑዲ컐ꌙц놼䠛胢⣟ႊ徚䨤⸉鍍齼☲陘饥干氒ਛ슍攮ꊠ魫灉霨ആ욉╵犧ࠜ✉վ⩂舆褤ᨪ࢈숈謎ƣꒂ鏒䄇�、缬윅ಲ눚ꄈ竸鐡֢ᱍቪ켠ğ噵↦授餁搾欔͈礴�̈胇舐顭궁狗䰀谀꽻䅀绬쵨û扽鬘輑ఞ㱳搄䅇ڴݦ犓柍௭睄䜷ꕆ᳦痄贳ᆠᶷ鬛�湰脋柳뜜�慇믚ﭮ潹ꙷ篺坍胻冰ޏ汁ࠥ쐰蔪苘䐝蔈ㄒ剴ʋ倈ႂ楀むⷞ냠ષ�Ш̔娨镩ᐄ❺㠀໗⡃ٚ壐䌖᮰ꄀࢤ愄딖킀ሏ베│⠐%褠㩠ᄘ渺酄һᰢࠁ汱蘰∅㤘�䅁˃쒁ेᒀ䀇撘ꄘ壩よȸ聆˞砣蝅�匠珰䌑ʹƈ₺렃㒈棧萿娳휡彰䌛䍼ꀍ⏺傃ငꢡࠆᓓ䘔ϰ⌍ܬ낇ኀทﱂǫ뢐К絈꼎Ә�㟰ッ㺇ﲁ㭃艰䋦�勘倀Ꮂ좂蔶ط欸茔ⱔ㤀₆퉃Ćࠠ訰၄ய뫨䄗⋄ᶔ蓼　赦舙௨ꌋ㝌⺦ഊ퀢녯ة玐䬙检䢆៘䐁쬸툠ﹼ㐜⅐㆜ꃃౘ瓃బﳕo숑Ŝ䜾流䋗緪땯辽謽ﯭ猿绨퍏㼁ר낂鹡̔あ̖옡蠦剠脢ꊈ䄇␘쌀记舵ಂ냁⣊逄蒙褐숝婀�战ツ솂⢒⒅̯摡詐䁁愖ᫀ㩼ࠄ⇅ஶ戀뵡賡옡ꐰ䈀捬ꄂ傁֤吠īɐЩ囀ꄐ䱘ㄮ驀ำంപሀЕ�茔⩸䀅〢ᣁቯౣȈ䠡蔤쌠̐⤌ꀝᒤ肄ᥫӃ蟮苡䀰ꓰ䂑⡴톌ܚ쀆Ⱐ�옆ʸƤ徠ꪇل꠆ᐘ₂䩒빁䘯꒘䏴倆⤪퀊㕎䡃ὒ鳠䔝ﻙ戂㫬놀ᵶ ೇౠద⃰�䲀舔昂 Ȟ瀆ā糁ͧ諱씗张䅷ऩꀄ⮺篃ᤎ谷⚳䈛�ఉ剄逇ゐ៊栁ٜ炡ةꑈ̗푠䂊㖲ヂᢿᣡ�剼Ț꓀ȋ廘톊鶆嬏䛴톉챇ᢽ赮쏑뷂㷳襴蛻䩪楾⥅鑠®鐰萜殆䌍툴놚䩔ᣆ壈㏰ӭ锄ृ䀁;쬌愈樘₊㝨悈咭ꂪ防﹤喭닀Р㺫䊇䩼嬍嫍䔄㝫恁噄ⷙ왜爰뷦�넂끡ᲶꝢ訡4咐嘂㵁䯙昭픬뎜ೃ�葩䌸윏浸ὠઅ�蝆쳃씆眑邯ហ릍ⰷଳ駜մᜎ榇⥢ 뮄粷帲됓ׁ̢挀䀼ㆇ箟賯໌豞ﳠ倃ｽ㏀晨ꆄᦼ纅섈ⵃ٤珑邃ᏮĉҬ蚵쒤谸뉰耑Ⱖ�悋燑ꆿ䓴퇢쩅龹⮣碽䍤뷄㵏忁勼乪Ӻ鞲턠䲛씲䌳▐놊뵬范椫ꏌ㩌찚髍됃ᐘ霁ᄷ䣸鈨�㇕ం띃ቖ䃀詅쐍ཐ씅ࠈꇃō裀舆狃䀈Ⅸ꘏䷰킻囸颢ซ時ܫ㲰Ť✸茐쥼冧Ҋ⢁᭹곅㓠ᴞ鍠㫊�瘰㍀´�㿠䎬辨犐䌖䂀⏔셆7恣孆⚠켜셎ȍ㤨脆쁌ȁ‗聪뺁┠ܰ愚Ī⪃뱁ഊ긭䀛浠崄膀㒸ငၣ굁繀ࡊ䄎廥퀫忢䃎驟䷄ર䌗挙㩌ろ㓶棃ഊ炡ٮ�� 胐逌ఁﮔ倢俗쿰攄澀啐�ਵ攌ⴌ᧗∾㻢܇搟혁≤ᷮ䄞ủ섞擮䲶慒㿼⦵ճ刬ǔ팠攋ᑢ鉥ㄚᐣ땳∹䣀f쫐ꀍ萅昒适Ǌ倀ጌℒꉔ⌼რഉⳠ値ꆀ�␚ꃀ䘦▂匢䀥┭宂숥♟鬀ꠂ㕬⤀錦㕓顀㈉९煲䀧㖃◐匉㙡簒ꈈ㚀桳눶⢉ᮠ爈盳࠵㟡䔁⦵豠脩⥂誰넩㡇亡鈇ࢢ厁怪ܖᛰ뀕ᔕ忡牭⪮胰脀⭦漱ဗ܍獡ក캔Ⳮ茁刘߃跁愬ᦐ쨒戙ߌ鲑팼ⷎꤡ䄭گힲ䈛ⷚີ⸐Ġ족㸜圝爡〯艪❨ፒ勵⬷킂苒⿷≥茇ూ摥猄ᆃ艀攟㧅ᜊ둘́⮬獱뀀Îﯘ〗㈒䮕∍覌鲂뀩⠞⪱㝵酢儓⤶㭁턓ᐼ阘䈔ᒜ麂넔⩏刑䈪⪥奱鄕⩜惁醊ᙤ東逖ᘒ듂儫㩲뗈鈫⮻绑醋讂싂ᢍ郡⊌ᧈ쭂섬ⲝ쿢㠚᫋겁톌趰턈焛ⶹ뺱蚕윱愜脿젾欢䐦舍ỳṅ䆎෪ꖂ㼤亖�ﴃ튎踊Փ〱ࣖ茐ত梏旷㫕줢⊉ㇲ戅頸迩䀣瑐쟀⤍饺革覙香鮩즙馝鿩চ骡ꌩ䦚骥ꝩ覚骩ꮩ즚馭‡ꀌ厽돉䦛鮵띩覛鮹뮩즛鮽뿩জ鳁쌩䦜鳅읩覜鳉뎩怆�켉ঝ鷑켩ᤈү넙릜鷙�鷝�ঞ黡�鷎0�ષꎐ⤆鷑䱗覝暴뱙㦟鳣릛鿸ﭩ즟鿽￩��ধ騠ꀂঅ㥂ױ鈀怇ݯ鉠夆䇺紐Ⴁꅚ㼵꤅暵ၺም䄟䄚婦ࠕ譀暢ꅪ듙ᾋ澀ą曑癰廉ꆳ櫶侀ꀒ㼊તꑁ䌪⦠⋀ࡼᮐ�ȡ톰ঝ鯯눉恦楃먈魖坚唆ꕀ㦊쁓ࡽ㽇耦ދ槓傛呶㽧ਊᑣ瘐䀈ꖷ幺킦Ꚅ㰅婦詖窚璧吐牪⨉ख़炚㪤ꢅ蝪覨콙䀍ܠ楐ꀁĤ⚰ᨊ同຺穦ꔏ䑧➟瑅똉暴ꘟ杪窥晩ቚ⁔ꪒ騚놡ꚬ㓪骦ꨏᓚ䨈ꎰ겪㪡뮚쪫ꮽ诪�ɧ萠 ʖ̠倉ꥏ卪ዊ夆ꆵ턡ક鬸敦ક昚떩��ٶ⪮귖櫆冮ꆬ絚몭ꇥ茪᪭꾾䦯鳾퇙怍ܧ熰ꀂऽꇀ鷋呺妯ꇢի记뀉쒩¬୮阀ဂΚꔀ
낵ส뮰넙᮫즱곻�逍帀줆鷧靚䮰눝⮫쮲鬭Ώ禞ꗒ휩㤌뎭㝫讳댹㮫쮳댽㿫炳滓無䮴둅煡�䢰쮴둍俫வ땑匫䮵땕坫讵땙宫쮵땝快ஶ뙡挫䮶뙥屫洞눍ﾙ刌ట댙ᐌఉ뵙瀌鯃堰ꬅꭳ燛즮럄傠琌뜐ῂ嬍렮ᬆꑪ栀ဆٚ醰㔈Լ䚠䀊Τ纠㤆ֵ苐钐羫倌՝琐瀇鰓쥠⬍鵩얠怅߁砀䀇鱤弰ဆג췐␀ꈑ嫰͙ꓠ뤈ڹ╒쀅鬌炀⭂벇�馸닰즐⨇ꅸ덉禰먉ٔ焐릐鐫ࡖ⚐䂛]述 릈翫怆Ø튰뀆뵹㼗媽鯨쥐瀍ٙϐ묟㛑箭䇵昐瀌ഉ毐 ؇捚审鯒ၲ䀊ᢠ⬃䆺娀∅솻炛◒ଇ䇑판ජ椆벼鰩覻蒲䲐섇룻侀ꄕ⌊悛晀笀鯗掀䘅Ц灠 뮊䚠〆܆䩰꤁ಳ쀅ࢯ㏠벾ؗ攐䄆ƌ镠ꠐ흆䩴Ꙗ듙ꁝଶ䪀쒹饪䜈깄ᐪ垡쁇�ডִ�샐䮀ꚦꇗ朆䔈ꭆ됩瀌ୁ쌰老ʵ馫ଅ솻킐퀅뻇뚩≆限䄑崐遀൪覫곂鲡춋쒬Đ쭠퀗ܐ닚涥덹뀊ꎫ쪐寂տ昀 䅅挐퀌扰Ͱ㰁셆륰�ெ斀헄ܼ䮋瀌ƺ绐ୁ솟婰瀍䖠ﰁ굜럠エઋ뜀侀ꇨ퉠考ݎ倍쑥ꁠ₮캋圊ﲡꅴꀀ阉샗̌瀍ᨅ牠 ग़蔡 ꢷ갑魨欰ငి磠 슢踬ꃇλ믰䀈ݙ싐À춐࣓⏀吂섑뷠瀌٦ܐೊ튢쎩쳂֥挀뀁ᲄ餋ડ꙯핺⪹ՠ선퀋½婰ᑦБ䳀၁ې쭡뀆ࡸ태烁綰鯈吰考ߏ롰상쵐䰨ݜ仰䀅ޗ㖺ಧఅꅭꀃ¿왭㖺᫈ꔏ㿕骧ࠐ絀㳇൶粀倆�Ἢ홀牺䦨ڳ妐ೆ讐瀁셪ၴဆෝ숄怌Õ텻¦ௐ즠䀆ߚ鲀鴀ఢ圖틐⮝짚튾ϛ쁓�몮긦Ẵ삛퓋똙ߡຐ态릘丠စս䲬゛ୖ桠 핊宝�Ëᇐ选ܯᩰ騅긾搽ફ⇢擼쀊ම펡ᰇ꽆�ꄸꄅ샑듙ဌ�ਈ꿟窪昑뚪၁ݪ捀倇ࡳᦰ惁Ր삑퀍퓃࣠◂ļ᭠뀔ਙꔀホ岐౪휐뷚맩ﯚ鴘䒭ꂛࣝㇰ �헀퀈࠙᧰古旀 ܇˰췔쭚橠ꀇ}쭰尉鲌픐�欀鷲튐 �逅ā骰쀂眪怪࠘骐퓠ԑ�︍ņ䤛၁飇婀뺶뒩䷊늰에ﺶ썫犞䧧㨜㘍⽌㯜茿⿸ﻢ곧秾㻨撃蓎ﻧ艾臨窾绨臞軨貞뻨馞ﻨ鯎ứ轾饞黨葞ứ蚎黪陞�鰮軪騮컫꾾ﻪ鸞뻪緞쩞컪ꄋ愕枞仭흮軭��仮⃮ᄺ멠ԓ諛⎜ֲ쥀뀠ౡ鎥軯ﮮ컯￮̯俰ݯ述ய쿰࣯䢻ഴܠ듛먙ᰆ鬨淾⧢ಾ邥퀋ҳ뮀릭❟迲⮯쿲㌯俳㝯迳㮯쿳걠땉퀆魵ᦿ솛ꇹ᳟䪥ᴣ椝邛ߊꐀꀅۍ욠琍ૣ뽀㓏懿烲ள⨿翶ㅏ鿶涏꿲昿뼌睯迷㎯줊쮳ᕏ倌Π氀뵞䡟᪭괹돹娆ੲ娀Ꙕ膌§꺷ᒪ㶡핶炠စ�耍බﺅޕ꒠翺﨩ꕟ隷걿�ﮬ✏鼞പ缡ܧ⢤჻偺૰肂ݺ⠤〿謹띟徹릳㿼Æ뼠℈륟㼋ࢻਠඊ牿瀍筟ﻡ쫷ꆚ罏쁓ℒ֓涬ﳆ䠏灦ꕯ痌㚽੪夊꛰겁А�얠ᄈꁀ濊贕퀠液ꥦ䠓튣타㶰ᝆꗨ⤢∽푳㢚㒊捋ᥲ먄ᡏ쮐䥑풤⾺錸ཊ䥒먼≍䙘䝓ᒩ䮆魂ⓑ荳鉂⊕졫咄跊鈮櫓破䧑즓⏅ㅞꐳ௷쪍瓧�춋빼꿟슊�Ɔト妸᎒찇颰褋ᠨ၉᚜潍젃煥ሦᦂ䅈⽥偳둃┏㮙ᘔӥ먦�鬅췙ᥖ뿈ꨢ淋ﬤ❿厥琧뒺悅釗곯稖埍檛屹뽞䄖꽏띍숺恁嚓�윈궂剖✬�↗ﶿﾾ쾏맼䩠쎔ꊲો㍂鯌켦ቬ뗉턬贴4躅⇄㈤ⷃ쭰㘍쉐蘖䂋踷�⤩繑=遀ᜅ縡ꕥ텃ᮗ䚎좺ꑥ벑㵜肒䙁峦㑨錒䠗咀镸鄔腪踟鑒㥲䔀䊚ຠ⁒◵/䁃锄鄤秤쨞犑镆쭍錪␞⨒㮧襋頬챥䲊殨厂꼑㼵䖴䔓瑑뇿ጰ쐐∤䎂챀味還誐퀖킂侣푐嘚䌙輄̤른䭇奼큄蔫륰䯗禵꽝햱ꥼ诖泌墻涔斓癙餢蕖㊠汀쩈䈙䌕ث㕛䈻듑㖵厹䚙墹䔷寐흜�藷秣睞幻엷緳睟ﯥ彿۸脃䍟ᲈ༇㣸㣾坒먕懌岰툦嚋⮎抋꧸赻硣㯦掏۹酃祤䬦撓䛹镓祥学斗蛹饣ㄎ掛꤆鮍揧ꄠࡒࠦꆵ穨謦梣䛺ꖓ穩魦榧蛺ꦣ穪ꮦ檫웺궳穫ꛦꇐ㠈筬젦㸛濆筭�嘛럋�䛛뷏�霛됁鯭龛먓᭮⟼븋篲Ư枼뼃볱玾켻쬍ᱯ䞷럻졋ﳲ䏿熻眜녑掀ྸ盛�篗盝쟽�뻷複䞞Ỹ蜏罹柞��雿偆␖레傅ब抸㿜쬏ﭓ�≤掟♌｡譬ꝟ拌羚쳠缳ⴭꣀ忸伙Ӛꣀ똖썌㸤�ᕒ썾栝┅ڳ䉠続‡샐쫇섴椠삭ᣊ污蔮싰䄘먷퐴澐䨵쩸墆ཱ怈ࣁȱ쐠ꄠ嘇閉첄ቂア䳕褣䇱駶뾅 覑搓ᐘ萰၄Ҏ谠셉諱Ẵ䡀ႉ⊠ŕᢟ梣谴ꗐ젆敘䅧쒠惆ᦡ뢣ᩨ簐ू㈁营虴쨓ႊ邘᮴ᢧᷣꥐ㺓ꏐ馲傉㟪ᄡ㎎䡕ঽ騁蜣♩优ර⚇ᨦ놐䤬퀄哦࣒݉贤ꂐ솇䏺उ⌌䁀∁쉠醘萉躈쀒졘ᦪᐰ⢆ꑁ쥡䔔昔횬酛੍ᕁῂ磄¬あ쥅¤耞鋰ꄂ榆㞂ꨣ迣硲諄㹑䐙띤折₅Âᥐ䣡ج䊳蘲觩輎ぜᆌ㚜ሡሌс࠻愡Ņ褄䚄�木㣆ນ萪䥦ሳ蔝ɜ訠⑪�҅喣逡줹⇕ꈎ㘘栄㌥ᇷ됁蠶醈航躀쀔䗘ꂃ⌥奈Ȃ걅ⅅ糨茣賰ꈑ⼝僨ொಃزᚩ椸傀ꥒओࢃ烡蕫ࢀ昵⣠鍍ᆟ鳀Ģ㥊虑ܰ怂ৄСᤘିӣ덣⫓頙袦乜솋ၮᮩ㉄驼鰁옵锍茎쑼誇᠐灆萲⧋沱誘�變䏒⡠�ㆄ頠툚∄蔘�᧸☹�ᘲ袡孟ࣰ쌜�撦伲მῊ종॑雅䡁ፈ䬊敉滕瀤Ԩ⠃閆䠪͇池茶᭸ћ欈悊╔䀩ᣊ㡢ੈ䱁舆锑ŷ悊⦸閆ꡤ�⚔Ě⚐ဋჂ鷃齍쐐圕ᘈ戄劈뮊戆煄ᄨ璃ᤲᡋ䈮쫠䌊洌Ţƾ舔ྐ舖蠋䂰䀥⡘䈊쾬肇斡﵌삖ܼ劋�妡�Ͳ倄Ⓑ凙է蓱≂删䮌枆ۀ䉦దୟ兺鉈샌㌃岙Ấ ꙫꖐ贋运䊞㏾Ԥㄓ穿癪앺箠褼䵰⭼꘨娇ɠ胟㗬飯뾸ۃ̓汀섦ꈐ蚫朠ቬ溰ꠏ�눰șែሀ䳞ᄆ⺎㠆ಽ쁡휄䕬₱军蕘傊შꁅࡊ灔訶꓀蘮흨찬怆㒢ᥒᩃ鬬ꮸ឴〼瀃চ䇆ᮕ㳣赯Ϡ㈼ꛅ夙핎脇隋萭↉У᱂숼뀙猪쨼�鮫긌롹�枑ⵌ猬ᤊ蓲੨睭ુ㸠鯅⣚ཐ⦩蘮街ą᠄၁ഢ뱷풅᱑㐎㫀姓仛ɀ癄뺣흡ᥔ鑡蔩쨰ਉ፦鄡␤䃃�ꁐ숲콠먙㥠綀놇汒蕤丁씜꽠ė踦焇�ꉴﳛ㽥웠Ȓ䱰곜ଶƊ歖還哦虧닐쌴∌⟠꤄㍂ㅨซₐ葧鱠爮鯒⃠㐈껹∉붐ℚ䐈艧䙢⩧⚣襃�胔黟ꈐ֛尅耂層䥔㵑ᬦ髈靃嬨鐡耇ᒠ퐄㏏뫦䵧䚈ᷖᆿ㋂璤℁옯꽸脋㕰ⲍ戜헺ӷ䲈䈖쬨䄗常岀휿殿�顭云攦㮠䆓䮔ꇿ☮䓀ㄟ먠뀌ꌄ 联癈ꓔ렀䰍ీ좠棻轄難䀚᫊гԲⲁ鸼૮檑䊚䋅吤⫩ीﰮ≤掤踒㲉⧐ꔖ竪줾찀䅒ฬܠꄇ뼘昉膖阈铡⻔ݨ郐츎಄钠绡⾏㊺좠诖ﱞ䱈愚¾䃓ᬠ룎탽鯄쀎꣄舒ከ֍媲ഗ阉껳챧◶ᢸ糪큼ⅲ湨袇Ƒ砨愶ႂ㠁쀑о䀀霼諨ग़ꖦ㹣ᄋਤ솄羒パ줌쒦윐ꔓ﹂ꨈ⟪丈沆ᑅᚄ㋜ǩꀔ久䤉ᚅ楱ꤖ綄ᕾ邰ទⱔ嬪報ᠽ㻱{ఠ慎읿᧹黱᪠ꕱᄓᪧ꧱䠚ᬁｧ儛ᮝꄑ儛᮱ꦱ넙ᯁ鬱윙ꆡ儜᷇�鄛᫋�넛ᷛ�焞ᮤ꽑Უ췱ᷳ봑턛Ყ焠⇁刞ᰏ쬱愝₡ꔑ鄀ᦑ䠌怏衼㥒눣⌽䇲㈤㞲判䋲列╋脆╝懲⤦ᒯ∈聻뗠鲡떺宫攘ꡎᒨ悝殊囱ĉ籰刦⦕饲ꌩ⌓갨젙಄蒨쐇ᄮᇁ搄锢땀㈐�䀀釬骊栚茤틀ᥚꇡ쨢ᨺ鹡ꅡᒋ剑�Ʋᰁ ⟇鷲눯㷱̪⩏鱀ꄂȐ嫠젏⪁ࣁ䀍ﴀ䬫ㄨ䨊挰啖ค榇ጘᘢ憝荺듀줇ᖄ銲邲岢詁쀘ࡴ⫑怡ྲ뺡䀍ü猫㘁燳⤷キꅀ䀪࿌壀섎መ⊠ሊຬꃡ�ൠ㱀က嗸됀섓ᄜ눳㇎䑓㎘啈踁켘簊끀䀕ࡨ胢ຠ髡о⹀䀄㚳痓댾㻭믧錷ᅼ٠ꈛ఼쀪ლ颡耙툈ኃᘢက㨅䴈⓸ء怑趴췒ﰔ⥦�㿣ୄܨ䡁ஜᚂ覌錢䠅ꀑђ㙁脀踐㷅댴䟱祴刷詨싀℈θ겢䀕�돠섪त�뀢쪀䄡ꂀЀ!㱏誤ᨨਁ쌓㌩䃓ĉ䎕쒭앿ठ突ꐋᬢﳩꀘᒜ貀ꤋ䷡풓脏ྲྀ㙁ꀑᡄ㛠⬱ᘽ笔㕐⼅ 沠䄕ࡢ习㈈↬㘡ℇꑮ䍅ᐨ㊪傉ǎጰ㡀㎕ꖶ쑃ᤢـ㌍鿒꘍돉ਗ਼였쀀Ʋ蹡䋸甴畐噭ㇲ꼌⫥례ꀁݸ蚀䨊冹择蔙䅃ঁ쥊听․㑄县ꀈ㣱R吉˯�ᯔㇱ⬽ಚ㩠舂㧏㾣ᕐ山탵폽䡹ဣ섐㗡攱ག嶰큒䉕䌅㌬㨵攎ﯔꑡ唍䎱�ؼ怭努̮ᡶ뗀巋ℶⵢ䞋۳₈ࢴ涡唪蘜芑둾娳覭蔎岹◖뙤�厑ᝃ秱ܘ혧劁ퟌ쑰⦯伖㙧繴䣌Đᮥꡱ☐ȴ욆䄁斪닀噇榕饶恩ᧆ魖㙪檥ꥶ⽪樍骶씙毓륶뙫殽쇶㙬泅쥶뙬泍퇶㙭淕�࣊妲쀣ዤ챀눋ഺ䡴ᰥ刀1癠ᣁꌽ띰瀍ᇷ㝱焕띱焝⇷㝲爥⥷띲爭ㇷ㝳猵㡷䀊㽸ᐁ�എ
ศ쩐儂ᯅ襁ᘊþ˷猉榷띶癭燷㝷睵祷睷㸾䏷捴ꌰ䵗ࡵသ겑ꁿᓮუ✔ͬҗ睧ꦷ띺窭뇷㝻玵繷휾졂〃᐀碥놧煯Ǵ㘒秽ꋷ휯箧㝾绥띾笝ﾢⅸ粵⤵Ⴐᅲ}ꊜ尗ᜏ絡ﮢ臭뢁脝ⷷɿ翽ㅃ青諈첗聿鰀㜡Öꇷ塶萡䥸뢄繍Ⓒ뜯璃䦐ဨ鹱ꀁ컚㿘⍶臯佘㢇蝵祸⽒芗㌂ڔ䌁䄹略〘聿蛻楸흵脁車ᢇ詻ꥸ뢊蝹⁸满萈ꔛ䊼咗砎覙德㢄詯퇘㢍臕냸圯ᮂ英蕇┃蘭ꂸ砯趥兩뢏矽�労㵃垎ჾ頸䄒༲㶸�碏鋿⥹랒逧抐刓掎၊ၙ愡ᙀ㧳颀鋋妒锭她릕⸰۹賌૦ఙဂ顸Ĕᄲ᭹�孙㦘閅庙휮憾㽣뢖铁ԣ릙襍臹禘骥흸ꊘ诫땀•ǌ㱹䀙餥⚕砲髱ꤹ릜蟍걹霮�뤀蟜ࠈ༨書脠咘䴙�콹릟蓽튙眮ං珡몠ᜌ夳奯䍂䴄뢗蘍慄犯ꈥ⊠ꃥེ�獹릡鞟쿸骢ꑅ꽷슢ꏣ㌚Ⴁ셹馔甛⇺婺ꙉ楺㩷⹌舗�ㅘវꗅꇹ㪤ꡫ襺ᩳ珺窧㐶妺↑陀㿺㞦ꦺ랪ꠣ뿢婴ꔉ霺�匏恽꫱ፘ�ᇷʫꭅ镚뤌靯崺念⿶諠娗껭㪯꿵梁몯꿽ǻ㮰뀅ॻ뮰뀍ᇻ㮱넕뮱ᔜ䅗骭粹颹즥餛斮뎛㥻뮳댽䇻㮴譅䔷宧ꜧ颸騙鳣䝻뮵땝懻㮶둥鍚梲ꤟ䖹�祻뮷락臻몷ꍑ堳鮊ꍰ箷릃饻뮹릝몴뛛쇹稈肁ꇻ㮻뮵륻�读蒣刯ꎚᮕ벻퇻㮽닕༠�䈹ﬖ铥骷ﬀ밳ퟛ㮿뿵흻뮶룟飙䄒酯쮛鲿쀍ᇼ뮻ꎿ⥛뮣釩짚㳁숥⥼ힵ붿샛껧礙변쌫䇼◄솛릫覿㮃ﲺ쐣奜볅衝┛﮿㗄뮗역彼㳇익䥜䢥Ȟ焙䪔齑넻糇좍忼�ꄳ晘撇먵㗻쪥ᅼ믇㓂亼וּ엧鳊쮽돻輸諚䆙窆ພﲔ췁�솕傛榣쭫�맭굼ᢾ資볋쿯ǽ瞳ꮿ�䶡㎄㷼㷐턕㭻ﳍ籋ꚡ鶽봤垁嶹툙ヽ屑濳﹇ℐ咃ᴔ팭䤽럔몽浛ᆌᆺ㏥岮퓽懝㫖붳ꚻ聂缨㛀碒霉燜巖홽ᵝ�ᅔ솑᠄ⵎ㷙�뷙�㷚�뷚�㷛�뷛�뷛둩샸椎꧆㿘ᡶᒊ謸綈�螸㷞裥����㷞������﷽ﻞ蠓ᦞ廠�ᗞ뷢ᷣ�黟�ॾ뷟ܞ�⯾廤䟾廤�彞뻣Ợ柞퀏障鱂㹚蝹聯跞⟩쩬镞믩磬鄞�ꏞ绪ꬾ黪鿞黫迾绫뵾뻬짞ﻫꅞ廭閞黩��奈㻫뻩ᤜ庡�餧ữ﴾ựꅞ�ᾟ�ﬞ�븫ᷟ廱黳ᷟ绲䆟鿳翴垟�퍾Ύ糩常㐐銮ďԎ䮠㿸西뿸釿㿹秊饿뿹劣ꇿ㿺瘟뿺節뇿㿻蝹湀�턁竺ू썫ﶶ뷏ﱿ탿䀤쟼䇨ﰇ鵕ﲃﶣᷓﴇ놼峷맥ꄠ鷗﹟¢膤墐Ḵऑ䊅郡瓘ℾ褑墑⡺܀긷酣징ꀘ刖夐⑁�⑉薐鄄ꀄ̰톁碍�㥱亝鏧臾ꅁ捐ꠑ直≁֒䪉儒頯㪴庵妱嚭闫訊ꏞⓇ椈阜偎ᾗ牑蓩槊꼶宗�秱墄煬䶞䉎窫担飱盜ा논烒鈖ኂ湙⠨蚜䅿톡墔仞⓿�횬�岛䩮钏ₒ틲涹�府ṱ�뤜况庝康줋檤ቭ늃ރﭴ弞鼷ꙅ囵뚓罣Ά뷴弟�勔못뇃彬ຈ脄╔瀔Вᤋ꜅ၰ퐠臢胿䡟憆䪤༈裄蘁焗ᒫ瘋剥Ⅼ湸謬ᩌ䃡蠇죟쾕Ṱ븸輼䕠�验퓨奐떔긵弙丕輂휽掌툸收蕉Დ䈩靜䥛䈂ꑚ嫍࢟ꚗ궩钐㦣嚎ᩫ魍椧秝꒛踸罆롒澡✞ꆄ쥕拪➟똖米몥通咤舉ṓ嘥槭樉ꑩ㝽▢酈ᥩ㥣迒᪨、⪱슃꒰䬬ྯ拊꿄타ྤላ꒘䨫༺訃㻬茍邢༿擃䰈蔱뚢겻ꮫ혺쨫כጃᐫ갈訪ꉂ쀃꣐訩邋ྦ됬ꘌ찫붨䈊삪⺬렼쪊엂溰衻༶讃ꪐ渫ꦋ븆ꈫꚐ沱뮲⭮㓴ㄫ㠴㎽ᆋ옔匑誊齄奦㩎⥢ꮟꌄ吜첋굔鎅㨘䨔킠⻇銋咼쐐䠑⭘ꍳ됨ଓຳȭ姴撡⮱䈅꣐ใ⺹㇐녀欮ಡ⩅Ⅎ넔쌏ᑁᄼ₲㻸킻筋ၬ懃륂똔ឱ蜊䇊䌌萎Ɀ拊㣬萍ဢ䌄눏ဤ⼶魷䚘洫傼Ⴑ셃ꐨ쬬䑶⁓퇦恤ᱸᨦ㞎ꩥպ쫳웲갾蔮Ⱓྤ슄욨̒灡ꈳ亠⥃䡼댪ᒣፘ섪魇ఓ䂑캨솅넠諗籏ᒤ쪄忳䫘ᑁ༴춃㚜䨮끭測獏쯺㢞촼⎰搊꼔़㨁ਂ況ᯨ봺舔囐枋䄈笅ᓽ⢁븡᳸קྴ朗⊮ᘠ栕賌ꒌꘔজᄢ츩仍猻ꁅ秊ﳎ㡣결脔哰ꀗ⯨ᄌ큅ឳ壡댠ꊠȕ㹠䌊堘֭⦼િԝ볅Ȕꚠ潁ꒊഔ鮅ޙ㙕糀嘰똈䀗ῐ邿ඊもᕈ蓵譐켒ȗ웡唄�綽ᱲ媁ꂻ䅀焠㳚ꁇ⡂‾̨绀舭ꑀ℗댡�ࢆ薿ᴀ⧗ᑕ↦赺ゆ壊�㡱酬鉋ꙑ툣ƚ㉕惆줲睰᠄ꑠ蕌︴퐭뙳㎘䤽㑌Ӻ㒦咻닆쵦됉ꚪ첑愚䞘种⮱�勥눎Ꙕ囹萲昘猐熊ছ㥿ꊧ魞ⲥ蠹穩䦊⮚뎞㗽젺㩕⎦閲䛇偧ᐊ꼓莅䄨楐烆䵨ꈋ櫈豻ʡ趄絠獉諊竑轄죈ᩴ샡സ僺攠㣊씎钵㫏䱇쇏E蹡厜욐鈓焪℥厽ᩓ䵃K㯥鉅鲂�䴭杀�폓珚Ə既㡆Ԝ듺蔲엨䈡斴䎌﯂ⅎ④먯瀀র㣘섘䍾吳刎⦤뷐呔븲Ȫ燸딀㢠醐Ɍ硃ᥟ銵Ⴓ蚑ȁ僸脔ﳹ脓ᩌꢃཟ敡Чɛ茮න怘ၴ텃܇쁁ܿꃡՁ쩀䊔᪐⌑颈᭟�좴酥䬺蚢�ʴ䡀ᑵ⢃考♨茱廔肆ᴚ⠆ݻᒀ荮ᢠ갩皀섀⣸肃焋턂ଂꧡڧﰰ舁쐭脋㳔傌ẲࣀŌᕠ㫐븛䔷ࣘ串₳ᄒ₅࿇桖ݒꐐ̷膭塃츢䀊ថ둂썞遨Ä꽠�鸱醆ᑈ渆 桃㑮惥䈯䳸ℋ傄Ȑ㏥ᠯꂢఫ讵虗䌨䌊⼌퇁ᝲⷃ㚷➤⋚葳ネ픰읜ნƴࡾᠠ豟뷱虹䍘℀쟲䂴ฆ f㠣考谡깍囨⺨肍p⫯茱⁋䌑䆰䄎恴솇¤ྐྵ癁뀀瀐ȏ⻄⸄㒀ព䈖릡傊䗘䄁㫄怇Ấ�밁ܪᒀ䀐儤茔摌ㆀ㞮ᡃ퀡ܦ♇뀟熘䌚㤌䄋ジ뷃⁞䁃蔁ꩡȩ珸䌋㑰ꚍ塰ᥴ첡聜躑弲☣ꢞᢻᙞ熲䞛䙹藛Ϋd핈多惔⦀朗聬Rꢂ٩譡ت�㝦嵴慛傅츄ꂢԚ㌫臝榼儆㍚킃હ遤성ΠĎỘ괅�䓀ದ힁̿ী廬༞舀ⷨ怇ᮾᣟੱ밡ؿ뺀Ἔ텅āŘょダӘా訐䌙很ꌎ㥨ႅửဈ�ኛھ瑠ԁ㛨Ƽ᫄ᰀ㌖퉒䎣魮逼ꙟ붙䅁≓铯墷됁�䀀爠㘁䨾ႇᴄ쁅ƨ遁.鷖ⷀ䚰�谫䆊律䢃Ʀఀ�옷춘愘Τဌˌ谙Tހ䐎腀쮠섎㯄낋ɨ遃뎈܈艡蔂ǘ쀌㫰踇യឈ�ᢁ跱蛮鬳ꀌ崈쇴ᶌ��ʠ䌜勐᪘섍㊮큃<ᣃ㣋瘯痐⛭뗋솞↔賈ᑑ간駗셜췻䉲⺐ꂂīረ솊숥⻤ኘ䬀ऄ쀞绩ѠȮﾩ遂䄷᷀Әȫየ㠍䈐۩颂舑숐ު㠗䈑ꢂȮ�ꮹಎ.ჰ죠䂆埱ﲀ䀖ᗐ簁䨖ᇁꣂ쨗䃤䣁䈱㆘悖Īᙠᵃ興ᖨ梕愰㈼ᑃ脍젹ು䨱ᓰ䁁鈮༘⣃丳㈐炁᠗ዸ䇎㉼䥁nḀ蠅ᵪ閴淪応緬葕闘㛉얟虝↰烙愿␢ᕩ�褋ᾘ鍕柸뇘酖乌ꠂ谒뵬胎霔䋤ಙ贖毉簑mꚢꈪ⮮똢ꈫⲾ옢ꈬⷎ혢ꈭⷞ邢Ḋ頉횦棼粠茟⼘郍怫ﱑ䋳⻌ﲀ脏⸌튂ဃｵ⁁䄖ⷠᲣȒ㖲ﻀ숧ʙ싊ᄉ䂠脳⬨裍섏㐖Ё혯㢊⠁弫湒쀋䒖䁞골ꌿ䃾ؤꑀ䄎ᘤꑁ䈞☤ꑂ䈮犢쐮ᵦ薛詏︱푎马Š炃쌱Ṕఁ脖ìⓀī㗘Ӄ脖ﰂ쀷Ĉ�㗐⣀䌔쒁脙ʠ㢁ℷǀࡀᘶ<᱀挙㖔㑋숝᪠谁Ğㆤ糁茟ፈ첁脶឴⃀䀜�脮㟜Ṗ鐢럕귇䕒ﶩ虅ꚑ谁싣㛨솜ƕዸᲀ쀳梃)�貙섰មী�ނⳃ堜乆ೀ�섮荱岐쀀ᄔ桃섰ⷬ⒀Țᇐ̩㌴䄁ᱼ톀삣瀅⛈冀�艏⣜脇摞晝钗쌂㜄서䃝㛠쐁餖Ŭ쓁舁឴䄃噰⭰ⱀꚴ服脀⭰ᡀᘎ멁಄餎ᛌ⁁茞롴㣃ȁῤ䄳⾠䗁屰溂ẗꙦ綜ア鑮潀롄퍊婦씦䆂᳠䅴茂ᘨ粗舁㗄�烱ు̞ᱰ梃ꘙ듘�ꐵ䊧䅣ῤಀ솬培ᢀ쌞⥈퐁鼟ᴠڀ쁸滲ᲀ朞穢혇ᐯ䫸钁饊�ᆇ엪환⡛鎤궨Ы䮥擉饌祀쑠쁕ේ⢔鿨嶆掹鄂㒩慺䓒확䐯ᚰ떆┿䖜戁ꦖ靮瘩ꦗ顾蘩ꦘ馎阩ꦙ骞꘩榚嘸눎嚔鳨ᙢꒋ╖䘄⥃點ꦞ鿮֛鉞锈ᐌ龂壅Ȯ⣶င鬮댘䰐䅂褍㲄쐕Ł扁䑄脩嚐蒁؏ꂂ䩔桅ꇆ�ˍ㛏舴㏠⡃舱ᒨ쒂Ȓኴ貕⨏끠ꀁ쇺ᙤ謔ྈ᫃脳ൈ䀔⳨Ӄ숗ᓤ찗ᒈ턂苬Ꮸ粑숮⾨茭䀌舭튠�㼚㠁ᘁダ�Ᏸ䒁䈔캼즡ꃤ⾀顒)ꯘꠂ脓ഠⰣᄏﱠ願䌵ᘌ䄬ᄸ꒫ꬑ붲맫赙ༀ츌̌⸘▃誫塎Ḏ铪腐ᱴ쐂ൠ삁̩찅䀃飔ᝤ᱃耴᧰頤᳘⢁䌑⼜㳑茪⤼䈙⡡䄐㐄尃̔ࠄ̶༘䰃ꔒᤔ醂⯠죁솻ᘄ紪腰ᙈ鲐䌵퀆軁�傁䈝ڽ萁茮�䃌쌘崪万㟨䉪썥䭖邁䄬አ䄁芈㚐逄萮㇘钭ⴶ쾢แ蓚᠈惒헕ᆠꂁ踑凰攬䱔ẘ䢢໊鷒硬쁎ⷼ鐙ⴏ᭄냂Ėᘸᛠ榁䇀⸔⫃Ē�όြ汎茖㘨㈁飬푺籁脶祅袌긖膎适萚ᤈ梋萜㌈撁쏤한瀫̴⬔볂䄙ඬ球¯㗼㋁셏譵䡁伙ㆠ㇁쉭輳㐔怃쌬ቌ㠃쌮ጸ혗룮ႜꉁ蓸ᄈ醯Ȟ㞘퀀ē⭈瑁舲헌搁脒홾⊇闥駔䰃䄃ߛ琰✨舲ⷼ撁섮じ賁䄬흾遂˯ᗤ墁茓ᄬ炁ᬙㄘ塁ꬑၕ灁쐬ἉӃ+ᑣ䈗㊼Ӄ⨙譽ĔⲄꡁ䴯ຈ萁ꐭ䂘檁쒤㜈�Ȕ틴ᚱǖ㍨䓑ᨍᘬ〛䄖⭄〪頭ᑐу솳㘌邁Ē㒄쌱㌔炁䌙⨔疁䅜낆섯⹀鱱넩겤ॡϕᔜﶀ䈐㊰ೃ舲怬ᬞ钂Ɔ舱⠇萲쐍ꇂ萰ŗꔲ适ȴ鷑Ņ鞇䈸ៃЫፎ逋求ሤ鐞㉁⮯╄羈Ђ錙ㅕ颁耙粤瞮蔩ဌ샲�㌪䌴㞋䐴⥀쁁⯐쟂謳༄峳覨ᄳ팷☘荰嚬匆し᯳ጲ膐แ䖦틐㭗༅蔻֜ᤳ㇇ꫳ膦᭘⟃Ȫⶠ堒ⵌ댏건쑑䀫揹-࿘�⌭͉㓣耭絪舥워钎踩꽄읍謷꺀ꢁ舑ැ㠃鋳꜊糪䀰讹⮴ꌎး婒⌎⭈霩⮔탂쨫叟撱Ȏ໌䈐㒳ᣁꄭ䬣ᯠŇ⬘폀汒䟛�ᄰ㢤鉏ᲄ蒭ⱘ᱃셀ሄﴂ樑뱄᠁䄯⬌퐑脪⸘ꍂ홍ﳐ荮葛⻦킀䐗㠋ꍂ带ࢱ蒎痓㙻宅ጹㅏ፳獁䓐ﳞ섯ᆔ舴᪼䑁䬳⹈ꀁ섐떪⡃광쵾쵂茖ㄘᢁ脲⸨젶숷諒ﰂ섯ᒷ蓁섐ྔ萯茮⸴⢃帒븂쌚㔨脳䉁䅧ඔꢁďㅠ䲃쌯ᐄ豶䄬㎔恁þЃĔຐꒁ䌯⩴萁성爻ﰶꨴㄬ鏋셺ᩐᙁ쏾ဩ둁ꐭ꿼䉁ʷ᎐送茓ꅉ陁쌧⸸ꀕ茕ꍂ䢄菱᠘듘쨐Ꮰᒃ㈕㈐顂䈗ዯ죫̔ᬝ冁싒バ奁焔퀠籁˲䠁ī⩈猁༤ꑵ䡧샳ᇠ㒃賋啔྄Ⰳȗ觿ꭁ䭾㈀䏂ᔄ똂䋫跇輓ᅷ運茎ረ猹㠄ⶔ䐁뤕ㅸ皁䏄㩁艝ᢐᣒ䌷ᔤ늂磺돴ﳀ⾄쟂聎㇐콰Ƙ๐殁щ鯲γ댧䄛ἓ∩䴜ﻞ氾張྄谁㝄뀭舓�깶ẹ粁儰⽸�躑ヨ鑁茎ᙀ逺쌗ㄌ漙ᚴ栃愑ಃ脓ﲞ䈯仮�炑슜삳뻙豮ĭ⢚☯潝㜠ꬸ뭬᥀ᒁ弖됓桁脪炍艇傒㐖êἯ舱頏ė区ᑁ舖⻬搶䁃贁䈍ᇴ乘쇡፨球脩྄㪭菖ᐸᑃȗ㏐鑁Ⱝ릴뀂䌔읜썪ᩌ됂Ț㞠듂舙ᓨᡸ⽁ᄤృ茓쐛磥胲￪棁烥乃솧寁鼰삷鳛ὃ숄ᦠ�솳ᤘ䠁脕ᙰ걖ėຄ䠁䄯⮼ーȴᛤ�⇡徃胉Ꮰꒁꬒ⤐琁̔阫赮㝬㋠蒁脕튧吶㰇༴ⴳ尃숫ዴ⠃䌰ⱨ峃脎⺼ᐃ脔Ⴄ쁱脕�䮃䆏䓁̮ፀ산섐⦼悾ȩ헴铁砬ᵇ벁䊴Ⳅ凁Ŧ㈨烃ᨮ㘬Ⰾ᷄죧 ︱⹜싚᳐䬷석ᕀめ렓ᩈ�䁌碘脍㞤耯섫⪼ꐁ䈰㖨Ϧᅜ钤뙀ᑈⰃ̍ⱌ恁᠗⪰栃ʰ㋨ꃻȩ㋬볂וּა섘⭰瀸숲뿿兄㹆ᡁ꼳�腝䁈樌᥈鑩枯햬뇢릜ㅒ웊톅汨勓ఴ훊톨㲸ጳ䮋牦榠ḃ퐗善勔괐䬗祅籴ⳍ垰᛬⛃긯諔釂艼鑅ꆖ嚬㳌깪吥⤊刢杜꘤䃤偭㝖趆ᥘ詼Ꞥ褙딕㊙ᜣ⯘氶렎晚棑苫ﻸ縇㠰∥(㜇熮ꔸᣉ蚠ၒ䅙鸦⡓쩦䠦ԥᰈᰎ㫴భ䝿펦㗪ꔅꛖ丆韑ꗕ絨飾홖ㅌ矑荱ㅓꅅ瑐峋䨱�鉜ᬘ줴攈嘐ꔤ䃩ꑰ镘欘窽盙尺�ꪨ깟ꓘ咥娍剒휐蔋폚꒰饖Ū❈攈瀡ᐥᵺ씯站虜ↆ䆊盡㬨ㆦ⡶ꖗ뷫ᐊ釐㕲ꄗ廱陟ᮌĺ듸ᘟ쥢惘☖砨뵠覥掆舔ᝓ覢﵌얻렡ࠨꆡʃ䤊簳냑㦠얼䲱ⱨᧈ᭄椪勠㏍㦀퀘婩쳢䲳叒츉풜ᗀ慂❱씯疉䴷ﳫ嵘팔糋䆔ᦈ⚌㌘끃偢㻍ෑ䰉ܸ比⠇狊ᢣ䯇鰌쪺튌ꃸ㌘ᶳ儥闔䴭핓䴕啕跕⤵剋篬ⴣ牋㷭䱐╓嵛闗緭�⡗ᒱ᮳㉙丷喳䗅訴℀춖锔㑩ﷁ䌙க黬ਚ㤭䡕ネ萭۟ಂ᳨ക泀啖숖哾ᕞ核측㮗扃ᙖ㌽ෘ侙㗔黔衫䣒籿ꈕꀘ褬쀁塬ᘜ偣ѹↈヶ衘셡奔솈뒰ᝒ健奸ꇀ姹蘾ꆅ腦ʕ唙塸⢖簘锠֕捑뺈ꆥ鍉捻悚陫ꉕ妇氁ࠛ嗬뒈欝넁⅔뫡免陖悅劐씘戱镙機膔횶ࠝⴲ煹▰蛁ᚓ꘡선衜鞁쓢῞귝鰈낗轂刔씔諐詜뱏珋瞡둼繛푘⋃퍀ᚘ〇꩑ᤣᣦ嶠掘蘩ᤦ⥆嶒숖翡飙졢㒊旣ꪙ露⮦擐얊원ฤꄉ楞䎗灀詧奛♐ࠎ爙蜴连䈗拁롦媢蘋稹詧켢腴暈썯뾊䘃制ԛ슰葥멐ؕ릸ℙ挄킧ᚘᡑⲣଵ鉁蘑嵈挘ⱈ逋㒜々㽒桁赖癱䔮峐樠㉢쁁⧃戱䈔뽰ꌈ婈ㄆ㒌ꃏ⮯댯ȭ峐舋⢐暄ゃన쩠䔬췘萢ႆうᢳ¥試ꃀ茭뙐䈫⇴ᆌグ졅ᡈ慡蓘₧蕀囨茇☴ᄅᑞ쌂ୌ塁籐퀘䙠脊⨨ᎌ₁ଢ଼鳰我쮨№諉ꆊⲆ㣆䇘퀀董鶡戦돘ꜱᄅ╵颅ᕘ굍顡⩥ን馲晋학炀䥓鑅ഛ鰢舮䞑∘徚处ᦀ놁絎䠡謴ꨑ䈔ᗺ攵蕰膖㑈㯆ᘳ④⢮갠♗娰⥳錘슍ⶎ嬆飤ꒄ䑒譐✸�厜〆凂⣂ಿ뒂㑬䢡䜩섩➤䈋⨖䂃ᣊ㣡Ἕ硰왽ᗢ赝⇑ᡔヅې鳊மꚡ쫮�슊느嵖塚ⱎ좡ᨨ韆ꡆ⇡䌕㠔櫒쥀탂蔠抡䎡ꐰ瑷⿰傖ᗒ䀪ᙅ邁ዯ䢁䌯䕨ऍ눘惒順ꐁ醁㽂왋晐쌇錼 ⺲첦諠烃邅霹⤐䗘䴠⸰鐅䞌鋨璬첒┨≳鐄럜☳艭ꂦ硅譟梃蔠贡앚囘曼샅㎴ꁂ荧䘱峀ꆔ杈怌ᇌ큆碳꒕௯멠Ȝꐈ愖⡨譚ᘨⱥᑴꢂة혚쌯奸혘ꉊ䀃㓊췅⚨鐁魯롁蛧愘舛惴삅兩ᤈౄ낄٨穁蘔䍘섌射ꄌ䕷々㧚㳃ݜ頀䈖�叴ᡞ᥆咯緣섡㪲ꦑ옰頂炍橨⣋ᑰ㧉趓契昕腩⇅䢗ᜀ灂ற琸稤蘮륐榔愋䩍쀂⁐汰贲讀ّ웠ꄘꙉ脍䙉飅겿ؕ䱡ɚ輪딤膰抋㛨脫ꑧ寡鐌陶䈱곈滠ࡈ冶唕ㅾ큲臈цಗ뢼찳紙ㄚ�놧ᖦ懡ა踱ḭ蘒脖㐛焨㉦袅ﳀͣ貁숫嗨뤋⍟�쟽ᒙ脪囐⌖⤘뜋洿�ࡏ偨Ч감씬㿘䀙炌㆘衅ᖿ▃ௌ鹈䊑㲀茊℔䒅⥔⢆ⵑ풶詟麓䲨ݣ⚃ᠾꤨ䇼⒚劤ቕ或⣤ꘫ솅쓉譟陡缭ᙙ耍旋扯섳ڦﷀ᫈偱䳠ጓꥰ痥쵮맲퇛ី뜭⩽幅矩尲櫌ベ빮숁徸㮼渮וּ╠랬尝ﻰ옳�ﾥ溁⡞ۀ蚝ᜆ惶�㿕鉰ၴ애읨憘犚쩻䴌뙂蓾섳햝怰鷛ꋪनᖩ⇽̿铮馩ꍛ㳢鄏崫웕ᘼ�굸謕귀턊띾ꎅژ走䳁䉐缴䀉忨や辌ဨ⍚飯ౚ脽្悘Ỹꀄꂰήݷ볢ധ䘦ᤍ䲘牁慕オ⣔쉌偱丮蒟댭ᲀ녆㝍⥆蚬킀騢隱璟㻈䈙忴ᒄ䱜袂ਸ਼㤭陡뵠绉⨗⌲�玔諩�ٓ烳㌴ꅡ䛹᪤�ꦘ릱⠃&豙⃨舱㥍⩵憺ₔ⺸洝鐲拡Ԗ潸愖岔첅휅າ衘خ콉〆ծ橸낅腤◸腦棸鄆Ⅿ姐킆͕鈱렆묲柘礅⦐⭨㠆轟怂ʾᲃ⢧ȭ⼈㢆謟ᦚꠛԹ沠ࠂ莱⠈墛舟뷸冃苋꽢₅㍧䯺褔莑局墈ͥ攘⠭̦〈も㔴扈ᤨ㜸梞ꟕ⻐厃⳰肼艖⻈᠂蹫☼㬫ꡈ삁Ĳ滠ᾁ揠⠂٨㊚뎂餞慀邂般⮀ꀂȣ⏈ ٥ᶀ砃%唈ਗʩɰ舵撐ࢆ蘮廀䮆蘹腰ࢆ⩥ᅤ炆蘡斘ゆ艘擐ᢈ≬懠袍Ւ㏸ꀂٛࠃ茡栨倆쌬勠荥匨騆蕗쳙⦮ˏ㫸〆ڦ悀䢃ड़✐娃ۣ垀ࢆ餰㧀뀅ا먘᠈㤜⻀뼼쐸ѥ㈋〸멩巒肿艖柠逧薳ᣅ蘢䔲ꂁٜ㗰爢芕᳔胆ஏ⽈碽蘯녀ꬾ鐈郃ͣ祄᠈革敐᠆ɧ隐怚䢮婈ऋᇲ杸՚汐퀢莁덐�硱퀁艧朰茥頋鈆Խ灒堧խꚈ팂虔Ṱ쀅ꑧ撨炂ࠧ䀴삹䡭ⷈ땯⠀ᢃᘜ㳙榃薥揨ᨆ骺하冔⤊銊⨍芓∨炂ʊ姨ꂂ⢘ᯨ ڌ嵐⠋♮퉠ꢆᜨ鞃㠧駕游롁蛭�⊅蘧림墚⨩랲ﮅ譿木낁⼨㓨젧⨣舢墚எ困刯᪸脆莺ᬠ耆՛ꊢ砡ڧ⇠撂ʾ廸㢆ը鱪ஓ�Ꭾ싰슃㉙㢷㣋瘬㢹菖圈킂艥椰谰⮈觯墸㢆ȭ晠ᦺ蔣ᗩꠐἲ困倆艠瀆༥쁁樆腵槠䠆虢恸좫䥒█렭䱧➀Ɨ飔芟木ﲅڙ⒐ך戠肂脰ꕣᝫ숭舽⸘茹㖯榠첹槸蠂ԫ늰삂ȩ〘咂ʋᶈ逝؟݉虼ⰸ粅苯ʅ⸵䍤⠂ٜ咀堆땠㽼�ᱸ砃虗㺹傆됨幨媆鳠풂䭏칐殨삅脷毐碅蔲⁐ֲ㟈셥碆㥒奈Ↄͳ⠨킆թ槀낭虜咸稃퀟⌥둜뢪邱虖때唂逸契〉̤ࠊꐅꊻ菫呐䀓彸郐蕥柘⢂虝∲᠈ɩ攨⢠낁ꅐ怂䬨牜謥㞉숲ℳፏ有刚輋違ל屠褅鮚ⅈ邷Օ⃀颅㤜厐뀅嘜∛ ȝ嘨ԟ떉ࠔԜ嗀栅脠咰。՛孠䅖蕮퉔ɨ昝ꀁ驗�ꄟ薞ᠤꄅ膴姐悅ɔ吨뀅Ԛﲱ䍖량뎁₅ᩔ힋醷蚕鍈뀁ɛ锩▗器墐낁᨟秭ꈁēỀꀅ휟⌐쀗ԣ澙脑ឌᨠꠗ뜠叅�痼ꤌ荛䍺夅燙ĵ욡骺렗꥓쀍隞㓳푍㿞摁ꔕ乕霕ᗚ�咓镲羉Î㫋埕奓�쀓駑䤙렗苐꜋喽媣껥膸天섢뀥㧋츨燇茧⍨⁄ٕ▀퀾姼셨鐎贸倓㐩뼨䡀꼡ﳨೕ┌焍�脓�ㆍ膑ꟻゕ턢嚑ㆅᗑ逫賀ꖕᖘ캦먝袂詟墀ઠ蕆⫘䠆蕧좂٧夌墪͛䉁袢R䌝凋ڦ♘<蕟庘颰ԫ搜艾ㅠ㣊ͣ嘈梃̫≈뢍ْ塸䢃꩝枰䀂蕫揸肃ɖ짉〆荜嵀뢆썘⢀殆˽又䠃ئ㺑傂ȩ⪈逢�ﮀȤ。蘵㈊쀆䕝歠࣐⑬頄℅峐ꢆ訠圈肆陥㲉蕖厘砅�씁腥墠も㹔ᱠ餛馉꼉종騠Ẩ瀷ģ듁棖輟ᶸ倂脴妰�═褅驈촊。ᡝ⟁ ㌪瓭帘ȕ넙怜⑆妙骒ꅠ䁡䡖먱ᑾ嚈䂂蕖飍▙詺眑媵藚ᩦ짒ᝯ嚀퀁Śᢡ᱗ᗊꑍ㩇룁쪨䌵┸顎֕諘适☫Ạ倬蕟㍨쀅ة摨讲䮾䓞�捀蘢攸ꂈ봴뾸퀅艧ᨃΘ丶멩氚䌝㎀ꀈ艟㻖킂䮍辘檏ꝴ뺇ꖍㇸ᪲ꉷ徲䕬剀⸃ꩍ帀炂ⶮ땔ⲩ־㘠袂Ὸ햆趩⠂般⪐ဉȴ憐킅Ԩ㋸も虩❐ᬃ䎙攨絟ۓ離⟩⟨䠆ɧɢ吂�殰늂௹腫Ⳡᠨأ⋰䞕㊨檅䔼ﯳ薆ˠ柈킂蔬�ਫ਼�䀐舟⃠领怦删쀠虝劂ࢥز㙍〆茨孨옆鲀㉈솂ق彨䢃ȭ돀灠蘡ࡖᨂˣ⧠⹍耸鄅ೌ㪞懇롦陋닒遒ั墆艦榀ᦆ蛞霰톆莕ᬥ薆荁㤍々ꨮ筲。蘰㐨瀡鹠盂謣ຜúလ՛榈얅娡좃炱퉘堃̨낁ā▵堆虡⏀虜⣐쨷脘嶆ԡ⭅ 朦⟘␃兩상䨋ˊⅠ䪃藋浀눮㽌樆Ⳁ道ا䉝ᅩ蕂∥㐂錿껈适ⰳꏀ뎁舞⺐傆蘢詰蹢Ꙗ㼚拓蕞껐謤芾⇸ꢆ舯䋎䃥縞⢔⢻댜顀蚁楰邲뢺ꂁ̲�֍㤠븽⯦빬廤௶㾴ၣ鎙⦃⠆뭝㏨䀐誏Ἰ傃䔪窒榲屔麵쎒뜰ㅃ晕銦坸ꂁच敽恖똡嘈悜ၜ潡ᴂ緅떅㵹걑न↨횁ᦺ哠䀂㬝ﳘ쀗⡕声ꖅբ‰ῇȗᰨ큕쵖鸡ꥭ프ꚺ忣ԝ奠엖Ԃ抍腗藆�噚ﶎ蕹墘㞅蔠톣敖㶉㗎䷖蕛嚰䋳鰣硭蔑᎙ᡄ舲떢ゅ艪몲ٝꊀﴅꛧ좢肃荡㉈萂蛖�꩙㔠Կ㉨傆��颙Ⱌ晾깦㻩夆Ⱥ뭤낂ᰬ㢀适艟튢僥ت╸稆귒홤ᢃ藛窘覵ꔲ颅鰮ᅉ舩曀ᢆ腩Ð낁ȴ쳪ٛ▐畅ൌ鞻촂苩⛠ Ԭ㏘ਆ炫卥㫪읚譓㔹ಯᰐ锂�❉螛䂼⻓狟㘔㼹ⵉ化�靷镽쌟�텈벑㋡ꇷ䝤ꕎཚ虧燸獬餸ꕙ璳䕙᎕뜭ಂ┉ᕴꤹ㘍웹祸ᝡ턀꾑ᎎỰ쥛텒훸馾岠렳Օ翗ᾕ橺艃觰閁독Ⴔ厈끎Ȝ䤋�區ᰙء㥹清騏鍱梘țᴨᥗ膫櫱慚⁐碉腙꿑辥ᐾ쭚噷脘Ლ鬛ﾘ蕝ᵸ넙㶌鵗橸ᜎ톐킖훁⟏礅ᦷ벙蕗㕮룡ᜟ﯁∈壟娨椅龉럠舘訉ꃘᯖꕁ喉噪굯룡员洘뮘㵢։啠赗毸る㤛벩�餞욟薲橥聅͜㹛蜂ᒽ药⧙署ਇ虪屸잆艑㡅虝媘顩̩븞艝柀퀆뤟ᯀ큨襪⢨뉎䅆领굝⁀勎莃學耂㼴嶠肘솢㈘�偕⌨衪、䏒깤䱋⯲逼ⲳ�銢ጥ䖊텢쑸㕦踛ᙇ㔤ꁡ婸๒莖壅宯ᘍㅤ醴녶⨣쌇芩炐⩫ᘝۍ䲜Ⱨꌲ阵ᵒᘩ戬ﶊ䪰鮒⧳ꈰ曒誕놦ㅭ֗崙蚡婦䬮쎊⢑䢤ᦳ쵈円⠲巇ᤓጵԋ뾺车䬛犦ꋤ곃圯핌䖦ၒ鱗輅挒䬐팋ㅉ䚤霯◘뉡傑水餎֭瞌ᝥE컥瓧⎹Ȕ䋊⠋팤ᤳ粚㡾芤ᡐ쀁웨캾尮ᘮ薤⧲纩斸譄蹃엒꒺䐳һﭒଟ渒ݹ㚄瀋몊ᙝㄅ碘棗ꑪ晴䘙ᕡꒌ쐯棡⏑㡈絁⧖ލ쓲Ჴ⢝ↂꊈ�曆㽘訙ᲣᏚ猔䅈옐ㄑᥱᎄ녔촬꠲䓏炍틼ԩ焼䄞콈訓呃艒틘쌗䧄盥섅晘됱荌쏍Ꙁꁵ釴ᇔ텞么徘紡䓵懃꒐敽簑ᘿፋꐤ̷髁ᑘ莝쌘Ԓꥢ⧘숧প�秨扆忬贩ඡ⤒놤戚줶Ƶ뫭䡯g矜옕쥱珍数�፦焌䢌䰗නᙼ〆탼贲㗅㋩슃�豄壡ლ鍋瀬蔮ﰩᦿ挊썸䔮䁁荘憊몐䴷ᑤ懴Ԕﰙ禳ㅤ䪔朚ᥩꎋ은䔫㢃ꨖ鱖냀瀺ᓕ祢ꓰ萜�℅캄鸮䳙៊ᄭ⤎쁁㐺ᇌ呤贏᪴≅쟼誓糑믆ᒄ摈䒭郁ᯉ睍䃑ڍ埅銅曼谩⺲옘댔齦ꗄꑐԴѡ쯍抆旌ഒ�决뚆䯑ﲠ鋋Ꚑ䬚㱣ソ≑凼䌲槳ᖆ匞豄貱ᕡ턅噐ᇁ禪ꢸ왛ꗺ�ᆇ狆잜퀹蠿︮饏맦Ⴜㅰ獍녨跌Ⰳ㚸쮊曌贖鉑ㇼ抆䗄甘䞜丐ᬫ뜧⦶⺸᳙ꪧᴎ澽ៜ씍㸾ᚼ嵄䠯缽�ꁢꊽ뚠맞ು曑磔ꫡᬟ侜췃毤鼏ﷵ羿泥뿾睸ꤐ䌞喌ㄯ聖ἇﶣ邁ܶС퍞磿䊡ఁ⢠᬴䩾캽ㄜ䮍犓撤┥♂鸱뚛쑉ᩔ䐂샅蒽惤Ԟ➂吋栻捰�䙊ᔒ變蘱ᨱ洖㉄ര�裈ᤚ⺲ḏ处䁙峼】ᑹ胃딏⫤隧ᲫẄ恳ᳰ턠⢂ࣃ볂ద炠䈑䆐䄉崸ꄃौᐃ鱤Ԛ될夀悊᚜栊ឤ밂냰༎㽨戗懘ꂃ傘⁉ॆ紑졊낃ԏꩠ焖匴䉅⼨偅䐄…瓁䢥뢈ꄙ䩪冄幺⢂ᕅլ싛䆀№ⱨဋ⺔。ভ棑蔟籠蔮쎈ꂘ⣘ƅꁈ죅᜴줇证汁䔔륀刯嬐䄅⹚쑅銐ᡒઉ痑舤剰윇䛪ဋ㆝ꀥᠾౡЦ甑蔠얈䀛忨勌Ⱔ衅ݦ탂詞烰䙔吱ꅄ〄ꃁ饅쓢䔩둑脩듀슑妘솊ⵘࠆᓃᒃ䵕守脧脉ᴰ먋筄쀂堁荘仪虄쏨
⓸考ྠ뀁꣏顢앞竱蔏꼠芖岨�ቬᎤ貶喐鳣倥쿫衳舆憄榶ㆡ誦례䔳왠⌗屔솖ᙢ更ୱ㲦ٖ犡씴ⷼ腀悌ꇑឞ䒶质氱蔶�섆⎠ᄌ㙢쀂婖⡣蔷鐁伬雪案�情៊患ܛ䠁估킨섈宼儆㑘戛ඇ茲룁蔪ퟸ쌈唸⁗㚨瀌ࢯ䡡蓑鼱क़䏐㧰톊枫㏔ᐃ볁Ԟ될ؔ紽̉蜆⬐⼒ꃂ橣琡譣莉뭸ꞰꕅᏒ섆㨋ᴷ̭練༘䈪∌⏴ꁈ໖쀆ᒁ萱绠氵쾕섊퐰鲋⤒퀫៚簡譥᳛䄷沱焴쁂⎅悙ⰿ䯄贉呑쌐줰쓃㥈䆊窕堔䋝胷荤틀鱛습℈掼့純妐腒츆輫⼔炝ដ〆㱨ട訡욃큘ĕ╀ඎ㯎퀠Э죠̪졍ɑ㚒⤦⠓迎档ꁝ쫓䔛栠礗ᄅᑺ턂೭ઊ鹕쉹ᇹ唋㟜莊섎㿭ⱃꑜ佹屨딘㴡脣瑺ᡆᡁ訲僱ሙ데ℌ᪼똧㆜䍈㶃䒡蘱ɚ섗熶⌘常샧鲵呃象茮륝衁Ḹ�确ᨺ賬蕫誀K蠚尨鐧膄⢂晰✧䚳ԩ楨쀆퇑ꅧ㍢㽌둇읧슜穆⣜ꐋ龪ꄅ؏棶ॼ蠦쌙期ೱܼ럇攳氳㋱枭潱㌬롖쁁ᑙⳃԣ薝苍הּ섊鹁脋ひ烰ᓋ䓁賺誰苏纴ℊ鬻낹驡泥Օ墑蘖乘귑婔ᔆ鈮્ㆁ蘻눐蘕꾐쌇⌴䀅�ᡑ赖琡먱劀戌ૅ傌ᆲ邆ಱᐡ٨빈쌫㰈∌㊼№↡騂㉃誑Ȫ㓀愗⽒㑲邬ା폹բ瘁ᰫ렀藨罵풳㌂㡡നꀠ봳嚈㜗口悅㉾⛅ੇ킀쌮鉱䔘컘或姴⾑⤔ꀂࢽ䁽荥킠蘍哀쏩弬ႌჂ⿆ន?禉绑謑䮒ᰚꫣ䀆텹톼孁�㱹ἔ㰰똋⍈県绰鍧び獑탐ۖ댐؍훓બ쫐䋒⠷ꐾ㡥枔̿䆌ꀿම�⅁କᚈ쀩ె롐䄅గ䄙琙じ뀽شዲ䢂븃᠅㤳ﶷㄻယ噖䅕ꑥᰆ磀썆ᏸ⎈莃Κ꽀᠋♏㿰ꅕਚ䍠㠾㝨ƅਖ䕠薚岨뀹宪ᬡᐄ䄨⤷钁ࠗꠒꝥ䀯䱸ࢆ蝸窘뢇㡼䐸됛噦쮃넪旋矘�誘뢈敐聈慥⫁Ѵ롥噶鏃뉸➇戔⠝㶛亐扏⬣틑ꅃ褝篳ŌЕ唴낇䉝ᚱ큂ಭ⋒ᄱ㣀芉ν凃н㥟龸펋㻁ŧ쩃衆䙵隸ဢ倰ଵ麵�ඬꣀZҴႂ倄ᵃ뢰搋귐�赈兰贖䏐〟亰퀊뚠倄䮬㾐䡗ૡ提ᩛ䢠ᄅ掠전뫰考ஸ㺰倄㭈결怴믠ꠊ샱Ҭ퀖↸翔怌֨뤠遺Һ媥Mஶ艄ஈ덠Έꀷ됰ꀄૃ쥠䎑ற䘰倄ሿ⠨᠋궐 ִꀃՅ㐐⁇ҭ䘰䊽䎀ᔄ踾ꒀ怄ૃ룐耋оꪠ搌Ҕ䞁倄䶳儠퀊跚ﴈဋ଼㲐⁇䡠灪ႭƳ쀄ୃ䇐怄悪뷱耞ା᷒劓倐迟耊䢀倄ұ꿀肔䝪忉띧鄐铙쑵ਫ䚀ꐋ௱ꢠ넣假ц焔흩Ҝ艔ᡇじ쉈·裮䤸∱栀炔ՙ꣰쀍铕뭰悍٦㝁낍댰թ썀棆ꡠ栆臧쵩 ٔ䚐ဆՑ휐ଐ撰圌鶅팙栌屠餚ސę턌寨检ꁸϐ�儌轺煐䀃੪펠ₓ㓰〻镫퓉퀌ڭﲄ頦ූ귰怆Ո涐뀻ֽꢠ䄅ೣ몠ꀌ↨뚀倍鍈窳䀅鲺쿐ဋ绎튐ꄄౝ䏠꠆≭樐䀊ֽ연퀋浀낔݈㠐刡୪즰̰乂閭쾠켐耋ͨ⪦ህռ듀퀌ે嫰쀄䵰앰阚ා䔀唍娖맠 㿰鬒쫰꤅엹〗屟컐茊灠䧗큙⦝鷔婠ዓ롇餾䢐「杣岰䨊ꐷ撑鏡奮棣잡ಯﵑ「Ռ岠䀃폐쥸㧹缸⠪⪐դ㞇〰﨡ဌ騄ꀟєꒆ」㵁史큩Ӊ�℅毐녢ድ펆뀋љݷ䄐쀊ഺ�멌Ὲ�䕝뷱ղ醧Ԣ욠䨃䳖읐⢾៶樋Ͱ﵁솙⧵䠐 궯੬ኀٕꀃᵜᒊ곟鶆脝굤뮐퀊֨붠ㄍꎘ덑斐င꾪怄毆懠「⎯㺐ァΤ㑅čḱ䕠꜌ી暇쐍㉯挰ᤄ桇樀䀃ඨ彔⩇硦䰠ꅺၱᡚ췅솫Ҥ칐」㶯㟺ꨟ곅쥺쨃Ή捠혝‗㰐蜍ꑠ끭攊њಋ瑩檿꒠䬆哰倆֤ꔪ䘒ኤ쬰䠃カ踨֫ࡧ�˃ꀍౖꠐّ쵀㌿崠䭑噰퀋롷桐귐팅୕夐⬑낛쾆꠆۔㘐「ଡ଼�蠄Ԍꀋ끴祙⟙꜅뉇恪ٜସ聸ⷃ菤욻碼듀냁थಷݸ蕄㍑搠⁙ම裧‧婩昇逅ᚺꪀ㕵ಳ穓�璽㚷⥽籛什䀅ಯ⃗⬢뎰켴䀆ظ孊怋遙픰鿥뺤䲀쀃㟆妠耋غ䨐罊崀ၮ׆돀嘌褴䯷蔅ਗ਼巰䍧筱㙧ԅ붮꒰끽ⅎ鉶スѐ㙧鄅资㖥܅幔龫ᚺٱᲂজָ놧怌଼僰䬋ி鬱怃ೊᤚ蘐âꡇ怋䗅퍇蜄Ր꽠⬍්팀謋魸`薁㡦목预貆₲䧗ᘱꀋ蕤驓》䏆уဌ䕊ខ쀐ᕎ罂碆彼쎀Ꮈ쟼䱀ᰵ䙬鋒㐰䌿灠熂윛経�旼ᢉ⫈檤᠊왋貨ﳉ쪠ꈜ䅖貶萻鎛떊㳊쪬껜ꨛ맱㈪뢥奦�螫㢐挾뇘갊㮼ᦱⓌ̌㛠䋌鬣ᩑ찝ⅲ谊쮼퇼䲂䂲딜㎫裱칑룐笁同쌯ᜡ灨籃ፑ䀃칙谄ቮၕ䜑㫢좬际匉ᡁₛ歨ǈ⠚꽠녚℗덱ଓィ鄹䧻ኁ년붩怑켼ᵑぉ큌᳁賈측ᠡㆿᔓ㗥燐̖앀䀅丿ᐁ䆟ਓ쏰㰌ᇞⴭ鬿쮃ᨸ⢫㣇鯜ಜ塐昆₴訅ୟᖈ】硎ᴲ흨୭菒贎壐쀊ݲ킋࢛ﰊъ尐ꦚᇜ㠰栃Ӗ뿠㍾纟㠀ꠘڲ习䤋鰠哓猌枖榣靍閝څ寅ذ뚠〆Ժ⎔쀊Ӈꣀ瀌㡠⣦劀쇁װ앀㊩ϯ鿃ၮԺ阧耊蒒ဌ徬簩〢ඦ婴䀟竒궠䂧姰ꠄୟ鏚퀋硔퀞ఴ亠倘塔⎹챦̺淭㰌ౚݙ녕�ⴙ햚�牭̈́惒勐퀌ᑟ糵洅વⷻ쀄సﱹ‑굃䮲炴Ꙋ䩠Τ폰逋ಬ儰氋خ䖰䭳־㫰ⷔ矂ᄂ⅟쑍䲠蔋商잰柚ᬨ롹လ㸐쟸쵥∸洰�플ε榠괄ᅃ丠脃֡칀ᜡը竱ⴑ榎䠐쀅䳝헐肅گ夰�퍘춠쁷㥑ជဧ퐒 ଢ଼̗䀆ܺ멐큙ꎨ냓儆Ҕॢ뱒᧚퀍ಬ귰ꀆ㒴☍䀊ಬ楐訊鴌薂䈙䭼㳠櫐ㅑВ㽮퀅ڳ耊ꇗꐷ퀌પ峀싑Ԡ䃾나ෆဇ鲹举䂝ъ栐も킰❮뀌賚灸ՠ逋ڦ䦎䀞Պ娐怽暯촴뻜١༙ဌொ썀춦좎햽 鷁腃ꗘყ郛ാ₎ၑو숷ذ吰ꀌᆿ줰匝٨쵙䀆蕪ᮊ帍樜�ു⢍烁୩節滠⪗腆᷈⊇씉爧ق⣑ꕪΒ墈뀤ප쇐鋀恃샸肬ై䩰ಂ⚭䀋ڭ噐怊ӏ娐樅цꛀ熅ḓ딌뫼준ꃰ⎺燠␇映쀊陁怃ଶ鎊č廵ᒃ씧R㘰肅һ腨ൽ搮怆Ꮖ윰怆殶ҒՅꃛ瀧ꄟ짰䈅ୢ꿝•嵅ثꄅ䷃鐆涚⼉䔥͚㥎脞┣⇫☑ш쀅Ժ蛒ἇ띘堣Ӧ楠栁궎흇몃⬾괲鏖٢ᷙৣ픻瀰뀚ౘ쾐놋쟵ᑒ됐똓ଈ쎰耍⎸怽㠠萅ᷠ炀ⳇ⥢᧸庸쫦㊳吠ငϋ䡠ᑔ䏳匄ン〄鸺ꘐ聑체ꕄ콹ఎᅇ䎩괰Ү㻀絤펳藀Ԯ䌀炔繎��僪Ըﱃх壭�α욀豺Մ괠篈䅅쀃쓃䀅ಪ쎠ရ֭蝍네ἀ䠖雅ఙ㢨ⱒ䓊짥艘⦹霔ᄌ凱剢ᙓ습㾒造䉪둒㩾䑣퇘凂谱幃ឮ扥뷹ṕᑒ熘牵揁ै䉊酂뵲⼝荖ೆꢸ掯銅껹넾끟嗕℅眍化䤰튊ᦡ乴⭝⬙ꊑ抑峅靜敬ᓋ㺩ꤡ쬔觵硐叆ᜩ촢㲎輟�䣍❑霪艤ඁ뒆钷ⱳல訙攺즏㠌텊욆鐢⬡则䦪�@礻롳껜안눀芐䋊谙㻍ᐯ⧌鐠�㩰꼱뫴乽責핵텡�扒ᖾ본䙽ﰈ놢禷ⰺഒ휓뻼멯濜�虋᭮⢒—뻧咐ؗ끁ὴ䈈鐰ਧ贤沣뿼荂Д⍰Θ躃⮄䔔吱ᙗ녅年싘쏯ﷲ낿䋴ೢ쯄ᅁ䅖内ᑑኇ怤䡔ᇩ㊺ᭌꐠ豒⍑ℤ훳㘞묒⇃↾苐쮑嬱᧭䶷緣렎썱ᶇ껀䵬܅킂➆䄉廡㘩쭓㎤꤈ᗩ쉂塂袑健嶺琺㸚蜠᳢芆ꉣ儫ᦩⶥ叏ᛴ赘ဉὩ⊤ꓩ퍴䂩吶㹢ܮ➬ℤ냁嚐ﶨ�⼝ꐾ熂庂䖢穹뚄퀆띬䆛㋂씷钑�꾷ߩ렐᳐⿁ꀡ驟傢岹䈋話㠆⮘☙钩讏즢㥺∈ꃑᦳ⇥掦∊绩譠⧢斌殖餢뀢辨⊙Ӡ餬ᣂ斸ꊕ鳨谯ᢆ斲昖푕ପ駦转鑮⚘혌ƚ�車㍌䌉鐙衠墦㒸蚖롐镣쁁揊▍鐡靣禣湲ꌈ뀘頠ユ枘⚍椪뀬燦㝨엏鈱੨᠆覻抙艡衧箷叠愎ꓡ類掖눨豟㻚峫▋拉ઌ☛鉅蘔险త壊䖎鉹譟䠆㗆⌋瑘텂㊜Η䠡嵮䪆放⎗瘉霯ﻬᰌ꘠縱趏ꁂ叞攘뺘भꄃㆆ뢕苠譫♅ℬ䡞偂暾ꋧᙒ髆ᬾ戙먩驝暿昗뼘쫆웍닠ݨ떂⥰┙㿮숇峺ᨳҸ㼜쐀劝⎼砰옮씨∎ⶐ瘲ᄄ੩㢃ը㺒̕㠠潖̊ㄫᒪ悂ᛍ紡ඁ鈱蚦⟣쌔轀ႀ䡆ᢪ㦣诱ꖠ䈂몐�鐖ᓶ鎓࠘쪡ਐ빀쌱ꨠ⌋刬ꀷブだ膺ᘡఃユ�嫸茇扠៴ﳂ̧꓀슬殐쉠榐栃ﾸٚ䃃囈�䯼逌ꀌᚲ銂璡簁㸞︷ض蕓訔㟔솄椚硩遂ئ瑁헿⊜䅸⾘킋붠ꂅ瑣⠑쥟ᘨ⇷䗸숌㓐ᓤ퀔ᙚ熃뜭⢨舑싃慖⦘쀅ˋ�ㅲソన韕몀炓冚솃ᕬ蒂ݑ䦆詙왇ᷨ㐃㡀悃⧂ꌡ㛱钩뿜ﱓᎀ�솝⺮쁂ᡔ쀡谟ꂰ옲児̗⸼怌ⶂ⨃ᛌᰣ虜瓰䄗䲰䄙Ề ⮺ᣃᕜ䂃൜瀱䎲뙸ꄋ⬘ྠიꁭ赙繱ԕ타켉斸惘㉄憽邂譡卪䙃䣀ⴡ≐ⷒ䂃ឨ㑣谨楃捈།欠⪖쀆ᖸ咃識ꊀᡪ릘愗ꦼ醅솮ੑᓏ華Ɋ䏩㠋挸ꀅ�ﲀ譪늰옫ꢸ듬檅ᩴも垭偁̝탠䈬뇈∌闢瀼ᮆ죣ᓔ萷丸옱䢀Ɔ⊄ㆍ㍢탂ૅ컂蚪֘줠ꄘ뎬䢮幦ឭ쀫䵱孕猠䀙�ᥨⴂⴢ웕ઑ誈ة≽ᐗ⺤䄅⥚唅ᚒ⨡蚆汑̍贉ℋ戰㏗尅聭ഺꃢ蕫댠䙁벙펤ﭬ䒭跎㪎㠀떩✒줃ĺ꣰섖Ἄᬋ⢂ࢬꀢੜ廱䠬㫸怖寘だ籭僔쀡蔬踑씐녠줖嬜갊대뼸ᙁ譣堑䄑㻸訕ꔪ憋襭렯䬾鹤夑ࢅ䛸怈⪆ꀅ✾缘�鹱䨯ꚸ슦哄൰ꂅ섿ꄂ茠諼脭⯆䋄᪐遛⃒쀴荙璠蔭㪈�ဋꖢ᠏ܿఉ�뜼㻀퇂⾓䄊⩘ᕢ꾘봀昑씏㍾䈕ᯘ⪂ᔰ랂̱诠㊖ᒎ쒿ᱼ氋贻怅䡈颂᎒얐儶或⻤ᦅ逅냁ᙃ選憷䢼㌪迶ϋⱐᛳܾઐ芀漫芙ĕ儗൦覉倔뾯鹘ꅭ邵匿⡄犎낞ꇂ墐䁁譟ﲬྌ묘訉៩贝뫃逎ભ㌡ⅰꈀᙊ꼶ᫍ댡칑㧺潯Ｍ㣀ȏ糠�骠㣹럗火㣄柢菓擯㈸슖嬟㔼츒굣㐠䝌떊䆒譕瘑餼옆ቅ廬퍙訇䑵麬䤨턋벂鿭Ⱞ랙ࡿ軣㛆‹த粄툟쏃൬振弭ᔒ琢삂喪ᒥᵩ�ӫ卼︃粬袺䆽ꪢቆⰅ킭꽘ꨚ꺳Ḓ碒₻쵒꼧춝鹱묲≙簈迸䖪䡸샂몬坜幺ꍽ룂Ὶ볚肆�쐢Ь검�䆃솷ᕶ瀘ꅎ㢣쁘䡁숯囨섊Ấㄆ㉴ᕚ䃣識芡蔩㜳愌ᲔစⳈ䡃ᥑ颵虘虐똜軉怍寚ꘌ惂煥쑢赞ꃙة參ㄍ㒜喂පᠡ蕧谑蔕ퟨ壜ƅᒚ倆ꑃ㡡ఫ퉐踉醼璡ꀙꓢ脋ᥲ蛠‗࣊쳀砠ૈꡀ꼋蓈骡쉞ା舠�棡䄍敨ꠠ쁜ᢺ㸢
߈뫠䄊ᢚ롨㏜氠č᪆ꑀ怈Û頠ꀗៈ틠䄊ಌ�ꀮڱ瀡腲ᡞ驡�ಲ烁脋뱦와쁬ᛖ섖厠騡᜶渦℡쫀蔉稡ࢸ铁攌ᗂ狫킬ᙚꉠᩨ幣ࠤꡠ愖឴쀥眡ꄐ镰瓡�ឌ䀢ꀌඐ渽鮀蓎⻣舘說ꑀཁ븈漘ෲ蘡ꄘಂ풣䈧蝪찥撜የ蠛ੜ偁ࠚದⓃࠤ怌䡁ċ涴楀ꀖ߆⋩ℤ쩀ឤꀈ銊옇ꄈᮎ샏䙠睎볁ݴᗆ㩇讂ᘗઈ䈗椬璡恼ۆ䛉ꀚ潨罈ĕ᥌盡ꂀ౨검ࢸ鲡聞粠倗㳸될ꠦᖤ䪨螑钄兩⚋ᄤࢂ䄎궆䫨’⏊냠ꀙૐ礀ꤝᠪ닠栗ఌ닀‡ᗌ庨䨎ᥔ곀ꅱ潺ꐠ梖ऒꋀ읨乑ꠘ搐㓥䁠껤愌赔梆ꔈ薈戡䁯ඊ舑ࢆ俔磠ĕ醦쀉ඤ㲰च琠ꨒ上佮�朾ヮᏱ졩轿ब爇ꚍ盁䄙氁ᷳ㹢ǿ踊
鿖닄䄗⊞驡섉឴纪䀗ᚺ渫樌Ꟗ죀ĉൌ렁ė뮮婡섊꡶滂慏ࡴ廁䀛남᫊ꮰഖ와誝〼樗鷂⚱⑿롡ↅ୶芁䀗۞緊䀦ⷞ聧耊ʣ◜苠愖瀀ꄋၱ렀椈៨隡ꁴ鷞ǒ䌠මꃠ䨚ᦌ灠怍躆怖箨尳讻ᙲ끠섭᥌ㅳľর癁ᛂ榁愫ᝈ가5㥽瘁⥭࣠꘡ꈈ黜듀猘߬門愕ឰ婁툦ꄌᚊ퉠섆ᖰ숀聮㖃稁얧᪘頀쬖贑 麲悈줙ࡆ蜡Ļಹቴ⨌⋷븣ꀫ⇢囊名㼧ꐠ٪횉茖㋳⻃魾캒ꀿ鰨㙎跲㳼虀℈ݘ蘀䃔ᙬ楡ᡴᙢ骄洖ᘞ瀠ᐅ愰㮞۬脖쥚뙌₿ᝬ䈋ȧᒘ梁跃ᚎ㙬憾協僢�얐큼챌貾䳏츒幭脖㝑누䀱큨炢脕摨隊괈ݔ裭菘뿔糀䨇ଠ芠聙쎐苠쮾뻺�䄼ݬǕ葍࢘뉭擀䲯訍胂ᚆ璀∽툾⓬脆ࡘ惌‖큸渍汈췰ዔ淆؎抁或ᗜ젌괕ܴ汀㕋ꛄ廁肿ﮊ剭泓뾢ԧ࢘⌈炁찇剌惑勌쳍叉品ڊ嚐耔団圌䱜勂蹉쀔ޢ鱀䰽䤹촬︃ቇ䃖�ঌ幎ℼ�炮ℤᡌ櫎舾�僶આ堑뙁ሏ撃䤮ゞꔣꐺ挥⸮쑆䃔蒜晽輖ᙩ榓彄℠䌓䪋㮱癩檫꿖ͫኩ㓄⇡ⴅ轃摪ᜦ䈫耤ᡰ谯㙴ဖ脤⾊兄࠾阔ⓢ缠P暇玎陮ⓞ沀‖斃懤䍭쎨륣慬㶊﹦⌺䥆䡂茕콞恃ӥ餢⮄敫㤶䍨沉젣䀋䡴ꯕ畍ㄆ恥┘씔댍耹᩼岷䃆쮾媡곐灩䜱ᚨ逫䈋䯝瓀섔࡚Ⱝ䳕ᖺ횑贆ᔄ췮摂ᢖ⫭쀖쁸繡콮ꊺ炀愗婟豀聙ઘ슀䭹똬줈駰糠脇艀脆ڌᛃᙴ颅쀆ࢲ芠㔩섆蜄靠ᧀ䳁䴗潱걣脇ᙚ䱡ᘌꃑࡾ뻀竹蘧ڤ�쎢將癷܀䊕⇇璁뜛혀曡愖㭬締汐䭉ꏄጦ큶ẸᜇⒾꀀ狓炥ꐏ숙ୌ蕉¬圗ꋦ蘄읈ބ煌艛ᠾ採쭀᳕ᔌ광ߎ䊎ꑁ㛷䑰ͤ껆㚂ﺌ蹡꾮赊鉁�tᴱ謅缀�₁疰Ȁ�론䁯烚悲会↜鈦윌祔껡蔕×纁聱ꄌᦒ婁濴ÿ洡䤻铡䄊늊놡鄷툦ℍ牢ࡔᰰ 峚䰡撆雁琗鄨盁䄚ખ끃܉⼾ﱦ䄋ࡾ튦輋ॖ№蟡鞩言》鴠ꐞቈ츥鞙Ȑ愖ಌ栠눙ᰂꅤੴ珁䀀ᦜ钡Ȋୠ顀풂쫞겠 ᘈ퓀ꄵੲ贇⎚쓯䀋ᦺ镀锳䃂圚ᓤ沀䀎ᢔ烁ꉣ蘾獁ꙷ㲍芁复৾낀ᣈ嚹쀈﮴忁ଊ㴢凹駠觰삜੨퀀或阷颠Ƹᴤ二봐蘶䵀梫죃䆊恴롁�⿔庡̎耄퓑抏࠾ꆡ솩ᥰΪꚫᗴ僥솈⡉ᢩ耖᪾뢹慼獰財䀻侘櫑섌詴룙먈᚜栩抔ీꃀℍ恲뉑梊頺ೈ赎䆇⬚琄晥悤程♩࢚㼱悢蓌鲀醉晅逖㴊쉨섌ﶞ氀옆뺀䄙❾栩儊ݶ뫡섉螎瀨潼㕬죳ʞర둠솂ㆦ誡금᪼멈䔬깧⨓䢔ઔꩁ⠊仢䉂슊눿䴁骛〴钁퀆㘅Ẩ刚ቈຼ鱀�ӆᱹ皑�㆗ꎛྨꠝ虎⹛ጙ횃脌ᙺ껁ꄛ琀�ᛆ론騌தۥ䌕ᓞ뫁ꀛᢩ땁↱송ᐵ屯ᜒ樯슞ៜ竡�晸息ꀀࢾ쏀섢效瘡ꄌᡴ顠耇ს谡쀘લ揆⇁ꁦ떡权∊迧ꄫ빀挖ឆ聜슒笾桠쀊ஜ琡脊দ찀섆ី飠䄊ඞ鵳ㆺ᠂氻ꯊ鉆哢섉ᥨ淴ꀊા層㱤뢁ꁘ檂賀腮᭘ꠀ㪕豢�퀀섊ᩌ늠愈抰ℨ尦⒌쀇ƛ᪔㫨怘룡䲡耆ાຜℎᥞ꓀ᰉ웡餀	춹諐Ď飼⁋ꅹﱌ줙郕ꉄ斴뀖덉È߈❠銾蘁ﰙԵꃁꅠஂ醐肤冰䳼鴇܈⤜섩︧∍ꓝ燅㒌掟荖隨掉곴慂᳤ꂏஂ⚮쒙ㄚ⋝赆댶ᇞ뼫讌䃖⠏ᔦﰖ夁⌮�䇆癎縼␂螌巠둖�טּ䷼⯏绡⻞㛢ኛᏮ㘭�Ờ䝞蓤獕뼩䵊ⷵ�虪룘괘荭ᕤぃ刕⒲钡敊摭艡∙䨾ꅁ饌䡂͙旃茂দ灕怼憃缀蓠ૂ絀ꏨ٢羁雟竿恣ḇ㚎鈾ṅ䌴텒ꎿ�娞聏筹ꊀ耔㟑ꋠ涂ᠪ造䅭ފ鐂࣐ᗼ�것ᕶـ嘧껯鈁№ौቈᕶ멏愖ग़녀繰㺀帡ýᝨ�䡃縵髦頢ꐙ湮퀃膐㕨稡聙剩愘喕箁蛔ᓎ郂̕詷ᩅ芋⽁븀ᕴ⳺篫�즀㽟ᐷꊧ脊ᝌ負䶍ើ污涪ꕖ恖জ⊜ఋ⿌ᓿ舌슣ሻ圉ࢼ扡ማ筥싕너뿩ภ뛞ꢝ둥撜갣’៤蘠ؠ팕䡱喤촬匄쵶㍖쓌셒멅芺䶬㗤℡꒪㑧ે㍅䡝⍨윲簩뇌ཬ䨚蹵庿柁餓㵹侟ᓨᔚ蠎勘霖㰻㪠鉮Л驓閑㐇丬ᙄᢩ뒨饤겗뒨ꀔ⃗잚曆�⸫ꭠ竵飄宽拌⫁檼긢虉ᆙ쒎嶳钱劄곤쏌ᘪ莊诂逘ᙎ֍䙥쪦〣䱇踊銺ꐱ헥㫩崊娝욖ᭆ婁ꛃ�㛢ꤠ蘆礽ꈖ᳘䰷拄炵玢裔 밝흵戤ᦂ䅈晚ᅯꞙᓥ䪐�仨浡稥鋥Ⅺ妘㣰턪�턋ꢐሴಣ䉌僐旹ਫꒁ⭁鈅䕌ґ࿉ꐒ㲰謙쐴ᙚꊋ勨̪빧褦裢킥茷灁ᧁ튠贔鄲䄋꜅�聅⭑ᐆ₪透챒蛎쏣弨䨮ꓑ䆴䅅㐄萮걔⩣ą䢄蘎밒៘ꓜ쐱䃁⸼ꐅ彬谑꣤ᚺ펊䕜讒ꆒ⤡설풍ぱ䄆扦ڈ邲⯁ꄆ弸쐏⠱⭦复봨ԓ㐣㖲蔱島ⴴ訙楃ᜪ爠몐ꉆỒ흡鵶磇碂蝫暐�Ა笇顢䕄䰱Ʂ鄅搸ਏు㓍ᄋ劐萍䦡㏖懌ᅆ䱁萙ᒴ犌잨訔裄ཤ틅巠䰬鲴絡묔ԓ㡡ᑎ툋귎いꏅକ傱㎸陥㣄䐖㱫㒤ᆄ궄ꠕⱳᖸ톋靱贩퀂ཡ댬䩀땒㏻ꊄ䛴쭉ಓຽ誅倜Ж爱嵢剠訪�亴茕ⱃ鞤ꈄ僌䱁ￒ숑銅徴䌱䇣ഷ烙茔凁옸⍜셀䔯ﱠᏅ䄅慄谪볒ㆬ偐仠謖璑Ᵽ훽్虑뼥鞓݈殬攧矛ꩌ歹Ḱ肻枫佾軹큥␏ﳴ튶껹⢆Ԫꎢ傢⟸蕗㢭ංﻺ逻㤣鼮軻뫧䑁鋓겢㣰众겄ꂝ衛먄샾꿓ᨊ듻㷱坏追쑧볠捷瞬㾈谻黣便栗迾ﻺ玟Ꞽቸ螇宻곹㊻颭抟ܩ⦁諪졠ꂉ㸱�ꇼ恀쩉➕킠먯瀐쫇‛Ϛ낓�쁠ឤ顀퇾꥓깜䏏Ñ駯ી舩쳪脆垴鞬䁛㮱Უౚ象虵䩲耇惨º⿆䁅ࡖ壁⚵ꂐ餕Ա∗姼邆ᙼゆᢳ낳契옕刈耵⣘⭾큂衟遂〧虐ȓ똘ꌗ呀퀢梤ࡆԩ颠싅씘Ċ啰�្Ԭ鹈蘏됈슑⺠䀅䆬⭘ࠍ㢡譢炡搙哀欔ႌ뇂抂ᬧ쥣ꥀȜ珔⊐若펥Ŗݜ쁁ఝ졤ح䨨ȱ妐禌쑚삂䟉₉绑섚埼愈熕脋ꎆꂣᙒ豠梱戔彈ꆄ幈醋ដヅݭ深ϓ떠䈠ꚠ䌊☘℅ᥚ�糐䵕們Ӵ艇徠ㆌ�쵂쾵嫑죧吡씉⮬鄌ᩌௗ谁К烀ᬖԹĕ㉾卡炫짯⯺즗�ﳊ䎌占聁ᱨயչ䢑茭䅀̉⼌膄ᡨꗅਁ㰃鹈̪嘰손�⡆ࣅꡡ؟廱䔰揈脌⬠坵Ↄ蒚煁О쵠졆樨脔徔ꆅᑺ肆ᒿ타蕦谠ę뫰䈍旐怃ヒࡗ䝨檁蒁껡䪓ฆ惘‶뒵呕忑쉚敐⡰㮌㍜衖陑ごᙚ꘍䕘莩ꄞ섄辠栍顔譫倕䄷펲舔ퟶㄌ儂ᬄ傓訯뻀䳰ꀛ쫸銋ܡ쌬愶銡즧鲡䈑峈愘夸ڇ㇌ⵑ놇ꨡ訇룱莁⬗吰ᅝ᭐믐ᓄѮꎠ⭦곐䄉➐묶ࡃꎨ찭ꌲ몑꼩鞥ꀍ臒ꄆ楔⤍ᐪ횈바坨�似ᣚ떞ප�햀ą䏥ஶ厔㛌�С謬鰐蘲㼰㎈脅共袉ᙥꥢ㒞ꩱ儯ҩ수埠삃퀂䅥ﻢҺ楢訔ㄔ䪩裿ᢓ╌큠镣㸘ķ忀Ɯ斨↕ᤪ帴噲蕼㛸둇ⶨ锅⧀ᝆ籁謠鈕눓㰨젨芘᠌䊞깠ꡪ㥣咮혰؍ש䌕䕏䅀褂ភ⅁桻뫠Ķ펥艔梐㘄飳⢨ᓒ哃ਤ쳰蘍喛ńⰠ嶍鄭炆譐蓨瑰愵猞룎勤ᰇ粦ࢤ�뤼ᆁ唓聅⻐뜩鱅ᗿ撴蘟馀熖㘚蠇ⓡ鍑お긾閘鼲⨎으蝓⨦캂䑁貱걐ي丰脊坤䆊ㅢࢆ㠃Ԫ鐁Ȯ㪈䙤♜項ㄞ膂ථ堬舑꿀ᬨ퀰⥘툂덯ᓙ蔒쯀晨彜ƅཷ㡆扎ᓄ銻汰얳엀ɤ닍肍⺜큁䳃薖誑옳ఋ∋뇛࠲䠮⡘ី�䱑Ԛ嶠ꌫ넯퀌ᒊ슂ᤧಳ仲؏霱㰙抌ᛪ턂㇂ﴩڈ堑왛뿠Љ✔渄⿺ᛏ遡䩛䣱옫캀Ⱘ옃⤖怂巍ୢ둀䘗㨘脌錫⚅⺪꾗產齥膥쎰∙⻅뺋쟩ࢽై�욲ㄶ愘奰ᒲ䡆羚ԧ㫈ȍꛀ倉萹ဆ砅㹙苬莪끠씯왐㓷Ꮓ⹓ﰎ㓏�ҐQ맨ꁏ̎�ᔏĚ锩偐츰ཛྷᨍࠄﮤ쿲쨎 ࡪ鋠怉࢚쓔ǲａノߣ䶑뻘ೊ틠不ߞꠠ䎭픏풊ෝ堎ဪꂂ蘭停턀쓦ﷄ䐔㻱ὴ値떂
蓐ᘎ騂점邝腏ㄠ呕ⅰ丨ہ䐙釰စໜ䵜ꅳἽ鳏캫ສ둎壳䠌첂䈬莠타숫ෘᒃ䠬ᤢ᪤⥀뚂ě氕뒂⬜ꐡЫၨﱀ舎⯌㈢휑旼惢ȫ⯐ꈢ숐쒨鱞戬ᄔ�︍拣ᐪు耎⧰쉿ꂂ抹㕸ᣁ숬ᆠ��䈫Ⳓ㙢蠬+⯐ꠂ츏⦇齊익벂찂쐏ུȏ▾ꂈ航ⷘ舎⾠ᙢ쀡モꥊ䘵⧼儬ᒁ脎ꂊ쀬铨ᒄ£⫑ᘄ셁⮆�ꡂ숫ⷐ頂쀐ⷺ遂\濸꣣쀏Ⳙ摑壏㟔㙢鈍ց䎕⤸ᢁ〉Ⱈᱢ䄫⨄옂འ妗䯽ꑅ찂␏䛆ುĎྠ吢⌍ⵤ퀀䈫⯨쁅饯ཐ᳢ꄖ࣎Ĝ쨠烥ę੪뛎輋倫넇䝎ㄼ䌯လ鑁脑㉰め䘙㊠ꓗ耲惨钁̒᠘屆䌔ᅌ撋쐯ᢃ섵ᑴ͜㈤휑ༀ烁䌐㌬ㆁ慓ᠨ쓂舳揌ᣁĶ漱䢁䌑奜уĴ쀶廽碃쨮ሄ崃ጎᄸ뒁섐ፀﰂ̙㐕璤ėᨸц芅廍Ვ̴錭⢃툳ᐘ䡃쑊樔琁䅝ṑӤ䈳ᛴ뒄谱᩠䟧⦼䢃茭䝩뱂荧㉠抚l᧘ﶂ蘑㐃脲ቈ� ᖃ臔襄ﱀ䄰⽄뷁荂昺汦茖㼭벁ĒⲔ쁁ུ̭䀁ę㙀ﰀ�嵼g舴㓠䆳ⶼ瀃兠ㄕ悁䈑ᏼ퀕ɖ㏄ﳀ섰䙅凁茑㈜ᒁ☩၀絁슶㆐⢁수疒ﲂ舚ኼ젞성骘ﴧꛡᑐ鐁䌲墁脮㌸嫁腯墼惥Ā篡⊁榗Ŵ蚁ݘѸ뤠輋ꑈ耴ﰖķ⸔볉葊傭僉䆏ᡈ䦉붼윳㈀㑃萭㌐냑쏜휍ᕁ跴ﲀ茶ᜤﰀ䄖ꨩ突膤䌖섳鬎粁銌䅼桁ग껱벚�똓⤸氜茖⥰粁茔栩⒆䆈䩨꣄᫆쾀鑁ߩ䄙荐赒셝䩀퀲襔Ა蠖虘尪袔萁മ㗼팬㞴�㎔ﳆ⦕苴橇ቔﶀ쨓ꢒӁ夰ꠁ�⪆䮼ᙃ葠뼕쁪ꬖၔⳃ䌔ⵀ超ά匪咉䢚뉾嗃⬜⬐ⱃ䀲᳸ԁ鉝鼖繁ք灬䄬አఁ腊ꁉ﨏䂖㜜ꃇⰔᒨḀ悘談笀᳃䈙뷤摁膈ᝈ拁셀겒蹬썞ᅸꁁ锕ⵔ炈턗䆄顁Ĵ倡&Ȗᢰꣂ䀗鳼䀚툜ថ䇁腬̙吩尃Ⱅ쾒ꀧȜ᪨ꣂ퐮儨�᱐ᒃ䈮㏘셁ꖯ寜⢃혲䬕鈊썂ᝌ상슆搁萷⸔ಃᥱ᧔̙ᬤɚƨ㒄쒂ķസ儁쌇㉔ぁ褶윙瀃蹒瑔䠠섏檕칂Ǥ캚㛌υ〜ꁁᲕⲃ괭᳴紁͓㜘쳨聆㏨葑ꌶꓬ䁕䌚ᐔ蹋읨᳸Ĝ㐸磃䄐Ⴤ衞茳ဌᑮ蘶⽼畁䑕⺌ᛮᣕ墁脭�⻌▃꿋゜籒괎ᙰ䁁错ᑔ䢃ԙᙨ�桃퇁྅蒟찲脔튖脱᥈�ꗥၤ�⠀눬ꃋṺ⻎ㄮ車෨ฃ뿍�覸ඁः摬냵ᑜ�쮪衩耲硐쇎ࣶ悏舍另냜⦴᪃ﰂ쉥矢妎냯瓘勬飮造鉥넟ᠿ鏱焙亘搥䍘ᨫ⣃瀂䵹뜠專⌰。쀊㕈焞ừ焟Ώϲ爠Ᏺ無ヴꏢ戢镡㌲爣⌻䏲爤史爥╛揲爦♫珲爧❻㻲ᾠ��♀ꭀ䀪⚨痂ꁪê뼐脐ᯄ퍲䄭▴눝⻫䄯⃘᭲섞⿏Ꮃ猱ㄛ⏳䀱⁌䣀舄㌏䯀쀲᱈䀙ჼ捳Ķ珳猷㝻菳猸㢋鏳猹㦛ꏳ猺㪫峇㌒㙟㌡중빲쨇꿠縥臊쫚⣃焊㽫˴䣾አܴ瑁䄛⏴ɀ␐㎴螪怳䀛⯨賁玅쩢钁ę᳘鮁㑀ᐐ⠒Ĕ㯟錴瑉䦛ꏴ瑊䪫꿎́쨪⢃䄇뼲จ⚼ꍇ䄾⢔㬴焿䮂둃ݣ䄁ʉ⾐⣂萢勫Ჵ萦䟫딖ᐄ䜵땂ᵌ肂㐡吃䓵嘙䆫㢂ə쩊ﯯȶⴼ⢁氂䕓숝⍈⏀땇㸗ᭀ㕋巛畞廫뛴○䱿콴伏侃Ŏ坂铁ȳⓜ걏抯π뙐吧ᡵ畁别⠂舞旃サ㑎|吵Ȕ摋蝶됖㸯ⷴ뉪士韁脼壛舤沃̴䉘梓꾬ń⌄꘣孇霁䉐噋ﺳ섘巓睲爫㏷䩳䇏ᰀ脚怣쬵焽ଆ臊⫴ᇂ뙪쨺�舖傯䎁꺩ᓄꘞḋ⢵숲ⱈ�㍼縵듊唳᜴垎샶딤癬䆿籀䈫ᒴ퍶艮ż᐀甇쪮�❈埀鍜쪲ힵ롳虫珸率ᆔႴ䜗㊠㮀瑠Ỗ掷熯䀁�ᚃ뾁쫦翵艑⛼⢵숬 첂萞迣䛗ꬬ璌欇铁脝喿럶碑燇밁㤡繇佂碕溳Ȫ㞼讙śᮼ၂茟屿�듊螏ꎹ禚蚫莸岙䲛즵ଂꒀ쀠ɐ僀ȅ鸗䋏ࡴꁿጺ窡쐖ﮀ窢༨⛺瓊㈜ᢀ몯Ɉ꾹窥ꕛ곴㨴ꑇ⒀㠄瞘у鷁죝㈗듁댓ꩧ돺ʫ⋣쎺窬㯇럺窭귛窮⮴쭺搢깿屧ﮇᔈ윂箱넛⏻箲눫㏻箳댻䏻箴둋叻箵땛揻箶挠ࣻ즇ꭇ⡈窭렛鏻箹릛ꏻ箺몫돻箻뮻쏻箼맋脶ᮘ썁䎾䵩罱㮿Ỳ讏쪜䷩尐ࠫ옱蝘ႇܠ㳁Ḓ⏼볁섧㗼볂숻�뼓꾘㲊뽧랠糃뽃ߠ㳀䴛咼粮욧媼㳌졳荼ちႀ䱼쇢젣逇䌱븫峷숴ᓴ缃ﳀ쁟꼼燈쩿轇糑砼緥οЃ䌑䭿쿻緕핛揽緖홫鯻㓍휛឴ﵴ䁓ꀇ씴ㄨ䃃휟鬻㵁㈸䄜ᕈ츁郏돽緞�緟ၠ睴絁䲃꿱뗠ㄔ듁䄖⏼똀ᑌ뼁뒑悽舓㑃脙㎤풁섷ᴔᾦ뙾ᶼ⾂艿∐뻟돾緫缽绠�䃙䢀䈤≈ᬹῌ聂숛ℬ쬳癃⢤�㕨ꁘ茳ᵈ�섁⻘⏀盨袶숭묾翷菿绗�繱䀗ꁇ耙⌔籀䄤⺗�嘇�뙾㰯施菆퍝䄙Ề�濢ጿ薏苒ⓝ䉶逤抇䪂攢䔨넢뱨㍢贚⏇苼≃즑눤㱩厢 졲⇙쪔ႍൊꤶ゠䖗⊥ե�傆ㅢ萈荆锾䭇䈆듬ꐬ눠궙栣廃꧁苽拃�ᱩ榾购晌饱颩誰⥌㱛窥⻗ᢴХ丵偤懐鈠༊앸㇣䍾椙�ꓙ⧚졄埈ʧ䋃羡鎩㨈㹭厣햪㗫썾뉣묶빭珣�㟯舤둆삋ᇖ면蛒鏷貱纠䍿튣琼鴺霾㩶珇�㶼㽰뮛뷸�鮏竰］콮즳뭵ཿ헻뼀⬏ྼޜ밄ᓰ꼾ᒤ뻻屐캿ᑹቒ⦡ห냃䧠쌍ሼ郄㛼В⒑ፕ煃䭄䔔籱ᨽ㇄圴쌑벱ቅ䕴萒벱ᩃ퇄緔䜟ᡕ藜쐛ᱲ♿녇瞤줐Ჲ⎵凇꽌줏擲⯇돈脔씩㳑ᗅ凊掬䠔ᐓ狍⯱䬻䐳ᢧ鋍睌쬣葓㦟鏋薼䠪Ჴ⧳卅䆴켞簔㿻世醒聈

qpdf-7.1.0/libtests/qtest/lzw/lzw1.out

This is a test to see if I can use libtiff to get lzw.
www.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
Let's make something very long.
����ül�H��¥YmsÜ¶�þ\ý
�F�K�;�åØ�k'imÙrÜq�ÇvâN�T��à�"� �P¼ËK�{�]�÷RË®î¢�îHpw±Ø}ö�z¬jç�xÕ�F�âµ2J�µ÷åu?{{âSñº³"Î¼ë¦3q%ÍÔë�×�©(p-\-¢
Ñ�¬
ñ��«J�m�P¶Òv��ðºÑ��^«0¹,��aB<�ËôÙEm&µ6êäf¤üyìº¸Ç²�|ûæ£;ÊpitT,ç<tÃez0	°@�YÚ&×\7rzWk�I!«óJµq¶���t�¶ �Ù�M5m\ì²_£C�%Ï+�å�¬Öíd�°ípÀ¶hÆÑ�ñµ#ãtWÆvkÆé®;NwÝ±ÝuÇvÇ�½�Nµ�î��Ý�7:wÞH»Ø�·÷¸?¯½kvØ81ÓÎµêwæÝRkïúVzÙ¬]mÁ�u]O�÷Î��vGÆéÝÝøZiT�êä�qßÙ�[ÛÚ½Ï�ëC¡A�ê�_ÒÇ��×�IQ¸9�Ü�¸«kåó×M�(í��WÊ¨�Ý¼»	û�Z ÚâàQy+Í9Ûo�Fº¾ÆI�¥¿Æ-�¥ÿlKúk ÷Qú{[ÒÿyKúÏ·¤¿¿%ý_nBßT÷èï&¤mé��lE<î¬.]¥ÆL¢n��í�¿7!¼Tó�ïooE}#d.©o�Kï��Ài�SZ�¸¼Â�²¥�ôó^çXD�ñ2:�³Ìe??g�5o¯ã�RFÂ.�z¸û�\ï'³pI�LÏ]êã§Ï�¿�¿���¿�_���âwZí��!z]Æ�Luð�?¤KjÞe9�ÍB�Ôâðo�^?ûá��üJ�ôãZe�ÏFbÿ��zÿH8/*��O;[©Z�L��$¨tH36�ìòÅÙWËG¥qA���mÒzk@wx¸Æõ��&?ú�íd2Gâ¯âD<�·7Ù>Àô1�Ò_¿Ï�X4Ì�µ�±��å_÷þ����¤g·�Ä'�0mº;b�DG?GÖ�û�õ�Q¹°1Z�gÍâG»ÿ���çOe0?}PBóÞ@´Æ�É���Å§°æ�õ�ú~x3Dúü�ê{úZH[��/DÑEa��^¾¸�Ê¥ÿ��7e.õ¸�_}��Û¿g¹u�¿ó$úèÍéóç_«ù�Ei��^*�½tW�ñ©�%&Ü@��HïßK�#ñâ�ï�ËM!Ç,åé<zYFÑë8�èÒ�AL»)õ°��N�*=�]th�MHaã��@m�g³|ÿ�zE?Ü§6"Ý|óä^¾zuúúép©[Eg�nÍù��îO]gãêö��¥ôÕjáÌÈ¸Æþêå³3mâº�×§wW7ob¥Ý�Í�yÉqïñµ3Õ�ç»§ÿ8�.ß.¯¾§i<]g�d¼ÇJÔFÍua���R±���ôÀäU8�érÄV�¦��ÀI�$�^70$*Wv�?õL,ôÔ(iE×��¦¦ËÚHH<l�yùp#¡by|$�w�Ä�$�|';�éåEÇr��ê�wNÜði?S õya&¯�(�²"¨(�«�.u4�A³Í Ýw¯��%�
WüL¯��8�©ò�p�6��=¨�y�\Þy%z¨âìH@,a��I��·P Î;C�»"ì%�!:�~âDpt¤C�ÔB{è!-�Ø_�~�Iß�¿VBØOÖÝ·Î7Ò`¸Þ�x�Ò�õ��¶îhÆÏvu6høYÐD³¶Ç��F��ºì�ô8\rêeUÃØ�1ä~Õ¨¦HºÅl���, OÈªRÕ�Ó
L¸�M�âr�¦%�A]vT?	�µ���ôÊ!x�¨®¶céY0ìò<¦Ç^M�¥�Î®!¯Ïa��%Ð7âûÉË��¼K&��i�½kL�@�Ù�1ôGÀã!+�¶¡B�@^bÕä�a��Æ�Ö�c� yq¡TKæ�¡%YJM'¤E«ú¥MÈ��Ð°���á0�Lp#Jõ�>Ñ²Y�
�'j^B²o�	��û7#±p]²*¦ÑN��áfäÀø¾QH�Â��òyZ#aøY�÷�X«�Ùd¡���g�S¢�S}�í³��Z��M�ä^�Á h:§�á]¿h#<N'!F�®,R6�:é��¶R{FÕ��ë�f	*Yó�,®�(�Ø+Ô�l�4¿´mr([Ô�á��Yu;�M�gP�d1�äsº���Xè%�ë¡��ÔÈ�¡F�,�È1)�Öî�»�?��	`Sü�ïñ�JÅØË~�d�I¶ømx°¾ø�K?����¢³°+�¤ãì¸Ê8ß ¶���»\���#M�û�MÃ³5"�h�/ä����é�Ï�����ã��`ç$��3qGJ=�çñýÛ³ñýTû²�K°É�°IJ"	QÞÕCô2"��u%�;EX ¯Ì�ÒÎÐ· òÞz	(xÚ±³Àn¥I�æÓ�×�Æ��iö»�H�Ê��k0��²��a%4Å/��Þ5Ñ�ÖÑOèb� p±�÷�$�TÏ��¹ß�ós�¬B�@\���¸E¿�ê´½§üFiÏQË°��ôÜQ�Z�ød��È,tª$¡t>�%¾a+ÔË�Ö��[·Ø(��Î1��ïJ��UåTÏ5*¤��H9l�Nl+d�\�YsÊ³6��Y%YZFl��MeÀ�nm���Í²P
~mA=tÈh-�{,!)�ÌRe��Úòÿ�Æã���Ã«��!�{O â'C=èY�ª&8`�Ì° _a�¿S<�µ"§��r�î��Þà1�cÈð¾s|�ë{Ï¸��½õ��PÐ�4��ýM=$;sµ�²)Ã�th$zê:-on�©ls¨L~�_�Ï�ë®�Ìý�æ=�»_à��?`ø¹KÁsJ$"õnáø�·z�æ (B6 DêQÓ��ù��;êf8�`ø6�ZêÅÙvª�Ôtõ)ù29¿�§�B]D�¹0��ýîI�"Ë²£BK¨¨ILO�PÃ(R�"×óas�AeF´èeGl�öyPê�©�¾YuS��jk¹tZÖÄ�6â¶��1y1,G�ï[�TÏ�«É�¬�1êJË�âÓi�gL§�É���-Ò�AÑ³ª�¯�gëØ� K½Ä�U3	Øê+]¥r�:�ê��yr]Nx©T(½n#Õ;�U�³����1£ãÀÆ¡2GÉ�"�¿ëø�^�0*8Q�¨:^b¢GùÎe�ÝaE/D¸V�£¦u¨Ùì«ÀË�Itãa¤6ô_Bê1��%r{�ÍY:4ö!¦fN¢¡�ä î«I�à�®1¤�¡�u)´�%�*ÊC@p¡(�\�T�ý¶]N¬l�\Y�¥rïGÖ#;Ð�5¥tÞ�Ä(¹¥4]ê'\`í��'�ÉX¡�·§���'Ùt»�môà@KÂ�ë�æº©RªËæJ�úù��ÀS�tfÁÔ�/#�onpØ�%$O��u�3<��~5�Ñ��Å�3a�ÜK0Ó��§þ�¬�\�t^Ã�h6A×¶�¦ÜR>ª\�êc6�ã�Ê5�¸ÒªOáQÇ�ÚÖ�h[��¦�2àÅ¡z°½É'��üà�(äz´�³���Bei��×�U²¡!µ�©�hPàh A5ã¦�§VW4¨ðØ^±ë¹×!�ÜÊõ�Ûf«Q��ü�¹)�Ü���jCùM%4K]ë2Ø&t(�>Î�Ì?S±Y��ùgzóäáÕ04?Ö¥Ü�$¥cJ1��iFT6u�]z!�º±,��ç(Åa¿ä��ÚÉ�q�[�ï_eu��	a��c¦��¹y0�^GÑÀÆ��à�oTbNÊy�ëÚ�©�Ó$�Îa�¦��z��rPÕ^).ð£¡G àJ�<¢��AÿÂ©=ç�Ú��¤Ökçs�Ø�·�ýó�uwrorçöíû<òÝâî�»Ð�§ÛG¢0�j³g²¹%�/:��R��Ü¾Ï)G¯�ê4ÉÂ#�{ÙVõ1÷ø�A�"����ð Í'åðÛ�°oí
3��Ñf½ª\2�æ¤Þ0ö�U2GÏ1Áùþ�ä�zòOÅS$<.Ø©�gP=Àí�2�éÜÏ�Âw©p�æ�^y±�¸¡O�?ç�67ãÉr©$åô+Ã�ÂeIzÄ!ôù=���Ñ§×�¹�Y��
¯�Ð�þ�Ë©=®O"��Ù@Â�$)ï�M�ÕUêì_X�9é��Û�ð;28pmÇ�[aF�ÁW¦��ð�º@-�Ác�ºT��=��U�¬�|½{�Tç}É�þ�yzø����ÆÒL¹�ð>C¨#· DU×Lc¸´5�\±~§lÑ�û�âF£»Âe�$çz�Ã e<òeá#�l³»�kö�Ì�j·�Fu¡¤¼wk��í!CW+ùD�1íÔ�>
RRdÐZÂÁ��.Ì�¢�n©�C�¹Úx�%êÚ�Lr:ÅÂmç½T�ÝÂª>GlYÑ�Ç�:EdØ�Åb@çüYp§{*�íÄ'áo#À®ÐL�}ªR¸ÿ�¨�½(íBôT¼ù§íü�÷Ê2 æ°E¾é��å�Õâ|JÂ|�., Ïq,�vÃ1�Î���§wm±�%��<Byi�Z�ÞÎ�ÌIî!�Ò4e�3®F»ëª�fV��> �Gý¾y$�GÆ[Y�ÉÚ�{Ö´¶f��eó�}1o¨ò¾>ª~Já0����Æ"�²à��{�¡�wÖ�c½�N�ÚË��ê�^FeÙ3*Í��þ�ÿ®Úl#�YCæ�ò}±4oç�É>s¼CqåØe�$ÕB%UN¼GAï<á5|+����\#¯ç	(ótu;ËÆF��
BÌ��õÈ�1
ÌA`8�¡¼�]Ø�t"��K¬�é$ùl�RpSþ³%� T�×,Â��*ù-Ëjx�	Ê�Ýó�Û��ø¢�Øò0�}� ��û�ËOòX�Qã�ã§¡�2ßQc:��m0µx���Sñ_���á5Úd�ø ¾¤P"`[�{bZ³j��7Ü���OÜ³á$²¢ßZ�,§�ÛèÄlKÙ�ëØ_mñr����¯Y�¯ªË@±´gEÂþf¤}�/°<1z+r2³�>HÉ�)y»RÒ¼úþ !gWïsu®�»(/�×õ�ù
úvå]�ä�»Ü��®zj{V »ÙMT½¤ýH\ÒþÊ÷�¾t��»��õõa}êô÷°ÈÞÜ"» �ä�\Fá¿ËµTÝ_¨°�»�¥ôÑ¢/.³�Eöa�}Xdÿ��Y÷f³µÆÎx�øëX�¿��yÁ7ª�¿Ý59èN·¼Ö]Ãû¹ç5�ý<÷v¿ªezvKrÑì`_û*ý°H?,Ò³Þ0»�®ÍEîË&Q=®Ï¾��7áñ�cö�¯;på%�AV_�Ú}�M/Ù�m~Þ=îìþpÐùy�÷ÕþÑñÒß �{·?é�r}á/�ßÿøãÁ¯òÎ�ú»ôÍÃç�|ph;ÎÆF§õ��<Á�.O.7éK�îD_�F³¶Ñä�g��ð·õüi��·è7ÿl¶7ZíoZÍv»ý´ùü�¼o77Ú�ß°æ";�÷��àeì�.CÎã^Q¹0Io�¡Ûý<YYbð�Û�G×�;½Ö³ÖßÿþÝZ»ÙlÃ«ÿ�/�ìMÐëÅÝ�¢ô{ðµ�Ä|6s�E�èL�à%�N'ô ÁdÝ�ð��»tPó�à1v���¯ Äë¨���Ø?C¼ÙÅZëÍuV;�¹�Ö��0|¡�KUg\�Áú¯�öö��÷9Ë6×Ç� Ó;_×F×��îb<�m=yruuµ��¼�'çO�òuêÀ�®äB×9@Æ^¿ÝÛ=9x{¸�ò�²iú�¡.8�q�Ñ��x��ðº�òãÁë}cm¶g�(óO.(y;T��zA3N�â%wDÑWûÇ{G�ï�wI|�õ0��@��àM#®a'üo4¤Wân��k�k��f}â�¬g¼½t�±Ãx�ê,,�I
³5öÙE�À�g¤»�ì=�´Ókê- Ï�é�s�È��RS�S�_���à�2tolþøöèÍ._QÞ½[ú���÷�r^/-9�ÒçYV¥wGûæªôä	ÿ�ý(62½�«&D�%ºò9�jÃ×ZjéÕþ«÷{û¯:'ÿz·�¸ûf�ö»�|:ÄÉ��,ö�ë5��Dæ��%j@f��«gé¶I�µl��}á³p�³.�.Á?�¸¦#��P�¨Ì�FCHdÈ Å~�ÒLN'£Q�P�!ÍpK��KÜ�Å|\�¥H�ºãIÐ'&�Ú�ðÒd¨¢
�Z.�ÁLr²³T�ªmhÁ
ú �¶©"H	�v4N Ae�ÒV@Dù�>ú>áª�¥¡	5è¼��òVEù�¡m	ÀÔè8îÇW|�*PðAòÅ»�Ð©n>ð	^e�¸¨������KÞ&�X·�/� �Ùû�|*oR
Ø¢ºkê�Åv^��ö=[kad6¼�©ð�0cfd�Â2�µ�Ì��¶��¾Ê�(��� �Vh°��^*×Ãvv#ò��¥;_�h"¹��úu�¤|?`
q^�sãhrÚ�º[åæ?
�£Y�ä¤�fÍF�Å�8�½e�È'���©Ãþ-®äÓÃ�D��HÙPKð�_�j1~Ã-@�Ö��¬�ø�/÷Ã1Ü��ý�Ýïg�qð�¼�á�ëKâ�¦|Øn0}µ�hqF#4�Ø,��[��È�-¶ª(².gt�÷õLrÇ���i]È�� ¸��Hm*)�1�rq)h��5±2hÜ°�á����ïÅÄ�1$^ø
ûÊñý/â bªÐ�<>ö��êK�ô��8Y}[f�]@��r�¯EµìSØ¨{��i7����&�eß¢å°�r¢���ÄJ�%¹^�ì¶Ð: ;ç��tb�Ãz%�²°g©JJáÑ�Õ�SófÛ�l¶ì4�0|�Ð[÷p1Î5��YF1Ñ��� ¼Ø¼øºnÛàô�¶,���±�©�ùÜ�$�nY�Ê��7Euë���Q���g:èÞÙ¶[�n£qÔ'dH2Y�J
q²mô5�Sü�v��) �Æð��¹nÀ�'�÷ú�OVþl���°)��	XË0q´*`M_¿4%Òxß-×ó¥ð²à�8yY�bî�Æá�oC/\�
�2~-@ �v5°Ì�-a<�APÛâ'1ÅKv�¿3²Aæ~Ãyà³�NE!�óÑ�p£�B:r¾¿ÂM�|1²��}�ô�zm-2)gèî��k��J���Ô��/?6��0W�¼Ói(nNT\�(�)¹��««��ç|�á5ï��[¿5?8ç�njN3¥/¯iôG��=õ¨k¿ÿnöÍ'ès«Ör©RB�@ç2��&:Î�!3ð&~FÒXõ²ïÙK;�¬ÕwÏjU
��$�y~¢�ÑüÐ$³«Z�y+6�ëôSÊ��Úãúãº�³ES��-�^wû1
b^kF�3ÛÊ�<�ïÔo�w2�\4Ö[�ÖÓ¡�I�2ìsw½ùþvço®®èÇñ�:üÿä��!¬§�þe5ä*èãÑt¿Ï§\�¹7�hC�X:
»�� J�Òç¢g��ý[�#��Z}��n"�\»Å
þvÈõØqrÍL!7�#Îv {�0x¶Â	Ë>YHA���ÝÐpu��~Q_�ÆFp·"�Ê�pâ2��×Êa}é£¼�¼DE9/��`ËxÉ?kkÙaÊ�Uß��òà�M»�°³�¶!¤¬��_Ñ�£là�£ë v®�ãk�P¥P�^ÅDs��û?Ó�[�%áYô©VÏ�ùûã©a¦�³b�Z$ä+Nº�3-5�h�¬á�ÜYd	Cvd-��ÿÌ�aØ.»Sk×�^�¡�·¯ñn�Î³�[�¥�5%a<�+�]E±î*`Ö`¦��ã�½(����ý0�N�ÿ�d«�øÌ��¼�$|VÇCÛ»Æ7�¼ÃP¤ÉL!|ÑÁç*â#.dF:9e��xu¹ûRs÷=��R7W��¥ËÑ�¢úEØ%ç&%±èô�,�W@�<��o�4�eå�_Ý®�¼añÐÄêoU�F�53s1	�L|ÜáNø³j`Ï¦�;¬�v8%Ø¤�ØdJ°ãj`ÇS�½¬�örJ°��ØBÆe�P*Âà�½C²�m)88���ëS!Ø�ÿô¹×ë}ÑxTÜ�}~ìO3â�câD§XRcn�Ö3W<ój%�:�òB\þ ù�Ë�pr�/Ãä���r�-îM¦¶¬���%¥?gJ�íq�"?Ê'ò�ÇùN¡d�ª��å�U��UÅö�\+LI¿s ����h�����ì^©%eì�QL¦åüÊªÆT�Tu4d�W¦ug�i9])ì���
Ð· ±ÿ�m´óµç°�Ào?¯*î+¨×°y¤móYÔ5u�6¥A&³Ó7è��FD�¶TYca¾ÙØ�CDê?¶åi¾Ô�(gÎÌ¡¢GÙ%Ü�ßs�Õ�	�×³c±��&s���FçÆâýìX,��ýÙ��Sç9Ú·�VYµ�_ÇÐ�2óð÷!KÑ�þº�b8I¾y����}5�«o:W[Ö��æñ%ÛáS�ò	Âw�§���º���òe�\Zg+ÞþËû��yò�6�Ý1_�BÜä¤á¿'&%X®ä�gñÝ�oñ�Ò�ð�Y×2¢]���e-(Z�ë¥Ô���»[Ç�
iücß¢yáÛi�7÷cën�¾iÿ^p6ôY�$�G©a{ü¾Ò>ëû�=ú�h}s�¡,��K�²¥Û�·��³ÄL³òe�DaÊ(�)º�� âÿE�Ü	�¤µð�dù@§æK�� N�¡-5¸ZÐ¨Ô&f'¼ç�¦0Ï�ÆçU²´�Ò�²§ß(D+î]·�{å§ir²OÄrÖ2¨�«�4½Áª�¹ú��Ý
"¸FxfÀ±\R�¬�2ìúØ\é²ÚB<�íÖ�ç�]TLÅ¥E¸���¼ÙÓï¢�`#Ó�Ù�-�>�æ���ysXNA¤ê�*$�¦ÝîäÃ	ük�ÎÞ�{�d´èWH¼{ÆÓ�âª{d[ÎàH����Ü7âÎÐ¨u��¸)ü�2·�e�9�ü�|?�;öSr=4�¹þ*�à�2£Û¢�Z3�Å���ávLÒ�Éëx?»�Â/_Ä0�Þ�â^(}ê¢¡iY���t�Q��B0$�äS�ÚV�µ���»ö�n¹¾ó�Õ¬�ëâ��2{¼��,?øyZ�¦;~�Ó �kÝ0�SþÏ
:×Á�^|�bçî�í���sÂdØE·¶d�v&¿h_kë	�@ìË¼rø�fw�&[�7.sJµ��ö¥(_ß?�Þÿä8�ôU9ä�kK�o;Ç'¯:�'ûG»'o��ä�£Ë�¤;«ÜóøKð�îNpÞÐ�96]Îwä$ìÁñ
ÃQ6î�x�«�s�C¢gpù_N¥�¿§¤vt]]ñrÒs�ïPl³JÕ¸�>KÍ��Ú{Yó��]�èaò�=¯¾¶��@�¯µ�üõ¶|c7)4yëÎ�g4%×:�!øCf�Í¤��w�U_Òúñ
ù±�ÛQöý2S¶�í�j�ÎÒ³¦Ë�û<N®UÎÀêÎËÞÛmò�^Ü)ñk6�I'��2�]&*³¬ïCRÅrÂ�áD�ØYf�r�ò��çÖQAÝ�³4��Ê�SWtòKê}½4TåÙ§d�RS�©�XjWë�º��ö:c¯j�óKx�Õe�©l�R_��W0vØ�\1â»t.Ú,·ð³uó��G�ÒaâÚ���`FF�·
�¸q��8���
Ûñ²�ì��:]ÊTÆx{¯S¾ â��3�È¨��¸rP��ø�2û���V��*u�i´ë¯`�QÔÒ�¢ÕJPrù¯0¨ë2|�þÎ��~@h®�oh�Ë�nÎ0æ�Î�ÐÒ!b�DÎ��1ãªV,�)�O&¿Cêú«Ay�vó"�Ä��jfFð�Æ>�Ð£Yæ1s®ýzgö}�üâÉúÀ��~�^�x¹bîð@9Q�ð-Ú<r£B,=Ä��ñS�ÿGj�BNÌ��¨8þO«Ýn¶¾iñW�í�§Ös�ÿól³ù�ÿç6>9ñ�ÚÍææ_6ô�»ÑØ?ÙY³4_ô�W��&LaÙ�ðoÌ8X´.ÀãÍ�«$�Ó`Nr��ÁöèR|è�À³'ÄéÉÑîÁÉ1�ÓÎÁáÞë÷¯ö_9Áx�JzÃúì½=üñà'
ë#eÿ�SÄð�û,:§~�5À�ç�·GÿØ=zûþðU�,�®ì*N>�I<�ö,ÀFµn�,m>+Ð^�Bõ�¿ÛÝÛ7"ìð���û	^�ÄU�+MÛê·°�Ã*¨��3*Q6ÐQq���í�KÏ�UÄ$ê«ý½×N�T�vH±ßÔêdR4Cñ8áM,³��êK�ü%(8�P�ttdB�����þbU�~��h8ÞhwÄ-w�lÙ�
$�ÏÆ���7Ç�(t��D�×«CT i6�Â@×u�x¢D]è�>`]Y;S¹3�áØ ��÷Ll§F(
¾³�2�øöÝzÝê���¤(oOÚÝ×¯	EÐ��¹F4°¡Õ·§�Ø�%Ñ H®Ë!� Ý�Ú�ð�¬w2¢"0q��·��÷aÄª�6`£«h�h�¢�Â�o¸�³p���Lu��	+G�"�j�s�E�S^Â|"ì��¡úÂøn�9�ÇügÍ�Á¤JëRµ:Ô´Bq`Ä�(eÔ2ùÛÀ²��¿¶<²DÐËz(¢s8�3a9²�À¤�9�ù��5��¼"ÙPI��²ó�Á«¯@�^uS���Ý×¢P�¤ª4Ì���±�$)�¯��ìÎ-åD³æ¬Ö�� ëJá/@â-ª�¹ro�N�K?Qmf�¨ê?È@GÝ$R�Òùöäçý£Î/{?ï�uNDpH�L��}*U�ó	É]Üõº
ûý�Kiï�[_�ëß���iC�¥Kx��ÑQ�ò{äÿ\³ÓIÔïÑíú'ÿÛÝ�Ó�\�YíÍñ?÷Ô%�º��²º¨¶Q¯$±�ÞÎ%¸-s��ËW!Í�é\·¥»C*-ä]�V�õy�¥È��®+ù¥$¨Ï¿�Øh�B.óf��Â�-`y¸�þå.�³w°xé°kÏ¼�¸`���%'T¿6ºkµz!¦~�	àÁl�·�òøÿ��£y�ÿ�Sfÿo>mñgÊþßn�Ã¿>k?Øÿoåó�ÿÿæâÿ��3§ù_�ÿÿÇpÂ5ê7q�ð�á��åc�ðß�è¿ä	Ñ��büÿãÍ»Ü�ÿò�o�3Ë!�ÇxÎ;á��?·�¾Ø*ÏY �ÁÇh�¢��PJ@�ßÎ<�s�\½-oE�MÝ���à�ÿ[ë�?�å�©ò��_o¨}��aMb&��x#ðKêgªÚ2�ò<¹Å®Eû��B>&�¾à�Y(5�\g�&Pû"üV�êë½PÔ
kÙüõ`XÝ©!võ�a¹¶�Äó{�E>_�ùã�4q�i2Ä�� }ÐÁ\�+�Ïó�jA¤¢� h½±ñ��-}�ét3Ô�Þ��ì�.�é7{É�ømàä¸â%wj�w4EO1�[]Þ8È2+��Àæ�â3�£À�D¼�Åze �c�þ�!®Ñ_�°Nò�Ü7ÃÊÂET�cÖ��u~�Æ\e��¹%wj�÷�ç!K�	�I��¾ÝÿY^f&&����
�l��éÂ,uKNa�Zôn§�é5ÝJ(\�¬¶D��" 8 �³q]��Ö�Òqe��÷T
d,iÜ�Ð�/ðçÈ¸�2R¼¦F�KyNÚkX-ä¹5G��Ie�â�� ¡«D[ó��¸ÖÒh³ZÄ^°��3\¼©ýÁvxa�ÙPwü·è�ôÓ|òÇ�zÝp�ó5ýÇ�÷¶�~ýCßeË4ò2Ó�Ñ���Ê�4�Ñ�Jjÿa9yã®�Ë-Æ��@KG¬QZ)/�ðÐr]´Ôºþ°Í»·�¢ýßÕF{!�`Åû¿§�OÛÏ!ÿÛ³Íç-þ�ü¿Z|Sø°ÿ»�Ï�ÿ×¢÷~¾Y3ç�°²�X¦mï�ì�^ªª×WqÙÌV¯ón÷¤³ÿëÞþ»��=Û�����ðS7��K�ÀDË¯ö�Ü}ÿ:�n±;�Ñ¡#n×¦n[öRyòó�_(�ó°¦@�O�*=��iG\�û»£�7»Gÿ�>���Ïr>Ââp £��J�¿ýá�ö÷N:{»{?ï��[�ã�ä�f÷"t�ãæÜ�[�à�oéo£$8���Oõ!o¼�¹�ë�§\l i{óùwÏê¹¾oL&¶;Ë&éC+yÈ÷R=0S¤1ßJ	�3Á\wy�tÿ�AÍª$·^��¡)±�;Ã+ø��¼��N�ó�
 D��m�Úm©3¾~7êÑé�)N�®ñ"î£A���×{�¯Ö³õS�=$(�'/`?¿Ãºàþ�`<@z���w�_½Þ_�øcÌ�.ÐÑQtÄ�ÄÈ[ÒÌå÷K4Üh³Ýw��S®xÃ�È��É�Å/"`§:v0sN«ú�=u�bcÂv���:
�0��(þó���¥���¯¡�ãPò��f�®¼���ÊOÙgiÍ=þ��vY�Ñ*¤� ?Óµ¡ó�Þ�½�úmÑ�Z��^rÖøÛ�·1��2º�öX]ÆÝ��cM·Ö\ �ûåé�@`�¾ÙØ7¤)ÇÓ:'ç4�g9�-�««�Z3�w¹?Å��û°.jKu¥�}J�[;�Ø4,u�]àÐ�ãPêÈu«£Y�ë�~�es�üýX�y^!UêLÂRº;�¶ \��!0�iXØ°+9§���ÄÓëÌM�ÏZk2�Ì°6Ö�Iájh� ýØ�w��µZ�·§�_obýt¦W��FÆK.Ã�¤FúÕç��ù!f�æ�d
���Â�+ÐC¡��Î�&�P8Ï¸¾:Ne�*¼OS![´·Y:¥ò¾2z-}w�WO]úîh²Ð�£�p	RO�Bq-8}ÛY��}ØDëZ^Ä�!�k+Û*uG?¡�¶5Ù8Ùåå/ö�õsnå���òZ?¸�xU��@êù)��ã�¸'î�%á¿'�Øt(!�L��ã9��$¾ÒqÊfØs�Xè0JEä²Ï#s¯O»n�V�A0z!Nî2�XÒkÎ±�(����£�`?ò-DbáõÕ¥n|áD´2¢8��@(4Y�,B��ßU"ñL.í�NxF8 ÆùËuÈ��Í÷]«E�²O�Ãà�uö=kò��ÖvDä-} �Á�B±wL�³��ælnÔ£³�¤Å{#¸#/ê;�µ÷��PNL¿º�jþ®��ä�¸]µ-±~ÎØÖ0�gÚ�õ�V0Iý\��9��7á}^Zö¼Î¨ú�¾è�p����ùk/4?EË|�³[lHX*4�éoiúµ�¦�A�¦Á9¸#äO:���¼}õv�¼äùjw�¤�l�6-ð��²à�£�?�-	6�k�äËÂU¤@N¨¥£H�ø¨dJ�<iÜ*�¶µ¾��2DË�f¶�f°h��qMÀLÛ�D�"è*Ü�àU>B¾'�P)À¨Å�lw��¬[Ä°�M�Q�
W¹Iç�K¯ÞvÁKt5v�W�9ÇÓôqÐ�Ï©¤�4}V��E���Áø;.ZòøK����Sä<â�=�ÆD{Pûöý�Ù��zr@L°��¨n±oÍ�ÂX7�È«�°�òµ6aüß�8Sd0 Iå Íi����B�ÿëÆ�eÆÑ½�Ê�²�	äÈzØ����µ@ÝÌ#HÄµ�Ê�·p�¡(om38áÏ+7�>mÃ�¼�ºz
�Ò´dìÐd�&�WJD¯��¬�ôÐ�µö�Ë+#�Ã�è�Áÿ¼�t���ò�ä&¡�¸H�ð�¯øÛ��à¬?2Zÿ��27Lô�Ú²V g�I2ª_�L��Ï	�]^f+üou�¸��¹(B�.U�:£��|By¼Ä�|UcYEÐ��V¢ÄY2h�5�EBÚNCj�1#ì��öz���ë:ff�½� Iå/E[µIàr]Þ(«²S�Û�¬M �Î;Uv¾M�ïòmE%½la-[WqY5F�VÑ��¼q
m¿@CË�P� ���¢¼{u÷Ù1A�¶Q® £Xl*ø�UP¿�: µ»¼=¶�°|êgá(��kMØ���>?��|P��V¯}��Nµ�A§4Ò¾âè",y�ôÒBë�},����tV�ÁK÷à�Õ¼��ÂÔö��jþìÏ�d.��	�ÙÍçª�î}»Ì�M&�F�OvO�öÀm��;<©9%i7�Ajz &|jn6�u<º�L¸¼?Ù^�����÷_Áð´¦�<�F]�ú�À¿+�Þ��8�/�¼qvÆ��g]4äÁ{¡ÌÃÙ8���	'ÿz·ßbçI<�-Íe³�;AëÊn	_�ÊèÌ���c�Pv�¦·Xwè�r þ�:&�t�sõøÚktP6(>1�&�;�KÒ��6`´vXÙ�¥f$²+ØxH{�ÑPÍÔ'¬��ë�L|dÙ�XÆvPPÝ�àæ¼)�Óâ�Òì!´����°�:À1È!��67i²¼?YWF&ähùöÝp9¨Z���æ6ÎHA×@ÈE�µq(oì�"CO�¬ø[òý%5Y®�â¹Í�EäX^Á�NÃóh���íß��Tã�ÉRéh|ò�ÙíÂx9�C�Ñd�B�Í�i�v+³t)Øî�Ò�ü/�Ñ)oòc�Îì�þA´÷�;n¾H÷ÂO$l)µ�_ÿ�^YÐ�d®Hï@3]¾*Ä�ñ�}�¶mó�¿ø&�²ñ�ð7 ���°ñ	
[�Õ�ºR�ü�M:MÑeé�c²Rz�PÂ���-mÒÌýhÀ½°�¶5`�W0�ïA.[Ö��°?ÂÝ�zX&õp&Vfæ�ó`þöÕ^
«oasêÍ<�e�\ï�U�ð��\�Â]��0	ERµ�RªÉ!�Ær�S8�ü�^�¹�³@@ò½�2SöÁ�)�Çæ-'���ììmÙ¿'C°j��\´�Ø)$zº
1V
ïKdÜ��s�Êl�"Rwñ5��Ê©Wâ.�~v�ú:�z>E<ËÊ<«Vî�$�Í]�è½oYRo¼��3�|M�-�«�ý�¯K�2ÅY"õ(�E�À�3CN>\~Ò7äÁ4øUO�x�-�oå�Û�10Ù^¯s].Õ�a	�ª�ÁÂ[3vÂÌä~6¦@=Ì�8uçÌ`9�ÃRU�É¶�*ýLÜ«rie�v	Æ´ªâR>òS��«6]}]q¬1�ÀR�B®Ö¬W�~ÛÒzv%,/gSéÂ�ÙµÀ�-i0Õ¥O)ð�À¨ªl�§tÊë«�{ sd\�å���G¹�¬�a=�¼�s.ú·è�=¢k�½�òÿ9Ù�óîõîÉ¾N�Dûç£÷{üûqýw�Y��Ù#q«B�´i�ù��*¾e¯V±ÓùáíÑëÝÃW{��¯��þ§O[uwW�ã¯��¿É#�·�Ù�,®hÂMEã�f�?���mI3<BÓ�d¨W[�5WWëÚkH�Ó��¹i4Ç¢&Î±¾:Bs�sÏ�5#�Ì�¥Ô��¿�ý�!ñ��s"G�b^�¶w2n�³��òá01²^�ò¥���8à�� ´æ�s�@Âqå��À¢�µqÔì�ó´ÍÖ8«�Äo����_�µ,±k¾ö��È;JÏ��óZ��<fÿ��R�ª?�qÿ%�¸é��Þ·6ê[n	Ð�òRÓ�&ÆÈ�ÙP^e§ÖÔYï�M�UÅÕÄ.Æ®5}»��©�ÏÊi�b:G��Í0²ùAË:çì4s²¼2ÊU%�ªe'��bËt����²èÍîm°Ún6�.�YÝ�f�-ñ��Y�ßë~PÍù ô x§�bà�?9�k�m�m�¿xfÉ�*d¦�)3Sd¬C�ßÒ°©àyÃoMh-Ëx|�n57'l©ÕÙ}ýîç]ö'���ütpâ�lÚ�·Í¶~»wxrôÚ~k4â@®ý§&ªÿ��¿�ÔÙ2¶wvÆ¿þ)��¨:ÄS�Àµfþ�r�Ø�µUc¯ßþ²�d6&Úò5�iÁ�ÚÒ�|÷þpïÄió;õÖ�QK½}ÿî���¼ýNCþ5Kw��zý�W¯þaÌí�kµ:KkÌXW��Éê_¶}¬gNøá¤ß�¬.ËÂ\´¢âè�Èµ�kòå¸-¥¹^¡�Bä�Õ�]�'k�òu*u�Sú(3DÆþû[
ó�æ��IâY?Áò`�He¦xq�8è���o¬�¶�å�ê-lç:hè�Î-�e�-g%�Üa»Re�]ö,V]i�-�pí¦�p�u��Y«É¸��W0���_�Ô+x����Ró3�EñÝÅ7G:�¼�Ij��Ì�yYöÊ/Gç�e�`�çð®N/hÙbaø×�/Y£��Q¾M�ÅÊïi�=�Ë½Â!Å ü�1K�¸Íd�2êW6I1Çú
î$-´�+�jjÛÔFÔ³Î�D4��mÆ!¼�ÑÄPöÔÙ�ë÷oÍ�¶Å��F½��Ê7G&gã�Tc�¶ÃºI�rß-_¶��ýâ��øª³ÿë»×�{�'Ê�Ô�§���N»¶��?µ��Ö F�ú+��ð2�'iÿ��5\@ãK�ÅÒÀ�+���)3ÊÆ�ïîÀ¸�X��8�µ~�=¥���q�dK.t ò{A���Ú®7¶Ñ�X0û©�?_ÁÞ±Ô"«VÉ�ë ÚV-ÃýÓ�ù��=û¬>eÃìã�C���~��Cð`M!µ:Dí÷i�59a·@í��¬�)ºý\,w�y��/P��zrúWÎ�`�Je7ë	õÇ1)	(£¢Û\Sß<S.�H�.ÊÌJ7yoÌmØWÙñW:qÒ{��îæÖ5³{���Ú¸ÀP¹»�£Õ��¬ÐN>||Í¾Ïo�³m¶�Î�°�`o\�/���§,s?N4ê¹\vwî?�N®�P�nS;V�0y�h���pÌsÑÈÀ,¤Ä����p0 f°°¼ÀÕÔr)tæ÷ù¬�ñÍ�Ã��µáS�¸ZÛ��¦��I¼æm�.@z�K¾Ø)£*���·Kb��ÁX�QJki/�[º·��l4("l�N��w��´*���¼uÃ7`���#���}¼H�f� �}�ê¶,%ií@�Ä��Ò`+À	u���ú�y´ I|%ý�
���ýGuà»�àùê!�lÉ¨¼��'¹iR¤nT¨À�è�2m�BGÌ�ÛTT¢Qõ�Ï�YY¢��I¢£>0kÿµ�×ñ��âu§¦��Ø®(ÅTf�I�A�w¿ÂOÎ9vã<���k2�"�Ï}K�.¢üm}]7¢�ÿXç�ú¤1?4�¿rö¨rÛ¾��Ý(N=÷ù�Q�Ñö/��@â\�Ã^��^�tu9�n'âÝE�s£F��t�H��_��qö]àÙiR.ÿVJ�ñà�½r�	?^³�ó��púGÖÿXs1·¼:²�Tµ�¢�Oä¼�Î�Ó¹RYÝ¬|:.Z´�¯ÖEÀ���|R	�ê�ÔîÏ¨dI��W.�Lf/¤��µ3
��':ý}ißMzóþdÿ×ÎÁáÁ�=BXØL½MÆ���¼<0i<ªÏ��Õ�Øê®Ã:Wþ�ç�òDÐ�²�âøßív³ù�Ú�ígí§í��Þ�ÏCüïÛø<Äÿ¾�ÜO�Y³´ à���Pâdâ*��ØlTz�ÀeÜQ��£0'�x�èÚ�tM����J:�ãñ¿�Ov�EË}A�k.²�Ã^iôìý££·G�`jí½ höá[¾N½Úë�î¾Ù§Ó=�D�¯É¸Øax;�Ë3¦yú��ðÚ��Z\Ç�7�0�Ïd��àåjV�~MÄ¤�ö�cC.LrK*Ie�kÒí§Ï 8^Q%£�í�a�â��i¸�eâ�zÂZ�Ú��¾à»�[�b�æi¦�±
=³�%T�ï1��w/7,�Þå��Ib°10ãà4�âÆNÞøû¾j4IÎ	ªºë!«O[0ä�Ø0*r¤�i°¤¡ëÕºàRãñÞkâåfdA¶Åj¼Ü�·�ùÌ'�¸.ÙÁË|é��]´�}ªÃY��²¨»Þà��ë�L]x^gF9Éë³ðµ�óÊè¶0IU�bE�0~Ì�Ó�iaýÌ�+�n�ËÖN°·'¥%×Á÷:|	dfÎïÜ�E0Ô��òÕnn�q!ñÛ7/�t�ã÷~ý�í�ÆÓ8=ëtÜ�o����å3
Èúæà�ì�ê']5·ª«5ãàðäèàð�ooD8×:Þ�p@îþj�Üý�æÁûã��NðÝ=!e�.���½SMÕÅÌTcA¶ÿ�e7Âh¶J|b÷Òp� ·È÷Õ×]UÇ/åLYûf÷�û�þàuM�
É�í�m���>Ö¹Íþü³¨dR¹ä�SÒã�.CË�	�Ó?ñý�8»ÎPíï3Tûîé¤TÆ*��2¶�ÙÅé��W�
)hþ�2��°èZ¦ÔÂ3WÞýy3
CÊ�]�Ê7Ä�èÀ�,ê�a8pî÷«m\�
q�¿�z� �ÉB�äBa*ï��ÓE����¸&�°Óh�G/E�¨p®P�tF1f>ìp�ç¡�ù�Oý<÷ÒÚä��£+³�³�Ì8¤ñ�_fI®���×�?EÝø<	F��"}LÿÉ÷[úXf�¾ñ�3g�
�Î�³#Q�· �±kÐ�ÿ	ÖQú#�á¿ùÈX(Id¾lç��1óú���¯æ¸©�°^0�~{Þ�ßTÙ�ÇÁã�{Ü���ðÏ�þ�<nd_�à��ø'Ð¯OÕë@�ø¨_wÕÃ1ü��Òòu�~GðÏ¹ú6Ö¯ÏU�ÀD@¾Æfcøç
þ	Eiùz¤jG&�Öë�zÓu^§ªÅ@½�õk]1R¯���¯àHýã"y¥*&¢¶|óIAó�è�ô{rFÙÃ¾ò���¤¿µþî:'��ÆX��-ð÷iãK�bDñuÜ*ñT�h5U�ÑE`�iI(-	æ´��?Úe$�¶�Ó�ò½µU¦-á´[¢L/ç½l§��Gc»�lgC¶�bÂ*³!álÈvú9ïe;è)c��ílÊvF\ Û¸lJ8��Îh2ì:e��g¢Lê�ÿT¶�¶�{��Ë2ß�2�û½�åçò=�ýû¡<kËRàÄc�á¯D�Qæ*ç½ì�îÛE��"Ïe3�Ô(~Ù��½W��wðr,�=ãÏ�Áp%R�a«¬&�jéAý�õS;Ùâ²W<áhÿ3��Á�g¥,Âl�·ü`ÑÃè�§��¬föºa Ï��u«´6�×eý�ö%�M�®Ð¹Ëª�sz���uÛ<Ã���/¶q���S�ãe±:Á»0�'\I?ã�	áÒ�ñ�<A�ÈÏêxL×�ª¼ÅÖuB)Î�;�««CÓM�ñ��j§Ö:�°�
¨y1ÒÙþHM�W¨£�æ�ÜÔ#S¶v^nº���WÝÔÄ�vBÅ��Ò²�*��åPhµØµõ÷éaÛ®�YØUóØôâN�[¿©®¬¾��g!	p\ÔÌ<1³@qRé�i^n$���¾'ÍÌ�0ýYát�H´�\ð-|:é~L·D�I�Ó�\gç6Ia«d"üÄl�ò(òÍÏ��WS&¥�']Ãx¸¦ º�P¥T[gì��wE�8Z§a7�ç�1�Àâ�â¡NdÉj{°�ù7;I&Ï6ÙÞêj�ÚïÅa:|<�c¤����Ì|�b8� ýÓp|�Â¦M �âa��b|�&pÝ=]ç��rÅ!?NÙ N(N��^¤
�_oú��C�ªÊt��·����aÀ��#�Ø��7Ò���Áu�1«EgØÍ�ÂÙá,çe¯�®�XZ�X1Ðä*"â°oÑK�[DÆò�á~«I��°!�Å5�º�EêKv�ÄÃs»�%jàí��«Ôærób��â§X²Ù¦�u.��(�qhÊ��éJ��"��(_1dÃ¹¢Âê�Çh7u�ËZ¢^VkÉêë�r+�U��±ÈàZ3�gj¢Tl�h3Kó�J��
,·PkAõØ�þo�Ä\�zÜ|ì×�OØ�:ÉKü=·D�¯�Ü×gðú,÷õ.¼ÞÍ}ý#¼þñ1mq!p�Û�OnCñTÏ_²@½h5AQïru5¨�EØ�yUw=Uwª@�¼Ú@Fõ�ªÂ�¬�ì�¶��¡@¦:k�§u\�ï�Ô2Wûiàk��¼>Æ��â�Y�<sù�=�H�á§11��ù['�ZA£�ú(ë=��ú�ÿ}°¡�Õ^À9�ólç¥¨îl.$	M?gS�ç�èXUR¡¯�¢ÀrZ¼���N`µ"Ê9�W_�ÈèMÆ¨�Ùe�®yÎ¿\?·ÿ�Çµ�ÏB>Eþ�:á�Eê�Þó�>Åþ�ÍgÏ�?ÿ¦ÕÜh>Ûh¶77�}Ól·�üÑ�ÿß-|rüÿZ�ÿûwkíf³ý�u�¼Q�@wæt�çý§Â��³¹«8ù�$`À+ôòûç¦��(�øÐéÍãß�St~Ï>×ËmÉïåf:@�Îu.V¸$ç��ì¼Û=:9Ø}Ý9~·¿Çÿ�ü/�q=«ýêsIò¿r��¡���0q²µ¥
B�Ýó�ï�3O¶sªâ²O�]â£�ä�Á4IPÏ�+wÿ]�Üy���°�3ý�Oò*$¡�«*¨':¤¥uç_�%�O���*+n-?�ºÂ²§��bî��Í�Òzî°�'��î�§7ªè�5Ìæ��³3úñ²�²ÛfÂen<è��°�cpîcDÏ�±q"�¡On»´ÏÈé´x¹Ø®�¶ò¢Ù�V��L)æ'��a>�Ô,�¨�ý�·�ÔÓC�Vü"�¥Mez¬MèÅ��m�¹��÷÷ûW1��O(y¨Èöy°÷�÷�q2vLnÅhY¾�71NÙ��<`�L!ÞpR6=Ú�j1²�ö´Æ²�c�f¨ÂÎ9�¬9�G·UÜeO���¿Ò�:�ã�ø�øäuçÝÛ£�Ë¯³��_íÿðþ§zelè�òåBÙµ àó�\�1���ñË1x¥þ4�*WÓôv��d·2m�Í���Àz¢íã¢ËúU:�á´$t�©µF���Ñv±9Ùa4��+¢)Ç£�»/�líYªpÿ/	y¿»áÌ»ÿ
ûÿg-¸ÿ×n?m>�ö´Å÷ÿÍÍgÍ�ýÿm|�öÿ7w��B¢.àêß;�U� �)Õúx4áÈð¿|�¢û�i�$Ý��
1k�4ëCîªâ�ú0�ÜDp�îíC�Âs�ôÙE�ôÀ��è.ÄIÏ�íô�z�È7 ë�ÄÌ�ò��'ÈÂøjXb� /Gû|ë¾·_d�È�ôØ�æ7U¸Òþ-Rû@HqyæòCÔ�87�-�¾û�$½ü%�Øl8Ì�°5ç%�Y#®±ûñ¶Í�+I§¯Å1,ªD���ìC�_��'qæ´ÌÂ�+«.��Î�ã¢²�»»��³~ ¢BÁ7�¶�Ï��³rð1×Ý�y�a¡Ê¢���ú��c�Ò�m���Ès�Nµþ°SÙ�Õ�Õ¨�ËÙÛ}4�;Ã¸��Ì<HâCï�¼á�lÌy�Ã�ÝM��?Î�����ä©���Ep\æ�T=k�r»�í�øÖ>úT«¯�.��(Ì©è siÂKR�5��ÄN���K3øµêjm%ªÿÖü°n'3¥~�õ
±ëÄÃþµÝ/7ëÔêªÊ~õåFF�zã�zqLÈ�zã�ø%W%a%\��'³*�©[�Ly!���»�%«ÄY®I;â`W�Æë��ä	�²É3®Þ�ËÍ«l7\Öïô���ÅÐ· ã*ö�1©DàA>�ZÚç��E�À�«�¤eÔ`©Nì$"8Ë�tV�²èF_õ�ÞÆ4º§Ã��°Þá�{×�c� ��6g�*ËÎþ¯Âþ?¸ê�NÀÈ?«	 lÿ¿ùü�{þßzþ°ÿ¿�ÏÃþÿæöÿöÌ�Ó�p�\�7w	,â�m1¸y%Q±>÷a��´ûKç�.Êö�r·öN�/�½·�?�üT�¬�/DgÑ¹�¥G��úçq��/�;ÆÃ._�x;;�+�c9axæ¶.�Ã1¦�í�øÄâ��æàÉ�¦�xBK�ø^®0º�d¥��ÜÔàððP�]�����'�¹§�o:pñ�¯³ß5�çp��?��;�¼ÃS	þE{§´�vN�j-l�·°�ÓÂFµ�¾+oaN*µ��7Ñz�G§§F#
�S[5%î��ßõ�-³dc)�¿BU(�ÍÓÑ.)¨ ßR®S�çxç��ª ß¿Öâ�¥p��/��g/ùB�'N,�uÿ�ÿ'SG�z(
¸ð�ô4fºµ%�Û"�CÉ@Ê�çÂ�³Â�«Â>��e�Ó��¾V:ÐÐF��
ØÏ�ÅAâ�J¡ÆN¤V5�è\��~
ÞþÇª`Zx¶¶TØ�^Ø�ÇaÛ4£��èÈÞ(à´��:v[�.��°ÉT¡ _V�ÇÊ¥^¡©�1¼�úB�¤�hx�þñp'v�¨d¦�=ç
�&Ø!Z*ÇîP[n &8OëJÙ�Ï�]�¸²���®�b¾áÊ�^?É� üC&���F§�D
 u�¾¶D�rÜ�M�Ò��Ó/¸ý��Åz
�"¾ì~ª�Ug�øs�è{½b¨vjP�ÐÍ¾#äÊY³Û��Ä&�]�ö�![=èCÞz'1+×Ù.C�3�1�S�Î�Ar½�m�X³f1'�bÊ@HWö�ë�6Ä!RéU0ª��v�/ê9¹�A�A9!% Äº1{2t��JÀ�Ê¾'y��à+�Àh Ò|g �~S¦8A��Ïdÿ_
j4qÃZ�Á��ò���ÅË��à��WµaÝLFE£yøvÿg���è�At�n_/~S]zô.£�/e7Ó_á§hÿ?JøÞ�²]u`Y�Ý� dÿß~ÖÞ�óÿ§�©p³�ûÿæ3þçaÿ���ÿÆø¿7ºõ7´×�&ª��Eºÿ«í�©¿�Öà<¯{�TëÃ½jß����Öd6��§�I�ã���|N9ìJÎìß�½=Ùß;Ù��«oÑ¡½§äÝ&ÈÙ&�§�_�î¸c�9{Ëà�}�~
»�®o�¶���ÜÅð�q�²ónwm��%�ß:�áÂh��ñ2JÆ� Ïþ�Ó~þù�µ����*AævZ£ýÞëâü �r���n��ÓÎi�È`dÓë³ÚÉÖÖ
/ÝÅ�¿.v19mÕNVXÜ`ª8SéÚ·�Çjq�^ÖFuV±ãØ��=¥�w�6ÿ�K��ãÇò�%ÓPMØÑPxCk;Øcì,\Ã¼a¯¼Û�ÿEë¿O�Í¢��®ÿöFó9¬ÿ�íÍ§ÍæÓ6Øÿ�m<¬ÿ·òyXÿ�Öÿ�×ÿ�v!n±X��öñf^���Wü�4��U 8(i/Â ~�ãö(��y�.Êãê J× {fNÁZ³Á�°��ÅED�VQµn+¿^C� n�Aè�È�_è6!�ï�·GÿØ=zûþðUMgÄi°�¬µÑlÖ�QÉ�¿ÔI~¯¨Õ�ôæê	g+è�ÎLäRÿ8ü÷N¶Eþt�¥EÍX¶�+�µL�Ñ±ÛÊTâ-¢ÞRºED�l�¿5?Øo¨'àG¦ ï°�D�N�k}àh6��(7��� Ã�¸x'!Ç~}Ë¦¾;�5é²vkuQ��U��êÂi^�åLEÄÐH��É�u¶d»�öØ�:Ãð�¨ñÒÈª�Ï/�´#pO³oe´a�ÏÃ�Õó¿Ä�4�è!ó9�VB¾vu ïF?´yZÜ�M��©hº.ìÄú�pøHÍ�!©dtmäÎtÎÌ1©1uÒL*L1:¢�Q1·|¯B��î��YÔ��¿E����b±¸´iv��I¨ìôûsÅþó�1�6��ã$oq!���©<�Èa5ÅçlàÐVrà�/Ù úÀZü[�ÝåóéZ	ÿ=á;¨>×Q*1».n�¾ù°
ÓÏ66é�#Ct���9ärZzòÄ��vêb¿NW�c+Ò¨z�»E³/E	BÍr�k�{^�h��*¢«f�1.�âüÔ�Ñ�÷��cýÈø� 'L�³�peËGJÊ=QPcç���R��åÁ2�Ð���ò©�3�¤¶�¬B¼��Q��9}J04á� ����¦�%Bf�Á�E|µ�ÉSÎ°½,4dz�z����¢�iòÉesÍ@ÛJ�À�FzÂæ�Þjÿ(Ì���¤epElgæ��ÇXxp�[¤x"¹JõÕûQ3Ú�
��ËO����Áã�ÃeJÂ�Á´Ä��ó*¤ø�Jô�ÇDH�Ãõ�gaÊ�4ñ´ÓC`Ú���EÐ\¶@#�=+�ZÔoâ�ã��(!((ï÷cÞk¾¬ð��á5WÙ�çì:���º1�¶=£.ßvÕ�Z¢èÚÓkøÖÖÜ±.g�Ôô�ÜqÁ^Á»Ì®l�y�ÇñÙ�¨ßtjÏÉá=¶×å D�R%�LHm�×íSú¢vH·ÐIµ��`V{OûV��#&�¢ãú�X��¢yãEf8��+���àËyÍA�ã�C	Y��¨@�©ZlLA��ð��ó�ÁØ�L�°Uì�ë��£±��J�é¶Ú§:+]íñ¯Ö2#ÞT(�û®/a��:ç�ÐÖ�ãÄïukq�w°§�>�¥�0tTÙ�G¶�����Ú�u��Àru¯.+ÉP	�¥Ízy&�qm�ë¿cÐcÅ����z�ncÚ7ú$s�X Tæf�>)ð�¾Í�ää´�6û¨¾ôU�Äo�+Ö��ì»��¶Ý sÝD¾X,4>ÑG}ÎS°%è¬Ü�lX�%hâçh�ôÁnT�l�Ü	Å©Ô��UyK���æºHË�ô��vws�AÓ®°vr��lð`%�0 64I(mm�d[V&Û«$À�Äªç���ô�¢Ò6� cÄÃËp�á
«���ÊFÂ)ßð¸ðñb$²¼¥Ã@ÏÑ]�_ag{½2�Ë�õY²¢¦�ç�(�`®q	;�.CRbH%TR7�v��ø2�ÁIzÛ&l���ãÇ��à �JVÁ��ÃÓ û��RQÚÖ7��l®�MÐ?�«JLÖ¨�·�]´ �~�â�3�Ñ��=�®�´m�ùH³p{�&é¶�®x�#Ø Ò=�Å	g��ÜÀ�Á��E�0�M��È��^{��°%t=�àùá�:2DÂ��ÒÐ��ªëg�ÛD��Ï"¶oMÊê2{G±>2ú´-c´q³å©��Rv �ZÆ�Rs´�õOC� ®�6w§�u}Y¥~{i�v!Z|Ú~a�c	ù4�É¸FiÍ��(â���A��9?
+À��nÐïN0� LÝt��¦mÂ_¾ázÏ÷ùè��Ö%�¾ð'ý¾S�iÇZõ��Øq}�Z$?ó2�ù�Ìy¢���Ö�TNñ��ÇvÛ´ÚiÉ�ih4vZ©PÖ§zQ� Zµ�qíà4�ì§è{�Ó ¬Tù4ÊÃ|�º!oËN·Q�´·¤���àõ�Ò�j+5©½�èI�ßêÕ¼ÖÄ�Æ�)���]59|¬�5�#²»¥�®åÛÎ;hl�Z¯£ôd��Ç�ÅÖ;�bà
R�\åf �à�ÓÜ×ýß�b�ÅÜ,�yùËNØDUÍÉ�_5PUsÒ2�ªÆ�	7²e8c���9	s�._5Øò�[mI�ëU¯¸���Ë©QO¯\�õ¸ÄèóíïSYM/;�Õ&|Î�Õô�QX-hðõBU³Î�M�=�4Ï�±Ä)cP#¿�ÑõüBFGó��Ý��<Á�¼âÀ�'UÄÃÔ�[1E!¥²0�¢��ª��È�jv�|�Uo�WX¹2��q!æû{L8ç4%jÊ<�ßÛ�Ã<'���"��WrÍ¢Û�§×t���mÑ¥.HU´å�-âÚ����t»d+SY¡@«�ý�fa¢ÍB�?Ù	óÙÚ�ÀX��Um��cÂ�a¢³ IÔ�ñ�Þ�à¥®1¢�@D×t-Çò�±T¹HÈKbuÕ�l.¡·§1dd�Ù¦F�^K$�R�Ï4ot·¹�}��Å�Slâ�iÉØ�Þ(Ë/ÄÖ¢§Á��#&!y�¹�uN»�øC��Y�UÞb�`.�S/�ÓHÙ\î�8§úl,/ÎÌiÄçà{��AZê�ñÆâxg¢Ú�m+þ��0Õ�PV¾)��×�(Ý¨50ã�&�X����!Ú ô9�ß���¢���j�Â
 ®£Jv5a1°¹�rõxäÅ£Ì¢! ×ÝK�ÃØ�@Cì|ÄL�s�©¬>�þ�]ß©��
¼¶½JÄ�±é!�µnÞ��&×v(¹'\��oVÜ���ÿÁ�AX�üâ�ú#Óô�µnCÚÃ
"ÍÁi\á¨5ÄxÉå{Ê��%üË�E�m�¸Âpje£ãL �H�g��e�H%ê�À�Êoöà}¨F���æjvÕl ¸�øR9	Ãè�ç����3m>®jÚ·³
 õ�vß��Ì�T�Ý-ðºäªÛØðu�éÒ�¼uÛ]GZ§¿·,úÊXo��y(°Ã7�ú�JiU��Õ¼Yc�r;g�6ñ�ÝEK]E�1ØÚ²}^ø��í�4�ë)£Ó� bÈÅg<<�¡Þî¬äÎw_á�É�CÜ��v},��RW�¿£�¨#�Ó»LÎà®pjq�5dp]Z�&T\3¸l��»¡âÊuÇ«Á2oÐkH�ã	�DRòùÛ·]·�æM/,¾Î<am��Ã�c�hx<µ�\2þV.9´s±ª£¼¡ì�COÑ��Õ¶ÐPÄaxöÐØYG��æ�� �T$Ì�Ë&(;µ�²Ë�Ù¤.�!ã�(CþjÚ� ª��ìÀ�v]pJ5î^ü�3"8��Ãa��ä�*ËF)�²2ÆÏtÖ´F�¦Ð8�lñ�rÖ�{ú«ýÍ��¾Y6�3�kÊ% !�²
�ìØL�È�L¨����P®®"®�Bædl�æ¼Ñ�%vÍ�£�P^�È�'äG�øËhwD
$LÀ¸ª�á(L��gÝ9:�´Ø�ëyl�Q3ê~Æ÷l�¯×mC=�ýÖÌQ«DMA�WÃ�.î�´Ç5d�7?�@Ë�Æ.l¬Ûþ`^^�ÞÏR¶ZhjµOGlþR��Hî����c[d{�Ø�Þ�F�W>xÉ§Å)âÁëj�J���hÎ�n�·¾b�§î¶Ö%æ�?²zrKÞ<�El²ó÷ê�O��9l~(æ�xPogQoW@½]�z»
êíéP·´»�WmÚÛzüTþx°¡ É�X¬�����»É�2¦£ÿe7î��îàÍÊÕq¾\�ëË.}ö¹
Õ=ó�¶�°ö	��a
�³µÿ-¨�1K!çõÇð�s9\qËÜpët~:|¿×éÀý¶c±0»ÏY�CÜ,#ý]���$@$sÙ¯ZâU&ªxÚÊ�)èA-�êP±5�ó=Ó�WÛ\��?[~�Úù�µ=�µ��Ñßla%��Z¿mÐ����Æ��$�'KVÕ¶ªª¦�ÁÓþªÅ��8[ó�¨;A�»ÁÿØ�-¦LÐ��m�¢M Ú��òV£âô´%�/áÌE¿�¸�lWkåð��Ó.�Ó®�Æ³ |¶ZP�b�ÿì +-�ü�¸�$�ÕD7¿¨hÀ(ûE�µ¹'�<�ö�ùv)òm�Q[aÔö#ï/:%òUÚ3.·ñÎîðJ~±÷�Â�à�ó�~.����a¡ê�fßU¦yp�«T�ÿOÛ�í¼�¼����`d(a
î�¡X�³ª×�ÉÏl¹�ÛPÛh¨ím¨�×PVa�`�!�c@AÉ:û�iM��¦WuÊì5+éOÖÊ\®�Þà²g*É��ÆBÈ�©�½�dig�D� ¹¶V�s�É[Tº©\�l¥ÝÑ³sV�b\º�h?�m�âÜ¯���[¶ñ³~Jï�1ÿ×Åý¨ºg�Ó¡ø�3�ø�&à¡D92¹*�aÔ���b�q��ç½'�¾5��&}þ^�}¥û�nZ�]
�¼¼|¥O
�)ZÑÖï·ýÙv�0Kç�ïW!%�@�:¼�0¢S�!��}�yÂÆ|)ãÿ¶í4 ã���ã6À5b�{aP¦F�!�F_�x^³�U�· �kQ�v½��V%ÓY�°²~/�¹{nT�Nÿ÷È¦Nä�ª�Æð�ãwÖî-í+È�êîu¾�íZ�p -Xk;ä�Ú4 ëç®�ý"�öúÊ�Ebÿ¾Yµø:P³�³£å�ÿyÁj|¢¿`�N÷���ú6d�ò§ØÊÝÜgdúN-ª»�}K#}Y`*°�)��Å��ß¢�Î�û/¥Âüí?PÕ�#øu�£�Ò�·³,¥`�½E�ÍÛmÎ
ök5Ö¨ª�.�d�ý¬Ã�eU9ËbU´kï�^»a¨\ÐÎ�4�ä�,4�ø@f7rÌÝ�æmçXvGÇ¬-¦-PLa2É�&�æ]âæÈ�?½]úl�Ó�Ù�"���^ð�g��j×8�øÕvD+�6�}ÊÍ��æ�Á°Ú`M¨/~�xÅð2LÄóh(Ø]Ü�Û2YÍ¿
ÂV;_÷á87�
Ö*)ÙvoOgAy.¨êP(Ã�Ê��Ù-ð�çóF��üóÔé�G�9Ç¢��Ç��i���9Ç�Ôè�¼«óu��S·P��Ò.�Är¦ï`úU;�ìU¬���XC¸¨sî¿üP6=ªØM�ç×gÞ²ãóeÉÒÄqµ-`ê$ëÞZeæe�±|ËÕÛÏ/¹ëweåF[Ã8¨¬��×,Ú�Ù�pp$8�:Ë²È<ª9Ï¼¡�fò�ÄkxUl
Õ/ý«+�V$�éÆ��òTª×�Û�t�^0Ô9`�s¶.�èû������®»�è�«�fE�~T]��»p+�É>@»�¯!��Ñ9tÐHÌäó×çs��Ç¨ÍU��Ùõ#¤®Ú¡rü_,#I�çh[Õ�	*SM4^�f�/��d*�~¶���lÄµÇ��V7J���µs�áë�;��wZ�Ùº��	��;�ôÙ(HRT�!+�¸x±ÿ�&1£[�î��u7Qµt.Ì¢$aÉâ)ö±� ËY"s/�2XÏt¹Á���½ü4�Éè�ê��Ù¬sOÙ���'<é�a
bTÝVFH�+ÌÕ`�h¨ i���·MY,c�¡<¯³\Ó�|YìÀ�e��zoÄ1PÃåÞ�öw¡Á¼h-×ü����z5��u�)ÄíhÔÓ]60oN�[�}�º�¾pye�¥pïAÜ?���t|�(U×!¼��s[¸�á[áº<É]ÒWôE'¥§\E\�Ö�«#îÒ�!
�éÉ{ºUðº���Aõª¤Lz�'h�-+(]�ÍrÌº�&c�ð±£Q²ö¬�¨ ÷â¢CX_Û�z¨z��´WW·VÎh�KâÉùE��A��³Wvpà��\3riaÛõ£¨tf�ÏÒ?&�Q>=áÑ"o�}dßã*¯�5Ì��^�YpÎe¢ò¶£\Ú�VÑ�drºwæø��¯<Ø©Z�<²n��¬�7�¹F©�B}\¸�¨�#CigÃx¸��Ý	_½¹��«7�r î*êEHÝh���½JÊ��4Æ|m,��®�@¸�Q*��âÖó$UK;©©J��%O`Ú^ñ�´TÇ ®�ËC²ÁN'cjµ�`D�ÞCHé@òý2LÎøþ:%�RLZ�~2ô;�î,��ga½���bø�í½}³Z__ruÐ4¸�E�J87ÂñX¦ÀÁ³£¾�®&#.©åZ�lÔáß¡BÃ½��ùÚ/iý]¬��Çççý�æ]hKMÛÊÝýÈd��¼B�� QÞ�=.!¸¦�U}/���ãxÈ	©·[%�õ«^¦ÐH4�ànGúÏÇp���6²!úÒó]�Qïr�jà�ÿZ��É0�R~¹�DÑ@�òÙþ±h�d0�\&RqwØ�ß×�Fçâ²�Uã
UþêqÊùÏâ"ÈÙi�[¹ã÷�÷±zänø+´ÃwçÍY�é®AÌÙçÔ¡î����E��Ö��L¸ª�ô9Í{p]xl�f,�&'CqT�PÜGÁ�2¢o;ýp»��d�3%��0��Ó'ý��òE�ÒV����Ö6´¹]µ°Ø47Ë��ë.¨�W@Ã�lU�6¶z+ÉQ�vè�#ÁaÌ�ê�£±c²üì���=@���püÁ�àa��	hm���*Ô*��søÄ�=ôÄN|§C�4ª3�$cÉÀ�×9²©Ìá¬>Æé�}PäÓ�³êX¡Ð1�½h
º���JÑC÷¨�´�ÓIÔ'��0#�z�¦vÎ«çñ�^1/e.�sÑ$�U�ä\Fw³Ëu�³Æk¹è�l�uÙ¯�ã�Î�u<êH K�Z?@��2�°ìnÚ¢P£X�§�ÂrU�_l±Ç\�3zæÛâçà�Û�jù7�lú1Ò¢\�°Àèã�?6ãì@�ä~�l�à4�`Æm´üI�)u]Æ�À¹ê�,3�~É�`T��¡Pú(Df$�¢f�¾ÔùªßQ÷�ÉËêõUcÙ�øj��m�6Ê«ªi�|,J��ì�|´·jÕ�g.¼×Z¶H�ã²ÊuÛùGå9vDsoª��Áî�Õ�eÕX�ñ±¯¬��Ê��0V¸Í�S©¾��{÷bÄXæx£z�D<�ëî�²ùjAè���Å£�¦¹+.å�÷�áØ�Jk�Fn{?#b�Í±�ãÛïS�16o¨<Û¦�Û�Ï�³Hã���³�[�zÕ@»*çük}¦\qÔGÎ2U7�ãGp@=�°ZN²üª�32þJåU-�)S�#p�åri�|��sú�3Í25¹×ZÛîKÿ\Åè	
`¦���X�%v¦�G02K62-²K�brmÝ���Q,Ç�ÄO�ï�èÙ^f��ÿu�£�ºuï?s�¯l0¾î�5¾f°+�FYÓr)ÉåòQDl��f\�<fù��¦�¥¢K¿ìNÎÂ£��ÛîåM�¼o&b3)Õ ��¹ÈÅ[9@H�C$v��éÔÝ�ä���¯_ûm¼ý�²ÙN«v���\¼c�{�Gv*ÁQ4d+b�ày�t/���ïpÔ,�d÷G3�.¾�������Ng�Y��Ïd��«dã[p±��;�Û��ÆQ®Ñ��N~�a^V�RW¢xÂÑº#��¯d�{QgzÇDPÌª73��i¯5ì°Oð÷¥×� [uqìJ��I§�é��6[a�P=ø�PáNñ���ªÒp�Ð¥��sÂ__0cP�Ç¿��ç�A�HÊ
���h~úî©¯�m§#�«ó	¸9MÆ"$%�ÊÁ¼	Øáû×¯�{�ä�ÇÃsô5°é�ÓÓ�ó��V³!%«�~?í�;{�¦��!Ë�Â��0dÿÐ#¯:WÚ��9��Nq*nnù>»h>����!i�ø�KÕì´³ÀÛ¨ÉÉ±PÌ¦¤qõ�`@rä2�oè�8lP�íÝÃWvà ;á�u]§��E?s�x�²â�Äú£Ê�Ù:Ð{öö
3dùrN�;º�ñ��.l~A��É�¸�Ã]4Ü��Ñ>�À�¿üñæëÕ�)°VØì�½:Vþ`1�Ìh}7��m�YÂ'�X�ÍÍ�¾��rû÷9?�gf° 2,wÉÆÐ�R¤���ä���¿â
ræÐ©�RÎ@t,«#Øù&�+Ó`�k%ÊÚ�Üò��ÎÜySnD¾§r);:Î�ào�ú���éw+õ�7³C©`��*¸¼ÁrTÍ<ã9V50s��kS��þ�ÞS��?PÌoß7i��¯hC�3bYO�r�vgYNI&ÒA�®!eõe�ORaÙ3U�õ©&�Yá�}ÉÞãô|³û«_.çàéR$R�á;��ùÈ*�HæÊEß�ÿÂ��©DÓôc.E5W	ðaT"È3Hé$�°É#Í²ç$q¤½4gÇ0�KK�¡Läí��ïY).&Cð��'Nã«X¦ÙÈð�'��ÕMxüU!g¥5I}lñ�C1�5�OÖR?��®º^r*Ãiîc
Ï�tæ�À Ê?��ú�,��¾¢YóôH¹Ë�öqÖe(�Ï|ê4�©#ÁÞ3�¯Ð��n¦¼ùûeûúba3»^_Í��m�ä¹*bº���Ü%�³s:9E�3>¥Ga7
úÌ1®/È¹Ô1f�YbXõÙ�+a��cf²çF�¬à�b�¶��&��ç��Ïaè��laþ7Ù��]Á��Wp�mQ®��.)[òI�ÅU=|SúE��¸�ùKå��ú�nûöÐ�}!B4È�$�(Å«$Â@îè¡óE�$b"�¬�öO«&BÊ¸¾Êå�¢ y®Á��'�uB�����Ë�J��Aá"`b%©
��/�&�I�T�X~*-� Y@tÏ-y§�.voà�zÚ|½æ�³�/p��y/£!Z8¹f�Uåé(�!
Fô�Öç�.�Õ���ÄýÈ¡�Z¢�1Ã �V�I¤Q�Å�.,��éÎj�ß�kâ�Æ¢²U¦�që±^£Î�Jæ��D��ô£Y�Gñ�"�Ý¤HA)ñÎè2Õ¥%�îWÊX�}�Æ\H®ÑØ�[ø¢h×^¶e/Ý¯WÛ¬WÝ©�c§Ç�ç�Ç�^Þ{¸zk�Úy��}�ÝpT�@�jÐ=z��î S�É�×�1a¸n�¦�A(f�ß³ñá¹��Éüñ0\Ï�$ÛI~Ùê�¸m1á[ñ�'Êx�óäk`ÊH�sAfs����i«¦d¸©$Ï�ÇMÉq�Çm*�³¹ãÏ��a�3Vç�_jÖê�\Y¾öù.���ìÔ¥+ª�FØ�]�Ý���%��¿B��âB?��¡��#��Õ��ë+ÚU¬®��<¶Fizlú7	È¹Fä����K$äW�Ók»r�Y�§*ÍÈYZ½�û(¢J�ÖD�¢CÙÓ8æÛÑÉêÅ�B>�XO�Ç�®�Ò¨xã�Õ[=�¬x�¦ºjL �ÐR½±MJ���C¾�&x{�..�Ã�<qô�¥ü©nt�¹��!�XÔ½àë ßÆõÄöNF|I¥UD*¨${ñlô¼lä7�ì¼,0åT0��ßÇ�Ú�Um3YÅ�.w'y�O�½ ¹.,���'�/�gm%«x~TÝ�Vó+�r[:·�ì=9;3bpB�?áS�úòñ��ÇålÎ�³|!Øã�ñÅ4å �[ú�¶>��@ËàÌ�T³� m�('t¿âçÝãÎî����÷w_í��/ý<¸»ýI/��0øËã÷?þxð«Ì�!ÿ~óðùê?È��Vgc£Óz�?�à
øär�¾th±Y¿��fm£É?Ï67áoëùÓ&þnÑoøö´ý´õM«¹Ñj7[íg�o�ífûyë�Ö\dGó>��h�}sÎ{�÷�Êñíïm t»�'+K�þc{ñè:�Î/Æ¬Ö³ÖßÿþÝZ»ÙlÃ«ÿ�/�ìMÐëÅ�1�K¿��ÂAÌ¥@Ô¥�ò Ï@BÞ$:�Ð�¾�I'§��Ý1ÆÌ¹��Ôü�x��Çgã+(ñ:ê�C�öON^¨ÖZo®³Ú1×��.�"
�× CÏ¸ÐÃú¯�öö��÷9Ë6×Ç�Æ����®Á�ûb<�m=yruuµ��¼�'çO�òuêÀ�¥%�]ç��{ývo÷äàíá�
uÞ²��ja�À=	»p�rI�¯� ?�¼Þ7ä¶=sD��r�ËÛ�«�o�6¾O$(^rG�}µ�¼wtð�Ðz�Ä�Q/L-¸N�'Äã	
÷¡�îGû?íÿÚùç¦ør¼¿{´÷sççwï�þÆ�ÁIBY9#ó��gY@Þ�í���«�ÿ�õ¢��ÇCêæ»ý~Ü5�ä��M²ÔLX2â�õ�Î{��Ë �ÑéaG¸�¼°qRØì,³�·¶�9��Ê¤�	�Z�@+d�À�+pÿ	���ÀN©cõ×H{Ò�Ôx+�BdÉò�X| ¸Cð�§ Õ	ØÚÉ�ngµp½ 2�ìÒNµ��mÃ¤aT»äQ�ôéîA�äQ@õHä�H
Æ�ÑÜ6xETY�£Ä�1Ã�'Kè�nÈ��ýe8�0�5�Î<ãó��«�ÒäðmçÇ÷�{ �:'ûoÞ½Þ=Ùï¼=âÓþàð'��íÃQ
6c®ðSTº�ß2À�³8j�R3&�äÌ³É�s�,��tý�´ç5�d�ÃÒñU á;Û�á�(Ü9à	�pÈ"�ÉUlVCLÃ���·�Í���¡ã�èTYÖ�°â<óEÑË�¾I`V¬2	æ�
��b
	�ýãÿ°Ueç¤`�ð¦n1¨_��+J�ïN'�J��ÏÕ�,tgKÒ�Z<ÞåtI}t±�D�qË AØè¡��«ÂøÍ8ps��'��;J���÷ªr~ÉYÉåB�Æ/ãû."[�¯±�[ca|�IÝ`��Z	;W¢�Lkl<Ê]�+ôz�þ�¡Ù`{Z�ý�]Û¨�p#Å��Y�~A�²�&WhÈ��±ÈUu�¹º]&¹Z4�(�X�¢��ðJqï§é÷Õr�Ðþ«Èl�¯9âY|RÅ�÷@~T�¨\�yD»®^Í�0õéW2Á�yk�ø\U¦ÒÌ Jë�ed¬´u¹ñ�ÊmlîæÞVäo§vÄ|Î�K�TÙÚ
¤ö"Ïªq2ÃC}d]m+ãV¾£)�*z�Ë�ö;ÓlbªÆ#�_ï¿ß:ûô
û-êç÷HkÎQ�!`|fg«�è�èÏ7±¶�®þ3*Ê����Õ$of�+W�fU�o]�º�nJKÉS¬�Tâ�Û×©n��n�Z�i0Ä²3Í�Wîv���Æ9çÐÔ¤F§è�â®�Êþ¢�òóßó$�Ísú[zþÛj¶6ìóßÖóçO�Î�oåópþ{sç¿ræ,öô� ÎröûÓÑþ»ò�_UêFÎ}Í�§st»��ÜÀ�
�f\t�Ñ��EP&mF>sâbÛ¿'xHEÑ�a»�02��wIØ�Î�å�¤²Õ@è�Vð��pM�æü��¬üâã³8LU'×"áÑHfÝK�ÏÚ*�e�P�«�@¦6X¨�¦9�5ì��'uãÉÐÍ�`[,,ÿþÕU¬ ��er�Îzµ�'U1�¦{Ò}ó¤ô��
�áó�ÅClð[ó�HÉ�`U¾æ� �£6�x£p¯�Rá�{�¡t�\ã�@³y�Ùc��/j�¹Ö�f×Å¶§n9U��Â¥¸¹èY¾�W09'���k\Ãö)}.`Éé�HZU��>�Ü1æ³? xæ)0æ(�(µñÐpË,ò[ðq�ç�6�°m���ó4����tà*2Ý4�0��m<I�Èj��ÉP0Ë<%,THÔ�×Ú)��ÞÁ���¸Î�µ¯(~(°¡���òÊ�Úþ�d/ùü�"U ��Dÿ�Æ���y;@tìKv)zp�(]C�°^Þ�û(b�¸Îg"ÍPoZ�éT�ýJ�©�q«ÛRsx»�Lhô©ðÆêÒ¨J'auû�þ��¬åüVj*t���L§Õ)tå�èN«åd*7©úN�§&�½Ü�&U×ágGSÎ1¼Þ��+�sU¬©sÑÍkmõ�ÑO�ûh¸�]Â!;ªóî»1²êÿ]�¢�>wð)·ÿ�Âä<�Ë�\lÿmn>o?ý¦Å_m¶7�¶66áþOk³ý`ÿ½�Ï�ý÷æì¿¼�_/�i�&��Ö!��G|ï�ð¿|UÆWò^8��_�ú|��Ð¬O<�e�Âd®3v��C¹a�³î|�\Û¾��^��ÝÅÒÓóA;½¦Þ�ò`�Â�Jr�aë�²øª��úÍþÑOûå6j]ìV.'½EJ»Æc÷7é ÖÆNmål�Ì�«5ç��Í|]�9�ä
�Ñ4�_nN»±µ�?���ªgÖ¨�'×�4Ì²¸�6���ìÂ�Æ®¸z�Ý�W�ÊÞÀh�åòÆr�Ñ�M¹`L�F+¯?Vëe]/Ø®-|ÆÜà�I+Í�¯��·ÎÃÅ�¾£}�¹(N¡ÿ�éÿ��çuÃt>÷�2ÿ�çÏ7ðþ�»ý|óéó§�àÿñìé�þ�+�ÛÔÿçTÿ¿�í_Ï�îÜªÿ+Ô�¹�¾�!ø¢�Þª	Êí�¤D�Ô�i�}�z?:M��«ë��÷@Å¡Lú�ÌÍb�, u*õu:Ñ�Â.a�+Ùu>	�^��Z�Áµz�Û����Ñ�o�ÆÑ��Ï8��Î�ø¶³ÿëÉþÑáîku�vìSç�#5±%�Ñ®ä¦Äi±Aù0á;:�,áé.gÔ³0��Ó�ÃéLßD
#��¨|oÂ�J>*�ð4ñu�ê�p���3Ê·� °-��¿5m~�`'G»�'Ç�Î³��¯Y��¨�´(Ñ�ùÂÓò�ã~s��s�CZnÜõ©CE<`á��û�Æ`�qÓùáíÑëÝÃW{�N�-/3ë	Dmÿô¬Ù¬/`÷�e²D98<>Ù=<9à\�%øg��ç�@$|`£IzÁÖþçü���³���@�¸Wû{¯-µÃÇ�^ªïl�ÂµÍÞBIÉÂ_�X�£�ã�W�Ý×(�Þ��6Åõ�É�9^-Ùn�>+�)ðÌ8àä�fÎA�GÆð- JU�³°}�ñæø�{uÈL¡�û`ïu½:Æ�T§óÓá{Îøâ!S3UX§�~�C�ãxÈç�|�x»â¨�®�¹�rêÐ��¦�DI÷Ï¦-_f�|�Á�©û_ñe;8åòs�m¶�¶ø?�ü�gÏ�õ[�LtæDo�y{ô�Ý£·ï�_�£ÕàÂ¥µ�²e¡óNÐñ/9ý�¤5�ñ_��þãý�_v�ö¡�¯�~)�ó�Âû¶êõßaëÃ�¹À��Oö_wö~åÛ�RkL`���ì;>��p�ÎñO|Þ�¼î¼{{tbOLþ��ª&tu��1S÷Þ�Ùº·�\¿9®Ên6³C�9Ð¼E��Á�7ÎØM�S«ë(&��È�B¶Å£ºO&:²s2t�Z+�Á�$Ý¥¢C¿ éF}�¥bê%A/|�Sxà�à�×ûõª�À��ò³æ0�·�pÌaôøRÀ7.�sÌ0²��¢ÁéÄ²���eÖ¯o/�4�iÂöi÷7FÌHR�ÄÁL@0)"�¥tFI4à[¢Z¾ð�µ��¢yÔ®ÓÛíûÝÑ¿j�ûqüq2êtùf�c�ü~³=Å8Ñ3a
�3à:ú�©èÆ�����
è���AKK�§R?¼ÿé§�uöNþõn¿óãîÞþI�QÐ©h6���ÏyX²n�ù¢ñkÌI�ÛÖØ�TÑ½ßÁ4gZÆQ>i�í�0>òÒ�	º_�½èS½�mg´�(ò%<èÇç�cJY�mð¼��ÒÕÚ���f»�0r�Ï�é;æ6�ð3;Í���ø>ó¸°a�ý<��Á�¬zÓXAuÌQxr�³vW�7WË(fªºµÕ�;|ZDçÃÚ�yÖ�'�Ê�µU!ãÄ¥hpgÅ�Ô�ìF�«N¯ç¡�é9&ôb��ábáÅÀ�òÏC´�¸¿}}�zG¢*�e��O¦Ô�	÷»ÛÊ��E2é�1×�Ýõ�gCØÈ�ù�3 ,>wI��Y(�ï�G�gÇ^'q�cî¨^�ü°÷î�lª,ë�>ÿõWþ¼Î¦Øàg�:��ì{×���pX>¬MnvK«�Z��]���vþ�?Óîz
i0�üEI�¯Ö�1�ÔY�|ù�I7�¬ú�û�#÷þ6«ª�û�ãý�s�ºTÝ�¤Èÿc²Ñ&RH�Íè�R�ÿ�?tò?´ÚÍ�ÿ�Ûøäø�´�Í��×ïY�?¼�fQþß�àÓ��y¿Ñ�Ê���pÞPäkí/|[Ù 8¥¡CA_ÅoX¢���8Ö fg`�Å�ë^Q¤�l�è*A	R»��ÝG°�Ô÷Öp]nÀjNõ1m�¤W��L*ÃàDâ (�\Ï�`\�$�Ã÷IB��C6|�ñN�»i*h�ÅûAçF��A.�8� "��KK£Éi�|F|¼ï�MÍEw���9T�A52
�ÐÉ¶�¶x§�¯Ã��¢Á�×VFÒy¸vVÿ�WÿQí@}Îß�Åê��2���f/é��% <@U�íhÈ���¸��ð$cÐ� `K¤Q�bËèßå¦�Fo¨�/Ù2¾�¨�IÆÄ£Úr�®�Ý©���
·�uÖÇtÎ�R |Í¿ÓCá�+���+¾�¾B���Ã#�XOí�:��U���Dòígü³s�ñ.Ô�6²Ã4a5µ!�]ÍI�Ê	�ÅÖù<8�>Õê¢��^2�)UCÎ�Ê��ñº��à�ï�$Åý¼�íSî=æ���3,^³cXpt�!¾2h��´ã�0Ê	ú��2�ë£ ��3¶M� �ó�küìÞ�À=�O%8�\���wÑ���~v��ó�úI`�þa¿)?3�ìVqå�U�û��èRæ¸-�Yt�*N^V�� íoÏ»\1¿��\d�P¶�L¥��¬øB���s)ÌÕ¨�Æv���ÎòU¦�á�¯�1Yya-rÈ���ÔÖ�ô±ì�yÔ�]}N¯ÌTk�oÉäGj��-npÕ�¼1ÎS� ��A;½àB¼×����ðn��¨�±�Ê¢ê£t�)?¦êâ�[I�ñ|.�þ$ÌÂ]8'�F��êã�÷��xGw0ã��ó�Åx�²�Ðå�@ù:C�o3/ÜÜé\�W��h0çqr�h{�_MèBÙ�þu+ÈSËNË2��Ê$Õâá�²÷m²�¸<DEe�^áD�¦���ê®fô�KB
b®î�uOh1,°�aªj�8QY�å,��ff �º~³��WXx<Z�ÂdByÂ�ÎB¸�J¡£kª�ÊZÂ·¤HiZÖ�T¨dQ 60Ý�]4_eãÆ9EÜj�úbÜ¤v¼�i¦^§Ù�íÝ£)z'Z{T[�:4�Ø6uOs�Ë6Vj�(�gê��Â��°¶ã�±\3�H(�<³ºj«³ÝøªfªP�ÜMÀ$åwª9�ËOY=ÆÀ�ËL�©laZ��êªE^Ó~P¨ÓÁO\d�`�x@�9@�[ÇGÃÐZ<\»J8��<&SÂñ�ý��#¾¥.%��?+5�1]1�Jb�Âadx[Ùa�ñÙwöûíÒªï÷TÝÖ³�*o´©º[�ã-�ü�£=�>��<QIqµFÒ�E�Ã���=�½ ä�òÞÈ,F´Æ±�J/�¾�ª�(
Ï Rà¬�Ø2*V	�Tð¬;&�B× ÆU7ÍRÃöP~ßù�Ï;��;ïO~l=+£�dËB�P¡»¦�@�è1éxY��Q�æÄº:�¹þvò©T�FPÂ#H�óÙbÊV�º|ã´Ïl#fì/ª·f¢¡�!UÅøxê�[##äÖÀLÀ6�û�£nÜ��uB�ûÀÆ),D?L`[DÑÆ��l�ÿ��#��7|M=ï�º}�p×�_��jç¿ãøc8�ý�¸øüwãÙ&Ýÿ7Î�Û��ûÿ·òy8ÿ½©óßì¤Yø)°ÝÄ�gÁ'oÿ±�8Ý�°§
ùûenÜ�·Ä�p�ªùéé³&î½JÊÒë�ýã�ýW�Ý��¯ø¼Y�·�ùçÏ?³�<÷ûXQùNçÍ/ûGÿ8ö·Ç«Ã}/º4ÿC�ô�Ï÷VWÙ��¨����5�õÿ�¥� �o�5�0ø>ÄØæ¬I���ÿ�$	®õ]0åh�'è��C,��à��Ô��áà��5p%>ê÷aZ�£1oô�µ+pIÄð�Éù���ÐÁ�ß\!1¾7¯�¥2ø7�xCTD,�±È���^íT�øÐ-�í
óï�(í ,QRè��w��Ö*�ë�q�óoù·�ýW�·6�c½¹��ìYXÑ�¡ð�cðç"�<ç
mü¦U�ZG�Ù=����å¦@Á�9ïMë/á8LXp¦ðxX�Ï�@ d�ø`É¢oá�¢	K" i*®ªÐ[���xJ?�Ô��°Éé�î�;�t8ä¢�Ó��5ÒÖë2ìâ>i8ö����Ôp�±Á¦°�+ ~o�Â	0½ÏGD}+tþ(rúÀ�ÃÌï@���ÿ�1¬.�ec�nP{�]ÎÚ��v¢v	Ç6¥âO^eW\B�P�ö#.ä®ÁM��è@.�8ù¸Î?òÎó_pÅ.�ðó»N°·�þôéÓ¦8Çp×����g��e�r�òjV¶q�à¦�pâU�¨(�âø�«Â{�Ýããý£���4 Wù�àC�ÂOÙ»Í��ÑÿåB�Àvà�{ÉàO|V;©³'ò»îâoÍ�
�×¯k&��3$ñ?/��Ûlu5òXè³³]¶�}p-ó��Ùkô��íî�ÞÂ@�x«-k4ë¿í�~XÄ��Pqïp1Ô#5�-Ê§îPeÂbx:3½s��à%�%³=³�3¹$ó�5èeúÛá�¨¼Öª³ï�å�Æ)��Zx¬%�jZ0e�3ýíäá�&-�³S§	ô¥�nfà]çA����u6¥ôkéG��Wæ-�¼¶�«�½�¦�Up[,�!·ä¼¨»æuc´_{��í"�êõ¡ûª�×£¿Êtþ�æ�tÖËQj�E~��Ò��û2c¯�X�\mq!¡ø}���÷4tuõÐ3£ªN¨)çÒ¢=5óó#;.�ù2¼�¢Ø7tÌ+¿d���«e9É�ÊiX�ÔÙõïäT&v�¢Ñ/�}�ñ�ÆOÉBI�)�p^ °¦lÒ�ìZ++á¤x�@ç��.^3�I¯ßi�hÌu�*®7��ªc/¼-OÔ2»Åz¡�!�õ@-«1�÷iá���>¨ÕlSÙÏ��jæóWóAµ�=ã�ê¼�Þ�µ²ó©À�ÌKdÕã[�ìÖ«�S*}r]Se�S8©2�cÞÝÒ*Ï®Ud©X$õ�þ�ô{0�ÝkóÙ¢�¸��KÌk÷�i�U�vª[¢hÖ�å3cÝ?Â¢~V@½Bu|j¯�·zEµÿæo�xÛû�Ý�(ëãWv� ��îüN�³¯¬r3À©òp?À&HÞ-�»�ÇÝß�Æsc`�@îí���ºÀHÿ�8�>Kâ�Ì-x�@&o¹YdQo+ã�[D	Û;×+¹�®�duÿ�sÖ-èFîµ�s×0Í��o[y×�¼T+¹¬pç�+¿Ä�¡Ý�×�
gN�
�^m¸súÝæ����E_|ðR�Îë�79>·t!Â¡ú¬×"æ��U®HÜ�é0ÝÕ	WÄL�fÂ¿&j³���´[Fî®ï�×Jß.�öx_ç�9�M�¹�Þ�Ê.~Q��È�Zmï�onÕm°é�ü5,Â·1l÷{1¾½éSe�¾wÓh¾ÕÚ½���´X�óö¬�N=ÐÝØ³>Nou×Zv
óµ®Èw´ðÞ#B~å»Ú{GÏ�]n��övÆë~/´w¸�ÞÃé²�]pá&øåK¾Ê¶ü�ô0u��jw��Àw�µzüô¯ýStÿ�¿Ì�óÝü�Ä�o>�úì���µÙÞxÚj·¾i¶�=�Ö|¸ÿ����ûÿ¿ÿý»µv³Ù~��0K���9Ý¹¯ü¿
¹
��©ÌLaæ ÙA�s�%îFâ¾gÆÃðl2ÄíL�eQ�	Óuv�§Ý�a��ØÁ¯é�RßEC��ÞÓä�\���PVéNäI
�_^°�!c¹Pí��î½~ÿjÿU&º�¯�\�:�î¨?IáÿK¾ÜõA�.Þ÷bpÙ��D4d{ì�né§��ù# ì½=üñà'�và\q'ùÇWÈ³èÜºÚî�£W¼�XR�vÀ},HâÉ°gß�÷Aþñ����³«^)n"MS>^B5@ý«�ÚÑî/��øz»�TÜÓ0IDB�R�|~³{²÷sçÇ×»?�ç�ÔZÐâÐ¤¾'ÁUç�5�BÀ�w»'�ý_÷öß��@��c®_;á'�ÓP>Â¼û¸y«8Z�iÜ.N5j¼¸×¹_��"?�� ñ/?ìryZF\¸�R��R¼ªôßqþ®��#{°§EL>lC¶N�wïh_ÇN©�¿ÓMB��f�vÞí���ñµÙÌ(HÒ�Î�<òþ�1��ÙD�ÁJaþøö�Ã«2�!?q0®.+�ö�ß¿.c�+èE�Øï�Þ�ìï�/+äl+�>Jâ1×jÂ^§Ë×�Rè�vÙ°�i±,��~F-¹*���pñ�ê�9ÿ¸¨ðeß=Ü=:zû��®Ü�Ç*!{�7/%V�õIv½E¬|�9�d«z�É5)��DØÚ|(ürðjÿ+§�A�Oòx¢�º´ùr+Â^ûí	ð(Y�OêE���!ÿ`ØcéE�xéùþø/BÍl0#ß�z�º�ò 3ut`9iÕ�÷�àÑ�Û¡�Ûù§Õ�h����â)À¼�@�¼Â���	È:¡èâ»í�¢F�å¬Ù2�UËzâk]�÷¯*`p��Â�Â¡È��+�«¬RÕV=eT:Þß=ª��®
�B¶ã³��4cÎ�o�<¡ß�Ag�ÚU£ÇOGûïªÀ?OÂQu¨�èëÝ½r]��ý�¯�ÝJ�©à�ý£�*A��Éy9Üãw¯�*©C|¯�¹{�2`�O[ûaã¹�¹TòÉÚ��ì��»}7�ÿ±¹ñ´ù\ÛÿZÏ!ÿãÆó§�ö¿ÛøäÇÿ|0ýÍnúÓËÅ��@uI��{Ä$ûp��S�|êU�
�é³á�®÷òØÈ��'mwÅë�§ÓþOo�þ�� Ô_Ò�wj½.�*Éqät�G§})W�Ë��ÓT6«²é�2�uæô÷`g�\?���p~��p)?ç�¿}¤é^H?Ø1�IÉÉø�ëb¾�rkï-© 5¸ÏÔ �C� Â�Áe�å��¶"�À�²��4M�Û+*\WNÌ�_§�)Eç+â���Ü6(B���:�õR¹C��'âà8�&Ì�ª��§Ñ°gÞå��b�ä�ÀÔ�ñ��µ�4^@�v���AP�R_ª�3¼9|)�%ät��ì$ðBnÅqÜa² ?��|»µe�ÿ¡ÿÐS0i�DqÐïyu�TÃô
B�L9#¨��C�$Ìì;à�a÷ø�kpo~à[Ú�Ã�¾·{}ð¿(è}ä¦½�dX?É5¡�]�NÚ}×ËøÌ�ÒóßN�v]s���è��O�=µÏ�ÛÍ§�ñßoçó_{þËnA�4¦Î�z �ØRäN�ÛC®Ê��\ L�õb6�õ	(Ýóï_¯ûôAòRâ�3�ÅÉ�Gî"ì���</n`oy/&ý ñ��ëÀÃýè4	�ë¢xó{Ç'G��?åê�æû��×�%Å@ø´CÞ�ýLE�ú¼$�ï��úô�,�H¶x`��K�± ��iH�ú�Û}w ��¦z¿Ç!¬õÚÑÛêñîë×��ðaÔÖº�¶�
'/³./¤�^^]p�¨A1C7Y]MõÅj^Zßã�¾bøì�J�65b�/�ÐtN�«�×H8S£ÂzèoW¸ÑÊvKÎÌ¶^íï½¦�ã>�¸�?LáÌª�uh�¦Øe�Oì¨Ð9Å¢a]©�3£�
§C·Mù��Éc¿�F8ûv¸�9àsÛÓWª¿Ì$í!ú¬:��o�#ü¬�(©�Ð�ñ; Ò,{ñ�µ<·ëÓu®}¥a-2có�&aðÑ½R¯8��ésx§;º®	VmIZ�ßmÑ�8@�g$f��ëð�@Õ�Cr�x�Ì�!~*��3!²å��*Ì�åà^ÐA=-T�õ£¶�ªX��ó%�mðO.�½ÉÈ�X+l$Z�?O'g�r�_Ñ�ßôÄ��¿ië�põ�=âå���é�Ì�mûvO�?A®\îæ�Ï�0¬9øõø&g�þö���¸s� V�bGS×ÓÔZÜî�oi¹þÏWÀîÇ¹¼@Kü?ÛvSëÿ�Ï@ÿ�?�úÿ-|þkõÿ[PÿÕÌ�×�,Ã�rñÆÙ5�D)±´� /Ll,õêû�1��ãâ��Ü9xÝH¹ú«ü¢2[���Ð)�¯
3N��ìîý#Wÿ×ooÔYs!¾�Sl!æM|$ö ´²ý�#�{��2Äg�¸`À3��Æ�1�0)Dó�2
Ã�OFñ�ÊS<&ÚÖ]Aî©I¿Ç¸<�ú��ñÂ¼�r²³�~F�; Ô!G"�ÑÏº��ç�/E/^íÿ¸ûþ5ïÍk�Vo� ÿ��D,úðÙ�¢Ö0�¢�R�}�+c'�-½PZ&yW(�v¤mQ>��ÉB�~Yc'��ÌÏ	�-°}�%äÞ¦8y�H�YÌ�yâ�Ë��âaÜ�M�~¯`Lx©&s��w²�Ñ�bhG|Tõk#��ÄÅvÞÂ#�#H¦wâ�	ÎCaË^ÂwK¢Ä`4¾¦��"��`PdÂ-�q�i§�LÛ�gvhÄ��X�øtü¦Ó�¬°Ö3¸�D�D¡:[ã{	�rD>þ i�!ûH=UC»Ì��sncP�D¬ZÑAÄ���¦�Â�LÆ�HL�|@2ßóf2ä��Â�Ã�Êtµd�4;å�?Rª��»,£¼ò9Ý	&�Dø¸í���Ô�Kn[i�h�Öt»`7x¶)·
&Iø�õ�âÑ!Zÿ��ÄOê^¦uHÐ�¯ìÀk�1¯�Nx�W£�Wë;]Îd/°ÈNM�y]�J(��JÔõ°#�hÚéhk¶�ÖþÏ2³�j^n8Õ�µ�d}�V'�%Ulµ¥Ú0ª�¥è¥ù�sQdÀ¯Z#���ÓÖL]"6<ª�°ÛÀ¿xd�!=N?�î2£ÆÀAö%��¸R`þ����u,mò<�{�Z|ä¶��$í��9-�,{x�¯n�t�%�Ó��5�Ü��fy����ùxàûÛB&W*,��ê Ð�¾.�2{!�ÝñuÍ�eDlÌ>/Ã��6�$fvÜaîdiw»�â�·¦�&¿o"UÍÀ��f×��NOÖÖü�Ên¨��V±�GAâìó�È*s;K$ã]í'»tøVêÂ�±Rò��í+´�Já¦¥ �Ix2PËÂ²\�ñ�I�T6�
®�ÔU��½øUJfk�+�ª¤�¸�{��8þQ÷�L�"Y�0�äGØ�óÍ¯Ìù��p³�û�¾�:y{¼E¦®s¾¡æê�^6á��%d�AjÚë«(Â»c(�Ì ¼,AÂvÛ©§V�S�aæÀXH r$m���´�0wC714�&å��J¼«òòrÝ���z1ì«ôP���)�Öz&�ÖP���ën����)*��©FrT�_ýÝWz�õ��ã¤è��¡h�Î�hq��	W�ã����|6¤/6��3¹�*¥/3éí���ª5�\PICÔ¼K]�Ô�$äNngr�Õ�ñ»êÏ�Y��Å��ªY¼�=��>÷ùSnÿÏºüOÛF±ý�£Õ~�ñ�øßf«ýl�ü�ÚÍg�þ?·òÉ÷ÿÞx0ýÏnúÏN�¥ùÎ�Þ%ñeÄ·)^øÌN Vd�/
{ã³Ì��Éqè:!�ßo�Ö�'�(��ÑL:Â|ÿC�ôa�@��� (�W��5pÖü3J'�E°xÖXR©�8WóÍA4¾À©�1�µÇ�ÚäÅ	��Ä��ª
	»+i°Q¿�3*��¯×µ¼)À v��O�o��ÞÚÐJ���¿e³FÃÍcwè�õº�ª\Ék�a��¬Ì}�R��jGÄgöD¦â;7ßs.éÀ®»µù�ëÉ;�U�2�)uÌ°s�ÇD%yjâ�òNÎ@f�]sï rÕ_�ÌKäW-��yü�û�ë�fNM�Ù"Î�º�$���õpßäÍHä|Ð�À��íåáü�ïMÂR�T�d�qÈS��
�34�\�BÂK 0;µ#¤&��×æý` �m±Ù��¢ø`É¢¯¿¦h�²ÿ
�$MÉ/K¼E���Xú9Ü¦¿.°Éé�áây��èpÈeE"beâØyÁC�×mÞ���Õ�Pë�¢�ËO��]D��5×úgO²t�£çFðÍ��x9k�0v_Z»�c-�èúòün�ÕÅú¦ÒÞÝ g�ä´«Æ�¦���cõ?ñ.þTÔº#ì^æý",üâdGßÕ¡z¦�*¹ùbIi�Ö��u~«»ø[S§��wS��ámª�j�Sf»�fæ±l!Ò-�ÏÒ�L|{�7=ÊÙ<{{¾D{Ó�v�	÷��C:3������§ÏßmôK°p<4OBÑ£à%��Ï¢³��G¡�/3ùÖ±û"/:¦y���ÙÎY1� �UÍ��ùÎfM�î4�g±*ß=�öx�vr¢[�Ñ¯+'D·�«�½'�º�h�ÃÏâûâ¤è�¤��.25ß2¾ôá"Ï����"×vÐÁ£®ê¬[�ëF¶[±8�Ã�x"m¿FÎQ�ð�[äP½>t_!S4?È��Å¬§yUä 9uè±aÂ&ê�Y
1ë��QRFj�zl(CéCÁz��×£+
®¶¸�PÌ.¼û=ü¹ºzè�NUgÓ��éÉ����h]1´C>½Þ	m�ýù�=Y!�Êk_v�Ë ê³?W�ä�[�ÆãÎi|ª�Mråx�Ä±oøXVzÉò��VË²����Qô¤�c�¾QÐï�'ý>'3ñ³��~�è��74�J�J2HQ����5e�~d×ZYù&�£�:�|tñ�YD�.���£�6¶J¥�kÿ~Ë���Ü0M�n�¯Þïq�÷ä_ïö�wßì3Ã�Â�:$ã ø�B�DQ�g÷P1Î��Y';¬È�Â²7g�O^)s%4¤Ü�¨/�Õ��s¥è*HzV$��8ev�£OÊ�tfRqµI¤�sé%Ôè�dV¦®±Ìô>^*nþ`��8ÐßF�9�)¨dÛ¢��ù�¼Û¡´®Û>§aõ)°xe?96°Ê�ì���Ç;7ã
¼(F0'ëü��¸�$®�±R�¸pMª�t¹"P�5�RAgÇ/o&�ÀÍ�mA´ó�tMx�{ß-(�{þHgS(Þdêõù�¯ß�¡Ê²nøL'÷.ký�±îÎ�u�âÐ��-1æÝ;�,6�å[Ån��Y«�Ïhvÿ¨êXÌ
R�ù^����e4 à×:Ë_²ªm2<6��Ì����¸®ì`Âq�Cª
�iÿz¦	[#ú¡±�n)à]���ù*kÒp�¸Õ���A���L3õ:©"Ù�>�®�¢ÁGµ�i÷Â�ÛyÆ�ÙÌJÍ�E M=òCXQ�Öv| �k&�¢ã.�ËêªmZêÆW5ÓäÑ�n	°d�òìæ³Ó�e¶Ô�cy7��R`¯2ñò�§]?�ß¼�`?°kÎ¦�~â���Ù��Ð3�)a¢�i'G×kñpí*á8h"��Ê�f�#ë�aôï�ßÖf�L	©��Å¤®��í���:'H´¯Èv1�âÐÑ~�e�¤�05�JÏ�mA�é�|s|@¬��Ò¥CD¦(¡öÉJf��Yè
Ö��ÊB®�ù;âÛJÁ>u�)o#ýØÚ�Içr�aV ¶üu¬��ï��@y²B�Å¡¸Ì1õh�5°|ï�ra´ÊËÔèI#ëÙ�y¶�ÕxÃ�aùÎç¥O}½¡¤Ë÷q~N5._ãt½ëñ½ýi[!áî}[�ï Së}���ÕÙw÷�{ë³ð!IïÃÇ÷)ºÿÕUA�æk£øþW{³ù¼eçÿh=oµ7�î�ÝÆç6ã¿Íy�ì«¹�&æÍ�Óÿ¾{{|ð«�TxÉ�§mU�³:
Ï÷?±�>�¬�^�}v��£Q�ä¦éÝ«�§×Wh�ñÚ*'��yÖ�DØ�	ÝãowÄQ�~AÏ×/¬äsÆq[Qeø<H!�ÉYÊâaÿ�����Ù�bFEãk�%�ö��Rá'�åÇ¾Ýû�}¶r�ê�¶ª6Ù�3¹��O^íuÀ¥çøÝîÞ~]�ÈP3���p�è ù:�/Ûv�±QãoéÛ¶ §,T�ÀS×ÎXG�ÝH�²��'ag��GÝm������
�¹$�7]VØpBQÉ8z�\wáCÂ�ö@\�·S`�ä1�ÂU�2Îh��)¶Å_�D[Ð�ø�	/��l>E:ïö�_a�z²�¯°óÉ8Ýv§3`�ó	Èñ¼�'	;�¤|è¸f¾µV�µ]å4�w�ªAø"µÓ]_"Çìz��±¨ñÈ��
�¼È�YÈ�L3,¿�O	9¥X2è¤±æouI�����Y84
��pª(6N}à3�D�ÿ²©V��¦¼�Ä�no!*@DLU�&HþiÈ�û¿�pÚî¿¢ç-õü`o÷x��¶ÕÃÃ·Çï� ��úáþ/¯��©l«i�}·OÍµõS�Hx¶©�½zÿæ�<k7ÍÚ{o_¿Þ=A°�&¾Ç{»ï �lçõÁñÉ1¼n�ý�Øtv_���fãG¯÷���ùcó9�j�ãO��?½ÿiÀUÍìþò�?4§¶ª�Ù�E�£?Ý®èî�e]\Íâ
�¼úÃ+´�ê¡=üçîÑOðì�Æùäí��Ò~ú´Al'òYáN�ôC!�j�ä4BH'ow�9�ZT�êA}Q�Y·�¼Jú�bßðSØ-eßÃ·'?¼�qâ�¦Å«üÍ¾ùF3ìñÉîÑ	±�¾Ù�8@���¼�N�<ê(¼�=�ÁYb¢�*Ö&EÆ:¬��åw�Ñ�ñ<á*�øº¥B��N#P"��èV¶v P@¨WûGGo�èÖ�R÷x�I�ÖQI,©��Sa�EÝWQ�®®så¢Ç�!Mj"��P£NP�°0ÑBÈ�i(1HÃËÖ��xe4Nà¾|�¢'ÁjCû��«
ßrðN¯×ËÑýa÷Õ»]àÒö¶�z�C
çÄ©��T�.ïk�±±�0Þ��2Åkôû�¦ä�Éÿµ�<ð¥æÐ6]�`é
º°<�!�X¼
@�þ�âS1&'IÀ��â¦Blh�ë¢
�.�ù_�
ºmã�P´ïe�P?�íî�¬z.»ø~(ÝéûáÙ��ò~~�+QëÝîÑ>ÜÏúN�z§T��E�Ó �L��PéïY¤~ÿ\��g¦�`Ö´����¹R�aºùzúûçß¿TÁæh÷ð'À¦Õr¨��Ãó�VçJcö�úÔj�(GÁ���àÊ�� wk¥��½CY¾! �Æl��Þ�Ý,�I�Fá8Â-~<ªÄ�(�[Äæ�u2äZ]Ø�	-��ãªyyW�þ�{úTRß¨<�cv��W ºÅN�ÈK�Ë¶8��%È&22��ø�w'ÿ���×S@äi:	ÉëÞ�ýKôSã��ß²G¶�äzó�+���ÖwÛ´��¯þ'Øk�ÕÐVPNû��Ï¿�²	D(��íLËûöþð��o��ê·�ÛÄ���ñ�\�J�pÍï_Ç¢¶9x
ð�;â�ìä2äs�Ö�Lj�ØµX�����×£Ý�Ü��9bVð¨½¾��¦6°~��û.x�9®�»âLg¥¡Aøàçb�ëên-�ÓÄYAn�z}~_²��ec�/Å M½`Ç8�½��@�Q¸ËÝÛ\$ÿÅCrhB���ê¿Ô2`]Ì�Jx�F:c�Ün¿?<Ø{ûj_�ì´^Eô5_Ð�S$²^ñ~©þ�/����]££I íh~$vó�ØÍCb7��Ý<$vç0Ù9ÇT�S��\i��s�å$m��NY�,;�Ã�]pJDQò[ê,k$e®ÓOèàrç�¢%��vh=Þ6Ã1�I-�2¯Ð»QÄòç�[¯eýj[¿6¬_��ü�åE�¤��¶©�N)ÑÇ×��ËgÜ|up¼ûÃëýÎ/���mmØD÷\ w/ìöÙÊO\¡Ù�ú}ÐnëbZcï���»¾]TýÇ¨�º È�HÉ�§�ú#ßE�Ð4�jÝµ´���»³ÐnTFßdº�@Äv�Ë�Æ�:Å�+ÒËÖ¸��/�Û0}·p�éÍ�Ìb¼?¼v4¶Ê�¾Ý��\Ñ��(à&oA-+û^�_Ybã¸ÝÛHæ�"ÌF�el<êÊ§�<�×vtét���´{·eÝ=�Çûj¬íÖó»V
¡���¾v}�m�ÊK¤�Ì(näÉ°�"�²�Ñ©u��Ã�ë£dÄ�p�Té�.��¿��.M2�Y(��sÑdÛ�Ä%K5XÚ]�`�$¢�þfè�c
50'Ò��y±�ÀòÐ¶Æ�UÍ�r¬{j©¼Sö¦2ðy;�°�\õn�~JFó��l�]®ÐÐBº�9_ïQ�¾�Þg�ºÑÞû�Ðùf
|
ÀãÉ�4.¯5wÕÎÌ�Xj¥tMÂî$Ñòu>¢�¶oQl�hØ´¤æ¡5�©* �1�ÒNj�=åvèW��# n¿��¥¢æ,²oÂä<ô�ÑÐß�Á8÷Ö¦��5ºf��k*âæ!EC¨±�Cz#h¸çÜÇ\/��ËÕ�dJC³Ò ��ÔÉ��ÛüG¤L²ô�¥¶�»-�>Ð�bó0iß��l�'à��zµ�böæ]�¢Å·¦�;�:�Yð5¹!û�i]�oÐÊà¼	��i-ó�Æø�����*$;ÿÛ�*JÅô$ ÈßTÕ°8���GqJÃ{�D`®��X3��í|Ë�´Ë�l��Ù¤¨>7ê�kºãJ@ç� é=$zø«}�ü�ae�¿óy=�Kü��>k�ÿï��Öl·67Àÿwó!ÿóí|þkó?³�u�6§Î¢��/�$�')��<����Í½pÄ�5 �ôácàs�¦°�pR(o�pm�ìÌì4��ü±H�=�ÀÅ4���<l2>�>	�`Ô�j¹�År÷RâSì/vc^Åf~�Ò}�m�îtöþõÓ/����c�¦Ç�í�+´�û��¡ÿFg�ß�ÇIrÝ�ù��Ñ'öâ��g|�®_ìPê�ã�×è��3ë¼ÛÅ�[Nñd�Eè7����ú<�X$c>�ÁyÀ�:¬¯Þ°µ5�³`m�®�f¾õfûøñ��å�7»þt ¼�úît^���ýÙ&�$�E�²¾��èI�ZÍ�!����GRÞ�TìiÖ³:�«ú����áðÌó�=ìÕ[A�Sä!�æyªýãÁá«Î«Ý�Ý]Æ§p�<¶:dA�å~Þ=|Å��z{ÁY°/R>äf�ËÓ(�m�XD®-���?Á×�¯:Ô\�ÿx¿o�ç��Åjg÷ääèà�÷'ûÐõý½�·GÿZ�ì�C(5võ%¯Ï¿õ(�'] �ùD��0��G�U�D�ù�äîp�#ë�ô�¿?|wô¶³·W_�ÏßsÚp�Dël��Ó�Ý_;ïvO~V����W�î"'½Ø�X¬ã8�÷®À¼°;&e ¤�-°ûf]xqÈ�ûMvã�íg�¨pà#�Rq¤õ|%Ë��\ÖÌ°TkiÉ��¯È,�¤cÀÑ2!ôG�í�ÝozEÖ�8�â�pÜæJp�á'�æ¶w!k�7ìT ÷úqZ�¯¾�½aÑ4Ï�åÔ¤EÂ%ö·É0ûÔ¾GjRÉª �fË#	¬ÂôDM�1ÞV»»Ù1¶
Êöv3�g�Ã�ìÁXº�Yh�È.B0H|eÙh�¢��çò�Yå{DV�þ�x²m>à¥¶Ý».��nÞz�Q�õi,¼�³Ø2Ë©ð9tg�±¨Õ?Sãì%¶I¾É��Â¹#��7�YWÖÊ�.W��sõ¹FÇÑ�ñ?�"]�iòúç`yÏQ¶|/«¸4�W´�ñI�Î�ÉE�ñ�·.�¤�Ç�d�¢Pëv	¶f�Dy�2Ð(Y#�`vu�§~û�aì5Èe¡B�p���©��)� ó�#F,®�°æ¯�\Ø�ù�	V<Êê��D���õ3bAà�	\¨�õ�ûB�Ú��]ErZ¸	�ÄÅ�K2¬ÖéäLf&Ùlþý�
F=Ú��µ¦�Å$Ú��%&Ãü2¾	â�³|��c��ç�)å�nr¶¨��©¢	©ÞàÜð�æ#wÐ¼À·zrP��Ì�°Kéy!�
ó«Úç:�þ¥�ÇUa
Yä»q©B�X�#íèd�YÊ�]�¿ø.°��:�^Ýpâ��ÙÕ¾â³�Ó �6Ý�Ã��A¿cÎF÷!q°!Þ���ZÏ°Äggi8Ö�x$���P�b®É0ù0�ß³�&=æ�~¯ítD®���¸��«¢�H;ÐÔÑ��ÅT{²u7>'²¤øi�Ó�	ÌÍÆy;|"§ìI��3��áÂëBÙÿ7[Ö�Àç�iî\¼Í|�âu£�]ðÉ�Pn]aõ||Q¼u��Øn�¤;Ó¹|�õ�à6ä��{�}��Äç�a�ü�äsCÊhÆm�g�ÉyGr��&�`�É��¬að�Y×Ç�²ªBÎªPÀ$��
lÖvpUÁÅDó{qG�0��¯{Ñº�Áº�Ñº�î&öÑº1§Äò?Ù�ôÌHPP°¢�R,¨%]×®p�µ#��z_ªÂ¨2�d�J8%9CÒìØ¢AÍÿlÉ�² &ärÂ�
Y·R[Á²*Á;¸�[bp¬5Í¬?&Ò¿}`5)m³Øgt�ñ`äD3åOØêK¨��Ü;�U!ó*���-Ó�Y�\ß�!�B�"�©dìW_�t1I¢V�½��¹Ý�r�Ì�´µ6M[kem�j��Àå��ìaê�Ë{õ��ü�¶�4ñ!úÓ�ø�6�4óé)N6ñTÊ�x.Ø³�Ê���ò£Z��TlùÅÂ��Ö�1|Á) �j�)Àdçf0Ù�������(/g Êá²ãÅÅ@&WÀ�¦W���æÛU�É�ùÝ±×d¯È�\�áHí/�°Y�¾kbÐè]58³�Ú�oÐÐáEÝ®Aë[��Àe)L��9��(õ1'���hyaÄ_%ìñï¿?�£âÇO�g¯^�+=�m��Ð�i«#�®ÛÒv*c�¥±°,º¬£bâ#Ñg�ö�y�I{ð¨)�X�Çãmã÷(�_�¿ù¾�ÆÎÅ�â pä¦Ûp�n5r÷�å��§FñöbÅÙ_�l,ð�ÛÍø�³¥p´Ð,Õ,ÓÅUÔ�ùÞþSµ¢Íû�rÙ��¾*&�0ø5×��X"kK�ÎÈ�F~É��3u¦00��u�(D�M#K���®äb�	Ó�Dáý�º�É�`/G�meHÈ´�}R«�fG���FG��ÛåÊ�(�Þ±`g-)ÖÜ�m¯^U;k#Q.Î�hö`Jdxm��ª¨å��k!�?â��*ülù�Æ0a½«�ýýIkãI³ÉÅt:�á��6�NÒ��i$��À�$¢�.yÑ|áÇÒ�¢�HU$Pü�/6Õ
 -p�¢ó�Dg�Îb�{^ä�ÑéAd_p!��{^½¬x-�ñW�µE´(�·ÙÚ��º��5ÕRj�YKj^SÉj_�µÜó¾½%©]]l/ª���ÎðØªD {Z(h<O4Ïí{à:�hÏ�r���N¯ø,vÛ¹e�³�¼bbç²]�¬�>NÀjÓ}Ð_Êòx\Ê~nÙÿ·Èÿ;±r�Îî�^ìÿÝÚÜh=�ÿïV»Ùj?Ûh}Ól7�=}þàÿ}���ÿïv³¹ñ�uý¾QÏïì¤Y�Ïÿû]�_F½0u 3;×r��¶�Eß��ïszõ�ÌxQë�ÍÂ�ú�B�Ì�¶</³¸�B\i·6)�}R^�Y:1òHÓù�ÜÔ£¤pyÉ�ñö��mìN�p�¥jPß��Óùp|Bª¯Â¼¦á¿' ÕW���îiY��ØL�]3²�\Dô}�P��Éc�h*è{�Þ���Ë�Ð5G�b"Þ�µÓ*�ª��+^�÷���à<�,u²L ,fÏ�öjxZ��ak+#yW»v&�>S¬
Hèéo�Î�MÕìTÄµP®JÌI��R��,��4�O��u�W�yÅ-UÊEiR �J���ÑYMæ�\Æ�Ê¨�LB�CÈt
	�;b+"ë¬[�I1�v�é4ùw¡-ÓEVñ�z�/ �¿5?¬�_#QÀzj�LCpÚÊ�¤Çæñ¨°?�OÇe�©��6²Ã4C5©i¯d�ïÉ�NÀ+Ì�Ê÷�Ñ§Z]ô�«ó�Rª�dzö§¼ÒËë^v�K®qªóc/?Aû��ì.xY1ÃÖ5�ih¼�!¾"O���õ�0Jü�m�ñ¸����ýÎpÒW�"��«y�5~voKà�Æ§��¸×��¥²ë�)¡�gçE�'�ÙI�at�;�r.ÅÙm�/ÌáY&yò²åæ�¯�Á�®U��F�¶Ú�õ~oÿU��ÈBä~ó�°��-U9Ì¿µ¥íMyK¦���	1Ùaþ��eC���lK(g½®lºu|Î���hì¸³éBU¦¶Ñ#�nifB9æ<�vuY³2Se¶£jiW>�Qí�¦9�è��IÅ��lã Òõ^À»�Êl»í3�ªO�Ê�ý�J��X%¥ÊóÉ1¥.��ÌÉ:ÿ§Èl¬>Ä<f�çj��±8�¨ß«/ûÑ6eæ��;�KàzlÏüiV0×êfNsõtú4ó�qtÕKÌ<ï+8SbùÜ�ò�ÓÈ��«ùù²}Ôñ-YÓ%�Ï·²çBU.Q�L�ï4£½ß¾þTñù]û��ÄûO Lv¸Ýôðyg�¶%Ý*ù_��^éhÆÙ�J�¯mé9�ª$�×@ª¥~w0Ê&}¯�Ui¢w�/í}d$+�ï·fÈnë¡jq^[Ï�ê��msöaó¦5Ô�¢Lµ�ÌO«�¹�Ì´�ý���ö¦�æÆsÍê�³7��*73¬m©¾ëã�¯îSrþ���¹�À��ÿµ7Û�:ÿk»�ñ�Ú¼ØÃùß-|þkã?Ýô! Î��¦�Uæ6�\zÚ÷Ã.ïsñ1�*2ÿa]æü�r X8Ã�ò�IÍT_È8h¬�J9�}�ÄgÓì�W¶Õ*Ù±uhL¿�àø�BX¡ý}2�{1ëÇç�yûì<�'#
íM5NÁìÙ\{��¶�½ù
�Q�Òëa0þ���u§ðwk§º4/8�>�óûÊ¶�m´táx�é|q��s�3ý�S�± ß×uQ*�Ðaj�=�BA�¡Ð��<é��ï��ë��¼1:�}ßr�ñ�Q¿CMu°�Ü§l0ï��C©A}Ö�
�]»å¯Òâa%� �úG��üä´i�ÀÎË�i)�P@HÕáH4ì��I¡z©ÚøÓ�î�Y�4ð¬�OÖë1�P>ò�U�d:
» �a��N���qçô#x���½Å^¼`ßåö�Cÿ½Çk�¡³ñUØÓ0�SÎ��Æß�`�(`��\z�¦"�´�Æ�zg AµòFÜ�ö��ÄZ�&�ä��Bª�3ú���ùä�¢¨Ó*f�8H��.�R��ñYT�ù�%è>¡��züÿ|;�;�ºÝyÝÚFaç³M��Uh«"× Kæ³îvQP�Å¼ÃÁÿöÛÖÞëÝãã��üü��áK>WÊ8��ûü©qýÅ��ó1D�ìü»�ïp0�Àû÷U�ü¿�¯a\��I%�!�ì÷?qM�úp{�+!�¡dåp�tScV�ñ�ú@�'§TÍ���ãeIéÌ�¢é�¦Ý�/N\�Aô�Í_Ïr�âãß�#��#�p4Haýúm}}ý��K�Õ	ð¸��>/��¿�aE��"�Í`�²?4?uÃ���/��¸aÌ¨�&��¹Û�À³ êóµN�Ë�J�@Ò	`���/��a´�¤�	ÅY	T�¿ð<H@õÀÜ��Xõ�rw��K\¦�^�Q���û1× B={E"P�<½�R'rÈÊ�@·D]*��¢ÂVT'¸®¡x«]¾lêN��ä#h*kF¢m��X} �ÂT¢�±�(È|N\ã�8�+1±$ç�É·�þ¥W�éOÏì�ç§8E{|X_�Ë¨SW®�E��q2@M£Ù0EG9nJÂü)%���\}¬��,Î·�#Ù��Ð3[a$�¨N{K¥H�#�á2ÿRôQ>Üß{³{ÜM"�ìö«ÿ	.�¼WÎs4�[Ç�V��¥�����uÎ\àÄÁ�à,¶míô�ïóÌq��¯â¤�ú£ó�Í~ !:ÏO'güñ�û¸��ÇÑp���² cOÝÇgÑ§°'^>S�~� �Þ�.HñEåy��¿&XÛ¸�y
¿Gq�ôUnæ~È´��*�Îî��ï³&�»Ïñ�î-åÈ�»¥-õVöM�ælañN�ÕZx¶¨x'�JA�-�oôdÓ�Ð�«x+���v�*ùç��¯dAC¤e�Ê�²°¥Öd�ë×F�¡ÃxK�RÂÑ¼¼C§
���ÝÏ[Ï,cTÍj"~�É��jwà�/ea©ýgKâ�³���|ã4��±(ì,.�!0�£±�dKÊ��eÂ×¾)'åêá�	oì5"[�?wÖ�l�xá.�æÌbw½6xd�:Û�+¬±;ßö\�²¤bîAÁÜ)?Åß»¶ÉÞæ§Èþ��Ätþ�ñ$ Øþßl?o>ÓöÿÖóo�íÖ��ý`ÿ¿�Oþý���þç´ü�5�ÿì�Yà��ÞQJß\©	d�}±#��òÎ�ö~Þ=�¿N�v�N��N�ü�oàÜÀx¢{k�'dúÚ��µ;ÅÍ=�MÀ��F!�VæÆ<ÇqC:7{�ÒþË>¯èÏ¦�÷��0Xa§�Ø�}ÖaÅw$w�×;TíÀ°Ì¤¤�lÓ(¤°[$�
zÙ«µ¹ ï{¥��o�¼ÎË×þþ�·e$H/âd¼(�(��2�&v��Í]7«¦�¹¹æÑXÊïÿ¢	m.��âõ�cãY3sÿ·Õ~ú°þßÆçáüÿæ.�«�3§�p��O¸�`\³Ô©©�þy�Dã�A*�±>�ñ8Ä|ß`û��* 3»��^�ÈÌO(F¼¹£N¯©3�\�õb4ðJ�Å���5¾��j�ovOö~ÎU/ôÛ�¸F¬lr]sP�ð@��åR¼ñ���ðd�,ìt`à¥y�n
Xöê"æ´�©"FÏYç\�õû)äÔÌäØ\�T|×¿�«8øl·�æ~ã�×�TÜ�S=ª� �¸Gj=£û¯Kî�{î×h��.;Ëlà«\ÉÁ1¯Í²¬ªÒ©Qç¿�Û9�5ÉÃÔôÝÄ�òR¸ÿ���Ø^��Á{�ë¤¨³N4õú¦FÎxU��È��¨lXn�²öÈk÷ç�I�³�y�d�æù§ré�D¤iøïI�\�,èße8�àâ�I¥3>ïÓ¬nùãûÃ=����ý7ï^ï�ìwÞ�ñé�pø��*Ä��f��§�¢�Á�Uy��¥¸H5�_���Ð³É�¯���8»ïÇA�dê���2ã��{!Â�GZ9à�d�¡(1¹�Íj�)E¤,q�Ï��Ç�<Ã_�S8_�½·�|�ÞvÜ.�ðóqçLÓ?Ã�Ø=þ�[e�S9�X·8�<�]R�>äÓ�Ýbò�û�§å�x�wíû!®³ã¥ÝÆSé6î�Ñ4�(æaþÛcÜüiV a§`ír¡[�ïo�Ío�ù2�|§�CFÂ�Ì�VX K8½|È0Û�:RÈ%&N¸�î�Óô3�)ïc�*��áß��ÇÇ[[Â@�ÀJäù�(q�½Ì�ð�çû4d¨ÀH¾8�°Ñ}½�«�äNw.iF#ÛTM6Æ[S�î�Ýî��÷�'iO~Çì÷À|·C�ûÅzfþ]��º,ýôÝòéÕFû�So��÷�WUÂ[ï![1�å]ø�R_UgÍ«[U�¯�Ìw�éq3]õ±��VP�³¦"ÇMj��ç+s��è��H�¾Þ�à»S�¼;¢Ü?^¢-Þ�[>0å��äþ±äÂµÈ[âß��õÀÁ·D�ûÇÃB»¬"]�ØM96]ñI�{Þ½a±ÂaÃ�z}�VÄÂèY7h��YO\<ËÜ��âmóÕÝ��ï�ùîF4Ý�Sá=à²ÿ
�[¸&w��y76Á»gÉÛ6�Þà�Þt�QYÿ*q¡uÞ-�ÚbÊ{úï��!G�>¾�âbxt�ÂÝ�áp�á¸¿:á=cÊûe}¼cö½/VÇ{Âè�õÏ¯�§�8úÎL�÷��oF×ý��ÿÎì�÷�ýïÀÞyO&�eòÔ�fo6`u&7¬qÑé®³¾êOÑýOóºM��ÞÍt�´øþç³§Mþ¬ÕÜØh=oo<{Ú�ø�Ï�={¸ÿy��[�ÿðßsõÓ7i���â�ÓðAèÉøÌj�ÂÁ)\å�·��PÂK���:påi<¾À±á½�ðæ/C�Éa<\ÓO�biIÄéwûG¯IÀí�uöÞ¾yóö°(�D^ñùï{
��Î�o�^ï�¾Úët Þ(Î���ÞÉF�ô�]}×l~G��=Ë�IáÉEþÙ�É¯ô*§¼_1ÕEFûÞcùEOÌ��]�óovRFÅ%¯ö B(X×44tC+À§�&§�ù�Ï�À�sfÖ)m#Ý&¬ÓuBH�ZW*È(N�×U�Ó û1�Ç£Ú)%eë��N4�Ú����Ôê�Ð�¿î�#�æ5�×0K=��)%1��dÜ�uâÓ?�,~«-ë×B§Aª$�.¥Â¬�âá¿_3��`ö�)�ÁÁ¤êpù²Þ~¶²µ�Yñ@�ò¥Â32àeR³±L�¶è��
'ÏøºVwÓ�A���O6���vp��[,�+ê�\�2OE=BE�0§l�C|Ó	�ó	$6dá§Ú·�CUÜ½±�ã�ôJq$Â��/�øª£¢×ÖÂOFêØ�×�(�,]�êhÚ�Î{�OeÄÃ$¤t¶��)«�b),�¦ã�Ã	9°O�l@ð�|ç�Ç��_H�®ìÔ�"-�d~«Ù(,³�ý�ÖùS|åóåS=�4®f¡Ç�ÉèzN<ô?�#���OZ�éÐô¦ÀFC'±åå%}ñòÒLËxªÔ¬®�Ãê«35�å��¢�)x�ÜQ0)oÒ}Ð�© b?èÔ[ÕdqM§ã�@z`��×�©�Î!jFwÌ*ËRänÛkªÜæ�òo{ï¹2òÏ}bsÎ�Ý���¨Zò>ÈÝÉ¨cL	±JÒDæK{�5�L��:�D+6Sy3�ßzÊy½�$QH!²µ�5I£+�Ú��òÍNíñÕãºÀ� q�¤�:Ñ�ýëý8��Q¸��«-_5ØòÕj�*J4O£1Vö!ùxýñ�^Ò¸Ú)Û1±²â+íÔjg�	Ü8ïì{f�-�óÉ�EÄk¾�fÞ��w³¨��'.s�®�Æ��×È¹Pµòw®�å��$FÕM�
Tlá>�GÃ}Û��M)ãC*ºÀ���Ã�Í¤#Ðx�¡Wq�°y��j��[j�D�ü�3LÔZy)¾y±ëG�ï´F��ò%'áðùCX��²; Ý>Õ¹À[c�ëì�	�K�ìç�ä��HiåP���¦�mwògÀ}d«ª�Hè{Æ^�Lò��¥W¡�Iþq�_±�þÿ~Ìç&�e	ÿ=¡@�©�§n_m;Ë¯�ã���±÷öýáI67���ÝÅ�c(¹÷�ÎOïw�^ÍG�4äM«Ø'ñ�

qpdf-7.1.0/libtests/qtest/input_source.test

#!/usr/bin/env perl
require 5.008;
use warnings;
use strict;

chdir("input_source") or die "chdir testdir failed: $!\n";

require TestDriver;

my $td = new TestDriver('InputSource');

cleanup();

$td->runtest("input source tests",
	 {$td->COMMAND => "input_source"},
	 {$td->FILE => "input_source.out",
	 $td->EXIT_STATUS => 0},
 $td->NORMALIZE_NEWLINES);

cleanup();

$td->report(1);

sub cleanup
{
}

qpdf-7.1.0/libtests/qtest/ascii85/base85.in

70!<9iWTSm7K<E>iWTSm7fWNCiWTSm8,rWHiWTSm8H8`MiWTSm8cSiRiWTSm
9)nrWiWTSm9E5&\iWTSm9`P/aiWTSm:&k8fiWTSm:B1AkiWTSm:]LJpiWTSm
;#gSuiWTSm;?-]%iWTSm;ZHf*iWTSm;uco/iWTSm<<*#4iWTSm<WE,9iWTSm
<r`5>iWTSm=9&>CiWTSm=TAGHiWTSm=o\P&M<.ZglicMP!!!"'J]"ig!<A%A
q#CBoL!k&HkhZ:>!9c9E!!)4J#6=g,>KOe_2$i.E#lc1Zi<9Je!!!$!,nT#=
#\X2<!!)9As8W-!,o#;A#\XJD!!)91s8W-!,oGSE#\XbL!!)9!s8W-!,okkI
#\Y%T!!)8fs8W-!,p;.M#\Y=\!!)8Vs8W-!,p_FQ#\YUd!!)8Fs8W-!,q.^U
#\Yml!!)86s8W-!,qS!Y#\Z0t!!)8&s8W-!,r"9]#\ZI'!!)7ks8W-!,rFQa
#\Za/!!)7[s8W-!,rjie#\[$7!!)7Ks8W-!,s:,i#\[<?!!)7;s8W-!,s^Dm
#\[TG!!)7+s8W-!,t-\q#\[lO!!)6ps8W-!,tQtu#\\/W!!)6`s8W-!,u!8$
#\\G_!!)9Qrr<#u,uEP(#_g!!)9Arr<#u,uih,#\]"o!!)91rr<#u-!9+0
#\];"!!)9!rr<#u-!]C4#\]S*!!)8frr<#u-",[8#\]k2!!)8Vrr<#u-"Ps<
#\^.:!!)8Frr<#u-"u6@#\^FB!!)86rr<#u-#DND#\^^J!!)8&rr<#u-#hfH
#_!R!!)7krr<#u-$8)L#_9Z!!)7[rr<#u-$\AP#_Qb!!)7Krr<#u-%+YT
#_ij!!)7;rr<#u-%OqX#\`,r!!)7+rr<#u-%t4\#\`E%!!)6prr<#u-&CL`
#\`]-!!)6`rr<#u-&gdd#\`u5!!)9QrVuot-'7'h#\X2=!!)9ArVuot-'[?l
#\XJE!!)91rVuot-(*Wp#\XbM!!)9!rVuot-(Not#\Y%U!!)8frVuot-(s3#
#\Y=]!!)8VrVuot-)BK'#\YUe!!)8FrVuot-)fc+#\Ymm!!)86rVuot-*6&/
#\Z0u!!)8&rVuot-*Z>3#\ZI(!!)7krVuot-+)V7#\Za0!!)7[rVuot-+Mn;
#\[$8!!)7KrVuot-+r1?#\[<@!!)7;rVuot-,AIC#\[TH!!)7+rVuot-,eaG
#\[lP!!)6prVuot--5$K#\\/X!!)6`rVuot--Y<O#\\G`!!)9Qr;Zfs-.(TS
#_h!!)9Ar;Zfs-.LlW#\]"p!!)91r;Zfs-.q/[#\];#!!)9!r;Zfs-/@G_
#\]S+!!)8fr;Zfs-/d_c#\]k3!!)8Vr;Zfs-04"g#\^.;!!)8Fr;Zfs-0X:k
#\^FC!!)86r;Zfs-1'Ro#\^^K!!)8&r;Zfs-1Kjs#_!S!!)7kr;Zfs-1p."
#_9[!!)7[r;Zfs-2?F&#_Qc!!)7Kr;Zfs-2c^*#_ik!!)7;r;Zfs,llp.
#\`,s!!)7+r;Zfs,m<32#\`E&!!)6pr;Zfs,m`K6#\`].!!)6`r;Zfs,n/c:
#\`u6!!)9Qqu?]r,nT&>#\X2>!!)9Aqu?]r,o#>B#\XJF!!)91qu?]r,oGVF
#\XbN!!)9!qu?]r,oknJ#\Y%V!!)8fqu?]r,p;1N#\Y=^!!)8Vqu?]r,p_IR
#\YUf!!)8Fqu?]r,q.aV#\Ymn!!)86qu?]r,qS$Z#\Z1!!!)8&qu?]r,r"<^
#\ZI)!!)7kqu?]r,rFTb#\Za1!!)7[qu?]r,rjlf#\[$9!!)7Kqu?]r,s:/j
#\[<A!!)7;qu?]r,s^Gn#\[TI!!)7+qu?]r,t-_r#\[lQ!!)6pqu?]r,tR#!
#\\/Y!!)6`qu?]r,u!;%#\\Ga!!)9QqZ$Tq,uES)#_i!!)9AqZ$Tq,uik-
#\]"q!!)91qZ$Tq-!9.1#\];$!!)9!qZ$Tq-!]F5#\]S,!!)8fqZ$Tq-",^9
#\]k4!!)8VqZ$Tq-"Q!=#\^.<!!)8FqZ$Tq-"u9A#\^FD!!)86qZ$Tq-#DQE
#\^^L!!)8&qZ$Tq-#hiI#_!T!!)7kqZ$Tq-$8,M#_9\!!)7[qZ$Tq-$\DQ
#_Qd!!)7KqZ$Qqzz!!!!Rm9YY.KB2Mu<)RB0Rfs(2&=Wh/;-%B"jobtRPPb
C[oT5/rOH>QcOH>QcOH>Q(M<0BV#_5(Ziro\gF:@ITK>7VbLuJRDs3dTsiWT
UG&;APTlc'+Liro\hahs3?M<0BV#b_gf"UKgtF:u(`!!!"Q^iTn'"=+Q:"UP
.Tahs4%OH>QcOH>QcOH>Q(M<0BV(lLfgMbOV<:]u[VM+f0#a$_0]zM,Y`'M$
,*fQi6sbahs4"F=$ufM<0BV#`0NHMd6aJF<h!IFU3mu"H-:`MZts>1!q`($,
La&Mb=>67L4oV%#\-p0uu*'$.'3I^kop\iW4rW,`0m+F<h!Gls7MgF=%!]+Q
Wb4<Jfgk^i]p@70oY2jTPoq_i8g>NP$V=!!!"m+QWb4<Jfgk^i^*[,io18K>
7M_,io18?,Mb`F=$ufKYWH+F:?1n~>trailing garbage

qpdf-7.1.0/libtests/qtest/ascii85/binary.out

qpdf-7.1.0/libtests/qtest/ph/ph.out

hello
created Object, id 1
created Object, id 2
nulls equal
destroyed Object, id 2
equal okay
less than okay
created Object, id 3
calling Object::hello for 1
calling Object::hello for 1
calling Object::hello for 1
calling Object::hello const for 1
calling Object::hello const for 1
calling Object::hello const for 1
goodbye
destroyed Object, id 3
destroyed Object, id 1

qpdf-7.1.0/libtests/qtest/dct.test

#!/usr/bin/env perl
require 5.008;
use warnings;
use strict;

chdir("dct") or die "chdir testdir failed: $!\n";

require TestDriver;

This test suite does light verification of DCT by running some data
through a round trip with one encoding system. The
examples/pdf-create program also exercises DCT but does so more
fully.

my $td = new TestDriver('dct');

cleanup();

my $checked_data = 0;
foreach my $d (['rawdata', '400 256 gray', 0],
 ['big-rawdata', '1024 576 rgb', 0.2])
{
 my ($in, $args, $mismatch_fraction) = @$d;
 $td->runtest("compress",
 {$td->COMMAND => "dct_compress $in a.jpg $args"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
 $td->runtest("decompress",
 {$td->COMMAND => "dct_uncompress a.jpg out"},
 {$td->STRING => "", $td->EXIT_STATUS => 0});
 # Compare
 my @raw = get_data($in);
 my @processed = get_data('out');
 my $bytes = scalar(@raw);
 if ($td->runtest("bytes in data",
 {$td->STRING => scalar(@processed)},
 {$td->STRING => $bytes}))
 {
 ++$checked_data;
 my $mismatch = 0;
 for (my $i = 0; $i < scalar(@raw); ++$i)
 {
 my $delta = abs(ord($raw[$i]) - ord($processed[$i]));
 if ($delta > 10)
 {
 ++$mismatch;
 }
 }
 my $threshold = int($mismatch_fraction * $bytes);
 $td->runtest("data is close enough",
 {$td->STRING => $mismatch <= $threshold ? 'pass' : 'fail'},
 {$td->STRING => 'pass'});
 }
}

cleanup();

$td->report(6 + $checked_data);

sub cleanup
{
 system("rm -f a.jpg out");
}

sub get_data
{
 my $file = shift;
 local $/ = undef;
 open(F, "<$file") || die;
 binmode(F);
 my $data = <F>;
 close(F);
 split('', $data);
}

qpdf-7.1.0/libtests/qtest/sha2/sha2.out

256 short: passed
256 long: passed
256 million: passed
384 short: passed
384 long: passed
384 million: passed
512 short: passed
512 long: passed
512 million: passed

qpdf-7.1.0/libtests/qtest/qutil/qutil.out

16059
0016059
16059
3.141590
3.142
1000.123000
0.12340
0.00012
0.12346
0.00012
16059
37273
3ebb
one
7
compare okay
-2147483648 to int: PASSED
2147483647 to int: PASSED
2147483648 to int threw: PASSED
-2147483649 to int threw: PASSED
9999999999999999999999999 to int threw: PASSED
2147483648 to int: PASSED
-2147483649 to int: PASSED
99 to int threw: PASSED

before remove
exception: remove file: No such file or directory

before fopen
exception: open /this/file/does/not/exist: No such file or directory

IN_TESTSUITE: 1: 1
HAGOOGAMAGOOGLE: 0

0x41 -> A
0xf7 -> รท
0x3c0 -> ฯ�
0x16059 -> f0 96 81 99
0x7fffffff -> fd bf bf bf bf bf
0x80000000: bounds error in QUtil::toUTF8

quack1
quack2
quack3
quack4

file1: -qutil.out-, file2: -./qutil.out-; same: 1: PASS
file1: -qutil.out-, file2: -qutil.out-; same: 1: PASS
file1: -qutil.out-, file2: -other-file-; same: 0: PASS
file1: -qutil.out-, file2: --; same: 0: PASS
file1: -qutil.out-, file2: -(null)-; same: 0: PASS
file1: --, file2: -qutil.out-; same: 0: PASS

This file is used for qutil testing.
It has mixed newlines.
Some lines are very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very long.

begin hex encode/decode
end hex encode/decode

qpdf-7.1.0/libtests/qtest/qutil/other-file

This file is used for qutil testing.
It has mixed newlines.
Some lines are very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very very long.

qpdf-7.1.0/libtests/qtest/aes/test-vector.cipher

qpdf-7.1.0/libtests/qtest/aes/test-vector.clear

qpdf-7.1.0/libtests/qtest/aes/data1

qpdf-7.1.0/libtests/qtest/aes/data1

				 				00A0

				¡				00A1

				¢				00A2

				£				00A3

				¤				00A4

				¥				00A5

				¦				00A6

				§				00A7

				¨				00A8

				©				00A9

				ª				00AA

				«				00AB

				¬				00AC

								00AD

				®				00AE

				¯				00AF

				°				00B0

				±				00B1

				²				00B2

				³				00B3

				´				00B4

				µ				00B5

				¶				00B6

				·				00B7

				¸				00B8

				¹				00B9

				º				00BA

				»				00BB

				¼				00BC

				½				00BD

				¾				00BE

				¿				00BF

				À				00C0

				Á				00C1

				Â				00C2

				Ã				00C3

				Ä				00C4

				Å				00C5

				Æ				00C6

				Ç				00C7

				È				00C8

				É				00C9

				Ê				00CA

				Ë				00CB

				Ì				00CC

				Í				00CD

				Î				00CE

				Ï				00CF

				Ð				00D0

				Ñ				00D1

				Ò				00D2

				Ó				00D3

				Ô				00D4

				Õ				00D5

				Ö				00D6

				×				00D7

				Ø				00D8

				Ù				00D9

				Ú				00DA

				Û				00DB

				Ü				00DC

				Ý				00DD

				Þ				00DE

				ß				00DF

				à				00E0

				á				00E1

				â				00E2

				ã				00E3

				ä				00E4

				å				00E5

				æ				00E6

				ç				00E7

				è				00E8

				é				00E9

				ê				00EA

				ë				00EB

				ì				00EC

				í				00ED

				î				00EE

				ï				00EF

				ð				00F0

				ñ				00F1

				ò				00F2

				ó				00F3

				ô				00F4

				õ				00F5

				ö				00F6

				÷				00F7

				ø				00F8

				ù				00F9

				ú				00FA

				û				00FB

				ü				00FC

				ý				00FD

				þ				00FE

				ÿ				00FF

				Ā				0100

				ā				0101

				Ă				0102

				ă				0103

				Ą				0104

				ą				0105

				Ć				0106

				ć				0107

				Ĉ				0108

				ĉ				0109

				Ċ				010A

				ċ				010B

				Č				010C

				č				010D

				Ď				010E

				ď				010F

				Đ				0110

				đ				0111

				Ē				0112

				ē				0113

				Ĕ				0114

				ĕ				0115

				Ė				0116

				ė				0117

				Ę				0118

				ę				0119

				Ě				011A

				ě				011B

				Ĝ				011C

				ĝ				011D

				Ğ				011E

				ğ				011F

				Ġ				0120

				ġ				0121

				Ģ				0122

				ģ				0123

				Ĥ				0124

				ĥ				0125

				Ħ				0126

				ħ				0127

				Ĩ				0128

				ĩ				0129

				Ī				012A

				ī				012B

				Ĭ				012C

				ĭ				012D

				Į				012E

				į				012F

				İ				0130

				ı				0131

				Ĳ				0132

				ĳ				0133

				Ĵ				0134

				ĵ				0135

				Ķ				0136

				ķ				0137

				ĸ				0138

				Ĺ				0139

				ĺ				013A

				Ļ				013B

				ļ				013C

				Ľ				013D

				ľ				013E

				Ŀ				013F

				ŀ				0140

				Ł				0141

				ł				0142

				Ń				0143

				ń				0144

				Ņ				0145

				ņ				0146

				Ň				0147

				ň				0148

				ŉ				0149

				Ŋ				014A

				ŋ				014B

				Ō				014C

				ō				014D

				Ŏ				014E

				ŏ				014F

				Ő				0150

				ő				0151

				Œ				0152

				œ				0153

				Ŕ				0154

				ŕ				0155

				Ŗ				0156

				ŗ				0157

				Ř				0158

				ř				0159

				Ś				015A

				ś				015B

				Ŝ				015C

				ŝ				015D

				Ş				015E

				ş				015F

				Š				0160

				š				0161

				Ţ				0162

				ţ				0163

				Ť				0164

				ť				0165

				Ŧ				0166

				ŧ				0167

				Ũ				0168

				ũ				0169

				Ū				016A

				ū				016B

				Ŭ				016C

				ŭ				016D

				Ů				016E

				ů				016F

				Ű				0170

				ű				0171

				Ų				0172

				ų				0173

				Ŵ				0174

				ŵ				0175

				Ŷ				0176

				ŷ				0177

				Ÿ				0178

				Ź				0179

				ź				017A

				Ż				017B

				ż				017C

				Ž				017D

				ž				017E

				ſ				017F

				ƀ				0180

				Ɓ				0181

				Ƃ				0182

				ƃ				0183

				Ƅ				0184

				ƅ				0185

				Ɔ				0186

				Ƈ				0187

				ƈ				0188

				Ɖ				0189

				Ɗ				018A

				Ƌ				018B

				ƌ				018C

				ƍ				018D

				Ǝ				018E

				Ə				018F

				Ɛ				0190

				Ƒ				0191

				ƒ				0192

				Ɠ				0193

				Ɣ				0194

				ƕ				0195

				Ɩ				0196

				Ɨ				0197

				Ƙ				0198

				ƙ				0199

				ƚ				019A

				ƛ				019B

				Ɯ				019C

				Ɲ				019D

				ƞ				019E

				Ɵ				019F

				Ơ				01A0

				ơ				01A1

				Ƣ				01A2

				ƣ				01A3

				Ƥ				01A4

				ƥ				01A5

				Ʀ				01A6

				Ƨ				01A7

				ƨ				01A8

				Ʃ				01A9

				ƪ				01AA

				ƫ				01AB

				Ƭ				01AC

				ƭ				01AD

				Ʈ				01AE

				Ư				01AF

				ư				01B0

				Ʊ				01B1

				Ʋ				01B2

				Ƴ				01B3

				ƴ				01B4

				Ƶ				01B5

				ƶ				01B6

				Ʒ				01B7

				Ƹ				01B8

				ƹ				01B9

				ƺ				01BA

				ƻ				01BB

				Ƽ				01BC

				ƽ				01BD

				ƾ				01BE

				ƿ				01BF

				ǀ				01C0

				ǁ				01C1

				ǂ				01C2

				ǃ				01C3

				Ǆ				01C4

				ǅ				01C5

				ǆ				01C6

				Ǉ				01C7

				ǈ				01C8

				ǉ				01C9

				Ǌ				01CA

				ǋ				01CB

				ǌ				01CC

				Ǎ				01CD

				ǎ				01CE

				Ǐ				01CF

				ǐ				01D0

				Ǒ				01D1

				ǒ				01D2

				Ǔ				01D3

				ǔ				01D4

				Ǖ				01D5

				ǖ				01D6

				Ǘ				01D7

				ǘ				01D8

				Ǚ				01D9

				ǚ				01DA

				Ǜ				01DB

				ǜ				01DC

				ǝ				01DD

				Ǟ				01DE

				ǟ				01DF

				Ǡ				01E0

				ǡ				01E1

				Ǣ				01E2

				ǣ				01E3

				Ǥ				01E4

				ǥ				01E5

				Ǧ				01E6

				ǧ				01E7

				Ǩ				01E8

				ǩ				01E9

				Ǫ				01EA

				ǫ				01EB

				Ǭ				01EC

				ǭ				01ED

				Ǯ				01EE

				ǯ				01EF

				ǰ				01F0

				Ǳ				01F1

				ǲ				01F2

				ǳ				01F3

				Ǵ				01F4

				ǵ				01F5

				Ƕ				01F6

				Ƿ				01F7

				Ǹ				01F8

				ǹ				01F9

				Ǻ				01FA

				ǻ				01FB

				Ǽ				01FC

				ǽ				01FD

				Ǿ				01FE

				ǿ				01FF

				Ȁ				0200

				ȁ				0201

				Ȃ				0202

				ȃ				0203

				Ȅ				0204

				ȅ				0205

				Ȇ				0206

				ȇ				0207

				Ȉ				0208

				ȉ				0209

				Ȋ				020A

				ȋ				020B

				Ȍ				020C

				ȍ				020D

				Ȏ				020E

				ȏ				020F

				Ȑ				0210

				ȑ				0211

				Ȓ				0212

				ȓ				0213

				Ȕ				0214

				ȕ				0215

				Ȗ				0216

				ȗ				0217

				Ș				0218

				ș				0219

				Ț				021A

				ț				021B

				Ȝ				021C

				ȝ				021D

				Ȟ				021E

				ȟ				021F

				Ȣ				0222

				ȣ				0223

				Ȥ				0224

				ȥ				0225

				Ȧ				0226

				ȧ				0227

				Ȩ				0228

				ȩ				0229

				Ȫ				022A

				ȫ				022B

				Ȭ				022C

				ȭ				022D

				Ȯ				022E

				ȯ				022F

				Ȱ				0230

				ȱ				0231

				Ȳ				0232

				ȳ				0233

				ɐ				0250

				ɑ				0251

				ɒ				0252

				ɓ				0253

				ɔ				0254

				ɕ				0255

				ɖ				0256

				ɗ				0257

				ɘ				0258

				ə				0259

				ɚ				025A

				ɛ				025B

				ɜ				025C

				ɝ				025D

				ɞ				025E

				ɟ				025F

				ɠ				0260

				ɡ				0261

				ɢ				0262

				ɣ				0263

				ɤ				0264

				ɥ				0265

				ɦ				0266

				ɧ				0267

				ɨ				0268

				ɩ				0269

				ɪ				026A

				ɫ				026B

				ɬ				026C

				ɭ				026D

				ɮ				026E

				ɯ				026F

				ɰ				0270

				ɱ				0271

				ɲ				0272

				ɳ				0273

				ɴ				0274

				ɵ				0275

				ɶ				0276

				ɷ				0277

				ɸ				0278

				ɹ				0279

				ɺ				027A

				ɻ				027B

				ɼ				027C

				ɽ				027D

				ɾ				027E

				ɿ				027F

				ʀ				0280

				ʁ				0281

				ʂ				0282

				ʃ				0283

				ʄ				0284

				ʅ				0285

				ʆ				0286

				ʇ				0287

				ʈ				0288

				ʉ				0289

				ʊ				028A

				ʋ				028B

				ʌ				028C

				ʍ				028D

				ʎ				028E

				ʏ				028F

				ʐ				0290

				ʑ				0291

				ʒ				0292

				ʓ				0293

				ʔ				0294

				ʕ				0295

				ʖ				0296

				ʗ				0297

				ʘ				0298

				ʙ				0299

				ʚ				029A

				ʛ				029B

				ʜ				029C

				ʝ				029D

				ʞ				029E

				ʟ				029F

				ʠ				02A0

				ʡ				02A1

				ʢ				02A2

				ʣ				02A3

				ʤ				02A4

				ʥ				02A5

				ʦ				02A6

				ʧ				02A7

				ʨ				02A8

				ʩ				02A9

				ʪ				02AA

				ʫ				02AB

				ʬ				02AC

				ʭ				02AD

				ʰ				02B0

				ʱ				02B1

				ʲ				02B2

				ʳ				02B3

				ʴ				02B4

				ʵ				02B5

				ʶ				02B6

				ʷ				02B7

				ʸ				02B8

				ʹ				02B9

				ʺ				02BA

				ʻ				02BB

				ʼ				02BC

				ʽ				02BD

				ʾ				02BE

				ʿ				02BF

				ˀ				02C0

				ˁ				02C1

				˂				02C2

				˃				02C3

				˄				02C4

				˅				02C5

				ˆ				02C6

				ˇ				02C7

				ˈ				02C8

				ˉ				02C9

				ˊ				02CA

				ˋ				02CB

				ˌ				02CC

				ˍ				02CD

				ˎ				02CE

				ˏ				02CF

				ː				02D0

				ˑ				02D1

				˒				02D2

				˓				02D3

				˔				02D4

				˕				02D5

				˖				02D6

				˗				02D7

				˘				02D8

				˙				02D9

				˚				02DA

				˛				02DB

				˜				02DC

				˝				02DD

				˞				02DE

				˟				02DF

				ˠ				02E0

				ˡ				02E1

				ˢ				02E2

				ˣ				02E3

				ˤ				02E4

				˥				02E5

				˦				02E6

				˧				02E7

				˨				02E8

				˩				02E9

				˪				02EA

				˫				02EB

				ˬ				02EC

				˭				02ED

				ˮ				02EE

				̀				0300

				́				0301

				̂				0302

				̃				0303

				̄				0304

				̅				0305

				̆				0306

				̇				0307

				̈				0308

				̉				0309

				̊				030A

				̋				030B

				̌				030C

				̍				030D

				̎				030E

				̏				030F

				̐				0310

				̑				0311

				̒				0312

				̓				0313

				̔				0314

				̕				0315

				̖				0316

				̗				0317

				̘				0318

				̙				0319

				̚				031A

				̛				031B

				̜				031C

				̝				031D

				̞				031E

				̟				031F

				̠				0320

				̡				0321

				̢				0322

				̣				0323

				̤				0324

				̥				0325

				̦				0326

				̧				0327

				̨				0328

				̩				0329

				̪				032A

				̫				032B

				̬				032C

				̭				032D

				̮				032E

				̯				032F

				̰				0330

				̱				0331

				̲				0332

				̳				0333

				̴				0334

				̵				0335

				̶				0336

				̷				0337

				̸				0338

				̹				0339

				̺				033A

				̻				033B

				̼				033C

				̽				033D

				̾				033E

				̿				033F

				̀				0340

				́				0341

				͂				0342

				̓				0343

				̈́				0344

				ͅ				0345

				͆				0346

				͇				0347

				͈				0348

				͉				0349

				͊				034A

				͋				034B

				͌				034C

				͍				034D

				͎				034E

				͠				0360

				͡				0361

				͢				0362

				ʹ				0374

				͵				0375

				ͺ				037A

				;				037E

				΄				0384

				΅				0385

				Ά				0386

				·				0387

				Έ				0388

				Ή				0389

				Ί				038A

				Ό				038C

				Ύ				038E

				Ώ				038F

				ΐ				0390

				Α				0391

				Β				0392

				Γ				0393

				Δ				0394

				Ε				0395

				Ζ				0396

				Η				0397

				Θ				0398

				Ι				0399

				Κ				039A

				Λ				039B

				Μ				039C

				Ν				039D

				Ξ				039E

				Ο				039F

				Π				03A0

				Ρ				03A1

				Σ				03A3

				Τ				03A4

				Υ				03A5

				Φ				03A6

				Χ				03A7

				Ψ				03A8

				Ω				03A9

				Ϊ				03AA

				Ϋ				03AB

				ά				03AC

				έ				03AD

				ή				03AE

				ί				03AF

				ΰ				03B0

				α				03B1

				β				03B2

				γ				03B3

				δ				03B4

				ε				03B5

				ζ				03B6

				η				03B7

				θ				03B8

				ι				03B9

				κ				03BA

				λ				03BB

				μ				03BC

				ν				03BD

				ξ				03BE

				ο				03BF

				π				03C0

				ρ				03C1

				ς				03C2

				σ				03C3

				τ				03C4

				υ				03C5

				φ				03C6

				χ				03C7

				ψ				03C8

				ω				03C9

				ϊ				03CA

				ϋ				03CB

				ό				03CC

				ύ				03CD

				ώ				03CE

				ϐ				03D0

				ϑ				03D1

				ϒ				03D2

				ϓ				03D3

				ϔ				03D4

				ϕ				03D5

				ϖ				03D6

				ϗ				03D7

				Ϛ				03DA

				ϛ				03DB

				Ϝ				03DC

				ϝ				03DD

				Ϟ				03DE

				ϟ				03DF

				Ϡ				03E0

				ϡ				03E1

				Ϣ				03E2

				ϣ				03E3

				Ϥ				03E4

				ϥ				03E5

				Ϧ				03E6

				ϧ				03E7

				Ϩ				03E8

				ϩ				03E9

				Ϫ				03EA

				ϫ				03EB

				Ϭ				03EC

				ϭ				03ED

				Ϯ				03EE

				ϯ				03EF

				ϰ				03F0

				ϱ				03F1

				ϲ				03F2

				ϳ				03F3

				ϴ				03F4

				ϵ				03F5

				Ѐ				0400

				Ё				0401

				Ђ				0402

				Ѓ				0403

				Є				0404

				Ѕ				0405

				І				0406

				Ї				0407

				Ј				0408

				Љ				0409

				Њ				040A

				Ћ				040B

				Ќ				040C

				Ѝ				040D

				Ў				040E

				Џ				040F

				А				0410

				Б				0411

				В				0412

				Г				0413

				Д				0414

				Е				0415

				Ж				0416

				З				0417

				И				0418

				Й				0419

				К				041A

				Л				041B

				М				041C

				Н				041D

				О				041E

				П				041F

				Р				0420

				С				0421

				Т				0422

				У				0423

				Ф				0424

				Х				0425

				Ц				0426

				Ч				0427

				Ш				0428

				Щ				0429

				Ъ				042A

				Ы				042B

				Ь				042C

				Э				042D

				Ю				042E

				Я				042F

				а				0430

				б				0431

				в				0432

				г				0433

				д				0434

				е				0435

				ж				0436

				з				0437

				и				0438

				й				0439

				к				043A

				л				043B

				м				043C

				н				043D

				о				043E

				п				043F

				р				0440

				с				0441

				т				0442

				у				0443

				ф				0444

				х				0445

				ц				0446

				ч				0447

				ш				0448

				щ				0449

				ъ				044A

				ы				044B

				ь				044C

				э				044D

				ю				044E

				я				044F

				ѐ				0450

				ё				0451

				ђ				0452

				ѓ				0453

				є				0454

				ѕ				0455

				і				0456

				ї				0457

				ј				0458

				љ				0459

				њ				045A

				ћ				045B

				ќ				045C

				ѝ				045D

				ў				045E

				џ				045F

				Ѡ				0460

				ѡ				0461

				Ѣ				0462

				ѣ				0463

				Ѥ				0464

				ѥ				0465

				Ѧ				0466

				ѧ				0467

				Ѩ				0468

				ѩ				0469

				Ѫ				046A

				ѫ				046B

				Ѭ				046C

				ѭ				046D

				Ѯ				046E

				ѯ				046F

				Ѱ				0470

				ѱ				0471

				Ѳ				0472

				ѳ				0473

				Ѵ				0474

				ѵ				0475

				Ѷ				0476

				ѷ				0477

				Ѹ				0478

				ѹ				0479

				Ѻ				047A

				ѻ				047B

				Ѽ				047C

				ѽ				047D

				Ѿ				047E

				ѿ				047F

				Ҁ				0480

				ҁ				0481

				҂				0482

				҃				0483

				҄				0484

				҅				0485

				҆				0486

				҈				0488

				҉				0489

				Ҍ				048C

				ҍ				048D

				Ҏ				048E

				ҏ				048F

				Ґ				0490

				ґ				0491

				Ғ				0492

				ғ				0493

				Ҕ				0494

				ҕ				0495

				Җ				0496

				җ				0497

				Ҙ				0498

				ҙ				0499

				Қ				049A

				қ				049B

				Ҝ				049C

				ҝ				049D

				Ҟ				049E

				ҟ				049F

				Ҡ				04A0

				ҡ				04A1

				Ң				04A2

				ң				04A3

				Ҥ				04A4

				ҥ				04A5

				Ҧ				04A6

				ҧ				04A7

				Ҩ				04A8

				ҩ				04A9

				Ҫ				04AA

				ҫ				04AB

				Ҭ				04AC

				ҭ				04AD

				Ү				04AE

				ү				04AF

				Ұ				04B0

				ұ				04B1

				Ҳ				04B2

				ҳ				04B3

				Ҵ				04B4

				ҵ				04B5

				Ҷ				04B6

				ҷ				04B7

				Ҹ				04B8

				ҹ				04B9

				Һ				04BA

				һ				04BB

				Ҽ				04BC

				ҽ				04BD

				Ҿ				04BE

				ҿ				04BF

				Ӏ				04C0

				Ӂ				04C1

				ӂ				04C2

				Ӄ				04C3

				ӄ				04C4

				Ӈ				04C7

				ӈ				04C8

				Ӌ				04CB

				ӌ				04CC

				Ӑ				04D0

				ӑ				04D1

				Ӓ				04D2

				ӓ				04D3

				Ӕ				04D4

				ӕ				04D5

				Ӗ				04D6

				ӗ				04D7

				Ә				04D8

				ә				04D9

				Ӛ				04DA

				ӛ				04DB

				Ӝ				04DC

				ӝ				04DD

				Ӟ				04DE

				ӟ				04DF

				Ӡ				04E0

				ӡ				04E1

				Ӣ				04E2

				ӣ				04E3

				Ӥ				04E4

				ӥ				04E5

				Ӧ				04E6

				ӧ				04E7

				Ө				04E8

				ө				04E9

				Ӫ				04EA

				ӫ				04EB

				Ӭ				04EC

				ӭ				04ED

				Ӯ				04EE

				ӯ				04EF

				Ӱ				04F0

				ӱ				04F1

				Ӳ				04F2

				ӳ				04F3

				Ӵ				04F4

				ӵ				04F5

				Ӹ				04F8

				ӹ				04F9

				Ա				0531

				Բ				0532

				Գ				0533

				Դ				0534

				Ե				0535

				Զ				0536

				Է				0537

				Ը				0538

				Թ				0539

				Ժ				053A

				Ի				053B

				Լ				053C

				Խ				053D

				Ծ				053E

				Կ				053F

				Հ				0540

				Ձ				0541

				Ղ				0542

				Ճ				0543

				Մ				0544

				Յ				0545

				Ն				0546

				Շ				0547

				Ո				0548

				Չ				0549

				Պ				054A

				Ջ				054B

				Ռ				054C

				Ս				054D

				Վ				054E

				Տ				054F

				Ր				0550

				Ց				0551

				Ւ				0552

				Փ				0553

				Ք				0554

				Օ				0555

				Ֆ				0556

				ՙ				0559

				՚				055A

				՛				055B

				՜				055C

				՝				055D

				՞				055E

				՟				055F

				ա				0561

				բ				0562

				գ				0563

				դ				0564

				ե				0565

				զ				0566

				է				0567

				ը				0568

				թ				0569

				ժ				056A

				ի				056B

				լ				056C

				խ				056D

				ծ				056E

				կ				056F

				հ				0570

				ձ				0571

				ղ				0572

				ճ				0573

				մ				0574

				յ				0575

				ն				0576

				շ				0577

				ո				0578

				չ				0579

				պ				057A

				ջ				057B

				ռ				057C

				ս				057D

				վ				057E

				տ				057F

				ր				0580

				ց				0581

				ւ				0582

				փ				0583

				ք				0584

				օ				0585

				ֆ				0586

				և				0587

				։				0589

				֊				058A

				ְ				05B0

				ֱ				05B1

				ֲ				05B2

				ֳ				05B3

				ִ				05B4

				ֵ				05B5

				ֶ				05B6

				ַ				05B7

				ָ				05B8

				ֹ				05B9

				ֻ				05BB

				ּ				05BC

				ֽ				05BD

				־				05BE

				ֿ				05BF

				׀				05C0

				ׁ				05C1

				ׂ				05C2

				׃				05C3

				ׄ				05C4

				א				05D0

				ב				05D1

				ג				05D2

				ד				05D3

				ה				05D4

				ו				05D5

				ז				05D6

				ח				05D7

				ט				05D8

				י				05D9

				ך				05DA

				כ				05DB

				ל				05DC

				ם				05DD

				מ				05DE

				ן				05DF

				נ				05E0

				ס				05E1

				ע				05E2

				ף				05E3

				פ				05E4

				ץ				05E5

				צ				05E6

				ק				05E7

				ר				05E8

				ש				05E9

				ת				05EA

				װ				05F0

				ױ				05F1

				ײ				05F2

				׳				05F3

				״				05F4

				،				060C

				؛				061B

				؟				061F

				ء				0621

				آ				0622

				أ				0623

				ؤ				0624

				إ				0625

				ئ				0626

				ا				0627

				ب				0628

				ة				0629

				ت				062A

				ث				062B

				ج				062C

				ح				062D

				خ				062E

				د				062F

				ذ				0630

				ر				0631

				ز				0632

				س				0633

				ش				0634

				ص				0635

				ض				0636

				ط				0637

				ظ				0638

				ع				0639

				غ				063A

				ـ				0640

				ف				0641

				ق				0642

				ك				0643

				ل				0644

				م				0645

				ن				0646

				ه				0647

				و				0648

				ى				0649

				ي				064A

				ً				064B

				ٌ				064C

				ٍ				064D

				َ				064E

				ُ				064F

				ِ				0650

				ّ				0651

				ْ				0652

				ٔ				0654

				ٕ				0655

				٠				0660

				١				0661

				٢				0662

				٣				0663

				٤				0664

				٥				0665

				٦				0666

				٧				0667

				٨				0668

				٩				0669

				٪				066A

				پ				067E

				چ				0686

				ڎ				068E

				ڗ				0697

				ڟ				069F

				ڤ				06A4

				ک				06A9

				گ				06AF

				ก				0E01

				ข				0E02

				ฃ				0E03

				ค				0E04

				ฅ				0E05

				ฆ				0E06

				ง				0E07

				จ				0E08

				ฉ				0E09

				ช				0E0A

				ซ				0E0B

				ฌ				0E0C

				ญ				0E0D

				ฎ				0E0E

				ฏ				0E0F

				ฐ				0E10

				ฑ				0E11

				ฒ				0E12

				ณ				0E13

				ด				0E14

				ต				0E15

				ถ				0E16

				ท				0E17

				ธ				0E18

				น				0E19

				บ				0E1A

				ป				0E1B

				ผ				0E1C

				ฝ				0E1D

				พ				0E1E

				ฟ				0E1F

				ภ				0E20

				ม				0E21

				ย				0E22

				ร				0E23

				ฤ				0E24

				ล				0E25

				ฦ				0E26

				ว				0E27

				ศ				0E28

				ษ				0E29

				ส				0E2A

				ห				0E2B

				ฬ				0E2C

				อ				0E2D

				ฮ				0E2E

				ฯ				0E2F

				ะ				0E30

				ั				0E31

				า				0E32

				ำ				0E33

				ิ				0E34

				ี				0E35

				ึ				0E36

				ื				0E37

				ุ				0E38

				ู				0E39

				ฺ				0E3A

				฿				0E3F

				เ				0E40

				แ				0E41

				โ				0E42

				ใ				0E43

				ไ				0E44

				ๅ				0E45

				ๆ				0E46

				็				0E47

				่				0E48

				้				0E49

				๊				0E4A

				๋				0E4B

				์				0E4C

				ํ				0E4D

				๎				0E4E

				๏				0E4F

				๐				0E50

				๑				0E51

				๒				0E52

				๓				0E53

				๔				0E54

				๕				0E55

				๖				0E56

				๗				0E57

				๘				0E58

				๙				0E59

				๚				0E5A

				๛				0E5B

				ກ				0E81

				ຂ				0E82

				ຄ				0E84

				ງ				0E87

				ຈ				0E88

				ຊ				0E8A

				ຍ				0E8D

				ດ				0E94

				ຕ				0E95

				ຖ				0E96

				ທ				0E97

				ນ				0E99

				ບ				0E9A

				ປ				0E9B

				ຜ				0E9C

				ຝ				0E9D

				ພ				0E9E

				ຟ				0E9F

				ມ				0EA1

				ຢ				0EA2

				ຣ				0EA3

				ລ				0EA5

				ວ				0EA7

				ສ				0EAA

				ຫ				0EAB

				ອ				0EAD

				ຮ				0EAE

				ຯ				0EAF

				ະ				0EB0

				ັ				0EB1

				າ				0EB2

				ຳ				0EB3

				ິ				0EB4

				ີ				0EB5

				ຶ				0EB6

				ື				0EB7

				ົ				0EBB

				ຼ				0EBC

				ຽ				0EBD

				ເ				0EC0

				ແ				0EC1

				ໂ				0EC2

				ໃ				0EC3

				ໄ				0EC4

				ໆ				0EC6

				່				0EC8

				້				0EC9

				໊				0ECA

				໋				0ECB

				ໍ				0ECD

				໐				0ED0

				໑				0ED1

				໒				0ED2

				໓				0ED3

				໔				0ED4

				໕				0ED5

				໖				0ED6

				໗				0ED7

				໘				0ED8

				໙				0ED9

				ໜ				0EDC

				ໝ				0EDD

				Ⴀ				10A0

				Ⴁ				10A1

				Ⴂ				10A2

				Ⴃ				10A3

				Ⴄ				10A4

				Ⴅ				10A5

				Ⴆ				10A6

				Ⴇ				10A7

				Ⴈ				10A8

				Ⴉ				10A9

				Ⴊ				10AA

				Ⴋ				10AB

				Ⴌ				10AC

				Ⴍ				10AD

				Ⴎ				10AE

				Ⴏ				10AF

				Ⴐ				10B0

				Ⴑ				10B1

				Ⴒ				10B2

				Ⴓ				10B3

				Ⴔ				10B4

				Ⴕ				10B5

				Ⴖ				10B6

				Ⴗ				10B7

				Ⴘ				10B8

				Ⴙ				10B9

				Ⴚ				10BA

				Ⴛ				10BB

				Ⴜ				10BC

				Ⴝ				10BD

				Ⴞ				10BE

				Ⴟ				10BF

				Ⴠ				10C0

				Ⴡ				10C1

				Ⴢ				10C2

				Ⴣ				10C3

				Ⴤ				10C4

				Ⴥ				10C5

				ა				10D0

				ბ				10D1

				გ				10D2

				დ				10D3

				ე				10D4

				ვ				10D5

				ზ				10D6

				თ				10D7

				ი				10D8

				კ				10D9

				ლ				10DA

				მ				10DB

				ნ				10DC

				ო				10DD

				პ				10DE

				ჟ				10DF

				რ				10E0

				ს				10E1

				ტ				10E2

				უ				10E3

				ფ				10E4

				ქ				10E5

				ღ				10E6

				ყ				10E7

				შ				10E8

				ჩ				10E9

				ც				10EA

				ძ				10EB

				წ				10EC

				ჭ				10ED

				ხ				10EE

				ჯ				10EF

				ჰ				10F0

				ჱ				10F1

				ჲ				10F2

				ჳ				10F3

				ჴ				10F4

				ჵ				10F5

				ჶ				10F6

				჻				10FB

				ሀ				1200

				ሁ				1201

				ሂ				1202

				ሃ				1203

				ሄ				1204

				ህ				1205

				ሆ				1206

				ለ				1208

				ሉ				1209

				ሊ				120A

				ላ				120B

				ሌ				120C

				ል				120D

				ሎ				120E

				ሏ				120F

				ሐ				1210

				ሑ				1211

				ሒ				1212

				ሓ				1213

				ሔ				1214

				ሕ				1215

				ሖ				1216

				ሗ				1217

				መ				1218

				ሙ				1219

				ሚ				121A

				ማ				121B

				ሜ				121C

				ም				121D

				ሞ				121E

				ሟ				121F

				ሠ				1220

				ሡ				1221

				ሢ				1222

				ሣ				1223

				ሤ				1224

				ሥ				1225

				ሦ				1226

				ሧ				1227

				ረ				1228

				ሩ				1229

				ሪ				122A

				ራ				122B

				ሬ				122C

				ር				122D

				ሮ				122E

				ሯ				122F

				ሰ				1230

				ሱ				1231

				ሲ				1232

				ሳ				1233

				ሴ				1234

				ስ				1235

				ሶ				1236

				ሷ				1237

				ሸ				1238

				ሹ				1239

				ሺ				123A

				ሻ				123B

				ሼ				123C

				ሽ				123D

				ሾ				123E

				ሿ				123F

				ቀ				1240

				ቁ				1241

				ቂ				1242

				ቃ				1243

				ቄ				1244

				ቅ				1245

				ቆ				1246

				ቈ				1248

				ቊ				124A

				ቋ				124B

				ቌ				124C

				ቍ				124D

				ቐ				1250

				ቑ				1251

				ቒ				1252

				ቓ				1253

				ቔ				1254

				ቕ				1255

				ቖ				1256

				ቘ				1258

				ቚ				125A

				ቛ				125B

				ቜ				125C

				ቝ				125D

				በ				1260

				ቡ				1261

				ቢ				1262

				ባ				1263

				ቤ				1264

				ብ				1265

				ቦ				1266

				ቧ				1267

				ቨ				1268

				ቩ				1269

				ቪ				126A

				ቫ				126B

				ቬ				126C

				ቭ				126D

				ቮ				126E

				ቯ				126F

				ተ				1270

				ቱ				1271

				ቲ				1272

				ታ				1273

				ቴ				1274

				ት				1275

				ቶ				1276

				ቷ				1277

				ቸ				1278

				ቹ				1279

				ቺ				127A

				ቻ				127B

				ቼ				127C

				ች				127D

				ቾ				127E

				ቿ				127F

				ኀ				1280

				ኁ				1281

				ኂ				1282

				ኃ				1283

				ኄ				1284

				ኅ				1285

				ኆ				1286

				ኈ				1288

				ኊ				128A

				ኋ				128B

				ኌ				128C

				ኍ				128D

				ነ				1290

				ኑ				1291

				ኒ				1292

				ና				1293

				ኔ				1294

				ን				1295

				ኖ				1296

				ኗ				1297

				ኘ				1298

				ኙ				1299

				ኚ				129A

				ኛ				129B

				ኜ				129C

				ኝ				129D

				ኞ				129E

				ኟ				129F

				አ				12A0

				ኡ				12A1

				ኢ				12A2

				ኣ				12A3

				ኤ				12A4

				እ				12A5

				ኦ				12A6

				ኧ				12A7

				ከ				12A8

				ኩ				12A9

				ኪ				12AA

				ካ				12AB

				ኬ				12AC

				ክ				12AD

				ኮ				12AE

				ኰ				12B0

				ኲ				12B2

				ኳ				12B3

				ኴ				12B4

				ኵ				12B5

				ኸ				12B8

				ኹ				12B9

				ኺ				12BA

				ኻ				12BB

				ኼ				12BC

				ኽ				12BD

				ኾ				12BE

				ዀ				12C0

				ዂ				12C2

				ዃ				12C3

				ዄ				12C4

				ዅ				12C5

				ወ				12C8

				ዉ				12C9

				ዊ				12CA

				ዋ				12CB

				ዌ				12CC

				ው				12CD

				ዎ				12CE

				ዐ				12D0

				ዑ				12D1

				ዒ				12D2

				ዓ				12D3

				ዔ				12D4

				ዕ				12D5

				ዖ				12D6

				ዘ				12D8

				ዙ				12D9

				ዚ				12DA

				ዛ				12DB

				ዜ				12DC

				ዝ				12DD

				ዞ				12DE

				ዟ				12DF

				ዠ				12E0

				ዡ				12E1

				ዢ				12E2

				ዣ				12E3

				ዤ				12E4

				ዥ				12E5

				ዦ				12E6

				ዧ				12E7

				የ				12E8

				ዩ				12E9

				ዪ				12EA

				ያ				12EB

				ዬ				12EC

				ይ				12ED

				ዮ				12EE

				ደ				12F0

				ዱ				12F1

				ዲ				12F2

				ዳ				12F3

				ዴ				12F4

				ድ				12F5

				ዶ				12F6

				ዷ				12F7

				ዸ				12F8

				ዹ				12F9

				ዺ				12FA

				ዻ				12FB

				ዼ				12FC

				ዽ				12FD

				ዾ				12FE

				ዿ				12FF

				ጀ				1300

				ጁ				1301

				ጂ				1302

				ጃ				1303

				ጄ				1304

				ጅ				1305

				ጆ				1306

				ጇ				1307

				ገ				1308

				ጉ				1309

				ጊ				130A

				ጋ				130B

				ጌ				130C

				ግ				130D

				ጎ				130E

				ጐ				1310

				ጒ				1312

				ጓ				1313

				ጔ				1314

				ጕ				1315

				ጘ				1318

				ጙ				1319

				ጚ				131A

				ጛ				131B

				ጜ				131C

				ጝ				131D

				ጞ				131E

				ጠ				1320

				ጡ				1321

				ጢ				1322

				ጣ				1323

				ጤ				1324

				ጥ				1325

				ጦ				1326

				ጧ				1327

				ጨ				1328

				ጩ				1329

				ጪ				132A

				ጫ				132B

				ጬ				132C

				ጭ				132D

				ጮ				132E

				ጯ				132F

				ጰ				1330

				ጱ				1331

				ጲ				1332

				ጳ				1333

				ጴ				1334

				ጵ				1335

				ጶ				1336

				ጷ				1337

				ጸ				1338

				ጹ				1339

				ጺ				133A

				ጻ				133B

				ጼ				133C

				ጽ				133D

				ጾ				133E

				ጿ				133F

				ፀ				1340

				ፁ				1341

				ፂ				1342

				ፃ				1343

				ፄ				1344

				ፅ				1345

				ፆ				1346

				ፈ				1348

				ፉ				1349

				ፊ				134A

				ፋ				134B

				ፌ				134C

				ፍ				134D

				ፎ				134E

				ፏ				134F

				ፐ				1350

				ፑ				1351

				ፒ				1352

				ፓ				1353

				ፔ				1354

				ፕ				1355

				ፖ				1356

				ፗ				1357

				ፘ				1358

				ፙ				1359

				ፚ				135A

				፡				1361

				።				1362

				፣				1363

				፤				1364

				፥				1365

				፦				1366

				፧				1367

				፨				1368

				፩				1369

				፪				136A

				፫				136B

				፬				136C

				፭				136D

				፮				136E

				፯				136F

				፰				1370

				፱				1371

				፲				1372

				፳				1373

				፴				1374

				፵				1375

				፶				1376

				፷				1377

				፸				1378

				፹				1379

				፺				137A

				፻				137B

				፼				137C

				ᚠ				16A0

				ᚡ				16A1

				ᚢ				16A2

				ᚣ				16A3

				ᚤ				16A4

				ᚥ				16A5

				ᚦ				16A6

				ᚧ				16A7

				ᚨ				16A8

				ᚩ				16A9

				ᚪ				16AA

				ᚫ				16AB

				ᚬ				16AC

				ᚭ				16AD

				ᚮ				16AE

				ᚯ				16AF

				ᚰ				16B0

				ᚱ				16B1

				ᚲ				16B2

				ᚳ				16B3

				ᚴ				16B4

				ᚵ				16B5

				ᚶ				16B6

				ᚷ				16B7

				ᚸ				16B8

				ᚹ				16B9

				ᚺ				16BA

				ᚻ				16BB

				ᚼ				16BC

				ᚽ				16BD

				ᚾ				16BE

				ᚿ				16BF

				ᛀ				16C0

				ᛁ				16C1

				ᛂ				16C2

				ᛃ				16C3

				ᛄ				16C4

				ᛅ				16C5

				ᛆ				16C6

				ᛇ				16C7

				ᛈ				16C8

				ᛉ				16C9

				ᛊ				16CA

				ᛋ				16CB

				ᛌ				16CC

				ᛍ				16CD

				ᛎ				16CE

				ᛏ				16CF

				ᛐ				16D0

				ᛑ				16D1

				ᛒ				16D2

				ᛓ				16D3

				ᛔ				16D4

				ᛕ				16D5

				ᛖ				16D6

				ᛗ				16D7

				ᛘ				16D8

				ᛙ				16D9

				ᛚ				16DA

				ᛛ				16DB

				ᛜ				16DC

				ᛝ				16DD

				ᛞ				16DE

				ᛟ				16DF

				ᛠ				16E0

				ᛡ				16E1

				ᛢ				16E2

				ᛣ				16E3

				ᛤ				16E4

				ᛥ				16E5

				ᛦ				16E6

				ᛧ				16E7

				ᛨ				16E8

				ᛩ				16E9

				ᛪ				16EA

				᛫				16EB

				᛬				16EC

				᛭				16ED

				ᛮ				16EE

				ᛯ				16EF

				ᛰ				16F0

				Ḁ				1E00

				ḁ				1E01

				Ḃ				1E02

				ḃ				1E03

				Ḅ				1E04

				ḅ				1E05

				Ḇ				1E06

				ḇ				1E07

				Ḉ				1E08

				ḉ				1E09

				Ḋ				1E0A

				ḋ				1E0B

				Ḍ				1E0C

				ḍ				1E0D

				Ḏ				1E0E

				ḏ				1E0F

				Ḑ				1E10

				ḑ				1E11

				Ḓ				1E12

				ḓ				1E13

				Ḕ				1E14

				ḕ				1E15

				Ḗ				1E16

				ḗ				1E17

				Ḙ				1E18

				ḙ				1E19

				Ḛ				1E1A

				ḛ				1E1B

				Ḝ				1E1C

				ḝ				1E1D

				Ḟ				1E1E

				ḟ				1E1F

				Ḡ				1E20

				ḡ				1E21

				Ḣ				1E22

				ḣ				1E23

				Ḥ				1E24

				ḥ				1E25

				Ḧ				1E26

				ḧ				1E27

				Ḩ				1E28

				ḩ				1E29

				Ḫ				1E2A

				ḫ				1E2B

				Ḭ				1E2C

				ḭ				1E2D

				Ḯ				1E2E

				ḯ				1E2F

				Ḱ				1E30

				ḱ				1E31

				Ḳ				1E32

				ḳ				1E33

				Ḵ				1E34

				ḵ				1E35

				Ḷ				1E36

				ḷ				1E37

				Ḹ				1E38

				ḹ				1E39

				Ḻ				1E3A

				ḻ				1E3B

				Ḽ				1E3C

				ḽ				1E3D

				Ḿ				1E3E

				ḿ				1E3F

				Ṁ				1E40

				ṁ				1E41

				Ṃ				1E42

				ṃ				1E43

				Ṅ				1E44

				ṅ				1E45

				Ṇ				1E46

				ṇ				1E47

				Ṉ				1E48

				ṉ				1E49

				Ṋ				1E4A

				ṋ				1E4B

				Ṍ				1E4C

				ṍ				1E4D

				Ṏ				1E4E

				ṏ				1E4F

				Ṑ				1E50

				ṑ				1E51

				Ṓ				1E52

				ṓ				1E53

				Ṕ				1E54

				ṕ				1E55

				Ṗ				1E56

				ṗ				1E57

				Ṙ				1E58

				ṙ				1E59

				Ṛ				1E5A

				ṛ				1E5B

				Ṝ				1E5C

				ṝ				1E5D

				Ṟ				1E5E

				ṟ				1E5F

				Ṡ				1E60

				ṡ				1E61

				Ṣ				1E62

				ṣ				1E63

				Ṥ				1E64

				ṥ				1E65

				Ṧ				1E66

				ṧ				1E67

				Ṩ				1E68

				ṩ				1E69

				Ṫ				1E6A

				ṫ				1E6B

				Ṭ				1E6C

				ṭ				1E6D

				Ṯ				1E6E

				ṯ				1E6F

				Ṱ				1E70

				ṱ				1E71

				Ṳ				1E72

				ṳ				1E73

				Ṵ				1E74

				ṵ				1E75

				Ṷ				1E76

				ṷ				1E77

				Ṹ				1E78

				ṹ				1E79

				Ṻ				1E7A

				ṻ				1E7B

				Ṽ				1E7C

				ṽ				1E7D

				Ṿ				1E7E

				ṿ				1E7F

				Ẁ				1E80

				ẁ				1E81

				Ẃ				1E82

				ẃ				1E83

				Ẅ				1E84

				ẅ				1E85

				Ẇ				1E86

				ẇ				1E87

				Ẉ				1E88

				ẉ				1E89

				Ẋ				1E8A

				ẋ				1E8B

				Ẍ				1E8C

				ẍ				1E8D

				Ẏ				1E8E

				ẏ				1E8F

				Ẑ				1E90

				ẑ				1E91

				Ẓ				1E92

				ẓ				1E93

				Ẕ				1E94

				ẕ				1E95

				ẖ				1E96

				ẗ				1E97

				ẘ				1E98

				ẙ				1E99

				ẚ				1E9A

				ẛ				1E9B

				Ạ				1EA0

				ạ				1EA1

				Ả				1EA2

				ả				1EA3

				Ấ				1EA4

				ấ				1EA5

				Ầ				1EA6

				ầ				1EA7

				Ẩ				1EA8

				ẩ				1EA9

				Ẫ				1EAA

				ẫ				1EAB

				Ậ				1EAC

				ậ				1EAD

				Ắ				1EAE

				ắ				1EAF

				Ằ				1EB0

				ằ				1EB1

				Ẳ				1EB2

				ẳ				1EB3

				Ẵ				1EB4

				ẵ				1EB5

				Ặ				1EB6

				ặ				1EB7

				Ẹ				1EB8

				ẹ				1EB9

				Ẻ				1EBA

				ẻ				1EBB

				Ẽ				1EBC

				ẽ				1EBD

				Ế				1EBE

				ế				1EBF

				Ề				1EC0

				ề				1EC1

				Ể				1EC2

				ể				1EC3

				Ễ				1EC4

				ễ				1EC5

				Ệ				1EC6

				ệ				1EC7

				Ỉ				1EC8

				ỉ				1EC9

				Ị				1ECA

				ị				1ECB

				Ọ				1ECC

				ọ				1ECD

				Ỏ				1ECE

				ỏ				1ECF

				Ố				1ED0

				ố				1ED1

				Ồ				1ED2

				ồ				1ED3

				Ổ				1ED4

				ổ				1ED5

				Ỗ				1ED6

				ỗ				1ED7

				Ộ				1ED8

				ộ				1ED9

				Ớ				1EDA

				ớ				1EDB

				Ờ				1EDC

				ờ				1EDD

				Ở				1EDE

				ở				1EDF

				Ỡ				1EE0

				ỡ				1EE1

				Ợ				1EE2

				ợ				1EE3

				Ụ				1EE4

				ụ				1EE5

				Ủ				1EE6

				ủ				1EE7

				Ứ				1EE8

				ứ				1EE9

				Ừ				1EEA

				ừ				1EEB

				Ử				1EEC

				ử				1EED

				Ữ				1EEE

				ữ				1EEF

				Ự				1EF0

				ự				1EF1

				Ỳ				1EF2

				ỳ				1EF3

				Ỵ				1EF4

				ỵ				1EF5

				Ỷ				1EF6

				ỷ				1EF7

				Ỹ				1EF8

				ỹ				1EF9

				ἀ				1F00

				ἁ				1F01

				ἂ				1F02

				ἃ				1F03

				ἄ				1F04

				ἅ				1F05

				ἆ				1F06

				ἇ				1F07

				Ἀ				1F08

				Ἁ				1F09

				Ἂ				1F0A

				Ἃ				1F0B

				Ἄ				1F0C

				Ἅ				1F0D

				Ἆ				1F0E

				Ἇ				1F0F

				ἐ				1F10

				ἑ				1F11

				ἒ				1F12

				ἓ				1F13

				ἔ				1F14

				ἕ				1F15

				Ἐ				1F18

				Ἑ				1F19

				Ἒ				1F1A

				Ἓ				1F1B

				Ἔ				1F1C

				Ἕ				1F1D

				ἠ				1F20

				ἡ				1F21

				ἢ				1F22

				ἣ				1F23

				ἤ				1F24

				ἥ				1F25

				ἦ				1F26

				ἧ				1F27

				Ἠ				1F28

				Ἡ				1F29

				Ἢ				1F2A

				Ἣ				1F2B

				Ἤ				1F2C

				Ἥ				1F2D

				Ἦ				1F2E

				Ἧ				1F2F

				ἰ				1F30

				ἱ				1F31

				ἲ				1F32

				ἳ				1F33

				ἴ				1F34

				ἵ				1F35

				ἶ				1F36

				ἷ				1F37

				Ἰ				1F38

				Ἱ				1F39

				Ἲ				1F3A

				Ἳ				1F3B

				Ἴ				1F3C

				Ἵ				1F3D

				Ἶ				1F3E

				Ἷ				1F3F

				ὀ				1F40

				ὁ				1F41

				ὂ				1F42

				ὃ				1F43

				ὄ				1F44

				ὅ				1F45

				Ὀ				1F48

				Ὁ				1F49

				Ὂ				1F4A

				Ὃ				1F4B

				Ὄ				1F4C

				Ὅ				1F4D

				ὐ				1F50

				ὑ				1F51

				ὒ				1F52

				ὓ				1F53

				ὔ				1F54

				ὕ				1F55

				ὖ				1F56

				ὗ				1F57

				Ὑ				1F59

				Ὓ				1F5B

				Ὕ				1F5D

				Ὗ				1F5F

				ὠ				1F60

				ὡ				1F61

				ὢ				1F62

				ὣ				1F63

				ὤ				1F64

				ὥ				1F65

				ὦ				1F66

				ὧ				1F67

				Ὠ				1F68

				Ὡ				1F69

				Ὢ				1F6A

				Ὣ				1F6B

				Ὤ				1F6C

				Ὥ				1F6D

				Ὦ				1F6E

				Ὧ				1F6F

				ὰ				1F70

				ά				1F71

				ὲ				1F72

				έ				1F73

				ὴ				1F74

				ή				1F75

				ὶ				1F76

				ί				1F77

				ὸ				1F78

				ό				1F79

				ὺ				1F7A

				ύ				1F7B

				ὼ				1F7C

				ώ				1F7D

				ᾀ				1F80

				ᾁ				1F81

				ᾂ				1F82

				ᾃ				1F83

				ᾄ				1F84

				ᾅ				1F85

				ᾆ				1F86

				ᾇ				1F87

				ᾈ				1F88

				ᾉ				1F89

				ᾊ				1F8A

				ᾋ				1F8B

				ᾌ				1F8C

				ᾍ				1F8D

				ᾎ				1F8E

				ᾏ				1F8F

				ᾐ				1F90

				ᾑ				1F91

				ᾒ				1F92

				ᾓ				1F93

				ᾔ				1F94

				ᾕ				1F95

				ᾖ				1F96

				ᾗ				1F97

				ᾘ				1F98

				ᾙ				1F99

				ᾚ				1F9A

				ᾛ				1F9B

				ᾜ				1F9C

				ᾝ				1F9D

				ᾞ				1F9E

				ᾟ				1F9F

				ᾠ				1FA0

				ᾡ				1FA1

				ᾢ				1FA2

				ᾣ				1FA3

				ᾤ				1FA4

				ᾥ				1FA5

				ᾦ				1FA6

				ᾧ				1FA7

				ᾨ				1FA8

				ᾩ				1FA9

				ᾪ				1FAA

				ᾫ				1FAB

				ᾬ				1FAC

				ᾭ				1FAD

				ᾮ				1FAE

				ᾯ				1FAF

				ᾰ				1FB0

				ᾱ				1FB1

				ᾲ				1FB2

				ᾳ				1FB3

				ᾴ				1FB4

				ᾶ				1FB6

				ᾷ				1FB7

				Ᾰ				1FB8

				Ᾱ				1FB9

				Ὰ				1FBA

				Ά				1FBB

				ᾼ				1FBC

				᾽				1FBD

				ι				1FBE

				᾿				1FBF

				῀				1FC0

				῁				1FC1

				ῂ				1FC2

				ῃ				1FC3

				ῄ				1FC4

				ῆ				1FC6

				ῇ				1FC7

				Ὲ				1FC8

				Έ				1FC9

				Ὴ				1FCA

				Ή				1FCB

				ῌ				1FCC

				῍				1FCD

				῎				1FCE

				῏				1FCF

				ῐ				1FD0

				ῑ				1FD1

				ῒ				1FD2

				ΐ				1FD3

				ῖ				1FD6

				ῗ				1FD7

				Ῐ				1FD8

				Ῑ				1FD9

				Ὶ				1FDA

				Ί				1FDB

				῝				1FDD

				῞				1FDE

				῟				1FDF

				ῠ				1FE0

				ῡ				1FE1

				ῢ				1FE2

				ΰ				1FE3

				ῤ				1FE4

				ῥ				1FE5

				ῦ				1FE6

				ῧ				1FE7

				Ῠ				1FE8

				Ῡ				1FE9

				Ὺ				1FEA

				Ύ				1FEB

				Ῥ				1FEC

				῭				1FED

				΅				1FEE

				`				1FEF

				ῲ				1FF2

				ῳ				1FF3

				ῴ				1FF4

				ῶ				1FF6

				ῷ				1FF7

				Ὸ				1FF8

				Ό				1FF9

				Ὼ				1FFA

				Ώ				1FFB

				ῼ				1FFC

				´				1FFD

				῾				1FFE

				 				2000

				 				2001

				 				2002

				 				2003

				 				2004

				 				2005

				 				2006

				 				2007

				 				2008

				 				2009

				 				200A

				‐				2010

				‑				2011

				‒				2012

				–				2013

				—				2014

				―				2015

				‖				2016

				‗				2017

				‘				2018

				’				2019

				‚				201A

				‛				201B

				“				201C

				”				201D

				„				201E

				‟				201F

				†				2020

				‡				2021

				•				2022

				‣				2023

				․				2024

				‥				2025

				…				2026

				‧				2027

				 				202F

				‰				2030

				‱				2031

				′				2032

				″				2033

				‴				2034

				‵				2035

				‶				2036

				‷				2037

				‸				2038

				‹				2039

				›				203A

				※				203B

				‼				203C

				‽				203D

				‾				203E

				‿				203F

				⁀				2040

				⁁				2041

				⁂				2042

				⁃				2043

				⁄				2044

				⁅				2045

				⁆				2046

				⁈				2048

				⁉				2049

				⁊				204A

				⁋				204B

				⁌				204C

				⁍				204D

				⁰				2070

				⁴				2074

				⁵				2075

				⁶				2076

				⁷				2077

				⁸				2078

				⁹				2079

				⁺				207A

				⁻				207B

				⁼				207C

				⁽				207D

				⁾				207E

				ⁿ				207F

				₀				2080

				₁				2081

				₂				2082

				₃				2083

				₄				2084

				₅				2085

				₆				2086

				₇				2087

				₈				2088

				₉				2089

				₊				208A

				₋				208B

				₌				208C

				₍				208D

				₎				208E

				₠				20A0

				₡				20A1

				₢				20A2

				₣				20A3

				₤				20A4

				₥				20A5

				₦				20A6

				₧				20A7

				₨				20A8

				₩				20A9

				₪				20AA

				₫				20AB

				€				20AC

				₭				20AD

				₮				20AE

				₯				20AF

				⃐				20D0

				⃑				20D1

				⃒				20D2

				⃓				20D3

				⃔				20D4

				⃕				20D5

				⃖				20D6

				⃗				20D7

				⃘				20D8

				⃙				20D9

				⃚				20DA

				⃛				20DB

				⃜				20DC

				⃝				20DD

				⃟				20DF

				⃠				20E0

				⃡				20E1

				⃢				20E2

				⃣				20E3

				℀				2100

				℁				2101

				ℂ				2102

				℃				2103

				℄				2104

				℅				2105

				℆				2106

				ℇ				2107

				℈				2108

				℉				2109

				ℊ				210A

				ℋ				210B

				ℌ				210C

				ℍ				210D

				ℎ				210E

				ℏ				210F

				ℐ				2110

				ℑ				2111

				ℒ				2112

				ℓ				2113

				℔				2114

				ℕ				2115

				№				2116

				℗				2117

				℘				2118

				ℙ				2119

				ℚ				211A

				ℛ				211B

				ℜ				211C

				ℝ				211D

				℞				211E

				℟				211F

				℠				2120

				℡				2121

				™				2122

				℣				2123

				ℤ				2124

				℥				2125

				Ω				2126

				℧				2127

				ℨ				2128

				℩				2129

				K				212A

				Å				212B

				ℬ				212C

				ℭ				212D

				℮				212E

				ℯ				212F

				ℰ				2130

				ℱ				2131

				Ⅎ				2132

				ℳ				2133

				ℴ				2134

				ℵ				2135

				ℶ				2136

				ℷ				2137

				ℸ				2138

				ℹ				2139

				℺				213A

				⅓				2153

				⅔				2154

				⅕				2155

				⅖				2156

				⅗				2157

				⅘				2158

				⅙				2159

				⅚				215A

				⅛				215B

				⅜				215C

				⅝				215D

				⅞				215E

				⅟				215F

				Ⅰ				2160

				Ⅱ				2161

				Ⅲ				2162

				Ⅳ				2163

				Ⅴ				2164

				Ⅵ				2165

				Ⅶ				2166

				Ⅷ				2167

				Ⅸ				2168

				Ⅹ				2169

				Ⅺ				216A

				Ⅻ				216B

				Ⅼ				216C

				Ⅽ				216D

				Ⅾ				216E

				Ⅿ				216F

				ⅰ				2170

				ⅱ				2171

				ⅲ				2172

				ⅳ				2173

				ⅴ				2174

				ⅵ				2175

				ⅶ				2176

				ⅷ				2177

				ⅸ				2178

				ⅹ				2179

				ⅺ				217A

				ⅻ				217B

				ⅼ				217C

				ⅽ				217D

				ⅾ				217E

				ⅿ				217F

				ↀ				2180

				ↁ				2181

				ↂ				2182

				Ↄ				2183

				←				2190

				↑				2191

				→				2192

				↓				2193

				↔				2194

				↕				2195

				↖				2196

				↗				2197

				↘				2198

				↙				2199

				↚				219A

				↛				219B

				↜				219C

				↝				219D

				↞				219E

				↟				219F

				↠				21A0

				↡				21A1

				↢				21A2

				↣				21A3

				↤				21A4

				↥				21A5

				↦				21A6

				↧				21A7

				↨				21A8

				↩				21A9

				↪				21AA

				↫				21AB

				↬				21AC

				↭				21AD

				↮				21AE

				↯				21AF

				↰				21B0

				↱				21B1

				↲				21B2

				↳				21B3

				↴				21B4

				↵				21B5

				↶				21B6

				↷				21B7

				↸				21B8

				↹				21B9

				↺				21BA

				↻				21BB

				↼				21BC

				↽				21BD

				↾				21BE

				↿				21BF

				⇀				21C0

				⇁				21C1

				⇂				21C2

				⇃				21C3

				⇄				21C4

				⇅				21C5

				⇆				21C6

				⇇				21C7

				⇈				21C8

				⇉				21C9

				⇊				21CA

				⇋				21CB

				⇌				21CC

				⇍				21CD

				⇎				21CE

				⇏				21CF

				⇐				21D0

				⇑				21D1

				⇒				21D2

				⇓				21D3

				⇔				21D4

				⇕				21D5

				⇖				21D6

				⇗				21D7

				⇘				21D8

				⇙				21D9

				⇚				21DA

				⇛				21DB

				⇜				21DC

				⇝				21DD

				⇞				21DE

				⇟				21DF

				⇠				21E0

				⇡				21E1

				⇢				21E2

				⇣				21E3

				⇤				21E4

				⇥				21E5

				⇦				21E6

				⇧				21E7

				⇨				21E8

				⇩				21E9

				⇪				21EA

				⇫				21EB

				⇬				21EC

				⇭				21ED

				⇮				21EE

				⇯				21EF

				⇰				21F0

				⇱				21F1

				⇲				21F2

				⇳				21F3

				∀				2200

				∁				2201

				∂				2202

				∃				2203

				∄				2204

				∅				2205

				∆				2206

				∇				2207

				∈				2208

				∉				2209

				∊				220A

				∋				220B

				∌				220C

				∍				220D

				∎				220E

				∏				220F

				∐				2210

				∑				2211

				−				2212

				∓				2213

				∔				2214

				∕				2215

				∖				2216

				∗				2217

				∘				2218

				∙				2219

				√				221A

				∛				221B

				∜				221C

				∝				221D

				∞				221E

				∟				221F

				∠				2220

				∡				2221

				∢				2222

				∣				2223

				∤				2224

				∥				2225

				∦				2226

				∧				2227

				∨				2228

				∩				2229

				∪				222A

				∫				222B

				∬				222C

				∭				222D

				∮				222E

				∯				222F

				∰				2230

				∱				2231

				∲				2232

				∳				2233

				∴				2234

				∵				2235

				∶				2236

				∷				2237

				∸				2238

				∹				2239

				∺				223A

				∻				223B

				∼				223C

				∽				223D

				∾				223E

				∿				223F

				≀				2240

				≁				2241

				≂				2242

				≃				2243

				≄				2244

				≅				2245

				≆				2246

				≇				2247

				≈				2248

				≉				2249

				≊				224A

				≋				224B

				≌				224C

				≍				224D

				≎				224E

				≏				224F

				≐				2250

				≑				2251

				≒				2252

				≓				2253

				≔				2254

				≕				2255

				≖				2256

				≗				2257

				≘				2258

				≙				2259

				≚				225A

				≛				225B

				≜				225C

				≝				225D

				≞				225E

				≟				225F

				≠				2260

				≡				2261

				≢				2262

				≣				2263

				≤				2264

				≥				2265

				≦				2266

				≧				2267

				≨				2268

				≩				2269

				≪				226A

				≫				226B

				≬				226C

				≭				226D

				≮				226E

				≯				226F

				≰				2270

				≱				2271

				≲				2272

				≳				2273

				≴				2274

				≵				2275

				≶				2276

				≷				2277

				≸				2278

				≹				2279

				≺				227A

				≻				227B

				≼				227C

				≽				227D

				≾				227E

				≿				227F

				⊀				2280

				⊁				2281

				⊂				2282

				⊃				2283

				⊄				2284

				⊅				2285

				⊆				2286

				⊇				2287

				⊈				2288

				⊉				2289

				⊊				228A

				⊋				228B

				⊌				228C

				⊍				228D

				⊎				228E

				⊏				228F

				⊐				2290

				⊑				2291

				⊒				2292

				⊓				2293

				⊔				2294

				⊕				2295

				⊖				2296

				⊗				2297

				⊘				2298

				⊙				2299

				⊚				229A

				⊛				229B

				⊜				229C

				⊝				229D

				⊞				229E

				⊟				229F

				⊠				22A0

				⊡				22A1

				⊢				22A2

				⊣				22A3

				⊤				22A4

				⊥				22A5

				⊦				22A6

				⊧				22A7

				⊨				22A8

				⊩				22A9

				⊪				22AA

				⊫				22AB

				⊬				22AC

				⊭				22AD

				⊮				22AE

				⊯				22AF

				⊰				22B0

				⊱				22B1

				⊲				22B2

				⊳				22B3

				⊴				22B4

				⊵				22B5

				⊶				22B6

				⊷				22B7

				⊸				22B8

				⊹				22B9

				⊺				22BA

				⊻				22BB

				⊼				22BC

				⊽				22BD

				⊾				22BE

				⊿				22BF

				⋀				22C0

				⋁				22C1

				⋂				22C2

				⋃				22C3

				⋄				22C4

				⋅				22C5

				⋆				22C6

				⋇				22C7

				⋈				22C8

				⋉				22C9

				⋊				22CA

				⋋				22CB

				⋌				22CC

				⋍				22CD

				⋎				22CE

				⋏				22CF

				⋐				22D0

				⋑				22D1

				⋒				22D2

				⋓				22D3

				⋔				22D4

				⋕				22D5

				⋖				22D6

				⋗				22D7

				⋘				22D8

				⋙				22D9

				⋚				22DA

				⋛				22DB

				⋜				22DC

				⋝				22DD

				⋞				22DE

				⋟				22DF

				⋠				22E0

				⋡				22E1

				⋢				22E2

				⋣				22E3

				⋤				22E4

				⋥				22E5

				⋦				22E6

				⋧				22E7

				⋨				22E8

				⋩				22E9

				⋪				22EA

				⋫				22EB

				⋬				22EC

				⋭				22ED

				⋮				22EE

				⋯				22EF

				⋰				22F0

				⋱				22F1

				⌀				2300

				⌁				2301

				⌂				2302

				⌃				2303

				⌄				2304

				⌅				2305

				⌆				2306

				⌇				2307

				⌈				2308

				⌉				2309

				⌊				230A

				⌋				230B

				⌌				230C

				⌍				230D

				⌎				230E

				⌏				230F

				⌐				2310

				⌑				2311

				⌒				2312

				⌓				2313

				⌔				2314

				⌕				2315

				⌖				2316

				⌗				2317

				⌘				2318

				⌙				2319

				⌚				231A

				⌛				231B

				⌜				231C

				⌝				231D

				⌞				231E

				⌟				231F

				⌠				2320

				⌡				2321

				⌢				2322

				⌣				2323

				⌤				2324

				⌥				2325

				⌦				2326

				⌧				2327

				⌨				2328

				〈				2329

				〉				232A

				⌫				232B

				⌬				232C

				⌭				232D

				⌮				232E

				⌯				232F

				⌰				2330

				⌱				2331

				⌲				2332

				⌳				2333

				⌴				2334

				⌵				2335

				⌶				2336

				⌷				2337

				⌸				2338

				⌹				2339

				⌺				233A

				⌻				233B

				⌼				233C

				⌽				233D

				⌾				233E

				⌿				233F

				⍀				2340

				⍁				2341

				⍂				2342

				⍃				2343

				⍄				2344

				⍅				2345

				⍆				2346

				⍇				2347

				⍈				2348

				⍉				2349

				⍊				234A

				⍋				234B

				⍌				234C

				⍍				234D

				⍎				234E

				⍏				234F

				⍐				2350

				⍑				2351

				⍒				2352

				⍓				2353

				⍔				2354

				⍕				2355

				⍖				2356

				⍗				2357

				⍘				2358

				⍙				2359

				⍚				235A

				⍛				235B

				⍜				235C

				⍝				235D

				⍞				235E

				⍟				235F

				⍠				2360

				⍡				2361

				⍢				2362

				⍣				2363

				⍤				2364

				⍥				2365

				⍦				2366

				⍧				2367

				⍨				2368

				⍩				2369

				⍪				236A

				⍫				236B

				⍬				236C

				⍭				236D

				⍮				236E

				⍯				236F

				⍰				2370

				⍱				2371

				⍲				2372

				⍳				2373

				⍴				2374

				⍵				2375

				⍶				2376

				⍷				2377

				⍸				2378

				⍹				2379

				⍺				237A

				⍻				237B

				⍼				237C

				⍽				237D

				⍾				237E

				⍿				237F

				⎀				2380

				⎁				2381

				⎂				2382

				⎃				2383

				⎄				2384

				⎅				2385

				⎆				2386

				⎇				2387

				⎈				2388

				⎉				2389

				⎊				238A

				⎋				238B

				⎌				238C

				⎍				238D

				⎎				238E

				⎏				238F

				⎐				2390

				⎑				2391

				⎒				2392

				⎓				2393

				⎔				2394

				⎕				2395

				⎖				2396

				⎗				2397

				⎘				2398

				⎙				2399

				⎚				239A

				⎺				23BA

				⎻				23BB

				⎼				23BC

				⎽				23BD

				␀				2400

				␁				2401

				␂				2402

				␃				2403

				␄				2404

				␅				2405

				␆				2406

				␇				2407

				␈				2408

				␉				2409

				␊				240A

				␋				240B

				␌				240C

				␍				240D

				␎				240E

				␏				240F

				␐				2410

				␑				2411

				␒				2412

				␓				2413

				␔				2414

				␕				2415

				␖				2416

				␗				2417

				␘				2418

				␙				2419

				␚				241A

				␛				241B

				␜				241C

				␝				241D

				␞				241E

				␟				241F

				␠				2420

				␡				2421

				␢				2422

				␣				2423

				␤				2424

				␥				2425

				␦				2426

				⑀				2440

				⑁				2441

				⑂				2442

				⑃				2443

				⑄				2444

				⑅				2445

				⑆				2446

				⑇				2447

				⑈				2448

				⑉				2449

				⑊				244A

				①				2460

				②				2461

				③				2462

				④				2463

				⑤				2464

				⑥				2465

				⑦				2466

				⑧				2467

				⑨				2468

				⑩				2469

				⑪				246A

				⑫				246B

				⑬				246C

				⑭				246D

				⑮				246E

				⑯				246F

				⑰				2470

				⑱				2471

				⑲				2472

				⑳				2473

				⑴				2474

				⑵				2475

				⑶				2476

				⑷				2477

				⑸				2478

				⑹				2479

				⑺				247A

				⑻				247B

				⑼				247C

				⑽				247D

				⑾				247E

				⑿				247F

				⒀				2480

				⒁				2481

				⒂				2482

				⒃				2483

				⒄				2484

				⒅				2485

				⒆				2486

				⒇				2487

				⒈				2488

				⒉				2489

				⒊				248A

				⒋				248B

				⒌				248C

				⒍				248D

				⒎				248E

				⒏				248F

				⒐				2490

				⒑				2491

				⒒				2492

				⒓				2493

				⒔				2494

				⒕				2495

				⒖				2496

				⒗				2497

				⒘				2498

				⒙				2499

				⒚				249A

				⒛				249B

				⒜				249C

				⒝				249D

				⒞				249E

				⒟				249F

				⒠				24A0

				⒡				24A1

				⒢				24A2

				⒣				24A3

				⒤				24A4

				⒥				24A5

				⒦				24A6

				⒧				24A7

				⒨				24A8

				⒩				24A9

				⒪				24AA

				⒫				24AB

				⒬				24AC

				⒭				24AD

				⒮				24AE

				⒯				24AF

				⒰				24B0

				⒱				24B1

				⒲				24B2

				⒳				24B3

				⒴				24B4

				⒵				24B5

				Ⓐ				24B6

				Ⓑ				24B7

				Ⓒ				24B8

				Ⓓ				24B9

				Ⓔ				24BA

				Ⓕ				24BB

				Ⓖ				24BC

				Ⓗ				24BD

				Ⓘ				24BE

				Ⓙ				24BF

				Ⓚ				24C0

				Ⓛ				24C1

				Ⓜ				24C2

				Ⓝ				24C3

				Ⓞ				24C4

				Ⓟ				24C5

				Ⓠ				24C6

				Ⓡ				24C7

				Ⓢ				24C8

				Ⓣ				24C9

				Ⓤ				24CA

				Ⓥ				24CB

				Ⓦ				24CC

				Ⓧ				24CD

				Ⓨ				24CE

				Ⓩ				24CF

				ⓐ				24D0

				ⓑ				24D1

				ⓒ				24D2

				ⓓ				24D3

				ⓔ				24D4

				ⓕ				24D5

				ⓖ				24D6

				ⓗ				24D7

				ⓘ				24D8

				ⓙ				24D9

				ⓚ				24DA

				ⓛ				24DB

				ⓜ				24DC

				ⓝ				24DD

				ⓞ				24DE

				ⓟ				24DF

				ⓠ				24E0

				ⓡ				24E1

				ⓢ				24E2

				ⓣ				24E3

				ⓤ				24E4

				ⓥ				24E5

				ⓦ				24E6

				ⓧ				24E7

				ⓨ				24E8

				ⓩ				24E9

				⓪				24EA

				─				2500

				━				2501

				│				2502

				┃				2503

				┄				2504

				┅				2505

				┆				2506

				┇				2507

				┈				2508

				┉				2509

				┊				250A

				┋				250B

				┌				250C

				┍				250D

				┎				250E

				┏				250F

				┐				2510

				┑				2511

				┒				2512

				┓				2513

				└				2514

				┕				2515

				┖				2516

				┗				2517

				┘				2518

				┙				2519

				┚				251A

				┛				251B

				├				251C

				┝				251D

				┞				251E

				┟				251F

				┠				2520

				┡				2521

				┢				2522

				┣				2523

				┤				2524

				┥				2525

				┦				2526

				┧				2527

				┨				2528

				┩				2529

				┪				252A

				┫				252B

				┬				252C

				┭				252D

				┮				252E

				┯				252F

				┰				2530

				┱				2531

				┲				2532

				┳				2533

				┴				2534

				┵				2535

				┶				2536

				┷				2537

				┸				2538

				┹				2539

				┺				253A

				┻				253B

				┼				253C

				┽				253D

				┾				253E

				┿				253F

				╀				2540

				╁				2541

				╂				2542

				╃				2543

				╄				2544

				╅				2545

				╆				2546

				╇				2547

				╈				2548

				╉				2549

				╊				254A

				╋				254B

				╌				254C

				╍				254D

				╎				254E

				╏				254F

				═				2550

				║				2551

				╒				2552

				╓				2553

				╔				2554

				╕				2555

				╖				2556

				╗				2557

				╘				2558

				╙				2559

				╚				255A

				╛				255B

				╜				255C

				╝				255D

				╞				255E

				╟				255F

				╠				2560

				╡				2561

				╢				2562

				╣				2563

				╤				2564

				╥				2565

				╦				2566

				╧				2567

				╨				2568

				╩				2569

				╪				256A

				╫				256B

				╬				256C

				╭				256D

				╮				256E

				╯				256F

				╰				2570

				╱				2571

				╲				2572

				╳				2573

				╴				2574

				╵				2575

				╶				2576

				╷				2577

				╸				2578

				╹				2579

				╺				257A

				╻				257B

				╼				257C

				╽				257D

				╾				257E

				╿				257F

				▀				2580

				▁				2581

				▂				2582

				▃				2583

				▄				2584

				▅				2585

				▆				2586

				▇				2587

				█				2588

				▉				2589

				▊				258A

				▋				258B

				▌				258C

				▍				258D

				▎				258E

				▏				258F

				▐				2590

				░				2591

				▒				2592

				▓				2593

				▔				2594

				▕				2595

				■				25A0

				□				25A1

				▢				25A2

				▣				25A3

				▤				25A4

				▥				25A5

				▦				25A6

				▧				25A7

				▨				25A8

				▩				25A9

				▪				25AA

				▫				25AB

				▬				25AC

				▭				25AD

				▮				25AE

				▯				25AF

				▰				25B0

				▱				25B1

				▲				25B2

				△				25B3

				▴				25B4

				▵				25B5

				▶				25B6

				▷				25B7

				▸				25B8

				▹				25B9

				►				25BA

				▻				25BB

				▼				25BC

				▽				25BD

				▾				25BE

				▿				25BF

				◀				25C0

				◁				25C1

				◂				25C2

				◃				25C3

				◄				25C4

				◅				25C5

				◆				25C6

				◇				25C7

				◈				25C8

				◉				25C9

				◊				25CA

				○				25CB

				◌				25CC

				◍				25CD

				◎				25CE

				●				25CF

				◐				25D0

				◑				25D1

				◒				25D2

				◓				25D3

				◔				25D4

				◕				25D5

				◖				25D6

				◗				25D7

				◘				25D8

				◙				25D9

				◚				25DA

				◛				25DB

				◜				25DC

				◝				25DD

				◞				25DE

				◟				25DF

				◠				25E0

				◡				25E1

				◢				25E2

				◣				25E3

				◤				25E4

				◥				25E5

				◦				25E6

				◧				25E7

				◨				25E8

				◩				25E9

				◪				25EA

				◫				25EB

				◬				25EC

				◭				25ED

				◮				25EE

				◯				25EF

				◰				25F0

				◱				25F1

				◲				25F2

				◳				25F3

				◴				25F4

				◵				25F5

				◶				25F6

				◷				25F7

				☀				2600

				☁				2601

				☂				2602

				☃				2603

				☄				2604

				★				2605

				☆				2606

				☇				2607

				☈				2608

				☉				2609

				☊				260A

				☋				260B

				☌				260C

				☍				260D

				☎				260E

				☏				260F

				☐				2610

				☑				2611

				☒				2612

				☓				2613

				☙				2619

				☚				261A

				☛				261B

				☜				261C

				☝				261D

				☞				261E

				☟				261F

				☠				2620

				☡				2621

				☢				2622

				☣				2623

				☤				2624

				☥				2625

				☦				2626

				☧				2627

				☨				2628

				☩				2629

				☪				262A

				☫				262B

				☬				262C

				☭				262D

				☮				262E

				☯				262F

				☰				2630

				☱				2631

				☲				2632

				☳				2633

				☴				2634

				☵				2635

				☶				2636

				☷				2637

				☸				2638

				☹				2639

				☺				263A

				☻				263B

				☼				263C

				☽				263D

				☾				263E

				☿				263F

				♀				2640

				♁				2641

				♂				2642

				♃				2643

				♄				2644

				♅				2645

				♆				2646

				♇				2647

				♈				2648

				♉				2649

				♊				264A

				♋				264B

				♌				264C

				♍				264D

				♎				264E

				♏				264F

				♐				2650

				♑				2651

				♒				2652

				♓				2653

				♔				2654

				♕				2655

				♖				2656

				♗				2657

				♘				2658

				♙				2659

				♚				265A

				♛				265B

				♜				265C

				♝				265D

				♞				265E

				♟				265F

				♠				2660

				♡				2661

				♢				2662

				♣				2663

				♤				2664

				♥				2665

				♦				2666

				♧				2667

				♨				2668

				♩				2669

				♪				266A

				♫				266B

				♬				266C

				♭				266D

				♮				266E

				♯				266F

				♰				2670

				♱				2671

				✁				2701

				✂				2702

				✃				2703

				✄				2704

				✆				2706

				✇				2707

				✈				2708

				✉				2709

				✑				2711

				✒				2712

				✓				2713

				✔				2714

				✕				2715

				✖				2716

				✗				2717

				✘				2718

				✙				2719

				✚				271A

				✛				271B

				✜				271C

				✝				271D

				✞				271E

				✟				271F

				✠				2720

				✡				2721

				✢				2722

				✣				2723

				✤				2724

				✥				2725

				✦				2726

				✧				2727

				✩				2729

				✪				272A

				✫				272B

				✬				272C

				✭				272D

				✮				272E

				✯				272F

				✰				2730

				✱				2731

				✲				2732

				✳				2733

				✴				2734

				✵				2735

				✶				2736

				✷				2737

				✸				2738

				✹				2739

				✺				273A

				✻				273B

				✼				273C

				✽				273D

				✾				273E

				✿				273F

				❃				2743

				❄				2744

				❅				2745

				❆				2746

				❇				2747

				❈				2748

				❉				2749

				❊				274A

				❋				274B

				❍				274D

				❏				274F

				❐				2750

				❑				2751

				❒				2752

				❖				2756

				❘				2758

				❙				2759

				❚				275A

				❛				275B

				❜				275C

				❝				275D

				❞				275E

				❡				2761

				❢				2762

				❣				2763

				❤				2764

				❥				2765

				❦				2766

				❧				2767

				❶				2776

				❷				2777

				❸				2778

				❹				2779

				❺				277A

				❻				277B

				❼				277C

				❽				277D

				❾				277E

				❿				277F

				➀				2780

				➁				2781

				➂				2782

				➃				2783

				➄				2784

				➅				2785

				➆				2786

				➇				2787

				➈				2788

				➉				2789

				➊				278A

				➋				278B

				➌				278C

				➍				278D

				➎				278E

				➏				278F

				➐				2790

				➑				2791

				➒				2792

				➓				2793

				➔				2794

				➘				2798

				➙				2799

				➚				279A

				➛				279B

				➜				279C

				➝				279D

				➞				279E

				➟				279F

				➠				27A0

				➡				27A1

				➢				27A2

				➣				27A3

				➤				27A4

				➥				27A5

				➦				27A6

				➧				27A7

				➨				27A8

				➩				27A9

				➪				27AA

				➫				27AB

				➬				27AC

				➭				27AD

				➮				27AE

				➯				27AF

				➰				27B0

				➱				27B1

				➲				27B2

				➳				27B3

				➴				27B4

				➵				27B5

				➶				27B6

				➷				27B7

				➸				27B8

				➹				27B9

				➺				27BA

				➻				27BB

				➼				27BC

				➽				27BD

				➾				27BE

				⠀				2800

				⠁				2801

				⠂				2802

				⠃				2803

				⠄				2804

				⠅				2805

				⠆				2806

				⠇				2807

				⠈				2808

				⠉				2809

				⠊				280A

				⠋				280B

				⠌				280C

				⠍				280D

				⠎				280E

				⠏				280F

				⠐				2810

				⠑				2811

				⠒				2812

				⠓				2813

				⠔				2814

				⠕				2815

				⠖				2816

				⠗				2817

				⠘				2818

				⠙				2819

				⠚				281A

				⠛				281B

				⠜				281C

				⠝				281D

				⠞				281E

				⠟				281F

				⠠				2820

				⠡				2821

				⠢				2822

				⠣				2823

				⠤				2824

				⠥				2825

				⠦				2826

				⠧				2827

				⠨				2828

				⠩				2829

				⠪				282A

				⠫				282B

				⠬				282C

				⠭				282D

				⠮				282E

				⠯				282F

				⠰				2830

				⠱				2831

				⠲				2832

				⠳				2833

				⠴				2834

				⠵				2835

				⠶				2836

				⠷				2837

				⠸				2838

				⠹				2839

				⠺				283A

				⠻				283B

				⠼				283C

				⠽				283D

				⠾				283E

				⠿				283F

				⡀				2840

				⡁				2841

				⡂				2842

				⡃				2843

				⡄				2844

				⡅				2845

				⡆				2846

				⡇				2847

				⡈				2848

				⡉				2849

				⡊				284A

				⡋				284B

				⡌				284C

				⡍				284D

				⡎				284E

				⡏				284F

				⡐				2850

				⡑				2851

				⡒				2852

				⡓				2853

				⡔				2854

				⡕				2855

				⡖				2856

				⡗				2857

				⡘				2858

				⡙				2859

				⡚				285A

				⡛				285B

				⡜				285C

				⡝				285D

				⡞				285E

				⡟				285F

				⡠				2860

				⡡				2861

				⡢				2862

				⡣				2863

				⡤				2864

				⡥				2865

				⡦				2866

				⡧				2867

				⡨				2868

				⡩				2869

				⡪				286A

				⡫				286B

				⡬				286C

				⡭				286D

				⡮				286E

				⡯				286F

				⡰				2870

				⡱				2871

				⡲				2872

				⡳				2873

				⡴				2874

				⡵				2875

				⡶				2876

				⡷				2877

				⡸				2878

				⡹				2879

				⡺				287A

				⡻				287B

				⡼				287C

				⡽				287D

				⡾				287E

				⡿				287F

				⢀				2880

				⢁				2881

				⢂				2882

				⢃				2883

				⢄				2884

				⢅				2885

				⢆				2886

				⢇				2887

				⢈				2888

				⢉				2889

				⢊				288A

				⢋				288B

				⢌				288C

				⢍				288D

				⢎				288E

				⢏				288F

				⢐				2890

				⢑				2891

				⢒				2892

				⢓				2893

				⢔				2894

				⢕				2895

				⢖				2896

				⢗				2897

				⢘				2898

				⢙				2899

				⢚				289A

				⢛				289B

				⢜				289C

				⢝				289D

				⢞				289E

				⢟				289F

				⢠				28A0

				⢡				28A1

				⢢				28A2

				⢣				28A3

				⢤				28A4

				⢥				28A5

				⢦				28A6

				⢧				28A7

				⢨				28A8

				⢩				28A9

				⢪				28AA

				⢫				28AB

				⢬				28AC

				⢭				28AD

				⢮				28AE

				⢯				28AF

				⢰				28B0

				⢱				28B1

				⢲				28B2

				⢳				28B3

				⢴				28B4

				⢵				28B5

				⢶				28B6

				⢷				28B7

				⢸				28B8

				⢹				28B9

				⢺				28BA

				⢻				28BB

				⢼				28BC

				⢽				28BD

				⢾				28BE

				⢿				28BF

				⣀				28C0

				⣁				28C1

				⣂				28C2

				⣃				28C3

				⣄				28C4

				⣅				28C5

				⣆				28C6

				⣇				28C7

				⣈				28C8

				⣉				28C9

				⣊				28CA

				⣋				28CB

				⣌				28CC

				⣍				28CD

				⣎				28CE

				⣏				28CF

				⣐				28D0

				⣑				28D1

				⣒				28D2

				⣓				28D3

				⣔				28D4

				⣕				28D5

				⣖				28D6

				⣗				28D7

				⣘				28D8

				⣙				28D9

				⣚				28DA

				⣛				28DB

				⣜				28DC

				⣝				28DD

				⣞				28DE

				⣟				28DF

				⣠				28E0

				⣡				28E1

				⣢				28E2

				⣣				28E3

				⣤				28E4

				⣥				28E5

				⣦				28E6

				⣧				28E7

				⣨				28E8

				⣩				28E9

				⣪				28EA

				⣫				28EB

				⣬				28EC

				⣭				28ED

				⣮				28EE

				⣯				28EF

				⣰				28F0

				⣱				28F1

				⣲				28F2

				⣳				28F3

				⣴				28F4

				⣵				28F5

				⣶				28F6

				⣷				28F7

				⣸				28F8

				⣹				28F9

				⣺				28FA

				⣻				28FB

				⣼				28FC

				⣽				28FD

				⣾				28FE

				⣿				28FF

				、				3001

				。				3002

				《				300A

				》				300B

				〓				3013

				〚				301A

				〛				301B

				〜				301C

				〿				303F

				ぁ				3041

				あ				3042

				ぃ				3043

				い				3044

				ぅ				3045

				う				3046

				ぇ				3047

				え				3048

				ぉ				3049

				お				304A

				か				304B

				が				304C

				き				304D

				ぎ				304E

				く				304F

				ぐ				3050

				け				3051

				げ				3052

				こ				3053

				ご				3054

				さ				3055

				ざ				3056

				し				3057

				じ				3058

				す				3059

				ず				305A

				せ				305B

				ぜ				305C

				そ				305D

				ぞ				305E

				た				305F

				だ				3060

				ち				3061

				ぢ				3062

				っ				3063

				つ				3064

				づ				3065

				て				3066

				で				3067

				と				3068

				ど				3069

				な				306A

				に				306B

				ぬ				306C

				ね				306D

				の				306E

				は				306F

				ば				3070

				ぱ				3071

				ひ				3072

				び				3073

				ぴ				3074

				ふ				3075

				ぶ				3076

				ぷ				3077

				へ				3078

				べ				3079

				ぺ				307A

				ほ				307B

				ぼ				307C

				ぽ				307D

				ま				307E

				み				307F

				む				3080

				め				3081

				も				3082

				ゃ				3083

				や				3084

				ゅ				3085

				ゆ				3086

				ょ				3087

				よ				3088

				ら				3089

				り				308A

				る				308B

				れ				308C

				ろ				308D

				ゎ				308E

				わ				308F

				ゐ				3090

				ゑ				3091

				を				3092

				ん				3093

				ゔ				3094

				゙				3099

				゚				309A

				゛				309B

				゜				309C

				ゝ				309D

				ゞ				309E

qpdf-7.1.0/libtests/qtest/aes/data2

qpdf-7.1.0/libtests/qtest/aes/data2

qpdf-7.1.0/libtests/qtest/flate.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;
use File::Copy;
use Digest::MD5;

chdir("flate") or die "chdir testdir failed: $!\n";

require TestDriver;

cleanup();

my $td = new TestDriver('flate');

cleanup();

open(F, ">farbage") or die;
binmode F;
print F "q" x 10000, "\n";
print F "w" x 10000, "\n";
print F "e" x 10000, "\n";
print F "r" x 10000, "\n";
print F "t" x 10000, "\n";
print F "y" x 10000, "\n";
print F "u" x 10000, "\n";
print F "i" x 10000, "\n";
print F "o" x 10000, "\n";
print F "p" x 10000, "\n";
close(F);

check_file("farbage", "a6449c61db5b0645c0693b7560b77a60");

$td->runtest("run driver",
	 {$td->COMMAND => "flate farbage"},,
	 {$td->STRING => "bytes written to o3: 100010\ndone\n",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

check_file("farbage", "a6449c61db5b0645c0693b7560b77a60");

$td->runtest("compressed file correct",
	 {$td->FILE => "farbage.1"},
	 {$td->FILE => "compressed"});

$td->runtest("uncompress filter works",
	 {$td->FILE => "farbage"},
	 {$td->FILE => "farbage.2"});

$td->runtest("double filter works",
	 {$td->FILE => "farbage"},
	 {$td->FILE => "farbage.3"});

cleanup();

$td->report(6);

sub cleanup
{
 system("rm -f farbage*");
}

sub check_file
{
 my ($file, $sum) = @_;
 open(F, "<$file") or die "open $file";
 my $md5 = new Digest::MD5;
 $md5->addfile(*F);
 close(F);
 my $result = $md5->hexdigest;
 $td->runtest("check $file",
		 {$td->STRING => "$result\n"},
		 {$td->STRING => "$sum\n"});
}

qpdf-7.1.0/libtests/qtest/hex/hex.in

45000028e20508074600002ce205080747000030e205080748000034e20
5080749000038e20508074a00003ce20508074b000040e20508074c0000
44e20508074d000048e20508074e00004ce20508074f000050e20508075
0000054e205080751000058e20508075200005ce205080753000060e205
080754000064e205080755000068e20508075600006ce20508075700007
0e205080758000074e205080759000078e20508075a00005589e55383ec
04e8000000005b81c3b44c01008b93f8ffffff85d27405e8de000000e83
5060000e840070100585bc9c3ff3508e10508ff250ce1050800000000ff
2510e105086800000000e9e0ffffffff2514e105086808000000e9d0fff
fffff2518e105086810000000e9c0ffffffff251ce105086818000000e9
b0ffffffff2520e105086820000000e9a0ffffffff2524e105086828000
000e990ffffffff2528e105086830000000e980ffffffff252ce1050868
38000000e970ffffffff2530e105086840000000e960ffffffff2534e10
5086848000000e950ffffffff2538e105086850000000e940ffffffff25
3ce105086858000000e930ffffffff2540e105086860000000e920fffff
fff2544e105086868000000e910ffffffff2548e105086870000000e900
ffffffff254ce105086878000000e9f0feffffff2550e10508688000000
0e9e0feffffff2554e105086888000000e9d0feffffff2558e105086890
000000e9c0feffffff255ce105086898000000e9b0feffffff2560e1050
868a0000000e9a0feffffff2564e1050868a8000000e990feffffff2568
e1050868b0000000e980feffffff256ce1050868b8000000e970fefffff
f2570e1050868c0000000e960feffffff2574e1050868c8000000e950fe
ffffff2578e1050868d0000000e940feffffff257ce1050868d8000000e
930feffffff2580e1050868e0000000e920feffffff2584e1050868e800
0000e910feffffff2588e1050868f0000000e900feffffff258ce105086
8f8000000e9f0fdffffff2590e105086800010000e9e0fdffffff2594e1
05086808010000e9d0fdffffff2598e105086810010000e9c0fdffffff2
59ce105086818010000e9b0fdffffff25a0e105086820010000e9a0fdff
ffff25a4e105086828010000e990fdffffff25a8e105086830010000e98
0fdffffff25ace105086838010000e970fdffffff25b0e1050868400100
00e960fdffffff25b4e105086848010000e950fdffffff25b8e10508685
0010000e940fdffffff25bce105086858010000e930fdffffff25c0e105
086860010000e920fdffffff25c4e105086868010000e910fdffffff25c
8e105086870010000e900fdffffff25cce105086878010000e9f0fcffff
FF25D0E105086880010000E9E0FCFFFFFF25D4E105086888010000E9D0F
CFFFFFF25D8E105086890010000E9C0FCFFFFFF25DCE105086898010000
E9B0FCFFFFFF25E0E1050868A0010000E9A0FCFFFFFF25E4E1050868A80
10000E990FCFFFFFF25E8E1050868B0010000E980FCFFFFFF25ECE10508
68B8010000E970FCFFFFFF25F0E1050868C0010000E960FCFFFFFF25F4E
1050868C8010000E950FCFFFFFF25F8E1050868D0010000E940FCFFFFFF
25FCE1050868D801�0000E930FCFFFFFF2500E2050868E0010000E920FCF
FFFFF2504E2050868E8010000E910FCFFFFFF2508E2050868F0010000E9
00FCFFFFFF250CE2050868F8010000E9F0FBFFFFFF2510E205086800020
000E9E0FBFFFFFF2514E205086808020000E9D0FBFFFFFF2518E2050868
10020000E9C0FBFFFFFF251CE205086818020000E9B0FBFFFFFF2520E20
5086820020000E9A0FBFFFFFF2524E205086828020000E990FBFFFFFF25
28E2050 8683	0020000E980FBFFFFFF252CE205086838020000E970FBFFF
FFF2530E205086840020000E960FBFFFFFF2534E205086848020000E950
FBFFFFFF2538E205086850020000E940FBFFFFFF253CE20508685802000
0E930FBFFFFFF2540E205086860020000E920FBFFFFFF2544E205086868
020000E910FBFFFFFF2548E205086870020000E900FBFFFFFF254CE2050
86878020000E9F0FAFFFFFF2550E205086880020000E9E0FAFFFFFF2554
e205086888020000e9d0faffffff2558e205086890020000e9c0fafffff
f255ce205086898020000e9b0faffffff2560e2050868a0020000e9a0fa
ffffff2564e2050868a8020000e990faffffff2568e2050868b0020000e
980faffffff256ce2050868b8020000e970faffffff2570e2050868c002
0000e960faffffff2574e2050868c8020000e950faffffff2578e205086
8d0020000e940faffff00000000000000000000000031ed5e89e183e4f0
50545268009b050868109b0508515668f0e60408e893fbfffff49090909
0909090909090909090905589e583ec08803dc8e3050800740ceb1c83c0
04a388e20508ffd2a188e205088b1085d275ebc605c8e3050801c9c3905
589e583ec08a110e0050885c07412b80000000085c07409c7042410e005
08ffd0c9c3909090909090909090909090905589e583ec188b45088b4d0
c8b50048b00894c2408c744240c0000000089542404890424e897fe0000
c9c3908d7426005589e583ec08891c248b5d0c897424048b75088b4b048
b56048b06330331d131d209c1751a8b4b088b46088b5b0c8b560c31c831
da09d00f94c089c283e2018b1c2489d08b74240489ec5dc38d742600a12
0e505085589e585c075088b4508a320e505085dc38d76008dbc27000000
00a120e505085589e585c0750da124e5050883c001a324e505085dc3908
d7426005584c089e5740cc705>trailing farbage

qpdf-7.1.0/libtests/qtest/hex/binary.out

qpdf-7.1.0/libtests/qtest/md5/md5.out

d41d8cd98f00b204e9800998ecf8427e
0cc175b9c0f1b6a831c399e269772661
900150983cd24fb0d6963f7d28e17f72
f96b697d7cb7938d525a2f31aaf161d0
c3fcd3d76192e4007dfb496cca67e13b
d174ab98d277d9f5a5611c2c9f419d9f
57edf4a22be3c955ac49da2e2107b67a
5f4b4321873433daae578f85c72f9e74
914b11f5990cf99f1161bfeb5865a4fc
1
1
0
0
0
5f4b4321873433daae578f85c72f9e74
5f4b4321873433daae578f85c72f9e74
41f977636f79cf1bad1b439caa7d627c
c30e03b5536e37306df25489622e13e3
9dabbd135cc47bb603a94989df37c926
ce80591b269b749f65c53b71d0be5212
db5448be0a1e931cbd84654e82063483
db5448be0a1e931cbd84654e82063483
db5448be0a1e931cbd84654e82063483
9833b12b21147bebb2f33d35807049af

qpdf-7.1.0/libtests/qtest/md5/md5.in

²㉅馧Ỡ奨虵䥕訐梨ᅭ妛ᴨￌ�呵텢积諍䱯萓ㇹ裦⭷┨醲ㆧ엀䵇굦⇃뙍瘚䖱䣥幛䥈었郠蓀餃䅞케訋蒧㢻ꂻ䏰剈蜪斵㏬흸銷踑女좰䒴䋨⋩བྷ។㭭떃涰錳䬁ްሻ䡧焭ﾺᏜ甄緍∓隽♴ᢘ䪻 獟ǯᩛ뜿兢쐼未牬疉�莪ዓ闾�੦鱲볛蠮໖⩦㬲챵㸅䙱뢟鰁硙鱰궈ಹ㫲햍⦧ꍎ㔎

qpdf-7.1.0/libtests/qtest/bits.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;

chdir("bits") or die "chdir testdir failed: $!\n";

require TestDriver;

my $td = new TestDriver('bits');

$td->runtest("bits",
	 {$td->COMMAND => "bits"},
	 {$td->FILE => "bits.out",
	 $td->EXIT_STATUS => 0},
	 $td->NORMALIZE_NEWLINES);

$td->report(1);

qpdf-7.1.0/libtests/qtest/aes.test

#!/usr/bin/env perl
require 5.008;
BEGIN { $^W = 1; }
use strict;
use File::stat;

chdir("aes") or die "chdir testdir failed: $!\n";

require TestDriver;

my $td = new TestDriver('AES');

cleanup();

my $key = '000102030405060708090a0b0c0d0e0f';
$td->runtest("encrypt test vector",
	 {$td->COMMAND => "aes -cbc -encrypt $key test-vector.clear tmp1"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check output",
	 {$td->FILE => "tmp1"},
	 {$td->FILE => "test-vector.cipher"});
$td->runtest("decrypt test vector",
	 {$td->COMMAND => "aes -cbc -decrypt $key tmp1 tmp2"},
	 {$td->STRING => "", $td->EXIT_STATUS => 0});
$td->runtest("check output",
	 {$td->FILE => "tmp2"},
	 {$td->FILE => "test-vector.clear"});

$key = '243f6a8885243f6a8885243f6a888524';
foreach my $d (['data1', 17072], ['data2', 16032])
{
 my ($file, $size) = @$d;
 $td->runtest("encrypt $file",
		 {$td->COMMAND => "aes +cbc -encrypt $key $file tmp1"},
		 {$td->STRING => "", $td->EXIT_STATUS => 0});
 # sleep one second so random number will get a different seed
 sleep(1);
 $td->runtest("encrypt $file again",
		 {$td->COMMAND => "aes +cbc -encrypt $key $file tmp2"},
		 {$td->STRING => "", $td->EXIT_STATUS => 0});
 foreach my $f (qw(tmp1 tmp2))
 {
	$td->runtest("check size",
		 {$td->STRING => sprintf("%d\n", stat($f)->size)},
		 {$td->STRING => "$size\n"});
 }
 $td->runtest("verify files are different",
		 {$td->COMMAND => "cmp tmp1 tmp2"},
		 {$td->REGEXP => '.*', $td->EXIT_STATUS => '!0'});
 $td->runtest("decrypt $file",
		 {$td->COMMAND => "aes +cbc -decrypt $key tmp1 tmp3"},
		 {$td->STRING => "", $td->EXIT_STATUS => 0});
 $td->runtest("decrypt $file again",
		 {$td->COMMAND => "aes +cbc -decrypt $key tmp2 tmp4"},
		 {$td->STRING => "", $td->EXIT_STATUS => 0});
 $td->runtest("check output",
		 {$td->FILE => "tmp3"},
		 {$td->FILE => $file});
 $td->runtest("check output",
		 {$td->FILE => "tmp4"},
		 {$td->FILE => $file});
}

cleanup();

$td->report(22);

sub cleanup
{
 system("rm -f tmp?");
}

qpdf-7.1.0/libtests/pointer_holder.cc

#include <qpdf/PointerHolder.hh>

#include <iostream>
#include <stdlib.h>
#include <list>

#include <qpdf/QUtil.hh>

class Object
{
 public:
 Object();
 ~Object();
 void hello();
 void hello() const;

 private:
 static int next_id;
 int id;
};

int Object::next_id = 0;

Object::Object()
{
 this->id = ++next_id;
 std::cout << "created Object, id " << this->id << std::endl;
}

Object::~Object()
{
 std::cout << "destroyed Object, id " << this->id << std::endl;
}

void
Object::hello()
{
 std::cout << "calling Object::hello for " << this->id << std::endl;
}

void
Object::hello() const
{
 std::cout << "calling Object::hello const for " << this->id << std::endl;
}

typedef PointerHolder<Object> ObjectHolder;

void callHello(ObjectHolder const& oh)
{
 oh.getPointer()->hello();
 oh->hello();
 (*oh).hello();
}

int main(int argc, char* argv[])
{
 std::list<ObjectHolder> ol1;

 ObjectHolder oh0;
 {
	std::cout << "hello" << std::endl;
	Object* o1 = new Object;
	ObjectHolder oh1(o1);
	ObjectHolder oh2(oh1);
	ObjectHolder oh3(new Object);
	ObjectHolder oh4;
	ObjectHolder oh5;
	if (oh4 == oh5)
	{
	 std::cout << "nulls equal" << std::endl;
	}
	oh3 = oh1;
	oh4 = oh2;
	if (oh3 == oh4)
	{
	 std::cout << "equal okay" << std::endl;
	}
	if ((! (oh3 < oh4)) && (! (oh4 < oh3)))
	{
	 std::cout << "less than okay" << std::endl;
	}
	ol1.push_back(oh3);
	ol1.push_back(oh3);
	Object* o3 = new Object;
	oh0 = o3;
 }

 ol1.front().getPointer()->hello();
 ol1.front()->hello();
 (*ol1.front()).hello();
 callHello(ol1.front());
 ol1.pop_front();
 std::cout << "goodbye" << std::endl;
 return 0;
}

qpdf-7.1.0/libtests/input_source.cc

#include <iostream>
#include <qpdf/BufferInputSource.hh>
#include <qpdf/PointerHolder.hh>
#include <qpdf/Buffer.hh>
#include <qpdf/QPDFTokenizer.hh>

static PointerHolder<Buffer>
get_buffer()
{
 size_t size = 3172;
 PointerHolder<Buffer> b(new Buffer(size));
 unsigned char* p = b->getBuffer();
 for (size_t i = 0; i < size; ++i)
 {
 p[i] = static_cast<unsigned char>(i & 0xff);
 }
 return b;
}

class Finder: public InputSource::Finder
{
 public:
 Finder(PointerHolder<InputSource> is, std::string const& after) :
 is(is),
 after(after)
 {
 }
 virtual ~Finder()
 {
 }
 virtual bool check();

 private:
 PointerHolder<InputSource> is;
 std::string after;
};

bool
Finder::check()
{
 QPDFTokenizer tokenizer;
 QPDFTokenizer::Token t = tokenizer.readToken(is, "finder", true);
 if (t == QPDFTokenizer::Token(QPDFTokenizer::tt_word, "potato"))
 {
 t = tokenizer.readToken(is, "finder", true);
 return (t == QPDFTokenizer::Token(QPDFTokenizer::tt_word, after));
 }
 return false;
}

void check(char const* description, bool expected, bool actual)
{
 std::cout << description << ": "
 << ((actual == expected) ? "PASS" : "FAIL")
 << std::endl;
}

int main()
{
 PointerHolder<Buffer> b1 = get_buffer();
 unsigned char* b = b1->getBuffer();
 // Straddle block boundaries
 memcpy(b + 1022, "potato", 6);
 // Overlap so that the first check() would advance past the start
 // of the next match
 memcpy(b + 2037, "potato potato salad ", 20);
 PointerHolder<InputSource> is =
 new BufferInputSource("test buffer input source", b1.getPointer());
 Finder f1(is, "salad");
 check("find potato salad", true,
 is->findFirst("potato", 0, 0, f1));
 check("barely find potato salad", true,
 is->findFirst("potato", 1100, 945, f1));
 check("barely find potato salad", true,
 is->findFirst("potato", 2000, 45, f1));
 check("potato salad is too late", false,
 is->findFirst("potato", 1100, 944, f1));
 check("potato salad is too late", false,
 is->findFirst("potato", 2000, 44, f1));
 check("potato salad not found", false,
 is->findFirst("potato", 2045, 0, f1));
 check("potato salad not found", false,
 is->findFirst("potato", 0, 1, f1));

 // Put one more right at EOF
 memcpy(b + b1->getSize() - 12, "potato salad", 12);
 check("potato salad at EOF", true,
 is->findFirst("potato", 3000, 0, f1));

 is->findFirst("potato", 0, 0, f1);
 check("findFirst found first", true,
 is->tell() == 2056);
 check("findLast found potato salad", true,
 is->findLast("potato", 0, 0, f1));
 check("findLast found at EOF", true,
 is->tell() == 3172);

 // Make check() bump into EOF
 memcpy(b + b1->getSize() - 6, "potato", 6);
 check("potato but not salad salad at EOF", false,
 is->findFirst("potato", 3000, 0, f1));
 check("findLast found potato salad", true,
 is->findLast("potato", 0, 0, f1));
 check("findLast found first one", true,
 is->tell() == 2056);

 return 0;
}

qpdf-7.1.0/libtests/sha2.cc

#include <qpdf/Pl_SHA2.hh>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <qpdf/QUtil.hh>

static void test(Pl_SHA2& sha2, char const* description, int bits,
 char const* input, std::string const& output)
{
 sha2.resetBits(bits);
 sha2.write(QUtil::unsigned_char_pointer(input), strlen(input));
 sha2.finish();
 std::cout << description << ": ";
 if (output == sha2.getHexDigest())
 {
 std::cout << "passed\n";
 }
 else
 {
 std::cout << "failed\n"
 << " expected: " << output << "\n"
 << " actual: " << sha2.getHexDigest() << "\n";
 }
}

int main(int argc, char *argv[])
{
 Pl_SHA2 sha2;
 char million_a[1000001];
 memset(million_a, 'a', 1000000);
 million_a[1000000] = '\0';
 test(sha2, "256 short", 256,
 "abc",
 "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad");
 test(sha2, "256 long", 256,
 "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
 "248d6a61d20638b8e5c026930c3e6039a33ce45964ff2167f6ecedd419db06c1");
 test(sha2, "256 million", 256,
 million_a,
 "cdc76e5c9914fb9281a1c7e284d73e67f1809a48a497200e046d39ccc7112cd0");
 test(sha2, "384 short", 384,
 "abc",
 "cb00753f45a35e8bb5a03d699ac65007272c32ab0eded163"
 "1a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7");
 test(sha2, "384 long", 384,
 "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
 "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu",
 "09330c33f71147e83d192fc782cd1b4753111b173b3b05d2"
 "2fa08086e3b0f712fcc7c71a557e2db966c3e9fa91746039");
 test(sha2, "384 million", 384,
 million_a,
 "9d0e1809716474cb086e834e310a4a1ced149e9c00f24852"
 "7972cec5704c2a5b07b8b3dc38ecc4ebae97ddd87f3d8985");
 test(sha2, "512 short", 512,
 "abc",
 "ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a"
 "2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f");
 test(sha2, "512 long", 512,
 "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
 "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu",
 "8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299aeadb6889018"
 "501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26545e96e55b874be909");
 test(sha2, "512 million", 512,
 million_a,
 "e718483d0ce769644e2e42c7bc15b4638e1f98b13b2044285632a803afa973eb"
 "de0ff244877ea60a4cb0432ce577c31beb009c5c2c49aa2e4eadb217ad8cc09b");

 return 0;
}

qpdf-7.1.0/libtests/runlength.cc

#include <qpdf/Pl_RunLength.hh>
#include <qpdf/Pl_StdioFile.hh>
#include <qpdf/QUtil.hh>

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <stdlib.h>

int main(int argc, char* argv[])
{
 if (argc != 4)
 {
	std::cerr << "Usage: runlength {-encode|-decode} infile outfile"
 << std::endl;
	exit(2);
 }

 bool encode = (strcmp("-encode", argv[1]) == 0);
 char* infilename = argv[2];
 char* outfilename = argv[3];

 FILE* infile = QUtil::safe_fopen(infilename, "rb");
 FILE* outfile = QUtil::safe_fopen(outfilename, "wb");
 Pl_StdioFile out("stdout", outfile);
 unsigned char buf[100];
 bool done = false;
 Pl_RunLength rl(
 "runlength", &out,
 (encode ? Pl_RunLength::a_encode : Pl_RunLength::a_decode));
 while (! done)
 {
	size_t len = fread(buf, 1, sizeof(buf), infile);
	if (len <= 0)
	{
	 done = true;
	}
	else
	{
	 rl.write(buf, len);
	}
 }
 rl.finish();
 fclose(infile);
 fclose(outfile);
 return 0;
}

qpdf-7.1.0/libtests/flate.cc

qpdf-7.1.0/libtests/flate.cc

#include <qpdf/Pl_Flate.hh>

#include <qpdf/Pl_StdioFile.hh>

#include <qpdf/Pl_Count.hh>

#include <qpdf/QUtil.hh>

#include <iostream>

#include <errno.h>

#include <string.h>

#include <stdlib.h>

void run(char const* filename)

{

 std::string n1 = std::string(filename) + ".1";

 std::string n2 = std::string(filename) + ".2";

 std::string n3 = std::string(filename) + ".3";

 FILE* o1 = QUtil::safe_fopen(n1.c_str(), "wb");

 FILE* o2 = QUtil::safe_fopen(n2.c_str(), "wb");

 FILE* o3 = QUtil::safe_fopen(n3.c_str(), "wb");

 Pipeline* out1 = new Pl_StdioFile("o1", o1);

 Pipeline* out2 = new Pl_StdioFile("o2", o2);

 Pipeline* out3 = new Pl_StdioFile("o3", o3);

 // Compress the file

 Pipeline* def1 = new Pl_Flate("def1", out1, Pl_Flate::a_deflate);

 // Decompress the file

 Pipeline* inf2 = new Pl_Flate("inf2", out2, Pl_Flate::a_inflate);

 // Count bytes written to o3

 Pl_Count* count3 = new Pl_Count("count3", out3);

 // Do both simultaneously

 Pipeline* inf3 = new Pl_Flate("inf3", count3, Pl_Flate::a_inflate);

 Pipeline* def3 = new Pl_Flate("def3", inf3, Pl_Flate::a_deflate);

 FILE* in1 = QUtil::safe_fopen(filename, "rb");

 unsigned char buf[1024];

 size_t len;

 while ((len = fread(buf, 1, sizeof(buf), in1)) > 0)

 {

 // Write to the compression pipeline

 def1->write(buf, len);

 // Write to the both pipeline

 def3->write(buf, len);

 }

 fclose(in1);

 def1->finish();

 delete def1;

 delete out1;

 fclose(o1);

 def3->finish();

 std::cout << "bytes written to o3: " << count3->getCount() << std::endl;

 delete def3;

 delete inf3;

 delete count3;

 delete out3;

 fclose(o3);

 // Now read the compressed data and write to the output uncompress pipeline

 FILE* in2 = QUtil::safe_fopen(n1.c_str(), "rb");

 while ((len = fread(buf, 1, sizeof(buf), in2)) > 0)

 {

 inf2->write(buf, len);

 }

 fclose(in2);

 inf2->finish();

 delete inf2;

 delete out2;

 fclose(o2);

 // At this point, filename, filename.2, and filename.3 should have

 // identical contents. filename.1 should be a compressed version.

 std::cout << "done" << std::endl;

}

int main(int argc, char* argv[])

{

 if (argc != 2)

 {

 std::cerr << "Usage: pipeline filename" << std::endl;

 exit(2);

 }

 char* filename = argv[1];

 try

 {

 run(filename);

 }

 catch (std::exception& e)

 {

 std::cout << e.what() << std::endl;

 }

 return 0;

}

qpdf-7.1.0/libtests/hex.cc

#include <qpdf/Pl_ASCIIHexDecoder.hh>

#include <qpdf/Pl_StdioFile.hh>
#include <iostream>
#include <stdlib.h>

int main()
{
 Pl_StdioFile out("stdout", stdout);
 Pl_ASCIIHexDecoder decode("decode", &out);

 try
 {
	unsigned char buf[10000];
	bool done = false;
	while (! done)
	{
	 size_t len = fread(buf, 1, sizeof(buf), stdin);
	 if (len <= 0)
	 {
		done = true;
	 }
	 else
	 {
		decode.write(buf, len);
	 }
	}
	decode.finish();
 }
 catch (std::exception& e)
 {
	std::cerr << e.what() << std::endl;
	 exit(2);
 }

 return 0;
}

qpdf-7.1.0/libtests/dct_compress.cc

#include <qpdf/Pl_DCT.hh>
#include <qpdf/Pl_StdioFile.hh>
#include <qpdf/QUtil.hh>

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <stdlib.h>

static void usage()
{
 std::cerr << "Usage: dct_compress infile outfile width height"
 << " {rgb|cmyk|gray}" << std::endl;
 exit(2);
}

class Callback: public Pl_DCT::CompressConfig
{
 public:
 Callback() :
 called(false)
 {
 }
 virtual ~Callback()
 {
 }
 virtual void apply(jpeg_compress_struct*);
 bool called;
};

void Callback::apply(jpeg_compress_struct*)
{
 this->called = true;
}

int main(int argc, char* argv[])
{
 if (argc != 6)
 {
 usage();
 }

 char* infilename = argv[1];
 char* outfilename = argv[2];
 int width = QUtil::string_to_int(argv[3]);
 int height = QUtil::string_to_int(argv[4]);
 char* colorspace = argv[5];
 J_COLOR_SPACE cs =
 ((strcmp(colorspace, "rgb") == 0) ? JCS_RGB :
 (strcmp(colorspace, "cmyk") == 0) ? JCS_CMYK :
 (strcmp(colorspace, "gray") == 0) ? JCS_GRAYSCALE :
 JCS_UNKNOWN);
 int components = 0;
 switch (cs)
 {
 case JCS_RGB:
 components = 3;
 break;
 case JCS_CMYK:
 components = 4;
 break;
 case JCS_GRAYSCALE:
 components = 1;
 break;
 default:
 usage();
 break;
 }

 FILE* infile = QUtil::safe_fopen(infilename, "rb");
 FILE* outfile = QUtil::safe_fopen(outfilename, "wb");
 Pl_StdioFile out("stdout", outfile);
 unsigned char buf[100];
 bool done = false;
 Callback callback;
 Pl_DCT dct("dct", &out, width, height, components, cs, &callback);
 while (! done)
 {
	size_t len = fread(buf, 1, sizeof(buf), infile);
	if (len <= 0)
	{
	 done = true;
	}
	else
	{
	 dct.write(buf, len);
	}
 }
 dct.finish();
 if (! callback.called)
 {
 std::cout << "Callback was not called" << std::endl;
 }
 fclose(infile);
 fclose(outfile);
 return 0;
}

qpdf-7.1.0/libtests/md5.cc

#include <qpdf/MD5.hh>
#include <qpdf/Pl_MD5.hh>
#include <qpdf/Pl_Discard.hh>
#include <qpdf/QUtil.hh>
#include <iostream>
#include <stdio.h>

static void test_string(char const* str)
{
 MD5 a;
 a.encodeString(str);
 a.print();
}

int main(int, char*[])
{
 test_string("");
 test_string("a");
 test_string("abc");
 test_string("message digest");
 test_string("abcdefghijklmnopqrstuvwxyz");
 test_string("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi"
		"jklmnopqrstuvwxyz0123456789");
 test_string("1234567890123456789012345678901234567890"
		"1234567890123456789012345678901234567890");
 MD5 a;
 a.encodeFile("md5.in");
 std::cout << a.unparse() << std::endl;
 MD5 b;
 b.encodeFile("md5.in", 100);
 std::cout << b.unparse() << std::endl;

 std::cout
	<< MD5::checkDataChecksum("900150983cd24fb0d6963f7d28e17f72", "abc", 3)
	<< std::endl
	<< MD5::checkFileChecksum("5f4b4321873433daae578f85c72f9e74", "md5.in")
	<< std::endl
	<< MD5::checkFileChecksum("6f4b4321873433daae578f85c72f9e74", "md5.in")
	<< std::endl
	<< MD5::checkDataChecksum("000150983cd24fb0d6963f7d28e17f72", "abc", 3)
	<< std::endl
	<< MD5::checkFileChecksum("6f4b4321873433daae578f85c72f9e74", "glerbl")
	<< std::endl;

 Pl_Discard d;
 Pl_MD5 p("MD5", &d);
 // Create a second pipeline, protect against finish, and call
 // getHexDigest only once at the end of both passes. Make sure the
 // checksum is that of the input file concatenated to itself. This
 // will require changes to Pl_MD5.cc to prevent finish from
 // calling finalize.
 Pl_MD5 p2("MD5", &d);
 p2.persistAcrossFinish(true);
 for (int i = 0; i < 2; ++i)
 {
	FILE* f = QUtil::safe_fopen("md5.in", "rb");
 // buffer size < size of md5.in
 unsigned char buf[50];
 bool done = false;
 while (! done)
 {
 size_t len = fread(buf, 1, sizeof(buf), f);
 if (len <= 0)
 {
 done = true;
 }
 else
 {
 p.write(buf, len);
 p2.write(buf, len);
 if (i == 1)
 {
 // Partial digest -- resets after each call to write
 std::cout << p.getHexDigest() << std::endl;
 }
 }
 }
 fclose(f);
 p.finish();
 p2.finish();
 // Make sure calling getHexDigest twice with no intervening
 // writes results in the same result each time.
 std::cout << p.getHexDigest() << std::endl;
 std::cout << p.getHexDigest() << std::endl;
 }
 std::cout << p2.getHexDigest() << std::endl;

 return 0;
}

qpdf-7.1.0/libtests/lzw.cc

#include <qpdf/Pl_LZWDecoder.hh>

#include <qpdf/Pl_StdioFile.hh>
#include <qpdf/QUtil.hh>
#include <iostream>
#include <stdlib.h>
#include <string.h>

int main(int argc, char* argv[])
{
 bool early_code_change = true;
 if ((argc == 4) && (strcmp(argv[3], "--no-early-code-change") == 0))
 {
	early_code_change = false;
 }

 if (argc < 3)
 {
	std::cerr << "Usage: lzw infile outfile [--no-early-code-change]"
		 << std::endl;
	exit(2);
 }

 try
 {
	char* infilename = argv[1];
	char* outfilename = argv[2];

	FILE* infile = QUtil::safe_fopen(infilename, "rb");
	FILE* outfile = QUtil::safe_fopen(outfilename, "wb");

	Pl_StdioFile out("output", outfile);
	Pl_LZWDecoder decode("decode", &out, early_code_change);

	unsigned char buf[10000];
	bool done = false;
	while (! done)
	{
	 size_t len = fread(buf, 1, sizeof(buf), infile);
	 if (len <= 0)
	 {
		done = true;
	 }
	 else
	 {
		decode.write(buf, len);
	 }
	}
	decode.finish();
 }
 catch (std::exception& e)
 {
	std::cerr << e.what() << std::endl;
	exit(2);
 }

 return 0;
}

qpdf-7.1.0/libtests/bits.cc

#include <qpdf/BitStream.hh>
#include <qpdf/BitWriter.hh>
#include <qpdf/Pl_Buffer.hh>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

// See comments in bits.cc
#define BITS_TESTING 1
#define BITS_READ 1
#define BITS_WRITE 1
#include "../libqpdf/bits.icc"

static void
print_values(int byte_offset, unsigned int bit_offset,
	 unsigned int bits_available)
{
 std::cout << "byte offset = " << byte_offset << ", "
	 << "bit offset = " << bit_offset << ", "
	 << "bits available = " << bits_available << std::endl;
}

static void
test_read_bits(unsigned char const* buf,
	 unsigned char const*& p, unsigned int& bit_offset,
	 unsigned int& bits_available, int bits_wanted)
{
 unsigned long result =
	read_bits(p, bit_offset, bits_available, bits_wanted);

 std::cout << "bits read: " << bits_wanted << ", result = " << result
	 << std::endl;
 print_values(p - buf, bit_offset, bits_available);
}

static void
test_write_bits(unsigned char& ch, unsigned int& bit_offset, unsigned long val,
		int bits, Pl_Buffer* bp)
{
 write_bits(ch, bit_offset, val, bits, bp);
 printf("ch = %02x, bit_offset = %d\n",
 static_cast<unsigned int>(ch), bit_offset);
}

static void
print_buffer(Pl_Buffer* bp)
{
 bp->finish();
 Buffer* b = bp->getBuffer();
 unsigned char const* p = b->getBuffer();
 size_t l = b->getSize();
 for (unsigned long i = 0; i < l; ++i)
 {
	printf("%02x%s", static_cast<unsigned int>(p[i]),
	 (i == l - 1) ? "\n" : " ");
 }
 printf("\n");
 delete b;
}

static void
test()
{
 // 11110101 00010101 01100101 01111001 00010010 10001001 01110101 01001011
 // F5 15 65 79 12 89 75 4B

 // Read tests

 static unsigned char const buf[] = {
	0xF5, 0x15, 0x65, 0x79, 0x12, 0x89, 0x75, 0x4B
 };

 unsigned char const* p = buf;
 unsigned int bit_offset = 7;
 unsigned int bits_available = 64;

 // 11110:101 0:001010:1 01100101: 01111001
 // 0:00:1:0010 10001001 01110101 01001:011
 print_values(p - buf, bit_offset, bits_available);
 test_read_bits(buf, p, bit_offset, bits_available, 5);
 test_read_bits(buf, p, bit_offset, bits_available, 4);
 test_read_bits(buf, p, bit_offset, bits_available, 6);
 test_read_bits(buf, p, bit_offset, bits_available, 9);
 test_read_bits(buf, p, bit_offset, bits_available, 9);
 test_read_bits(buf, p, bit_offset, bits_available, 2);
 test_read_bits(buf, p, bit_offset, bits_available, 1);
 test_read_bits(buf, p, bit_offset, bits_available, 0);
 test_read_bits(buf, p, bit_offset, bits_available, 25);

 try
 {
	test_read_bits(buf, p, bit_offset, bits_available, 4);
 }
 catch (std::exception& e)
 {
	std::cout << "exception: " << e.what() << std::endl;
	print_values(p - buf, bit_offset, bits_available);
 }

 test_read_bits(buf, p, bit_offset, bits_available, 3);
 std::cout << std::endl;

 // 11110101 00010101 01100101 01111001: 00010010 10001001 01110101 01001011

 p = buf;
 bit_offset = 7;
 bits_available = 64;
 print_values(p - buf, bit_offset, bits_available);
 test_read_bits(buf, p, bit_offset, bits_available, 32);
 test_read_bits(buf, p, bit_offset, bits_available, 32);
 std::cout << std::endl;

 BitStream b(buf, 8);
 std::cout << b.getBits(32) << std::endl;
 b.reset();
 std::cout << b.getBits(32) << std::endl;
 std::cout << b.getBits(32) << std::endl;
 std::cout << std::endl;

 b.reset();
 std::cout << b.getBits(6) << std::endl;
 b.skipToNextByte();
 std::cout << b.getBits(8) << std::endl;
 b.skipToNextByte();
 std::cout << b.getBits(8) << std::endl;
 std::cout << std::endl;
 b.reset();
 std::cout << b.getBitsSigned(3) << std::endl;
 std::cout << b.getBitsSigned(6) << std::endl;
 std::cout << b.getBitsSigned(5) << std::endl;
 std::cout << b.getBitsSigned(1) << std::endl;
 std::cout << b.getBitsSigned(17) << std::endl;
 std::cout << std::endl;

 // Write tests

 // 11110:101 0:001010:1 01100101: 01111001
 // 0:00:1:0010 10001001 01110101 01001:011

 unsigned char ch = 0;
 bit_offset = 7;
 Pl_Buffer* bp = new Pl_Buffer("buffer");

 test_write_bits(ch, bit_offset, 30UL, 5, bp);
 test_write_bits(ch, bit_offset, 10UL, 4, bp);
 test_write_bits(ch, bit_offset, 10UL, 6, bp);
 test_write_bits(ch, bit_offset, 16059UL, 0, bp);
 test_write_bits(ch, bit_offset, 357UL, 9, bp);
 print_buffer(bp);

 test_write_bits(ch, bit_offset, 242UL, 9, bp);
 test_write_bits(ch, bit_offset, 0UL, 2, bp);
 test_write_bits(ch, bit_offset, 1UL, 1, bp);
 test_write_bits(ch, bit_offset, 5320361UL, 25, bp);
 test_write_bits(ch, bit_offset, 3UL, 3, bp);

 print_buffer(bp);
 test_write_bits(ch, bit_offset, 4111820153UL, 32, bp);
 test_write_bits(ch, bit_offset, 310998347UL, 32, bp);
 print_buffer(bp);

 BitWriter bw(bp);
 bw.writeBits(30UL, 5);
 bw.flush();
 bw.flush();
 bw.writeBits(0xABUL, 8);
 bw.flush();
 print_buffer(bp);
 bw.writeBitsSigned(-1, 3); // 111
 bw.writeBitsSigned(-12, 6); // 110100
 bw.writeBitsSigned(4, 3); // 100
 bw.writeBitsSigned(-4, 3); // 100
 bw.writeBitsSigned(-1, 1); // 1
 bw.flush();
 print_buffer(bp);

 delete bp;
}

int main()
{
 try
 {
	test();
 }
 catch (std::exception& e)
 {
	std::cout << "unexpected exception: " << e.what() << std::endl;
	exit(2);
 }
 std::cout << "done" << std::endl;
 return 0;
}

qpdf-7.1.0/libtests/rc4.cc

#include <qpdf/Pl_RC4.hh>
#include <qpdf/Pl_StdioFile.hh>
#include <qpdf/QUtil.hh>

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <stdlib.h>

int main(int argc, char* argv[])
{
 if (argc != 4)
 {
	std::cerr << "Usage: rc4 hex-key infile outfile" << std::endl;
	exit(2);
 }

 char* hexkey = argv[1];
 char* infilename = argv[2];
 char* outfilename = argv[3];
 unsigned int hexkeylen = strlen(hexkey);
 unsigned int keylen = hexkeylen / 2;
 unsigned char* key = new unsigned char[keylen + 1];
 key[keylen] = '\0';

 FILE* infile = QUtil::safe_fopen(infilename, "rb");
 for (unsigned int i = 0; i < strlen(hexkey); i += 2)
 {
	char t[3];
	t[0] = hexkey[i];
	t[1] = hexkey[i + 1];
	t[2] = '\0';

	long val = strtol(t, 0, 16);
	key[i/2] = static_cast<unsigned char>(val);
 }

 FILE* outfile = QUtil::safe_fopen(outfilename, "wb");
 Pl_StdioFile* out = new Pl_StdioFile("stdout", outfile);
 // Use a small buffer size (64) for testing
 Pl_RC4* rc4 = new Pl_RC4("rc4", out, key, keylen, 64);
 delete [] key;

 // 64 < buffer size < 512, buffer_size is not a power of 2 for testing
 unsigned char buf[100];
 bool done = false;
 while (! done)
 {
	size_t len = fread(buf, 1, sizeof(buf), infile);
	if (len <= 0)
	{
	 done = true;
	}
	else
	{
	 rc4->write(buf, len);
	}
 }
 rc4->finish();
 delete rc4;
 delete out;
 fclose(infile);
 fclose(outfile);
 return 0;
}

qpdf-7.1.0/libtests/random.cc

#include <qpdf/QUtil.hh>
#include <qpdf/qpdf-config.h>
#include <qpdf/InsecureRandomDataProvider.hh>
#include <qpdf/SecureRandomDataProvider.hh>
#include <iostream>

class BogusRandomDataProvider: public RandomDataProvider
{
 public:
 virtual ~BogusRandomDataProvider()
 {
 }
 BogusRandomDataProvider()
 {
 }
 virtual void provideRandomData(unsigned char* data, size_t len)
 {
 for (size_t i = 0; i < len; ++i)
 {
 data[i] = static_cast<unsigned char>(i & 0xff);
 }
 }
};

int main()
{
 RandomDataProvider* orig_rdp = QUtil::getRandomDataProvider();
 long r1 = QUtil::random();
 long r2 = QUtil::random();
 if (r1 == r2)
 {
 std::cout << "fail: two randoms were the same\n";
 }
 InsecureRandomDataProvider irdp;
 irdp.provideRandomData(reinterpret_cast<unsigned char*>(&r1), 4);
 irdp.provideRandomData(reinterpret_cast<unsigned char*>(&r2), 4);
 if (r1 == r2)
 {
 std::cout << "fail: two insecure randoms were the same\n";
 }
#ifndef SKIP_OS_SECURE_RANDOM
 SecureRandomDataProvider srdp;
 srdp.provideRandomData(reinterpret_cast<unsigned char*>(&r1), 4);
 srdp.provideRandomData(reinterpret_cast<unsigned char*>(&r2), 4);
 if (r1 == r2)
 {
 std::cout << "fail: two secure randoms were the same\n";
 }
#endif
 BogusRandomDataProvider brdp;
 QUtil::setRandomDataProvider(&brdp);
 if (QUtil::getRandomDataProvider() != &brdp)
 {
 std::cout << "fail: getRandomDataProvider didn't"
 " return our provider\n";
 }
 r1 = QUtil::random();
 r2 = QUtil::random();
 if (r1 != r2)
 {
 std::cout << "fail: two bogus randoms were different\n";
 }
 unsigned char buf[4];
 QUtil::initializeWithRandomBytes(buf, 4);
 if (! ((buf[0] == 0) &&
 (buf[1] == 1) &&
 (buf[2] == 2) &&
 (buf[3] == 3)))
 {
 std::cout << "fail: bogus random didn't provide correct bytes\n";
 }
 QUtil::setRandomDataProvider(0);
 if (QUtil::getRandomDataProvider() != orig_rdp)
 {
 std::cout << "fail: passing null to setRandomDataProvider "
 "didn't reset the random data provider\n";
 }
 std::cout << "random: end of tests\n";
 return 0;
}

qpdf-7.1.0/doc/qpdf-manual.pdf

QPDF Manual

For QPDF Version 7.1.0, January 14, 2018

Jay Berkenbilt

QPDF Manual: For QPDF Version 7.1.0, January 14, 2018
Jay Berkenbilt
Copyright © 2005–2018 Jay Berkenbilt

Table of Contents
General Information ... iv
1. What is QPDF? .. 1
2. Building and Installing QPDF ... 2

2.1. System Requirements .. 2
2.2. Build Instructions ... 2

3. Running QPDF ... 4
3.1. Basic Invocation ... 4
3.2. Basic Options .. 4
3.3. Encryption Options ... 6
3.4. Page Selection Options .. 8
3.5. Advanced Parsing Options ... 9
3.6. Advanced Transformation Options ... 10
3.7. Testing, Inspection, and Debugging Options .. 12

4. QDF Mode ... 15
5. Using the QPDF Library .. 17
6. Design and Library Notes ... 18

6.1. Introduction ... 18
6.2. Design Goals .. 18
6.3. Casting Policy .. 20
6.4. Encryption ... 21
6.5. Random Number Generation ... 22
6.6. Adding and Removing Pages .. 22
6.7. Reserving Object Numbers ... 22
6.8. Copying Objects From Other PDF Files .. 23
6.9. Writing PDF Files ... 23
6.10. Filtered Streams .. 24

7. Linearization ... 25
7.1. Basic Strategy for Linearization ... 25
7.2. Preparing For Linearization .. 25
7.3. Optimization .. 25
7.4. Writing Linearized Files ... 26
7.5. Calculating Linearization Data .. 26
7.6. Known Issues with Linearization ... 26
7.7. Debugging Note .. 27

8. Object and Cross-Reference Streams ... 28
8.1. Object Streams ... 28
8.2. Cross-Reference Streams .. 28

8.2.1. Cross-Reference Stream Data ... 29
8.3. Implications for Linearized Files ... 29
8.4. Implementation Notes .. 30

A. Release Notes .. 31
B. Upgrading from 2.0 to 2.1 .. 42
C. Upgrading to 3.0 ... 43
D. Upgrading to 4.0 .. 44

iii

General Information
QPDF is a program that does structural, content-preserving transformations on PDF files. QPDF's website is located
at http://qpdf.sourceforge.net/. QPDF's source code is hosted on github at https://github.com/qpdf/qpdf.

QPDF is licensed under the Apache License, Version 2.0 [http://www.apache.org/licenses/LICENSE-2.0] (the "Li-
cense"). Unless required by applicable law or agreed to in writing, software distributed under the License is distributed
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

Versions of qpdf prior to version 7 were released under the terms of the Artistic License, version 2.0 [https://open-
source.org/licenses/Artistic-2.0]. At your option, you may continue to consider qpdf to be licensed under those terms.
The Apache License 2.0 permits everything that the Artistic License 2.0 permits but is slightly less restrictive. Allow-
ing the Artistic License to continue being used is primary to help people who may have to get specific approval to
use qpdf in their products.

QPDF is intentionally released with a permissive license. However, if there is some reason that the licensing terms
don't work for your requirements, please feel free to contact the copyright holder to make other arrangements.

QPDF was originally created in 2001 and modified periodically between 2001 and 2005 during my employment at
Apex CoVantage [http://www.apexcovantage.com]. Upon my departure from Apex, the company graciously allowed
me to take ownership of the software and continue maintaining as an open source project, a decision for which I am
very grateful. I have made considerable enhancements to it since that time. I feel fortunate to have worked for people
who would make such a decision. This work would not have been possible without their support.

iv

http://qpdf.sourceforge.net/

https://github.com/qpdf/qpdf

http://www.apache.org/licenses/LICENSE-2.0

http://www.apache.org/licenses/LICENSE-2.0

https://opensource.org/licenses/Artistic-2.0

https://opensource.org/licenses/Artistic-2.0

https://opensource.org/licenses/Artistic-2.0

http://www.apexcovantage.com

http://www.apexcovantage.com

Chapter 1. What is QPDF?
QPDF is a program that does structural, content-preserving transformations on PDF files. It could have been called
something like pdf-to-pdf. It also provides many useful capabilities to developers of PDF-producing software or for
people who just want to look at the innards of a PDF file to learn more about how they work.

With QPDF, it is possible to copy objects from one PDF file into another and to manipulate the list of pages in a PDF
file. This makes it possible to merge and split PDF files. The QPDF library also makes it possible for you to create
PDF files from scratch. In this mode, you are responsible for supplying all the contents of the file, while the QPDF
library takes care off all the syntactical representation of the objects, creation of cross references tables and, if you
use them, object streams, encryption, linearization, and other syntactic details. You are still responsible for generating
PDF content on your own.

QPDF has been designed with very few external dependencies, and it is intentionally very lightweight. QPDF is not a
PDF content creation library, a PDF viewer, or a program capable of converting PDF into other formats. In particular,
QPDF knows nothing about the semantics of PDF content streams. If you are looking for something that can do that,
you should look elsewhere. However, once you have a valid PDF file, QPDF can be used to transform that file in ways
perhaps your original PDF creation can't handle. For example, many programs generate simple PDF files but can't
password-protect them, web-optimize them, or perform other transformations of that type.

1

Chapter 2. Building and Installing
QPDF
This chapter describes how to build and install qpdf. Please see also the README.md and INSTALL files in the source
distribution.

2.1. System Requirements
The qpdf package has few external dependencies. In order to build qpdf, the following packages are required:

• zlib: http://www.zlib.net/

• jpeg: http://www.ijg.org/files/ or https://libjpeg-turbo.org/

• gnu make 3.81 or newer: http://www.gnu.org/software/make

• perl version 5.8 or newer: http://www.perl.org/; required for fix-qdf and the test suite.

• GNU diffutils (any version): http://www.gnu.org/software/diffutils/ is required to run the test suite. Note that this is
the version of diff present on virtually all GNU/Linux systems. This is required because the test suite uses diff -u.

• A C++ compiler that works well with STL and has the long long type. Most modern C++ compilers should fit
the bill fine. QPDF is tested with gcc, clang, and Microsoft Visual C++.

Part of qpdf's test suite does comparisons of the contents PDF files by converting them images and comparing the
images. The image comparison tests are disabled by default. Those tests are not required for determining correctness of
a qpdf build if you have not modified the code since the test suite also contains expected output files that are compared
literally. The image comparison tests provide an extra check to make sure that any content transformations don't break
the rendering of pages. Transformations that affect the content streams themselves are off by default and are only
provided to help developers look into the contents of PDF files. If you are making deep changes to the library that cause
changes in the contents of the files that qpdf generates, then you should enable the image comparison tests. Enable
them by running configure with the --enable-test-compare-images flag. If you enable this, the following additional
requirements are required by the test suite. Note that in no case are these items required to use qpdf.

• libtiff: http://www.remotesensing.org/libtiff/

• GhostScript version 8.60 or newer: http://www.ghostscript.com

If you do not enable this, then you do not need to have tiff and ghostscript.

If Adobe Reader is installed as acroread, some additional test cases will be enabled. These test cases simply verify
that Adobe Reader can open the files that qpdf creates. They require version 8.0 or newer to pass. However, in order
to avoid having qpdf depend on non-free (as in liberty) software, the test suite will still pass without Adobe reader,
and the test suite still exercises the full functionality of the software.

Pre-built documentation is distributed with qpdf, so you should generally not need to rebuild the documentation. In
order to build the documentation from its docbook sources, you need the docbook XML style sheets (http://down-
loads.sourceforge.net/docbook/). To build the PDF version of the documentation, you need Apache fop (http://xml.a-
pache.org/fop/) version 0.94 or higher.

2.2. Build Instructions
Building qpdf on UNIX is generally just a matter of running

2

http://www.zlib.net/

http://www.ijg.org/files/

https://libjpeg-turbo.org/

http://www.gnu.org/software/make

http://www.perl.org/

http://www.gnu.org/software/diffutils/

http://www.remotesensing.org/libtiff/

http://www.ghostscript.com

http://downloads.sourceforge.net/docbook/

http://downloads.sourceforge.net/docbook/

http://xml.apache.org/fop/

http://xml.apache.org/fop/

Building and Installing QPDF

./configure
make

You can also run make check to run the test suite and make install to install. Please run ./configure --help for options
on what can be configured. You can also set the value of DESTDIR during installation to install to a temporary location,
as is common with many open source packages. Please see also the README.md and INSTALL files in the source
distribution.

Building on Windows is a little bit more complicated. For details, please see README-windows.md in the source
distribution. You can also download a binary distribution for Windows. There is a port of qpdf to Visual C++ version 6
in the contrib area generously contributed by Jian Ma. This is also discussed in more detail in README-windows.md.

There are some other things you can do with the build. Although qpdf uses autoconf, it does not use automake but
instead uses a hand-crafted non-recursive Makefile that requires gnu make. If you're really interested, please read the
comments in the top-level Makefile.

3

Chapter 3. Running QPDF
This chapter describes how to run the qpdf program from the command line.

3.1. Basic Invocation
When running qpdf, the basic invocation is as follows:

qpdf [options] infilename [outfilename]

This converts PDF file infilename to PDF file outfilename. The output file is functionally identical to the input file but
may have been structurally reorganized. Also, orphaned objects will be removed from the file. Many transformations
are available as controlled by the options below. In place of infilename, the parameter --empty may be specified. This
causes qpdf to use a dummy input file that contains zero pages. The only normal use case for using --empty would be if
you were going to add pages from another source, as discussed in Section 3.4, “Page Selection Options”, page 8.

If @filename appears anywhere in the command-line, it will be read line by line, and each line will be treated as
a command-line argument. The @- option allows arguments to be read from standard input. This allows qpdf to be
invoked with an arbitrary number of arbitrarily long arguments. It is also very useful for avoiding having to pass
passwords on the command line.

outfilename does not have to be seekable, even when generating linearized files. Specifying “-” as outfilename means
to write to standard output. However, you can't specify the same file as both the input and the output because qpdf reads
data from the input file as it writes to the output file. QPDF attempts to detect this case and fail without overwriting
the output file.

Most options require an output file, but some testing or inspection commands do not. These are specifically noted.

3.2. Basic Options
The following options are the most common ones and perform commonly needed transformations.

--password=password

Specifies a password for accessing encrypted files.

--verbose

Increase verbosity of output. For now, this just prints some indication of any file that it creates.

--linearize

Causes generation of a linearized (web-optimized) output file.

--copy-encryption=file

Encrypt the file using the same encryption parameters, including user and owner password, as the specified file.
Use --encrypt-file-password to specify a password if one is needed to open this file. Note that copying the
encryption parameters from a file also copies the first half of /ID from the file since this is part of the encryption
parameters.

--encrypt-file-password=password

If the file specified with --copy-encryption requires a password, specify the password using this option. Note
that only one of the user or owner password is required. Both passwords will be preserved since QPDF does

4

Running QPDF

not distinguish between the two passwords. It is possible to preserve encryption parameters, including the owner
password, from a file even if you don't know the file's owner password.

--encrypt options --

Causes generation an encrypted output file. Please see Section 3.3, “Encryption Options”, page 6 for details
on how to specify encryption parameters.

--decrypt

Removes any encryption on the file. A password must be supplied if the file is password protected.

--password-is-hex-key

Overrides the usual computation/retrieval of the PDF file's encryption key from user/owner password with an
explicit specification of the encryption key. When this option is specified, the argument to the --password option
is interpreted as a hexadecimal-encoded key value. This only applies to the password used to open the main input
file. It does not apply to other files opened by --pages or other options or to files being written.

Most users will never have a need for this option, and no standard viewers support this mode of operation, but
it can be useful for forensic or investigatory purposes. For example, if a PDF file is encrypted with an unknown
password, a brute-force attack using the key directly is sometimes more efficient than one using the password.
Also, if a file is heavily damaged, it may be possible to derive the encryption key and recover parts of the file
using it directly. To expose the encryption key used by an encrypted file that you can open normally, use the --
show-encryption-key option.

--rotate=[+|-]angle:page-range

Apply rotation to specified pages. The page-range portion of the option value has the same format as page ranges
in Section 3.4, “Page Selection Options”, page 8. The angle portion of the parameter may be either 90, 180, or
270. If preceded by + or -, the angle is added to or subtracted from the specified pages' original rotations. Otherwise
the pages' rotations are set to the exact value. For example, the command qpdf in.pdf out.pdf --rotate=+90:2,4,6
--rotate=180:7-8 would rotate pages 2, 4, and 6 90 degrees clockwise from their original rotation and force the
rotation of pages 7 through 9 to 180 degrees regardless of their original rotation.

--pages options --

Select specific pages from one or more input files. See Section 3.4, “Page Selection Options”, page 8 for
details on how to do page selection (splitting and merging).

--split-pages=[n]

Write each group of n pages to a separate output file. If n is not specified, create single pages. Output file names
are generated as follows:

• If the string %d appears in the output file name, it is replaced with a range of zero-padded page numbers starting
from 1.

• Otherwise, if the output file name ends in .pdf (case insensitive), a zero-padded page range, preceded by a dash,
is inserted before the file extension.

• Otherwise, the file name is appended with a zero-padded page range preceded by a dash.

Page ranges are a single number in the case of single-page groups or two numbers separated by a dash otherwise.
For example, if infile.pdf has 12 pages

• qpdf --split-pages infile.pdf %d-out would generate files 01-out through 12-out

5

Running QPDF

• qpdf --split-pages=2 infile.pdf outfile.pdf would generate files outfile-01-02.pdf through outfile-11-12.pdf

• qpdf --split-pages infile.pdf something.else would generate files something.else-01 through something.else-12

Note that outlines, threads, and other global features of the original PDF file are not preserved. For each page
of output, this option creates an empty PDF and copies a single page from the output into it. If you require the
global data, you will have to run qpdf with the --pages option once for each file. Using --split-pages is much
faster if you don't require the global data.

Password-protected files may be opened by specifying a password. By default, qpdf will preserve any encryption data
associated with a file. If --decrypt is specified, qpdf will attempt to remove any encryption information. If --encrypt
is specified, qpdf will replace the document's encryption parameters with whatever is specified.

Note that qpdf does not obey encryption restrictions already imposed on the file. Doing so would be meaningless since
qpdf can be used to remove encryption from the file entirely. This functionality is not intended to be used for bypassing
copyright restrictions or other restrictions placed on files by their producers.

In all cases where qpdf allows specification of a password, care must be taken if the password contains characters
that fall outside of the 7-bit US-ASCII character range to ensure that the exact correct byte sequence is provided. It
is possible that a future version of qpdf may handle this more gracefully. For example, if a password was encrypted
using a password that was encoded in ISO-8859-1 and your terminal is configured to use UTF-8, the password you
supply may not work properly. There are various approaches to handling this. For example, if you are using Linux
and have the iconv executable installed, you could pass --password=`echo password | iconv -t iso-8859-1` to qpdf
where password is a password specified in your terminal's locale. A detailed discussion of this is out of scope for
this manual, but just be aware of this issue if you have trouble with a password that contains 8-bit characters.

3.3. Encryption Options
To change the encryption parameters of a file, use the --encrypt flag. The syntax is

--encrypt user-password owner-password key-length [restrictions] --

Note that “--” terminates parsing of encryption flags and must be present even if no restrictions are present.

Either or both of the user password and the owner password may be empty strings.

The value for key-length may be 40, 128, or 256. The restriction flags are dependent upon key length. When no
additional restrictions are given, the default is to be fully permissive.

If key-length is 40, the following restriction options are available:

--print=[yn]

Determines whether or not to allow printing.

--modify=[yn]

Determines whether or not to allow document modification.

--extract=[yn]

Determines whether or not to allow text/image extraction.

--annotate=[yn]

Determines whether or not to allow comments and form fill-in and signing.

6

Running QPDF

If key-length is 128, the following restriction options are available:

--accessibility=[yn]

Determines whether or not to allow accessibility to visually impaired.

--extract=[yn]

Determines whether or not to allow text/graphic extraction.

--print=print-opt

Controls printing access. print-opt may be one of the following:

• full: allow full printing

• low: allow low-resolution printing only

• none: disallow printing

--modify=modify-opt

Controls modify access. modify-opt may be one of the following, each of which implies all the options that
follow it:

• all: allow full document modification

• annotate: allow comment authoring and form operations

• form: allow form field fill-in and signing

• assembly: allow document assembly only

• none: allow no modifications

--cleartext-metadata

If specified, any metadata stream in the document will be left unencrypted even if the rest of the document is
encrypted. This also forces the PDF version to be at least 1.5.

--use-aes=[yn]

If --use-aes=y is specified, AES encryption will be used instead of RC4 encryption. This forces the PDF version
to be at least 1.6.

--force-V4

Use of this option forces the /V and /R parameters in the document's encryption dictionary to be set to the value
4. As qpdf will automatically do this when required, there is no reason to ever use this option. It exists primarily
for use in testing qpdf itself. This option also forces the PDF version to be at least 1.5.

If key-length is 256, the minimum PDF version is 1.7 with extension level 8, and the AES-based encryption format
used is the PDF 2.0 encryption method supported by Acrobat X. the same options are available as with 128 bits with
the following exceptions:

--use-aes

This option is not available with 256-bit keys. AES is always used with 256-bit encryption keys.

7

Running QPDF

--force-V4

This option is not available with 256 keys.

--force-R5

If specified, qpdf sets the minimum version to 1.7 at extension level 3 and writes the deprecated encryption format
used by Acrobat version IX. This option should not be used in practice to generate PDF files that will be in general
use, but it can be useful to generate files if you are trying to test proper support in another application for PDF
files encrypted in this way.

The default for each permission option is to be fully permissive.

3.4. Page Selection Options
Starting with qpdf 3.0, it is possible to split and merge PDF files by selecting pages from one or more input files.
Whatever file is given as the primary input file is used as the starting point, but its pages are replaced with pages as
specified.

--pages input-file [--password=password] [page-range] [...] --

Multiple input files may be specified. Each one is given as the name of the input file, an optional password (if required
to open the file), and the range of pages. Note that “--” terminates parsing of page selection flags.

For each file that pages should be taken from, specify the file, a password needed to open the file (if any), and a page
range. The password needs to be given only once per file. If any of the input files are the same as the primary input
file or the file used to copy encryption parameters (if specified), you do not need to repeat the password here. The
same file can be repeated multiple times. If a file that is repeated has a password, the password only has to be given
the first time. All non-page data (info, outlines, page numbers, etc.) are taken from the primary input file. To discard
these, use --empty as the primary input.

Starting with qpdf 5.0.0, it is possible to omit the page range. If qpdf sees a value in the place where it expects a page
range and that value is not a valid range but is a valid file name, qpdf will implicitly use the range 1-z, meaning that
it will include all pages in the file. This makes it possible to easily combine all pages in a set of files with a command
like qpdf --empty out.pdf --pages *.pdf --.

It is not presently possible to specify the same page from the same file directly more than once, but you can make this
work by specifying two different paths to the same file (such as by putting ./ somewhere in the path). This can also be
used if you want to repeat a page from one of the input files in the output file. This may be made more convenient in
a future version of qpdf if there is enough demand for this feature.

The page range is a set of numbers separated by commas, ranges of numbers separated dashes, or combinations of
those. The character “z” represents the last page. Pages can appear in any order. Ranges can appear with a high number
followed by a low number, which causes the pages to appear in reverse. Repeating a number will cause an error, but
you can use the workaround discussed above should you really want to include the same page twice.

Example page ranges:

• 1,3,5-9,15-12: pages 1, 3, 5, 6, 7, 8, 9, 15, 14, 13, and 12 in that order.

• z-1: all pages in the document in reverse

Note that qpdf doesn't presently do anything special about other constructs in a PDF file that may know about pages,
so semantics of splitting and merging vary across features. For example, the document's outlines (bookmarks) point
to actual page objects, so if you select some pages and not others, bookmarks that point to pages that are in the output

8

Running QPDF

file will work, and remaining bookmarks will not work. On the other hand, page labels (page numbers specified in the
file) are just sequential, so page labels will be messed up in the output file. A future version of qpdf may do a better
job at handling these issues. (Note that the qpdf library already contains all of the APIs required in order to implement
this in your own application if you need it.) In the mean time, you can always use --empty as the primary input file to
avoid copying all of that from the first file. For example, to take pages 1 through 5 from a infile.pdf while preserving
all metadata associated with that file, you could use

qpdf infile.pdf --pages infile.pdf 1-5 -- outfile.pdf

If you wanted pages 1 through 5 from infile.pdf but you wanted the rest of the metadata to be dropped, you could
instead run

qpdf --empty --pages infile.pdf 1-5 -- outfile.pdf

If you wanted to take pages 1–5 from file1.pdf and pages 11–15 from file2.pdf in reverse, you would run

qpdf file1.pdf --pages file1.pdf 1-5 file2.pdf 15-11 -- outfile.pdf

If, for some reason, you wanted to take the first page of an encrypted file called encrypted.pdf with password pass
and repeat it twice in an output file, and if you wanted to drop metadata (like page numbers and outlines) but preserve
encryption, you would use

qpdf --empty --copy-encryption=encrypted.pdf --encryption-file-password=pass
--pages encrypted.pdf --password=pass 1 ./encrypted.pdf --password=pass 1 --
outfile.pdf

Note that we had to specify the password all three times because giving a password as --encryption-file-password
doesn't count for page selection, and as far as qpdf is concerned, encrypted.pdf and ./encrypted.pdf are separated files.
These are all corner cases that most users should hopefully never have to be bothered with.

3.5. Advanced Parsing Options
These options control aspects of how qpdf reads PDF files. Mostly these are of use to people who are working with
damaged files. There is little reason to use these options unless you are trying to solve specific problems. The following
options are available:

--suppress-recovery

Prevents qpdf from attempting to recover damaged files.

--ignore-xref-streams

Tells qpdf to ignore any cross-reference streams.

Ordinarily, qpdf will attempt to recover from certain types of errors in PDF files. These include errors in the cross-
reference table, certain types of object numbering errors, and certain types of stream length errors. Sometimes, qpdf
may think it has recovered but may not have actually recovered, so care should be taken when using this option as
some data loss is possible. The --suppress-recovery option will prevent qpdf from attempting recovery. In this case,
it will fail on the first error that it encounters.

Ordinarily, qpdf reads cross-reference streams when they are present in a PDF file. If --ignore-xref-streams is spec-
ified, qpdf will ignore any cross-reference streams for hybrid PDF files. The purpose of hybrid files is to make some
content available to viewers that are not aware of cross-reference streams. It is almost never desirable to ignore them.

9

Running QPDF

The only time when you might want to use this feature is if you are testing creation of hybrid PDF files and wish to
see how a PDF consumer that doesn't understand object and cross-reference streams would interpret such a file.

3.6. Advanced Transformation Options
These transformation options control fine points of how qpdf creates the output file. Mostly these are of use only to
people who are very familiar with the PDF file format or who are PDF developers. The following options are available:

--compress-streams=[yn]

By default, or with --compress-streams=y, qpdf will compress any stream with no other filters applied to it with
the /FlateDecode filter when it writes it. To suppress this behavior and preserve uncompressed streams as
uncompressed, use --compress-streams=n.

--decode-level=option

Controls which streams qpdf tries to decode. The default is generalized. The following options are available:

• none: do not attempt to decode any streams

• generalized: decode streams filtered with supported generalized filters: /LZWDecode, /FlateDecode, /
ASCII85Decode, and /ASCIIHexDecode. We define generalized filters as those to be used for general-pur-
pose compression or encoding, as opposed to filters specifically designed for image data.

• specialized: in addition to generalized, decode streams with supported non-lossy specialized filters; currently
this is just /RunLengthDecode

• all: in addition to generalized and specialized, decode streams with supported lossy filters; currently this is just
/DCTDecode (JPEG)

--stream-data=option

Controls transformation of stream data. This option predates the --compress-streams and --decode-level options.
Those options can be used to achieve the same affect with more control. The value of option may be one of
the following:

• compress: recompress stream data when possible (default); equivalent to --compress-streams=y --decode-lev-
el=generalized

• preserve: leave all stream data as is; equivalent to --compress-streams=n --decode-level=none

• uncompress: uncompress stream data compressed with generalized filters when possible; equivalent to --com-
press-streams=n --decode-level=generalized

--normalize-content=[yn]

Enables or disables normalization of content streams.

--object-streams=mode

Controls handling of object streams. The value of mode may be one of the following:

• preserve: preserve original object streams (default)

• disable: don't write any object streams

• generate: use object streams wherever possible

10

Running QPDF

--preserve-unreferenced

Tells qpdf to preserve objects that are not referenced when writing the file. Ordinarily any object that is not
referenced in a traversal of the document from the trailer dictionary will be discarded. This may be useful in
working with some damaged files or inspecting files with known unreferenced objects.

This flag is ignored for linearized files and has the effect of causing objects in the new file to be written in order
by object ID from the original file. This does not mean that object numbers will be the same since qpdf may
create stream lengths as direct or indirect differently from the original file, and the original file may have gaps
in its numbering.

--newline-before-endstream

Tells qpdf to insert a newline before the endstream keyword, not counted in the length, after any stream content
even if the last character of the stream was a newline. This may result in two newlines in some cases. This is
a requirement of PDF/A. While qpdf doesn't specifically know how to generate PDF/A-compliant PDFs, this at
least prevents it from removing compliance on already compliant files.

--qdf

Turns on QDF mode. For additional information on QDF, please see Chapter 4, QDF Mode, page 15.

--min-version=version

Forces the PDF version of the output file to be at least version. In other words, if the input file has a lower
version than the specified version, the specified version will be used. If the input file has a higher version, the
input file's original version will be used. It is seldom necessary to use this option since qpdf will automatically
increase the version as needed when adding features that require newer PDF readers.

The version number may be expressed in the form major.minor.extension-level, in which case the
version is interpreted as major.minor at extension level extension-level. For example, version 1.7.8
represents version 1.7 at extension level 8. Note that minimal syntax checking is done on the command line.

--force-version=version

This option forces the PDF version to be the exact version specified even when the file may have content that
is not supported in that version. The version number is interpreted in the same way as with --min-version so
that extension levels can be set. In some cases, forcing the output file's PDF version to be lower than that of the
input file will cause qpdf to disable certain features of the document. Specifically, 256-bit keys are disabled if
the version is less than 1.7 with extension level 8 (except R5 is disabled if less than 1.7 with extension level 3),
AES encryption is disabled if the version is less than 1.6, cleartext metadata and object streams are disabled if less
than 1.5, 128-bit encryption keys are disabled if less than 1.4, and all encryption is disabled if less than 1.3. Even
with these precautions, qpdf won't be able to do things like eliminate use of newer image compression schemes,
transparency groups, or other features that may have been added in more recent versions of PDF.

As a general rule, with the exception of big structural things like the use of object streams or AES encryption,
PDF viewers are supposed to ignore features in files that they don't support from newer versions. This means that
forcing the version to a lower version may make it possible to open your PDF file with an older version, though
bear in mind that some of the original document's functionality may be lost.

By default, when a stream is encoded using non-lossy filters that qpdf understands and is not already compressed
using a good compression scheme, qpdf will uncompress and recompress streams. Assuming proper filter implements,
this is safe and generally results in smaller files. This behavior may also be explicitly requested with --stream-da-
ta=compress.

When --normalize-content=y is specified, qpdf will attempt to normalize whitespace and newlines in page content
streams. This is generally safe but could, in some cases, cause damage to the content streams. This option is intended

11

Running QPDF

for people who wish to study PDF content streams or to debug PDF content. You should not use this for “production”
PDF files.

Object streams, also known as compressed objects, were introduced into the PDF specification at version 1.5, corre-
sponding to Acrobat 6. Some older PDF viewers may not support files with object streams. qpdf can be used to trans-
form files with object streams to files without object streams or vice versa. As mentioned above, there are three object
stream modes: preserve, disable, and generate.

In preserve mode, the relationship to objects and the streams that contain them is preserved from the original file. In
disable mode, all objects are written as regular, uncompressed objects. The resulting file should be readable by older
PDF viewers. (Of course, the content of the files may include features not supported by older viewers, but at least
the structure will be supported.) In generate mode, qpdf will create its own object streams. This will usually result in
more compact PDF files, though they may not be readable by older viewers. In this mode, qpdf will also make sure
the PDF version number in the header is at least 1.5.

The --qdf flag turns on QDF mode, which changes some of the defaults described above. Specifically, in QDF mode,
by default, stream data is uncompressed, content streams are normalized, and encryption is removed. These defaults
can still be overridden by specifying the appropriate options as described above. Additionally, in QDF mode, stream
lengths are stored as indirect objects, objects are laid out in a less efficient but more readable fashion, and the documents
are interspersed with comments that make it easier for the user to find things and also make it possible for fix-qdf to
work properly. QDF mode is intended for people, mostly developers, who wish to inspect or modify PDF files in a
text editor. For details, please see Chapter 4, QDF Mode, page 15.

3.7. Testing, Inspection, and Debugging Op-
tions
These options can be useful for digging into PDF files or for use in automated test suites for software that uses the qpdf
library. When any of the options in this section are specified, no output file should be given. The following options
are available:

--deterministic-id

Causes generation of a deterministic value for /ID. This prevents use of timestamp and output file name informa-
tion in the /ID generation. Instead, at some slight additional runtime cost, the /ID field is generated to include a
digest of the significant parts of the content of the output PDF file. This means that a given qpdf operation should
generate the same /ID each time it is run, which can be useful when caching results or for generation of some test
data. Use of this flag is not compatible with creation of encrypted files.

--static-id

Causes generation of a fixed value for /ID. This is intended for testing only. Never use it for production files. If
you are trying to get the same /ID each time for a given file and you are not generating encrypted files, consider
using the --deterministic-id option.

--static-aes-iv

Causes use of a static initialization vector for AES-CBC. This is intended for testing only so that output files
can be reproducible. Never use it for production files. This option in particular is not secure since it significantly
weakens the encryption.

--no-original-object-ids

Suppresses inclusion of original object ID comments in QDF files. This can be useful when generating QDF files
for test purposes, particularly when comparing them to determine whether two PDF files have identical content.

12

Running QPDF

--show-encryption

Shows document encryption parameters. Also shows the document's user password if the owner password is given.

--show-encryption-key

When encryption information is being displayed, as when --check or --show-encryption is given, display the
computed or retrieved encryption key as a hexadecimal string. This value is not ordinarily useful to users, but it
can be used as the argument to --password if the --password-is-hex-key is specified. Note that, when PDF files
are encrypted, passwords and other metadata are used only to compute an encryption key, and the encryption key
is what is actually used for encryption. This enables retrieval of that key.

--check-linearization

Checks file integrity and linearization status.

--show-linearization

Checks and displays all data in the linearization hint tables.

--show-xref

Shows the contents of the cross-reference table in a human-readable form. This is especially useful for files with
cross-reference streams which are stored in a binary format.

--show-object=obj[,gen]

Show the contents of the given object. This is especially useful for inspecting objects that are inside of object
streams (also known as “compressed objects”).

--raw-stream-data

When used along with the --show-object option, if the object is a stream, shows the raw stream data instead of
object's contents.

--filtered-stream-data

When used along with the --show-object option, if the object is a stream, shows the filtered stream data instead
of object's contents. If the stream is filtered using filters that qpdf does not support, an error will be issued.

--show-npages

Prints the number of pages in the input file on a line by itself. Since the number of pages appears by itself on a
line, this option can be useful for scripting if you need to know the number of pages in a file.

--show-pages

Shows the object and generation number for each page dictionary object and for each content stream associated
with the page. Having this information makes it more convenient to inspect objects from a particular page.

--with-images

When used along with --show-pages, also shows the object and generation numbers for the image objects on each
page. (At present, information about images in shared resource dictionaries are not output by this command. This
is discussed in a comment in the source code.)

--check

Checks file structure and well as encryption, linearization, and encoding of stream data. A file for which --check
reports no errors may still have errors in stream data content but should otherwise be structurally sound. If --check

13

Running QPDF

any errors, qpdf will exit with a status of 2. There are some recoverable conditions that --check detects. These
are issued as warnings instead of errors. If qpdf finds no errors but finds warnings, it will exit with a status of
3 (as of version 2.0.4). When --check is combined with other options, checks are always performed before any
other options are processed. For erroneous files, --check will cause qpdf to attempt to recover, after which other
options are effectively operating on the recovered file. Combining --check with other options in this way can be
useful for manually recovering severely damaged files.

The --raw-stream-data and --filtered-stream-data options are ignored unless --show-object is given. Either of these
options will cause the stream data to be written to standard output. In order to avoid commingling of stream data with
other output, it is recommend that these objects not be combined with other test/inspection options.

If --filtered-stream-data is given and --normalize-content=y is also given, qpdf will attempt to normalize the stream
data as if it is a page content stream. This attempt will be made even if it is not a page content stream, in which case
it will produce unusable results.

14

Chapter 4. QDF Mode
In QDF mode, qpdf creates PDF files in what we call QDF form. A PDF file in QDF form, sometimes called a QDF
file, is a completely valid PDF file that has %QDF-1.0 as its third line (after the pdf header and binary characters)
and has certain other characteristics. The purpose of QDF form is to make it possible to edit PDF files, with some
restrictions, in an ordinary text editor. This can be very useful for experimenting with different PDF constructs or for
making one-off edits to PDF files (though there are other reasons why this may not always work).

It is ordinarily very difficult to edit PDF files in a text editor for two reasons: most meaningful data in PDF files is
compressed, and PDF files are full of offset and length information that makes it hard to add or remove data. A QDF
file is organized in a manner such that, if edits are kept within certain constraints, the fix-qdf program, distributed with
qpdf, is able to restore edited files to a correct state. The fix-qdf program takes no command-line arguments. It reads
a possibly edited QDF file from standard input and writes a repaired file to standard output.

The following attributes characterize a QDF file:

• All objects appear in numerical order in the PDF file, including when objects appear in object streams.

• Objects are printed in an easy-to-read format, and all line endings are normalized to UNIX line endings.

• Unless specifically overridden, streams appear uncompressed (when qpdf supports the filters and they are com-
pressed with a non-lossy compression scheme), and most content streams are normalized (line endings are converted
to just a UNIX-style linefeeds).

• All streams lengths are represented as indirect objects, and the stream length object is always the next object after
the stream. If the stream data does not end with a newline, an extra newline is inserted, and a special comment
appears after the stream indicating that this has been done.

• If the PDF file contains object streams, if object stream n contains k objects, those objects are numbered from n
+1 through n+k, and the object number/offset pairs appear on a separate line for each object. Additionally, each
object in the object stream is preceded by a comment indicating its object number and index. This makes it very
easy to find objects in object streams.

• All beginnings of objects, stream tokens, endstream tokens, and endobj tokens appear on lines by themselves.
A blank line follows every endobj token.

• If there is a cross-reference stream, it is unfiltered.

• Page dictionaries and page content streams are marked with special comments that make them easy to find.

• Comments precede each object indicating the object number of the corresponding object in the original file.

When editing a QDF file, any edits can be made as long as the above constraints are maintained. This means that you
can freely edit a page's content without worrying about messing up the QDF file. It is also possible to add new objects
so long as those objects are added after the last object in the file or subsequent objects are renumbered. If a QDF file
has object streams in it, you can always add the new objects before the xref stream and then change the number of the
xref stream, since nothing generally ever references it by number.

It is not generally practical to remove objects from QDF files without messing up object numbering, but if you remove
all references to an object, you can run qpdf on the file (after running fix-qdf), and qpdf will omit the now-orphaned
object.

When fix-qdf is run, it goes through the file and recomputes the following parts of the file:

• the /N, /W, and /First keys of all object stream dictionaries

15

QDF Mode

• the pairs of numbers representing object numbers and offsets of objects in object streams

• all stream lengths

• the cross-reference table or cross-reference stream

• the offset to the cross-reference table or cross-reference stream following the startxref token

16

Chapter 5. Using the QPDF Library
The source tree for the qpdf package has an examples directory that contains a few example programs. The qpdf/
qpdf.cc source file also serves as a useful example since it exercises almost all of the qpdf library's public interface.
The best source of documentation on the library itself is reading comments in include/qpdf/QPDF.hh, include/qpdf/
QPDFWriter.hh, and include/qpdf/QPDFObjectHandle.hh.

All header files are installed in the include/qpdf directory. It is recommend that you use #include <qpdf/
QPDF.hh> rather than adding include/qpdf to your include path.

When linking against the qpdf static library, you may also need to specify -lz -ljpeg on your link command. If
your system understands how to read libtool .la files, this may not be necessary.

The qpdf library is safe to use in a multithreaded program, but no individual QPDF object instance (including QPDF,
QPDFObjectHandle, or QPDFWriter) can be used in more than one thread at a time. Multiple threads may
simultaneously work with different instances of these and all other QPDF objects.

17

Chapter 6. Design and Library Notes

6.1. Introduction
This section was written prior to the implementation of the qpdf package and was subsequently modified to reflect the
implementation. In some cases, for purposes of explanation, it may differ slightly from the actual implementation. As
always, the source code and test suite are authoritative. Even if there are some errors, this document should serve as
a road map to understanding how this code works.

In general, one should adhere strictly to a specification when writing but be liberal in reading. This way, the product
of our software will be accepted by the widest range of other programs, and we will accept the widest range of input
files. This library attempts to conform to that philosophy whenever possible but also aims to provide strict checking
for people who want to validate PDF files. If you don't want to see warnings and are trying to write something that
is tolerant, you can call setSuppressWarnings(true). If you want to fail on the first error, you can call se-
tAttemptRecovery(false). The default behavior is to generating warnings for recoverable problems. Note that
recovery will not always produce the desired results even if it is able to get through the file. Unlike most other PDF
files that produce generic warnings such as “This file is damaged,”, qpdf generally issues a detailed error message that
would be most useful to a PDF developer. This is by design as there seems to be a shortage of PDF validation tools
out there. (This was, in fact, one of the major motivations behind the initial creation of qpdf.)

6.2. Design Goals
The QPDF package includes support for reading and rewriting PDF files. It aims to hide from the user details involving
object locations, modified (appended) PDF files, the directness/indirectness of objects, and stream filters including
encryption. It does not aim to hide knowledge of the object hierarchy or content stream contents. Put another way, a
user of the qpdf library is expected to have knowledge about how PDF files work, but is not expected to have to keep
track of bookkeeping details such as file positions.

A user of the library never has to care whether an object is direct or indirect. All access to objects deals with this
transparently. All memory management details are also handled by the library.

The PointerHolder object is used internally by the library to deal with memory management. This is basically a
smart pointer object very similar in spirit to the Boost library's shared_ptr object, but predating it by several years.
This library also makes use of a technique for giving fine-grained access to methods in one class to other classes by
using public subclasses with friends and only private members that in turn call private methods of the containing class.
See QPDFObjectHandle::Factory as an example.

The top-level qpdf class is QPDF. A QPDF object represents a PDF file. The library provides methods for both
accessing and mutating PDF files.

QPDFObject is the basic PDF Object class. It is an abstract base class from which are derived classes for each type
of PDF object. Clients do not interact with Objects directly but instead interact with QPDFObjectHandle.

QPDFObjectHandle contains PointerHolder<QPDFObject> and includes accessor methods that are type-safe
proxies to the methods of the derived object classes as well as methods for querying object types. They can be passed
around by value, copied, stored in containers, etc. with very low overhead. Instances of QPDFObjectHandle always
contain a reference back to the QPDF object from which they were created. A QPDFObjectHandle may be direct
or indirect. If indirect, the QPDFObject the PointerHolder initially points to is a null pointer. In this case, the
first attempt to access the underlying QPDFObject will result in the QPDFObject being resolved via a call to the
referenced QPDF instance. This makes it essentially impossible to make coding errors in which certain things will
work for some PDF files and not for others based on which objects are direct and which objects are indirect.

18

Design and Library Notes

Instances of QPDFObjectHandle can be directly created and modified using static factory methods in the QPDFOb-
jectHandle class. There are factory methods for each type of object as well as a convenience method QPDFObjec-
tHandle::parse that creates an object from a string representation of the object. Existing instances of QPDFObjec-
tHandle can also be modified in several ways. See comments in QPDFObjectHandle.hh for details.

When the QPDF class creates a new object, it dynamically allocates the appropriate type of QPDFObject and im-
mediately hands the pointer to an instance of QPDFObjectHandle. The parser reads a token from the current file
position. If the token is a not either a dictionary or array opener, an object is immediately constructed from the single
token and the parser returns. Otherwise, the parser is invoked recursively in a special mode in which it accumulates
objects until it finds a balancing closer. During this process, the “R” keyword is recognized and an indirect QPDFOb-
jectHandle may be constructed.

The QPDF::resolve() method, which is used to resolve an indirect object, may be invoked from the QPDFObjec-
tHandle class. It first checks a cache to see whether this object has already been read. If not, it reads the object from
the PDF file and caches it. It the returns the resulting QPDFObjectHandle. The calling object handle then replaces
its PointerHolder<QDFObject> with the one from the newly returned QPDFObjectHandle. In this way, only a
single copy of any direct object need exist and clients can access objects transparently without knowing caring whether
they are direct or indirect objects. Additionally, no object is ever read from the file more than once. That means that
only the portions of the PDF file that are actually needed are ever read from the input file, thus allowing the qpdf
package to take advantage of this important design goal of PDF files.

If the requested object is inside of an object stream, the object stream itself is first read into memory. Then the tokenizer
reads objects from the memory stream based on the offset information stored in the stream. Those individual objects
are cached, after which the temporary buffer holding the object stream contents are discarded. In this way, the first
time an object in an object stream is requested, all objects in the stream are cached.

An instance of QPDF is constructed by using the class's default constructor. If desired, the QPDF object may be
configured with various methods that change its default behavior. Then the QPDF::processFile() method is passed
the name of a PDF file, which permanently associates the file with that QPDF object. A password may also be given
for access to password-protected files. QPDF does not enforce encryption parameters and will treat user and owner
passwords equivalently. Either password may be used to access an encrypted file. 1 QPDF will allow recovery of a
user password given an owner password. The input PDF file must be seekable. (Output files written by QPDFWriter
need not be seekable, even when creating linearized files.) During construction, QPDF validates the PDF file's header,
and then reads the cross reference tables and trailer dictionaries. The QPDF class keeps only the first trailer dictionary
though it does read all of them so it can check the /Prev key. QPDF class users may request the root object and
the trailer dictionary specifically. The cross reference table is kept private. Objects may then be requested by number
of by walking the object tree.

When a PDF file has a cross-reference stream instead of a cross-reference table and trailer, requesting the document's
trailer dictionary returns the stream dictionary from the cross-reference stream instead.

There are some convenience routines for very common operations such as walking the page tree and returning a vector
of all page objects. For full details, please see the header file QPDF.hh.

The following example should clarify how QPDF processes a simple file.

• Client constructs QPDF pdf and calls pdf.processFile("a.pdf");.

• The QPDF class checks the beginning of a.pdf for %!PDF-1.[0-9]+. It then reads the cross reference table
mentioned at the end of the file, ensuring that it is looking before the last %%EOF. After getting to trailer
keyword, it invokes the parser.

1 As pointed out earlier, the intention is not for qpdf to be used to bypass security on files. but as any open source PDF consumer may be easily
modified to bypass basic PDF document security, and qpdf offers may transformations that can do this as well, there seems to be little point in the
added complexity of conditionally enforcing document security.

19

Design and Library Notes

• The parser sees “<<”, so it calls itself recursively in dictionary creation mode.

• In dictionary creation mode, the parser keeps accumulating objects until it encounters “>>”. Each object that is
read is pushed onto a stack. If “R” is read, the last two objects on the stack are inspected. If they are integers,
they are popped off the stack and their values are used to construct an indirect object handle which is then pushed
onto the stack. When “>>” is finally read, the stack is converted into a QPDF_Dictionary which is placed in a
QPDFObjectHandle and returned.

• The resulting dictionary is saved as the trailer dictionary.

• The /Prev key is searched. If present, QPDF seeks to that point and repeats except that the new trailer dictionary
is not saved. If /Prev is not present, the initial parsing process is complete.

If there is an encryption dictionary, the document's encryption parameters are initialized.

• The client requests root object. The QPDF class gets the value of root key from trailer dictionary and returns it. It
is an unresolved indirect QPDFObjectHandle.

• The client requests the /Pages key from root QPDFObjectHandle. The QPDFObjectHandle notices that it
is indirect so it asks QPDF to resolve it. QPDF looks in the object cache for an object with the root dictionary's
object ID and generation number. Upon not seeing it, it checks the cross reference table, gets the offset, and reads
the object present at that offset. It stores the result in the object cache and returns the cached result. The calling
QPDFObjectHandle replaces its object pointer with the one from the resolved QPDFObjectHandle, verifies
that it a valid dictionary object, and returns the (unresolved indirect) QPDFObject handle to the top of the Pages
hierarchy.

As the client continues to request objects, the same process is followed for each new requested object.

6.3. Casting Policy
This section describes the casting policy followed by qpdf's implementation. This is no concern to qpdf's end users
and largely of no concern to people writing code that uses qpdf, but it could be of interest to people who are porting
qpdf to a new platform or who are making modifications to the code.

The C++ code in qpdf is free of old-style casts except where unavoidable (e.g. where the old-style cast is in a macro
provided by a third-party header file). When there is a need for a cast, it is handled, in order of preference, by rewriting
the code to avoid the need for a cast, calling const_cast, calling static_cast, calling reinterpret_cast, or calling some
combination of the above. As a last resort, a compiler-specific #pragma may be used to suppress a warning that we
don't want to fix. Examples may include suppressing warnings about the use of old-style casts in code that is shared
between C and C++ code.

The casting policy explicitly prohibits casting between integer sizes for no purpose other than to quiet a compiler
warning when there is no reasonable chance of a problem resulting. The reason for this exclusion is that the practice
of adding these additional casts precludes future use of additional compiler warnings as a tool for making future
improvements to this aspect of the code, and it also damages the readability of the code.

There are a few significant areas where casting is common in the qpdf sources or where casting would be required to
quiet higher levels of compiler warnings but is omitted at present:

• char vs. unsigned char. For historical reasons, there are a lot of places in qpdf's internals that deal with
unsigned char, which means that a lot of casting is required to interoperate with standard library calls and
std::string. In retrospect, qpdf should have probably used regular (signed) char and char* everywhere and
just cast to unsigned char when needed, but it's too late to make that change now. There are reinterpret_cast
calls to go between char* and unsigned char*, and there are static_cast calls to go between char and
unsigned char. These should always be safe.

20

Design and Library Notes

• Non-const unsigned char* used in the Pipeline interface. The pipeline interface has a write call that uses
unsigned char* without a const qualifier. The main reason for this is to support pipelines that make calls to
third-party libraries, such as zlib, that don't include const in their interfaces. Unfortunately, there are many places
in the code where it is desirable to have const char* with pipelines. None of the pipeline implementations in
qpdf currently modify the data passed to write, and doing so would be counter to the intent of Pipeline, but there
is nothing in the code to prevent this from being done. There are places in the code where const_cast is used to
remove the const-ness of pointers going into Pipelines. This could theoretically be unsafe, but there is adequate
testing to assert that it is safe and will remain safe in qpdf's code.

• size_t vs. qpdf_offset_t. This is pretty much unavoidable since sizes are unsigned types and offsets are
signed types. Whenever it is necessary to seek by an amount given by a size_t, it becomes necessary to mix and
match between size_t and qpdf_offset_t. Additionally, qpdf sometimes treats memory buffers like files (as
with BufferInputSource, and those seek interfaces have to be consistent with file-based input sources. Neither
gcc nor MSVC give warnings for this case by default, but both have warning flags that can enable this. (MSVC:
/W14267 or /W3, which also enables some additional warnings that we ignore; gcc: -Wconversion -Wsign-con-
version). This could matter for files whose sizes are larger than 263 bytes, but it is reasonable to expect that a world
where such files are common would also have larger size_t and qpdf_offset_t types in it. On most 64-bit
systems at the time of this writing (the release of version 4.1.0 of qpdf), both size_t and qpdf_offset_t are
64-bit integer types, while on many current 32-bit systems, size_t is a 32-bit type while qpdf_offset_t is a
64-bit type. I am not aware of any cases where 32-bit systems that have size_t smaller than qpdf_offset_t
could run into problems. Although I can't conclusively rule out the possibility of such problems existing, I suspect
any cases would be pretty contrived. In the event that someone should produce a file that qpdf can't handle because
of what is suspected to be issues involving the handling of size_t vs. qpdf_offset_t (such files may behave
properly on 64-bit systems but not on 32-bit systems because they have very large embedded files or streams, for
example), the above mentioned warning flags could be enabled and all those implicit conversions could be carefully
scrutinized. (I have already gone through that exercise once in adding support for files larger than 4 GB in size.) I
continue to be committed to supporting large files on 32-bit systems, but I would not go to any lengths to support
corner cases involving large embedded files or large streams that work on 64-bit systems but not on 32-bit systems
because of size_t being too small. It is reasonable to assume that anyone working with such files would be using
a 64-bit system anyway since many 32-bit applications would have similar difficulties.

• size_t vs. int or long. There are some cases where size_t and int or long or size_t and unsigned
int or unsigned long are used interchangeably. These cases occur when working with very small amounts of
memory, such as with the bit readers (where we're working with just a few bytes at a time), some cases of strlen, and
a few other cases. I have scrutinized all of these cases and determined them to be safe, but there is no mechanism in
the code to ensure that new unsafe conversions between int and size_t aren't introduced short of good testing
and strong awareness of the issues. Again, if any such bugs are suspected in the future, enabling the additional
warning flags and scrutinizing the warnings would be in order.

To be clear, I believe qpdf to be well-behaved with respect to sizes and offsets, and qpdf's test suite includes actual
generation and full processing of files larger than 4 GB in size. The issues raised here are largely academic and should
not in any way be interpreted to mean that qpdf has practical problems involving sloppiness with integer types. I also
believe that appropriate measures have been taken in the code to avoid problems with signed vs. unsigned integers
from resulting in memory overwrites or other issues with potential security implications, though there are never any
absolute guarantees.

6.4. Encryption
Encryption is supported transparently by qpdf. When opening a PDF file, if an encryption dictionary exists, the QPDF
object processes this dictionary using the password (if any) provided. The primary decryption key is computed and
cached. No further access is made to the encryption dictionary after that time. When an object is read from a file, the
object ID and generation of the object in which it is contained is always known. Using this information along with
the stored encryption key, all stream and string objects are transparently decrypted. Raw encrypted objects are never
stored in memory. This way, nothing in the library ever has to know or care whether it is reading an encrypted file.

21

Design and Library Notes

An interface is also provided for writing encrypted streams and strings given an encryption key. This is used by
QPDFWriter when it rewrites encrypted files.

When copying encrypted files, unless otherwise directed, qpdf will preserve any encryption in force in the original
file. qpdf can do this with either the user or the owner password. There is no difference in capability based on which
password is used. When 40 or 128 bit encryption keys are used, the user password can be recovered with the owner
password. With 256 keys, the user and owner passwords are used independently to encrypt the actual encryption key,
so while either can be used, the owner password can no longer be used to recover the user password.

Starting with version 4.0.0, qpdf can read files that are not encrypted but that contain encrypted attachments, but it
cannot write such files. qpdf also requires the password to be specified in order to open the file, not just to extract
attachments, since once the file is open, all decryption is handled transparently. When copying files like this while
preserving encryption, qpdf will apply the file's encryption to everything in the file, not just to the attachments. When
decrypting the file, qpdf will decrypt the attachments. In general, when copying PDF files with multiple encryption
formats, qpdf will choose the newest format. The only exception to this is that clear-text metadata will be preserved
as clear-text if it is that way in the original file.

6.5. Random Number Generation
QPDF generates random numbers to support generation of encrypted data. Versions prior to 5.0.1 used random or rand
from stdlib to generate random numbers. Version 5.0.1, if available, used operating system-provided secure random
number generation instead, enabling use of stdlib random number generation only if enabled by a compile-time option.
Starting in version 5.1.0, use of insecure random numbers was disabled unless enabled at compile time. Starting in
version 5.1.0, it is also possible for you to disable use of OS-provided secure random numbers. This is especially
useful on Windows if you want to avoid a dependency on Microsoft's cryptography API. In this case, you must provide
your own random data provider. Regardless of how you compile qpdf, starting in version 5.1.0, it is possible for you
to provide your own random data provider at runtime. This would enable you to use some software-based secure
pseudorandom number generator and to avoid use of whatever the operating system provides. For details on how to
do this, please refer to the top-level README.md file in the source distribution and to comments in QUtil.hh.

6.6. Adding and Removing Pages
While qpdf's API has supported adding and modifying objects for some time, version 3.0 introduces specific methods
for adding and removing pages. These are largely convenience routines that handle two tricky issues: pushing inher-
itable resources from the /Pages tree down to individual pages and manipulation of the /Pages tree itself. For
details, see addPage and surrounding methods in QPDF.hh.

6.7. Reserving Object Numbers
Version 3.0 of qpdf introduced the concept of reserved objects. These are seldom needed for ordinary operations, but
there are cases in which you may want to add a series of indirect objects with references to each other to a QPDF object.
This causes a problem because you can't determine the object ID that a new indirect object will have until you add it to
the QPDF object with QPDF::makeIndirectObject. The only way to add two mutually referential objects to a QPDF
object prior to version 3.0 would be to add the new objects first and then make them refer to each other after adding
them. Now it is possible to create a reserved object using QPDFObjectHandle::newReserved. This is an indirect object
that stays “unresolved” even if it is queried for its type. So now, if you want to create a set of mutually referential
objects, you can create reservations for each one of them and use those reservations to construct the references. When
finished, you can call QPDF::replaceReserved to replace the reserved objects with the real ones. This functionality
will never be needed by most applications, but it is used internally by QPDF when copying objects from other PDF
files, as discussed in Section 6.8, “Copying Objects From Other PDF Files”, page 23. For an example of how to
use reserved objects, search for newReserved in test_driver.cc in qpdf's sources.

22

Design and Library Notes

6.8. Copying Objects From Other PDF Files
Version 3.0 of qpdf introduced the ability to copy objects into a QPDF object from a different QPDF object, which
we refer to as foreign objects. This allows arbitrary merging of PDF files. The “from” QPDF object must remain valid
after the copy as discussed in the note below. The qpdf command-line tool provides limited support for basic page
selection, including merging in pages from other files, but the library's API makes it possible to implement arbitrarily
complex merging operations. The main method for copying foreign objects is QPDF::copyForeignObject. This takes
an indirect object from another QPDF and copies it recursively into this object while preserving all object structure,
including circular references. This means you can add a direct object that you create from scratch to a QPDF object with
QPDF::makeIndirectObject, and you can add an indirect object from another file with QPDF::copyForeignObject.
The fact that QPDF::makeIndirectObject does not automatically detect a foreign object and copy it is an explicit design
decision. Copying a foreign object seems like a sufficiently significant thing to do that it should be done explicitly.

The other way to copy foreign objects is by passing a page from one QPDF to another by calling QPDF::addPage.
In contrast to QPDF::makeIndirectObject, this method automatically distinguishes between indirect objects in the
current file, foreign objects, and direct objects.

Please note: when you copy objects from one QPDF to another, the source QPDF object must remain valid until you
have finished with the destination object. This is because the original object is still used to retrieve any referenced
stream data from the copied object.

6.9. Writing PDF Files
The qpdf library supports file writing of QPDF objects to PDF files through the QPDFWriter class. The QPDFWriter
class has two writing modes: one for non-linearized files, and one for linearized files. See Chapter 7, Lineariza-
tion, page 25 for a description of linearization is implemented. This section describes how we write non-linearized
files including the creation of QDF files (see Chapter 4, QDF Mode, page 15.

This outline was written prior to implementation and is not exactly accurate, but it provides a correct “notional” idea
of how writing works. Look at the code in QPDFWriter for exact details.

• Initialize state:

• next object number = 1

• object queue = empty

• renumber table: old object id/generation to new id/0 = empty

• xref table: new id -> offset = empty

• Create a QPDF object from a file.

• Write header for new PDF file.

• Request the trailer dictionary.

• For each value that is an indirect object, grab the next object number (via an operation that returns and increments
the number). Map object to new number in renumber table. Push object onto queue.

• While there are more objects on the queue:

• Pop queue.

• Look up object's new number n in the renumbering table.

23

Design and Library Notes

• Store current offset into xref table.

• Write n 0 obj.

• If object is null, whether direct or indirect, write out null, thus eliminating unresolvable indirect object references.

• If the object is a stream stream, write stream contents, piped through any filters as required, to a memory buffer.
Use this buffer to determine the stream length.

• If object is not a stream, array, or dictionary, write out its contents.

• If object is an array or dictionary (including stream), traverse its elements (for array) or values (for dictionaries),
handling recursive dictionaries and arrays, looking for indirect objects. When an indirect object is found, if it is
not resolvable, ignore. (This case is handled when writing it out.) Otherwise, look it up in the renumbering table.
If not found, grab the next available object number, assign to the referenced object in the renumbering table, and
push the referenced object onto the queue. As a special case, when writing out a stream dictionary, replace length,
filters, and decode parameters as required.

Write out dictionary or array, replacing any unresolvable indirect object references with null (pdf spec says ref-
erence to non-existent object is legal and resolves to null) and any resolvable ones with references to the renum-
bered objects.

• If the object is a stream, write stream\n, the stream contents (from the memory buffer), and \nendstream\n.

• When done, write endobj.

Once we have finished the queue, all referenced objects will have been written out and all deleted objects or unref-
erenced objects will have been skipped. The new cross-reference table will contain an offset for every new object
number from 1 up to the number of objects written. This can be used to write out a new xref table. Finally we can
write out the trailer dictionary with appropriately computed /ID (see spec, 8.3, File Identifiers), the cross reference
table offset, and %%EOF.

6.10. Filtered Streams
Support for streams is implemented through the Pipeline interface which was designed for this package.

When reading streams, create a series of Pipeline objects. The Pipeline abstract base requires implementation write()
and finish() and provides an implementation of getNext(). Each pipeline object, upon receiving data, does whatever it
is going to do and then writes the data (possibly modified) to its successor. Alternatively, a pipeline may be an end-
of-the-line pipeline that does something like store its output to a file or a memory buffer ignoring a successor. For
additional details, look at Pipeline.hh.

QPDF can read raw or filtered streams. When reading a filtered stream, the QPDF class creates a Pipeline object for
one of each appropriate filter object and chains them together. The last filter should write to whatever type of output
is required. The QPDF class has an interface to write raw or filtered stream contents to a given pipeline.

24

Chapter 7. Linearization
This chapter describes how QPDF and QPDFWriter implement creation and processing of linearized PDFS.

7.1. Basic Strategy for Linearization
To avoid the incestuous problem of having the qpdf library validate its own linearized files, we have a special linearized
file checking mode which can be invoked via qpdf --check-linearization (or qpdf --check). This mode reads the
linearization parameter dictionary and the hint streams and validates that object ordering, parameters, and hint stream
contents are correct. The validation code was first tested against linearized files created by external tools (Acrobat and
pdlin) and then used to validate files created by QPDFWriter itself.

7.2. Preparing For Linearization
Before creating a linearized PDF file from any other PDF file, the PDF file must be altered such that all page attributes
are propagated down to the page level (and not inherited from parents in the /Pages tree). We also have to know
which objects refer to which other objects, being concerned with page boundaries and a few other cases. We refer to
this part of preparing the PDF file as optimization, discussed in Section 7.3, “Optimization”, page 25. Note the, in
this context, the term optimization is a qpdf term, and the term linearization is a term from the PDF specification. Do
not be confused by the fact that many applications refer to linearization as optimization or web optimization.

When creating linearized PDF files from optimized PDF files, there are really only a few issues that need to be dealt
with:

• Creation of hints tables

• Placing objects in the correct order

• Filling in offsets and byte sizes

7.3. Optimization
In order to perform various operations such as linearization and splitting files into pages, it is necessary to know which
objects are referenced by which pages, page thumbnails, and root and trailer dictionary keys. It is also necessary to
ensure that all page-level attributes appear directly at the page level and are not inherited from parents in the pages tree.

We refer to the process of enforcing these constraints as optimization. As mentioned above, note that some applications
refer to linearization as optimization. Although this optimization was initially motivated by the need to create linearized
files, we are using these terms separately.

PDF file optimization is implemented in the QPDF_optimization.cc source file. That file is richly commented and
serves as the primary reference for the optimization process.

After optimization has been completed, the private member variables obj_user_to_objects and object_to_obj_users in
QPDF have been populated. Any object that has more than one value in the object_to_obj_users table is shared. Any
object that has exactly one value in the object_to_obj_users table is private. To find all the private objects in a page or
a trailer or root dictionary key, one merely has make this determination for each element in the obj_user_to_objects
table for the given page or key.

Note that pages and thumbnails have different object user types, so the above test on a page will not include objects
referenced by the page's thumbnail dictionary and nothing else.

25

Linearization

7.4. Writing Linearized Files
We will create files with only primary hint streams. We will never write overflow hint streams. (As of PDF version 1.4,
Acrobat doesn't either, and they are never necessary.) The hint streams contain offset information to objects that point
to where they would be if the hint stream were not present. This means that we have to calculate all object positions
before we can generate and write the hint table. This means that we have to generate the file in two passes. To make
this reliable, QPDFWriter in linearization mode invokes exactly the same code twice to write the file to a pipeline.

In the first pass, the target pipeline is a count pipeline chained to a discard pipeline. The count pipeline simply passes
its data through to the next pipeline in the chain but can return the number of bytes passed through it at any intermediate
point. The discard pipeline is an end of line pipeline that just throws its data away. The hint stream is not written and
dummy values with adequate padding are stored in the first cross reference table, linearization parameter dictionary,
and /Prev key of the first trailer dictionary. All the offset, length, object renumbering information, and anything else
we need for the second pass is stored.

At the end of the first pass, this information is passed to the QPDF class which constructs a compressed hint stream
in a memory buffer and returns it. QPDFWriter uses this information to write a complete hint stream object into a
memory buffer. At this point, the length of the hint stream is known.

In the second pass, the end of the pipeline chain is a regular file instead of a discard pipeline, and we have known values
for all the offsets and lengths that we didn't have in the first pass. We have to adjust offsets that appear after the start of
the hint stream by the length of the hint stream, which is known. Anything that is of variable length is padded, with the
padding code surrounding any writing code that differs in the two passes. This ensures that changes to the way things
are represented never results in offsets that were gathered during the first pass becoming incorrect for the second pass.

Using this strategy, we can write linearized files to a non-seekable output stream with only a single pass to disk or
wherever the output is going.

7.5. Calculating Linearization Data
Once a file is optimized, we have information about which objects access which other objects. We can then process
these tables to decide which part (as described in “Linearized PDF Document Structure” in the PDF specification)
each object is contained within. This tells us the exact order in which objects are written. The QPDFWriter class
asks for this information and enqueues objects for writing in the proper order. It also turns on a check that causes an
exception to be thrown if an object is encountered that has not already been queued. (This could happen only if there
were a bug in the traversal code used to calculate the linearization data.)

7.6. Known Issues with Linearization
There are a handful of known issues with this linearization code. These issues do not appear to impact the behavior of
linearized files which still work as intended: it is possible for a web browser to begin to display them before they are
fully downloaded. In fact, it seems that various other programs that create linearized files have many of these same
issues. These items make reference to terminology used in the linearization appendix of the PDF specification.

• Thread Dictionary information keys appear in part 4 with the rest of Threads instead of in part 9. Objects in part
9 are not grouped together functionally.

• We are not calculating numerators for shared object positions within content streams or interleaving them within
content streams.

• We generate only page offset, shared object, and outline hint tables. It would be relatively easy to add some additional
tables. We gather most of the information needed to create thumbnail hint tables. There are comments in the code
about this.

26

Linearization

7.7. Debugging Note
The qpdf --show-linearization command can show the complete contents of linearization hint streams. To look at
the raw data, you can extract the filtered contents of the linearization hint tables using qpdf --show-object=n --fil-
tered-stream-data. Then, to convert this into a bit stream (since linearization tables are bit streams written without
regard to byte boundaries), you can pipe the resulting data through the following perl code:

use bytes;
binmode STDIN;
undef $/;
my $a = <STDIN>;
my @ch = split(//, $a);
map { printf("%08b", ord($_)) } @ch;
print "\n";

27

Chapter 8. Object and Cross-Reference
Streams
This chapter provides information about the implementation of object stream and cross-reference stream support in
qpdf.

8.1. Object Streams
Object streams can contain any regular object except the following:

• stream objects

• objects with generation > 0

• the encryption dictionary

• objects containing the /Length of another stream

In addition, Adobe reader (at least as of version 8.0.0) appears to not be able to handle having the document catalog
appear in an object stream if the file is encrypted, though this is not specifically disallowed by the specification.

There are additional restrictions for linearized files. See Section 8.3, “Implications for Linearized Files”, page 29for
details.

The PDF specification refers to objects in object streams as “compressed objects” regardless of whether the object
stream is compressed.

The generation number of every object in an object stream must be zero. It is possible to delete and replace an object
in an object stream with a regular object.

The object stream dictionary has the following keys:

• /N: number of objects

• /First: byte offset of first object

• /Extends: indirect reference to stream that this extends

Stream collections are formed with /Extends. They must form a directed acyclic graph. These can be used for
semantic information and are not meaningful to the PDF document's syntactic structure. Although qpdf preserves
stream collections, it never generates them and doesn't make use of this information in any way.

The specification recommends limiting the number of objects in object stream for efficiency in reading and decoding.
Acrobat 6 uses no more than 100 objects per object stream for linearized files and no more 200 objects per stream for
non-linearized files. QPDFWriter, in object stream generation mode, never puts more than 100 objects in an object
stream.

Object stream contents consists of N pairs of integers, each of which is the object number and the byte offset of the
object relative to the first object in the stream, followed by the objects themselves, concatenated.

8.2. Cross-Reference Streams
For non-hybrid files, the value following startxref is the byte offset to the xref stream rather than the word xref.

28

Object and Cross-Reference Streams

For hybrid files (files containing both xref tables and cross-reference streams), the xref table's trailer dictionary contains
the key /XRefStm whose value is the byte offset to a cross-reference stream that supplements the xref table. A
PDF 1.5-compliant application should read the xref table first. Then it should replace any object that it has already
seen with any defined in the xref stream. Then it should follow any /Prev pointer in the original xref table's trailer
dictionary. The specification is not clear about what should be done, if anything, with a /Prev pointer in the xref
stream referenced by an xref table. The QPDF class ignores it, which is probably reasonable since, if this case were
to appear for any sensible PDF file, the previous xref table would probably have a corresponding /XRefStm pointer
of its own. For example, if a hybrid file were appended, the appended section would have its own xref table and /
XRefStm. The appended xref table would point to the previous xref table which would point the /XRefStm, meaning
that the new /XRefStm doesn't have to point to it.

Since xref streams must be read very early, they may not be encrypted, and the may not contain indirect objects for
keys required to read them, which are these:

• /Type: value /XRef

• /Size: value n+1: where n is highest object number (same as /Size in the trailer dictionary)

• /Index (optional): value [n count ...] used to determine which objects' information is stored in this stream.
The default is [0 /Size].

• /Prev: value offset: byte offset of previous xref stream (same as /Prev in the trailer dictionary)

• /W [...]: sizes of each field in the xref table

The other fields in the xref stream, which may be indirect if desired, are the union of those from the xref table's trailer
dictionary.

8.2.1. Cross-Reference Stream Data
The stream data is binary and encoded in big-endian byte order. Entries are concatenated, and each entry has a length
equal to the total of the entries in /W above. Each entry consists of one or more fields, the first of which is the type of
the field. The number of bytes for each field is given by /W above. A 0 in /W indicates that the field is omitted and
has the default value. The default value for the field type is “1”. All other default values are “0”.

PDF 1.5 has three field types:

• 0: for free objects. Format: 0 obj next-generation, same as the free table in a traditional cross-reference table

• 1: regular non-compressed object. Format: 1 offset generation

• 2: for objects in object streams. Format: 2 object-stream-number index, the number of object stream
containing the object and the index within the object stream of the object.

It seems standard to have the first entry in the table be 0 0 0 instead of 0 0 ffff if there are no deleted objects.

8.3. Implications for Linearized Files
For linearized files, the linearization dictionary, document catalog, and page objects may not be contained in object
streams.

Objects stored within object streams are given the highest range of object numbers within the main and first-page
cross-reference sections.

It is okay to use cross-reference streams in place of regular xref tables. There are on special considerations.

29

Object and Cross-Reference Streams

Hint data refers to object streams themselves, not the objects in the streams. Shared object references should also be
made to the object streams. There are no reference in any hint tables to the object numbers of compressed objects
(objects within object streams).

When numbering objects, all shared objects within both the first and second halves of the linearized files must be
numbered consecutively after all normal uncompressed objects in that half.

8.4. Implementation Notes
There are three modes for writing object streams: disable, preserve, and generate. In disable mode, we do not generate
any object streams, and we also generate an xref table rather than xref streams. This can be used to generate PDF
files that are viewable with older readers. In preserve mode, we write object streams such that written object streams
contain the same objects and /Extends relationships as in the original file. This is equal to disable if the file has no
object streams. In generate, we create object streams ourselves by grouping objects that are allowed in object streams
together in sets of no more than 100 objects. We also ensure that the PDF version is at least 1.5 in generate mode, but
we preserve the version header in the other modes. The default is preserve.

We do not support creation of hybrid files. When we write files, even in preserve mode, we will lose any xref tables
and merge any appended sections.

30

Appendix A. Release Notes
For a detailed list of changes, please see the file ChangeLog in the source distribution.

7.1.0: January 14, 2018

• PDF files contain streams that may be compressed with various compression algorithms which, in some cases,
may be enhanced by various predictor functions. Previously only the PNG up predictor was supported. In this
version, all the PNG predictors as well as the TIFF predictor are supported. This increases the range of files
that qpdf is able to handle.

• QPDF now allows a raw encryption key to be specified in place of a password when opening encrypted files, and
will optionally display the encryption key used by a file. This is a non-standard operation, but it can be useful in
certain situations. Please see the discussion of --password-is-hex-key in Section 3.2, “Basic Options”, page 4
or the comments around QPDF::setPasswordIsHexKey in QPDF.hh for additional details.

• Bug fix: numbers ending with a trailing decimal point are now properly recognized as numbers.

• Bug fix: when building qpdf from source on some platforms (especially MacOS), the build could get confused
by older versions of qpdf installed on the system. This has been corrected.

7.0.0: September 15, 2017

• Packaging and Distribution Changes

• QPDF's primary license is now version 2.0 of the Apache License [http://www.apache.org/licenses/LI-
CENSE-2.0] rather than version 2.0 of the Artistic License. You may still, at your option, consider qpdf to
be licensed with version 2.0 of the Artistic license.

• QPDF no longer has a dependency on the PCRE (Perl-Compatible Regular Expression) library. QPDF now
has an added dependency on the JPEG library.

• Bug Fixes

• This release contains many bug fixes for various infinite loops, memory leaks, and other memory errors that
could be encountered with specially crafted or otherwise erroneous PDF files.

• New Features

• QPDF now supports reading and writing streams encoded with JPEG or RunLength encoding. Li-
brary API enhancements and command-line options have been added to control this behavior. See com-
mand-line options --compress-streams and --decode-level and methods QPDFWriter::setCompressStreams
and QPDFWriter::setDecodeLevel.

• QPDF is much better at recovering from broken files. In most cases, qpdf will skip invalid objects and will
preserve broken stream data by not attempting to filter broken streams. QPDF is now able to recover or at
least not crash on dozens of broken test files I have received over the past few years.

• Page rotation is now supported and accessible from both the library and the command line.

• QPDFWriter supports writing files in a way that preserves PCLm compliance in support of driverless print-
ing. This is very specialized and is only useful to applications that already know how to create PCLm files.

• Enhancements to the qpdf Command-line Tool. All new options listed here are documented in more detail in
Chapter 3, Running QPDF, page 4.

31

http://www.apache.org/licenses/LICENSE-2.0

http://www.apache.org/licenses/LICENSE-2.0

http://www.apache.org/licenses/LICENSE-2.0

Release Notes

• Command-line arguments can now be read from files or standard input using @file or @- syntax. Please
see Section 3.1, “Basic Invocation”, page 4.

• --rotate: request page rotation

• --newline-before-endstream: ensure that a newline appears before every endstream keyword in the file;
used to prevent qpdf from breaking PDF/A compliance on already compliant files.

• --preserve-unreferenced: preserve unreferenced objects in the input PDF

• --split-pages: break output into chunks with fixed numbers of pages

• --verbose: print the name of each output file that is created

• --compress-streams and --decode-level replace --stream-data for improving granularity of controlling
compression and decompression of stream data. The --stream-data option will remain available.

• When running qpdf --check with other options, checks are always run first. This enables qpdf to perform
its full recovery logic before outputting other information. This can be especially useful when manually
recovering broken files, looking at qpdf's regenerated cross reference table, or other similar operations.

• Process --pages earlier so that other options like --show-pages or --split-pages can operate on the file after
page splitting/merging has occurred.

• API Changes. All new API calls are documented in their respective classes' header files.

• QPDFObjectHandle::rotatePage: apply rotation to a page object

• QPDFWriter::setNewlineBeforeEndstream: force newline to appear before endstream

• QPDFWriter::setPreserveUnreferencedObjects: preserve unreferenced objects that appear in the input PDF.
The default behavior is to discard them.

• New Pipeline types Pl_RunLength and Pl_DCT are available for developers who wish to produce or
consume RunLength or DCT stream data directly. The examples/pdf-create.cc example illustrates their use.

• QPDFWriter::setCompressStreams and QPDFWriter::setDecodeLevel methods control handling of differ-
ent types of stream compression.

• Add new C API functions qpdf_set_compress_streams, qpdf_set_decode_level, qpdf_set_preserve_unrefer-
enced_objects, and qpdf_set_newline_before_endstream corresponding to the new QPDFWriter methods.

6.0.0: November 10, 2015

• Implement --deterministic-id command-line option and QPDFWriter::setDeterministicID as well as C API
function qpdf_set_deterministic_ID for generating a deterministic ID for non-encrypted files. When this option
is selected, the ID of the file depends on the contents of the output file, and not on transient items such as the
timestamp or output file name.

• Make qpdf more tolerant of files whose xref table entries are not the correct length.

5.1.3: May 24, 2015

• Bug fix: fix-qdf was not properly handling files that contained object streams with more than 255 objects in
them.

32

Release Notes

• Bug fix: qpdf was not properly initializing Microsoft's secure crypto provider on fresh Windows installations
that had not had any keys created yet.

• Fix a few errors found by Gynvael Coldwind and Mateusz Jurczyk of the Google Security Team. Please see
the ChangeLog for details.

• Properly handle pages that have no contents at all. There were many cases in which qpdf handled this fine, but
a few methods blindly obtained page contents with handling the possibility that there were no contents.

• Make qpdf more robust for a few more kinds of problems that may occur in invalid PDF files.

5.1.2: June 7, 2014

• Bug fix: linearizing files could create a corrupted output file under extremely unlikely file size circumstances.
See ChangeLog for details. The odds of getting hit by this are very low, though one person did.

• Bug fix: qpdf would fail to write files that had streams with decode parameters referencing other streams.

• New example program: pdf-split-pages: efficiently split PDF files into individual pages. The example program
does this more efficiently than using qpdf --pages to do it.

• Packaging fix: Visual C++ binaries did not support Windows XP. This has been rectified by updating the
compilers used to generate the release binaries.

5.1.1: January 14, 2014

• Performance fix: copying foreign objects could be very slow with certain types of files. This was most likely
to be visible during page splitting and was due to traversing the same objects multiple times in some cases.

5.1.0: December 17, 2013

• Added runtime option (QUtil::setRandomDataProvider) to supply your own random data provider. You can
use this if you want to avoid using the OS-provided secure random number generation facility or stdlib's less
secure version. See comments in include/qpdf/QUtil.hh for details.

• Fixed image comparison tests to not create 12-bit-per-pixel images since some versions of tiffcmp have bugs
in comparing them in some cases. This increases the disk space required by the image comparison tests, which
are off by default anyway.

• Introduce a number of small fixes for compilation on the latest clang in MacOS and the latest Visual C++ in
Windows.

• Be able to handle broken files that end the xref table header with a space instead of a newline.

5.0.1: October 18, 2013

• Thanks to a detailed review by Florian Weimer and the Red Hat Product Security Team, this release includes a
number of non-user-visible security hardening changes. Please see the ChangeLog file in the source distribution
for the complete list.

• When available, operating system-specific secure random number generation is used for generating initializa-
tion vectors and other random values used during encryption or file creation. For the Windows build, this results
in an added dependency on Microsoft's cryptography API. To disable the OS-specific cryptography and use the
old version, pass the --enable-insecure-random option to ./configure.

• The qpdf command-line tool now issues a warning when -accessibility=n is specified for newer encryption
versions stating that the option is ignored. qpdf, per the spec, has always ignored this flag, but it previously

33

Release Notes

did so silently. This warning is issued only by the command-line tool, not by the library. The library's handling
of this flag is unchanged.

5.0.0: July 10, 2013

• Bug fix: previous versions of qpdf would lose objects with generation != 0 when generating object streams.
Fixing this required changes to the public API.

• Removed methods from public API that were only supposed to be called by QPDFWriter and couldn't realisti-
cally be called anywhere else. See ChangeLog for details.

• New QPDFObjGen class added to represent an object ID/generation pair. QPDFObjectHandle::getObjGen() is
now preferred over QPDFObjectHandle::getObjectID() and QPDFObjectHandle::getGeneration() as it makes
it less likely for people to accidentally write code that ignores the generation number. See QPDF.hh and
QPDFObjectHandle.hh for additional notes.

• Add --show-npages command-line option to the qpdf command to show the number of pages in a file.

• Allow omission of the page range within --pages for the qpdf command. When omitted, the page range is
implicitly taken to be all the pages in the file.

• Various enhancements were made to support different types of broken files or broken readers. Details can be
found in ChangeLog.

4.1.0: April 14, 2013

• Note to people including qpdf in distributions: the .la files generated by libtool are now installed by qpdf's make
install target. Before, they were not installed. This means that if your distribution does not want to include .la
files, you must remove them as part of your packaging process.

• Major enhancement: API enhancements have been made to support parsing of content streams. This enhance-
ment includes the following changes:

• QPDFObjectHandle::parseContentStream method parses objects in a content stream and calls handlers in a
callback class. The example examples/pdf-parse-content.cc illustrates how this may be used.

• QPDFObjectHandle can now represent operators and inline images, object types that may only appear
in content streams.

• Method QPDFObjectHandle::getTypeCode() returns an enumerated type value representing the underlying
object type. Method QPDFObjectHandle::getTypeName() returns a text string describing the name of the
type of a QPDFObjectHandle object. These methods can be used for more efficient parsing and debug-
ging/diagnostic messages.

• qpdf --check now parses all pages' content streams in addition to doing other checks. While there are still many
types of errors that cannot be detected, syntactic errors in content streams will now be reported.

• Minor compilation enhancements have been made to facilitate easier for support for a broader range of compilers
and compiler versions.

• Warning flags have been moved into a separate variable in autoconf.mk

• The configure flag --enable-werror work for Microsoft compilers

• All MSVC CRT security warnings have been resolved.

• All C-style casts in C++ Code have been replaced by C++ casts, and many casts that had been included to
suppress higher warning levels for some compilers have been removed, primarily for clarity. Places where

34

Release Notes

integer type coercion occurs have been scrutinized. A new casting policy has been documented in the manual.
This is of concern mainly to people porting qpdf to new platforms or compilers. It is not visible to program-
mers writing code that uses the library

• Some internal limits have been removed in code that converts numbers to strings. This is largely invisible
to users, but it does trigger a bug in some older versions of mingw-w64's C++ library. See README-win-
dows.md in the source distribution if you think this may affect you. The copy of the DLL distributed with
qpdf's binary distribution is not affected by this problem.

• The RPM spec file previously included with qpdf has been removed. This is because virtually all Linux distri-
butions include qpdf now that it is a dependency of CUPS filters.

• A few bug fixes are included:

• Overridden compressed objects are properly handled. Before, there were certain constructs that could cause
qpdf to see old versions of some objects. The most usual manifestation of this was loss of filled in form
values for certain files.

• Installation no longer uses GNU/Linux-specific versions of some commands, so make install works on
Solaris with native tools.

• The 64-bit mingw Windows binary package no longer includes a 32-bit DLL.

4.0.1: January 17, 2013

• Fix detection of binary attachments in test suite to avoid false test failures on some platforms.

• Add clarifying comment in QPDF.hh to methods that return the user password explaining that it is no longer
possible with newer encryption formats to recover the user password knowing the owner password. In earlier
encryption formats, the user password was encrypted in the file using the owner password. In newer encryption
formats, a separate encryption key is used on the file, and that key is independently encrypted using both the
user password and the owner password.

4.0.0: December 31, 2012

• Major enhancement: support has been added for newer encryption schemes supported by version X of Adobe
Acrobat. This includes use of 127-character passwords, 256-bit encryption keys, and the encryption scheme
specified in ISO 32000-2, the PDF 2.0 specification. This scheme can be chosen from the command line by
specifying use of 256-bit keys. qpdf also supports the deprecated encryption method used by Acrobat IX. This
encryption style has known security weaknesses and should not be used in practice. However, such files exist “in
the wild,” so support for this scheme is still useful. New methods QPDFWriter::setR6EncryptionParameters
(for the PDF 2.0 scheme) and QPDFWriter::setR5EncryptionParameters (for the deprecated scheme) have
been added to enable these new encryption schemes. Corresponding functions have been added to the C API
as well.

• Full support for Adobe extension levels in PDF version information. Starting with PDF version 1.7, corre-
sponding to ISO 32000, Adobe adds new functionality by increasing the extension level rather than increasing
the version. This support includes addition of the QPDF::getExtensionLevel method for retrieving the docu-
ment's extension level, addition of versions of QPDFWriter::setMinimumPDFVersion and QPDFWriter::for-
cePDFVersion that accept an extension level, and extended syntax for specifying forced and minimum versions
on the command line as described in Section 3.6, “Advanced Transformation Options”, page 10. Corresponding
functions have been added to the C API as well.

• Minor fixes to prevent qpdf from referencing objects in the file that are not referenced in the file's overall
structure. Most files don't have any such objects, but some files have contain unreferenced objects with errors,
so these fixes prevent qpdf from needlessly rejecting or complaining about such objects.

35

Release Notes

• Add new generalized methods for reading and writing files from/to programmer-defined sources. The
method QPDF::processInputSource allows the programmer to use any input source for the input file, and
QPDFWriter::setOutputPipeline allows the programmer to write the output file through any pipeline. These
methods would make it possible to perform any number of specialized operations, such as accessing external
storage systems, creating bindings for qpdf in other programming languages that have their own I/O systems,
etc.

• Add new method QPDF::getEncryptionKey for retrieving the underlying encryption key used in the file.

• This release includes a small handful of non-compatible API changes. While effort is made to avoid such
changes, all the non-compatible API changes in this version were to parts of the API that would likely never
be used outside the library itself. In all cases, the altered methods or structures were parts of the QPDF that
were public to enable them to be called from either QPDFWriter or were part of validation code that was over-
zealous in reporting problems in parts of the file that would not ordinarily be referenced. In no case did any of
the removed methods do anything worse that falsely report error conditions in files that were broken in ways
that didn't matter. The following public parts of the QPDF class were changed in a non-compatible way:

• Updated nested QPDF::EncryptionData class to add fields needed by the newer encryption formats, mem-
ber variables changed to private so that future changes will not require breaking backward compatibility.

• Added additional parameters to compute_data_key, which is used by QPDFWriter to compute the encryp-
tion key used to encrypt a specific object.

• Removed the method flattenScalarReferences. This method was previously used prior to writing a new PDF
file, but it has the undesired side effect of causing qpdf to read objects in the file that were not referenced.
Some otherwise files have unreferenced objects with errors in them, so this could cause qpdf to reject files
that would be accepted by virtually all other PDF readers. In fact, qpdf relied on only a very small part of
what flattenScalarReferences did, so only this part has been preserved, and it is now done directly inside
QPDFWriter.

• Removed the method decodeStreams. This method was used by the --check option of the qpdf command-line
tool to force all streams in the file to be decoded, but it also suffered from the problem of opening otherwise
unreferenced streams and thus could report false positive. The --check option now causes qpdf to go through
all the motions of writing a new file based on the original one, so it will always reference and check exactly
those parts of a file that any ordinary viewer would check.

• Removed the method trimTrailerForWrite. This method was used by QPDFWriter to modify the original
QPDF object by removing fields from the trailer dictionary that wouldn't apply to the newly written file.
This functionality, though generally harmless, was a poor implementation and has been replaced by having
QPDFWriter filter these out when copying the trailer rather than modifying the original QPDF object. (Note
that qpdf never modifies the original file itself.)

• Allow the PDF header to appear anywhere in the first 1024 bytes of the file. This is consistent with what other
readers do.

• Fix the pkg-config files to list zlib and pcre in Requires.private to better support static linking using pkg-config.

3.0.2: September 6, 2012

• Bug fix: QPDFWriter::setOutputMemory did not work when not used with QPDFWriter::setStaticID, which
made it pretty much useless. This has been fixed.

• New API call QPDFWriter::setExtraHeaderText inserts additional text near the header of the PDF file. The
intended use case is to insert comments that may be consumed by a downstream application, though other use
cases may exist.

36

Release Notes

3.0.1: August 11, 2012

• Version 3.0.0 included addition of files for pkg-config, but this was not mentioned in the release notes. The
release notes for 3.0.0 were updated to mention this.

• Bug fix: if an object stream ended with a scalar object not followed by space, qpdf would incorrectly report that
it encountered a premature EOF. This bug has been in qpdf since version 2.0.

3.0.0: August 2, 2012

• Acknowledgment: I would like to express gratitude for the contributions of Tobias Hoffmann toward the release
of qpdf version 3.0. He is responsible for most of the implementation and design of the new API for manipulating
pages, and contributed code and ideas for many of the improvements made in version 3.0. Without his work,
this release would certainly not have happened as soon as it did, if at all.

• Non-compatible API change: The version of QPDFObjectHandle::replaceStreamData that uses a StreamDat-
aProvider no longer requires (or accepts) a length parameter. See Appendix C, Upgrading to 3.0, page 43
for an explanation. While care is taken to avoid non-compatible API changes in general, an exception was made
this time because the new interface offers an opportunity to significantly simplify calling code.

• Support has been added for large files. The test suite verifies support for files larger than 4 gigabytes, and
manual testing has verified support for files larger than 10 gigabytes. Large file support is available for both
32-bit and 64-bit platforms as long as the compiler and underlying platforms support it.

• Support for page selection (splitting and merging PDF files) has been added to the qpdf command-line tool.
See Section 3.4, “Page Selection Options”, page 8.

• Options have been added to the qpdf command-line tool for copying encryption parameters from another file.
See Section 3.2, “Basic Options”, page 4.

• New methods have been added to the QPDF object for adding and removing pages. See Section 6.6, “Adding
and Removing Pages”, page 22.

• New methods have been added to the QPDF object for copying objects from other PDF files. See Section 6.8,
“Copying Objects From Other PDF Files”, page 23

• A new method QPDFObjectHandle::parse has been added for constructing QPDFObjectHandle objects
from a string description.

• Methods have been added to QPDFWriter to allow writing to an already open stdio FILE* addition to writing
to standard output or a named file. Methods have been added to QPDF to be able to process a file from an
already open stdio FILE*. This makes it possible to read and write PDF from secure temporary files that have
been unlinked prior to being fully read or written.

• The QPDF::emptyPDF can be used to allow creation of PDF files from scratch. The example examples/pdf-
create.cc illustrates how it can be used.

• Several methods to take PointerHolder<Buffer> can now also accept std::string arguments.

• Many new convenience methods have been added to the library, most in QPDFObjectHandle. See ChangeL-
og for a full list.

• When building on a platform that supports ELF shared libraries (such as Linux), symbol versions are enabled
by default. They can be disabled by passing --disable-ld-version-script to ./configure.

• The file libqpdf.pc is now installed to support pkg-config.

37

Release Notes

• Image comparison tests are off by default now since they are not needed to verify a correct build or port of
qpdf. They are needed only when changing the actual PDF output generated by qpdf. You should enable them
if you are making deep changes to qpdf itself. See README.md for details.

• Large file tests are off by default but can be turned on with ./configure or by setting an environment variable
before running the test suite. See README.md for details.

• When qpdf's test suite fails, failures are not printed to the terminal anymore by default. Instead, find them in
build/qtest.log. For packagers who are building with an autobuilder, you can add the --enable-show-failed-
test-output option to ./configure to restore the old behavior.

2.3.1: December 28, 2011

• Fix thread-safety problem resulting from non-thread-safe use of the PCRE library.

• Made a few minor documentation fixes.

• Add workaround for a bug that appears in some versions of ghostscript to the test suite

• Fix minor build issue for Visual C++ 2010.

2.3.0: August 11, 2011

• Bug fix: when preserving existing encryption on encrypted files with cleartext metadata, older qpdf versions
would generate password-protected files with no valid password. This operation now works. This bug only af-
fected files created by copying existing encryption parameters; explicit encryption with specification of clear-
text metadata worked before and continues to work.

• Enhance QPDFWriter with a new constructor that allows you to delay the specification of the output file.
When using this constructor, you may now call QPDFWriter::setOutputFilename to specify the output file,
or you may use QPDFWriter::setOutputMemory to cause QPDFWriter to write the resulting PDF file to a
memory buffer. You may then use QPDFWriter::getBuffer to retrieve the memory buffer.

• Add new API call QPDF::replaceObject for replacing objects by object ID

• Add new API call QPDF::swapObjects for swapping two objects by object ID

• Add QPDFObjectHandle::getDictAsMap and QPDFObjectHandle::getArrayAsVector to allow retrieval of
dictionary objects as maps and array objects as vectors.

• Add functions qpdf_get_info_key and qpdf_set_info_key to the C API for manipulating string fields of the
document's /Info dictionary.

• Add functions qpdf_init_write_memory, qpdf_get_buffer_length, and qpdf_get_buffer to the C API for writing
PDF files to a memory buffer instead of a file.

2.2.4: June 25, 2011

• Fix installation and compilation issues; no functionality changes.

2.2.3: April 30, 2011

• Handle some damaged streams with incorrect characters following the stream keyword.

• Improve handling of inline images when normalizing content streams.

• Enhance error recovery to properly handle files that use object 0 as a regular object, which is specifically
disallowed by the spec.

38

Release Notes

2.2.2: October 4, 2010

• Add new function qpdf_read_memory to the C API to call QPDF::processMemoryFile. This was an omission
in qpdf 2.2.1.

2.2.1: October 1, 2010

• Add new method QPDF::setOutputStreams to replace std::cout and std::cerr with other streams for generation
of diagnostic messages and error messages. This can be useful for GUIs or other applications that want to
capture any output generated by the library to present to the user in some other way. Note that QPDF does
not write to std::cout (or the specified output stream) except where explicitly mentioned in QPDF.hh, and
that the only use of the error stream is for warnings. Note also that output of warnings is suppressed when
setSuppressWarnings(true) is called.

• Add new method QPDF::processMemoryFile for operating on PDF files that are loaded into memory rather
than in a file on disk.

• Give a warning but otherwise ignore empty PDF objects by treating them as null. Empty object are not permitted
by the PDF specification but have been known to appear in some actual PDF files.

• Handle inline image filter abbreviations when the appear as stream filter abbreviations. The PDF specification
does not allow use of stream filter abbreviations in this way, but Adobe Reader and some other PDF readers
accept them since they sometimes appear incorrectly in actual PDF files.

• Implement miscellaneous enhancements to PointerHolder and Buffer to support other changes.

2.2.0: August 14, 2010

• Add new methods to QPDFObjectHandle (newStream and replaceStreamData for creating new streams and
replacing stream data. This makes it possible to perform a wide range of operations that were not previously
possible.

• Add new helper method in QPDFObjectHandle (addPageContents) for appending or prepending new content
streams to a page. This method makes it possible to manipulate content streams without having to be concerned
whether a page's contents are a single stream or an array of streams.

• Add new method in QPDFObjectHandle: replaceOrRemoveKey, which replaces a dictionary key with a
given value unless the value is null, in which case it removes the key instead.

• Add new method in QPDFObjectHandle: getRawStreamData, which returns the raw (unfiltered) stream data
into a buffer. This complements the getStreamData method, which returns the filtered (uncompressed) stream
data and can only be used when the stream's data is filterable.

• Provide two new examples: pdf-double-page-size and pdf-invert-images that illustrate the newly added in-
terfaces.

• Fix a memory leak that would cause loss of a few bytes for every object involved in a cycle of object references.
Thanks to Jian Ma for calling my attention to the leak.

2.1.5: April 25, 2010

• Remove restriction of file identifier strings to 16 bytes. This unnecessary restriction was preventing qpdf from
being able to encrypt or decrypt files with identifier strings that were not exactly 16 bytes long. The specification
imposes no such restriction.

2.1.4: April 18, 2010

• Apply the same padding calculation fix from version 2.1.2 to the main cross reference stream as well.

39

Release Notes

• Since qpdf --check only performs limited checks, clarify the output to make it clear that there still may be
errors that qpdf can't check. This should make it less surprising to people when another PDF reader is unable
to read a file that qpdf thinks is okay.

2.1.3: March 27, 2010

• Fix bug that could cause a failure when rewriting PDF files that contain object streams with unreferenced objects
that in turn reference indirect scalars.

• Don't complain about (invalid) AES streams that aren't a multiple of 16 bytes. Instead, pad them before de-
crypting.

2.1.2: January 24, 2010

• Fix bug in padding around first half cross reference stream in linearized files. The bug could cause an assertion
failure when linearizing certain unlucky files.

2.1.1: December 14, 2009

• No changes in functionality; insert missing include in an internal library header file to support gcc 4.4, and
update test suite to ignore broken Adobe Reader installations.

2.1: October 30, 2009

• This is the first version of qpdf to include Windows support. On Windows, it is possible to build a DLL. Addi-
tionally, a partial C-language API has been introduced, which makes it possible to call qpdf functions from non-
C++ environments. I am very grateful to Zarko Gagic (http://delphi.about.com/) for tirelessly testing numerous
pre-release versions of this DLL and providing many excellent suggestions on improving the interface.

For programming to the C interface, please see the header file qpdf/qpdf-c.h and the example examples/pdf-
linearize.c.

• Zarko Gajic has written a Delphi wrapper for qpdf, which can be downloaded from qpdf's download side.
Zarko's Delphi wrapper is released with the same licensing terms as qpdf itself and comes with this disclaimer:
“Delphi wrapper unit qpdf.pas created by Zarko Gajic (http://delphi.about.com/). Use at your own risk and for
whatever purpose you want. No support is provided. Sample code is provided.”

• Support has been added for AES encryption and crypt filters. Although qpdf does not presently support files
that use PKI-based encryption, with the addition of AES and crypt filters, qpdf is now be able to open most
encrypted files created with newer versions of Acrobat or other PDF creation software. Note that I have not
been able to get very many files encrypted in this way, so it's possible there could still be some cases that qpdf
can't handle. Please report them if you find them.

• Many error messages have been improved to include more information in hopes of making qpdf a more useful
tool for PDF experts to use in manually recovering damaged PDF files.

• Attempt to avoid compressing metadata streams if possible. This is consistent with other PDF creation appli-
cations.

• Provide new command-line options for AES encrypt, cleartext metadata, and setting the minimum and forced
PDF versions of output files.

• Add additional methods to the QPDF object for querying the document's permissions. Although qpdf does
not enforce these permissions, it does make them available so that applications that use qpdf can enforce per-
missions.

• The --check option to qpdf has been extended to include some additional information.

40

http://delphi.about.com/

http://delphi.about.com/

Release Notes

• There have been a handful of non-compatible API changes. For details, see Appendix B, Upgrading from 2.0
to 2.1, page 42.

2.0.6: May 3, 2009

• Do not attempt to uncompress streams that have decode parameters we don't recognize. Earlier versions of qpdf
would have rejected files with such streams.

2.0.5: March 10, 2009

• Improve error handling in the LZW decoder, and fix a small error introduced in the previous version with regard
to handling full tables. The LZW decoder has been more strongly verified in this release.

2.0.4: February 21, 2009

• Include proper support for LZW streams encoded without the “early code change” flag. Special thanks to Atom
Smasher who reported the problem and provided an input file compressed in this way, which I did not previously
have.

• Implement some improvements to file recovery logic.

2.0.3: February 15, 2009

• Compile cleanly with gcc 4.4.

• Handle strings encoded as UTF-16BE properly.

2.0.2: June 30, 2008

• Update test suite to work properly with a non-bash /bin/sh and with Perl 5.10. No changes were made to the
actual qpdf source code itself for this release.

2.0.1: May 6, 2008

• No changes in functionality or interface. This release includes fixes to the source code so that qpdf compiles
properly and passes its test suite on a broader range of platforms. See ChangeLog in the source distribution
for details.

2.0: April 29, 2008

• First public release.

41

Appendix B. Upgrading from 2.0 to 2.1
Although, as a general rule, we like to avoid introducing source-level incompatibilities in qpdf's interface, there were a
few non-compatible changes made in this version. A considerable amount of source code that uses qpdf will probably
compile without any changes, but in some cases, you may have to update your code. The changes are enumerated here.
There are also some new interfaces; for those, please refer to the header files.

• QPDF's exception handling mechanism now uses std::logic_error for internal errors and std::runtime_error
for runtime errors in favor of the now removed QEXC classes used in previous versions. The QEXC exception
classes predated the addition of the <stdexcept> header file to the C++ standard library. Most of the exceptions
thrown by the qpdf library itself are still of type QPDFExc which is now derived from std::runtime_error.
Programs that caught an instance of std::exception and displayed it by calling the what() method will not need
to be changed.

• The QPDFExc class now internally represents various fields of the error condition and provides interfaces for
querying them. Among the fields is a numeric error code that can help applications act differently on (a small number
of) different error conditions. See QPDFExc.hh for details.

• Warnings can be retrieved from qpdf as instances of QPDFExc instead of strings.

• The nested QPDF::EncryptionData class's constructor takes an additional argument. This class is primarily in-
tended to be used by QPDFWriter. There's not really anything useful an end-user application could do with it. It
probably shouldn't really be part of the public interface to begin with. Likewise, some of the methods for computing
internal encryption dictionary parameters have changed to support /R=4 encryption.

• The method QPDF::getUserPassword has been removed since it didn't do what people would think it did. There
are now two new methods: QPDF::getPaddedUserPassword and QPDF::getTrimmedUserPassword. The first one
does what the old QPDF::getUserPassword method used to do, which is to return the password with possible binary
padding as specified by the PDF specification. The second one returns a human-readable password string.

• The enumerated types that used to be nested in QPDFWriter have moved to top-level enumerated types and are
now defined in the file qpdf/Constants.h. This enables them to be shared by both the C and C++ interfaces.

42

Appendix C. Upgrading to 3.0
For the most part, the API for qpdf version 3.0 is backward compatible with versions 2.1 and later. There are two
exceptions:

• The method QPDFObjectHandle::replaceStreamData that uses a StreamDataProvider to provide the stream
data no longer takes a length parameter. While it would have been easy enough to keep the parameter for backward
compatibility, in this case, the parameter was removed since this provides the user an opportunity to simplify the
calling code. This method was introduced in version 2.2. At the time, the length parameter was required in order
to ensure that calls to the stream data provider returned the same length for a specific stream every time they were
invoked. In particular, the linearization code depends on this. Instead, qpdf 3.0 and newer check for that constraint
explicitly. The first time the stream data provider is called for a specific stream, the actual length is saved, and
subsequent calls are required to return the same number of bytes. This means the calling code no longer has to
compute the length in advance, which can be a significant simplification. If your code fails to compile because of
the extra argument and you don't want to make other changes to your code, just omit the argument.

• Many methods take long long instead of other integer types. Most if not all existing code should compile fine
with this change since such parameters had always previously been smaller types. This change was required to
support files larger than two gigabytes in size.

43

Appendix D. Upgrading to 4.0
While version 4.0 includes a few non-compatible API changes, it is very unlikely that anyone's code would have
used any of those parts of the API since they generally required information that would only be available inside the
library. In the unlikely event that you should run into trouble, please see the ChangeLog. See also Appendix A, Release
Notes, page 31 for a complete list of the non-compatible API changes made in this version.

44

qpdf-7.1.0/doc/qpdf-manual.html

QPDF Manual

For QPDF Version 7.1.0, January 14, 2018

Jay Berkenbilt

Copyright © 2005–2018 Jay Berkenbilt

Table of Contents

			General Information

			1. What is QPDF?

			2. Building and Installing QPDF

						2.1. System Requirements

			2.2. Build Instructions

			3. Running QPDF

						3.1. Basic Invocation

			3.2. Basic Options

			3.3. Encryption Options

			3.4. Page Selection Options

			3.5. Advanced Parsing Options

			3.6. Advanced Transformation Options

			3.7. Testing, Inspection, and Debugging Options

			4. QDF Mode

			5. Using the QPDF Library

			6. Design and Library Notes

						6.1. Introduction

			6.2. Design Goals

			6.3. Casting Policy

			6.4. Encryption

			6.5. Random Number Generation

			6.6. Adding and Removing Pages

			6.7. Reserving Object Numbers

			6.8. Copying Objects From Other PDF Files

			6.9. Writing PDF Files

			6.10. Filtered Streams

			7. Linearization

						7.1. Basic Strategy for Linearization

			7.2. Preparing For Linearization

			7.3. Optimization

			7.4. Writing Linearized Files

			7.5. Calculating Linearization Data

			7.6. Known Issues with Linearization

			7.7. Debugging Note

			8. Object and Cross-Reference Streams

						8.1. Object Streams

			8.2. Cross-Reference Streams

						8.2.1. Cross-Reference Stream Data

			8.3. Implications for Linearized Files

			8.4. Implementation Notes

			A. Release Notes

			B. Upgrading from 2.0 to 2.1

			C. Upgrading to 3.0

			D. Upgrading to 4.0

General Information

 QPDF is a program that does structural, content-preserving
 transformations on PDF files. QPDF's website is located at http://qpdf.sourceforge.net/.
 QPDF's source code is hosted on github at https://github.com/qpdf/qpdf.

 QPDF is licensed under the Apache
 License, Version 2.0 (the "License"). Unless required by
 applicable law or agreed to in writing, software distributed under
 the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
 OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the specific language governing permissions and
 limitations under the License.

 Versions of qpdf prior to version 7 were released under the terms
 of the
 Artistic License, version 2.0. At your option, you may
 continue to consider qpdf to be licensed under those terms. The
 Apache License 2.0 permits everything that the Artistic License 2.0
 permits but is slightly less restrictive. Allowing the Artistic
 License to continue being used is primary to help people who may
 have to get specific approval to use qpdf in their products.

 QPDF is intentionally released with a permissive license. However,
 if there is some reason that the licensing terms don't work for
 your requirements, please feel free to contact the copyright holder
 to make other arrangements.

 QPDF was originally created in 2001 and modified periodically
 between 2001 and 2005 during my employment at Apex CoVantage. Upon my
 departure from Apex, the company graciously allowed me to take
 ownership of the software and continue maintaining as an open
 source project, a decision for which I am very grateful. I have
 made considerable enhancements to it since that time. I feel
 fortunate to have worked for people who would make such a decision.
 This work would not have been possible without their support.

Chapter 1. What is QPDF?

 QPDF is a program that does structural, content-preserving
 transformations on PDF files. It could have been called something
 like pdf-to-pdf. It also provides many useful
 capabilities to developers of PDF-producing software or for people
 who just want to look at the innards of a PDF file to learn more
 about how they work.

 With QPDF, it is possible to copy objects from one PDF file into
 another and to manipulate the list of pages in a PDF file. This
 makes it possible to merge and split PDF files. The QPDF library
 also makes it possible for you to create PDF files from scratch.
 In this mode, you are responsible for supplying all the contents of
 the file, while the QPDF library takes care off all the syntactical
 representation of the objects, creation of cross references tables
 and, if you use them, object streams, encryption, linearization,
 and other syntactic details. You are still responsible for
 generating PDF content on your own.

 QPDF has been designed with very few external dependencies, and it
 is intentionally very lightweight. QPDF is
 not a PDF content creation library, a PDF
 viewer, or a program capable of converting PDF into other formats.
 In particular, QPDF knows nothing about the semantics of PDF
 content streams. If you are looking for something that can do
 that, you should look elsewhere. However, once you have a valid
 PDF file, QPDF can be used to transform that file in ways perhaps
 your original PDF creation can't handle. For example, many
 programs generate simple PDF files but can't password-protect them,
 web-optimize them, or perform other transformations of that type.

Chapter 2. Building and Installing QPDF

Table of Contents

			2.1. System Requirements

			2.2. Build Instructions

 This chapter describes how to build and install qpdf. Please see
 also the README.md and
 INSTALL files in the source distribution.

2.1. System Requirements

 The qpdf package has few external dependencies. In order to build
 qpdf, the following packages are required:

			
 zlib: http://www.zlib.net/

			
 jpeg: http://www.ijg.org/files/
 or https://libjpeg-turbo.org/

			
 gnu make 3.81 or newer: http://www.gnu.org/software/make

			
 perl version 5.8 or newer:
 http://www.perl.org/;
 required for fix-qdf and the test suite.

			
 GNU diffutils (any version): http://www.gnu.org/software/diffutils/
 is required to run the test suite. Note that this is the
 version of diff present on virtually all GNU/Linux systems.
 This is required because the test suite uses diff
 -u.

			
 A C++ compiler that works well with STL and has the long
 long type. Most modern C++ compilers should fit the bill
 fine. QPDF is tested with gcc, clang, and Microsoft Visual C++.

 Part of qpdf's test suite does comparisons of the contents PDF
 files by converting them images and comparing the images. The
 image comparison tests are disabled by default. Those tests are
 not required for determining correctness of a qpdf build if you
 have not modified the code since the test suite also contains
 expected output files that are compared literally. The image
 comparison tests provide an extra check to make sure that any
 content transformations don't break the rendering of pages.
 Transformations that affect the content streams themselves are off
 by default and are only provided to help developers look into the
 contents of PDF files. If you are making deep changes to the
 library that cause changes in the contents of the files that qpdf
 generates, then you should enable the image comparison tests.
 Enable them by running configure with the
 --enable-test-compare-images flag. If you enable
 this, the following additional requirements are required by the
 test suite. Note that in no case are these items required to use
 qpdf.

			
 libtiff: http://www.remotesensing.org/libtiff/

			
 GhostScript version 8.60 or newer: http://www.ghostscript.com

 If you do not enable this, then you do not need to have tiff and
 ghostscript.

 If Adobe Reader is installed as acroread, some
 additional test cases will be enabled. These test cases simply
 verify that Adobe Reader can open the files that qpdf creates.
 They require version 8.0 or newer to pass. However, in order to
 avoid having qpdf depend on non-free (as in liberty) software, the
 test suite will still pass without Adobe reader, and the test
 suite still exercises the full functionality of the software.

 Pre-built documentation is distributed with qpdf, so you should
 generally not need to rebuild the documentation. In order to
 build the documentation from its docbook sources, you need the
 docbook XML style sheets (http://downloads.sourceforge.net/docbook/).
 To build the PDF version of the documentation, you need Apache fop
 (http://xml.apache.org/fop/)
 version 0.94 or higher.

2.2. Build Instructions

 Building qpdf on UNIX is generally just a matter of running

./configure
make

 You can also run make check to run the test
 suite and make install to install. Please run
 ./configure --help for options on what can be
 configured. You can also set the value of
 DESTDIR during installation to install to a
 temporary location, as is common with many open source packages.
 Please see also the README.md and
 INSTALL files in the source distribution.

 Building on Windows is a little bit more complicated. For
 details, please see README-windows.md in the
 source distribution. You can also download a binary distribution
 for Windows. There is a port of qpdf to Visual C++ version 6 in
 the contrib area generously contributed by
 Jian Ma. This is also discussed in more detail in
 README-windows.md.

 There are some other things you can do with the build. Although
 qpdf uses autoconf, it does not use
 automake but instead uses a
 hand-crafted non-recursive Makefile that requires gnu make. If
 you're really interested, please read the comments in the
 top-level Makefile.

Chapter 3. Running QPDF

Table of Contents

			3.1. Basic Invocation

			3.2. Basic Options

			3.3. Encryption Options

			3.4. Page Selection Options

			3.5. Advanced Parsing Options

			3.6. Advanced Transformation Options

			3.7. Testing, Inspection, and Debugging Options

 This chapter describes how to run the qpdf program from the command
 line.

3.1. Basic Invocation

 When running qpdf, the basic invocation is as follows:

qpdf [options] infilename [outfilename]

 This converts PDF file infilename to PDF file
 outfilename. The output file is functionally
 identical to the input file but may have been structurally
 reorganized. Also, orphaned objects will be removed from the
 file. Many transformations are available as controlled by the
 options below. In place of infilename, the
 parameter --empty may be specified. This causes
 qpdf to use a dummy input file that contains zero pages. The only
 normal use case for using --empty would be if you
 were going to add pages from another source, as discussed in Section 3.4, “Page Selection Options”.

 If @filename appears anywhere in the
 command-line, it will be read line by line, and each line will be
 treated as a command-line argument. The @- option
 allows arguments to be read from standard input. This allows qpdf
 to be invoked with an arbitrary number of arbitrarily long
 arguments. It is also very useful for avoiding having to pass
 passwords on the command line.

 outfilename does not have to be seekable, even
 when generating linearized files. Specifying
 “-” as outfilename
 means to write to standard output. However, you can't specify the
 same file as both the input and the output because qpdf reads data
 from the input file as it writes to the output file. QPDF attempts
 to detect this case and fail without overwriting the output file.

 Most options require an output file, but some testing or
 inspection commands do not. These are specifically noted.

3.2. Basic Options

 The following options are the most common ones and perform
 commonly needed transformations.

			--password=password

			
 Specifies a password for accessing encrypted files.

			--verbose

			
 Increase verbosity of output. For now, this just prints some
 indication of any file that it creates.

			--linearize

			
 Causes generation of a linearized (web-optimized) output file.

			--copy-encryption=file

			
 Encrypt the file using the same encryption parameters,
 including user and owner password, as the specified file. Use
 --encrypt-file-password to specify a password
 if one is needed to open this file. Note that copying the
 encryption parameters from a file also copies the first half
 of /ID from the file since this is part of
 the encryption parameters.

			--encrypt-file-password=password

			
 If the file specified with --copy-encryption
 requires a password, specify the password using this option.
 Note that only one of the user or owner password is required.
 Both passwords will be preserved since QPDF does not
 distinguish between the two passwords. It is possible to
 preserve encryption parameters, including the owner password,
 from a file even if you don't know the file's owner password.

			--encrypt options --

			
 Causes generation an encrypted output file. Please see Section 3.3, “Encryption Options” for details on how to
 specify encryption parameters.

			--decrypt

			
 Removes any encryption on the file. A password must be
 supplied if the file is password protected.

			--password-is-hex-key

			
 Overrides the usual computation/retrieval of the PDF file's
 encryption key from user/owner password with an explicit
 specification of the encryption key. When this option is
 specified, the argument to the --password
 option is interpreted as a hexadecimal-encoded key value. This
 only applies to the password used to open the main input file.
 It does not apply to other files opened by
 --pages or other options or to files being
 written.

 Most users will never have a need for this option, and no
 standard viewers support this mode of operation, but it can be
 useful for forensic or investigatory purposes. For example, if
 a PDF file is encrypted with an unknown password, a
 brute-force attack using the key directly is sometimes more
 efficient than one using the password. Also, if a file is
 heavily damaged, it may be possible to derive the encryption
 key and recover parts of the file using it directly. To expose
 the encryption key used by an encrypted file that you can open
 normally, use the --show-encryption-key
 option.

			--rotate=[+|-]angle:page-range

			
 Apply rotation to specified pages. The
 page-range portion of the option value has
 the same format as page ranges in Section 3.4, “Page Selection Options”. The angle
 portion of the parameter may be either 90, 180, or 270. If
 preceded by + or -, the
 angle is added to or subtracted from the specified pages'
 original rotations. Otherwise the pages' rotations are set to
 the exact value. For example, the command qpdf in.pdf
 out.pdf --rotate=+90:2,4,6 --rotate=180:7-8 would
 rotate pages 2, 4, and 6 90 degrees clockwise from their
 original rotation and force the rotation of pages 7 through 9
 to 180 degrees regardless of their original rotation.

			--pages options --

			
 Select specific pages from one or more input files. See Section 3.4, “Page Selection Options” for details on how to do page
 selection (splitting and merging).

			--split-pages=[n]

			
 Write each group of n pages to a separate
 output file. If n is not specified, create
 single pages. Output file names are generated as follows:

			
 If the string %d appears in the output
 file name, it is replaced with a range of zero-padded page
 numbers starting from 1.

			
 Otherwise, if the output file name ends in
 .pdf (case insensitive), a zero-padded
 page range, preceded by a dash, is inserted before the file
 extension.

			
 Otherwise, the file name is appended with a zero-padded
 page range preceded by a dash.

 Page ranges are a single number in the case of single-page
 groups or two numbers separated by a dash otherwise.
 For example, if infile.pdf has 12 pages

			
 qpdf --split-pages infile.pdf %d-out
 would generate files 01-out through
 12-out

			
 qpdf --split-pages=2 infile.pdf
 outfile.pdf would generate files
 outfile-01-02.pdf through
 outfile-11-12.pdf

			
 qpdf --split-pages infile.pdf
 something.else would generate files
 something.else-01 through
 something.else-12

 Note that outlines, threads, and other global features of the
 original PDF file are not preserved. For each page of output,
 this option creates an empty PDF and copies a single page from
 the output into it. If you require the global data, you will
 have to run qpdf with the
 --pages option once for each file. Using
 --split-pages is much faster if you don't
 require the global data.

 Password-protected files may be opened by specifying a password.
 By default, qpdf will preserve any encryption data associated with
 a file. If --decrypt is specified, qpdf will
 attempt to remove any encryption information. If
 --encrypt is specified, qpdf will replace the
 document's encryption parameters with whatever is specified.

 Note that qpdf does not obey encryption restrictions already
 imposed on the file. Doing so would be meaningless since qpdf can
 be used to remove encryption from the file entirely. This
 functionality is not intended to be used for bypassing copyright
 restrictions or other restrictions placed on files by their
 producers.

 In all cases where qpdf allows specification of a password, care
 must be taken if the password contains characters that fall
 outside of the 7-bit US-ASCII character range to ensure that the
 exact correct byte sequence is provided. It is possible that a
 future version of qpdf may handle this more gracefully. For
 example, if a password was encrypted using a password that was
 encoded in ISO-8859-1 and your terminal is configured to use
 UTF-8, the password you supply may not work properly. There are
 various approaches to handling this. For example, if you are
 using Linux and have the iconv executable installed, you could
 pass --password=`echo password
 | iconv -t iso-8859-1` to qpdf where
 password is a password specified in
 your terminal's locale. A detailed discussion of this is out of
 scope for this manual, but just be aware of this issue if you have
 trouble with a password that contains 8-bit characters.

3.3. Encryption Options

 To change the encryption parameters of a file, use the --encrypt
 flag. The syntax is

--encrypt user-password owner-password key-length [restrictions] --

 Note that “--” terminates parsing of
 encryption flags and must be present even if no restrictions are
 present.

 Either or both of the user password and the owner password may be
 empty strings.

 The value for
 key-length may be 40,
 128, or 256. The restriction flags are dependent upon key length.
 When no additional restrictions are given, the default is to be
 fully permissive.

 If key-length is 40,
 the following restriction options are available:

			--print=[yn]

			
 Determines whether or not to allow printing.

			--modify=[yn]

			
 Determines whether or not to allow document modification.

			--extract=[yn]

			
 Determines whether or not to allow text/image extraction.

			--annotate=[yn]

			
 Determines whether or not to allow comments and form fill-in
 and signing.

 If key-length is 128,
 the following restriction options are available:

			--accessibility=[yn]

			
 Determines whether or not to allow accessibility to visually
 impaired.

			--extract=[yn]

			
 Determines whether or not to allow text/graphic extraction.

			--print=print-opt

			
 Controls printing access.
 print-opt may be
 one of the following:

			
 full: allow full printing

			
 low: allow low-resolution printing only

			
 none: disallow printing

			--modify=modify-opt

			
 Controls modify access.
 modify-opt may be
 one of the following, each of which implies all the options
 that follow it:

			
 all: allow full document modification

			
 annotate: allow comment authoring and form operations

			
 form: allow form field fill-in and signing

			
 assembly: allow document assembly only

			
 none: allow no modifications

			--cleartext-metadata

			
 If specified, any metadata stream in the document will be left
 unencrypted even if the rest of the document is encrypted.
 This also forces the PDF version to be at least 1.5.

			--use-aes=[yn]

			
 If --use-aes=y is specified, AES encryption
 will be used instead of RC4 encryption. This forces the PDF
 version to be at least 1.6.

			--force-V4

			
 Use of this option forces the /V and
 /R parameters in the document's encryption
 dictionary to be set to the value 4. As
 qpdf will automatically do this when required, there is no
 reason to ever use this option. It exists primarily for use
 in testing qpdf itself. This option also forces the PDF
 version to be at least 1.5.

 If key-length is 256,
 the minimum PDF version is 1.7 with extension level 8, and the
 AES-based encryption format used is the PDF 2.0 encryption method
 supported by Acrobat X. the same options are available as with
 128 bits with the following exceptions:

			--use-aes

			
 This option is not available with 256-bit keys. AES is always
 used with 256-bit encryption keys.

			--force-V4

			
 This option is not available with 256 keys.

			--force-R5

			
 If specified, qpdf sets the minimum version to 1.7 at
 extension level 3 and writes the deprecated encryption format
 used by Acrobat version IX. This option should not be used in
 practice to generate PDF files that will be in general use,
 but it can be useful to generate files if you are trying to
 test proper support in another application for PDF files
 encrypted in this way.

 The default for each permission option is to be fully permissive.

3.4. Page Selection Options

 Starting with qpdf 3.0, it is possible to split and merge PDF
 files by selecting pages from one or more input files. Whatever
 file is given as the primary input file is used as the starting
 point, but its pages are replaced with pages as specified.

--pages input-file [--password=password] [page-range] [...] --

 Multiple input files may be specified. Each one is given as the
 name of the input file, an optional password (if required to open
 the file), and the range of pages. Note that
 “--” terminates parsing of page
 selection flags.

 For each file that pages should be taken from, specify the file, a
 password needed to open the file (if any), and a page range. The
 password needs to be given only once per file. If any of the
 input files are the same as the primary input file or the file
 used to copy encryption parameters (if specified), you do not need
 to repeat the password here. The same file can be repeated
 multiple times. If a file that is repeated has a password, the
 password only has to be given the first time. All non-page data
 (info, outlines, page numbers, etc.) are taken from the primary
 input file. To discard these, use --empty as the
 primary input.

 Starting with qpdf 5.0.0, it is possible to omit the page range.
 If qpdf sees a value in the place where it expects a page range
 and that value is not a valid range but is a valid file name, qpdf
 will implicitly use the range 1-z, meaning that
 it will include all pages in the file. This makes it possible to
 easily combine all pages in a set of files with a command like
 qpdf --empty out.pdf --pages *.pdf --.

 It is not presently possible to specify the same page from the
 same file directly more than once, but you can make this work by
 specifying two different paths to the same file (such as by
 putting ./ somewhere in the path). This can
 also be used if you want to repeat a page from one of the input
 files in the output file. This may be made more convenient in a
 future version of qpdf if there is enough demand for this feature.

 The page range is a set of numbers separated by commas, ranges of
 numbers separated dashes, or combinations of those. The character
 “z” represents the last page. Pages can appear in any
 order. Ranges can appear with a high number followed by a low
 number, which causes the pages to appear in reverse. Repeating a
 number will cause an error, but you can use the workaround
 discussed above should you really want to include the same page
 twice.

 Example page ranges:

			
 1,3,5-9,15-12: pages 1, 3, 5, 6, 7, 8,
 9, 15, 14, 13, and 12 in that order.

			
 z-1: all pages in the document in reverse

 Note that qpdf doesn't presently do anything special about other
 constructs in a PDF file that may know about pages, so semantics
 of splitting and merging vary across features. For example, the
 document's outlines (bookmarks) point to actual page objects, so
 if you select some pages and not others, bookmarks that point to
 pages that are in the output file will work, and remaining
 bookmarks will not work. On the other hand, page labels (page
 numbers specified in the file) are just sequential, so page labels
 will be messed up in the output file. A future version of
 qpdf may do a better job at handling these
 issues. (Note that the qpdf library already contains all of the
 APIs required in order to implement this in your own application
 if you need it.) In the mean time, you can always use
 --empty as the primary input file to avoid
 copying all of that from the first file. For example, to take
 pages 1 through 5 from a infile.pdf while
 preserving all metadata associated with that file, you could use

qpdf infile.pdf --pages infile.pdf 1-5 -- outfile.pdf

 If you wanted pages 1 through 5 from
 infile.pdf but you wanted the rest of the
 metadata to be dropped, you could instead run

qpdf --empty --pages infile.pdf 1-5 -- outfile.pdf

 If you wanted to take pages 1–5 from
 file1.pdf and pages 11–15 from
 file2.pdf in reverse, you would run

qpdf file1.pdf --pages file1.pdf 1-5 file2.pdf 15-11 -- outfile.pdf

 If, for some reason, you wanted to take the first page of an
 encrypted file called encrypted.pdf with
 password pass and repeat it twice in an output
 file, and if you wanted to drop metadata (like page numbers and
 outlines) but preserve encryption, you would use

qpdf --empty --copy-encryption=encrypted.pdf --encryption-file-password=pass
--pages encrypted.pdf --password=pass 1 ./encrypted.pdf --password=pass 1 --
outfile.pdf

 Note that we had to specify the password all three times because
 giving a password as --encryption-file-password
 doesn't count for page selection, and as far as qpdf is concerned,
 encrypted.pdf and
 ./encrypted.pdf are separated files. These
 are all corner cases that most users should hopefully never have
 to be bothered with.

3.5. Advanced Parsing Options

 These options control aspects of how qpdf reads PDF files. Mostly
 these are of use to people who are working with damaged files.
 There is little reason to use these options unless you are trying
 to solve specific problems. The following options are available:

			--suppress-recovery

			
 Prevents qpdf from attempting to recover damaged files.

			--ignore-xref-streams

			
 Tells qpdf to ignore any cross-reference streams.

 Ordinarily, qpdf will attempt to recover from certain types of
 errors in PDF files. These include errors in the cross-reference
 table, certain types of object numbering errors, and certain types
 of stream length errors. Sometimes, qpdf may think it has
 recovered but may not have actually recovered, so care should be
 taken when using this option as some data loss is possible. The
 --suppress-recovery option will prevent qpdf from
 attempting recovery. In this case, it will fail on the first
 error that it encounters.

 Ordinarily, qpdf reads cross-reference streams when they are
 present in a PDF file. If --ignore-xref-streams
 is specified, qpdf will ignore any cross-reference streams for
 hybrid PDF files. The purpose of hybrid files is to make some
 content available to viewers that are not aware of cross-reference
 streams. It is almost never desirable to ignore them. The only
 time when you might want to use this feature is if you are testing
 creation of hybrid PDF files and wish to see how a PDF consumer
 that doesn't understand object and cross-reference streams would
 interpret such a file.

3.6. Advanced Transformation Options

 These transformation options control fine points of how qpdf
 creates the output file. Mostly these are of use only to people
 who are very familiar with the PDF file format or who are PDF
 developers. The following options are available:

			--compress-streams=[yn]

			
 By default, or with --compress-streams=y,
 qpdf will compress any stream with no other filters applied to
 it with the /FlateDecode filter when it
 writes it. To suppress this behavior and preserve uncompressed
 streams as uncompressed, use
 --compress-streams=n.

			--decode-level=option

			
 Controls which streams qpdf tries to decode. The default is
 generalized. The following options are
 available:

			
 none: do not attempt to decode any streams

			
 generalized: decode streams filtered with
 supported generalized filters: /LZWDecode,
 /FlateDecode,
 /ASCII85Decode, and
 /ASCIIHexDecode. We define generalized
 filters as those to be used for general-purpose compression
 or encoding, as opposed to filters specifically designed
 for image data.

			
 specialized: in addition to generalized,
 decode streams with supported non-lossy specialized
 filters; currently this is just /RunLengthDecode

			
 all: in addition to generalized and
 specialized, decode streams with supported lossy filters;
 currently this is just /DCTDecode (JPEG)

			--stream-data=option

			
 Controls transformation of stream data. This option predates
 the --compress-streams and
 --decode-level options. Those options can be
 used to achieve the same affect with more control. The value
 of option may be
 one of the following:

			
 compress: recompress stream data when
 possible (default); equivalent to
 --compress-streams=y
 --decode-level=generalized

			
 preserve: leave all stream data as is;
 equivalent to --compress-streams=n
 --decode-level=none

			
 uncompress: uncompress stream data
 compressed with generalized filters when possible;
 equivalent to --compress-streams=n
 --decode-level=generalized

			--normalize-content=[yn]

			
 Enables or disables normalization of content streams.

			--object-streams=mode

			
 Controls handling of object streams. The value of
 mode may be one of
 the following:

			
 preserve: preserve original object streams
 (default)

			
 disable: don't write any object streams

			
 generate: use object streams wherever
 possible

			--preserve-unreferenced

			
 Tells qpdf to preserve objects that are not referenced when
 writing the file. Ordinarily any object that is not referenced
 in a traversal of the document from the trailer dictionary
 will be discarded. This may be useful in working with some
 damaged files or inspecting files with known unreferenced
 objects.

 This flag is ignored for linearized files and has the effect
 of causing objects in the new file to be written in order by
 object ID from the original file. This does not mean that
 object numbers will be the same since qpdf may create stream
 lengths as direct or indirect differently from the original
 file, and the original file may have gaps in its numbering.

			--newline-before-endstream

			
 Tells qpdf to insert a newline before the
 endstream keyword, not counted in the
 length, after any stream content even if the last character of
 the stream was a newline. This may result in two newlines in
 some cases. This is a requirement of PDF/A. While qpdf doesn't
 specifically know how to generate PDF/A-compliant PDFs, this
 at least prevents it from removing compliance on already
 compliant files.

			--qdf

			
 Turns on QDF mode. For additional information on QDF, please
 see Chapter 4, QDF Mode.

			--min-version=version

			
 Forces the PDF version of the output file to be at least
 version. In other words, if the
 input file has a lower version than the specified version, the
 specified version will be used. If the input file has a
 higher version, the input file's original version will be
 used. It is seldom necessary to use this option since qpdf
 will automatically increase the version as needed when adding
 features that require newer PDF readers.

 The version number may be expressed in the form
 major.minor.extension-level, in
 which case the version is interpreted as
 major.minor at extension level
 extension-level. For example,
 version 1.7.8 represents version 1.7 at
 extension level 8. Note that minimal syntax checking is done
 on the command line.

			--force-version=version

			
 This option forces the PDF version to be the exact version
 specified even when the file may have content that
 is not supported in that version. The version
 number is interpreted in the same way as with
 --min-version so that extension levels can be
 set. In some cases, forcing the output file's PDF version to
 be lower than that of the input file will cause qpdf to
 disable certain features of the document. Specifically,
 256-bit keys are disabled if the version is less than 1.7 with
 extension level 8 (except R5 is disabled if less than 1.7 with
 extension level 3), AES encryption is disabled if the version
 is less than 1.6, cleartext metadata and object streams are
 disabled if less than 1.5, 128-bit encryption keys are
 disabled if less than 1.4, and all encryption is disabled if
 less than 1.3. Even with these precautions, qpdf won't be
 able to do things like eliminate use of newer image
 compression schemes, transparency groups, or other features
 that may have been added in more recent versions of PDF.

 As a general rule, with the exception of big structural things
 like the use of object streams or AES encryption, PDF viewers
 are supposed to ignore features in files that they don't
 support from newer versions. This means that forcing the
 version to a lower version may make it possible to open your
 PDF file with an older version, though bear in mind that some
 of the original document's functionality may be lost.

 By default, when a stream is encoded using non-lossy filters that
 qpdf understands and is not already compressed using a good
 compression scheme, qpdf will uncompress and recompress streams.
 Assuming proper filter implements, this is safe and generally
 results in smaller files. This behavior may also be explicitly
 requested with --stream-data=compress.

 When --normalize-content=y is specified, qpdf
 will attempt to normalize whitespace and newlines in page content
 streams. This is generally safe but could, in some cases, cause
 damage to the content streams. This option is intended for people
 who wish to study PDF content streams or to debug PDF content.
 You should not use this for “production” PDF files.

 Object streams, also known as compressed objects, were introduced
 into the PDF specification at version 1.5, corresponding to
 Acrobat 6. Some older PDF viewers may not support files with
 object streams. qpdf can be used to transform files with object
 streams to files without object streams or vice versa. As
 mentioned above, there are three object stream modes:
 preserve, disable, and
 generate.

 In preserve mode, the relationship to objects and
 the streams that contain them is preserved from the original file.
 In disable mode, all objects are written as
 regular, uncompressed objects. The resulting file should be
 readable by older PDF viewers. (Of course, the content of the
 files may include features not supported by older viewers, but at
 least the structure will be supported.) In
 generate mode, qpdf will create its own object
 streams. This will usually result in more compact PDF files,
 though they may not be readable by older viewers. In this mode,
 qpdf will also make sure the PDF version number in the header is
 at least 1.5.

 The --qdf flag turns on QDF mode, which changes
 some of the defaults described above. Specifically, in QDF mode,
 by default, stream data is uncompressed, content streams are
 normalized, and encryption is removed. These defaults can still
 be overridden by specifying the appropriate options as described
 above. Additionally, in QDF mode, stream lengths are stored as
 indirect objects, objects are laid out in a less efficient but
 more readable fashion, and the documents are interspersed with
 comments that make it easier for the user to find things and also
 make it possible for fix-qdf to work properly.
 QDF mode is intended for people, mostly developers, who wish to
 inspect or modify PDF files in a text editor. For details, please
 see Chapter 4, QDF Mode.

3.7. Testing, Inspection, and Debugging Options

 These options can be useful for digging into PDF files or for use
 in automated test suites for software that uses the qpdf library.
 When any of the options in this section are specified, no output
 file should be given. The following options are available:

			--deterministic-id

			
 Causes generation of a deterministic value for /ID. This
 prevents use of timestamp and output file name information in
 the /ID generation. Instead, at some slight additional runtime
 cost, the /ID field is generated to include a digest of the
 significant parts of the content of the output PDF file. This
 means that a given qpdf operation should generate the same /ID
 each time it is run, which can be useful when caching results
 or for generation of some test data. Use of this flag is not
 compatible with creation of encrypted files.

			--static-id

			
 Causes generation of a fixed value for /ID. This is intended
 for testing only. Never use it for production files. If you
 are trying to get the same /ID each time for a given file and
 you are not generating encrypted files, consider using the
 --deterministic-id option.

			--static-aes-iv

			
 Causes use of a static initialization vector for AES-CBC.
 This is intended for testing only so that output files can be
 reproducible. Never use it for production files. This option
 in particular is not secure since it significantly weakens the
 encryption.

			--no-original-object-ids

			
 Suppresses inclusion of original object ID comments in QDF
 files. This can be useful when generating QDF files for test
 purposes, particularly when comparing them to determine
 whether two PDF files have identical content.

			--show-encryption

			
 Shows document encryption parameters. Also shows the
 document's user password if the owner password is given.

			--show-encryption-key

			
 When encryption information is being displayed, as when
 --check or --show-encryption
 is given, display the computed or retrieved encryption key as
 a hexadecimal string. This value is not ordinarily useful to
 users, but it can be used as the argument to
 --password if the
 --password-is-hex-key is specified. Note
 that, when PDF files are encrypted, passwords and other
 metadata are used only to compute an encryption key, and the
 encryption key is what is actually used for encryption. This
 enables retrieval of that key.

			--check-linearization

			
 Checks file integrity and linearization status.

			--show-linearization

			
 Checks and displays all data in the linearization hint tables.

			--show-xref

			
 Shows the contents of the cross-reference table in a
 human-readable form. This is especially useful for files with
 cross-reference streams which are stored in a binary format.

			--show-object=obj[,gen]

			
 Show the contents of the given object. This is especially
 useful for inspecting objects that are inside of object
 streams (also known as “compressed objects”).

			--raw-stream-data

			
 When used along with the --show-object
 option, if the object is a stream, shows the raw stream data
 instead of object's contents.

			--filtered-stream-data

			
 When used along with the --show-object
 option, if the object is a stream, shows the filtered stream
 data instead of object's contents. If the stream is filtered
 using filters that qpdf does not support, an error will be
 issued.

			--show-npages

			
 Prints the number of pages in the input file on a line by
 itself. Since the number of pages appears by itself on a
 line, this option can be useful for scripting if you need to
 know the number of pages in a file.

			--show-pages

			
 Shows the object and generation number for each page
 dictionary object and for each content stream associated with
 the page. Having this information makes it more convenient to
 inspect objects from a particular page.

			--with-images

			
 When used along with --show-pages, also shows
 the object and generation numbers for the image objects on
 each page. (At present, information about images in shared
 resource dictionaries are not output by this command. This is
 discussed in a comment in the source code.)

			--check

			
 Checks file structure and well as encryption, linearization,
 and encoding of stream data. A file for which
 --check reports no errors may still have
 errors in stream data content but should otherwise be
 structurally sound. If --check any errors,
 qpdf will exit with a status of 2. There are some recoverable
 conditions that --check detects. These are
 issued as warnings instead of errors. If qpdf finds no errors
 but finds warnings, it will exit with a status of 3 (as of
 version 2.0.4). When --check is combined
 with other options, checks are always performed before any
 other options are processed. For erroneous files,
 --check will cause qpdf to attempt to
 recover, after which other options are effectively operating
 on the recovered file. Combining --check with
 other options in this way can be useful for manually
 recovering severely damaged files.

 The --raw-stream-data and
 --filtered-stream-data options are ignored unless
 --show-object is given. Either of these options
 will cause the stream data to be written to standard output. In
 order to avoid commingling of stream data with other output, it is
 recommend that these objects not be combined with other
 test/inspection options.

 If --filtered-stream-data is given and
 --normalize-content=y is also given, qpdf will
 attempt to normalize the stream data as if it is a page content
 stream. This attempt will be made even if it is not a page
 content stream, in which case it will produce unusable results.

Chapter 4. QDF Mode

 In QDF mode, qpdf creates PDF files in what we call QDF
 form. A PDF file in QDF form, sometimes called a QDF
 file, is a completely valid PDF file that has
 %QDF-1.0 as its third line (after the pdf header
 and binary characters) and has certain other characteristics. The
 purpose of QDF form is to make it possible to edit PDF files, with
 some restrictions, in an ordinary text editor. This can be very
 useful for experimenting with different PDF constructs or for
 making one-off edits to PDF files (though there are other reasons
 why this may not always work).

 It is ordinarily very difficult to edit PDF files in a text editor
 for two reasons: most meaningful data in PDF files is compressed,
 and PDF files are full of offset and length information that makes
 it hard to add or remove data. A QDF file is organized in a manner
 such that, if edits are kept within certain constraints, the
 fix-qdf program, distributed with qpdf, is able
 to restore edited files to a correct state. The
 fix-qdf program takes no command-line
 arguments. It reads a possibly edited QDF file from standard input
 and writes a repaired file to standard output.

 The following attributes characterize a QDF file:

			
 All objects appear in numerical order in the PDF file, including
 when objects appear in object streams.

			
 Objects are printed in an easy-to-read format, and all line
 endings are normalized to UNIX line endings.

			
 Unless specifically overridden, streams appear uncompressed
 (when qpdf supports the filters and they are compressed with a
 non-lossy compression scheme), and most content streams are
 normalized (line endings are converted to just a UNIX-style
 linefeeds).

			
 All streams lengths are represented as indirect objects, and the
 stream length object is always the next object after the stream.
 If the stream data does not end with a newline, an extra newline
 is inserted, and a special comment appears after the stream
 indicating that this has been done.

			
 If the PDF file contains object streams, if object stream
 n contains k objects,
 those objects are numbered from n+1 through
 n+k, and the object number/offset pairs
 appear on a separate line for each object. Additionally, each
 object in the object stream is preceded by a comment indicating
 its object number and index. This makes it very easy to find
 objects in object streams.

			
 All beginnings of objects, stream tokens,
 endstream tokens, and
 endobj tokens appear on lines by themselves.
 A blank line follows every endobj token.

			
 If there is a cross-reference stream, it is unfiltered.

			
 Page dictionaries and page content streams are marked with
 special comments that make them easy to find.

			
 Comments precede each object indicating the object number of the
 corresponding object in the original file.

 When editing a QDF file, any edits can be made as long as the above
 constraints are maintained. This means that you can freely edit a
 page's content without worrying about messing up the QDF file. It
 is also possible to add new objects so long as those objects are
 added after the last object in the file or subsequent objects are
 renumbered. If a QDF file has object streams in it, you can always
 add the new objects before the xref stream and then change the
 number of the xref stream, since nothing generally ever references
 it by number.

 It is not generally practical to remove objects from QDF files
 without messing up object numbering, but if you remove all
 references to an object, you can run qpdf on the file (after
 running fix-qdf), and qpdf will omit the
 now-orphaned object.

 When fix-qdf is run, it goes through the file
 and recomputes the following parts of the file:

			
 the /N, /W, and
 /First keys of all object stream dictionaries

			
 the pairs of numbers representing object numbers and offsets of
 objects in object streams

			
 all stream lengths

			
 the cross-reference table or cross-reference stream

			
 the offset to the cross-reference table or cross-reference
 stream following the startxref token

Chapter 5. Using the QPDF Library

 The source tree for the qpdf package has an
 examples directory that contains a few
 example programs. The qpdf/qpdf.cc source
 file also serves as a useful example since it exercises almost all
 of the qpdf library's public interface. The best source of
 documentation on the library itself is reading comments in
 include/qpdf/QPDF.hh,
 include/qpdf/QPDFWriter.hh, and
 include/qpdf/QPDFObjectHandle.hh.

 All header files are installed in the include/qpdf directory. It
 is recommend that you use #include
 <qpdf/QPDF.hh> rather than adding
 include/qpdf to your include path.

 When linking against the qpdf static library, you may also need to
 specify -lz -ljpeg on your link command. If
 your system understands how to read libtool
 .la files, this may not be necessary.

 The qpdf library is safe to use in a multithreaded program, but no
 individual QPDF object instance (including
 QPDF, QPDFObjectHandle, or
 QPDFWriter) can be used in more than one thread at a
 time. Multiple threads may simultaneously work with different
 instances of these and all other QPDF objects.

Chapter 6. Design and Library Notes

Table of Contents

			6.1. Introduction

			6.2. Design Goals

			6.3. Casting Policy

			6.4. Encryption

			6.5. Random Number Generation

			6.6. Adding and Removing Pages

			6.7. Reserving Object Numbers

			6.8. Copying Objects From Other PDF Files

			6.9. Writing PDF Files

			6.10. Filtered Streams

6.1. Introduction

 This section was written prior to the implementation of the qpdf
 package and was subsequently modified to reflect the
 implementation. In some cases, for purposes of explanation, it
 may differ slightly from the actual implementation. As always,
 the source code and test suite are authoritative. Even if there
 are some errors, this document should serve as a road map to
 understanding how this code works.

 In general, one should adhere strictly to a specification when
 writing but be liberal in reading. This way, the product of our
 software will be accepted by the widest range of other programs,
 and we will accept the widest range of input files. This library
 attempts to conform to that philosophy whenever possible but also
 aims to provide strict checking for people who want to validate
 PDF files. If you don't want to see warnings and are trying to
 write something that is tolerant, you can call
 setSuppressWarnings(true). If you want to fail
 on the first error, you can call
 setAttemptRecovery(false). The default
 behavior is to generating warnings for recoverable problems. Note
 that recovery will not always produce the desired results even if
 it is able to get through the file. Unlike most other PDF files
 that produce generic warnings such as “This file is
 damaged,”, qpdf generally issues a detailed error message
 that would be most useful to a PDF developer. This is by design
 as there seems to be a shortage of PDF validation tools out
 there. (This was, in fact, one of the major motivations behind
 the initial creation of qpdf.)

6.2. Design Goals

 The QPDF package includes support for reading and rewriting PDF
 files. It aims to hide from the user details involving object
 locations, modified (appended) PDF files, the
 directness/indirectness of objects, and stream filters including
 encryption. It does not aim to hide knowledge of the object
 hierarchy or content stream contents. Put another way, a user of
 the qpdf library is expected to have knowledge about how PDF files
 work, but is not expected to have to keep track of bookkeeping
 details such as file positions.

 A user of the library never has to care whether an object is
 direct or indirect. All access to objects deals with this
 transparently. All memory management details are also handled by
 the library.

 The PointerHolder object is used internally
 by the library to deal with memory management. This is basically
 a smart pointer object very similar in spirit to the Boost
 library's shared_ptr object, but predating
 it by several years. This library also makes use of a technique
 for giving fine-grained access to methods in one class to other
 classes by using public subclasses with friends and only private
 members that in turn call private methods of the containing class.
 See QPDFObjectHandle::Factory as an
 example.

 The top-level qpdf class is QPDF. A
 QPDF object represents a PDF file. The
 library provides methods for both accessing and mutating PDF
 files.

 QPDFObject is the basic PDF Object class.
 It is an abstract base class from which are derived classes for
 each type of PDF object. Clients do not interact with Objects
 directly but instead interact with
 QPDFObjectHandle.

 QPDFObjectHandle contains
 PointerHolder<QPDFObject> and
 includes accessor methods that are type-safe proxies to the
 methods of the derived object classes as well as methods for
 querying object types. They can be passed around by value,
 copied, stored in containers, etc. with very low overhead.
 Instances of QPDFObjectHandle always
 contain a reference back to the QPDF object
 from which they were created. A
 QPDFObjectHandle may be direct or indirect.
 If indirect, the QPDFObject the
 PointerHolder initially points to is a null
 pointer. In this case, the first attempt to access the underlying
 QPDFObject will result in the
 QPDFObject being resolved via a call to the
 referenced QPDF instance. This makes it
 essentially impossible to make coding errors in which certain
 things will work for some PDF files and not for others based on
 which objects are direct and which objects are indirect.

 Instances of QPDFObjectHandle can be
 directly created and modified using static factory methods in the
 QPDFObjectHandle class. There are factory
 methods for each type of object as well as a convenience method
 QPDFObjectHandle::parse that creates an
 object from a string representation of the object. Existing
 instances of QPDFObjectHandle can also be
 modified in several ways. See comments in
 QPDFObjectHandle.hh for details.

 When the QPDF class creates a new object,
 it dynamically allocates the appropriate type of
 QPDFObject and immediately hands the
 pointer to an instance of QPDFObjectHandle.
 The parser reads a token from the current file position. If the
 token is a not either a dictionary or array opener, an object is
 immediately constructed from the single token and the parser
 returns. Otherwise, the parser is invoked recursively in a
 special mode in which it accumulates objects until it finds a
 balancing closer. During this process, the
 “R” keyword is recognized and an
 indirect QPDFObjectHandle may be
 constructed.

 The QPDF::resolve() method, which is used to
 resolve an indirect object, may be invoked from the
 QPDFObjectHandle class. It first checks a
 cache to see whether this object has already been read. If not,
 it reads the object from the PDF file and caches it. It the
 returns the resulting QPDFObjectHandle.
 The calling object handle then replaces its
 PointerHolder<QDFObject> with the one
 from the newly returned QPDFObjectHandle.
 In this way, only a single copy of any direct object need exist
 and clients can access objects transparently without knowing
 caring whether they are direct or indirect objects. Additionally,
 no object is ever read from the file more than once. That means
 that only the portions of the PDF file that are actually needed
 are ever read from the input file, thus allowing the qpdf package
 to take advantage of this important design goal of PDF files.

 If the requested object is inside of an object stream, the object
 stream itself is first read into memory. Then the tokenizer reads
 objects from the memory stream based on the offset information
 stored in the stream. Those individual objects are cached, after
 which the temporary buffer holding the object stream contents are
 discarded. In this way, the first time an object in an object
 stream is requested, all objects in the stream are cached.

 An instance of QPDF is constructed by using
 the class's default constructor. If desired, the
 QPDF object may be configured with various
 methods that change its default behavior. Then the
 QPDF::processFile() method is passed the name
 of a PDF file, which permanently associates the file with that
 QPDF object. A password may also be given for access to
 password-protected files. QPDF does not enforce encryption
 parameters and will treat user and owner passwords equivalently.
 Either password may be used to access an encrypted file.
 [1]
 QPDF will allow recovery of a user password
 given an owner password. The input PDF file must be seekable.
 (Output files written by QPDFWriter need
 not be seekable, even when creating linearized files.) During
 construction, QPDF validates the PDF file's
 header, and then reads the cross reference tables and trailer
 dictionaries. The QPDF class keeps only
 the first trailer dictionary though it does read all of them so it
 can check the /Prev key.
 QPDF class users may request the root
 object and the trailer dictionary specifically. The cross
 reference table is kept private. Objects may then be requested by
 number of by walking the object tree.

 When a PDF file has a cross-reference stream instead of a
 cross-reference table and trailer, requesting the document's
 trailer dictionary returns the stream dictionary from the
 cross-reference stream instead.

 There are some convenience routines for very common operations
 such as walking the page tree and returning a vector of all page
 objects. For full details, please see the header file
 QPDF.hh.

 The following example should clarify how
 QPDF processes a simple file.

			
 Client constructs QPDF
 pdf and calls
 pdf.processFile("a.pdf");.

			
 The QPDF class checks the beginning of
 a.pdf for
 %!PDF-1.[0-9]+. It then reads the cross
 reference table mentioned at the end of the file, ensuring that
 it is looking before the last %%EOF. After
 getting to trailer keyword, it invokes the
 parser.

			
 The parser sees “<<”, so
 it calls itself recursively in dictionary creation mode.

			
 In dictionary creation mode, the parser keeps accumulating
 objects until it encounters
 “>>”. Each object that is
 read is pushed onto a stack. If
 “R” is read, the last two
 objects on the stack are inspected. If they are integers, they
 are popped off the stack and their values are used to construct
 an indirect object handle which is then pushed onto the stack.
 When “>>” is finally read,
 the stack is converted into a
 QPDF_Dictionary which is placed in a
 QPDFObjectHandle and returned.

			
 The resulting dictionary is saved as the trailer dictionary.

			
 The /Prev key is searched. If present,
 QPDF seeks to that point and repeats
 except that the new trailer dictionary is not saved. If
 /Prev is not present, the initial parsing
 process is complete.

 If there is an encryption dictionary, the document's encryption
 parameters are initialized.

			
 The client requests root object. The
 QPDF class gets the value of root key
 from trailer dictionary and returns it. It is an unresolved
 indirect QPDFObjectHandle.

			
 The client requests the /Pages key from root
 QPDFObjectHandle. The
 QPDFObjectHandle notices that it is
 indirect so it asks QPDF to resolve it.
 QPDF looks in the object cache for an
 object with the root dictionary's object ID and generation
 number. Upon not seeing it, it checks the cross reference
 table, gets the offset, and reads the object present at that
 offset. It stores the result in the object cache and returns
 the cached result. The calling
 QPDFObjectHandle replaces its object
 pointer with the one from the resolved
 QPDFObjectHandle, verifies that it a
 valid dictionary object, and returns the (unresolved indirect)
 QPDFObject handle to the top of the
 Pages hierarchy.

 As the client continues to request objects, the same process is
 followed for each new requested object.

6.3. Casting Policy

 This section describes the casting policy followed by qpdf's
 implementation. This is no concern to qpdf's end users and
 largely of no concern to people writing code that uses qpdf, but
 it could be of interest to people who are porting qpdf to a new
 platform or who are making modifications to the code.

 The C++ code in qpdf is free of old-style casts except where
 unavoidable (e.g. where the old-style cast is in a macro provided
 by a third-party header file). When there is a need for a cast,
 it is handled, in order of preference, by rewriting the code to
 avoid the need for a cast, calling
 const_cast, calling
 static_cast, calling
 reinterpret_cast, or calling some combination
 of the above. As a last resort, a compiler-specific
 #pragma may be used to suppress a warning that
 we don't want to fix. Examples may include suppressing warnings
 about the use of old-style casts in code that is shared between C
 and C++ code.

 The casting policy explicitly prohibits casting between integer
 sizes for no purpose other than to quiet a compiler warning when
 there is no reasonable chance of a problem resulting. The reason
 for this exclusion is that the practice of adding these additional
 casts precludes future use of additional compiler warnings as a
 tool for making future improvements to this aspect of the code,
 and it also damages the readability of the code.

 There are a few significant areas where casting is common in the
 qpdf sources or where casting would be required to quiet higher
 levels of compiler warnings but is omitted at present:

			
 char vs. unsigned char. For
 historical reasons, there are a lot of places in qpdf's
 internals that deal with unsigned char, which
 means that a lot of casting is required to interoperate with
 standard library calls and std::string. In
 retrospect, qpdf should have probably used regular (signed)
 char and char* everywhere and just
 cast to unsigned char when needed, but it's too
 late to make that change now. There are
 reinterpret_cast calls to go between
 char* and unsigned char*, and there
 are static_cast calls to go between
 char and unsigned char. These should
 always be safe.

			
 Non-const unsigned char* used in the
 Pipeline interface. The pipeline interface has a
 write call that uses unsigned
 char* without a const qualifier. The main
 reason for this is to support pipelines that make calls to
 third-party libraries, such as zlib, that don't include
 const in their interfaces. Unfortunately, there
 are many places in the code where it is desirable to have
 const char* with pipelines. None of the pipeline
 implementations in qpdf currently modify the data passed to
 write, and doing so would be counter to the intent of
 Pipeline, but there is nothing in the code to
 prevent this from being done. There are places in the code
 where const_cast is used to remove the
 const-ness of pointers going into Pipelines. This
 could theoretically be unsafe, but there is adequate testing to
 assert that it is safe and will remain safe in qpdf's code.

			
 size_t vs. qpdf_offset_t. This is
 pretty much unavoidable since sizes are unsigned types and
 offsets are signed types. Whenever it is necessary to seek by
 an amount given by a size_t, it becomes necessary
 to mix and match between size_t and
 qpdf_offset_t. Additionally, qpdf sometimes
 treats memory buffers like files (as with
 BufferInputSource, and those seek interfaces have
 to be consistent with file-based input sources. Neither gcc
 nor MSVC give warnings for this case by default, but both have
 warning flags that can enable this. (MSVC:
 /W14267 or /W3, which also
 enables some additional warnings that we ignore; gcc:
 -Wconversion -Wsign-conversion). This could
 matter for files whose sizes are larger than
 263 bytes, but it is reasonable to
 expect that a world where such files are common would also have
 larger size_t and qpdf_offset_t types
 in it. On most 64-bit systems at the time of this writing (the
 release of version 4.1.0 of qpdf), both size_t and
 qpdf_offset_t are 64-bit integer types, while on
 many current 32-bit systems, size_t is a 32-bit
 type while qpdf_offset_t is a 64-bit type. I am
 not aware of any cases where 32-bit systems that have
 size_t smaller than qpdf_offset_t
 could run into problems. Although I can't conclusively rule
 out the possibility of such problems existing, I suspect any
 cases would be pretty contrived. In the event that someone
 should produce a file that qpdf can't handle because of what is
 suspected to be issues involving the handling of
 size_t vs. qpdf_offset_t (such files
 may behave properly on 64-bit systems but not on 32-bit systems
 because they have very large embedded files or streams, for
 example), the above mentioned warning flags could be enabled
 and all those implicit conversions could be carefully
 scrutinized. (I have already gone through that exercise once
 in adding support for files larger than 4 GB in size.) I
 continue to be committed to supporting large files on 32-bit
 systems, but I would not go to any lengths to support corner
 cases involving large embedded files or large streams that work
 on 64-bit systems but not on 32-bit systems because of
 size_t being too small. It is reasonable to
 assume that anyone working with such files would be using a
 64-bit system anyway since many 32-bit applications would have
 similar difficulties.

			
 size_t vs. int or long.
 There are some cases where size_t and
 int or long or size_t
 and unsigned int or unsigned long are
 used interchangeably. These cases occur when working with very
 small amounts of memory, such as with the bit readers (where
 we're working with just a few bytes at a time), some cases of
 strlen, and a few other cases. I have
 scrutinized all of these cases and determined them to be safe,
 but there is no mechanism in the code to ensure that new unsafe
 conversions between int and size_t
 aren't introduced short of good testing and strong awareness of
 the issues. Again, if any such bugs are suspected in the
 future, enabling the additional warning flags and scrutinizing
 the warnings would be in order.

 To be clear, I believe qpdf to be well-behaved with respect to
 sizes and offsets, and qpdf's test suite includes actual
 generation and full processing of files larger than 4 GB in
 size. The issues raised here are largely academic and should not
 in any way be interpreted to mean that qpdf has practical problems
 involving sloppiness with integer types. I also believe that
 appropriate measures have been taken in the code to avoid problems
 with signed vs. unsigned integers from resulting in memory
 overwrites or other issues with potential security implications,
 though there are never any absolute guarantees.

6.4. Encryption

 Encryption is supported transparently by qpdf. When opening a PDF
 file, if an encryption dictionary exists, the
 QPDF object processes this dictionary using
 the password (if any) provided. The primary decryption key is
 computed and cached. No further access is made to the encryption
 dictionary after that time. When an object is read from a file,
 the object ID and generation of the object in which it is
 contained is always known. Using this information along with the
 stored encryption key, all stream and string objects are
 transparently decrypted. Raw encrypted objects are never stored
 in memory. This way, nothing in the library ever has to know or
 care whether it is reading an encrypted file.

 An interface is also provided for writing encrypted streams and
 strings given an encryption key. This is used by
 QPDFWriter when it rewrites encrypted
 files.

 When copying encrypted files, unless otherwise directed, qpdf will
 preserve any encryption in force in the original file. qpdf can
 do this with either the user or the owner password. There is no
 difference in capability based on which password is used. When 40
 or 128 bit encryption keys are used, the user password can be
 recovered with the owner password. With 256 keys, the user and
 owner passwords are used independently to encrypt the actual
 encryption key, so while either can be used, the owner password
 can no longer be used to recover the user password.

 Starting with version 4.0.0, qpdf can read files that are not
 encrypted but that contain encrypted attachments, but it cannot
 write such files. qpdf also requires the password to be specified
 in order to open the file, not just to extract attachments, since
 once the file is open, all decryption is handled transparently.
 When copying files like this while preserving encryption, qpdf
 will apply the file's encryption to everything in the file, not
 just to the attachments. When decrypting the file, qpdf will
 decrypt the attachments. In general, when copying PDF files with
 multiple encryption formats, qpdf will choose the newest format.
 The only exception to this is that clear-text metadata will be
 preserved as clear-text if it is that way in the original file.

6.5. Random Number Generation

 QPDF generates random numbers to support generation of encrypted
 data. Versions prior to 5.0.1 used random or
 rand from stdlib to
 generate random numbers. Version 5.0.1, if available, used
 operating system-provided secure random number generation instead,
 enabling use of stdlib random number
 generation only if enabled by a compile-time option. Starting in
 version 5.1.0, use of insecure random numbers was disabled unless
 enabled at compile time. Starting in version 5.1.0, it is also
 possible for you to disable use of OS-provided secure random
 numbers. This is especially useful on Windows if you want to
 avoid a dependency on Microsoft's cryptography API. In this case,
 you must provide your own random data provider. Regardless of how
 you compile qpdf, starting in version 5.1.0, it is possible for
 you to provide your own random data provider at runtime. This
 would enable you to use some software-based secure pseudorandom
 number generator and to avoid use of whatever the operating system
 provides. For details on how to do this, please refer to the
 top-level README.md file in the source distribution and to comments
 in QUtil.hh.

6.6. Adding and Removing Pages

 While qpdf's API has supported adding and modifying objects for
 some time, version 3.0 introduces specific methods for adding and
 removing pages. These are largely convenience routines that
 handle two tricky issues: pushing inheritable resources from the
 /Pages tree down to individual pages and
 manipulation of the /Pages tree itself. For
 details, see addPage and surrounding methods
 in QPDF.hh.

6.7. Reserving Object Numbers

 Version 3.0 of qpdf introduced the concept of reserved objects.
 These are seldom needed for ordinary operations, but there are
 cases in which you may want to add a series of indirect objects
 with references to each other to a QPDF
 object. This causes a problem because you can't determine the
 object ID that a new indirect object will have until you add it to
 the QPDF object with
 QPDF::makeIndirectObject. The only way to
 add two mutually referential objects to a
 QPDF object prior to version 3.0 would be
 to add the new objects first and then make them refer to each
 other after adding them. Now it is possible to create a
 reserved object using
 QPDFObjectHandle::newReserved. This is an
 indirect object that stays “unresolved” even if it is
 queried for its type. So now, if you want to create a set of
 mutually referential objects, you can create reservations for each
 one of them and use those reservations to construct the
 references. When finished, you can call
 QPDF::replaceReserved to replace the reserved
 objects with the real ones. This functionality will never be
 needed by most applications, but it is used internally by QPDF
 when copying objects from other PDF files, as discussed in Section 6.8, “Copying Objects From Other PDF Files”. For an example of how to use
 reserved objects, search for newReserved in
 test_driver.cc in qpdf's sources.

6.8. Copying Objects From Other PDF Files

 Version 3.0 of qpdf introduced the ability to copy objects into a
 QPDF object from a different
 QPDF object, which we refer to as
 foreign objects. This allows arbitrary
 merging of PDF files. The “from”
 QPDF object must remain valid after the
 copy as discussed in the note below. The qpdf
 command-line tool provides limited support for basic page
 selection, including merging in pages from other files, but the
 library's API makes it possible to implement arbitrarily complex
 merging operations. The main method for copying foreign objects is
 QPDF::copyForeignObject. This takes an
 indirect object from another QPDF and
 copies it recursively into this object while preserving all object
 structure, including circular references. This means you can add a
 direct object that you create from scratch to a
 QPDF object with
 QPDF::makeIndirectObject, and you can add an
 indirect object from another file with
 QPDF::copyForeignObject. The fact that
 QPDF::makeIndirectObject does not
 automatically detect a foreign object and copy it is an explicit
 design decision. Copying a foreign object seems like a
 sufficiently significant thing to do that it should be done
 explicitly.

 The other way to copy foreign objects is by passing a page from
 one QPDF to another by calling
 QPDF::addPage. In contrast to
 QPDF::makeIndirectObject, this method
 automatically distinguishes between indirect objects in the
 current file, foreign objects, and direct objects.

 Please note: when you copy objects from one
 QPDF to another, the source
 QPDF object must remain valid until you
 have finished with the destination object. This is because the
 original object is still used to retrieve any referenced stream
 data from the copied object.

6.9. Writing PDF Files

 The qpdf library supports file writing of
 QPDF objects to PDF files through the
 QPDFWriter class. The
 QPDFWriter class has two writing modes: one
 for non-linearized files, and one for linearized files. See Chapter 7, Linearization for a description of linearization
 is implemented. This section describes how we write
 non-linearized files including the creation of QDF files (see
 Chapter 4, QDF Mode.

 This outline was written prior to implementation and is not
 exactly accurate, but it provides a correct “notional”
 idea of how writing works. Look at the code in
 QPDFWriter for exact details.

			
 Initialize state:

			
 next object number = 1

			
 object queue = empty

			
 renumber table: old object id/generation to new id/0 = empty

			
 xref table: new id -> offset = empty

			
 Create a QPDF object from a file.

			
 Write header for new PDF file.

			
 Request the trailer dictionary.

			
 For each value that is an indirect object, grab the next object
 number (via an operation that returns and increments the
 number). Map object to new number in renumber table. Push
 object onto queue.

			
 While there are more objects on the queue:

			
 Pop queue.

			
 Look up object's new number n in the
 renumbering table.

			
 Store current offset into xref table.

			
 Write n 0 obj.

			
 If object is null, whether direct or indirect, write out
 null, thus eliminating unresolvable indirect object
 references.

			
 If the object is a stream stream, write stream contents,
 piped through any filters as required, to a memory buffer.
 Use this buffer to determine the stream length.

			
 If object is not a stream, array, or dictionary, write out
 its contents.

			
 If object is an array or dictionary (including stream),
 traverse its elements (for array) or values (for
 dictionaries), handling recursive dictionaries and arrays,
 looking for indirect objects. When an indirect object is
 found, if it is not resolvable, ignore. (This case is
 handled when writing it out.) Otherwise, look it up in the
 renumbering table. If not found, grab the next available
 object number, assign to the referenced object in the
 renumbering table, and push the referenced object onto the
 queue. As a special case, when writing out a stream
 dictionary, replace length, filters, and decode parameters
 as required.

 Write out dictionary or array, replacing any unresolvable
 indirect object references with null (pdf spec says
 reference to non-existent object is legal and resolves to
 null) and any resolvable ones with references to the
 renumbered objects.

			
 If the object is a stream, write
 stream\n, the stream contents (from the
 memory buffer), and \nendstream\n.

			
 When done, write endobj.

 Once we have finished the queue, all referenced objects will have
 been written out and all deleted objects or unreferenced objects
 will have been skipped. The new cross-reference table will
 contain an offset for every new object number from 1 up to the
 number of objects written. This can be used to write out a new
 xref table. Finally we can write out the trailer dictionary with
 appropriately computed /ID (see spec, 8.3, File Identifiers), the
 cross reference table offset, and %%EOF.

6.10. Filtered Streams

 Support for streams is implemented through the
 Pipeline interface which was designed for
 this package.

 When reading streams, create a series of
 Pipeline objects. The
 Pipeline abstract base requires
 implementation write() and
 finish() and provides an implementation of
 getNext(). Each pipeline object, upon
 receiving data, does whatever it is going to do and then writes
 the data (possibly modified) to its successor. Alternatively, a
 pipeline may be an end-of-the-line pipeline that does something
 like store its output to a file or a memory buffer ignoring a
 successor. For additional details, look at
 Pipeline.hh.

 QPDF can read raw or filtered streams.
 When reading a filtered stream, the QPDF
 class creates a Pipeline object for one of
 each appropriate filter object and chains them together. The last
 filter should write to whatever type of output is required. The
 QPDF class has an interface to write raw or
 filtered stream contents to a given pipeline.

[1]
 As pointed out earlier, the intention is not for qpdf to be used
 to bypass security on files. but as any open source PDF consumer
 may be easily modified to bypass basic PDF document security,
 and qpdf offers may transformations that can do this as well,
 there seems to be little point in the added complexity of
 conditionally enforcing document security.

Chapter 7. Linearization

Table of Contents

			7.1. Basic Strategy for Linearization

			7.2. Preparing For Linearization

			7.3. Optimization

			7.4. Writing Linearized Files

			7.5. Calculating Linearization Data

			7.6. Known Issues with Linearization

			7.7. Debugging Note

 This chapter describes how QPDF and
 QPDFWriter implement creation and processing
 of linearized PDFS.

7.1. Basic Strategy for Linearization

 To avoid the incestuous problem of having the qpdf library
 validate its own linearized files, we have a special linearized
 file checking mode which can be invoked via qpdf
 --check-linearization (or qpdf
 --check). This mode reads the linearization parameter
 dictionary and the hint streams and validates that object
 ordering, parameters, and hint stream contents are correct. The
 validation code was first tested against linearized files created
 by external tools (Acrobat and pdlin) and then used to validate
 files created by QPDFWriter itself.

7.2. Preparing For Linearization

 Before creating a linearized PDF file from any other PDF file, the
 PDF file must be altered such that all page attributes are
 propagated down to the page level (and not inherited from parents
 in the /Pages tree). We also have to know
 which objects refer to which other objects, being concerned with
 page boundaries and a few other cases. We refer to this part of
 preparing the PDF file as optimization,
 discussed in Section 7.3, “Optimization”. Note the, in
 this context, the term optimization is a
 qpdf term, and the term linearization is a
 term from the PDF specification. Do not be confused by the fact
 that many applications refer to linearization as optimization or
 web optimization.

 When creating linearized PDF files from optimized PDF files, there
 are really only a few issues that need to be dealt with:

			
 Creation of hints tables

			
 Placing objects in the correct order

			
 Filling in offsets and byte sizes

7.3. Optimization

 In order to perform various operations such as linearization and
 splitting files into pages, it is necessary to know which objects
 are referenced by which pages, page thumbnails, and root and
 trailer dictionary keys. It is also necessary to ensure that all
 page-level attributes appear directly at the page level and are
 not inherited from parents in the pages tree.

 We refer to the process of enforcing these constraints as
 optimization. As mentioned above, note
 that some applications refer to linearization as optimization.
 Although this optimization was initially motivated by the need to
 create linearized files, we are using these terms separately.

 PDF file optimization is implemented in the
 QPDF_optimization.cc source file. That file
 is richly commented and serves as the primary reference for the
 optimization process.

 After optimization has been completed, the private member
 variables obj_user_to_objects and
 object_to_obj_users in
 QPDF have been populated. Any object that
 has more than one value in the
 object_to_obj_users table is shared. Any
 object that has exactly one value in the
 object_to_obj_users table is private. To find
 all the private objects in a page or a trailer or root dictionary
 key, one merely has make this determination for each element in
 the obj_user_to_objects table for the given
 page or key.

 Note that pages and thumbnails have different object user types,
 so the above test on a page will not include objects referenced by
 the page's thumbnail dictionary and nothing else.

7.4. Writing Linearized Files

 We will create files with only primary hint streams. We will
 never write overflow hint streams. (As of PDF version 1.4,
 Acrobat doesn't either, and they are never necessary.) The hint
 streams contain offset information to objects that point to where
 they would be if the hint stream were not present. This means
 that we have to calculate all object positions before we can
 generate and write the hint table. This means that we have to
 generate the file in two passes. To make this reliable,
 QPDFWriter in linearization mode invokes
 exactly the same code twice to write the file to a pipeline.

 In the first pass, the target pipeline is a count pipeline chained
 to a discard pipeline. The count pipeline simply passes its data
 through to the next pipeline in the chain but can return the
 number of bytes passed through it at any intermediate point. The
 discard pipeline is an end of line pipeline that just throws its
 data away. The hint stream is not written and dummy values with
 adequate padding are stored in the first cross reference table,
 linearization parameter dictionary, and /Prev key of the first
 trailer dictionary. All the offset, length, object renumbering
 information, and anything else we need for the second pass is
 stored.

 At the end of the first pass, this information is passed to the
 QPDF class which constructs a compressed
 hint stream in a memory buffer and returns it.
 QPDFWriter uses this information to write a
 complete hint stream object into a memory buffer. At this point,
 the length of the hint stream is known.

 In the second pass, the end of the pipeline chain is a regular
 file instead of a discard pipeline, and we have known values for
 all the offsets and lengths that we didn't have in the first pass.
 We have to adjust offsets that appear after the start of the hint
 stream by the length of the hint stream, which is known. Anything
 that is of variable length is padded, with the padding code
 surrounding any writing code that differs in the two passes. This
 ensures that changes to the way things are represented never
 results in offsets that were gathered during the first pass
 becoming incorrect for the second pass.

 Using this strategy, we can write linearized files to a
 non-seekable output stream with only a single pass to disk or
 wherever the output is going.

7.5. Calculating Linearization Data

 Once a file is optimized, we have information about which objects
 access which other objects. We can then process these tables to
 decide which part (as described in “Linearized PDF Document
 Structure” in the PDF specification) each object is
 contained within. This tells us the exact order in which objects
 are written. The QPDFWriter class asks for
 this information and enqueues objects for writing in the proper
 order. It also turns on a check that causes an exception to be
 thrown if an object is encountered that has not already been
 queued. (This could happen only if there were a bug in the
 traversal code used to calculate the linearization data.)

7.6. Known Issues with Linearization

 There are a handful of known issues with this linearization code.
 These issues do not appear to impact the behavior of linearized
 files which still work as intended: it is possible for a web
 browser to begin to display them before they are fully
 downloaded. In fact, it seems that various other programs that
 create linearized files have many of these same issues. These
 items make reference to terminology used in the linearization
 appendix of the PDF specification.

			
 Thread Dictionary information keys appear in part 4 with the
 rest of Threads instead of in part 9. Objects in part 9 are
 not grouped together functionally.

			
 We are not calculating numerators for shared object positions
 within content streams or interleaving them within content
 streams.

			
 We generate only page offset, shared object, and outline hint
 tables. It would be relatively easy to add some additional
 tables. We gather most of the information needed to create
 thumbnail hint tables. There are comments in the code about
 this.

7.7. Debugging Note

 The qpdf --show-linearization command can show
 the complete contents of linearization hint streams. To look at
 the raw data, you can extract the filtered contents of the
 linearization hint tables using qpdf --show-object=n
 --filtered-stream-data. Then, to convert this into a
 bit stream (since linearization tables are bit streams written
 without regard to byte boundaries), you can pipe the resulting
 data through the following perl code:

use bytes;
binmode STDIN;
undef $/;
my $a = <STDIN>;
my @ch = split(//, $a);
map { printf("%08b", ord($_)) } @ch;
print "\n";

Chapter 8. Object and Cross-Reference Streams

Table of Contents

			8.1. Object Streams

			8.2. Cross-Reference Streams

						8.2.1. Cross-Reference Stream Data

			8.3. Implications for Linearized Files

			8.4. Implementation Notes

 This chapter provides information about the implementation of
 object stream and cross-reference stream support in qpdf.

8.1. Object Streams

 Object streams can contain any regular object except the
 following:

			
 stream objects

			
 objects with generation > 0

			
 the encryption dictionary

			
 objects containing the /Length of another stream

 In addition, Adobe reader (at least as of version 8.0.0) appears
 to not be able to handle having the document catalog appear in an
 object stream if the file is encrypted, though this is not
 specifically disallowed by the specification.

 There are additional restrictions for linearized files. See Section 8.3, “Implications for Linearized Files”for details.

 The PDF specification refers to objects in object streams as
 “compressed objects” regardless of whether the object
 stream is compressed.

 The generation number of every object in an object stream must be
 zero. It is possible to delete and replace an object in an object
 stream with a regular object.

 The object stream dictionary has the following keys:

			
 /N: number of objects

			
 /First: byte offset of first object

			
 /Extends: indirect reference to stream that
 this extends

 Stream collections are formed with /Extends.
 They must form a directed acyclic graph. These can be used for
 semantic information and are not meaningful to the PDF document's
 syntactic structure. Although qpdf preserves stream collections,
 it never generates them and doesn't make use of this information
 in any way.

 The specification recommends limiting the number of objects in
 object stream for efficiency in reading and decoding. Acrobat 6
 uses no more than 100 objects per object stream for linearized
 files and no more 200 objects per stream for non-linearized files.
 QPDFWriter, in object stream generation
 mode, never puts more than 100 objects in an object stream.

 Object stream contents consists of N pairs of
 integers, each of which is the object number and the byte offset
 of the object relative to the first object in the stream, followed
 by the objects themselves, concatenated.

8.2. Cross-Reference Streams

 For non-hybrid files, the value following
 startxref is the byte offset to the xref stream
 rather than the word xref.

 For hybrid files (files containing both xref tables and
 cross-reference streams), the xref table's trailer dictionary
 contains the key /XRefStm whose value is the
 byte offset to a cross-reference stream that supplements the xref
 table. A PDF 1.5-compliant application should read the xref table
 first. Then it should replace any object that it has already seen
 with any defined in the xref stream. Then it should follow any
 /Prev pointer in the original xref table's
 trailer dictionary. The specification is not clear about what
 should be done, if anything, with a /Prev
 pointer in the xref stream referenced by an xref table. The
 QPDF class ignores it, which is probably
 reasonable since, if this case were to appear for any sensible PDF
 file, the previous xref table would probably have a corresponding
 /XRefStm pointer of its own. For example, if a
 hybrid file were appended, the appended section would have its own
 xref table and /XRefStm. The appended xref
 table would point to the previous xref table which would point the
 /XRefStm, meaning that the new
 /XRefStm doesn't have to point to it.

 Since xref streams must be read very early, they may not be
 encrypted, and the may not contain indirect objects for keys
 required to read them, which are these:

			
 /Type: value /XRef

			
 /Size: value n+1: where
 n is highest object number (same as
 /Size in the trailer dictionary)

			
 /Index (optional): value
 [n count ...]
 used to determine which objects' information is stored in this
 stream. The default is [0 /Size].

			
 /Prev: value
 offset: byte offset of previous xref
 stream (same as /Prev in the trailer
 dictionary)

			
 /W [...]: sizes of each field in the xref
 table

 The other fields in the xref stream, which may be indirect if
 desired, are the union of those from the xref table's trailer
 dictionary.

8.2.1. Cross-Reference Stream Data

 The stream data is binary and encoded in big-endian byte order.
 Entries are concatenated, and each entry has a length equal to
 the total of the entries in /W above. Each
 entry consists of one or more fields, the first of which is the
 type of the field. The number of bytes for each field is given
 by /W above. A 0 in /W
 indicates that the field is omitted and has the default value.
 The default value for the field type is
 “1”. All other default values are
 “0”.

 PDF 1.5 has three field types:

			
 0: for free objects. Format: 0 obj
 next-generation, same as the free table in a
 traditional cross-reference table

			
 1: regular non-compressed object. Format: 1 offset
 generation

			
 2: for objects in object streams. Format: 2
 object-stream-number index, the number of object
 stream containing the object and the index within the object
 stream of the object.

 It seems standard to have the first entry in the table be
 0 0 0 instead of 0 0 ffff
 if there are no deleted objects.

8.3. Implications for Linearized Files

 For linearized files, the linearization dictionary, document
 catalog, and page objects may not be contained in object streams.

 Objects stored within object streams are given the highest range
 of object numbers within the main and first-page cross-reference
 sections.

 It is okay to use cross-reference streams in place of regular xref
 tables. There are on special considerations.

 Hint data refers to object streams themselves, not the objects in
 the streams. Shared object references should also be made to the
 object streams. There are no reference in any hint tables to the
 object numbers of compressed objects (objects within object
 streams).

 When numbering objects, all shared objects within both the first
 and second halves of the linearized files must be numbered
 consecutively after all normal uncompressed objects in that half.

8.4. Implementation Notes

 There are three modes for writing object streams:
 disable, preserve, and
 generate. In disable mode, we do not generate
 any object streams, and we also generate an xref table rather than
 xref streams. This can be used to generate PDF files that are
 viewable with older readers. In preserve mode, we write object
 streams such that written object streams contain the same objects
 and /Extends relationships as in the original
 file. This is equal to disable if the file has no object streams.
 In generate, we create object streams ourselves by grouping
 objects that are allowed in object streams together in sets of no
 more than 100 objects. We also ensure that the PDF version is at
 least 1.5 in generate mode, but we preserve the version header in
 the other modes. The default is preserve.

 We do not support creation of hybrid files. When we write files,
 even in preserve mode, we will lose any xref tables and merge any
 appended sections.

Appendix A. Release Notes

 For a detailed list of changes, please see the file
 ChangeLog in the source distribution.

			7.1.0: January 14, 2018

						
 PDF files contain streams that may be compressed with various
 compression algorithms which, in some cases, may be enhanced
 by various predictor functions. Previously only the PNG up
 predictor was supported. In this version, all the PNG
 predictors as well as the TIFF predictor are supported. This
 increases the range of files that qpdf is able to handle.

			
 QPDF now allows a raw encryption key to be specified in place
 of a password when opening encrypted files, and will
 optionally display the encryption key used by a file. This is
 a non-standard operation, but it can be useful in certain
 situations. Please see the discussion of
 --password-is-hex-key in Section 3.2, “Basic Options” or the comments around
 QPDF::setPasswordIsHexKey in
 QPDF.hh for additional details.

			
 Bug fix: numbers ending with a trailing decimal point are now
 properly recognized as numbers.

			
 Bug fix: when building qpdf from source on some platforms
 (especially MacOS), the build could get confused by older
 versions of qpdf installed on the system. This has been
 corrected.

			7.0.0: September 15, 2017

						
 Packaging and Distribution Changes

			
 QPDF's primary license is now version 2.0
 of the Apache License rather than version 2.0 of the
 Artistic License. You may still, at your option, consider
 qpdf to be licensed with version 2.0 of the Artistic
 license.

			
 QPDF no longer has a dependency on the PCRE (Perl-Compatible
 Regular Expression) library. QPDF now has an added
 dependency on the JPEG library.

			
 Bug Fixes

			
 This release contains many bug fixes for various infinite
 loops, memory leaks, and other memory errors that could be
 encountered with specially crafted or otherwise erroneous
 PDF files.

			
 New Features

			
 QPDF now supports reading and writing streams encoded with
 JPEG or RunLength encoding. Library API enhancements and
 command-line options have been added to control this
 behavior. See command-line options
 --compress-streams and
 --decode-level and methods
 QPDFWriter::setCompressStreams and
 QPDFWriter::setDecodeLevel.

			
 QPDF is much better at recovering from broken files. In most
 cases, qpdf will skip invalid objects and will preserve
 broken stream data by not attempting to filter broken
 streams. QPDF is now able to recover or at least not crash
 on dozens of broken test files I have received over the past
 few years.

			
 Page rotation is now supported and accessible from both the
 library and the command line.

			
 QPDFWriter supports writing files in
 a way that preserves PCLm compliance in support of
 driverless printing. This is very specialized and is only
 useful to applications that already know how to create PCLm
 files.

			
 Enhancements to the qpdf Command-line Tool.
 All new options listed here are documented in more detail in
 Chapter 3, Running QPDF.

			
 Command-line arguments can now be read from files or
 standard input using @file or
 @- syntax. Please see Section 3.1, “Basic Invocation”.

			
 --rotate: request page rotation

			
 --newline-before-endstream: ensure that a
 newline appears before every endstream
 keyword in the file; used to prevent qpdf from breaking
 PDF/A compliance on already compliant files.

			
 --preserve-unreferenced: preserve
 unreferenced objects in the input PDF

			
	 --split-pages: break output into chunks
 with fixed numbers of pages

			
	 --verbose: print the name of each output
 file that is created

			
 --compress-streams and
 --decode-level replace
 --stream-data for improving granularity of
 controlling compression and decompression of stream data.
 The --stream-data option will remain
 available.

			
 When running qpdf --check with other
 options, checks are always run first. This enables qpdf to
 perform its full recovery logic before outputting other
 information. This can be especially useful when manually
 recovering broken files, looking at qpdf's regenerated cross
 reference table, or other similar operations.

			
 Process --pages earlier so that other
 options like --show-pages or
 --split-pages can operate on the file after
 page splitting/merging has occurred.

			
 API Changes. All new API calls are documented in their
 respective classes' header files.

			
 QPDFObjectHandle::rotatePage: apply
 rotation to a page object

			
 QPDFWriter::setNewlineBeforeEndstream:
 force newline to appear before endstream

			
 QPDFWriter::setPreserveUnreferencedObjects:
 preserve unreferenced objects that appear in the input PDF.
 The default behavior is to discard them.

			
 New Pipeline types
 Pl_RunLength and
 Pl_DCT are available for developers
 who wish to produce or consume RunLength or DCT stream data
 directly. The examples/pdf-create.cc
 example illustrates their use.

			
	 QPDFWriter::setCompressStreams and
	 QPDFWriter::setDecodeLevel methods
	 control handling of different types of stream compression.

			
	 Add new C API functions
	 qpdf_set_compress_streams,
	 qpdf_set_decode_level,
	 qpdf_set_preserve_unreferenced_objects,
	 and qpdf_set_newline_before_endstream
	 corresponding to the new QPDFWriter
	 methods.

			6.0.0: November 10, 2015

						
 Implement --deterministic-id command-line
 option and QPDFWriter::setDeterministicID
 as well as C API function
 qpdf_set_deterministic_ID for generating
 a deterministic ID for non-encrypted files. When this option
 is selected, the ID of the file depends on the contents of the
 output file, and not on transient items such as the timestamp
 or output file name.

			
 Make qpdf more tolerant of files whose xref table entries are
 not the correct length.

			5.1.3: May 24, 2015

						
 Bug fix: fix-qdf was not properly handling files that
 contained object streams with more than 255 objects in them.

			
 Bug fix: qpdf was not properly initializing Microsoft's secure
 crypto provider on fresh Windows installations that had not
 had any keys created yet.

			
 Fix a few errors found by Gynvael Coldwind and
	Mateusz Jurczyk of the Google Security Team. Please see the
 ChangeLog for details.

			
 Properly handle pages that have no contents at all. There were
 many cases in which qpdf handled this fine, but a few methods
 blindly obtained page contents with handling the possibility
 that there were no contents.

			
 Make qpdf more robust for a few more kinds of problems that
 may occur in invalid PDF files.

			5.1.2: June 7, 2014

						
 Bug fix: linearizing files could create a corrupted output
 file under extremely unlikely file size circumstances. See
 ChangeLog for details. The odds of getting hit by this are
 very low, though one person did.

			
 Bug fix: qpdf would fail to write files that had streams with
 decode parameters referencing other streams.

			
 New example program: pdf-split-pages:
 efficiently split PDF files into individual pages. The example
 program does this more efficiently than using qpdf
 --pages to do it.

			
 Packaging fix: Visual C++ binaries did not support Windows XP.
 This has been rectified by updating the compilers used to
 generate the release binaries.

			5.1.1: January 14, 2014

						
 Performance fix: copying foreign objects could be very slow
 with certain types of files. This was most likely to be
 visible during page splitting and was due to traversing the
 same objects multiple times in some cases.

			5.1.0: December 17, 2013

						
 Added runtime option
 (QUtil::setRandomDataProvider) to supply
 your own random data provider. You can use this if you want
 to avoid using the OS-provided secure random number generation
 facility or stdlib's less secure version. See comments in
 include/qpdf/QUtil.hh for details.

			
 Fixed image comparison tests to not create 12-bit-per-pixel
 images since some versions of tiffcmp have bugs in comparing
 them in some cases. This increases the disk space required by
 the image comparison tests, which are off by default anyway.

			
 Introduce a number of small fixes for compilation on the
 latest clang in MacOS and the latest Visual C++ in Windows.

			
 Be able to handle broken files that end the xref table header
 with a space instead of a newline.

			5.0.1: October 18, 2013

						
 Thanks to a detailed review by Florian Weimer and the Red Hat
 Product Security Team, this release includes a number of
 non-user-visible security hardening changes. Please see the
 ChangeLog file in the source distribution for the complete
 list.

			
 When available, operating system-specific secure random number
 generation is used for generating initialization vectors and
 other random values used during encryption or file creation.
 For the Windows build, this results in an added dependency on
 Microsoft's cryptography API. To disable the OS-specific
 cryptography and use the old version, pass the
 --enable-insecure-random option to
 ./configure.

			
 The qpdf command-line tool now issues a
 warning when -accessibility=n is specified
 for newer encryption versions stating that the option is
 ignored. qpdf, per the spec, has always ignored this flag,
 but it previously did so silently. This warning is issued
 only by the command-line tool, not by the library. The
 library's handling of this flag is unchanged.

			5.0.0: July 10, 2013

						
 Bug fix: previous versions of qpdf would lose objects with
 generation != 0 when generating object streams. Fixing this
 required changes to the public API.

			
 Removed methods from public API that were only supposed to be
 called by QPDFWriter and couldn't realistically be called
 anywhere else. See ChangeLog for details.

			
 New QPDFObjGen class added to represent an object
 ID/generation pair.
 QPDFObjectHandle::getObjGen() is now
 preferred over
 QPDFObjectHandle::getObjectID() and
 QPDFObjectHandle::getGeneration() as it
 makes it less likely for people to accidentally write code
 that ignores the generation number. See
 QPDF.hh and
 QPDFObjectHandle.hh for additional notes.

			
 Add --show-npages command-line option to the
 qpdf command to show the number of pages in
 a file.

			
 Allow omission of the page range within
 --pages for the qpdf
 command. When omitted, the page range is implicitly taken to
 be all the pages in the file.

			
 Various enhancements were made to support different types of
 broken files or broken readers. Details can be found in
 ChangeLog.

			4.1.0: April 14, 2013

						
 Note to people including qpdf in distributions: the
 .la files generated by libtool are now
 installed by qpdf's make install target.
 Before, they were not installed. This means that if your
 distribution does not want to include .la
 files, you must remove them as part of your packaging process.

			
 Major enhancement: API enhancements have been made to support
 parsing of content streams. This enhancement includes the
 following changes:

			
 QPDFObjectHandle::parseContentStream
 method parses objects in a content stream and calls
 handlers in a callback class. The example
 examples/pdf-parse-content.cc
 illustrates how this may be used.

			
 QPDFObjectHandle can now represent operators
 and inline images, object types that may only appear in
 content streams.

			
 Method QPDFObjectHandle::getTypeCode()
 returns an enumerated type value representing the
 underlying object type. Method
 QPDFObjectHandle::getTypeName()
 returns a text string describing the name of the type of a
 QPDFObjectHandle object. These methods can be
 used for more efficient parsing and debugging/diagnostic
 messages.

			
 qpdf --check now parses all pages' content
 streams in addition to doing other checks. While there are
 still many types of errors that cannot be detected, syntactic
 errors in content streams will now be reported.

			
 Minor compilation enhancements have been made to facilitate
 easier for support for a broader range of compilers and
 compiler versions.

			
 Warning flags have been moved into a separate variable in
 autoconf.mk

			
 The configure flag --enable-werror work
 for Microsoft compilers

			
 All MSVC CRT security warnings have been resolved.

			
 All C-style casts in C++ Code have been replaced by C++
 casts, and many casts that had been included to suppress
 higher warning levels for some compilers have been removed,
 primarily for clarity. Places where integer type coercion
 occurs have been scrutinized. A new casting policy has
 been documented in the manual. This is of concern mainly
 to people porting qpdf to new platforms or compilers. It
 is not visible to programmers writing code that uses the
 library

			
 Some internal limits have been removed in code that
 converts numbers to strings. This is largely invisible to
 users, but it does trigger a bug in some older versions of
 mingw-w64's C++ library. See
 README-windows.md in the source
 distribution if you think this may affect you. The copy of
 the DLL distributed with qpdf's binary distribution is not
 affected by this problem.

			
 The RPM spec file previously included with qpdf has been
 removed. This is because virtually all Linux distributions
 include qpdf now that it is a dependency of CUPS filters.

			
 A few bug fixes are included:

			
 Overridden compressed objects are properly handled.
 Before, there were certain constructs that could cause qpdf
 to see old versions of some objects. The most usual
 manifestation of this was loss of filled in form values for
 certain files.

			
 Installation no longer uses GNU/Linux-specific versions of
 some commands, so make install works on
 Solaris with native tools.

			
 The 64-bit mingw Windows binary package no longer includes
 a 32-bit DLL.

			4.0.1: January 17, 2013

						
 Fix detection of binary attachments in test suite to avoid
 false test failures on some platforms.

			
 Add clarifying comment in QPDF.hh to
 methods that return the user password explaining that it is no
 longer possible with newer encryption formats to recover the
 user password knowing the owner password. In earlier
 encryption formats, the user password was encrypted in the
 file using the owner password. In newer encryption formats, a
 separate encryption key is used on the file, and that key is
 independently encrypted using both the user password and the
 owner password.

			4.0.0: December 31, 2012

						
 Major enhancement: support has been added for newer encryption
 schemes supported by version X of Adobe Acrobat. This
 includes use of 127-character passwords, 256-bit encryption
 keys, and the encryption scheme specified in ISO 32000-2, the
 PDF 2.0 specification. This scheme can be chosen from the
 command line by specifying use of 256-bit keys. qpdf also
 supports the deprecated encryption method used by Acrobat IX.
 This encryption style has known security weaknesses and should
 not be used in practice. However, such files exist “in
 the wild,” so support for this scheme is still useful.
 New methods
 QPDFWriter::setR6EncryptionParameters
 (for the PDF 2.0 scheme) and
 QPDFWriter::setR5EncryptionParameters
 (for the deprecated scheme) have been added to enable these
 new encryption schemes. Corresponding functions have been
 added to the C API as well.

			
 Full support for Adobe extension levels in PDF version
 information. Starting with PDF version 1.7, corresponding to
 ISO 32000, Adobe adds new functionality by increasing the
 extension level rather than increasing the version. This
 support includes addition of the
 QPDF::getExtensionLevel method for
 retrieving the document's extension level, addition of
 versions of
 QPDFWriter::setMinimumPDFVersion and
 QPDFWriter::forcePDFVersion that accept
 an extension level, and extended syntax for specifying forced
 and minimum versions on the command line as described in Section 3.6, “Advanced Transformation Options”. Corresponding
 functions have been added to the C API as well.

			
 Minor fixes to prevent qpdf from referencing objects in the
 file that are not referenced in the file's overall structure.
 Most files don't have any such objects, but some files have
 contain unreferenced objects with errors, so these fixes
 prevent qpdf from needlessly rejecting or complaining about
 such objects.

			
 Add new generalized methods for reading and writing files
 from/to programmer-defined sources. The method
 QPDF::processInputSource allows the
 programmer to use any input source for the input file, and
 QPDFWriter::setOutputPipeline allows the
 programmer to write the output file through any pipeline.
 These methods would make it possible to perform any number of
 specialized operations, such as accessing external storage
 systems, creating bindings for qpdf in other programming
 languages that have their own I/O systems, etc.

			
 Add new method QPDF::getEncryptionKey for
 retrieving the underlying encryption key used in the file.

			
 This release includes a small handful of non-compatible API
 changes. While effort is made to avoid such changes, all the
 non-compatible API changes in this version were to parts of
 the API that would likely never be used outside the library
 itself. In all cases, the altered methods or structures were
 parts of the QPDF that were public to
 enable them to be called from either
 QPDFWriter or were part of validation
 code that was over-zealous in reporting problems in parts of
 the file that would not ordinarily be referenced. In no case
 did any of the removed methods do anything worse that falsely
 report error conditions in files that were broken in ways that
 didn't matter. The following public parts of the
 QPDF class were changed in a
 non-compatible way:

			
 Updated nested QPDF::EncryptionData
 class to add fields needed by the newer encryption formats,
 member variables changed to private so that future changes
 will not require breaking backward compatibility.

			
 Added additional parameters to
 compute_data_key, which is used by
 QPDFWriter to compute the encryption
 key used to encrypt a specific object.

			
 Removed the method
 flattenScalarReferences. This method
 was previously used prior to writing a new PDF file, but it
 has the undesired side effect of causing qpdf to read
 objects in the file that were not referenced. Some
 otherwise files have unreferenced objects with errors in
 them, so this could cause qpdf to reject files that would
 be accepted by virtually all other PDF readers. In fact,
 qpdf relied on only a very small part of what
 flattenScalarReferences did, so only this part has been
 preserved, and it is now done directly inside
 QPDFWriter.

			
 Removed the method decodeStreams.
 This method was used by the --check option
 of the qpdf command-line tool to force
 all streams in the file to be decoded, but it also suffered
 from the problem of opening otherwise unreferenced streams
 and thus could report false positive. The
 --check option now causes qpdf to go
 through all the motions of writing a new file based on the
 original one, so it will always reference and check exactly
 those parts of a file that any ordinary viewer would check.

			
 Removed the method
 trimTrailerForWrite. This method was
 used by QPDFWriter to modify the
 original QPDF object by removing fields from the trailer
 dictionary that wouldn't apply to the newly written file.
 This functionality, though generally harmless, was a poor
 implementation and has been replaced by having QPDFWriter
 filter these out when copying the trailer rather than
 modifying the original QPDF object. (Note that qpdf never
 modifies the original file itself.)

			
 Allow the PDF header to appear anywhere in the first 1024
 bytes of the file. This is consistent with what other readers
 do.

			
 Fix the pkg-config files to list zlib and
 pcre in Requires.private to better
 support static linking using pkg-config.

			3.0.2: September 6, 2012

						
 Bug fix: QPDFWriter::setOutputMemory did
 not work when not used with
 QPDFWriter::setStaticID, which made it
 pretty much useless. This has been fixed.

			
 New API call
 QPDFWriter::setExtraHeaderText inserts
 additional text near the header of the PDF file. The intended
 use case is to insert comments that may be consumed by a
 downstream application, though other use cases may exist.

			3.0.1: August 11, 2012

						
 Version 3.0.0 included addition of files for
 pkg-config, but this was not mentioned in
 the release notes. The release notes for 3.0.0 were updated
 to mention this.

			
 Bug fix: if an object stream ended with a scalar object not
 followed by space, qpdf would incorrectly report that it
 encountered a premature EOF. This bug has been in qpdf since
 version 2.0.

			3.0.0: August 2, 2012

						
 Acknowledgment: I would like to express gratitude for the
 contributions of Tobias Hoffmann toward the release of qpdf
 version 3.0. He is responsible for most of the implementation
 and design of the new API for manipulating pages, and
 contributed code and ideas for many of the improvements made
 in version 3.0. Without his work, this release would
 certainly not have happened as soon as it did, if at all.

			
 Non-compatible API change: The version of
 QPDFObjectHandle::replaceStreamData that
 uses a StreamDataProvider no longer
 requires (or accepts) a length parameter.
 See Appendix C, Upgrading to 3.0 for an explanation.
 While care is taken to avoid non-compatible API changes in
 general, an exception was made this time because the new
 interface offers an opportunity to significantly simplify
 calling code.

			
 Support has been added for large files. The test suite
 verifies support for files larger than 4 gigabytes, and manual
 testing has verified support for files larger than 10
 gigabytes. Large file support is available for both 32-bit
 and 64-bit platforms as long as the compiler and underlying
 platforms support it.

			
 Support for page selection (splitting and merging PDF files)
 has been added to the qpdf command-line
 tool. See Section 3.4, “Page Selection Options”.

			
 Options have been added to the qpdf
 command-line tool for copying encryption parameters from
 another file. See Section 3.2, “Basic Options”.

			
 New methods have been added to the QPDF
 object for adding and removing pages. See Section 6.6, “Adding and Removing Pages”.

			
 New methods have been added to the QPDF
 object for copying objects from other PDF files. See Section 6.8, “Copying Objects From Other PDF Files”

			
 A new method QPDFObjectHandle::parse has
 been added for constructing
 QPDFObjectHandle objects from a string
 description.

			
 Methods have been added to QPDFWriter
 to allow writing to an already open stdio FILE*
 addition to writing to standard output or a named file.
 Methods have been added to QPDF to be
 able to process a file from an already open stdio
 FILE*. This makes it possible to read and write
 PDF from secure temporary files that have been unlinked prior
 to being fully read or written.

			
 The QPDF::emptyPDF can be used to allow
 creation of PDF files from scratch. The example
 examples/pdf-create.cc illustrates how it
 can be used.

			
 Several methods to take
 PointerHolder<Buffer> can now
 also accept std::string arguments.

			
 Many new convenience methods have been added to the library,
 most in QPDFObjectHandle. See
 ChangeLog for a full list.

			
 When building on a platform that supports ELF shared libraries
 (such as Linux), symbol versions are enabled by default. They
 can be disabled by passing
 --disable-ld-version-script to
 ./configure.

			
 The file libqpdf.pc is now installed to
 support pkg-config.

			
 Image comparison tests are off by default now since they are
 not needed to verify a correct build or port of qpdf. They
 are needed only when changing the actual PDF output generated
 by qpdf. You should enable them if you are making deep
 changes to qpdf itself. See README.md for
 details.

			
 Large file tests are off by default but can be turned on with
 ./configure or by setting an environment
 variable before running the test suite. See
 README.md for details.

			
 When qpdf's test suite fails, failures are not printed to the
 terminal anymore by default. Instead, find them in
 build/qtest.log. For packagers who are
 building with an autobuilder, you can add the
 --enable-show-failed-test-output option to
 ./configure to restore the old behavior.

			2.3.1: December 28, 2011

						
 Fix thread-safety problem resulting from non-thread-safe use
 of the PCRE library.

			
 Made a few minor documentation fixes.

			
 Add workaround for a bug that appears in some versions of
 ghostscript to the test suite

			
 Fix minor build issue for Visual C++ 2010.

			2.3.0: August 11, 2011

						
 Bug fix: when preserving existing encryption on encrypted
 files with cleartext metadata, older qpdf versions would
 generate password-protected files with no valid password.
 This operation now works. This bug only affected files
 created by copying existing encryption parameters; explicit
 encryption with specification of cleartext metadata worked
 before and continues to work.

			
 Enhance QPDFWriter with a new
 constructor that allows you to delay the specification of the
 output file. When using this constructor, you may now call
 QPDFWriter::setOutputFilename to specify
 the output file, or you may use
 QPDFWriter::setOutputMemory to cause
 QPDFWriter to write the resulting PDF
 file to a memory buffer. You may then use
 QPDFWriter::getBuffer to retrieve the
 memory buffer.

			
 Add new API call QPDF::replaceObject for
 replacing objects by object ID

			
 Add new API call QPDF::swapObjects for
 swapping two objects by object ID

			
 Add QPDFObjectHandle::getDictAsMap and
 QPDFObjectHandle::getArrayAsVector to
 allow retrieval of dictionary objects as maps and array
 objects as vectors.

			
 Add functions qpdf_get_info_key and
 qpdf_set_info_key to the C API for
 manipulating string fields of the document's
 /Info dictionary.

			
 Add functions qpdf_init_write_memory,
 qpdf_get_buffer_length, and
 qpdf_get_buffer to the C API for writing
 PDF files to a memory buffer instead of a file.

			2.2.4: June 25, 2011

						
 Fix installation and compilation issues; no functionality
 changes.

			2.2.3: April 30, 2011

						
 Handle some damaged streams with incorrect characters
 following the stream keyword.

			
 Improve handling of inline images when normalizing content
 streams.

			
 Enhance error recovery to properly handle files that use
 object 0 as a regular object, which is specifically disallowed
 by the spec.

			2.2.2: October 4, 2010

						
 Add new function qpdf_read_memory
 to the C API to call
 QPDF::processMemoryFile. This was an
 omission in qpdf 2.2.1.

			2.2.1: October 1, 2010

						
 Add new method QPDF::setOutputStreams
 to replace std::cout and
 std::cerr with other streams for generation
 of diagnostic messages and error messages. This can be useful
 for GUIs or other applications that want to capture any output
 generated by the library to present to the user in some other
 way. Note that QPDF does not write to
 std::cout (or the specified output stream)
 except where explicitly mentioned in
 QPDF.hh, and that the only use of the
 error stream is for warnings. Note also that output of
 warnings is suppressed when
 setSuppressWarnings(true) is called.

			
 Add new method QPDF::processMemoryFile
 for operating on PDF files that are loaded into memory rather
 than in a file on disk.

			
 Give a warning but otherwise ignore empty PDF objects by
 treating them as null. Empty object are not permitted by the
 PDF specification but have been known to appear in some actual
 PDF files.

			
 Handle inline image filter abbreviations when the appear as
 stream filter abbreviations. The PDF specification does not
 allow use of stream filter abbreviations in this way, but
 Adobe Reader and some other PDF readers accept them since they
 sometimes appear incorrectly in actual PDF files.

			
 Implement miscellaneous enhancements to
 PointerHolder and
 Buffer to support other changes.

			2.2.0: August 14, 2010

						
 Add new methods to QPDFObjectHandle
 (newStream and
 replaceStreamData for creating new
 streams and replacing stream data. This makes it possible to
 perform a wide range of operations that were not previously
 possible.

			
 Add new helper method in
 QPDFObjectHandle
 (addPageContents) for appending or
 prepending new content streams to a page. This method makes
 it possible to manipulate content streams without having to be
 concerned whether a page's contents are a single stream or an
 array of streams.

			
 Add new method in QPDFObjectHandle:
 replaceOrRemoveKey, which replaces a
 dictionary key
 with a given value unless the value is null, in which case it
 removes the key instead.

			
 Add new method in QPDFObjectHandle:
 getRawStreamData, which returns the raw
 (unfiltered) stream data into a buffer. This complements the
 getStreamData method, which returns the
 filtered (uncompressed) stream data and can only be used when
 the stream's data is filterable.

			
 Provide two new examples:
 pdf-double-page-size and
 pdf-invert-images that illustrate the newly
 added interfaces.

			
 Fix a memory leak that would cause loss of a few bytes for
 every object involved in a cycle of object references. Thanks
 to Jian Ma for calling my attention to the leak.

			2.1.5: April 25, 2010

						
 Remove restriction of file identifier strings to 16 bytes.
 This unnecessary restriction was preventing qpdf from being
 able to encrypt or decrypt files with identifier strings that
 were not exactly 16 bytes long. The specification imposes no
 such restriction.

			2.1.4: April 18, 2010

						
 Apply the same padding calculation fix from version 2.1.2 to
 the main cross reference stream as well.

			
 Since qpdf --check only performs limited
 checks, clarify the output to make it clear that there still
 may be errors that qpdf can't check. This should make it less
 surprising to people when another PDF reader is unable to read
 a file that qpdf thinks is okay.

			2.1.3: March 27, 2010

						
 Fix bug that could cause a failure when rewriting PDF files
 that contain object streams with unreferenced objects that in
 turn reference indirect scalars.

			
 Don't complain about (invalid) AES streams that aren't a
 multiple of 16 bytes. Instead, pad them before decrypting.

			2.1.2: January 24, 2010

						
 Fix bug in padding around first half cross reference stream in
 linearized files. The bug could cause an assertion failure
 when linearizing certain unlucky files.

			2.1.1: December 14, 2009

						
 No changes in functionality; insert missing include in an
 internal library header file to support gcc 4.4, and update
 test suite to ignore broken Adobe Reader installations.

			2.1: October 30, 2009

						
 This is the first version of qpdf to include Windows support.
 On Windows, it is possible to build a DLL. Additionally, a
 partial C-language API has been introduced, which makes it
 possible to call qpdf functions from non-C++ environments. I
 am very grateful to Zarko Gagic (http://delphi.about.com/)
 for tirelessly testing numerous pre-release versions of this
 DLL and providing many excellent suggestions on improving the
 interface.

 For programming to the C interface, please see the header file
 qpdf/qpdf-c.h and the example
 examples/pdf-linearize.c.

			
 Zarko Gajic has written a Delphi wrapper for qpdf, which can
 be downloaded from qpdf's download side. Zarko's Delphi
 wrapper is released with the same licensing terms as qpdf
 itself and comes with this disclaimer: “Delphi wrapper
 unit qpdf.pas created by Zarko Gajic
 (http://delphi.about.com/).
 Use at your own risk and for whatever purpose you want. No
 support is provided. Sample code is provided.”

			
 Support has been added for AES encryption and crypt filters.
 Although qpdf does not presently support files that use
 PKI-based encryption, with the addition of AES and crypt
 filters, qpdf is now be able to open most encrypted files
 created with newer versions of Acrobat or other PDF creation
 software. Note that I have not been able to get very many
 files encrypted in this way, so it's possible there could
 still be some cases that qpdf can't handle. Please report
 them if you find them.

			
 Many error messages have been improved to include more
 information in hopes of making qpdf a more useful tool for PDF
 experts to use in manually recovering damaged PDF files.

			
 Attempt to avoid compressing metadata streams if possible.
 This is consistent with other PDF creation applications.

			
 Provide new command-line options for AES encrypt, cleartext
 metadata, and setting the minimum and forced PDF versions of
 output files.

			
 Add additional methods to the QPDF
 object for querying the document's permissions. Although qpdf
 does not enforce these permissions, it does make them
 available so that applications that use qpdf can enforce
 permissions.

			
 The --check option to qpdf
 has been extended to include some additional information.

			
 There have been a handful of non-compatible API changes. For
 details, see Appendix B, Upgrading from 2.0 to 2.1.

			2.0.6: May 3, 2009

						
 Do not attempt to uncompress streams that have decode
 parameters we don't recognize. Earlier versions of qpdf would
 have rejected files with such streams.

			2.0.5: March 10, 2009

						
 Improve error handling in the LZW decoder, and fix a small
 error introduced in the previous version with regard to
 handling full tables. The LZW decoder has been more strongly
 verified in this release.

			2.0.4: February 21, 2009

						
 Include proper support for LZW streams encoded without the
 “early code change” flag. Special thanks to Atom
 Smasher who reported the problem and provided an input file
 compressed in this way, which I did not previously have.

			
 Implement some improvements to file recovery logic.

			2.0.3: February 15, 2009

						
 Compile cleanly with gcc 4.4.

			
 Handle strings encoded as UTF-16BE properly.

			2.0.2: June 30, 2008

						
 Update test suite to work properly with a
 non-bash /bin/sh and
 with Perl 5.10. No changes were made to the actual qpdf
 source code itself for this release.

			2.0.1: May 6, 2008

						
 No changes in functionality or interface. This release
 includes fixes to the source code so that qpdf compiles
 properly and passes its test suite on a broader range of
 platforms. See ChangeLog in the source
 distribution for details.

			2.0: April 29, 2008

						
 First public release.

Appendix B. Upgrading from 2.0 to 2.1

 Although, as a general rule, we like to avoid introducing
 source-level incompatibilities in qpdf's interface, there were a
 few non-compatible changes made in this version. A considerable
 amount of source code that uses qpdf will probably compile without
 any changes, but in some cases, you may have to update your code.
 The changes are enumerated here. There are also some new
 interfaces; for those, please refer to the header files.

			
 QPDF's exception handling mechanism now uses
 std::logic_error for internal errors and
 std::runtime_error for runtime errors in
 favor of the now removed QEXC classes used
 in previous versions. The QEXC exception
 classes predated the addition of the
 <stdexcept> header file to the C++
 standard library. Most of the exceptions thrown by the qpdf
 library itself are still of type QPDFExc
 which is now derived from
 std::runtime_error. Programs that caught
 an instance of std::exception and
 displayed it by calling the what() method
 will not need to be changed.

			
 The QPDFExc class now internally
 represents various fields of the error condition and provides
 interfaces for querying them. Among the fields is a numeric
 error code that can help applications act differently on (a small
 number of) different error conditions. See
 QPDFExc.hh for details.

			
 Warnings can be retrieved from qpdf as instances of
 QPDFExc instead of strings.

			
 The nested QPDF::EncryptionData class's
 constructor takes an additional argument. This class is
 primarily intended to be used by
 QPDFWriter. There's not really anything
 useful an end-user application could do with it. It probably
 shouldn't really be part of the public interface to begin with.
 Likewise, some of the methods for computing internal encryption
 dictionary parameters have changed to support
 /R=4 encryption.

			
 The method QPDF::getUserPassword has been
 removed since it didn't do what people would think it did. There
 are now two new methods:
 QPDF::getPaddedUserPassword and
 QPDF::getTrimmedUserPassword. The first one
 does what the old QPDF::getUserPassword
 method used to do, which is to return the password with possible
 binary padding as specified by the PDF specification. The second
 one returns a human-readable password string.

			
 The enumerated types that used to be nested in
 QPDFWriter have moved to top-level
 enumerated types and are now defined in the file
 qpdf/Constants.h. This enables them to be
 shared by both the C and C++ interfaces.

Appendix C. Upgrading to 3.0

 For the most part, the API for qpdf version 3.0 is backward
 compatible with versions 2.1 and later. There are two exceptions:

			
 The method
 QPDFObjectHandle::replaceStreamData that
 uses a StreamDataProvider to provide the
 stream data no longer takes a length
 parameter. While it would have been easy enough to keep the
 parameter for backward compatibility, in this case, the
 parameter was removed since this provides the user an
 opportunity to simplify the calling code. This method was
 introduced in version 2.2. At the time, the
 length parameter was required in order to
 ensure that calls to the stream data provider returned the same
 length for a specific stream every time they were invoked. In
 particular, the linearization code depends on this. Instead,
 qpdf 3.0 and newer check for that constraint explicitly. The
 first time the stream data provider is called for a specific
 stream, the actual length is saved, and subsequent calls are
 required to return the same number of bytes. This means the
 calling code no longer has to compute the length in advance,
 which can be a significant simplification. If your code fails
 to compile because of the extra argument and you don't want to
 make other changes to your code, just omit the argument.

			
 Many methods take long long instead of other
 integer types. Most if not all existing code should compile
 fine with this change since such parameters had always
 previously been smaller types. This change was required to
 support files larger than two gigabytes in size.

Appendix D. Upgrading to 4.0

 While version 4.0 includes a few non-compatible API changes, it is
 very unlikely that anyone's code would have used any of those parts
 of the API since they generally required information that would
 only be available inside the library. In the unlikely event that
 you should run into trouble, please see the ChangeLog. See also
 Appendix A, Release Notes for a complete list of the
 non-compatible API changes made in this version.

qpdf-7.1.0/doc/stylesheet.css

/**/
/* Custom style-sheet for the QPDF manual in HTML form. */
/**/

/*
 * This file is the CSS for the QPDF manual. It is based heavily on
 * the CSS for the Subversion book. That file contains the following
 * copyright and attribution:
 *
 * Copyright (c) 2003-2007
 * Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pilato.
 *
 * This work is licensed under the Creative Commons Attribution License.
 * To view a copy of this license, visit
 * http://creativecommons.org/licenses/by/2.0/ or send a letter to
 * Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305,
 * USA.
 */

body
{
 background: white;
 margin: 0.5in;
}

p, li, ul, ol, dd, dt
{
 font-style: normal;
 font-weight: normal;
 color: black;
}

tt, pre
{
 font-family: courier new,courier,fixed;
}

a
{
 color: blue;
 text-decoration: underline;
}

a:hover
{
 background: rgb(75%,75%,100%);
 color: blue;
 text-decoration: underline;
}

a:visited
{
 color: purple;
 text-decoration: underline;
}

img
{
 border: none;
}

h1.title
{
 font-size: 250%;
 font-style: normal;
 font-weight: bold;
 color: black;
}

h2.subtitle
{
 font-size: 150%;
 font-style: italic;
 color: black;
}

h2.title
{
 font-size: 150%;
 font-style: normal;
 font-weight: bold;
 color: black;
}

h3.title
{
 font-size: 125%;
 font-style: normal;
 font-weight: bold;
 color: black;
}

h4.title
{
 font-size: 100%;
 font-style: normal;
 font-weight: bold;
 color: black;
}

.toc b
{
 font-size: 125%;
 font-style: normal;
 font-weight: bold;
 color: black;
}

.screen, .programlisting, .literal
{
 font-family: courier new,courier,fixed;
 font-style: normal;
 font-weight: normal;
}

.command, .option, .type
{
 font-family: courier new,courier,fixed;
 font-style: normal;
 font-weight: normal;
}

.filename
{
 font-family: arial,helvetica,sans-serif;
 font-style: italic;
}

.property
{
 font-family: arial,helvetica,sans-serif;
 font-weight: bold;
}

.classname
{
 font-family: arial,helvetica,sans-serif;
 font-weight: bold;
 font-style: italic;
}

.varname, .function, .envar
{
 font-family: arial,helvetica,sans-serif;
 font-style: italic;
}

.replaceable
{
 font-style: italic;
 font-size: 100%;
}

.figure, .example, .table
{
 margin: 0.125in 0.25in;
}

.table table
{
 border-width: 1px;
 border-style: solid;
 border-color: black;
 border-spacing: 0;
 background: rgb(240,240,240);
}

.table td
{
 border: none;
 border-right: 1px black solid;
 border-bottom: 1px black solid;
 padding: 2px;
}

.table th
{
 background: rgb(180,180,180);
 border: none;
 border-right: 1px black solid;
 border-bottom: 1px black solid;
 padding: 2px;
}

.table p.title, .figure p.title, .example p.title
{
 text-align: left !important;
 font-size: 100% !important;
}

.author, .pubdate
{
 margin: 0;
 font-size: 100%;
 font-style: italic;
 font-weight: normal;
 color: black;
}

.preface div.author, .preface .pubdate
{
 font-size: 80%;
}

.sidebar
{
 border-top: dotted 1px black;
 border-left: dotted 1px black;
 border-right: solid 2px black;
 border-bottom: solid 2px black;
 background: rgb(240,220,170);
 padding: 0 0.12in;
 margin: 0.25in;
}

.note .programlisting, .note .screen,
.tip .programlisting, .tip .screen,
.warning .programlisting, .warning .screen,
.sidebar .programlisting, .sidebar .screen
{
 border: none;
 background: none;
}

.sidebar p.title
{
 text-align: center;
 font-size: 125%;
}

.note
{
 border: black solid 1px;
 background: url(./images/note.png) no-repeat rgb(252,246,220);
 margin: 0.125in 0;
 padding: 0 55px;
}

.tip
{
 border: black solid 1px;
 background: url(./images/tip.png) no-repeat rgb(224,244,255);
 margin: 0.125in 0;
 padding: 0 55px;
}

.warning
{
 border: black solid 1px;
 background: url(./images/warning.png) no-repeat rgb(255,210,210);
 margin: 0.125in 0;
 padding: 0 55px;
}

/*
.note .title, .tip .title, .warning .title
{
 display: none;
}
*/

.programlisting, .screen
{
 font-size: 90%;
 color: black;
 margin: 1em 0.25in;
 padding: 0.5em;
 background: rgb(240,240,240);
 border-top: black dotted 1px;
 border-left: black dotted 1px;
 border-right: black solid 2px;
 border-bottom: black solid 2px;
}

.navheader, .navfooter
{
 border: black solid 1px;
 background: rgb(180,180,200);
}

.navheader hr, .navfooter hr
{
 display: none;
}

qpdf-7.1.0/libqpdf.map.in

LIBQPDF_@LT_SONAME@ {
 global:
 *;
};

qpdf-7.1.0/make_windows_releases-finish

#!/bin/sh
if [! -d external-libs]; then
 echo "Please extract qpdf-external-libs-bin.zip and try again"
 exit 2
fi

set -e
set -x
cwd=`pwd`
PATH=$cwd/libqpdf/build:$PATH

cd install-mingw32
v=`ls -d qpdf-*`
cd ..

for i in mingw32 mingw64 msvc32 msvc64; do
 cp -p README-windows-install.txt install-$i/$v/README.txt
 (cd install-$i; zip -r ../$v-bin-$i.zip $v)
done

set +x

echo ""
echo "$v-bin-mingw{32,64}.zip and $v-bin-msvc{32,64}.zip have been created."

qpdf-7.1.0/README-maintainer.md

Release Reminders

* For debugging:
  ```
  ./configure CFLAGS="-g" CXXFLAGS="-g" --enable-werror --disable-shared
  ```
* When making a release, always remember to run large file tests and image comparison tests (`--enable-test-compare-images` `--with-large-file-test-path=/path`). For Windows, use a Windows style path, not an MSYS path for large files. For a major release, consider running a spelling checker over the source code to catch errors in variable names, strings, and comments. Use `ispell -p ispell-words`.
* Run tests with sanitize address enabled:
  ```
  ./configure CFLAGS="-fsanitize=address -g" \
     CXXFLAGS="-fsanitize=address -g" \
     LDFLAGS="-fsanitize=address" \
     --enable-werror --disable-shared
  ```
 The test suite should run clean with this. This seems to be more reliable than valgrind.
* Test with clang. Pass `CC=clang CXX=clang++` to `./configure`.
* Check all open issues in the sourceforge trackers and on github.
* If any interfaces were added or changed, check C API to see whether changes are appropriate there as well. If necessary, review the casting policy in the manual, and ensure that integer types are properly handled.
* Avoid atoi. Use QUtil::string_to_int instead. It does overflow/underflow checking.
* Remember to avoid using `operator[]` with `std::string` or `std::vector`. Instead, use `at()`. See README-hardening.md for details.
* Increment shared library version information as needed (`LT_*` in `configure.ac`)
* Test for binary compatibility. The easiest way to do this is to check out the last release, run the test suite, check out the new release, run `./autogen.mk; ./configure --enable-werror; make build_libqpdf`, check out the old release, and run `make check NO_REBUILD=1`.
* Update release notes in manual. Look at diffs and ChangeLog.
* Add a release entry to ChangeLog.
* Make sure version numbers are consistent in the following locations:
 * configure.ac
 * libqpdf/QPDF.cc
 * manual/qpdf-manual.xml
 `make_dist` verifies this consistency.
* Update release date in `manual/qpdf-manual.xml`. Remember to ensure that the entities at the top of the document are consistent with the release notes for both version and release date.
* Check `TODO` file to make sure all planned items for the release are done or retargeted.
* Each year, update copyright notices. Just do a case-insensitive search for copyright. Don't forget copyright in manual. Also update debian copyright in debian package. Last updated: 2018.
* To construct a source distribution from a pristine checkout, `make_dist` does the following:
  ```
  ./autogen.sh
  ./configure --enable-doc-maintenance --enable-werror
  make build_manual
  make distclean
  ```
* To create a source release, do an export from the version control system to a directory called qpdf-version. For example, from this directory:
  ```
  rm -rf /tmp/qpdf-x.y.z
  git archive --prefix=qpdf-x.y.z/ HEAD . | (cd /tmp; tar xf -)
  ```
 From the parent of that directory, run `make_dist` with the directory as an argument. Remember to have fop in your path. For internally testing releases, you can run make_dist with the `--no-tests` option.
* To create a source release of external libs, do an export from the version control system into a directory called `qpdf-external-libs` and just make a zip file of the result called `qpdf-external-libs-src.zip`. See the README.txt file there for information on creating binary external libs releases. Run this from the external-libs repository:
  ```
  git archive --prefix=external-libs/ HEAD . | (cd /tmp; tar xf -)
  cd /tmp
  zip -r qpdf-external-libs-src.zip external-libs
  ```
* To create Windows binary releases, extract the qpdf source distribution in Windows (MSYS2 + MSVC). From the extracted directory, extract the binary distribution of the external libraries. Run ./make_windows_releases from there.
* Before releasing, rebuild and test debian package.
* Remember to copy `README-what-to-download.md` separately onto the download area.
* Remember to update the web page including putting new documentation in the `files` subdirectory of the website on sourceforge.net.
* Create a tag in the version control system, and make backups of the actual releases. With git, use git `tag -s` to create a signed tag:
  ```
  git tag -s release-qpdf-$version HEAD -m"qpdf $version"
  ```
* When releasing on sourceforge, `external-libs` distributions go in `external-libs/yyyymmdd`, and qpdf distributions go in `qpdf/vvv`. Make the source package the default for all but Windows, and make the 32-bit mingw build the default for Windows.

General Build Stuff

QPDF uses autoconf and libtool but does not use automake. The only files distributed with the qpdf source distribution that are not controlled are `configure`, `libqpdf/qpdf/qpdf-config.h.in`, `aclocal.m4`, and some documentation. See above for the steps required to prepare a source distribution.

A small handful of additional files have been taken from autotools programs. These should probably be updated from time to time.
* `config.guess`, `config.sub`, `ltmain.sh`, and the `m4` directory: these were created by running `libtoolize -c`. To update, run `libtoolize -f -c` or remove the files and rerun `libtoolize`.
* Other files copied as indicated:
  ```
  cp /usr/share/automake-1.11/install-sh .
  cp /usr/share/automake-1.11/mkinstalldirs .
  ```

The entire contents of the `m4` directory came from `libtool.m4`. If we had some additional local parts, we could also add those to the `m4` directory. In order for this to work, it is necessary to run `aclocal -I m4` before running `autoheader` and `autoconf`. The `autogen.sh` script handles this.

If building or editing documentation, configure with `--enable-doc-maintenance`. This will ensure that all tools or files required to validate and build documentation are available.

If you want to run `make maintainer-clean`, `make distclean`, or `make autofiles.zip` and you haven't run `./configure`, you can pass `CLEAN=1` to make on the command line to prevent it from complaining about configure not having been run.

If you want to run checks without rerunning the build, pass `NO_REBUILD=1` to make. This can be useful for special testing scenarios such as validation of memory fixes or binary compatibility.

Local Windows Testing Procedure

This is what I do for routine testing on Windows.

From Linux, run `./autogen.sh` and `make autofiles.zip CLEAN=1`.

From Windows, git clone from my Linux clone, unzip `external-libs`, and unzip `autofiles.zip`.

Look at `make_windows_releases`. Set up path the same way and run whichever `./config-*` is appropriate for whichever compiler I need to test with. Start one of the Visual Studio native compiler shells, and from there, run one of the msys shells. The Visual Studio step is not necessary if just building with mingw.

qpdf-7.1.0/install-sh

#!/bin/sh
install - install a program, script, or datafile

scriptversion=2011-01-19.21; # UTC

This originates from X11R5 (mit/util/scripts/install.sh), which was
later released in X11R6 (xc/config/util/install.sh) with the
following copyright and license.
#
Copyright (C) 1994 X Consortium
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
Except as contained in this notice, the name of the X Consortium shall not
be used in advertising or otherwise to promote the sale, use or other deal-
ings in this Software without prior written authorization from the X Consor-
tium.
#
#
FSF changes to this file are in the public domain.
#
Calling this script install-sh is preferred over install.sh, to prevent
`make' implicit rules from creating a file called install from it
when there is no Makefile.
#
This script is compatible with the BSD install script, but was written
from scratch.

nl='
'
IFS=" ""	$nl"

set DOITPROG to echo to test this script

Don't use :- since 4.3BSD and earlier shells don't like it.
doit=${DOITPROG-}
if test -z "$doit"; then
 doit_exec=exec
else
 doit_exec=$doit
fi

Put in absolute file names if you don't have them in your path;
or use environment vars.

chgrpprog=${CHGRPPROG-chgrp}
chmodprog=${CHMODPROG-chmod}
chownprog=${CHOWNPROG-chown}
cmpprog=${CMPPROG-cmp}
cpprog=${CPPROG-cp}
mkdirprog=${MKDIRPROG-mkdir}
mvprog=${MVPROG-mv}
rmprog=${RMPROG-rm}
stripprog=${STRIPPROG-strip}

posix_glob='?'
initialize_posix_glob='
 test "$posix_glob" != "?" || {
 if (set -f) 2>/dev/null; then
 posix_glob=
 else
 posix_glob=:
 fi
 }
'

posix_mkdir=

Desired mode of installed file.
mode=0755

chgrpcmd=
chmodcmd=$chmodprog
chowncmd=
mvcmd=$mvprog
rmcmd="$rmprog -f"
stripcmd=

src=
dst=
dir_arg=
dst_arg=

copy_on_change=false
no_target_directory=

usage="\
Usage: $0 [OPTION]... [-T] SRCFILE DSTFILE
 or: $0 [OPTION]... SRCFILES... DIRECTORY
 or: $0 [OPTION]... -t DIRECTORY SRCFILES...
 or: $0 [OPTION]... -d DIRECTORIES...

In the 1st form, copy SRCFILE to DSTFILE.
In the 2nd and 3rd, copy all SRCFILES to DIRECTORY.
In the 4th, create DIRECTORIES.

Options:
 --help display this help and exit.
 --version display version info and exit.

 -c (ignored)
 -C install only if different (preserve the last data modification time)
 -d create directories instead of installing files.
 -g GROUP $chgrpprog installed files to GROUP.
 -m MODE $chmodprog installed files to MODE.
 -o USER $chownprog installed files to USER.
 -s $stripprog installed files.
 -t DIRECTORY install into DIRECTORY.
 -T report an error if DSTFILE is a directory.

Environment variables override the default commands:
 CHGRPPROG CHMODPROG CHOWNPROG CMPPROG CPPROG MKDIRPROG MVPROG
 RMPROG STRIPPROG
"

while test $# -ne 0; do
 case $1 in
 -c) ;;

 -C) copy_on_change=true;;

 -d) dir_arg=true;;

 -g) chgrpcmd="$chgrpprog $2"
	shift;;

 --help) echo "$usage"; exit $?;;

 -m) mode=$2
	case $mode in
	 ' ' | *'	'* | *'
'*	 | *'*'* | *'?'* | *'['*)
	 echo "$0: invalid mode: $mode" >&2
	 exit 1;;
	esac
	shift;;

 -o) chowncmd="$chownprog $2"
	shift;;

 -s) stripcmd=$stripprog;;

 -t) dst_arg=$2
	# Protect names problematic for `test' and other utilities.
	case $dst_arg in
	 -* | [=\(\)!]) dst_arg=./$dst_arg;;
	esac
	shift;;

 -T) no_target_directory=true;;

 --version) echo "$0 $scriptversion"; exit $?;;

 --)	shift
	break;;

 -*)	echo "$0: invalid option: $1" >&2
	exit 1;;

 *) break;;
 esac
 shift
done

if test $# -ne 0 && test -z "$dir_arg$dst_arg"; then
 # When -d is used, all remaining arguments are directories to create.
 # When -t is used, the destination is already specified.
 # Otherwise, the last argument is the destination. Remove it from $@.
 for arg
 do
 if test -n "$dst_arg"; then
 # $@ is not empty: it contains at least $arg.
 set fnord "$@" "$dst_arg"
 shift # fnord
 fi
 shift # arg
 dst_arg=$arg
 # Protect names problematic for `test' and other utilities.
 case $dst_arg in
 -* | [=\(\)!]) dst_arg=./$dst_arg;;
 esac
 done
fi

if test $# -eq 0; then
 if test -z "$dir_arg"; then
 echo "$0: no input file specified." >&2
 exit 1
 fi
 # It's OK to call `install-sh -d' without argument.
 # This can happen when creating conditional directories.
 exit 0
fi

if test -z "$dir_arg"; then
 do_exit='(exit $ret); exit $ret'
 trap "ret=129; $do_exit" 1
 trap "ret=130; $do_exit" 2
 trap "ret=141; $do_exit" 13
 trap "ret=143; $do_exit" 15

 # Set umask so as not to create temps with too-generous modes.
 # However, 'strip' requires both read and write access to temps.
 case $mode in
 # Optimize common cases.
 *644) cp_umask=133;;
 *755) cp_umask=22;;

 *[0-7])
 if test -z "$stripcmd"; then
	u_plus_rw=
 else
	u_plus_rw='% 200'
 fi
 cp_umask=`expr '(' 777 - $mode % 1000 ')' $u_plus_rw`;;
 *)
 if test -z "$stripcmd"; then
	u_plus_rw=
 else
	u_plus_rw=,u+rw
 fi
 cp_umask=$mode$u_plus_rw;;
 esac
fi

for src
do
 # Protect names problematic for `test' and other utilities.
 case $src in
 -* | [=\(\)!]) src=./$src;;
 esac

 if test -n "$dir_arg"; then
 dst=$src
 dstdir=$dst
 test -d "$dstdir"
 dstdir_status=$?
 else

 # Waiting for this to be detected by the "$cpprog $src $dsttmp" command
 # might cause directories to be created, which would be especially bad
 # if $src (and thus $dsttmp) contains '*'.
 if test ! -f "$src" && test ! -d "$src"; then
 echo "$0: $src does not exist." >&2
 exit 1
 fi

 if test -z "$dst_arg"; then
 echo "$0: no destination specified." >&2
 exit 1
 fi
 dst=$dst_arg

 # If destination is a directory, append the input filename; won't work
 # if double slashes aren't ignored.
 if test -d "$dst"; then
 if test -n "$no_target_directory"; then
	echo "$0: $dst_arg: Is a directory" >&2
	exit 1
 fi
 dstdir=$dst
 dst=$dstdir/`basename "$src"`
 dstdir_status=0
 else
 # Prefer dirname, but fall back on a substitute if dirname fails.
 dstdir=`
	(dirname "$dst") 2>/dev/null ||
	expr X"$dst" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \
	 X"$dst" : 'X\(//\)[^/]' \| \
	 X"$dst" : 'X\(//\)$' \| \
	 X"$dst" : 'X\(/\)' \| . 2>/dev/null ||
	echo X"$dst" |
	 sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{
		 s//\1/
		 q
		 }
		 /^X\(\/\/\)[^/].*/{
		 s//\1/
		 q
		 }
		 /^X\(\/\/\)$/{
		 s//\1/
		 q
		 }
		 /^X\(\/\).*/{
		 s//\1/
		 q
		 }
		 s/.*/./; q'
 `

 test -d "$dstdir"
 dstdir_status=$?
 fi
 fi

 obsolete_mkdir_used=false

 if test $dstdir_status != 0; then
 case $posix_mkdir in
 '')
	# Create intermediate dirs using mode 755 as modified by the umask.
	# This is like FreeBSD 'install' as of 1997-10-28.
	umask=`umask`
	case $stripcmd.$umask in
	 # Optimize common cases.
	 *[2367][2367]) mkdir_umask=$umask;;
	 .*0[02][02] | .[02][02] | .[02]) mkdir_umask=22;;

	 *[0-7])
	 mkdir_umask=`expr $umask + 22 \
	 - $umask % 100 % 40 + $umask % 20 \
	 - $umask % 10 % 4 + $umask % 2
	 `;;
	 *) mkdir_umask=$umask,go-w;;
	esac

	# With -d, create the new directory with the user-specified mode.
	# Otherwise, rely on $mkdir_umask.
	if test -n "$dir_arg"; then
	 mkdir_mode=-m$mode
	else
	 mkdir_mode=
	fi

	posix_mkdir=false
	case $umask in
	 *[123567][0-7][0-7])
	 # POSIX mkdir -p sets u+wx bits regardless of umask, which
	 # is incompatible with FreeBSD 'install' when (umask & 300) != 0.
	 ;;
	 *)
	 tmpdir=${TMPDIR-/tmp}/ins$RANDOM-$$
	 trap 'ret=$?; rmdir "$tmpdir/d" "$tmpdir" 2>/dev/null; exit $ret' 0

	 if (umask $mkdir_umask &&
		exec $mkdirprog $mkdir_mode -p -- "$tmpdir/d") >/dev/null 2>&1
	 then
	 if test -z "$dir_arg" || {
		 # Check for POSIX incompatibilities with -m.
		 # HP-UX 11.23 and IRIX 6.5 mkdir -m -p sets group- or
		 # other-writeable bit of parent directory when it shouldn't.
		 # FreeBSD 6.1 mkdir -m -p sets mode of existing directory.
		 ls_ld_tmpdir=`ls -ld "$tmpdir"`
		 case $ls_ld_tmpdir in
		 d????-?r-*) different_mode=700;;
		 d????-?--*) different_mode=755;;
		 *) false;;
		 esac &&
		 $mkdirprog -m$different_mode -p -- "$tmpdir" && {
		 ls_ld_tmpdir_1=`ls -ld "$tmpdir"`
		 test "$ls_ld_tmpdir" = "$ls_ld_tmpdir_1"
		 }
		 }
	 then posix_mkdir=:
	 fi
	 rmdir "$tmpdir/d" "$tmpdir"
	 else
	 # Remove any dirs left behind by ancient mkdir implementations.
	 rmdir ./$mkdir_mode ./-p ./-- 2>/dev/null
	 fi
	 trap '' 0;;
	esac;;
 esac

 if
 $posix_mkdir && (
	umask $mkdir_umask &&
	$doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir"
)
 then :
 else

 # The umask is ridiculous, or mkdir does not conform to POSIX,
 # or it failed possibly due to a race condition. Create the
 # directory the slow way, step by step, checking for races as we go.

 case $dstdir in
	/*) prefix='/';;
	[-=\(\)!]*) prefix='./';;
	*) prefix='';;
 esac

 eval "$initialize_posix_glob"

 oIFS=$IFS
 IFS=/
 $posix_glob set -f
 set fnord $dstdir
 shift
 $posix_glob set +f
 IFS=$oIFS

 prefixes=

 for d
 do
	test X"$d" = X && continue

	prefix=$prefix$d
	if test -d "$prefix"; then
	 prefixes=
	else
	 if $posix_mkdir; then
	 (umask=$mkdir_umask &&
	 $doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir") && break
	 # Don't fail if two instances are running concurrently.
	 test -d "$prefix" || exit 1
	 else
	 case $prefix in
	 \') qprefix=`echo "$prefix" | sed "s/'/'\\\\\\\\''/g"`;;
	 *) qprefix=$prefix;;
	 esac
	 prefixes="$prefixes '$qprefix'"
	 fi
	fi
	prefix=$prefix/
 done

 if test -n "$prefixes"; then
	# Don't fail if two instances are running concurrently.
	(umask $mkdir_umask &&
	 eval "\$doit_exec \$mkdirprog $prefixes") ||
	 test -d "$dstdir" || exit 1
	obsolete_mkdir_used=true
 fi
 fi
 fi

 if test -n "$dir_arg"; then
 { test -z "$chowncmd" || $doit $chowncmd "$dst"; } &&
 { test -z "$chgrpcmd" || $doit $chgrpcmd "$dst"; } &&
 { test "$obsolete_mkdir_used$chowncmd$chgrpcmd" = false ||
 test -z "$chmodcmd" || $doit $chmodcmd $mode "$dst"; } || exit 1
 else

 # Make a couple of temp file names in the proper directory.
 dsttmp=$dstdir/_inst.$$_
 rmtmp=$dstdir/_rm.$$_

 # Trap to clean up those temp files at exit.
 trap 'ret=$?; rm -f "$dsttmp" "$rmtmp" && exit $ret' 0

 # Copy the file name to the temp name.
 (umask $cp_umask && $doit_exec $cpprog "$src" "$dsttmp") &&

 # and set any options; do chmod last to preserve setuid bits.
 #
 # If any of these fail, we abort the whole thing. If we want to
 # ignore errors from any of these, just make sure not to ignore
 # errors from the above "$doit $cpprog $src $dsttmp" command.
 #
 { test -z "$chowncmd" || $doit $chowncmd "$dsttmp"; } &&
 { test -z "$chgrpcmd" || $doit $chgrpcmd "$dsttmp"; } &&
 { test -z "$stripcmd" || $doit $stripcmd "$dsttmp"; } &&
 { test -z "$chmodcmd" || $doit $chmodcmd $mode "$dsttmp"; } &&

 # If -C, don't bother to copy if it wouldn't change the file.
 if $copy_on_change &&
 old=`LC_ALL=C ls -dlL "$dst"	2>/dev/null` &&
 new=`LC_ALL=C ls -dlL "$dsttmp"	2>/dev/null` &&

 eval "$initialize_posix_glob" &&
 $posix_glob set -f &&
 set X $old && old=:$2:$4:$5:$6 &&
 set X $new && new=:$2:$4:$5:$6 &&
 $posix_glob set +f &&

 test "$old" = "$new" &&
 $cmpprog "$dst" "$dsttmp" >/dev/null 2>&1
 then
 rm -f "$dsttmp"
 else
 # Rename the file to the real destination.
 $doit $mvcmd -f "$dsttmp" "$dst" 2>/dev/null ||

 # The rename failed, perhaps because mv can't rename something else
 # to itself, or perhaps because mv is so ancient that it does not
 # support -f.
 {
	# Now remove or move aside any old file at destination location.
	# We try this two ways since rm can't unlink itself on some
	# systems and the destination file might be busy for other
	# reasons. In this case, the final cleanup might fail but the new
	# file should still install successfully.
	{
	 test ! -f "$dst" ||
	 $doit $rmcmd -f "$dst" 2>/dev/null ||
	 { $doit $mvcmd -f "$dst" "$rmtmp" 2>/dev/null &&
	 { $doit $rmcmd -f "$rmtmp" 2>/dev/null; :; }
	 } ||
	 { echo "$0: cannot unlink or rename $dst" >&2
	 (exit 1); exit 1
	 }
	} &&

	# Now rename the file to the real destination.
	$doit $mvcmd "$dsttmp" "$dst"
 }
 fi || exit 1

 trap '' 0
 fi
done

Local variables:
eval: (add-hook 'write-file-hooks 'time-stamp)
time-stamp-start: "scriptversion="
time-stamp-format: "%:y-%02m-%02d.%02H"
time-stamp-time-zone: "UTC"
time-stamp-end: "; # UTC"
End:

qpdf-7.1.0/mkinstalldirs

#! /bin/sh
mkinstalldirs --- make directory hierarchy

scriptversion=2009-04-28.21; # UTC

Original author: Noah Friedman <friedman@prep.ai.mit.edu>
Created: 1993-05-16
Public domain.
#
This file is maintained in Automake, please report
bugs to <bug-automake@gnu.org> or send patches to
<automake-patches@gnu.org>.

nl='
'
IFS=" ""	$nl"
errstatus=0
dirmode=

usage="\
Usage: mkinstalldirs [-h] [--help] [--version] [-m MODE] DIR ...

Create each directory DIR (with mode MODE, if specified), including all
leading file name components.

Report bugs to <bug-automake@gnu.org>."

process command line arguments
while test $# -gt 0 ; do
 case $1 in
 -h | --help | --h*) # -h for help
 echo "$usage"
 exit $?
 ;;
 -m) # -m PERM arg
 shift
 test $# -eq 0 && { echo "$usage" 1>&2; exit 1; }
 dirmode=$1
 shift
 ;;
 --version)
 echo "$0 $scriptversion"
 exit $?
 ;;
 --) # stop option processing
 shift
 break
 ;;
 -*) # unknown option
 echo "$usage" 1>&2
 exit 1
 ;;
 *) # first non-opt arg
 break
 ;;
 esac
done

for file
do
 if test -d "$file"; then
 shift
 else
 break
 fi
done

case $# in
 0) exit 0 ;;
esac

Solaris 8's mkdir -p isn't thread-safe. If you mkdir -p a/b and
mkdir -p a/c at the same time, both will detect that a is missing,
one will create a, then the other will try to create a and die with
a "File exists" error. This is a problem when calling mkinstalldirs
from a parallel make. We use --version in the probe to restrict
ourselves to GNU mkdir, which is thread-safe.
case $dirmode in
 '')
 if mkdir -p --version . >/dev/null 2>&1 && test ! -d ./--version; then
 echo "mkdir -p -- $*"
 exec mkdir -p -- "$@"
 else
 # On NextStep and OpenStep, the `mkdir' command does not
 # recognize any option. It will interpret all options as
 # directories to create, and then abort because `.' already
 # exists.
 test -d ./-p && rmdir ./-p
 test -d ./--version && rmdir ./--version
 fi
 ;;
 *)
 if mkdir -m "$dirmode" -p --version . >/dev/null 2>&1 &&
 test ! -d ./--version; then
 echo "mkdir -m $dirmode -p -- $*"
 exec mkdir -m "$dirmode" -p -- "$@"
 else
 # Clean up after NextStep and OpenStep mkdir.
 for d in ./-m ./-p ./--version "./$dirmode";
 do
 test -d $d && rmdir $d
 done
 fi
 ;;
esac

for file
do
 case $file in
 /*) pathcomp=/ ;;
 *) pathcomp= ;;
 esac
 oIFS=$IFS
 IFS=/
 set fnord $file
 shift
 IFS=$oIFS

 for d
 do
 test "x$d" = x && continue

 pathcomp=$pathcomp$d
 case $pathcomp in
 -*) pathcomp=./$pathcomp ;;
 esac

 if test ! -d "$pathcomp"; then
 echo "mkdir $pathcomp"

 mkdir "$pathcomp" || lasterr=$?

 if test ! -d "$pathcomp"; then
	errstatus=$lasterr
 else
	if test ! -z "$dirmode"; then
	 echo "chmod $dirmode $pathcomp"
	 lasterr=
	 chmod "$dirmode" "$pathcomp" || lasterr=$?

	 if test ! -z "$lasterr"; then
	 errstatus=$lasterr
	 fi
	fi
 fi
 fi

 pathcomp=$pathcomp/
 done
done

exit $errstatus

Local Variables:
mode: shell-script
sh-indentation: 2
eval: (add-hook 'write-file-hooks 'time-stamp)
time-stamp-start: "scriptversion="
time-stamp-format: "%:y-%02m-%02d.%02H"
time-stamp-time-zone: "UTC"
time-stamp-end: "; # UTC"
End:

qpdf-7.1.0/config-msvc

#!/bin/sh
set -e
set -x
if echo $PATH | grep -q /mingw64; then
 wordsize=64
else
 wordsize=32
fi
CC=cl CXX="cl -TP -GR" ./configure --disable-test-compare-images --enable-external-libs --enable-werror --with-windows-wordsize=$wordsize --with-buildrules=msvc ${1+"$@"}

qpdf-7.1.0/ispell-words

aa
aaa
ab
abacc
abc
ABCD
abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnom
abcde
abcdefABCDEF
abcdefghbcdefghicdefghijdefghijkefghijklfghijklmg
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi
ABI
abÏ
abs
abuild
ac
accessor
aclocal
AcroForm
acroread
activatePipelineStack
ActiveState
acyclic
adbe
addPage
addPageAt
addPageContents
addToTable
adjustAESStreamLength
admon
Adobeâ
ae
aeadb
AEP
aes
AESv
aesv
afa
ageneration
AHx
AIX
alloc
allocator
allowAccessibility
allowEOF
allowExtractAll
allowModifyAll
allowModifyAnnotation
allowModifyAssembly
allowModifyForm
allowModifyOther
allowPoundAnywhereInName
allowPrintHighRes
allowPrintLowRes
antivirus
aobjid
apexcovantage
API
APIs
appendable
appendItem
appendString
arandom
arg
argc
args
argv
arko
arko's
Arora
ArtBox
ascii
asciiHex
ASCIIHexDecode
ASCIIHexDecoder
assertArray
assertBool
assertDictionary
assertIndirect
assertInitialized
assertInlineImage
assertInteger
assertName
assertNull
assertNumber
assertOperator
assertPageObject
assertReal
assertReserved
assertScalar
assertStream
assertString
assertType
assignCompressedObjectNumbers
atof
atoi
AuthEvent
autobuilder
autoconf
autofiles
autogen
autoheader
autolabel
automake
autotools
ba
backref
backreference
backrefs
badBits
badLength
BADMAGIC
BADOPTION
baeca
BaseFont
basename
BaseVersion
bb
bc
beb
Berkenbilt
betweenTokens
bf
binmode
BitsPerComponent
bitstream
BitStream
BitWriter
BleedBox
BogusRandomDataProvider
boldseq
bookinfo
bool
BORLANDC
bp
bpp
bpr
brdp
bs
BT
buf
BufferInputSource
buflen
bufp
bufpl
bufsize
BUGREPORT
buildrules
bw
bytesNeeded
ca
calc
calculateHOutline
calculateHPageOffset
calculateHSharedObject
calculateLinearizationData
calculateXrefStreamPadding
callback
callbacks
callHello
CAPTURECOUNT
cb
cbc
cc
ccase
ccc
CCF
CCITTFaxDecode
cd
cdc
cdict
ce
cec
ced
cerr
cf
cfea
CFLAGS
CFM
ch
ChangeLog
Checkboxes
checkDataChecksum
checkError
checkFileChecksum
checkHOutlines
checkHPageOffset
checkHSharedObject
checkLinearization
checkLinearizationInternal
checkPageContents
checkUnread
CHGeneric
cho
CHPageOffset
CHPageOffsetEntry
CHSharedObject
CHSharedObjectEntry
CHSomething
cin
cinfo
ciphertext
cl
classname
clearPipelineStack
cleartext
CloseHandle
closeObject
cmath
cmd
cmyk
codepage
codepoint
col
Coldwind
ColorSpace
colorspace
com
compareVersions
compatbility
CompressConfig
computeDeterministicIDData
concat
Cond
config
conftest
const
contrib
CopiedStreamDataProvider
copyEncryptionParameters
copyForeign
copyForeignObject
cout
CoVantage
cp
cph
cphe
cplusplus
CPPFLAGS
cr
CreateFile
createPageContents
createWhat
CreationDate
CRNL
CropBox
CryptAcquireContext
CryptFilterDecodeParms
CryptGenRandom
crypto
cryptolog
CryptReleaseContext
cso
csoe
css
cstdio
cstdlib
cstr
cstring
ctest
ctx
ctype
cxx
CXXFLAGS
cygwin
da
daae
dae
db
dc
dct
DCTDecode
dd
ddaf
ddd
de
debian
dec
declspec
decodeAverage
decodePaeth
DecodeParms
decodeRow
decodeStreams
decodeSub
decodeUp
decrypt
decrypted
decrypter
decrypting
decryptStream
decryptString
def
deflateEnd
deflateInit
defq
delphi
dereference
dereferenced
dest
DESTDIR
detecet
dev
devel
DeviceCMYK
DeviceGray
DeviceRGB
dict
diff
diffs
diffutils
DIR
dirname
disableCBC
disableIncompatibleEncryption
disablePadding
DiscardContents
discardGeneration
dist
distclean
dl
dlfcn
DLL
DLL's
dllexport
dlls
DLLs
docbook
DOCBOOKX
docdir
DocOpen
DOCTYPE
doubleBoxSize
Doxygen
driverless
DTD
dtdvalid
dumpHGeneric
dumpHPageOffset
dumpHSharedObject
dumpInfoDict
dumpLinearizationDataInternal
dup
dwHighDateTime
dwLowDateTime
DWORD
dwVolumeSerialNumber
ea
eadb
earlychange
EarlyChange
eb
EBADF
ebae
ecc
ecedd
eded
eeb
eeee
ef
EFF
efgh
EI
elif
elt
EmbeddedFiles
embeddedFiles
emptyPDF
en
encodeDataIncrementally
encodeFile
encodeRow
encodeString
EncryptionData
EncryptionParameters
EncryptMetadata
endian
endif
endl
endobj
endpos
endstream
enqueue
enqueueing
enqueueObject
enqueueObjectsPCLm
enqueueObjectsStandard
enqueuePart
enqueues
enqueuing
enum
env
envar
eod
eof
eol
epub
eq
ERANGE
eraseItem
Erdelsky's
errno
erroffset
errptr
esize
exc
exe
exp
ExtensionLevel
extern
fb
fBqpdf
fc
fcc
fclose
fcntl
fd
feebbd
ferror
ff
ffff
fflush
fghij
fh
fi
fI
fIinfilename
fileinfo
FileInputSource
fileno
filenow
filep
Filespec
FILETIME
filetrailer
filterCompressedObjects
findAndSkipNextEOL
findAttachmentStreams
findEndstream
findFirst
findHeader
findLast
findPage
findSource
findStartxref
fIoptions
fIoutfilename
firstname
firstterm
fl
flate
FlateDecode
flattenPagesTree
flattenScalarReferences
Florian
FMT
fn
fname
fo
fopen
forcePDFVersion
foreach
fprintf
fR
fr
fread
fsanitize
fseek
fseeki
fseeko
fstream
ftell
ftelli
ftello
fullinfo
fullpad
func
fweimer
fwrite
Gagic
GajiÄ
Gajic
gcc
gen
generateHintStream
generateID
generateObjectStreams
genok
getAllObjects
getAllPages
getAllPagesInternal
getArrayAsVector
getArrayItem
getArrayNItems
getAsArray
getAsMap
getAsVector
getBits
getBitsSigned
getBoolValue
getBuffer
getCompressibleObjects
getCompressibleObjGens
getCount
getDataChecksum
getDict
getDictAsMap
getEncryptionKey
getEncryptMetadata
getenv
GetEnvironmentVariable
getErrorCode
getErrorMessage
getExtensionLevel
getFileChecksum
GetFileInformationByHandle
getFilename
getFilePosition
getFirstChar
getGen
getGeneration
getHeight
getHexDigest
getId
getInlineImageValue
getInstance
getIntValue
getItem
getKey
getKeyForObject
getKeys
getLastChar
GetLastError
getLastOffset
getLength
getLengthBytes
getLinearizationOffset
getLinearizedParts
getMatch
getMessageDetail
getName
getNext
getNItems
getNumericValue
getO
getObj
getObject
getObjectByID
getObjectByObjGen
getObjectID
getObjectStreamData
getObjGen
getObjStreamIndex
getObjStreamNumber
getOE
getOffset
getOffsetLength
getOperatorValue
getOwningQPDF
getP
getPaddedUserPassword
getPageContents
getPageImages
getPDFVersion
getPerms
getPointer
getR
getRandomDataProvider
getRawDigest
getRawStreamData
getRawValue
getRealValue
getRefcount
getRoot
getSize
getStreamData
getStringValue
GetSystemTime
getToken
getTrailer
getTrimmedTrailer
getTrimmedUserPassword
getTrimmedUserPassword's
getType
getTypeCode
getTypeName
getU
getUE
getUncompressedObject
getUserPassword
getUTF
getV
getVal
getValue
getWarnings
getWhoami
getWidth
GG
ghostscript
GhostScript
github
glerbl
glibc
gm
gmail
GNUC
gnuwin
grayscale
grep
gsdnld
gswin
gt
GUIs
Gynvael
gz
gzip
HAGOOGAMAGOOGLE
handleCode
handleData
handleEOF
handleObject
hasKey
hb
hbp
HCRYPTPROV
Hdict
Helvetica
hexkey
hexkeylen
hexstring
hexstrings
hf
HGeneric
hh
HighPart
hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstn
hlen
Hoffmann
HOi
HPageOffset
HPageOffsetEntry
href
HS
HSharedObject
HSharedObjectEntry
HSi
HSomething
HSomethingEntry
htcondor
htm
html
http
https
ic
icc
iconv
IDs
idx
ifdef
ifeq
iff
ifndef
ifstream
ijg
Im
ImageC
ImageChecker
ImageInverter
ImageMask
ImageProvider
inbuf
INDOC
indx
inf
infile
infilename
inflateEnd
inflateInit
inflateReset
init
initializeEncryption
initializePipelineStack
initializeSpecialStreams
initializeVector
initializeWithRandomBytes
inline
InlineImage
inlineimage
ino
inode
inpdf
inputLen
InputSource
InsecureRandomDataProvider
insertItem
insertPage
insertPageobjToPage
insertXrefEntry
inst
int
interoperate
interpretCF
interpretR
ints
inttypes
inv
inverter
io
IOLBF
iomanip
ios
iostream
irdp
isArray
isBool
isDictionary
isdigit
isEncrypted
isIndirect
isInitialized
isInlineImage
isInteger
isLinearized
isName
isNull
isNumber
iso
isOperator
isOrHasName
isPageObject
isPagesObject
ispell
isReal
isReserved
isScalar
isspace
isStream
isString
istream
istype
italicseq
itemizedlist
iter
ith
JCS
JDIMENSION
jerr
Jian
jklmnopqrstuvwxyz
jmp
jmpbuf
JMSG
jpeg
jpeglib
JPOOL
JSAMPARRAY
JSAMPLE
JSAMPROW
Jurczyk
keybits
keylen
KEYLENGTH
keyset
LARGEFILE
lastnum
lastreleased
latin
lbuf
lc
ld
LDFLAGS
ldquo
len
lengthNextN
Lexer
lhs
libclang
libgcc
libjpeg
LibJpeg
libqpdf
libs
libtests
libtiff
LibTiff
libtool
libtool's
libtoolize
libtools
libz
lin
lindict
linearization
linearize
linearized
linearizing
linebuf
linefeeds
linkend
linkey
linp
LinParameters
linux
listitem
ljpeg
ll
lld
llvm
longjmp
lookup
lossy
LowPart
lqpdf
lsb
lt
ltmain
lu
lval
lx
lz
lzw
LZWDecode
LZWDecoder
m'qpdf
MacOS
makeDirect
makeDirectInternal
Makefile
makeIndirectObject
malloc
manualFinish
Mateusz
maxEnd
maxval
md
mdash
MDd
mediabox
MediaBox
mem
Memcheck
memchr
memcmp
memcpy
memmove
memset
merchantability
metadata
mgr
min
mingw
MinGW
MINGW's
mins
misc
MixColumn
mk
mkinstalldirs
mklink
monoseq
MSC
msg
msvc
MSVC's
msys
multibyte
multiline
multipage
multithreaded
Mutator
mutators
mv
nbackrefs
nbits
nbsp
nbytes
nch
ndash
nendobj
nendstream
ness
newArray
newBool
NewDict
newDictionary
newIndirect
newInlineImage
newInteger
NEWKEYSET
newName
newNull
newOperator
newpage
newpdf
newReal
newReserved
newStream
newString
nFileIndexHigh
nFileIndexLow
nfirst
nitems
nl
nmatches
nMatches
NoBackref
nobjects
NOMATCH
NOMEMORY
NONINFRINGEMENT
nonprintable
noout
normalizeName
normalizer
nouppercase
npages
npos
nrounds
nshared
nspaces
nstream
nstripes
NTE
ntotal
NUL
num
numrange
nval
nwalsh
obj
ObjAccessor
ObjCache
ObjCopier
OBJDIR
objdump
ObjectHolder
ObjGen
ObjGens
objGenToIndirect
objid
objidok
objok
ObjStm
objstm
ObjUser
objusers
oc
OE
OffsetInputSource
og
ogs
oiter
okey
ol
olist
omap
op
OpenAction
openObject
opensource
ord
org
orig
orred
os
ostream
ostringstream
ot
OtherPage
ou
OUE
ous
outbuf
outbuffer
OUTDOC
outfile
outfilename
outlength
outpdf
outpdfw
outprefix
outputLengthNextN
ovecsize
ovector
pacman
padLen
Paeth
PaethPredictor
pagemode
PageMode
pageno
pageobj
PageSpec
para
param
params
parms
parsecontent
parseContentStream
parseInternal
ParserCallbacks
parseVersion
partLen
pathsep
patmv
PatternFinder
Pavlyuk
pb
pbytes
pc
PCLm
pclm
pcre
pdf
PDFâ
PDFContext
PDFDocEncoding
pdfDumpInfoDict
PDFs
pdlin
pe
perl
persistAcrossFinish
ph
phe
php
pipeStreamData
pipeStringAndFinish
Pkey
pkg
PKI
pl
plaintext
png
PNGFilter
pngify
PointerHolder
popPipelineStack
poppler
pornin
pos
POSIX
PP
pragma
pre
precompiled
prefilering
prefiltering
prepareFileForWrite
presentCharacter
presentEOF
preserveObjectStreams
prev
printability
printf
processChar
processFile
processInputSource
processMemoryFile
processRow
processXRefStream
procset
ProcSet
procsets
programlisting
Projet
prov
provideRandomData
provideStreamData
proxied
PSâ
pseudorandom
pt
pthread
ptr
pushDiscardFilter
pushEncryptionFilter
pushInheritedAttributesToPage
pushInheritedAttributesToPageInternal
pushMD
pushOutlinesToPart
pushPipeline
PUTU
qarray
QArray
qdf
QDFObject
QDFWriter
qdict
QDict
QEXC
qnumbers
QNumbers
qpdf
qpdf's
QPDF's
QPDFCONSTANTS
QPDFExc
QPDFFake
QPDFObject
QPDFObjectHandle
QPDFObjectHandle's
QPDFObjectHandles
QPDFObjectTypeAccessor
QPDFObjGen
QPDFObjGens
QPDFPageData
qpdfs
QPDFStream
QPDFTokenizer
QPDFTYPES
QPDFVersion
QPDFWriter
QPDFXRefEntry
qqqcqqq
qstream
QStream
QStreams
qstrings
QStrings
QTC
qtest
QTest
QuadPart
QUtil
qutil
qwert
rand
RandomDataProvider
randoms
rb
rbegin
rc
rcon
RDONLY
rdp
rdquo
readHGeneric
readHintStream
readHPageOffset
readHSharedObject
readLine
readLinearizationData
README
readObject
readObjectAtOffset
readToken
reattached
recompress
recompressed
recompressing
recomputation
recoverStreamLength
refcount
refpage
refpos
regexp
registerForeignStream
releaseResolved
ReleaseResolver
remotesensing
removeKey
removePage
repl
replaceDict
replaceFilterData
replaceForeignIndirectObjects
replaceKey
replaceObject
replaceOrRemoveKey
replaceReserved
replaceStreamData
reserveObjects
resetBits
resolveLiteral
resolveObjectsInStream
ResolveRecorder
resync
retargeted
retested
reverseResolved
rf
rfont
rgb
rhs
rijndael
rijndaelDecrypt
rijndaelEncrypt
rijndaelSetupDecrypt
rijndaelSetupEncrypt
rk
Rkey
RKLENGTH
rl
rm
RNRT
rotatePage
RotationSpec
roundoff
rr
RSA
rspec
rstream
RStream
RunLength
runlength
RunLengthDecode
runtest
Sahil
sahilarora
sAlT
saphir
sarray
SASLprep
scanline
scanlines
se
SecureRandomDataProvider
sed
seekable
sendNextCode
sep
seq
serif
setArrayFromVector
setArrayItem
setAttemptRecovery
setbase
setCompressStreams
setContentNormalization
setDataKey
setDecodeLevel
setDeterministicID
setEncryptionParameters
setEncryptionParametersInternal
setExtraHeaderText
setFile
setFilename
setFromVector
setIgnoreXRefStreams
setItem
setIV
setjmp
setLastObjectDescription
setLastOffset
setLinearization
setLineBuf
setMinimumPDFVersion
setmode
setNewlineBeforeEndstream
setO
setObjectStreamMode
setObjGen
setOutputFile
setOutputFilename
setOutputMemory
setOutputPipeline
setOutputStreams
setPasswordIsHexKey
setPCLm
setprecision
setPreserveEncryption
setPreserveUnreferencedObjects
setQDFMode
setR
setRandomDataProvider
setStaticAesIV
setStaticID
setStreamDataMode
setSuppressOriginalObjectIDs
setSuppressWarnings
setTrailer
setU
setV
setvbuf
sf
sha
shallowCopy
showLinearizationData
showXRefTable
sizeof
skipToNextByte
soe
softlink
sourceforge
SourceForge
sph
sphlib
sprintf
sqlite
srand
srandom
src
srdp
sstream
startoffset
startxref
stat
std
STDC
StdCF
stddef
stderr
stdexcept
stdin
stdint
StdioFile
stdlib
stdlib's
stdout
STL
StmF
str
strcasecmp
strchr
strcmp
strcpy
StreamDataProvider
strerror
StrF
stricmp
StringDecrypter
stringprep
stripesize
strlen
strncmp
stronghorse
strrchr
strstr
strtoi
strtol
strtoll
struct
stylesheet
stylesheets
subclasses
SubFilter
SubFilters
sublicense
Subramanyam
substr
substring
Subtype
sudo
supp
suppressions
swapObjects
swversion
Symlink
sys
sysnow
SYSTEMTIME
SystemTimeToFileTime
Syuu
TARNAME
tbuf
tc
Td
Te
TerminateParsing
terminateParsing
TESTSUITE
Tf
tgen
th
thomas
tiffcmp
TIFFPredictor
Tj
tmp
tnum
Tobias
tobj
tobjid
TODO
toffset
tokenize
tokenized
tokenizer
tokenizing
toolchain
Toolchains
toupper
toUTF
tp
TrimBox
trimTrailerForWrite
tt
turbo
txt
uc
udata
UE
uinow
uint
uiter
UL
ULARGE
ulink
uLong
ULONGLONG
uncompresesd
uncompress
uncompressing
undef
understandDecodeParams
unencrypted
unfilterable
ungetc
unicode
uninstalled
unistd
unlink
unlinked
unparse
unparseChild
unparseObject
unparseResolved
unreadCh
unreferenced
unresolvable
unretrieved
upass
updateAllPagesCache
updateObjectMaps
updateObjectMapsInternal
updatePagesCache
urandom
url
UseOutlines
useStaticIV
useZeroIV
USLetter
usr
utf
Util
utils
uval
val
valgrind
valstr
var
variablelist
varlistentry
varname
vc
vec
vecs
VER
viewable
ViewerPreferences
Vitaliy
Vkey
vlen
voidpf
vp
vvv
wb
Wconversion
Weimer
werror
whoami
WinAnsiEncoding
wincrypt
WindowsCryptProvider
Wold
writeBinary
writeBits
writeBitsSigned
writeBuffer
writeEncryptionDictionary
writeHeader
writeHGeneric
writeHintStream
writeHPageOffset
writeHSharedObject
writeLinearized
writeNext
writeObject
writeObjectStream
writeObjectStreamOffsets
writePad
writeStandard
writeString
writeStringNoQDF
writeStringQDF
writeToken
writeTrailer
writeXRefStream
writeXRefTable
Wsign
www
wxWindows
xA
xa
xABUL
xbebfbc
xbf
xc
xcc
xD
xDC
xeaa
xee
xefcdab
xF
xf
xFC
xfcefa
xfde
xfe
xff
xffeff
xfffa
xfffe
xgen
xhtml
xml
XMLLINT
xmlns
xobj
xobject
XObject
xor
XP
xpacket
xpdf
XRef
xref
xrefEntry
xrefFirst
XRefStm
xrefStream
xrefTable
xsl
XSLTPROC
XXX
xy
yn
yuiop
yyyymmdd
z's
zalloc
Zarko
Zarko's
zdata
Zeroize
zeroizing
zfree
zlib
zstream
zzzzz
zzzzzz

qpdf-7.1.0/README.md

This is the QPDF package. Information about it can be found at https://qpdf.sourceforge.net. The source code repository is hosted at github: https://github.com/qpdf/qpdf.

QPDF is copyright (c) 2005-2018 Jay Berkenbilt

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

You may also see the license in the file LICENSE.txt in the source distribution.

Versions of qpdf prior to version 7 were released under the terms of version 2.0 of the Artistic License. At your option, you may continue to consider qpdf to be licensed under those terms. Please see the manual for additional information. The Artistic License appears in the file Artistic-2.0 in the source distribution.

Prerequisites

QPDF depends on the external libraries [zlib](http://www.zlib.net/) and [jpeg](http://www.ijg.org/files/). The [libjpeg-turbo](https://libjpeg-turbo.org/) library is also known to work since it is compatible with the regular jpeg library, and QPDF doesn't use any interfaces that aren't present in the straight jpeg8 API. These are part of every Linux distribution and are readily available. Download information appears in the documentation. For Windows, you can download pre-built binary versions of these libraries for some compilers; see README-windows.md for additional details.

QPDF requires a C++ compiler that works with STL. Your compiler must also support `long long`. Almost all modern compilers do. If you are trying to port qpdf to a compiler that doesn't support `long long`, you could change all occurrences of `long long` to `long` in the source code, noting that this would break binary compatibility with other builds of qpdf. Doing so would certainly prevent qpdf from working with files larger than 2 GB, but remaining functionality would most likely work fine. If you built qpdf this way and it passed its test suite with large file support disabled, you could be confident that you had an otherwise working qpdf.

Licensing terms of embedded software

QPDF makes use of zlib and jpeg libraries for its functionality. These packages can be downloaded separately from their own download locations, or they can be downloaded in the external-libs area of the qpdf download site.

Please see the [NOTICE](NOTICE.md) file for information on licenses of embedded software.

Building from a pristine checkout

When building qpdf from a pristine checkout from version control, documentation and automatically generated files are not present. You may either generate them or obtain them from a released source package, which includes them automatically generated files. If you want to grab just the automatic files, extract a source distribution in a temporary directory, and run `make CLEAN=1 autofiles.zip`. This will create a file called `autofiles.zip`, which can you can extract in a checkout of the source repository. This will enable you to run `./configure` and build normally. This approach is almost certainly required on Windows because of issues running autoconf. This workaround is also described in README-windows.md.

For UNIX and UNIX-like systems, you can build the automatically generated files yourself, but you must have some additional tools installed to build from the source repository. To do this, you should have `autoconf` installed (`automake` is not required). Then run

```
./autogen.sh
./configure --enable-doc-maintenance
make
make install
```

If you don't have Apache fop and the docbook stylesheets installed, you won't be able to build documentation. You can omit `--enable-doc-maintenance` and produce working qpdf software that passes its test suite, but `make install` will not install documentation files. Depending on your purposes, this may be fine, or you can grab the docs from a source distribution.

Building from source distribution on UNIX/Linux

For UNIX and UNIX-like systems, you can usually get by with just

```
./configure
make
make install
```

Packagers may set DESTDIR, in which case make install will install inside of DESTDIR, as is customary with many packages. For more detailed general information, see the "INSTALL" file in this directory. If you are already accustomed to building and installing software that uses autoconf, there's nothing new for you in the INSTALL file. Note that qpdf uses `autoconf` but not `automake`. We have our own system of Makefiles that allows cross-directory dependencies, doesn't use recursive make, and works better on non-UNIX platforms.

Building on Windows

QPDF is known to build and pass its test suite with mingw (latest version tested: gcc 7.2.0), mingw64 (latest version tested: 7.2.0) and Microsoft Visual C++ 2015, both 32-bit and 64-bit versions. MSYS2 is required to build as well in order to get make and other related tools. See README-windows.md for details on how to build under Windows.

Additional Notes on Build

QPDF's build system, inspired by [abuild](http://www.abuild.org), can optionally use its own built-in rules rather than using libtool and obeying the compiler specified with configure. This can be enabled by passing `--with-buildrules=buildrules` where buildrules corresponds to one of the `.mk` files (other than `rules.mk`) in the make directory. This should never be necessary on a UNIX system, but may be necessary on a Windows system. See README-windows.md for details. There is a `gcc-linux.mk` file enable `gcc-linux` build rules, but it is intended to help test the build system; Linux users should build with the `libtools` rules, which are enabled by default.

The QPDF package provides some executables and a software library. A user manual can be found in the "doc" directory. The docbook sources to the user manual can be found in the `manual` directory.

The software library is just `libqpdf`, and all the header files are in the `qpdf` subdirectories of `include` and `libqpdf`. If you link statically with `-lqpdf`, then you will also need to link with `-lz` and `-ljpeg`. The shared qpdf library is linked with `-lz` and `-ljpeg`, none of qpdf's public header files directly include files from `libz`, and only `Pl_DCT.hh` includes files from `libjpeg`, so for most cases, qpdf's development files are self contained. If you need to use `Pl_DCT` in your application code, you will need to have the header files for some libjpeg distribution in your include path.

To learn about using the library, please read comments in the header files in `include/qpdf`, especially `QPDF.hh`, `QPDFObjectHandle.hh`, and
`QPDFWriter.hh`. These are the best sources of documentation on the API. You can also study the code of `qpdf/qpdf.cc`, which exercises most of the public interface. There are additional example programs in the examples directory. Reading all the source files in the `qpdf` directory (including the qpdf command-line tool and some test drivers) along with the code in the examples directory will give you a complete picture of every aspect of the public interface.

Additional Notes on Test Suite

By default, slow tests and tests that require dependencies beyond those needed to build qpdf are disabled. Slow tests include image comparison tests and large file tests. Image comparison tests can be enabled by passing `--enable-test-compare-images` to ./configure. This was on by default in qpdf versions prior to 3.0, but is now off by default. Large file tests can be enabled by passing `--with-large-file-test-path=path` to `./configure` or by setting the `QPDF_LARGE_FILE_TEST_PATH` environment variable. On Windows, this should be a Windows path. Run `./configure --help` for additional options. The test suite provides nearly full coverage even without these tests. Unless you are making deep changes to the library that would impact the contents of the generated PDF files or testing this on a new platform for the first time, there is no real reason to run these tests. If you're just running the test suite to make sure that qpdf works for your build, the default tests are adequate. The configure rules for these tests do nothing other than setting variables in `autoconf.mk`, so you can feel free to turn these on and off directly in `autoconf.mk` rather than rerunning configure.

If you are packaging qpdf for a distribution and preparing a build that is run by an autobuilder, you may want to add the `--enable-show-failed-test-output` to configure options. This way, if the test suite fails, test failure detail will be included in the build output. Otherwise, you will have to have access to the `qtest.log` file from the build to view test failures. The debian packages for qpdf enable this option.

Random Number Generation

By default, when `qpdf` detects either the Windows cryptography API or the existence of `/dev/urandom`, `/dev/arandom`, or `/dev/random`, it uses them to generate cryptography secure random numbers. If none of these conditions are true, the build will fail with an error. This behavior can be modified in several ways:
* If you configure with `--disable-os-secure-random` or define `SKIP_OS_SECURE_RANDOM`, qpdf will not attempt to use Windows cryptography or the random device. You must either supply your own random data provider or allow use of insecure random numbers.
* If you configure qpdf with the `--enable-insecure-random` option or define `USE_INSECURE_RANDOM`, qpdf will try insecure random numbers if OS-provided secure random numbers are disabled. This is not a fallback. In order for insecure random numbers to be used, you must also disable OS secure random numbers since, otherwise, failure to find OS secure random numbers is a compile error. The insecure random number source is stdlib's `random()` or `rand()` calls. These random numbers are not cryptography secure, but the qpdf library is fully functional using them. Using non-secure random numbers means that it's easier in some cases to guess encryption keys. If you're not generating encrypted files, there's no advantage to using secure random numbers.
* In all cases, you may supply your own random data provider. To do this, derive a class from `qpdf/RandomDataProvider` (since version 5.1.0) and call `QUtil::setRandomDataProvider` before you create any `QPDF` objects. If you supply your own random data provider, it will always be used even if support for one of the other random data providers is compiled in. If you wish to avoid any possibility of your build of qpdf from using anything but a user-supplied random data provider, you can define `SKIP_OS_SECURE_RANDOM` and not `USE_INSECURE_RANDOM`. In this case, qpdf will throw a runtime error if any attempt is made to generate random numbers and no random data provider has been supplied.

If you are building qpdf on a platform that qpdf doesn't know how to generate secure random numbers on, a patch would be welcome.

qpdf-7.1.0/TODO

Soon
====

 * Consider whether there should be a mode in which QPDFObjectHandle
 returns nulls for operations on the wrong type instead of asserting
 the type. The way things are wired up now, this would have to be a
 global flag. Probably it makes sense to make that be the default
 behavior and to add a static method in QPDFObjectHandle and
 command-line flag that enables the stricter behavior globally for
 easier debugging. For cases where we have enough information to do
 so, we could still warn when not in strict mode.

 * Add method to push inheritable resources to a single page by
 walking up and copying without overwrite. Above logic will also be
 sufficient to fix the limitation in
 QPDFObjectHandle::getPageImages(). Maybe add a method to get the
 effective resources for a page without modifying the page and then
 implement both changes in terms of that method.

 * Support user-pluggable stream filters. This would enable external
 code to provide interpretation for filters that are missing from
 qpdf. Make it possible for user-provided filters to override
 built-in filters. Make sure that the pluggable filters can be
 prioritized so that we can poll all registered filters to see
 whether they are capable of filtering a particular stream.

 * If possible, consider adding CCITT3, CCITT4, or any other easy
 filters. For some reference code that we probably can't use but may
 be handy anyway, see
 http://partners.adobe.com/public/developer/ps/sdk/index_archive.html

 * If possible, support the following types of broken files:

 - Files that have no whitespace token after "endobj" such that
 endobj collides with the start of the next object

 - See ../misc/broken-files

Lexical
=======

Consider rewriting the tokenizer. These are rough ideas at this point.
I may or may not do this as described.

 * Use flex. Generate them from ./autogen.sh and include them in the
 source package, but do not commit them.

 * Make it possible to run the lexer (tokenizer) over a while file
 such that the following things would be possible:

 * Rewrite fix-qdf in C++ so that there is no longer a runtime perl
 dependency

 * Create a way to filter content streams that could be used to
 preserve the content stream exactly including spaces but also to
 do things like replace everything between a detected set of
 markers. This is to support form flattening. Ideally, it should
 be possible to use this programmatically on broken files.

 * Make it possible to replace all strings in a file lexically even
 on badly broken files. Ideally this should work files that are
 lacking xref, have broken links, etc., and ideally it should work
 with encrypted files if possible. This should go through the
 streams and strings and replace them with fixed or random
 characters, preferably, but not necessarily, in a manner that
 works with fonts. One possibility would be to detect whether a
 string contains characters with normal encoding, and if so, use
 0x41. If the string uses character maps, use 0x01. The output
 should otherwise be unrelated to the input. This could be built
 after the filtering and tokenizer rewrite and should be done in a
 manner that takes advantage of the other lexical features. This
 sanitizer should also clear metadata and replace images.

General
=======

NOTE: Some items in this list refer to files in my personal home
directory or that are otherwise not publicly accessible. This includes
things sent to me by email that are specifically not public. Even so,
I find it useful to make reference to them in this list

 * Audit every place where qpdf allocates memory to see whether there
 are cases where malicious inputs could cause qpdf to attempt to
 grab very large amounts of memory. Certainly there are cases like
 this, such as if a very highly compressed, very large image stream
 is requested in a buffer. Hopefully normal input to output
 filtering doesn't ever try to do this. QPDFWriter should be checked
 carefully too. See also bugs/private/from-email-663916/

 * Form flattening: ~/tmp/qtmp/form-flattening-email/. Distill this
 into notes along with stuff in qpdf email box.

 * Look at ~/Q/pdf-collection/forms-from-appian/

 * Look at Travis-CI for qpdf. See email from Travis-CI in pending.

 * Consider adding "uninstall" target to makefile. It should only
 uninstall what it installed, which means that you must run
 uninstall from the version you ran install with. It would only be
 supported for the toolchains that support the install target
 (libtool).

 * Figure out how to find Visual Studio in Windows registry and see if
 I can get it to work with make so I can simplify creation of
 Windows releases.

 * Provide support in QPDFWriter for writing incremental updates.
 Provide support in qpdf for preserving incremental updates. The
 goal should be that QDF mode should be fully functional for files
 with incremental updates including fix_qdf.

 Note that there's nothing that says an indirect object in one
 update can't refer to an object that doesn't appear until a later
 update. This means that QPDF has to treat indirect null objects
 differently from how it does now. QPDF drops indirect null objects
 that appear as members of arrays or dictionaries. For arrays, it's
 handled in QPDFWriter where we make indirect nulls direct. This is
 in a single if block, and nothing else in the code cares about it.
 We could just remove that if block and not break anything except a
 few test cases that exercise the current behavior. For
 dictionaries, it's more complicated. In this case,
 QPDF_Dictionary::getKeys() ignores all keys with null values, and
 hasKey() returns false for keys that have null values. We would
 probably want to make QPDF_Dictionary able to handle the special
 case of keys that are indirect nulls and basically never have it
 drop any keys that are indirect objects.

 If we make a change to have qpdf preserve indirect references to
 null objects, we have to note this in ChangeLog and in the release
 notes since this will change output files. We did this before when
 we stopped flattening scalar references, so this is probably not a
 big deal. We also have to make sure that the testing for this
 handles non-trivial cases of the targets of indirect nulls being
 replaced by real objects in an update. I'm not sure how this plays
 with linearization, if at all. For cases where incremental updates
 are not being preserved as incremental updates and where the data
 is being folded in (as is always the case with qpdf now), none of
 this should make any difference in the actual semantics of the
 files.

 * When decrypting files with /R=6, hash_V5 is called more than once
 with the same inputs. Caching the results or refactoring to reduce
 the number of identical calls could improve performance for
 workloads that involve processing large numbers of small files.

 * Consider providing a Windows installer for qpdf using NSIS.

 * Consider adding a method to balance the pages tree. It would call
 pushInheritedAttributesToPage, construct a pages tree from scratch,
 and replace the /Pages key of the root dictionary with the new
 tree.

 * Secure random number generation could be made more efficient by
 using a local static to ensure a single random device or crypt
 provider as long as this can be done in a thread-safe fashion. In
 the initial implementation, this is being skipped to avoid having
 to add any dependencies on threading libraries.

 * Study what's required to support savable forms that can be saved by
 Adobe Reader. Does this require actually signing the document with
 an Adobe private key? Search for "Digital signatures" in the PDF
 spec, and look at ~/Q/pdf-collection/form-with-full-save.pdf, which
 came from Adobe's example site.

 * Consider the possibility of doing something locale-aware to support
 non-ASCII passwords. Update documentation if this is done.
 Consider implementing full Unicode password algorithms from newer
 encryption formats.

 * Consider impact of article threads on page splitting/merging.
 Subramanyam provided a test file; see ../misc/article-threads.pdf.
 Email Q-Count: 431864 from 2009-11-03. Other things to consider:
 outlines, page labels, thumbnails, zones. There are probably
 others.

 * See if we can avoid preserving unreferenced objects in object
 streams even when preserving the object streams.

 * For debugging linearization bugs, consider adding an option to save
 pass 1 of linearization. This code is sufficient. Change the
 interface to allow specification of a pass1 file, which would
 change the behavior as in this patch.

Index: QPDFWriter.cc
===
--- QPDFWriter.cc	(revision 932)
+++ QPDFWriter.cc	(working copy)
@@ -1965,11 +1965,15 @@

 // Write file in two passes. Part numbers refer to PDF spec 1.4.

+ FILE* XXX = 0;
 for (int pass = 1; pass <= 2; ++pass)
 {
 	if (pass == 1)
 	{
-	 pushDiscardFilter();
+//	 pushDiscardFilter();
+	 XXX = QUtil::safe_fopen("/tmp/pass1.pdf", "w");
+	 pushPipeline(new Pl_StdioFile("pass1", XXX));
+	 activatePipelineStack();
 	}

 	// Part 1: header
@@ -2204,6 +2208,8 @@

 	 // Restore hint offset
 	 this->xref[hint_id] = QPDFXRefEntry(1, hint_offset, 0);
+	 fclose(XXX);
+	 XXX = 0;
 	}
 }
 }

 * Provide APIs for embedded files. See *attachments*.pdf in test
 suite. The private method findAttachmentStreams finds at least
 cases for modern versions of Adobe Reader (>= 1.7, maybe earlier).
 PDF Reference 1.7 section 3.10, "File Specifications", discusses
 this.

 A sourceforge user asks if qpdf can handle extracting and embedded
 resources and references these tools, which may be useful as a
 reference.

 http://multivalent.sourceforge.net/Tools/pdf/Extract.html
 http://multivalent.sourceforge.net/Tools/pdf/Embed.html

 * The description of Crypt filters is unclear with respect to how to
 use them to override /StmF for specific streams. I'm not sure
 whether qpdf will do the right thing for any specific individual
 streams that might have crypt filters, but I believe it does based
 on my testing of a limited subset. The specification seems to imply
 that only embedded file streams and metadata streams can have crypt
 filters, and there are already special cases in the code to handle
 those. Most likely, it won't be a problem, but someday someone may
 find a file that qpdf doesn't work on because of crypt filters.
 There is an example in the spec of using a crypt filter on a
 metadata stream.

 For now, we notice /Crypt filters and decode parameters consistent
 with the example in the PDF specification, and the right thing
 happens for metadata filters that happen to be uncompressed or
 otherwise compressed in a way we can filter. This should handle
 all normal cases, but it's more or less just a guess since I don't
 have any test files that actually use stream-specific crypt filters
 in them.

 * The second xref stream for linearized files has to be padded only
 because we need file_size as computed in pass 1 to be accurate. If
 we were not allowing writing to a pipe, we could seek back to the
 beginning and fill in the value of /L in the linearization
 dictionary as an optimization to alleviate the need for this
 padding. Doing so would require us to pad the /L value
 individually and also to save the file descriptor and determine
 whether it's seekable. This is probably not worth bothering with.

 * The whole xref handling code in the QPDF object allows the same
 object with more than one generation to coexist, but a lot of logic
 assumes this isn't the case. Anything that creates mappings only
 with the object number and not the generation is this way,
 including most of the interaction between QPDFWriter and QPDF. If
 we wanted to allow the same object with more than one generation to
 coexist, which I'm not sure is allowed, we could fix this by
 changing xref_table. Alternatively, we could detect and disallow
 that case. In fact, it appears that Adobe reader and other PDF
 viewing software silently ignores objects of this type, so this is
 probably not a big deal.

 * If we ever want to have check mode check the integrity of the free
 list, this can be done by looking at the code from prior to the
 object stream support of 4/5/2008. It's in an if (0) block and
 there's a comment about it. There's also something about it in
 qpdf.test -- search for "free table". On the other hand, the value
 of doing this seems very low since no viewer seems to care, so it's
 probably not worth it.

 * QPDFObjectHandle::getPageImages() doesn't notice images in
 inherited resource dictionaries. See comments in that function.

 * Based on an idea suggested by user "Atom Smasher", consider
 providing some mechanism to recover earlier versions of a file
 embedded prior to appended sections.

 * From a suggestion in bug 3152169, consider having an option to
 re-encode inline images with an ASCII encoding.

 * From github issue 2, provide more in-depth output for examining
 hint stream contents. Consider adding on option to provide a
 human-readable dump of linearization hint tables. This should
 include improving the 'overflow reading bit stream' message as
 reported in issue #2.

qpdf-7.1.0/README-what-to-download.md

To build from source for Linux or other UNIX/UNIX-like systems, it is generally sufficient to download just the source `qpdf-<version>.tar.gz` file.

For Windows, there are several additional files that you might want to download.

* `qpdf-<version>-bin-mingw32.zip`

 If you just want to use the qpdf command line program or use the qpdf DLL's C-language interface, you can download this file. You can also download this version if you are using MINGW's gcc and want to program using the C++ interface.

* `qpdf-<version>-bin-mingw64.zip`

 A 64-bit version built with mingw. Use this for 64-bit Windows systems. The 32-bit version will also work on Windows 64-bit. Both the 32-bit and the 64-bit version support files over 2 GB in size, but you may find it easier to integrate this with your own software if you use the 64-bit version.

* `qpdf-<version>-bin-msvc32.zip`

 If you want to program using qpdf's C++ interface and you are using Microsoft Visual C++ 2015 in 32-bit mode, you can download this file.

* `qpdf-<version>-bin-msvc64.zip`

 If you want to program using qpdf's C++ interface and you are using Microsoft Visual C++ 2015 in 64-bit mode, you can download this file.

* `qpdf-external-libs-bin.zip`

 If you want to build qpdf for Windows yourself with either MINGW or MSVC 2015, you can download this file and extract it inside the qpdf source distribution. Please refer to README-windows.md in the qpdf source distribution for additional details. Note that you need the 2017-08-21 version or later to be able to build qpdf 7.0 or newer. Generally grab the `external-libs` distribution that was the latest version at the time of the release of whichever version of qpdf you are building.

* `qpdf-external-libs-src.zip`

 If you want to build the external libraries on your own (for Windows or anything else), you can download this archive. In addition to including an unmodified distribution `zlib` and the `jpeg` library, it includes a `README` file and some scripts to help you build it for Windows. You will also have to provide those.

If you want to build on Windows, please see also README-windows.md in the qpdf source distribution.

qpdf-7.1.0/autogen.sh

#!/bin/sh
aclocal -I m4
autoheader
autoconf

qpdf-7.1.0/m4/ltversion.m4

# ltversion.m4 -- version numbers			-*- Autoconf -*-
#
Copyright (C) 2004, 2011-2015 Free Software Foundation, Inc.
Written by Scott James Remnant, 2004
#
This file is free software; the Free Software Foundation gives
unlimited permission to copy and/or distribute it, with or without
modifications, as long as this notice is preserved.

@configure_input@

serial 4179 ltversion.m4
This file is part of GNU Libtool

m4_define([LT_PACKAGE_VERSION], [2.4.6])
m4_define([LT_PACKAGE_REVISION], [2.4.6])

AC_DEFUN([LTVERSION_VERSION],
[macro_version='2.4.6'
macro_revision='2.4.6'
_LT_DECL(, macro_version, 0, [Which release of libtool.m4 was used?])
_LT_DECL(, macro_revision, 0)
])

qpdf-7.1.0/m4/ax_random_device.m4

dnl @synopsis AX_RANDOM_DEVICE
dnl
dnl This macro will check for a random device, allowing the user to explicitly
dnl set the path. The user uses '--with-random=FILE' as an argument to
dnl configure.
dnl
dnl If A random device is found then HAVE_RANDOM_DEVICE is set to 1 and
dnl RANDOM_DEVICE contains the path.
dnl
dnl @category Miscellaneous
dnl @author Martin Ebourne
dnl @version 2005/07/01
dnl @license AllPermissive

AC_DEFUN([AX_RANDOM_DEVICE], [
 AC_ARG_WITH([random],
 [AC_HELP_STRING([--with-random=FILE], [Use FILE as random number seed [auto-detected]])],
 [RANDOM_DEVICE="$withval"],
 [AC_CHECK_FILE("/dev/urandom", [RANDOM_DEVICE="/dev/urandom";],
 [AC_CHECK_FILE("/dev/arandom", [RANDOM_DEVICE="/dev/arandom";],
 [AC_CHECK_FILE("/dev/random", [RANDOM_DEVICE="/dev/random";])]
)])
])
 if test "x$RANDOM_DEVICE" != "x" ; then
 AC_DEFINE([HAVE_RANDOM_DEVICE], 1,
 [Define to 1 (and set RANDOM_DEVICE) if a random device is available])
 AC_SUBST([RANDOM_DEVICE])
 AC_DEFINE_UNQUOTED([RANDOM_DEVICE], ["$RANDOM_DEVICE"],
 [Define to the filename of the random device (and set HAVE_RANDOM_DEVICE)])
 fi
])dnl

qpdf-7.1.0/m4/ltsugar.m4

ltsugar.m4 -- libtool m4 base layer. -*-Autoconf-*-
#
Copyright (C) 2004-2005, 2007-2008, 2011-2015 Free Software
Foundation, Inc.
Written by Gary V. Vaughan, 2004
#
This file is free software; the Free Software Foundation gives
unlimited permission to copy and/or distribute it, with or without
modifications, as long as this notice is preserved.

serial 6 ltsugar.m4

This is to help aclocal find these macros, as it can't see m4_define.
AC_DEFUN([LTSUGAR_VERSION], [m4_if([0.1])])

lt_join(SEP, ARG1, [ARG2...])

Produce ARG1SEPARG2...SEPARGn, omitting [] arguments and their
associated separator.
Needed until we can rely on m4_join from Autoconf 2.62, since all earlier
versions in m4sugar had bugs.
m4_define([lt_join],
[m4_if([$#], [1], [],
 [$#], [2], [[$2]],
 [m4_if([$2], [], [], [[$2]_])$0([$1], m4_shift(m4_shift($@)))])])
m4_define([_lt_join],
[m4_if([$#$2], [2], [],
 [m4_if([$2], [], [], [[$1$2]])$0([$1], m4_shift(m4_shift($@)))])])

lt_car(LIST)
lt_cdr(LIST)

Manipulate m4 lists.
These macros are necessary as long as will still need to support
Autoconf-2.59, which quotes differently.
m4_define([lt_car], [[$1]])
m4_define([lt_cdr],
[m4_if([$#], 0, [m4_fatal([$0: cannot be called without arguments])],
 [$#], 1, [],
 [m4_dquote(m4_shift($@))])])
m4_define([lt_unquote], $1)

lt_append(MACRO-NAME, STRING, [SEPARATOR])
--
Redefine MACRO-NAME to hold its former content plus 'SEPARATOR''STRING'.
Note that neither SEPARATOR nor STRING are expanded; they are appended
to MACRO-NAME as is (leaving the expansion for when MACRO-NAME is invoked).
No SEPARATOR is output if MACRO-NAME was previously undefined (different
than defined and empty).
#
This macro is needed until we can rely on Autoconf 2.62, since earlier
versions of m4sugar mistakenly expanded SEPARATOR but not STRING.
m4_define([lt_append],
[m4_define([$1],
	 m4_ifdef([$1], [m4_defn([$1])[$3]])[$2])])

lt_combine(SEP, PREFIX-LIST, INFIX, SUFFIX1, [SUFFIX2...])
--
Produce a SEP delimited list of all paired combinations of elements of
PREFIX-LIST with SUFFIX1 through SUFFIXn. Each element of the list
has the form PREFIXmINFIXSUFFIXn.
Needed until we can rely on m4_combine added in Autoconf 2.62.
m4_define([lt_combine],
[m4_if(m4_eval([$# > 3]), [1],
 [m4_pushdef([_Lt_sep], [m4_define([_Lt_sep], m4_defn([lt_car]))])]]dnl
[[m4_foreach([_Lt_prefix], [$2],
	 [m4_foreach([_Lt_suffix],
]m4_dquote(m4_dquote(m4_shift(m4_shift(m4_shift($@)))))[,
	[_Lt_sep([$1])[]m4_defn([_Lt_prefix])[$3]m4_defn([_Lt_suffix])])])])])

lt_if_append_uniq(MACRO-NAME, VARNAME, [SEPARATOR], [UNIQ], [NOT-UNIQ])

Iff MACRO-NAME does not yet contain VARNAME, then append it (delimited
by SEPARATOR if supplied) and expand UNIQ, else NOT-UNIQ.
m4_define([lt_if_append_uniq],
[m4_ifdef([$1],
	 [m4_if(m4_index([$3]m4_defn([$1])[$3], [$3$2$3]), [-1],
		 [lt_append([$1], [$2], [$3])$4],
		 [$5])],
	 [lt_append([$1], [$2], [$3])$4])])

lt_dict_add(DICT, KEY, VALUE)

m4_define([lt_dict_add],
[m4_define([$1($2)], [$3])])

lt_dict_add_subkey(DICT, KEY, SUBKEY, VALUE)
--
m4_define([lt_dict_add_subkey],
[m4_define([$1($2:$3)], [$4])])

lt_dict_fetch(DICT, KEY, [SUBKEY])

m4_define([lt_dict_fetch],
[m4_ifval([$3],
	m4_ifdef([$1($2:$3)], [m4_defn([$1($2:$3)])]),
 m4_ifdef([$1($2)], [m4_defn([$1($2)])]))])

lt_if_dict_fetch(DICT, KEY, [SUBKEY], VALUE, IF-TRUE, [IF-FALSE])

m4_define([lt_if_dict_fetch],
[m4_if(lt_dict_fetch([$1], [$2], [$3]), [$4],
	[$5],
 [$6])])

lt_dict_filter(DICT, [SUBKEY], VALUE, [SEPARATOR], KEY, [...])
--
m4_define([lt_dict_filter],
[m4_if([$5], [], [],
 [lt_join(m4_quote(m4_default([$4], [[,]])),
 lt_unquote(m4_split(m4_normalize(m4_foreach(_Lt_key, lt_car([m4_shiftn(4, $@)]),
		 [lt_if_dict_fetch([$1], _Lt_key, [$2], [$3], [_Lt_key])])))))])[]dnl
])

qpdf-7.1.0/m4/ltoptions.m4

Helper functions for option handling. -*- Autoconf -*-
#
Copyright (C) 2004-2005, 2007-2009, 2011-2015 Free Software
Foundation, Inc.
Written by Gary V. Vaughan, 2004
#
This file is free software; the Free Software Foundation gives
unlimited permission to copy and/or distribute it, with or without
modifications, as long as this notice is preserved.

serial 8 ltoptions.m4

This is to help aclocal find these macros, as it can't see m4_define.
AC_DEFUN([LTOPTIONS_VERSION], [m4_if([1])])

_LT_MANGLE_OPTION(MACRO-NAME, OPTION-NAME)
--
m4_define([_LT_MANGLE_OPTION],
[[_LT_OPTION_]m4_bpatsubst($1__$2, [[^a-zA-Z0-9_]], [_])])

_LT_SET_OPTION(MACRO-NAME, OPTION-NAME)

Set option OPTION-NAME for macro MACRO-NAME, and if there is a
matching handler defined, dispatch to it. Other OPTION-NAMEs are
saved as a flag.
m4_define([_LT_SET_OPTION],
[m4_define(_LT_MANGLE_OPTION([$1], [$2]))dnl
m4_ifdef(_LT_MANGLE_DEFUN([$1], [$2]),
 _LT_MANGLE_DEFUN([$1], [$2]),
 [m4_warning([Unknown $1 option '$2'])])[]dnl
])

_LT_IF_OPTION(MACRO-NAME, OPTION-NAME, IF-SET, [IF-NOT-SET])
--
Execute IF-SET if OPTION is set, IF-NOT-SET otherwise.
m4_define([_LT_IF_OPTION],
[m4_ifdef(_LT_MANGLE_OPTION([$1], [$2]), [$3], [$4])])

_LT_UNLESS_OPTIONS(MACRO-NAME, OPTION-LIST, IF-NOT-SET)

Execute IF-NOT-SET unless all options in OPTION-LIST for MACRO-NAME
are set.
m4_define([_LT_UNLESS_OPTIONS],
[m4_foreach([_LT_Option], m4_split(m4_normalize([$2])),
	 [m4_ifdef(_LT_MANGLE_OPTION([$1], _LT_Option),
		 [m4_define([$0_found])])])[]dnl
m4_ifdef([$0_found], [m4_undefine([$0_found])], [$3
])[]dnl
])

_LT_SET_OPTIONS(MACRO-NAME, OPTION-LIST)
--
OPTION-LIST is a space-separated list of Libtool options associated
with MACRO-NAME. If any OPTION has a matching handler declared with
LT_OPTION_DEFINE, dispatch to that macro; otherwise complain about
the unknown option and exit.
m4_defun([_LT_SET_OPTIONS],
[# Set options
m4_foreach([_LT_Option], m4_split(m4_normalize([$2])),
 [_LT_SET_OPTION([$1], _LT_Option)])

m4_if([$1],[LT_INIT],[
 dnl
 dnl Simply set some default values (i.e off) if boolean options were not
 dnl specified:
 _LT_UNLESS_OPTIONS([LT_INIT], [dlopen], [enable_dlopen=no
])
 _LT_UNLESS_OPTIONS([LT_INIT], [win32-dll], [enable_win32_dll=no
])
 dnl
 dnl If no reference was made to various pairs of opposing options, then
 dnl we run the default mode handler for the pair. For example, if neither
 dnl 'shared' nor 'disable-shared' was passed, we enable building of shared
 dnl archives by default:
 _LT_UNLESS_OPTIONS([LT_INIT], [shared disable-shared], [_LT_ENABLE_SHARED])
 _LT_UNLESS_OPTIONS([LT_INIT], [static disable-static], [_LT_ENABLE_STATIC])
 _LT_UNLESS_OPTIONS([LT_INIT], [pic-only no-pic], [_LT_WITH_PIC])
 _LT_UNLESS_OPTIONS([LT_INIT], [fast-install disable-fast-install],
		 [_LT_ENABLE_FAST_INSTALL])
 _LT_UNLESS_OPTIONS([LT_INIT], [aix-soname=aix aix-soname=both aix-soname=svr4],
		 [_LT_WITH_AIX_SONAME([aix])])
])
])# _LT_SET_OPTIONS

Macros to handle LT_INIT options.

_LT_MANGLE_DEFUN(MACRO-NAME, OPTION-NAME)

m4_define([_LT_MANGLE_DEFUN],
[[_LT_OPTION_DEFUN_]m4_bpatsubst(m4_toupper([$1__$2]), [[^A-Z0-9_]], [_])])

LT_OPTION_DEFINE(MACRO-NAME, OPTION-NAME, CODE)

m4_define([LT_OPTION_DEFINE],
[m4_define(_LT_MANGLE_DEFUN([$1], [$2]), [$3])[]dnl
])# LT_OPTION_DEFINE

dlopen

LT_OPTION_DEFINE([LT_INIT], [dlopen], [enable_dlopen=yes
])

AU_DEFUN([AC_LIBTOOL_DLOPEN],
[_LT_SET_OPTION([LT_INIT], [dlopen])
AC_DIAGNOSE([obsolete],
[$0: Remove this warning and the call to _LT_SET_OPTION when you
put the 'dlopen' option into LT_INIT's first parameter.])
])

dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([AC_LIBTOOL_DLOPEN], [])

win32-dll

Declare package support for building win32 dll's.
LT_OPTION_DEFINE([LT_INIT], [win32-dll],
[enable_win32_dll=yes

case $host in
--cygwin* | *-*-mingw* | *-*-pw32* | *-*-cegcc*)
 AC_CHECK_TOOL(AS, as, false)
 AC_CHECK_TOOL(DLLTOOL, dlltool, false)
 AC_CHECK_TOOL(OBJDUMP, objdump, false)
 ;;
esac

test -z "$AS" && AS=as
_LT_DECL([], [AS], [1], [Assembler program])dnl

test -z "$DLLTOOL" && DLLTOOL=dlltool
_LT_DECL([], [DLLTOOL], [1], [DLL creation program])dnl

test -z "$OBJDUMP" && OBJDUMP=objdump
_LT_DECL([], [OBJDUMP], [1], [Object dumper program])dnl
])# win32-dll

AU_DEFUN([AC_LIBTOOL_WIN32_DLL],
[AC_REQUIRE([AC_CANONICAL_HOST])dnl
_LT_SET_OPTION([LT_INIT], [win32-dll])
AC_DIAGNOSE([obsolete],
[$0: Remove this warning and the call to _LT_SET_OPTION when you
put the 'win32-dll' option into LT_INIT's first parameter.])
])

dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([AC_LIBTOOL_WIN32_DLL], [])

_LT_ENABLE_SHARED([DEFAULT])

implement the --enable-shared flag, and supports the 'shared' and
'disable-shared' LT_INIT options.
DEFAULT is either 'yes' or 'no'. If omitted, it defaults to 'yes'.
m4_define([_LT_ENABLE_SHARED],
[m4_define([_LT_ENABLE_SHARED_DEFAULT], [m4_if($1, no, no, yes)])dnl
AC_ARG_ENABLE([shared],
 [AS_HELP_STRING([--enable-shared@<:@=PKGS@:>@],
	[build shared libraries @<:@default=]_LT_ENABLE_SHARED_DEFAULT[@:>@])],
 [p=${PACKAGE-default}
 case $enableval in
 yes) enable_shared=yes ;;
 no) enable_shared=no ;;
 *)
 enable_shared=no
 # Look at the argument we got. We use all the common list separators.
 lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR,
 for pkg in $enableval; do
	IFS=$lt_save_ifs
	if test "X$pkg" = "X$p"; then
	 enable_shared=yes
	fi
 done
 IFS=$lt_save_ifs
 ;;
 esac],
 [enable_shared=]_LT_ENABLE_SHARED_DEFAULT)

 _LT_DECL([build_libtool_libs], [enable_shared], [0],
	[Whether or not to build shared libraries])
])# _LT_ENABLE_SHARED

LT_OPTION_DEFINE([LT_INIT], [shared], [_LT_ENABLE_SHARED([yes])])
LT_OPTION_DEFINE([LT_INIT], [disable-shared], [_LT_ENABLE_SHARED([no])])

Old names:
AC_DEFUN([AC_ENABLE_SHARED],
[_LT_SET_OPTION([LT_INIT], m4_if([$1], [no], [disable-])[shared])
])

AC_DEFUN([AC_DISABLE_SHARED],
[_LT_SET_OPTION([LT_INIT], [disable-shared])
])

AU_DEFUN([AM_ENABLE_SHARED], [AC_ENABLE_SHARED($@)])
AU_DEFUN([AM_DISABLE_SHARED], [AC_DISABLE_SHARED($@)])

dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([AM_ENABLE_SHARED], [])
dnl AC_DEFUN([AM_DISABLE_SHARED], [])

_LT_ENABLE_STATIC([DEFAULT])

implement the --enable-static flag, and support the 'static' and
'disable-static' LT_INIT options.
DEFAULT is either 'yes' or 'no'. If omitted, it defaults to 'yes'.
m4_define([_LT_ENABLE_STATIC],
[m4_define([_LT_ENABLE_STATIC_DEFAULT], [m4_if($1, no, no, yes)])dnl
AC_ARG_ENABLE([static],
 [AS_HELP_STRING([--enable-static@<:@=PKGS@:>@],
	[build static libraries @<:@default=]_LT_ENABLE_STATIC_DEFAULT[@:>@])],
 [p=${PACKAGE-default}
 case $enableval in
 yes) enable_static=yes ;;
 no) enable_static=no ;;
 *)
 enable_static=no
 # Look at the argument we got. We use all the common list separators.
 lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR,
 for pkg in $enableval; do
	IFS=$lt_save_ifs
	if test "X$pkg" = "X$p"; then
	 enable_static=yes
	fi
 done
 IFS=$lt_save_ifs
 ;;
 esac],
 [enable_static=]_LT_ENABLE_STATIC_DEFAULT)

 _LT_DECL([build_old_libs], [enable_static], [0],
	[Whether or not to build static libraries])
])# _LT_ENABLE_STATIC

LT_OPTION_DEFINE([LT_INIT], [static], [_LT_ENABLE_STATIC([yes])])
LT_OPTION_DEFINE([LT_INIT], [disable-static], [_LT_ENABLE_STATIC([no])])

Old names:
AC_DEFUN([AC_ENABLE_STATIC],
[_LT_SET_OPTION([LT_INIT], m4_if([$1], [no], [disable-])[static])
])

AC_DEFUN([AC_DISABLE_STATIC],
[_LT_SET_OPTION([LT_INIT], [disable-static])
])

AU_DEFUN([AM_ENABLE_STATIC], [AC_ENABLE_STATIC($@)])
AU_DEFUN([AM_DISABLE_STATIC], [AC_DISABLE_STATIC($@)])

dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([AM_ENABLE_STATIC], [])
dnl AC_DEFUN([AM_DISABLE_STATIC], [])

_LT_ENABLE_FAST_INSTALL([DEFAULT])

implement the --enable-fast-install flag, and support the 'fast-install'
and 'disable-fast-install' LT_INIT options.
DEFAULT is either 'yes' or 'no'. If omitted, it defaults to 'yes'.
m4_define([_LT_ENABLE_FAST_INSTALL],
[m4_define([_LT_ENABLE_FAST_INSTALL_DEFAULT], [m4_if($1, no, no, yes)])dnl
AC_ARG_ENABLE([fast-install],
 [AS_HELP_STRING([--enable-fast-install@<:@=PKGS@:>@],
 [optimize for fast installation @<:@default=]_LT_ENABLE_FAST_INSTALL_DEFAULT[@:>@])],
 [p=${PACKAGE-default}
 case $enableval in
 yes) enable_fast_install=yes ;;
 no) enable_fast_install=no ;;
 *)
 enable_fast_install=no
 # Look at the argument we got. We use all the common list separators.
 lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR,
 for pkg in $enableval; do
	IFS=$lt_save_ifs
	if test "X$pkg" = "X$p"; then
	 enable_fast_install=yes
	fi
 done
 IFS=$lt_save_ifs
 ;;
 esac],
 [enable_fast_install=]_LT_ENABLE_FAST_INSTALL_DEFAULT)

_LT_DECL([fast_install], [enable_fast_install], [0],
	 [Whether or not to optimize for fast installation])dnl
])# _LT_ENABLE_FAST_INSTALL

LT_OPTION_DEFINE([LT_INIT], [fast-install], [_LT_ENABLE_FAST_INSTALL([yes])])
LT_OPTION_DEFINE([LT_INIT], [disable-fast-install], [_LT_ENABLE_FAST_INSTALL([no])])

Old names:
AU_DEFUN([AC_ENABLE_FAST_INSTALL],
[_LT_SET_OPTION([LT_INIT], m4_if([$1], [no], [disable-])[fast-install])
AC_DIAGNOSE([obsolete],
[$0: Remove this warning and the call to _LT_SET_OPTION when you put
the 'fast-install' option into LT_INIT's first parameter.])
])

AU_DEFUN([AC_DISABLE_FAST_INSTALL],
[_LT_SET_OPTION([LT_INIT], [disable-fast-install])
AC_DIAGNOSE([obsolete],
[$0: Remove this warning and the call to _LT_SET_OPTION when you put
the 'disable-fast-install' option into LT_INIT's first parameter.])
])

dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([AC_ENABLE_FAST_INSTALL], [])
dnl AC_DEFUN([AM_DISABLE_FAST_INSTALL], [])

_LT_WITH_AIX_SONAME([DEFAULT])

implement the --with-aix-soname flag, and support the `aix-soname=aix'
and `aix-soname=both' and `aix-soname=svr4' LT_INIT options. DEFAULT
is either `aix', `both' or `svr4'. If omitted, it defaults to `aix'.
m4_define([_LT_WITH_AIX_SONAME],
[m4_define([_LT_WITH_AIX_SONAME_DEFAULT], [m4_if($1, svr4, svr4, m4_if($1, both, both, aix))])dnl
shared_archive_member_spec=
case $host,$enable_shared in
power*-*-aix[[5-9]]*,yes)
 AC_MSG_CHECKING([which variant of shared library versioning to provide])
 AC_ARG_WITH([aix-soname],
 [AS_HELP_STRING([--with-aix-soname=aix|svr4|both],
 [shared library versioning (aka "SONAME") variant to provide on AIX, @<:@default=]_LT_WITH_AIX_SONAME_DEFAULT[@:>@.])],
 [case $withval in
 aix|svr4|both)
 ;;
 *)
 AC_MSG_ERROR([Unknown argument to --with-aix-soname])
 ;;
 esac
 lt_cv_with_aix_soname=$with_aix_soname],
 [AC_CACHE_VAL([lt_cv_with_aix_soname],
 [lt_cv_with_aix_soname=]_LT_WITH_AIX_SONAME_DEFAULT)
 with_aix_soname=$lt_cv_with_aix_soname])
 AC_MSG_RESULT([$with_aix_soname])
 if test aix != "$with_aix_soname"; then
 # For the AIX way of multilib, we name the shared archive member
 # based on the bitwidth used, traditionally 'shr.o' or 'shr_64.o',
 # and 'shr.imp' or 'shr_64.imp', respectively, for the Import File.
 # Even when GNU compilers ignore OBJECT_MODE but need '-maix64' flag,
 # the AIX toolchain works better with OBJECT_MODE set (default 32).
 if test 64 = "${OBJECT_MODE-32}"; then
 shared_archive_member_spec=shr_64
 else
 shared_archive_member_spec=shr
 fi
 fi
 ;;
*)
 with_aix_soname=aix
 ;;
esac

_LT_DECL([], [shared_archive_member_spec], [0],
 [Shared archive member basename, for filename based shared library versioning on AIX])dnl
])# _LT_WITH_AIX_SONAME

LT_OPTION_DEFINE([LT_INIT], [aix-soname=aix], [_LT_WITH_AIX_SONAME([aix])])
LT_OPTION_DEFINE([LT_INIT], [aix-soname=both], [_LT_WITH_AIX_SONAME([both])])
LT_OPTION_DEFINE([LT_INIT], [aix-soname=svr4], [_LT_WITH_AIX_SONAME([svr4])])

_LT_WITH_PIC([MODE])

implement the --with-pic flag, and support the 'pic-only' and 'no-pic'
LT_INIT options.
MODE is either 'yes' or 'no'. If omitted, it defaults to 'both'.
m4_define([_LT_WITH_PIC],
[AC_ARG_WITH([pic],
 [AS_HELP_STRING([--with-pic@<:@=PKGS@:>@],
	[try to use only PIC/non-PIC objects @<:@default=use both@:>@])],
 [lt_p=${PACKAGE-default}
 case $withval in
 yes|no) pic_mode=$withval ;;
 *)
 pic_mode=default
 # Look at the argument we got. We use all the common list separators.
 lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR,
 for lt_pkg in $withval; do
	IFS=$lt_save_ifs
	if test "X$lt_pkg" = "X$lt_p"; then
	 pic_mode=yes
	fi
 done
 IFS=$lt_save_ifs
 ;;
 esac],
 [pic_mode=m4_default([$1], [default])])

_LT_DECL([], [pic_mode], [0], [What type of objects to build])dnl
])# _LT_WITH_PIC

LT_OPTION_DEFINE([LT_INIT], [pic-only], [_LT_WITH_PIC([yes])])
LT_OPTION_DEFINE([LT_INIT], [no-pic], [_LT_WITH_PIC([no])])

Old name:
AU_DEFUN([AC_LIBTOOL_PICMODE],
[_LT_SET_OPTION([LT_INIT], [pic-only])
AC_DIAGNOSE([obsolete],
[$0: Remove this warning and the call to _LT_SET_OPTION when you
put the 'pic-only' option into LT_INIT's first parameter.])
])

dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([AC_LIBTOOL_PICMODE], [])

LTDL_INIT Options

m4_define([_LTDL_MODE], [])
LT_OPTION_DEFINE([LTDL_INIT], [nonrecursive],
		 [m4_define([_LTDL_MODE], [nonrecursive])])
LT_OPTION_DEFINE([LTDL_INIT], [recursive],
		 [m4_define([_LTDL_MODE], [recursive])])
LT_OPTION_DEFINE([LTDL_INIT], [subproject],
		 [m4_define([_LTDL_MODE], [subproject])])

m4_define([_LTDL_TYPE], [])
LT_OPTION_DEFINE([LTDL_INIT], [installable],
		 [m4_define([_LTDL_TYPE], [installable])])
LT_OPTION_DEFINE([LTDL_INIT], [convenience],
		 [m4_define([_LTDL_TYPE], [convenience])])

qpdf-7.1.0/m4/lt~obsolete.m4

			# lt~obsolete.m4 -- aclocal satisfying obsolete definitions. -*-Autoconf-*-

			#

			# Copyright (C) 2004-2005			 2007			 2009			 2011-2015 Free Software

			# Foundation			 Inc.

			# Written by Scott James Remnant			 2004.

			#

			# This file is free software; the Free Software Foundation gives

			# unlimited permission to copy and/or distribute it			 with or without

			# modifications			 as long as this notice is preserved.

			

			# serial 5 lt~obsolete.m4

			

			# These exist entirely to fool aclocal when bootstrapping libtool.

			#

			# In the past libtool.m4 has provided macros via AC_DEFUN (or AU_DEFUN)			

			# which have later been changed to m4_define as they aren't part of the

			# exported API			 or moved to Autoconf or Automake where they belong.

			#

			# The trouble is			 aclocal is a bit thick. It'll see the old AC_DEFUN

			# in /usr/share/aclocal/libtool.m4 and remember it			 then when it sees us

			# using a macro with the same name in our local m4/libtool.m4 it'll

			# pull the old libtool.m4 in (it doesn't see our shiny new m4_define

			# and doesn't know about Autoconf macros at all.)

			#

			# So we provide this file			 which has a silly filename so it's always

			# included after everything else. This provides aclocal with the

			# AC_DEFUNs it wants			 but when m4 processes it			 it doesn't do anything

			# because those macros already exist			 or will be overwritten later.

			# We use AC_DEFUN over AU_DEFUN for compatibility with aclocal-1.6.

			#

			# Anytime we withdraw an AC_DEFUN or AU_DEFUN			 remember to add it here.

			# Yes			 that means every name once taken will need to remain here until

			# we give up compatibility with versions before 1.7			 at which point

			# we need to keep only those names which we still refer to.

			

			# This is to help aclocal find these macros			 as it can't see m4_define.

			AC_DEFUN([LTOBSOLETE_VERSION]			 [m4_if([1])])

			

			m4_ifndef([AC_LIBTOOL_LINKER_OPTION]				[AC_DEFUN([AC_LIBTOOL_LINKER_OPTION])])

			m4_ifndef([AC_PROG_EGREP]					[AC_DEFUN([AC_PROG_EGREP])])

			m4_ifndef([_LT_AC_PROG_ECHO_BACKSLASH]				[AC_DEFUN([_LT_AC_PROG_ECHO_BACKSLASH])])

			m4_ifndef([_LT_AC_SHELL_INIT]					[AC_DEFUN([_LT_AC_SHELL_INIT])])

			m4_ifndef([_LT_AC_SYS_LIBPATH_AIX]				[AC_DEFUN([_LT_AC_SYS_LIBPATH_AIX])])

			m4_ifndef([_LT_PROG_LTMAIN]					[AC_DEFUN([_LT_PROG_LTMAIN])])

			m4_ifndef([_LT_AC_TAGVAR]					[AC_DEFUN([_LT_AC_TAGVAR])])

			m4_ifndef([AC_LTDL_ENABLE_INSTALL]				[AC_DEFUN([AC_LTDL_ENABLE_INSTALL])])

			m4_ifndef([AC_LTDL_PREOPEN]					[AC_DEFUN([AC_LTDL_PREOPEN])])

			m4_ifndef([_LT_AC_SYS_COMPILER]				[AC_DEFUN([_LT_AC_SYS_COMPILER])])

			m4_ifndef([_LT_AC_LOCK]					[AC_DEFUN([_LT_AC_LOCK])])

			m4_ifndef([AC_LIBTOOL_SYS_OLD_ARCHIVE]				[AC_DEFUN([AC_LIBTOOL_SYS_OLD_ARCHIVE])])

			m4_ifndef([_LT_AC_TRY_DLOPEN_SELF]				[AC_DEFUN([_LT_AC_TRY_DLOPEN_SELF])])

			m4_ifndef([AC_LIBTOOL_PROG_CC_C_O]				[AC_DEFUN([AC_LIBTOOL_PROG_CC_C_O])])

			m4_ifndef([AC_LIBTOOL_SYS_HARD_LINK_LOCKS]			 [AC_DEFUN([AC_LIBTOOL_SYS_HARD_LINK_LOCKS])])

			m4_ifndef([AC_LIBTOOL_OBJDIR]					[AC_DEFUN([AC_LIBTOOL_OBJDIR])])

			m4_ifndef([AC_LTDL_OBJDIR]					[AC_DEFUN([AC_LTDL_OBJDIR])])

			m4_ifndef([AC_LIBTOOL_PROG_LD_HARDCODE_LIBPATH]			 [AC_DEFUN([AC_LIBTOOL_PROG_LD_HARDCODE_LIBPATH])])

			m4_ifndef([AC_LIBTOOL_SYS_LIB_STRIP]				[AC_DEFUN([AC_LIBTOOL_SYS_LIB_STRIP])])

			m4_ifndef([AC_PATH_MAGIC]					[AC_DEFUN([AC_PATH_MAGIC])])

			m4_ifndef([AC_PROG_LD_GNU]					[AC_DEFUN([AC_PROG_LD_GNU])])

			m4_ifndef([AC_PROG_LD_RELOAD_FLAG]				[AC_DEFUN([AC_PROG_LD_RELOAD_FLAG])])

			m4_ifndef([AC_DEPLIBS_CHECK_METHOD]				[AC_DEFUN([AC_DEPLIBS_CHECK_METHOD])])

			m4_ifndef([AC_LIBTOOL_PROG_COMPILER_NO_RTTI]			 [AC_DEFUN([AC_LIBTOOL_PROG_COMPILER_NO_RTTI])])

			m4_ifndef([AC_LIBTOOL_SYS_GLOBAL_SYMBOL_PIPE]			 [AC_DEFUN([AC_LIBTOOL_SYS_GLOBAL_SYMBOL_PIPE])])

			m4_ifndef([AC_LIBTOOL_PROG_COMPILER_PIC]			 [AC_DEFUN([AC_LIBTOOL_PROG_COMPILER_PIC])])

			m4_ifndef([AC_LIBTOOL_PROG_LD_SHLIBS]				[AC_DEFUN([AC_LIBTOOL_PROG_LD_SHLIBS])])

			m4_ifndef([AC_LIBTOOL_POSTDEP_PREDEP]				[AC_DEFUN([AC_LIBTOOL_POSTDEP_PREDEP])])

			m4_ifndef([LT_AC_PROG_EGREP]					[AC_DEFUN([LT_AC_PROG_EGREP])])

			m4_ifndef([LT_AC_PROG_SED]					[AC_DEFUN([LT_AC_PROG_SED])])

			m4_ifndef([_LT_CC_BASENAME]					[AC_DEFUN([_LT_CC_BASENAME])])

			m4_ifndef([_LT_COMPILER_BOILERPLATE]				[AC_DEFUN([_LT_COMPILER_BOILERPLATE])])

			m4_ifndef([_LT_LINKER_BOILERPLATE]				[AC_DEFUN([_LT_LINKER_BOILERPLATE])])

			m4_ifndef([_AC_PROG_LIBTOOL]					[AC_DEFUN([_AC_PROG_LIBTOOL])])

			m4_ifndef([AC_LIBTOOL_SETUP]					[AC_DEFUN([AC_LIBTOOL_SETUP])])

			m4_ifndef([_LT_AC_CHECK_DLFCN]					[AC_DEFUN([_LT_AC_CHECK_DLFCN])])

			m4_ifndef([AC_LIBTOOL_SYS_DYNAMIC_LINKER]				[AC_DEFUN([AC_LIBTOOL_SYS_DYNAMIC_LINKER])])

			m4_ifndef([_LT_AC_TAGCONFIG]					[AC_DEFUN([_LT_AC_TAGCONFIG])])

			m4_ifndef([AC_DISABLE_FAST_INSTALL]				[AC_DEFUN([AC_DISABLE_FAST_INSTALL])])

			m4_ifndef([_LT_AC_LANG_CXX]					[AC_DEFUN([_LT_AC_LANG_CXX])])

			m4_ifndef([_LT_AC_LANG_F77]					[AC_DEFUN([_LT_AC_LANG_F77])])

			m4_ifndef([_LT_AC_LANG_GCJ]					[AC_DEFUN([_LT_AC_LANG_GCJ])])

			m4_ifndef([AC_LIBTOOL_LANG_C_CONFIG]				[AC_DEFUN([AC_LIBTOOL_LANG_C_CONFIG])])

			m4_ifndef([_LT_AC_LANG_C_CONFIG]				[AC_DEFUN([_LT_AC_LANG_C_CONFIG])])

			m4_ifndef([AC_LIBTOOL_LANG_CXX_CONFIG]				[AC_DEFUN([AC_LIBTOOL_LANG_CXX_CONFIG])])

			m4_ifndef([_LT_AC_LANG_CXX_CONFIG]				[AC_DEFUN([_LT_AC_LANG_CXX_CONFIG])])

			m4_ifndef([AC_LIBTOOL_LANG_F77_CONFIG]				[AC_DEFUN([AC_LIBTOOL_LANG_F77_CONFIG])])

			m4_ifndef([_LT_AC_LANG_F77_CONFIG]				[AC_DEFUN([_LT_AC_LANG_F77_CONFIG])])

			m4_ifndef([AC_LIBTOOL_LANG_GCJ_CONFIG]				[AC_DEFUN([AC_LIBTOOL_LANG_GCJ_CONFIG])])

			m4_ifndef([_LT_AC_LANG_GCJ_CONFIG]				[AC_DEFUN([_LT_AC_LANG_GCJ_CONFIG])])

			m4_ifndef([AC_LIBTOOL_LANG_RC_CONFIG]				[AC_DEFUN([AC_LIBTOOL_LANG_RC_CONFIG])])

			m4_ifndef([_LT_AC_LANG_RC_CONFIG]				[AC_DEFUN([_LT_AC_LANG_RC_CONFIG])])

			m4_ifndef([AC_LIBTOOL_CONFIG]					[AC_DEFUN([AC_LIBTOOL_CONFIG])])

			m4_ifndef([_LT_AC_FILE_LTDLL_C]				[AC_DEFUN([_LT_AC_FILE_LTDLL_C])])

			m4_ifndef([_LT_REQUIRED_DARWIN_CHECKS]				[AC_DEFUN([_LT_REQUIRED_DARWIN_CHECKS])])

			m4_ifndef([_LT_AC_PROG_CXXCPP]					[AC_DEFUN([_LT_AC_PROG_CXXCPP])])

			m4_ifndef([_LT_PREPARE_SED_QUOTE_VARS]				[AC_DEFUN([_LT_PREPARE_SED_QUOTE_VARS])])

			m4_ifndef([_LT_PROG_ECHO_BACKSLASH]				[AC_DEFUN([_LT_PROG_ECHO_BACKSLASH])])

			m4_ifndef([_LT_PROG_F77]					[AC_DEFUN([_LT_PROG_F77])])

			m4_ifndef([_LT_PROG_FC]					[AC_DEFUN([_LT_PROG_FC])])

			m4_ifndef([_LT_PROG_CXX]					[AC_DEFUN([_LT_PROG_CXX])])

qpdf-7.1.0/m4/libtool.m4

libtool.m4 - Configure libtool for the host system. -*-Autoconf-*-
#
Copyright (C) 1996-2001, 2003-2015 Free Software Foundation, Inc.
Written by Gordon Matzigkeit, 1996
#
This file is free software; the Free Software Foundation gives
unlimited permission to copy and/or distribute it, with or without
modifications, as long as this notice is preserved.

m4_define([_LT_COPYING], [dnl
Copyright (C) 2014 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

GNU Libtool is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of of the License, or
(at your option) any later version.
#
As a special exception to the GNU General Public License, if you
distribute this file as part of a program or library that is built
using GNU Libtool, you may include this file under the same
distribution terms that you use for the rest of that program.
#
GNU Libtool is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
])

serial 58 LT_INIT

LT_PREREQ(VERSION)

Complain and exit if this libtool version is less that VERSION.
m4_defun([LT_PREREQ],
[m4_if(m4_version_compare(m4_defn([LT_PACKAGE_VERSION]), [$1]), -1,
 [m4_default([$3],
		 [m4_fatal([Libtool version $1 or higher is required],
		 63)])],
 [$2])])

_LT_CHECK_BUILDDIR

Complain if the absolute build directory name contains unusual characters
m4_defun([_LT_CHECK_BUILDDIR],
[case `pwd` in
 *\ * | *\	*)
 AC_MSG_WARN([Libtool does not cope well with whitespace in `pwd`]) ;;
esac
])

LT_INIT([OPTIONS])

AC_DEFUN([LT_INIT],
[AC_PREREQ([2.62])dnl We use AC_PATH_PROGS_FEATURE_CHECK
AC_REQUIRE([AC_CONFIG_AUX_DIR_DEFAULT])dnl
AC_BEFORE([$0], [LT_LANG])dnl
AC_BEFORE([$0], [LT_OUTPUT])dnl
AC_BEFORE([$0], [LTDL_INIT])dnl
m4_require([_LT_CHECK_BUILDDIR])dnl

dnl Autoconf doesn't catch unexpanded LT_ macros by default:
m4_pattern_forbid([^_?LT_[A-Z_]+$])dnl
m4_pattern_allow([^(_LT_EOF|LT_DLGLOBAL|LT_DLLAZY_OR_NOW|LT_MULTI_MODULE)$])dnl
dnl aclocal doesn't pull ltoptions.m4, ltsugar.m4, or ltversion.m4
dnl unless we require an AC_DEFUNed macro:
AC_REQUIRE([LTOPTIONS_VERSION])dnl
AC_REQUIRE([LTSUGAR_VERSION])dnl
AC_REQUIRE([LTVERSION_VERSION])dnl
AC_REQUIRE([LTOBSOLETE_VERSION])dnl
m4_require([_LT_PROG_LTMAIN])dnl

_LT_SHELL_INIT([SHELL=${CONFIG_SHELL-/bin/sh}])

dnl Parse OPTIONS
_LT_SET_OPTIONS([$0], [$1])

This can be used to rebuild libtool when needed
LIBTOOL_DEPS=$ltmain

Always use our own libtool.
LIBTOOL='$(SHELL) $(top_builddir)/libtool'
AC_SUBST(LIBTOOL)dnl

_LT_SETUP

Only expand once:
m4_define([LT_INIT])
])# LT_INIT

Old names:
AU_ALIAS([AC_PROG_LIBTOOL], [LT_INIT])
AU_ALIAS([AM_PROG_LIBTOOL], [LT_INIT])
dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([AC_PROG_LIBTOOL], [])
dnl AC_DEFUN([AM_PROG_LIBTOOL], [])

_LT_PREPARE_CC_BASENAME

m4_defun([_LT_PREPARE_CC_BASENAME], [
Calculate cc_basename. Skip known compiler wrappers and cross-prefix.
func_cc_basename ()
{
 for cc_temp in @S|@*""; do
 case $cc_temp in
 compile | *[[\\/]]compile | ccache | *[[\\/]]ccache) ;;
 distcc | *[[\\/]]distcc | purify | *[[\\/]]purify) ;;
 \-*) ;;
 *) break;;
 esac
 done
 func_cc_basename_result=`$ECHO "$cc_temp" | $SED "s%.*/%%; s%^$host_alias-%%"`
}
])# _LT_PREPARE_CC_BASENAME

_LT_CC_BASENAME(CC)

It would be clearer to call AC_REQUIREs from _LT_PREPARE_CC_BASENAME,
but that macro is also expanded into generated libtool script, which
arranges for $SED and $ECHO to be set by different means.
m4_defun([_LT_CC_BASENAME],
[m4_require([_LT_PREPARE_CC_BASENAME])dnl
AC_REQUIRE([_LT_DECL_SED])dnl
AC_REQUIRE([_LT_PROG_ECHO_BACKSLASH])dnl
func_cc_basename $1
cc_basename=$func_cc_basename_result
])

_LT_FILEUTILS_DEFAULTS

It is okay to use these file commands and assume they have been set
sensibly after 'm4_require([_LT_FILEUTILS_DEFAULTS])'.
m4_defun([_LT_FILEUTILS_DEFAULTS],
[: ${CP="cp -f"}
: ${MV="mv -f"}
: ${RM="rm -f"}
])# _LT_FILEUTILS_DEFAULTS

_LT_SETUP

m4_defun([_LT_SETUP],
[AC_REQUIRE([AC_CANONICAL_HOST])dnl
AC_REQUIRE([AC_CANONICAL_BUILD])dnl
AC_REQUIRE([_LT_PREPARE_SED_QUOTE_VARS])dnl
AC_REQUIRE([_LT_PROG_ECHO_BACKSLASH])dnl

_LT_DECL([], [PATH_SEPARATOR], [1], [The PATH separator for the build system])dnl
dnl
_LT_DECL([], [host_alias], [0], [The host system])dnl
_LT_DECL([], [host], [0])dnl
_LT_DECL([], [host_os], [0])dnl
dnl
_LT_DECL([], [build_alias], [0], [The build system])dnl
_LT_DECL([], [build], [0])dnl
_LT_DECL([], [build_os], [0])dnl
dnl
AC_REQUIRE([AC_PROG_CC])dnl
AC_REQUIRE([LT_PATH_LD])dnl
AC_REQUIRE([LT_PATH_NM])dnl
dnl
AC_REQUIRE([AC_PROG_LN_S])dnl
test -z "$LN_S" && LN_S="ln -s"
_LT_DECL([], [LN_S], [1], [Whether we need soft or hard links])dnl
dnl
AC_REQUIRE([LT_CMD_MAX_LEN])dnl
_LT_DECL([objext], [ac_objext], [0], [Object file suffix (normally "o")])dnl
_LT_DECL([], [exeext], [0], [Executable file suffix (normally "")])dnl
dnl
m4_require([_LT_FILEUTILS_DEFAULTS])dnl
m4_require([_LT_CHECK_SHELL_FEATURES])dnl
m4_require([_LT_PATH_CONVERSION_FUNCTIONS])dnl
m4_require([_LT_CMD_RELOAD])dnl
m4_require([_LT_CHECK_MAGIC_METHOD])dnl
m4_require([_LT_CHECK_SHAREDLIB_FROM_LINKLIB])dnl
m4_require([_LT_CMD_OLD_ARCHIVE])dnl
m4_require([_LT_CMD_GLOBAL_SYMBOLS])dnl
m4_require([_LT_WITH_SYSROOT])dnl
m4_require([_LT_CMD_TRUNCATE])dnl

_LT_CONFIG_LIBTOOL_INIT([
See if we are running on zsh, and set the options that allow our
commands through without removal of \ escapes INIT.
if test -n "\${ZSH_VERSION+set}"; then
 setopt NO_GLOB_SUBST
fi
])
if test -n "${ZSH_VERSION+set}"; then
 setopt NO_GLOB_SUBST
fi

_LT_CHECK_OBJDIR

m4_require([_LT_TAG_COMPILER])dnl

case $host_os in
aix3*)
 # AIX sometimes has problems with the GCC collect2 program. For some
 # reason, if we set the COLLECT_NAMES environment variable, the problems
 # vanish in a puff of smoke.
 if test set != "${COLLECT_NAMES+set}"; then
 COLLECT_NAMES=
 export COLLECT_NAMES
 fi
 ;;
esac

Global variables:
ofile=libtool
can_build_shared=yes

All known linkers require a '.a' archive for static linking (except MSVC,
which needs '.lib').
libext=a

with_gnu_ld=$lt_cv_prog_gnu_ld

old_CC=$CC
old_CFLAGS=$CFLAGS

Set sane defaults for various variables
test -z "$CC" && CC=cc
test -z "$LTCC" && LTCC=$CC
test -z "$LTCFLAGS" && LTCFLAGS=$CFLAGS
test -z "$LD" && LD=ld
test -z "$ac_objext" && ac_objext=o

_LT_CC_BASENAME([$compiler])

Only perform the check for file, if the check method requires it
test -z "$MAGIC_CMD" && MAGIC_CMD=file
case $deplibs_check_method in
file_magic*)
 if test "$file_magic_cmd" = '$MAGIC_CMD'; then
 _LT_PATH_MAGIC
 fi
 ;;
esac

Use C for the default configuration in the libtool script
LT_SUPPORTED_TAG([CC])
_LT_LANG_C_CONFIG
_LT_LANG_DEFAULT_CONFIG
_LT_CONFIG_COMMANDS
])# _LT_SETUP

_LT_PREPARE_SED_QUOTE_VARS

Define a few sed substitution that help us do robust quoting.
m4_defun([_LT_PREPARE_SED_QUOTE_VARS],
[# Backslashify metacharacters that are still active within
double-quoted strings.
sed_quote_subst='s/\([["`$\\]]\)/\\\1/g'

Same as above, but do not quote variable references.
double_quote_subst='s/\([["`\\]]\)/\\\1/g'

Sed substitution to delay expansion of an escaped shell variable in a
double_quote_subst'ed string.
delay_variable_subst='s/\\\\\\\\\\\$/\\\\\\$/g'

Sed substitution to delay expansion of an escaped single quote.
delay_single_quote_subst='s/'\''/'\'\\\\\\\'\''/g'

Sed substitution to avoid accidental globbing in evaled expressions
no_glob_subst='s/*/*/g'
])

_LT_PROG_LTMAIN

Note that this code is called both from 'configure', and 'config.status'
now that we use AC_CONFIG_COMMANDS to generate libtool. Notably,
'config.status' has no value for ac_aux_dir unless we are using Automake,
so we pass a copy along to make sure it has a sensible value anyway.
m4_defun([_LT_PROG_LTMAIN],
[m4_ifdef([AC_REQUIRE_AUX_FILE], [AC_REQUIRE_AUX_FILE([ltmain.sh])])dnl
_LT_CONFIG_LIBTOOL_INIT([ac_aux_dir='$ac_aux_dir'])
ltmain=$ac_aux_dir/ltmain.sh
])# _LT_PROG_LTMAIN

Accumulate code for creating libtool.

So that we can recreate a full libtool script including additional
tags, we accumulate the chunks of code to send to AC_CONFIG_COMMANDS
in macros and then make a single call at the end using the 'libtool'
label.

_LT_CONFIG_LIBTOOL_INIT([INIT-COMMANDS])
--
Register INIT-COMMANDS to be passed to AC_CONFIG_COMMANDS later.
m4_define([_LT_CONFIG_LIBTOOL_INIT],
[m4_ifval([$1],
 [m4_append([_LT_OUTPUT_LIBTOOL_INIT],
 [$1
])])])

Initialize.
m4_define([_LT_OUTPUT_LIBTOOL_INIT])

_LT_CONFIG_LIBTOOL([COMMANDS])

Register COMMANDS to be passed to AC_CONFIG_COMMANDS later.
m4_define([_LT_CONFIG_LIBTOOL],
[m4_ifval([$1],
 [m4_append([_LT_OUTPUT_LIBTOOL_COMMANDS],
 [$1
])])])

Initialize.
m4_define([_LT_OUTPUT_LIBTOOL_COMMANDS])

_LT_CONFIG_SAVE_COMMANDS([COMMANDS], [INIT_COMMANDS])

m4_defun([_LT_CONFIG_SAVE_COMMANDS],
[_LT_CONFIG_LIBTOOL([$1])
_LT_CONFIG_LIBTOOL_INIT([$2])
])

_LT_FORMAT_COMMENT([COMMENT])

Add leading comment marks to the start of each line, and a trailing
full-stop to the whole comment if one is not present already.
m4_define([_LT_FORMAT_COMMENT],
[m4_ifval([$1], [
m4_bpatsubst([m4_bpatsubst([$1], [^ *], [#])],
 [['`$\]], [\\\&])]m4_bmatch([$1], [[!?.]$], [], [.])
)])

FIXME: Eliminate VARNAME

_LT_DECL([CONFIGNAME], VARNAME, VALUE, [DESCRIPTION], [IS-TAGGED?])

CONFIGNAME is the name given to the value in the libtool script.
VARNAME is the (base) name used in the configure script.
VALUE may be 0, 1 or 2 for a computed quote escaped value based on
VARNAME. Any other value will be used directly.
m4_define([_LT_DECL],
[lt_if_append_uniq([lt_decl_varnames], [$2], [,],
 [lt_dict_add_subkey([lt_decl_dict], [$2], [libtool_name],
	[m4_ifval([$1], [$1], [$2])])
 lt_dict_add_subkey([lt_decl_dict], [$2], [value], [$3])
 m4_ifval([$4],
	[lt_dict_add_subkey([lt_decl_dict], [$2], [description], [$4])])
 lt_dict_add_subkey([lt_decl_dict], [$2],
	[tagged?], [m4_ifval([$5], [yes], [no])])])
])

_LT_TAGDECL([CONFIGNAME], VARNAME, VALUE, [DESCRIPTION])
--
m4_define([_LT_TAGDECL], [_LT_DECL([$1], [$2], [$3], [$4], [yes])])

lt_decl_tag_varnames([SEPARATOR], [VARNAME1...])
--
m4_define([lt_decl_tag_varnames],
[_lt_decl_filter([tagged?], [yes], $@)])

_lt_decl_filter(SUBKEY, VALUE, [SEPARATOR], [VARNAME1..])

m4_define([_lt_decl_filter],
[m4_case([$#],
 [0], [m4_fatal([$0: too few arguments: $#])],
 [1], [m4_fatal([$0: too few arguments: $#: $1])],
 [2], [lt_dict_filter([lt_decl_dict], [$1], [$2], [], lt_decl_varnames)],
 [3], [lt_dict_filter([lt_decl_dict], [$1], [$2], [$3], lt_decl_varnames)],
 [lt_dict_filter([lt_decl_dict], $@)])[]dnl
])

lt_decl_quote_varnames([SEPARATOR], [VARNAME1...])
--
m4_define([lt_decl_quote_varnames],
[_lt_decl_filter([value], [1], $@)])

lt_decl_dquote_varnames([SEPARATOR], [VARNAME1...])

m4_define([lt_decl_dquote_varnames],
[_lt_decl_filter([value], [2], $@)])

lt_decl_varnames_tagged([SEPARATOR], [VARNAME1...])

m4_define([lt_decl_varnames_tagged],
[m4_assert([$# <= 2])dnl
_$0(m4_quote(m4_default([$1], [[,]])),
 m4_ifval([$2], [[$2]], [m4_dquote(lt_decl_tag_varnames)]),
 m4_split(m4_normalize(m4_quote(_LT_TAGS)), []))])
m4_define([_lt_decl_varnames_tagged],
[m4_ifval([$3], [lt_combine([$1], [$2], [_], $3)])])

lt_decl_all_varnames([SEPARATOR], [VARNAME1...])
--
m4_define([lt_decl_all_varnames],
[_$0(m4_quote(m4_default([$1], [[,]])),
 m4_if([$2], [],
	 m4_quote(lt_decl_varnames),
	m4_quote(m4_shift($@))))[]dnl
])
m4_define([_lt_decl_all_varnames],
[lt_join($@, lt_decl_varnames_tagged([$1],
			lt_decl_tag_varnames([[,]], m4_shift($@))))dnl
])

_LT_CONFIG_STATUS_DECLARE([VARNAME])

Quote a variable value, and forward it to 'config.status' so that its
declaration there will have the same value as in 'configure'. VARNAME
must have a single quote delimited value for this to work.
m4_define([_LT_CONFIG_STATUS_DECLARE],
[$1='`$ECHO "$][$1" | $SED "$delay_single_quote_subst"`'])

_LT_CONFIG_STATUS_DECLARATIONS

We delimit libtool config variables with single quotes, so when
we write them to config.status, we have to be sure to quote all
embedded single quotes properly. In configure, this macro expands
each variable declared with _LT_DECL (and _LT_TAGDECL) into:
#
<var>='`$ECHO "$<var>" | $SED "$delay_single_quote_subst"`'
m4_defun([_LT_CONFIG_STATUS_DECLARATIONS],
[m4_foreach([_lt_var], m4_quote(lt_decl_all_varnames),
 [m4_n([_LT_CONFIG_STATUS_DECLARE(_lt_var)])])])

_LT_LIBTOOL_TAGS

Output comment and list of tags supported by the script
m4_defun([_LT_LIBTOOL_TAGS],
[_LT_FORMAT_COMMENT([The names of the tagged configurations supported by this script])dnl
available_tags='_LT_TAGS'dnl
])

_LT_LIBTOOL_DECLARE(VARNAME, [TAG])

Extract the dictionary values for VARNAME (optionally with TAG) and
expand to a commented shell variable setting:
#
Some comment about what VAR is for.
visible_name=$lt_internal_name
m4_define([_LT_LIBTOOL_DECLARE],
[_LT_FORMAT_COMMENT(m4_quote(lt_dict_fetch([lt_decl_dict], [$1],
					 [description])))[]dnl
m4_pushdef([_libtool_name],
 m4_quote(lt_dict_fetch([lt_decl_dict], [$1], [libtool_name])))[]dnl
m4_case(m4_quote(lt_dict_fetch([lt_decl_dict], [$1], [value])),
 [0], [_libtool_name=[$]$1],
 [1], [_libtool_name=$lt_[]$1],
 [2], [_libtool_name=$lt_[]$1],
 [_libtool_name=lt_dict_fetch([lt_decl_dict], [$1], [value])])[]dnl
m4_ifval([$2], [_$2])[]m4_popdef([_libtool_name])[]dnl
])

_LT_LIBTOOL_CONFIG_VARS

Produce commented declarations of non-tagged libtool config variables
suitable for insertion in the LIBTOOL CONFIG section of the 'libtool'
script. Tagged libtool config variables (even for the LIBTOOL CONFIG
section) are produced by _LT_LIBTOOL_TAG_VARS.
m4_defun([_LT_LIBTOOL_CONFIG_VARS],
[m4_foreach([_lt_var],
 m4_quote(_lt_decl_filter([tagged?], [no], [], lt_decl_varnames)),
 [m4_n([_LT_LIBTOOL_DECLARE(_lt_var)])])])

_LT_LIBTOOL_TAG_VARS(TAG)

m4_define([_LT_LIBTOOL_TAG_VARS],
[m4_foreach([_lt_var], m4_quote(lt_decl_tag_varnames),
 [m4_n([_LT_LIBTOOL_DECLARE(_lt_var, [$1])])])])

_LT_TAGVAR(VARNAME, [TAGNAME])

m4_define([_LT_TAGVAR], [m4_ifval([$2], [$1_$2], [$1])])

_LT_CONFIG_COMMANDS

Send accumulated output to $CONFIG_STATUS. Thanks to the lists of
variables for single and double quote escaping we saved from calls
to _LT_DECL, we can put quote escaped variables declarations
into 'config.status', and then the shell code to quote escape them in
for loops in 'config.status'. Finally, any additional code accumulated
from calls to _LT_CONFIG_LIBTOOL_INIT is expanded.
m4_defun([_LT_CONFIG_COMMANDS],
[AC_PROVIDE_IFELSE([LT_OUTPUT],
	dnl If the libtool generation code has been placed in $CONFIG_LT,
	dnl instead of duplicating it all over again into config.status,
	dnl then we will have config.status run $CONFIG_LT later, so it
	dnl needs to know what name is stored there:
 [AC_CONFIG_COMMANDS([libtool],
 [$SHELL $CONFIG_LT || AS_EXIT(1)], [CONFIG_LT='$CONFIG_LT'])],
 dnl If the libtool generation code is destined for config.status,
 dnl expand the accumulated commands and init code now:
 [AC_CONFIG_COMMANDS([libtool],
 [_LT_OUTPUT_LIBTOOL_COMMANDS], [_LT_OUTPUT_LIBTOOL_COMMANDS_INIT])])
])#_LT_CONFIG_COMMANDS

Initialize.
m4_define([_LT_OUTPUT_LIBTOOL_COMMANDS_INIT],
[

The HP-UX ksh and POSIX shell print the target directory to stdout
if CDPATH is set.
(unset CDPATH) >/dev/null 2>&1 && unset CDPATH

sed_quote_subst='$sed_quote_subst'
double_quote_subst='$double_quote_subst'
delay_variable_subst='$delay_variable_subst'
_LT_CONFIG_STATUS_DECLARATIONS
LTCC='$LTCC'
LTCFLAGS='$LTCFLAGS'
compiler='$compiler_DEFAULT'

A function that is used when there is no print builtin or printf.
func_fallback_echo ()
{
 eval 'cat <<_LTECHO_EOF
\$[]1
_LTECHO_EOF'
}

Quote evaled strings.
for var in lt_decl_all_varnames([[\
]], lt_decl_quote_varnames); do
 case \`eval \\\\\$ECHO \\\\""\\\\\$\$var"\\\\"\` in
 [[\\\\\\\`\\"\\\$]])
 eval "lt_\$var=\\\\\\"\\\`\\\$ECHO \\"\\\$\$var\\" | \\\$SED \\"\\\$sed_quote_subst\\"\\\`\\\\\\"" ## exclude from sc_prohibit_nested_quotes
 ;;
 *)
 eval "lt_\$var=\\\\\\"\\\$\$var\\\\\\""
 ;;
 esac
done

Double-quote double-evaled strings.
for var in lt_decl_all_varnames([[\
]], lt_decl_dquote_varnames); do
 case \`eval \\\\\$ECHO \\\\""\\\\\$\$var"\\\\"\` in
 [[\\\\\\\`\\"\\\$]])
 eval "lt_\$var=\\\\\\"\\\`\\\$ECHO \\"\\\$\$var\\" | \\\$SED -e \\"\\\$double_quote_subst\\" -e \\"\\\$sed_quote_subst\\" -e \\"\\\$delay_variable_subst\\"\\\`\\\\\\"" ## exclude from sc_prohibit_nested_quotes
 ;;
 *)
 eval "lt_\$var=\\\\\\"\\\$\$var\\\\\\""
 ;;
 esac
done

_LT_OUTPUT_LIBTOOL_INIT
])

_LT_GENERATED_FILE_INIT(FILE, [COMMENT])

Generate a child script FILE with all initialization necessary to
reuse the environment learned by the parent script, and make the
file executable. If COMMENT is supplied, it is inserted after the
'#!' sequence but before initialization text begins. After this
macro, additional text can be appended to FILE to form the body of
the child script. The macro ends with non-zero status if the
file could not be fully written (such as if the disk is full).
m4_ifdef([AS_INIT_GENERATED],
[m4_defun([_LT_GENERATED_FILE_INIT],[AS_INIT_GENERATED($@)])],
[m4_defun([_LT_GENERATED_FILE_INIT],
[m4_require([AS_PREPARE])]dnl
[m4_pushdef([AS_MESSAGE_LOG_FD])]dnl
[lt_write_fail=0
cat >$1 <<_ASEOF || lt_write_fail=1
#! $SHELL
Generated by $as_me.
$2
SHELL=\${CONFIG_SHELL-$SHELL}
export SHELL
_ASEOF
cat >>$1 <<_ASEOF || lt_write_fail=1
AS_SHELL_SANITIZE
_AS_PREPARE
exec AS_MESSAGE_FD>&1
_ASEOF
test 0 = "$lt_write_fail" && chmod +x $1[]dnl
m4_popdef([AS_MESSAGE_LOG_FD])])])# _LT_GENERATED_FILE_INIT

LT_OUTPUT

This macro allows early generation of the libtool script (before
AC_OUTPUT is called), incase it is used in configure for compilation
tests.
AC_DEFUN([LT_OUTPUT],
[: ${CONFIG_LT=./config.lt}
AC_MSG_NOTICE([creating $CONFIG_LT])
_LT_GENERATED_FILE_INIT(["$CONFIG_LT"],
[# Run this file to recreate a libtool stub with the current configuration.])

cat >>"$CONFIG_LT" <<_LTEOF
lt_cl_silent=false
exec AS_MESSAGE_LOG_FD>>config.log
{
 echo
 AS_BOX([Running $as_me.])
} >&AS_MESSAGE_LOG_FD

lt_cl_help="\
'$as_me' creates a local libtool stub from the current configuration,
for use in further configure time tests before the real libtool is
generated.

Usage: $[0] [[OPTIONS]]

 -h, --help print this help, then exit
 -V, --version print version number, then exit
 -q, --quiet do not print progress messages
 -d, --debug don't remove temporary files

Report bugs to <bug-libtool@gnu.org>."

lt_cl_version="\
m4_ifset([AC_PACKAGE_NAME], [AC_PACKAGE_NAME])config.lt[]dnl
m4_ifset([AC_PACKAGE_VERSION], [AC_PACKAGE_VERSION])
configured by $[0], generated by m4_PACKAGE_STRING.

Copyright (C) 2011 Free Software Foundation, Inc.
This config.lt script is free software; the Free Software Foundation
gives unlimited permision to copy, distribute and modify it."

while test 0 != $[#]
do
 case $[1] in
 --version | --v* | -V)
 echo "$lt_cl_version"; exit 0 ;;
 --help | --h* | -h)
 echo "$lt_cl_help"; exit 0 ;;
 --debug | --d* | -d)
 debug=: ;;
 --quiet | --q* | --silent | --s* | -q)
 lt_cl_silent=: ;;

 -*) AC_MSG_ERROR([unrecognized option: $[1]
Try '$[0] --help' for more information.]) ;;

 *) AC_MSG_ERROR([unrecognized argument: $[1]
Try '$[0] --help' for more information.]) ;;
 esac
 shift
done

if $lt_cl_silent; then
 exec AS_MESSAGE_FD>/dev/null
fi
_LTEOF

cat >>"$CONFIG_LT" <<_LTEOF
_LT_OUTPUT_LIBTOOL_COMMANDS_INIT
_LTEOF

cat >>"$CONFIG_LT" <<_LTEOF
AC_MSG_NOTICE([creating $ofile])
_LT_OUTPUT_LIBTOOL_COMMANDS
AS_EXIT(0)
_LTEOF
chmod +x "$CONFIG_LT"

configure is writing to config.log, but config.lt does its own redirection,
appending to config.log, which fails on DOS, as config.log is still kept
open by configure. Here we exec the FD to /dev/null, effectively closing
config.log, so it can be properly (re)opened and appended to by config.lt.
lt_cl_success=:
test yes = "$silent" &&
 lt_config_lt_args="$lt_config_lt_args --quiet"
exec AS_MESSAGE_LOG_FD>/dev/null
$SHELL "$CONFIG_LT" $lt_config_lt_args || lt_cl_success=false
exec AS_MESSAGE_LOG_FD>>config.log
$lt_cl_success || AS_EXIT(1)
])# LT_OUTPUT

_LT_CONFIG(TAG)

If TAG is the built-in tag, create an initial libtool script with a
default configuration from the untagged config vars. Otherwise add code
to config.status for appending the configuration named by TAG from the
matching tagged config vars.
m4_defun([_LT_CONFIG],
[m4_require([_LT_FILEUTILS_DEFAULTS])dnl
_LT_CONFIG_SAVE_COMMANDS([
 m4_define([_LT_TAG], m4_if([$1], [], [C], [$1]))dnl
 m4_if(_LT_TAG, [C], [
 # See if we are running on zsh, and set the options that allow our
 # commands through without removal of \ escapes.
 if test -n "${ZSH_VERSION+set}"; then
 setopt NO_GLOB_SUBST
 fi

 cfgfile=${ofile}T
 trap "$RM \"$cfgfile\"; exit 1" 1 2 15
 $RM "$cfgfile"

 cat <<_LT_EOF >> "$cfgfile"
#! $SHELL
Generated automatically by $as_me ($PACKAGE) $VERSION
NOTE: Changes made to this file will be lost: look at ltmain.sh.

Provide generalized library-building support services.
Written by Gordon Matzigkeit, 1996

_LT_COPYING
_LT_LIBTOOL_TAGS

Configured defaults for sys_lib_dlsearch_path munging.
: \${LT_SYS_LIBRARY_PATH="$configure_time_lt_sys_library_path"}

BEGIN LIBTOOL CONFIG
_LT_LIBTOOL_CONFIG_VARS
_LT_LIBTOOL_TAG_VARS
END LIBTOOL CONFIG

_LT_EOF

 cat <<'_LT_EOF' >> "$cfgfile"

BEGIN FUNCTIONS SHARED WITH CONFIGURE

_LT_PREPARE_MUNGE_PATH_LIST
_LT_PREPARE_CC_BASENAME

END FUNCTIONS SHARED WITH CONFIGURE

_LT_EOF

 case $host_os in
 aix3*)
 cat <<_LT_EOF >> "$cfgfile"
AIX sometimes has problems with the GCC collect2 program. For some
reason, if we set the COLLECT_NAMES environment variable, the problems
vanish in a puff of smoke.
if test set != "${COLLECT_NAMES+set}"; then
 COLLECT_NAMES=
 export COLLECT_NAMES
fi
_LT_EOF
 ;;
 esac

 _LT_PROG_LTMAIN

 # We use sed instead of cat because bash on DJGPP gets confused if
 # if finds mixed CR/LF and LF-only lines. Since sed operates in
 # text mode, it properly converts lines to CR/LF. This bash problem
 # is reportedly fixed, but why not run on old versions too?
 sed '$q' "$ltmain" >> "$cfgfile" \
 || (rm -f "$cfgfile"; exit 1)

 mv -f "$cfgfile" "$ofile" ||
 (rm -f "$ofile" && cp "$cfgfile" "$ofile" && rm -f "$cfgfile")
 chmod +x "$ofile"
],
[cat <<_LT_EOF >> "$ofile"

dnl Unfortunately we have to use $1 here, since _LT_TAG is not expanded
dnl in a comment (ie after a #).
BEGIN LIBTOOL TAG CONFIG: $1
_LT_LIBTOOL_TAG_VARS(_LT_TAG)
END LIBTOOL TAG CONFIG: $1
_LT_EOF
])dnl /m4_if
],
[m4_if([$1], [], [
 PACKAGE='$PACKAGE'
 VERSION='$VERSION'
 RM='$RM'
 ofile='$ofile'], [])
])dnl /_LT_CONFIG_SAVE_COMMANDS
])# _LT_CONFIG

LT_SUPPORTED_TAG(TAG)

Trace this macro to discover what tags are supported by the libtool
--tag option, using:
autoconf --trace 'LT_SUPPORTED_TAG:$1'
AC_DEFUN([LT_SUPPORTED_TAG], [])

C support is built-in for now
m4_define([_LT_LANG_C_enabled], [])
m4_define([_LT_TAGS], [])

LT_LANG(LANG)

Enable libtool support for the given language if not already enabled.
AC_DEFUN([LT_LANG],
[AC_BEFORE([$0], [LT_OUTPUT])dnl
m4_case([$1],
 [C],			[_LT_LANG(C)],
 [C++],		[_LT_LANG(CXX)],
 [Go],			[_LT_LANG(GO)],
 [Java],		[_LT_LANG(GCJ)],
 [Fortran 77],		[_LT_LANG(F77)],
 [Fortran],		[_LT_LANG(FC)],
 [Windows Resource],	[_LT_LANG(RC)],
 [m4_ifdef([_LT_LANG_]$1[_CONFIG],
 [_LT_LANG($1)],
 [m4_fatal([$0: unsupported language: "$1"])])])dnl
])# LT_LANG

_LT_LANG(LANGNAME)

m4_defun([_LT_LANG],
[m4_ifdef([_LT_LANG_]$1[_enabled], [],
 [LT_SUPPORTED_TAG([$1])dnl
 m4_append([_LT_TAGS], [$1])dnl
 m4_define([_LT_LANG_]$1[_enabled], [])dnl
 _LT_LANG_$1_CONFIG($1)])dnl
])# _LT_LANG

m4_ifndef([AC_PROG_GO], [
##
NOTE: This macro has been submitted for inclusion into
GNU Autoconf as AC_PROG_GO. When it is available in
a released version of Autoconf we should remove this
macro and use it instead.
##
m4_defun([AC_PROG_GO],
[AC_LANG_PUSH(Go)dnl
AC_ARG_VAR([GOC], [Go compiler command])dnl
AC_ARG_VAR([GOFLAGS], [Go compiler flags])dnl
_AC_ARG_VAR_LDFLAGS()dnl
AC_CHECK_TOOL(GOC, gccgo)
if test -z "$GOC"; then
 if test -n "$ac_tool_prefix"; then
 AC_CHECK_PROG(GOC, [${ac_tool_prefix}gccgo], [${ac_tool_prefix}gccgo])
 fi
fi
if test -z "$GOC"; then
 AC_CHECK_PROG(GOC, gccgo, gccgo, false)
fi
])#m4_defun
])#m4_ifndef

_LT_LANG_DEFAULT_CONFIG

m4_defun([_LT_LANG_DEFAULT_CONFIG],
[AC_PROVIDE_IFELSE([AC_PROG_CXX],
 [LT_LANG(CXX)],
 [m4_define([AC_PROG_CXX], defn([AC_PROG_CXX])[LT_LANG(CXX)])])

AC_PROVIDE_IFELSE([AC_PROG_F77],
 [LT_LANG(F77)],
 [m4_define([AC_PROG_F77], defn([AC_PROG_F77])[LT_LANG(F77)])])

AC_PROVIDE_IFELSE([AC_PROG_FC],
 [LT_LANG(FC)],
 [m4_define([AC_PROG_FC], defn([AC_PROG_FC])[LT_LANG(FC)])])

dnl The call to [A][M_PROG_GCJ] is quoted like that to stop aclocal
dnl pulling things in needlessly.
AC_PROVIDE_IFELSE([AC_PROG_GCJ],
 [LT_LANG(GCJ)],
 [AC_PROVIDE_IFELSE([A][M_PROG_GCJ],
 [LT_LANG(GCJ)],
 [AC_PROVIDE_IFELSE([LT_PROG_GCJ],
 [LT_LANG(GCJ)],
 [m4_ifdef([AC_PROG_GCJ],
	[m4_define([AC_PROG_GCJ], defn([AC_PROG_GCJ])[LT_LANG(GCJ)])])
 m4_ifdef([A][M_PROG_GCJ],
	[m4_define([A][M_PROG_GCJ], defn([A][M_PROG_GCJ])[LT_LANG(GCJ)])])
 m4_ifdef([LT_PROG_GCJ],
	[m4_define([LT_PROG_GCJ], defn([LT_PROG_GCJ])[LT_LANG(GCJ)])])])])])

AC_PROVIDE_IFELSE([AC_PROG_GO],
 [LT_LANG(GO)],
 [m4_define([AC_PROG_GO], defn([AC_PROG_GO])[LT_LANG(GO)])])

AC_PROVIDE_IFELSE([LT_PROG_RC],
 [LT_LANG(RC)],
 [m4_define([LT_PROG_RC], defn([LT_PROG_RC])[LT_LANG(RC)])])
])# _LT_LANG_DEFAULT_CONFIG

Obsolete macros:
AU_DEFUN([AC_LIBTOOL_CXX], [LT_LANG(C++)])
AU_DEFUN([AC_LIBTOOL_F77], [LT_LANG(Fortran 77)])
AU_DEFUN([AC_LIBTOOL_FC], [LT_LANG(Fortran)])
AU_DEFUN([AC_LIBTOOL_GCJ], [LT_LANG(Java)])
AU_DEFUN([AC_LIBTOOL_RC], [LT_LANG(Windows Resource)])
dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([AC_LIBTOOL_CXX], [])
dnl AC_DEFUN([AC_LIBTOOL_F77], [])
dnl AC_DEFUN([AC_LIBTOOL_FC], [])
dnl AC_DEFUN([AC_LIBTOOL_GCJ], [])
dnl AC_DEFUN([AC_LIBTOOL_RC], [])

_LT_TAG_COMPILER

m4_defun([_LT_TAG_COMPILER],
[AC_REQUIRE([AC_PROG_CC])dnl

_LT_DECL([LTCC], [CC], [1], [A C compiler])dnl
_LT_DECL([LTCFLAGS], [CFLAGS], [1], [LTCC compiler flags])dnl
_LT_TAGDECL([CC], [compiler], [1], [A language specific compiler])dnl
_LT_TAGDECL([with_gcc], [GCC], [0], [Is the compiler the GNU compiler?])dnl

If no C compiler was specified, use CC.
LTCC=${LTCC-"$CC"}

If no C compiler flags were specified, use CFLAGS.
LTCFLAGS=${LTCFLAGS-"$CFLAGS"}

Allow CC to be a program name with arguments.
compiler=$CC
])# _LT_TAG_COMPILER

_LT_COMPILER_BOILERPLATE

Check for compiler boilerplate output or warnings with
the simple compiler test code.
m4_defun([_LT_COMPILER_BOILERPLATE],
[m4_require([_LT_DECL_SED])dnl
ac_outfile=conftest.$ac_objext
echo "$lt_simple_compile_test_code" >conftest.$ac_ext
eval "$ac_compile" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err
_lt_compiler_boilerplate=`cat conftest.err`
$RM conftest*
])# _LT_COMPILER_BOILERPLATE

_LT_LINKER_BOILERPLATE

Check for linker boilerplate output or warnings with
the simple link test code.
m4_defun([_LT_LINKER_BOILERPLATE],
[m4_require([_LT_DECL_SED])dnl
ac_outfile=conftest.$ac_objext
echo "$lt_simple_link_test_code" >conftest.$ac_ext
eval "$ac_link" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err
_lt_linker_boilerplate=`cat conftest.err`
$RM -r conftest*
])# _LT_LINKER_BOILERPLATE

_LT_REQUIRED_DARWIN_CHECKS

m4_defun_once([_LT_REQUIRED_DARWIN_CHECKS],[
 case $host_os in
 rhapsody* | darwin*)
 AC_CHECK_TOOL([DSYMUTIL], [dsymutil], [:])
 AC_CHECK_TOOL([NMEDIT], [nmedit], [:])
 AC_CHECK_TOOL([LIPO], [lipo], [:])
 AC_CHECK_TOOL([OTOOL], [otool], [:])
 AC_CHECK_TOOL([OTOOL64], [otool64], [:])
 _LT_DECL([], [DSYMUTIL], [1],
 [Tool to manipulate archived DWARF debug symbol files on Mac OS X])
 _LT_DECL([], [NMEDIT], [1],
 [Tool to change global to local symbols on Mac OS X])
 _LT_DECL([], [LIPO], [1],
 [Tool to manipulate fat objects and archives on Mac OS X])
 _LT_DECL([], [OTOOL], [1],
 [ldd/readelf like tool for Mach-O binaries on Mac OS X])
 _LT_DECL([], [OTOOL64], [1],
 [ldd/readelf like tool for 64 bit Mach-O binaries on Mac OS X 10.4])

 AC_CACHE_CHECK([for -single_module linker flag],[lt_cv_apple_cc_single_mod],
 [lt_cv_apple_cc_single_mod=no
 if test -z "$LT_MULTI_MODULE"; then
	# By default we will add the -single_module flag. You can override
	# by either setting the environment variable LT_MULTI_MODULE
	# non-empty at configure time, or by adding -multi_module to the
	# link flags.
	rm -rf libconftest.dylib*
	echo "int foo(void){return 1;}" > conftest.c
	echo "$LTCC $LTCFLAGS $LDFLAGS -o libconftest.dylib \
-dynamiclib -Wl,-single_module conftest.c" >&AS_MESSAGE_LOG_FD
	$LTCC $LTCFLAGS $LDFLAGS -o libconftest.dylib \
	 -dynamiclib -Wl,-single_module conftest.c 2>conftest.err
 _lt_result=$?
	# If there is a non-empty error log, and "single_module"
	# appears in it, assume the flag caused a linker warning
 if test -s conftest.err && $GREP single_module conftest.err; then
	 cat conftest.err >&AS_MESSAGE_LOG_FD
	# Otherwise, if the output was created with a 0 exit code from
	# the compiler, it worked.
	elif test -f libconftest.dylib && test 0 = "$_lt_result"; then
	 lt_cv_apple_cc_single_mod=yes
	else
	 cat conftest.err >&AS_MESSAGE_LOG_FD
	fi
	rm -rf libconftest.dylib*
	rm -f conftest.*
 fi])

 AC_CACHE_CHECK([for -exported_symbols_list linker flag],
 [lt_cv_ld_exported_symbols_list],
 [lt_cv_ld_exported_symbols_list=no
 save_LDFLAGS=$LDFLAGS
 echo "_main" > conftest.sym
 LDFLAGS="$LDFLAGS -Wl,-exported_symbols_list,conftest.sym"
 AC_LINK_IFELSE([AC_LANG_PROGRAM([],[])],
	[lt_cv_ld_exported_symbols_list=yes],
	[lt_cv_ld_exported_symbols_list=no])
	LDFLAGS=$save_LDFLAGS
])

 AC_CACHE_CHECK([for -force_load linker flag],[lt_cv_ld_force_load],
 [lt_cv_ld_force_load=no
 cat > conftest.c << _LT_EOF
int forced_loaded() { return 2;}
_LT_EOF
 echo "$LTCC $LTCFLAGS -c -o conftest.o conftest.c" >&AS_MESSAGE_LOG_FD
 $LTCC $LTCFLAGS -c -o conftest.o conftest.c 2>&AS_MESSAGE_LOG_FD
 echo "$AR cru libconftest.a conftest.o" >&AS_MESSAGE_LOG_FD
 $AR cru libconftest.a conftest.o 2>&AS_MESSAGE_LOG_FD
 echo "$RANLIB libconftest.a" >&AS_MESSAGE_LOG_FD
 $RANLIB libconftest.a 2>&AS_MESSAGE_LOG_FD
 cat > conftest.c << _LT_EOF
int main() { return 0;}
_LT_EOF
 echo "$LTCC $LTCFLAGS $LDFLAGS -o conftest conftest.c -Wl,-force_load,./libconftest.a" >&AS_MESSAGE_LOG_FD
 $LTCC $LTCFLAGS $LDFLAGS -o conftest conftest.c -Wl,-force_load,./libconftest.a 2>conftest.err
 _lt_result=$?
 if test -s conftest.err && $GREP force_load conftest.err; then
	cat conftest.err >&AS_MESSAGE_LOG_FD
 elif test -f conftest && test 0 = "$_lt_result" && $GREP forced_load conftest >/dev/null 2>&1; then
	lt_cv_ld_force_load=yes
 else
	cat conftest.err >&AS_MESSAGE_LOG_FD
 fi
 rm -f conftest.err libconftest.a conftest conftest.c
 rm -rf conftest.dSYM
])
 case $host_os in
 rhapsody* | darwin1.[[012]])
 _lt_dar_allow_undefined='$wl-undefined ${wl}suppress' ;;
 darwin1.*)
 _lt_dar_allow_undefined='$wl-flat_namespace $wl-undefined ${wl}suppress' ;;
 darwin*) # darwin 5.x on
 # if running on 10.5 or later, the deployment target defaults
 # to the OS version, if on x86, and 10.4, the deployment
 # target defaults to 10.4. Don't you love it?
 case ${MACOSX_DEPLOYMENT_TARGET-10.0},$host in
	10.0,*86*-darwin8*|10.0,*-darwin[[91]]*)
	 _lt_dar_allow_undefined='$wl-undefined ${wl}dynamic_lookup' ;;
	10.[[012]][[,.]]*)
	 _lt_dar_allow_undefined='$wl-flat_namespace $wl-undefined ${wl}suppress' ;;
	10.*)
	 _lt_dar_allow_undefined='$wl-undefined ${wl}dynamic_lookup' ;;
 esac
 ;;
 esac
 if test yes = "$lt_cv_apple_cc_single_mod"; then
 _lt_dar_single_mod='$single_module'
 fi
 if test yes = "$lt_cv_ld_exported_symbols_list"; then
 _lt_dar_export_syms=' $wl-exported_symbols_list,$output_objdir/$libname-symbols.expsym'
 else
 _lt_dar_export_syms='~$NMEDIT -s $output_objdir/$libname-symbols.expsym $lib'
 fi
 if test : != "$DSYMUTIL" && test no = "$lt_cv_ld_force_load"; then
 _lt_dsymutil='~$DSYMUTIL $lib || :'
 else
 _lt_dsymutil=
 fi
 ;;
 esac
])

_LT_DARWIN_LINKER_FEATURES([TAG])

Checks for linker and compiler features on darwin
m4_defun([_LT_DARWIN_LINKER_FEATURES],
[
 m4_require([_LT_REQUIRED_DARWIN_CHECKS])
 _LT_TAGVAR(archive_cmds_need_lc, $1)=no
 _LT_TAGVAR(hardcode_direct, $1)=no
 _LT_TAGVAR(hardcode_automatic, $1)=yes
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=unsupported
 if test yes = "$lt_cv_ld_force_load"; then
 _LT_TAGVAR(whole_archive_flag_spec, $1)='`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience $wl-force_load,$conv\"; done; func_echo_all \"$new_convenience\"`'
 m4_case([$1], [F77], [_LT_TAGVAR(compiler_needs_object, $1)=yes],
 [FC], [_LT_TAGVAR(compiler_needs_object, $1)=yes])
 else
 _LT_TAGVAR(whole_archive_flag_spec, $1)=''
 fi
 _LT_TAGVAR(link_all_deplibs, $1)=yes
 _LT_TAGVAR(allow_undefined_flag, $1)=$_lt_dar_allow_undefined
 case $cc_basename in
 ifort*|nagfor*) _lt_dar_can_shared=yes ;;
 *) _lt_dar_can_shared=$GCC ;;
 esac
 if test yes = "$_lt_dar_can_shared"; then
 output_verbose_link_cmd=func_echo_all
 _LT_TAGVAR(archive_cmds, $1)="\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod$_lt_dsymutil"
 _LT_TAGVAR(module_cmds, $1)="\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags$_lt_dsymutil"
 _LT_TAGVAR(archive_expsym_cmds, $1)="sed 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod$_lt_dar_export_syms$_lt_dsymutil"
 _LT_TAGVAR(module_expsym_cmds, $1)="sed -e 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags$_lt_dar_export_syms$_lt_dsymutil"
 m4_if([$1], [CXX],
[if test yes != "$lt_cv_apple_cc_single_mod"; then
 _LT_TAGVAR(archive_cmds, $1)="\$CC -r -keep_private_externs -nostdlib -o \$lib-master.o \$libobjs~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$lib-master.o \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring$_lt_dsymutil"
 _LT_TAGVAR(archive_expsym_cmds, $1)="sed 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC -r -keep_private_externs -nostdlib -o \$lib-master.o \$libobjs~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$lib-master.o \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring$_lt_dar_export_syms$_lt_dsymutil"
 fi
],[])
 else
 _LT_TAGVAR(ld_shlibs, $1)=no
 fi
])

_LT_SYS_MODULE_PATH_AIX([TAGNAME])

Links a minimal program and checks the executable
for the system default hardcoded library path. In most cases,
this is /usr/lib:/lib, but when the MPI compilers are used
the location of the communication and MPI libs are included too.
If we don't find anything, use the default library path according
to the aix ld manual.
Store the results from the different compilers for each TAGNAME.
Allow to override them for all tags through lt_cv_aix_libpath.
m4_defun([_LT_SYS_MODULE_PATH_AIX],
[m4_require([_LT_DECL_SED])dnl
if test set = "${lt_cv_aix_libpath+set}"; then
 aix_libpath=$lt_cv_aix_libpath
else
 AC_CACHE_VAL([_LT_TAGVAR([lt_cv_aix_libpath_], [$1])],
 [AC_LINK_IFELSE([AC_LANG_PROGRAM],[
 lt_aix_libpath_sed='[
 /Import File Strings/,/^$/ {
	 /^0/ {
	 s/^0 *\([^]*\) *$/\1/
	 p
	 }
 }]'
 _LT_TAGVAR([lt_cv_aix_libpath_], [$1])=`dump -H conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"`
 # Check for a 64-bit object if we didn't find anything.
 if test -z "$_LT_TAGVAR([lt_cv_aix_libpath_], [$1])"; then
 _LT_TAGVAR([lt_cv_aix_libpath_], [$1])=`dump -HX64 conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"`
 fi],[])
 if test -z "$_LT_TAGVAR([lt_cv_aix_libpath_], [$1])"; then
 _LT_TAGVAR([lt_cv_aix_libpath_], [$1])=/usr/lib:/lib
 fi
])
 aix_libpath=$_LT_TAGVAR([lt_cv_aix_libpath_], [$1])
fi
])# _LT_SYS_MODULE_PATH_AIX

_LT_SHELL_INIT(ARG)

m4_define([_LT_SHELL_INIT],
[m4_divert_text([M4SH-INIT], [$1
])])# _LT_SHELL_INIT

_LT_PROG_ECHO_BACKSLASH

Find how we can fake an echo command that does not interpret backslash.
In particular, with Autoconf 2.60 or later we add some code to the start
of the generated configure script that will find a shell with a builtin
printf (that we can use as an echo command).
m4_defun([_LT_PROG_ECHO_BACKSLASH],
[ECHO='\\\'
ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO
ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO$ECHO

AC_MSG_CHECKING([how to print strings])
Test print first, because it will be a builtin if present.
if test "X`(print -r -- -n) 2>/dev/null`" = X-n && \
 test "X`print -r -- $ECHO 2>/dev/null`" = "X$ECHO"; then
 ECHO='print -r --'
elif test "X`printf %s $ECHO 2>/dev/null`" = "X$ECHO"; then
 ECHO='printf %s\n'
else
 # Use this function as a fallback that always works.
 func_fallback_echo ()
 {
 eval 'cat <<_LTECHO_EOF
$[]1
_LTECHO_EOF'
 }
 ECHO='func_fallback_echo'
fi

func_echo_all arg...
Invoke $ECHO with all args, space-separated.
func_echo_all ()
{
 $ECHO "$*"
}

case $ECHO in
 printf*) AC_MSG_RESULT([printf]) ;;
 print*) AC_MSG_RESULT([print -r]) ;;
 *) AC_MSG_RESULT([cat]) ;;
esac

m4_ifdef([_AS_DETECT_SUGGESTED],
[_AS_DETECT_SUGGESTED([
 test -n "${ZSH_VERSION+set}${BASH_VERSION+set}" || (
 ECHO='\\\'
 ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO
 ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO$ECHO
 PATH=/empty FPATH=/empty; export PATH FPATH
 test "X`printf %s $ECHO`" = "X$ECHO" \
 || test "X`print -r -- $ECHO`" = "X$ECHO")])])

_LT_DECL([], [SHELL], [1], [Shell to use when invoking shell scripts])
_LT_DECL([], [ECHO], [1], [An echo program that protects backslashes])
])# _LT_PROG_ECHO_BACKSLASH

_LT_WITH_SYSROOT

AC_DEFUN([_LT_WITH_SYSROOT],
[AC_MSG_CHECKING([for sysroot])
AC_ARG_WITH([sysroot],
[AS_HELP_STRING([--with-sysroot@<:@=DIR@:>@],
 [Search for dependent libraries within DIR (or the compiler's sysroot
 if not specified).])],
[], [with_sysroot=no])

dnl lt_sysroot will always be passed unquoted. We quote it here
dnl in case the user passed a directory name.
lt_sysroot=
case $with_sysroot in #(
 yes)
 if test yes = "$GCC"; then
 lt_sysroot=`$CC --print-sysroot 2>/dev/null`
 fi
 ;; #(
 /*)
 lt_sysroot=`echo "$with_sysroot" | sed -e "$sed_quote_subst"`
 ;; #(
 no|'')
 ;; #(
 *)
 AC_MSG_RESULT([$with_sysroot])
 AC_MSG_ERROR([The sysroot must be an absolute path.])
 ;;
esac

 AC_MSG_RESULT([${lt_sysroot:-no}])
_LT_DECL([], [lt_sysroot], [0], [The root where to search for]dnl
[dependent libraries, and where our libraries should be installed.])])

_LT_ENABLE_LOCK

m4_defun([_LT_ENABLE_LOCK],
[AC_ARG_ENABLE([libtool-lock],
 [AS_HELP_STRING([--disable-libtool-lock],
 [avoid locking (might break parallel builds)])])
test no = "$enable_libtool_lock" || enable_libtool_lock=yes

Some flags need to be propagated to the compiler or linker for good
libtool support.
case $host in
ia64-*-hpux*)
 # Find out what ABI is being produced by ac_compile, and set mode
 # options accordingly.
 echo 'int i;' > conftest.$ac_ext
 if AC_TRY_EVAL(ac_compile); then
 case `/usr/bin/file conftest.$ac_objext` in
 ELF-32)
	HPUX_IA64_MODE=32
	;;
 ELF-64)
	HPUX_IA64_MODE=64
	;;
 esac
 fi
 rm -rf conftest*
 ;;
--irix6*)
 # Find out what ABI is being produced by ac_compile, and set linker
 # options accordingly.
 echo '[#]line '$LINENO' "configure"' > conftest.$ac_ext
 if AC_TRY_EVAL(ac_compile); then
 if test yes = "$lt_cv_prog_gnu_ld"; then
 case `/usr/bin/file conftest.$ac_objext` in
	32-bit)
	 LD="${LD-ld} -melf32bsmip"
	 ;;
	N32)
	 LD="${LD-ld} -melf32bmipn32"
	 ;;
	64-bit)
	 LD="${LD-ld} -melf64bmip"
	;;
 esac
 else
 case `/usr/bin/file conftest.$ac_objext` in
	32-bit)
	 LD="${LD-ld} -32"
	 ;;
	N32)
	 LD="${LD-ld} -n32"
	 ;;
	64-bit)
	 LD="${LD-ld} -64"
	 ;;
 esac
 fi
 fi
 rm -rf conftest*
 ;;

mips64*-*linux*)
 # Find out what ABI is being produced by ac_compile, and set linker
 # options accordingly.
 echo '[#]line '$LINENO' "configure"' > conftest.$ac_ext
 if AC_TRY_EVAL(ac_compile); then
 emul=elf
 case `/usr/bin/file conftest.$ac_objext` in
 32-bit)
	emul="${emul}32"
	;;
 64-bit)
	emul="${emul}64"
	;;
 esac
 case `/usr/bin/file conftest.$ac_objext` in
 MSB)
	emul="${emul}btsmip"
	;;
 LSB)
	emul="${emul}ltsmip"
	;;
 esac
 case `/usr/bin/file conftest.$ac_objext` in
 N32)
	emul="${emul}n32"
	;;
 esac
 LD="${LD-ld} -m $emul"
 fi
 rm -rf conftest*
 ;;

x86_64-*kfreebsd*-gnu|x86_64-*linux*|powerpc*-*linux*| \
s390*-*linux*|s390*-*tpf*|sparc*-*linux*)
 # Find out what ABI is being produced by ac_compile, and set linker
 # options accordingly. Note that the listed cases only cover the
 # situations where additional linker options are needed (such as when
 # doing 32-bit compilation for a host where ld defaults to 64-bit, or
 # vice versa); the common cases where no linker options are needed do
 # not appear in the list.
 echo 'int i;' > conftest.$ac_ext
 if AC_TRY_EVAL(ac_compile); then
 case `/usr/bin/file conftest.o` in
 32-bit)
	case $host in
	 x86_64-*kfreebsd*-gnu)
	 LD="${LD-ld} -m elf_i386_fbsd"
	 ;;
	 x86_64-*linux*)
	 case `/usr/bin/file conftest.o` in
	 x86-64)
		LD="${LD-ld} -m elf32_x86_64"
		;;
	 *)
		LD="${LD-ld} -m elf_i386"
		;;
	 esac
	 ;;
	 powerpc64le-*linux*)
	 LD="${LD-ld} -m elf32lppclinux"
	 ;;
	 powerpc64-*linux*)
	 LD="${LD-ld} -m elf32ppclinux"
	 ;;
	 s390x-*linux*)
	 LD="${LD-ld} -m elf_s390"
	 ;;
	 sparc64-*linux*)
	 LD="${LD-ld} -m elf32_sparc"
	 ;;
	esac
	;;
 64-bit)
	case $host in
	 x86_64-*kfreebsd*-gnu)
	 LD="${LD-ld} -m elf_x86_64_fbsd"
	 ;;
	 x86_64-*linux*)
	 LD="${LD-ld} -m elf_x86_64"
	 ;;
	 powerpcle-*linux*)
	 LD="${LD-ld} -m elf64lppc"
	 ;;
	 powerpc-*linux*)
	 LD="${LD-ld} -m elf64ppc"
	 ;;
	 s390*-*linux*|s390*-*tpf*)
	 LD="${LD-ld} -m elf64_s390"
	 ;;
	 sparc*-*linux*)
	 LD="${LD-ld} -m elf64_sparc"
	 ;;
	esac
	;;
 esac
 fi
 rm -rf conftest*
 ;;

--sco3.2v5*)
 # On SCO OpenServer 5, we need -belf to get full-featured binaries.
 SAVE_CFLAGS=$CFLAGS
 CFLAGS="$CFLAGS -belf"
 AC_CACHE_CHECK([whether the C compiler needs -belf], lt_cv_cc_needs_belf,
 [AC_LANG_PUSH(C)
 AC_LINK_IFELSE([AC_LANG_PROGRAM([[]],[[]])],[lt_cv_cc_needs_belf=yes],[lt_cv_cc_needs_belf=no])
 AC_LANG_POP])
 if test yes != "$lt_cv_cc_needs_belf"; then
 # this is probably gcc 2.8.0, egcs 1.0 or newer; no need for -belf
 CFLAGS=$SAVE_CFLAGS
 fi
 ;;
*-*solaris*)
 # Find out what ABI is being produced by ac_compile, and set linker
 # options accordingly.
 echo 'int i;' > conftest.$ac_ext
 if AC_TRY_EVAL(ac_compile); then
 case `/usr/bin/file conftest.o` in
 64-bit)
 case $lt_cv_prog_gnu_ld in
 yes*)
 case $host in
 i?86-*-solaris*|x86_64-*-solaris*)
 LD="${LD-ld} -m elf_x86_64"
 ;;
 sparc*-*-solaris*)
 LD="${LD-ld} -m elf64_sparc"
 ;;
 esac
 # GNU ld 2.21 introduced _sol2 emulations. Use them if available.
 if ${LD-ld} -V | grep _sol2 >/dev/null 2>&1; then
 LD=${LD-ld}_sol2
 fi
 ;;
 *)
	if ${LD-ld} -64 -r -o conftest2.o conftest.o >/dev/null 2>&1; then
	 LD="${LD-ld} -64"
	fi
	;;
 esac
 ;;
 esac
 fi
 rm -rf conftest*
 ;;
esac

need_locks=$enable_libtool_lock
])# _LT_ENABLE_LOCK

_LT_PROG_AR

m4_defun([_LT_PROG_AR],
[AC_CHECK_TOOLS(AR, [ar], false)
: ${AR=ar}
: ${AR_FLAGS=cru}
_LT_DECL([], [AR], [1], [The archiver])
_LT_DECL([], [AR_FLAGS], [1], [Flags to create an archive])

AC_CACHE_CHECK([for archiver @FILE support], [lt_cv_ar_at_file],
 [lt_cv_ar_at_file=no
 AC_COMPILE_IFELSE([AC_LANG_PROGRAM],
 [echo conftest.$ac_objext > conftest.lst
 lt_ar_try='$AR $AR_FLAGS libconftest.a @conftest.lst >&AS_MESSAGE_LOG_FD'
 AC_TRY_EVAL([lt_ar_try])
 if test 0 -eq "$ac_status"; then
	# Ensure the archiver fails upon bogus file names.
	rm -f conftest.$ac_objext libconftest.a
	AC_TRY_EVAL([lt_ar_try])
	if test 0 -ne "$ac_status"; then
 lt_cv_ar_at_file=@
 fi
 fi
 rm -f conftest.* libconftest.a
])
])

if test no = "$lt_cv_ar_at_file"; then
 archiver_list_spec=
else
 archiver_list_spec=$lt_cv_ar_at_file
fi
_LT_DECL([], [archiver_list_spec], [1],
 [How to feed a file listing to the archiver])
])# _LT_PROG_AR

_LT_CMD_OLD_ARCHIVE

m4_defun([_LT_CMD_OLD_ARCHIVE],
[_LT_PROG_AR

AC_CHECK_TOOL(STRIP, strip, :)
test -z "$STRIP" && STRIP=:
_LT_DECL([], [STRIP], [1], [A symbol stripping program])

AC_CHECK_TOOL(RANLIB, ranlib, :)
test -z "$RANLIB" && RANLIB=:
_LT_DECL([], [RANLIB], [1],
 [Commands used to install an old-style archive])

Determine commands to create old-style static archives.
old_archive_cmds='$AR $AR_FLAGS $oldlib$oldobjs'
old_postinstall_cmds='chmod 644 $oldlib'
old_postuninstall_cmds=

if test -n "$RANLIB"; then
 case $host_os in
 bitrig* | openbsd*)
 old_postinstall_cmds="$old_postinstall_cmds~\$RANLIB -t \$tool_oldlib"
 ;;
 *)
 old_postinstall_cmds="$old_postinstall_cmds~\$RANLIB \$tool_oldlib"
 ;;
 esac
 old_archive_cmds="$old_archive_cmds~\$RANLIB \$tool_oldlib"
fi

case $host_os in
 darwin*)
 lock_old_archive_extraction=yes ;;
 *)
 lock_old_archive_extraction=no ;;
esac
_LT_DECL([], [old_postinstall_cmds], [2])
_LT_DECL([], [old_postuninstall_cmds], [2])
_LT_TAGDECL([], [old_archive_cmds], [2],
 [Commands used to build an old-style archive])
_LT_DECL([], [lock_old_archive_extraction], [0],
 [Whether to use a lock for old archive extraction])
])# _LT_CMD_OLD_ARCHIVE

_LT_COMPILER_OPTION(MESSAGE, VARIABLE-NAME, FLAGS,
#		[OUTPUT-FILE], [ACTION-SUCCESS], [ACTION-FAILURE])
--
Check whether the given compiler option works
AC_DEFUN([_LT_COMPILER_OPTION],
[m4_require([_LT_FILEUTILS_DEFAULTS])dnl
m4_require([_LT_DECL_SED])dnl
AC_CACHE_CHECK([$1], [$2],
 [$2=no
 m4_if([$4], , [ac_outfile=conftest.$ac_objext], [ac_outfile=$4])
 echo "$lt_simple_compile_test_code" > conftest.$ac_ext
 lt_compiler_flag="$3" ## exclude from sc_useless_quotes_in_assignment
 # Insert the option either (1) after the last *FLAGS variable, or
 # (2) before a word containing "conftest.", or (3) at the end.
 # Note that $ac_compile itself does not contain backslashes and begins
 # with a dollar sign (not a hyphen), so the echo should work correctly.
 # The option is referenced via a variable to avoid confusing sed.
 lt_compile=`echo "$ac_compile" | $SED \
 -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
 -e 's: [[^]]*conftest\.: $lt_compiler_flag&:; t' \
 -e 's:$: $lt_compiler_flag:'`
 (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&AS_MESSAGE_LOG_FD)
 (eval "$lt_compile" 2>conftest.err)
 ac_status=$?
 cat conftest.err >&AS_MESSAGE_LOG_FD
 echo "$as_me:$LINENO: \$? = $ac_status" >&AS_MESSAGE_LOG_FD
 if (exit $ac_status) && test -s "$ac_outfile"; then
 # The compiler can only warn and ignore the option if not recognized
 # So say no if there are warnings other than the usual output.
 $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' >conftest.exp
 $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then
 $2=yes
 fi
 fi
 $RM conftest*
])

if test yes = "[$]$2"; then
 m4_if([$5], , :, [$5])
else
 m4_if([$6], , :, [$6])
fi
])# _LT_COMPILER_OPTION

Old name:
AU_ALIAS([AC_LIBTOOL_COMPILER_OPTION], [_LT_COMPILER_OPTION])
dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([AC_LIBTOOL_COMPILER_OPTION], [])

_LT_LINKER_OPTION(MESSAGE, VARIABLE-NAME, FLAGS,
[ACTION-SUCCESS], [ACTION-FAILURE])
--
Check whether the given linker option works
AC_DEFUN([_LT_LINKER_OPTION],
[m4_require([_LT_FILEUTILS_DEFAULTS])dnl
m4_require([_LT_DECL_SED])dnl
AC_CACHE_CHECK([$1], [$2],
 [$2=no
 save_LDFLAGS=$LDFLAGS
 LDFLAGS="$LDFLAGS $3"
 echo "$lt_simple_link_test_code" > conftest.$ac_ext
 if (eval $ac_link 2>conftest.err) && test -s conftest$ac_exeext; then
 # The linker can only warn and ignore the option if not recognized
 # So say no if there are warnings
 if test -s conftest.err; then
 # Append any errors to the config.log.
 cat conftest.err 1>&AS_MESSAGE_LOG_FD
 $ECHO "$_lt_linker_boilerplate" | $SED '/^$/d' > conftest.exp
 $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
 if diff conftest.exp conftest.er2 >/dev/null; then
 $2=yes
 fi
 else
 $2=yes
 fi
 fi
 $RM -r conftest*
 LDFLAGS=$save_LDFLAGS
])

if test yes = "[$]$2"; then
 m4_if([$4], , :, [$4])
else
 m4_if([$5], , :, [$5])
fi
])# _LT_LINKER_OPTION

Old name:
AU_ALIAS([AC_LIBTOOL_LINKER_OPTION], [_LT_LINKER_OPTION])
dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([AC_LIBTOOL_LINKER_OPTION], [])

LT_CMD_MAX_LEN
#---------------
AC_DEFUN([LT_CMD_MAX_LEN],
[AC_REQUIRE([AC_CANONICAL_HOST])dnl
find the maximum length of command line arguments
AC_MSG_CHECKING([the maximum length of command line arguments])
AC_CACHE_VAL([lt_cv_sys_max_cmd_len], [dnl
 i=0
 teststring=ABCD

 case $build_os in
 msdosdjgpp*)
 # On DJGPP, this test can blow up pretty badly due to problems in libc
 # (any single argument exceeding 2000 bytes causes a buffer overrun
 # during glob expansion). Even if it were fixed, the result of this
 # check would be larger than it should be.
 lt_cv_sys_max_cmd_len=12288; # 12K is about right
 ;;

 gnu*)
 # Under GNU Hurd, this test is not required because there is
 # no limit to the length of command line arguments.
 # Libtool will interpret -1 as no limit whatsoever
 lt_cv_sys_max_cmd_len=-1;
 ;;

 cygwin* | mingw* | cegcc*)
 # On Win9x/ME, this test blows up -- it succeeds, but takes
 # about 5 minutes as the teststring grows exponentially.
 # Worse, since 9x/ME are not pre-emptively multitasking,
 # you end up with a "frozen" computer, even though with patience
 # the test eventually succeeds (with a max line length of 256k).
 # Instead, let's just punt: use the minimum linelength reported by
 # all of the supported platforms: 8192 (on NT/2K/XP).
 lt_cv_sys_max_cmd_len=8192;
 ;;

 mint*)
 # On MiNT this can take a long time and run out of memory.
 lt_cv_sys_max_cmd_len=8192;
 ;;

 amigaos*)
 # On AmigaOS with pdksh, this test takes hours, literally.
 # So we just punt and use a minimum line length of 8192.
 lt_cv_sys_max_cmd_len=8192;
 ;;

 bitrig* | darwin* | dragonfly* | freebsd* | netbsd* | openbsd*)
 # This has been around since 386BSD, at least. Likely further.
 if test -x /sbin/sysctl; then
 lt_cv_sys_max_cmd_len=`/sbin/sysctl -n kern.argmax`
 elif test -x /usr/sbin/sysctl; then
 lt_cv_sys_max_cmd_len=`/usr/sbin/sysctl -n kern.argmax`
 else
 lt_cv_sys_max_cmd_len=65536	# usable default for all BSDs
 fi
 # And add a safety zone
 lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 4`
 lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len * 3`
 ;;

 interix*)
 # We know the value 262144 and hardcode it with a safety zone (like BSD)
 lt_cv_sys_max_cmd_len=196608
 ;;

 os2*)
 # The test takes a long time on OS/2.
 lt_cv_sys_max_cmd_len=8192
 ;;

 osf*)
 # Dr. Hans Ekkehard Plesser reports seeing a kernel panic running configure
 # due to this test when exec_disable_arg_limit is 1 on Tru64. It is not
 # nice to cause kernel panics so lets avoid the loop below.
 # First set a reasonable default.
 lt_cv_sys_max_cmd_len=16384
 #
 if test -x /sbin/sysconfig; then
 case `/sbin/sysconfig -q proc exec_disable_arg_limit` in
 1) lt_cv_sys_max_cmd_len=-1 ;;
 esac
 fi
 ;;
 sco3.2v5*)
 lt_cv_sys_max_cmd_len=102400
 ;;
 sysv5* | sco5v6* | sysv4.2uw2*)
 kargmax=`grep ARG_MAX /etc/conf/cf.d/stune 2>/dev/null`
 if test -n "$kargmax"; then
 lt_cv_sys_max_cmd_len=`echo $kargmax | sed 's/.*[[]]//'`
 else
 lt_cv_sys_max_cmd_len=32768
 fi
 ;;
 *)
 lt_cv_sys_max_cmd_len=`(getconf ARG_MAX) 2> /dev/null`
 if test -n "$lt_cv_sys_max_cmd_len" && \
 test undefined != "$lt_cv_sys_max_cmd_len"; then
 lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 4`
 lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len * 3`
 else
 # Make teststring a little bigger before we do anything with it.
 # a 1K string should be a reasonable start.
 for i in 1 2 3 4 5 6 7 8; do
 teststring=$teststring$teststring
 done
 SHELL=${SHELL-${CONFIG_SHELL-/bin/sh}}
 # If test is not a shell built-in, we'll probably end up computing a
 # maximum length that is only half of the actual maximum length, but
 # we can't tell.
 while { test X`env echo "$teststring$teststring" 2>/dev/null` \
	 = "X$teststring$teststring"; } >/dev/null 2>&1 &&
	 test 17 != "$i" # 1/2 MB should be enough
 do
 i=`expr $i + 1`
 teststring=$teststring$teststring
 done
 # Only check the string length outside the loop.
 lt_cv_sys_max_cmd_len=`expr "X$teststring" : ".*" 2>&1`
 teststring=
 # Add a significant safety factor because C++ compilers can tack on
 # massive amounts of additional arguments before passing them to the
 # linker. It appears as though 1/2 is a usable value.
 lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 2`
 fi
 ;;
 esac
])
if test -n "$lt_cv_sys_max_cmd_len"; then
 AC_MSG_RESULT($lt_cv_sys_max_cmd_len)
else
 AC_MSG_RESULT(none)
fi
max_cmd_len=$lt_cv_sys_max_cmd_len
_LT_DECL([], [max_cmd_len], [0],
 [What is the maximum length of a command?])
])# LT_CMD_MAX_LEN

Old name:
AU_ALIAS([AC_LIBTOOL_SYS_MAX_CMD_LEN], [LT_CMD_MAX_LEN])
dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([AC_LIBTOOL_SYS_MAX_CMD_LEN], [])

_LT_HEADER_DLFCN

m4_defun([_LT_HEADER_DLFCN],
[AC_CHECK_HEADERS([dlfcn.h], [], [], [AC_INCLUDES_DEFAULT])dnl
])# _LT_HEADER_DLFCN

_LT_TRY_DLOPEN_SELF (ACTION-IF-TRUE, ACTION-IF-TRUE-W-USCORE,
ACTION-IF-FALSE, ACTION-IF-CROSS-COMPILING)
--
m4_defun([_LT_TRY_DLOPEN_SELF],
[m4_require([_LT_HEADER_DLFCN])dnl
if test yes = "$cross_compiling"; then :
 [$4]
else
 lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
 lt_status=$lt_dlunknown
 cat > conftest.$ac_ext <<_LT_EOF
[#line $LINENO "configure"
#include "confdefs.h"

#if HAVE_DLFCN_H
#include <dlfcn.h>
#endif

#include <stdio.h>

#ifdef RTLD_GLOBAL
# define LT_DLGLOBAL		RTLD_GLOBAL
#else
ifdef DL_GLOBAL
# define LT_DLGLOBAL		DL_GLOBAL
else
# define LT_DLGLOBAL		0
endif
#endif

/* We may have to define LT_DLLAZY_OR_NOW in the command line if we
 find out it does not work in some platform. */
#ifndef LT_DLLAZY_OR_NOW
ifdef RTLD_LAZY
# define LT_DLLAZY_OR_NOW		RTLD_LAZY
else
ifdef DL_LAZY
# define LT_DLLAZY_OR_NOW		DL_LAZY
else
ifdef RTLD_NOW
# define LT_DLLAZY_OR_NOW	RTLD_NOW
else
ifdef DL_NOW
# define LT_DLLAZY_OR_NOW	DL_NOW
else
# define LT_DLLAZY_OR_NOW	0
endif
endif
endif
endif
#endif

/* When -fvisibility=hidden is used, assume the code has been annotated
 correspondingly for the symbols needed. */
#if defined __GNUC__ && (((__GNUC__ == 3) && (__GNUC_MINOR__ >= 3)) || (__GNUC__ > 3))
int fnord () __attribute__((visibility("default")));
#endif

int fnord () { return 42; }
int main ()
{
 void *self = dlopen (0, LT_DLGLOBAL|LT_DLLAZY_OR_NOW);
 int status = $lt_dlunknown;

 if (self)
 {
 if (dlsym (self,"fnord")) status = $lt_dlno_uscore;
 else
 {
	 if (dlsym(self,"_fnord")) status = $lt_dlneed_uscore;
 else puts (dlerror ());
	}
 /* dlclose (self); */
 }
 else
 puts (dlerror ());

 return status;
}]
_LT_EOF
 if AC_TRY_EVAL(ac_link) && test -s "conftest$ac_exeext" 2>/dev/null; then
 (./conftest; exit;) >&AS_MESSAGE_LOG_FD 2>/dev/null
 lt_status=$?
 case x$lt_status in
 x$lt_dlno_uscore) $1 ;;
 x$lt_dlneed_uscore) $2 ;;
 x$lt_dlunknown|x*) $3 ;;
 esac
 else :
 # compilation failed
 $3
 fi
fi
rm -fr conftest*
])# _LT_TRY_DLOPEN_SELF

LT_SYS_DLOPEN_SELF

AC_DEFUN([LT_SYS_DLOPEN_SELF],
[m4_require([_LT_HEADER_DLFCN])dnl
if test yes != "$enable_dlopen"; then
 enable_dlopen=unknown
 enable_dlopen_self=unknown
 enable_dlopen_self_static=unknown
else
 lt_cv_dlopen=no
 lt_cv_dlopen_libs=

 case $host_os in
 beos*)
 lt_cv_dlopen=load_add_on
 lt_cv_dlopen_libs=
 lt_cv_dlopen_self=yes
 ;;

 mingw* | pw32* | cegcc*)
 lt_cv_dlopen=LoadLibrary
 lt_cv_dlopen_libs=
 ;;

 cygwin*)
 lt_cv_dlopen=dlopen
 lt_cv_dlopen_libs=
 ;;

 darwin*)
 # if libdl is installed we need to link against it
 AC_CHECK_LIB([dl], [dlopen],
		[lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-ldl],[
 lt_cv_dlopen=dyld
 lt_cv_dlopen_libs=
 lt_cv_dlopen_self=yes
])
 ;;

 tpf*)
 # Don't try to run any link tests for TPF. We know it's impossible
 # because TPF is a cross-compiler, and we know how we open DSOs.
 lt_cv_dlopen=dlopen
 lt_cv_dlopen_libs=
 lt_cv_dlopen_self=no
 ;;

 *)
 AC_CHECK_FUNC([shl_load],
	 [lt_cv_dlopen=shl_load],
 [AC_CHECK_LIB([dld], [shl_load],
	 [lt_cv_dlopen=shl_load lt_cv_dlopen_libs=-ldld],
	[AC_CHECK_FUNC([dlopen],
	 [lt_cv_dlopen=dlopen],
	 [AC_CHECK_LIB([dl], [dlopen],
		[lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-ldl],
	 [AC_CHECK_LIB([svld], [dlopen],
		 [lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-lsvld],
	 [AC_CHECK_LIB([dld], [dld_link],
		 [lt_cv_dlopen=dld_link lt_cv_dlopen_libs=-ldld])
])
])
])
])
])
 ;;
 esac

 if test no = "$lt_cv_dlopen"; then
 enable_dlopen=no
 else
 enable_dlopen=yes
 fi

 case $lt_cv_dlopen in
 dlopen)
 save_CPPFLAGS=$CPPFLAGS
 test yes = "$ac_cv_header_dlfcn_h" && CPPFLAGS="$CPPFLAGS -DHAVE_DLFCN_H"

 save_LDFLAGS=$LDFLAGS
 wl=$lt_prog_compiler_wl eval LDFLAGS=\"\$LDFLAGS $export_dynamic_flag_spec\"

 save_LIBS=$LIBS
 LIBS="$lt_cv_dlopen_libs $LIBS"

 AC_CACHE_CHECK([whether a program can dlopen itself],
	 lt_cv_dlopen_self, [dnl
	 _LT_TRY_DLOPEN_SELF(
	 lt_cv_dlopen_self=yes, lt_cv_dlopen_self=yes,
	 lt_cv_dlopen_self=no, lt_cv_dlopen_self=cross)
])

 if test yes = "$lt_cv_dlopen_self"; then
 wl=$lt_prog_compiler_wl eval LDFLAGS=\"\$LDFLAGS $lt_prog_compiler_static\"
 AC_CACHE_CHECK([whether a statically linked program can dlopen itself],
	 lt_cv_dlopen_self_static, [dnl
	 _LT_TRY_DLOPEN_SELF(
	 lt_cv_dlopen_self_static=yes, lt_cv_dlopen_self_static=yes,
	 lt_cv_dlopen_self_static=no, lt_cv_dlopen_self_static=cross)
])
 fi

 CPPFLAGS=$save_CPPFLAGS
 LDFLAGS=$save_LDFLAGS
 LIBS=$save_LIBS
 ;;
 esac

 case $lt_cv_dlopen_self in
 yes|no) enable_dlopen_self=$lt_cv_dlopen_self ;;
 *) enable_dlopen_self=unknown ;;
 esac

 case $lt_cv_dlopen_self_static in
 yes|no) enable_dlopen_self_static=$lt_cv_dlopen_self_static ;;
 *) enable_dlopen_self_static=unknown ;;
 esac
fi
_LT_DECL([dlopen_support], [enable_dlopen], [0],
	 [Whether dlopen is supported])
_LT_DECL([dlopen_self], [enable_dlopen_self], [0],
	 [Whether dlopen of programs is supported])
_LT_DECL([dlopen_self_static], [enable_dlopen_self_static], [0],
	 [Whether dlopen of statically linked programs is supported])
])# LT_SYS_DLOPEN_SELF

Old name:
AU_ALIAS([AC_LIBTOOL_DLOPEN_SELF], [LT_SYS_DLOPEN_SELF])
dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([AC_LIBTOOL_DLOPEN_SELF], [])

_LT_COMPILER_C_O([TAGNAME])

Check to see if options -c and -o are simultaneously supported by compiler.
This macro does not hard code the compiler like AC_PROG_CC_C_O.
m4_defun([_LT_COMPILER_C_O],
[m4_require([_LT_DECL_SED])dnl
m4_require([_LT_FILEUTILS_DEFAULTS])dnl
m4_require([_LT_TAG_COMPILER])dnl
AC_CACHE_CHECK([if $compiler supports -c -o file.$ac_objext],
 [_LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)],
 [_LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)=no
 $RM -r conftest 2>/dev/null
 mkdir conftest
 cd conftest
 mkdir out
 echo "$lt_simple_compile_test_code" > conftest.$ac_ext

 lt_compiler_flag="-o out/conftest2.$ac_objext"
 # Insert the option either (1) after the last *FLAGS variable, or
 # (2) before a word containing "conftest.", or (3) at the end.
 # Note that $ac_compile itself does not contain backslashes and begins
 # with a dollar sign (not a hyphen), so the echo should work correctly.
 lt_compile=`echo "$ac_compile" | $SED \
 -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
 -e 's: [[^]]*conftest\.: $lt_compiler_flag&:; t' \
 -e 's:$: $lt_compiler_flag:'`
 (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&AS_MESSAGE_LOG_FD)
 (eval "$lt_compile" 2>out/conftest.err)
 ac_status=$?
 cat out/conftest.err >&AS_MESSAGE_LOG_FD
 echo "$as_me:$LINENO: \$? = $ac_status" >&AS_MESSAGE_LOG_FD
 if (exit $ac_status) && test -s out/conftest2.$ac_objext
 then
 # The compiler can only warn and ignore the option if not recognized
 # So say no if there are warnings
 $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' > out/conftest.exp
 $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2
 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then
 _LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)=yes
 fi
 fi
 chmod u+w . 2>&AS_MESSAGE_LOG_FD
 $RM conftest*
 # SGI C++ compiler will create directory out/ii_files/ for
 # template instantiation
 test -d out/ii_files && $RM out/ii_files/* && rmdir out/ii_files
 $RM out/* && rmdir out
 cd ..
 $RM -r conftest
 $RM conftest*
])
_LT_TAGDECL([compiler_c_o], [lt_cv_prog_compiler_c_o], [1],
	[Does compiler simultaneously support -c and -o options?])
])# _LT_COMPILER_C_O

_LT_COMPILER_FILE_LOCKS([TAGNAME])

Check to see if we can do hard links to lock some files if needed
m4_defun([_LT_COMPILER_FILE_LOCKS],
[m4_require([_LT_ENABLE_LOCK])dnl
m4_require([_LT_FILEUTILS_DEFAULTS])dnl
_LT_COMPILER_C_O([$1])

hard_links=nottested
if test no = "$_LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)" && test no != "$need_locks"; then
 # do not overwrite the value of need_locks provided by the user
 AC_MSG_CHECKING([if we can lock with hard links])
 hard_links=yes
 $RM conftest*
 ln conftest.a conftest.b 2>/dev/null && hard_links=no
 touch conftest.a
 ln conftest.a conftest.b 2>&5 || hard_links=no
 ln conftest.a conftest.b 2>/dev/null && hard_links=no
 AC_MSG_RESULT([$hard_links])
 if test no = "$hard_links"; then
 AC_MSG_WARN(['$CC' does not support '-c -o', so 'make -j' may be unsafe])
 need_locks=warn
 fi
else
 need_locks=no
fi
_LT_DECL([], [need_locks], [1], [Must we lock files when doing compilation?])
])# _LT_COMPILER_FILE_LOCKS

_LT_CHECK_OBJDIR

m4_defun([_LT_CHECK_OBJDIR],
[AC_CACHE_CHECK([for objdir], [lt_cv_objdir],
[rm -f .libs 2>/dev/null
mkdir .libs 2>/dev/null
if test -d .libs; then
 lt_cv_objdir=.libs
else
 # MS-DOS does not allow filenames that begin with a dot.
 lt_cv_objdir=_libs
fi
rmdir .libs 2>/dev/null])
objdir=$lt_cv_objdir
_LT_DECL([], [objdir], [0],
 [The name of the directory that contains temporary libtool files])dnl
m4_pattern_allow([LT_OBJDIR])dnl
AC_DEFINE_UNQUOTED([LT_OBJDIR], "$lt_cv_objdir/",
 [Define to the sub-directory where libtool stores uninstalled libraries.])
])# _LT_CHECK_OBJDIR

_LT_LINKER_HARDCODE_LIBPATH([TAGNAME])

Check hardcoding attributes.
m4_defun([_LT_LINKER_HARDCODE_LIBPATH],
[AC_MSG_CHECKING([how to hardcode library paths into programs])
_LT_TAGVAR(hardcode_action, $1)=
if test -n "$_LT_TAGVAR(hardcode_libdir_flag_spec, $1)" ||
 test -n "$_LT_TAGVAR(runpath_var, $1)" ||
 test yes = "$_LT_TAGVAR(hardcode_automatic, $1)"; then

 # We can hardcode non-existent directories.
 if test no != "$_LT_TAGVAR(hardcode_direct, $1)" &&
 # If the only mechanism to avoid hardcoding is shlibpath_var, we
 # have to relink, otherwise we might link with an installed library
 # when we should be linking with a yet-to-be-installed one
 ## test no != "$_LT_TAGVAR(hardcode_shlibpath_var, $1)" &&
 test no != "$_LT_TAGVAR(hardcode_minus_L, $1)"; then
 # Linking always hardcodes the temporary library directory.
 _LT_TAGVAR(hardcode_action, $1)=relink
 else
 # We can link without hardcoding, and we can hardcode nonexisting dirs.
 _LT_TAGVAR(hardcode_action, $1)=immediate
 fi
else
 # We cannot hardcode anything, or else we can only hardcode existing
 # directories.
 _LT_TAGVAR(hardcode_action, $1)=unsupported
fi
AC_MSG_RESULT([$_LT_TAGVAR(hardcode_action, $1)])

if test relink = "$_LT_TAGVAR(hardcode_action, $1)" ||
 test yes = "$_LT_TAGVAR(inherit_rpath, $1)"; then
 # Fast installation is not supported
 enable_fast_install=no
elif test yes = "$shlibpath_overrides_runpath" ||
 test no = "$enable_shared"; then
 # Fast installation is not necessary
 enable_fast_install=needless
fi
_LT_TAGDECL([], [hardcode_action], [0],
 [How to hardcode a shared library path into an executable])
])# _LT_LINKER_HARDCODE_LIBPATH

_LT_CMD_STRIPLIB

m4_defun([_LT_CMD_STRIPLIB],
[m4_require([_LT_DECL_EGREP])
striplib=
old_striplib=
AC_MSG_CHECKING([whether stripping libraries is possible])
if test -n "$STRIP" && $STRIP -V 2>&1 | $GREP "GNU strip" >/dev/null; then
 test -z "$old_striplib" && old_striplib="$STRIP --strip-debug"
 test -z "$striplib" && striplib="$STRIP --strip-unneeded"
 AC_MSG_RESULT([yes])
else
FIXME - insert some real tests, host_os isn't really good enough
 case $host_os in
 darwin*)
 if test -n "$STRIP"; then
 striplib="$STRIP -x"
 old_striplib="$STRIP -S"
 AC_MSG_RESULT([yes])
 else
 AC_MSG_RESULT([no])
 fi
 ;;
 *)
 AC_MSG_RESULT([no])
 ;;
 esac
fi
_LT_DECL([], [old_striplib], [1], [Commands to strip libraries])
_LT_DECL([], [striplib], [1])
])# _LT_CMD_STRIPLIB

_LT_PREPARE_MUNGE_PATH_LIST

Make sure func_munge_path_list() is defined correctly.
m4_defun([_LT_PREPARE_MUNGE_PATH_LIST],
[[# func_munge_path_list VARIABLE PATH

VARIABLE is name of variable containing _space_ separated list of
directories to be munged by the contents of PATH, which is string
having a format:
"DIR[:DIR]:"
string "DIR[DIR]" will be prepended to VARIABLE
":DIR[:DIR]"
string "DIR[DIR]" will be appended to VARIABLE
"DIRP[:DIRP]::[DIRA:]DIRA"
string "DIRP[DIRP]" will be prepended to VARIABLE and string
"DIRA[DIRA]" will be appended to VARIABLE
"DIR[:DIR]"
VARIABLE will be replaced by "DIR[DIR]"
func_munge_path_list ()
{
 case x@S|@2 in
 x)
 ;;
 *:)
 eval @S|@1=\"`$ECHO @S|@2 | $SED 's/:/ /g'` \@S|@@S|@1\"
 ;;
 x:*)
 eval @S|@1=\"\@S|@@S|@1 `$ECHO @S|@2 | $SED 's/:/ /g'`\"
 ;;
 ::)
 eval @S|@1=\"\@S|@@S|@1\ `$ECHO @S|@2 | $SED -e 's/.*:://' -e 's/:/ /g'`\"
 eval @S|@1=\"`$ECHO @S|@2 | $SED -e 's/::.*//' -e 's/:/ /g'`\ \@S|@@S|@1\"
 ;;
 *)
 eval @S|@1=\"`$ECHO @S|@2 | $SED 's/:/ /g'`\"
 ;;
 esac
}
]])# _LT_PREPARE_PATH_LIST

_LT_SYS_DYNAMIC_LINKER([TAG])

PORTME Fill in your ld.so characteristics
m4_defun([_LT_SYS_DYNAMIC_LINKER],
[AC_REQUIRE([AC_CANONICAL_HOST])dnl
m4_require([_LT_DECL_EGREP])dnl
m4_require([_LT_FILEUTILS_DEFAULTS])dnl
m4_require([_LT_DECL_OBJDUMP])dnl
m4_require([_LT_DECL_SED])dnl
m4_require([_LT_CHECK_SHELL_FEATURES])dnl
m4_require([_LT_PREPARE_MUNGE_PATH_LIST])dnl
AC_MSG_CHECKING([dynamic linker characteristics])
m4_if([$1],
	[], [
if test yes = "$GCC"; then
 case $host_os in
 darwin*) lt_awk_arg='/^libraries:/,/LR/' ;;
 *) lt_awk_arg='/^libraries:/' ;;
 esac
 case $host_os in
 mingw* | cegcc*) lt_sed_strip_eq='s|=\([[A-Za-z]]:\)|\1|g' ;;
 *) lt_sed_strip_eq='s|=/|/|g' ;;
 esac
 lt_search_path_spec=`$CC -print-search-dirs | awk $lt_awk_arg | $SED -e "s/^libraries://" -e $lt_sed_strip_eq`
 case $lt_search_path_spec in
 \;)
 # if the path contains ";" then we assume it to be the separator
 # otherwise default to the standard path separator (i.e. ":") - it is
 # assumed that no part of a normal pathname contains ";" but that should
 # okay in the real world where ";" in dirpaths is itself problematic.
 lt_search_path_spec=`$ECHO "$lt_search_path_spec" | $SED 's/;/ /g'`
 ;;
 *)
 lt_search_path_spec=`$ECHO "$lt_search_path_spec" | $SED "s/$PATH_SEPARATOR/ /g"`
 ;;
 esac
 # Ok, now we have the path, separated by spaces, we can step through it
 # and add multilib dir if necessary...
 lt_tmp_lt_search_path_spec=
 lt_multi_os_dir=/`$CC $CPPFLAGS $CFLAGS $LDFLAGS -print-multi-os-directory 2>/dev/null`
 # ...but if some path component already ends with the multilib dir we assume
 # that all is fine and trust -print-search-dirs as is (GCC 4.2? or newer).
 case "$lt_multi_os_dir; $lt_search_path_spec " in
 "/; "* | "/.; "* | "/./; "* | *"$lt_multi_os_dir "* | *"$lt_multi_os_dir/ "*)
 lt_multi_os_dir=
 ;;
 esac
 for lt_sys_path in $lt_search_path_spec; do
 if test -d "lt_sys_pathlt_multi_os_dir"; then
 lt_tmp_lt_search_path_spec="$lt_tmp_lt_search_path_spec lt_sys_pathlt_multi_os_dir"
 elif test -n "$lt_multi_os_dir"; then
 test -d "$lt_sys_path" && \
	lt_tmp_lt_search_path_spec="$lt_tmp_lt_search_path_spec $lt_sys_path"
 fi
 done
 lt_search_path_spec=`$ECHO "$lt_tmp_lt_search_path_spec" | awk '
BEGIN {RS = " "; FS = "/|\n";} {
 lt_foo = "";
 lt_count = 0;
 for (lt_i = NF; lt_i > 0; lt_i--) {
 if ($lt_i != "" && $lt_i != ".") {
 if ($lt_i == "..") {
 lt_count++;
 } else {
 if (lt_count == 0) {
 lt_foo = "/" $lt_i lt_foo;
 } else {
 lt_count--;
 }
 }
 }
 }
 if (lt_foo != "") { lt_freq[[lt_foo]]++; }
 if (lt_freq[[lt_foo]] == 1) { print lt_foo; }
}'`
 # AWK program above erroneously prepends '/' to C:/dos/paths
 # for these hosts.
 case $host_os in
 mingw* | cegcc*) lt_search_path_spec=`$ECHO "$lt_search_path_spec" |\
 $SED 's|/\([[A-Za-z]]:\)|\1|g'` ;;
 esac
 sys_lib_search_path_spec=`$ECHO "$lt_search_path_spec" | $lt_NL2SP`
else
 sys_lib_search_path_spec="/lib /usr/lib /usr/local/lib"
fi])
library_names_spec=
libname_spec='lib$name'
soname_spec=
shrext_cmds=.so
postinstall_cmds=
postuninstall_cmds=
finish_cmds=
finish_eval=
shlibpath_var=
shlibpath_overrides_runpath=unknown
version_type=none
dynamic_linker="$host_os ld.so"
sys_lib_dlsearch_path_spec="/lib /usr/lib"
need_lib_prefix=unknown
hardcode_into_libs=no

when you set need_version to no, make sure it does not cause -set_version
flags to be left without arguments
need_version=unknown

AC_ARG_VAR([LT_SYS_LIBRARY_PATH],
[User-defined run-time library search path.])

case $host_os in
aix3*)
 version_type=linux # correct to gnu/linux during the next big refactor
 library_names_spec='$libname$release$shared_ext$versuffix $libname.a'
 shlibpath_var=LIBPATH

 # AIX 3 has no versioning support, so we append a major version to the name.
 soname_spec='$libname$release$shared_ext$major'
 ;;

aix[[4-9]]*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 hardcode_into_libs=yes
 if test ia64 = "$host_cpu"; then
 # AIX 5 supports IA64
 library_names_spec='$libname$release$shared_ext$major $libname$release$shared_ext$versuffix $libname$shared_ext'
 shlibpath_var=LD_LIBRARY_PATH
 else
 # With GCC up to 2.95.x, collect2 would create an import file
 # for dependence libraries. The import file would start with
 # the line '#! .'. This would cause the generated library to
 # depend on '.', always an invalid library. This was fixed in
 # development snapshots of GCC prior to 3.0.
 case $host_os in
 aix4 | aix4.[[01]] | aix4.[[01]].*)
 if { echo '#if __GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 97)'
	 echo ' yes '
	 echo '#endif'; } | $CC -E - | $GREP yes > /dev/null; then
	:
 else
	can_build_shared=no
 fi
 ;;
 esac
 # Using Import Files as archive members, it is possible to support
 # filename-based versioning of shared library archives on AIX. While
 # this would work for both with and without runtime linking, it will
 # prevent static linking of such archives. So we do filename-based
 # shared library versioning with .so extension only, which is used
 # when both runtime linking and shared linking is enabled.
 # Unfortunately, runtime linking may impact performance, so we do
 # not want this to be the default eventually. Also, we use the
 # versioned .so libs for executables only if there is the -brtl
 # linker flag in LDFLAGS as well, or --with-aix-soname=svr4 only.
 # To allow for filename-based versioning support, we need to create
 # libNAME.so.V as an archive file, containing:
 # *) an Import File, referring to the versioned filename of the
 # archive as well as the shared archive member, telling the
 # bitwidth (32 or 64) of that shared object, and providing the
 # list of exported symbols of that shared object, eventually
 # decorated with the 'weak' keyword
 # *) the shared object with the F_LOADONLY flag set, to really avoid
 # it being seen by the linker.
 # At run time we better use the real file rather than another symlink,
 # but for link time we create the symlink libNAME.so -> libNAME.so.V

 case $with_aix_soname,$aix_use_runtimelinking in
 # AIX (on Power*) has no versioning support, so currently we cannot hardcode correct
 # soname into executable. Probably we can add versioning support to
 # collect2, so additional links can be useful in future.
 aix,yes) # traditional libtool
 dynamic_linker='AIX unversionable lib.so'
 # If using run time linking (on AIX 4.2 or later) use lib<name>.so
 # instead of lib<name>.a to let people know that these are not
 # typical AIX shared libraries.
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 ;;
 aix,no) # traditional AIX only
 dynamic_linker='AIX lib.a[(]lib.so.V[)]'
 # We preserve .a as extension for shared libraries through AIX4.2
 # and later when we are not doing run time linking.
 library_names_spec='$libname$release.a $libname.a'
 soname_spec='$libname$release$shared_ext$major'
 ;;
 svr4,*) # full svr4 only
 dynamic_linker="AIX lib.so.V[(]$shared_archive_member_spec.o[)]"
 library_names_spec='$libname$release$shared_ext$major $libname$shared_ext'
 # We do not specify a path in Import Files, so LIBPATH fires.
 shlibpath_overrides_runpath=yes
 ;;
 *,yes) # both, prefer svr4
 dynamic_linker="AIX lib.so.V[(]$shared_archive_member_spec.o[)], lib.a[(]lib.so.V[)]"
 library_names_spec='$libname$release$shared_ext$major $libname$shared_ext'
 # unpreferred sharedlib libNAME.a needs extra handling
 postinstall_cmds='test -n "$linkname" || linkname="$realname"~func_stripname "" ".so" "$linkname"~$install_shared_prog "$dir/$func_stripname_result.$libext" "$destdir/$func_stripname_result.$libext"~test -z "$tstripme" || test -z "$striplib" || $striplib "$destdir/$func_stripname_result.$libext"'
 postuninstall_cmds='for n in $library_names $old_library; do :; done~func_stripname "" ".so" "$n"~test "$func_stripname_result" = "$n" || func_append rmfiles " $odir/$func_stripname_result.$libext"'
 # We do not specify a path in Import Files, so LIBPATH fires.
 shlibpath_overrides_runpath=yes
 ;;
 *,no) # both, prefer aix
 dynamic_linker="AIX lib.a[(]lib.so.V[)], lib.so.V[(]$shared_archive_member_spec.o[)]"
 library_names_spec='$libname$release.a $libname.a'
 soname_spec='$libname$release$shared_ext$major'
 # unpreferred sharedlib libNAME.so.V and symlink libNAME.so need extra handling
 postinstall_cmds='test -z "$dlname" || $install_shared_prog $dir/$dlname $destdir/$dlname~test -z "$tstripme" || test -z "$striplib" || $striplib $destdir/$dlname~test -n "$linkname" || linkname=$realname~func_stripname "" ".a" "$linkname"~(cd "$destdir" && $LN_S -f $dlname $func_stripname_result.so)'
 postuninstall_cmds='test -z "$dlname" || func_append rmfiles " $odir/$dlname"~for n in $old_library $library_names; do :; done~func_stripname "" ".a" "$n"~func_append rmfiles " $odir/$func_stripname_result.so"'
 ;;
 esac
 shlibpath_var=LIBPATH
 fi
 ;;

amigaos*)
 case $host_cpu in
 powerpc)
 # Since July 2007 AmigaOS4 officially supports .so libraries.
 # When compiling the executable, add -use-dynld -Lsobjs: to the compileline.
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 ;;
 m68k)
 library_names_spec='$libname.ixlibrary $libname.a'
 # Create ${libname}_ixlibrary.a entries in /sys/libs.
 finish_eval='for lib in `ls $libdir/*.ixlibrary 2>/dev/null`; do libname=`func_echo_all "$lib" | $SED '\''s%^.*/\([[^/]]*\)\.ixlibrary$%\1%'\''`; $RM /sys/libs/${libname}_ixlibrary.a; $show "cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a"; cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a || exit 1; done'
 ;;
 esac
 ;;

beos*)
 library_names_spec='$libname$shared_ext'
 dynamic_linker="$host_os ld.so"
 shlibpath_var=LIBRARY_PATH
 ;;

bsdi[[45]]*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 finish_cmds='PATH="\$PATH:/sbin" ldconfig $libdir'
 shlibpath_var=LD_LIBRARY_PATH
 sys_lib_search_path_spec="/shlib /usr/lib /usr/X11/lib /usr/contrib/lib /lib /usr/local/lib"
 sys_lib_dlsearch_path_spec="/shlib /usr/lib /usr/local/lib"
 # the default ld.so.conf also contains /usr/contrib/lib and
 # /usr/X11R6/lib (/usr/X11 is a link to /usr/X11R6), but let us allow
 # libtool to hard-code these into programs
 ;;

cygwin* | mingw* | pw32* | cegcc*)
 version_type=windows
 shrext_cmds=.dll
 need_version=no
 need_lib_prefix=no

 case $GCC,$cc_basename in
 yes,*)
 # gcc
 library_names_spec='$libname.dll.a'
 # DLL is installed to $(libdir)/../bin by postinstall_cmds
 postinstall_cmds='base_file=`basename \$file`~
 dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; echo \$dlname'\''`~
 dldir=$destdir/`dirname \$dlpath`~
 test -d \$dldir || mkdir -p \$dldir~
 $install_prog $dir/$dlname \$dldir/$dlname~
 chmod a+x \$dldir/$dlname~
 if test -n '\''$stripme'\'' && test -n '\''$striplib'\''; then
 eval '\''$striplib \$dldir/$dlname'\'' || exit \$?;
 fi'
 postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~
 dlpath=$dir/\$dldll~
 $RM \$dlpath'
 shlibpath_overrides_runpath=yes

 case $host_os in
 cygwin*)
 # Cygwin DLLs use 'cyg' prefix rather than 'lib'
 soname_spec='`echo $libname | sed -e 's/^lib/cyg/'``echo $release | $SED -e 's/[[.]]/-/g'`$versuffix$shared_ext'
m4_if([$1], [],[
 sys_lib_search_path_spec="$sys_lib_search_path_spec /usr/lib/w32api"])
 ;;
 mingw* | cegcc*)
 # MinGW DLLs use traditional 'lib' prefix
 soname_spec='$libname`echo $release | $SED -e 's/[[.]]/-/g'`$versuffix$shared_ext'
 ;;
 pw32*)
 # pw32 DLLs use 'pw' prefix rather than 'lib'
 library_names_spec='`echo $libname | sed -e 's/^lib/pw/'``echo $release | $SED -e 's/[[.]]/-/g'`$versuffix$shared_ext'
 ;;
 esac
 dynamic_linker='Win32 ld.exe'
 ;;

 ,cl)
 # Native MSVC
 libname_spec='$name'
 soname_spec='$libname`echo $release | $SED -e 's/[[.]]/-/g'`$versuffix$shared_ext'
 library_names_spec='$libname.dll.lib'

 case $build_os in
 mingw*)
 sys_lib_search_path_spec=
 lt_save_ifs=$IFS
 IFS=';'
 for lt_path in $LIB
 do
 IFS=$lt_save_ifs
 # Let DOS variable expansion print the short 8.3 style file name.
 lt_path=`cd "$lt_path" 2>/dev/null && cmd //C "for %i in (".") do @echo %~si"`
 sys_lib_search_path_spec="$sys_lib_search_path_spec $lt_path"
 done
 IFS=$lt_save_ifs
 # Convert to MSYS style.
 sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | sed -e 's|\\\\|/|g' -e 's| \\([[a-zA-Z]]\\):| /\\1|g' -e 's|^ ||'`
 ;;
 cygwin*)
 # Convert to unix form, then to dos form, then back to unix form
 # but this time dos style (no spaces!) so that the unix form looks
 # like /cygdrive/c/PROGRA~1:/cygdr...
 sys_lib_search_path_spec=`cygpath --path --unix "$LIB"`
 sys_lib_search_path_spec=`cygpath --path --dos "$sys_lib_search_path_spec" 2>/dev/null`
 sys_lib_search_path_spec=`cygpath --path --unix "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"`
 ;;
 *)
 sys_lib_search_path_spec=$LIB
 if $ECHO "$sys_lib_search_path_spec" | [$GREP ';[c-zC-Z]:/' >/dev/null]; then
 # It is most probably a Windows format PATH.
 sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e 's/;/ /g'`
 else
 sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"`
 fi
 # FIXME: find the short name or the path components, as spaces are
 # common. (e.g. "Program Files" -> "PROGRA~1")
 ;;
 esac

 # DLL is installed to $(libdir)/../bin by postinstall_cmds
 postinstall_cmds='base_file=`basename \$file`~
 dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; echo \$dlname'\''`~
 dldir=$destdir/`dirname \$dlpath`~
 test -d \$dldir || mkdir -p \$dldir~
 $install_prog $dir/$dlname \$dldir/$dlname'
 postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~
 dlpath=$dir/\$dldll~
 $RM \$dlpath'
 shlibpath_overrides_runpath=yes
 dynamic_linker='Win32 link.exe'
 ;;

 *)
 # Assume MSVC wrapper
 library_names_spec='$libname`echo $release | $SED -e 's/[[.]]/-/g'`$versuffix$shared_ext $libname.lib'
 dynamic_linker='Win32 ld.exe'
 ;;
 esac
 # FIXME: first we should search . and the directory the executable is in
 shlibpath_var=PATH
 ;;

darwin* | rhapsody*)
 dynamic_linker="$host_os dyld"
 version_type=darwin
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$major$shared_ext $libname$shared_ext'
 soname_spec='$libname$release$major$shared_ext'
 shlibpath_overrides_runpath=yes
 shlibpath_var=DYLD_LIBRARY_PATH
 shrext_cmds='`test .$module = .yes && echo .so || echo .dylib`'
m4_if([$1], [],[
 sys_lib_search_path_spec="$sys_lib_search_path_spec /usr/local/lib"])
 sys_lib_dlsearch_path_spec='/usr/local/lib /lib /usr/lib'
 ;;

dgux*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 ;;

freebsd* | dragonfly*)
 # DragonFly does not have aout. When/if they implement a new
 # versioning mechanism, adjust this.
 if test -x /usr/bin/objformat; then
 objformat=`/usr/bin/objformat`
 else
 case $host_os in
 freebsd[[23]].*) objformat=aout ;;
 *) objformat=elf ;;
 esac
 fi
 version_type=freebsd-$objformat
 case $version_type in
 freebsd-elf*)
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 need_version=no
 need_lib_prefix=no
 ;;
 freebsd-*)
 library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix'
 need_version=yes
 ;;
 esac
 shlibpath_var=LD_LIBRARY_PATH
 case $host_os in
 freebsd2.*)
 shlibpath_overrides_runpath=yes
 ;;
 freebsd3.[[01]]* | freebsdelf3.[[01]]*)
 shlibpath_overrides_runpath=yes
 hardcode_into_libs=yes
 ;;
 freebsd3.[[2-9]]* | freebsdelf3.[[2-9]]* | \
 freebsd4.[[0-5]] | freebsdelf4.[[0-5]] | freebsd4.1.1 | freebsdelf4.1.1)
 shlibpath_overrides_runpath=no
 hardcode_into_libs=yes
 ;;
 *) # from 4.6 on, and DragonFly
 shlibpath_overrides_runpath=yes
 hardcode_into_libs=yes
 ;;
 esac
 ;;

haiku*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 dynamic_linker="$host_os runtime_loader"
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LIBRARY_PATH
 shlibpath_overrides_runpath=no
 sys_lib_dlsearch_path_spec='/boot/home/config/lib /boot/common/lib /boot/system/lib'
 hardcode_into_libs=yes
 ;;

hpux9* | hpux10* | hpux11*)
 # Give a soname corresponding to the major version so that dld.sl refuses to
 # link against other versions.
 version_type=sunos
 need_lib_prefix=no
 need_version=no
 case $host_cpu in
 ia64*)
 shrext_cmds='.so'
 hardcode_into_libs=yes
 dynamic_linker="$host_os dld.so"
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes # Unless +noenvvar is specified.
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 if test 32 = "$HPUX_IA64_MODE"; then
 sys_lib_search_path_spec="/usr/lib/hpux32 /usr/local/lib/hpux32 /usr/local/lib"
 sys_lib_dlsearch_path_spec=/usr/lib/hpux32
 else
 sys_lib_search_path_spec="/usr/lib/hpux64 /usr/local/lib/hpux64"
 sys_lib_dlsearch_path_spec=/usr/lib/hpux64
 fi
 ;;
 hppa*64*)
 shrext_cmds='.sl'
 hardcode_into_libs=yes
 dynamic_linker="$host_os dld.sl"
 shlibpath_var=LD_LIBRARY_PATH # How should we handle SHLIB_PATH
 shlibpath_overrides_runpath=yes # Unless +noenvvar is specified.
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 sys_lib_search_path_spec="/usr/lib/pa20_64 /usr/ccs/lib/pa20_64"
 sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec
 ;;
 *)
 shrext_cmds='.sl'
 dynamic_linker="$host_os dld.sl"
 shlibpath_var=SHLIB_PATH
 shlibpath_overrides_runpath=no # +s is required to enable SHLIB_PATH
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 ;;
 esac
 # HP-UX runs *really* slowly unless shared libraries are mode 555, ...
 postinstall_cmds='chmod 555 $lib'
 # or fails outright, so override atomically:
 install_override_mode=555
 ;;

interix[[3-9]]*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 dynamic_linker='Interix 3.x ld.so.1 (PE, like ELF)'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=no
 hardcode_into_libs=yes
 ;;

irix5* | irix6* | nonstopux*)
 case $host_os in
 nonstopux*) version_type=nonstopux ;;
 *)
	if test yes = "$lt_cv_prog_gnu_ld"; then
		version_type=linux # correct to gnu/linux during the next big refactor
	else
		version_type=irix
	fi ;;
 esac
 need_lib_prefix=no
 need_version=no
 soname_spec='$libname$release$shared_ext$major'
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$release$shared_ext $libname$shared_ext'
 case $host_os in
 irix5* | nonstopux*)
 libsuff= shlibsuff=
 ;;
 *)
 case $LD in # libtool.m4 will add one of these switches to LD
 -32|"-32 "|*-melf32bsmip|*"-melf32bsmip ")
 libsuff= shlibsuff= libmagic=32-bit;;
 -n32|"-n32 "|*-melf32bmipn32|*"-melf32bmipn32 ")
 libsuff=32 shlibsuff=N32 libmagic=N32;;
 -64|"-64 "|*-melf64bmip|*"-melf64bmip ")
 libsuff=64 shlibsuff=64 libmagic=64-bit;;
 *) libsuff= shlibsuff= libmagic=never-match;;
 esac
 ;;
 esac
 shlibpath_var=LD_LIBRARY${shlibsuff}_PATH
 shlibpath_overrides_runpath=no
 sys_lib_search_path_spec="/usr/lib$libsuff /lib$libsuff /usr/local/lib$libsuff"
 sys_lib_dlsearch_path_spec="/usr/lib$libsuff /lib$libsuff"
 hardcode_into_libs=yes
 ;;

No shared lib support for Linux oldld, aout, or coff.
linux*oldld* | linux*aout* | linux*coff*)
 dynamic_linker=no
 ;;

linux*android*)
 version_type=none # Android doesn't support versioned libraries.
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext'
 soname_spec='$libname$release$shared_ext'
 finish_cmds=
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes

 # This implies no fast_install, which is unacceptable.
 # Some rework will be needed to allow for fast_install
 # before this can be enabled.
 hardcode_into_libs=yes

 dynamic_linker='Android linker'
 # Don't embed -rpath directories since the linker doesn't support them.
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir'
 ;;

This must be glibc/ELF.
linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 finish_cmds='PATH="\$PATH:/sbin" ldconfig -n $libdir'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=no

 # Some binutils ld are patched to set DT_RUNPATH
 AC_CACHE_VAL([lt_cv_shlibpath_overrides_runpath],
 [lt_cv_shlibpath_overrides_runpath=no
 save_LDFLAGS=$LDFLAGS
 save_libdir=$libdir
 eval "libdir=/foo; wl=\"$_LT_TAGVAR(lt_prog_compiler_wl, $1)\"; \
	 LDFLAGS=\"\$LDFLAGS $_LT_TAGVAR(hardcode_libdir_flag_spec, $1)\""
 AC_LINK_IFELSE([AC_LANG_PROGRAM([],[])],
 [AS_IF([($OBJDUMP -p conftest$ac_exeext) 2>/dev/null | grep "RUNPATH.*$libdir" >/dev/null],
	 [lt_cv_shlibpath_overrides_runpath=yes])])
 LDFLAGS=$save_LDFLAGS
 libdir=$save_libdir
])
 shlibpath_overrides_runpath=$lt_cv_shlibpath_overrides_runpath

 # This implies no fast_install, which is unacceptable.
 # Some rework will be needed to allow for fast_install
 # before this can be enabled.
 hardcode_into_libs=yes

 # Ideally, we could use ldconfig to report *all* directores which are
 # searched for libraries, however this is still not possible. Aside from not
 # being certain /sbin/ldconfig is available, command
 # 'ldconfig -N -X -v | grep ^/' on 64bit Fedora does not report /usr/lib64,
 # even though it is searched at run-time. Try to do the best guess by
 # appending ld.so.conf contents (and includes) to the search path.
 if test -f /etc/ld.so.conf; then
 lt_ld_extra=`awk '/^include / { system(sprintf("cd /etc; cat %s 2>/dev/null", \[$]2)); skip = 1; } { if (!skip) print \[$]0; skip = 0; }' < /etc/ld.so.conf | $SED -e 's/#.*//;/^[]*hwcap[]/d;s/[:,]/ /g;s/=[^=]*$//;s/=[^=]* / /g;s/"//g;/^$/d' | tr '\n' ' '`
 sys_lib_dlsearch_path_spec="/lib /usr/lib $lt_ld_extra"
 fi

 # We used to test for /lib/ld.so.1 and disable shared libraries on
 # powerpc, because MkLinux only supported shared libraries with the
 # GNU dynamic linker. Since this was broken with cross compilers,
 # most powerpc-linux boxes support dynamic linking these days and
 # people can always --disable-shared, the test was removed, and we
 # assume the GNU/Linux dynamic linker is in use.
 dynamic_linker='GNU/Linux ld.so'
 ;;

netbsdelf*-gnu)
 version_type=linux
 need_lib_prefix=no
 need_version=no
 library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major ${libname}${shared_ext}'
 soname_spec='${libname}${release}${shared_ext}$major'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=no
 hardcode_into_libs=yes
 dynamic_linker='NetBSD ld.elf_so'
 ;;

netbsd*)
 version_type=sunos
 need_lib_prefix=no
 need_version=no
 if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then
 library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix'
 finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir'
 dynamic_linker='NetBSD (a.out) ld.so'
 else
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 dynamic_linker='NetBSD ld.elf_so'
 fi
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 hardcode_into_libs=yes
 ;;

newsos6)
 version_type=linux # correct to gnu/linux during the next big refactor
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 ;;

nto | *qnx*)
 version_type=qnx
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=no
 hardcode_into_libs=yes
 dynamic_linker='ldqnx.so'
 ;;

openbsd* | bitrig*)
 version_type=sunos
 sys_lib_dlsearch_path_spec=/usr/lib
 need_lib_prefix=no
 if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then
 need_version=no
 else
 need_version=yes
 fi
 library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix'
 finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 ;;

os2*)
 libname_spec='$name'
 version_type=windows
 shrext_cmds=.dll
 need_version=no
 need_lib_prefix=no
 # OS/2 can only load a DLL with a base name of 8 characters or less.
 soname_spec='`test -n "$os2dllname" && libname="$os2dllname";
 v=$($ECHO $release$versuffix | tr -d .-);
 n=$($ECHO $libname | cut -b -$((8 - ${#v})) | tr . _);
 $ECHO nv`$shared_ext'
 library_names_spec='${libname}_dll.$libext'
 dynamic_linker='OS/2 ld.exe'
 shlibpath_var=BEGINLIBPATH
 sys_lib_search_path_spec="/lib /usr/lib /usr/local/lib"
 sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec
 postinstall_cmds='base_file=`basename \$file`~
 dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; $ECHO \$dlname'\''`~
 dldir=$destdir/`dirname \$dlpath`~
 test -d \$dldir || mkdir -p \$dldir~
 $install_prog $dir/$dlname \$dldir/$dlname~
 chmod a+x \$dldir/$dlname~
 if test -n '\''$stripme'\'' && test -n '\''$striplib'\''; then
 eval '\''$striplib \$dldir/$dlname'\'' || exit \$?;
 fi'
 postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; $ECHO \$dlname'\''`~
 dlpath=$dir/\$dldll~
 $RM \$dlpath'
 ;;

osf3* | osf4* | osf5*)
 version_type=osf
 need_lib_prefix=no
 need_version=no
 soname_spec='$libname$release$shared_ext$major'
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 shlibpath_var=LD_LIBRARY_PATH
 sys_lib_search_path_spec="/usr/shlib /usr/ccs/lib /usr/lib/cmplrs/cc /usr/lib /usr/local/lib /var/shlib"
 sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec
 ;;

rdos*)
 dynamic_linker=no
 ;;

solaris*)
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 hardcode_into_libs=yes
 # ldd complains unless libraries are executable
 postinstall_cmds='chmod +x $lib'
 ;;

sunos4*)
 version_type=sunos
 library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix'
 finish_cmds='PATH="\$PATH:/usr/etc" ldconfig $libdir'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 if test yes = "$with_gnu_ld"; then
 need_lib_prefix=no
 fi
 need_version=yes
 ;;

sysv4 | sysv4.3*)
 version_type=linux # correct to gnu/linux during the next big refactor
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 case $host_vendor in
 sni)
 shlibpath_overrides_runpath=no
 need_lib_prefix=no
 runpath_var=LD_RUN_PATH
 ;;
 siemens)
 need_lib_prefix=no
 ;;
 motorola)
 need_lib_prefix=no
 need_version=no
 shlibpath_overrides_runpath=no
 sys_lib_search_path_spec='/lib /usr/lib /usr/ccs/lib'
 ;;
 esac
 ;;

sysv4*MP*)
 if test -d /usr/nec; then
 version_type=linux # correct to gnu/linux during the next big refactor
 library_names_spec='$libname$shared_ext.$versuffix $libname$shared_ext.$major $libname$shared_ext'
 soname_spec='$libname$shared_ext.$major'
 shlibpath_var=LD_LIBRARY_PATH
 fi
 ;;

sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*)
 version_type=sco
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=yes
 hardcode_into_libs=yes
 if test yes = "$with_gnu_ld"; then
 sys_lib_search_path_spec='/usr/local/lib /usr/gnu/lib /usr/ccs/lib /usr/lib /lib'
 else
 sys_lib_search_path_spec='/usr/ccs/lib /usr/lib'
 case $host_os in
 sco3.2v5*)
 sys_lib_search_path_spec="$sys_lib_search_path_spec /lib"
	;;
 esac
 fi
 sys_lib_dlsearch_path_spec='/usr/lib'
 ;;

tpf*)
 # TPF is a cross-target only. Preferred cross-host = GNU/Linux.
 version_type=linux # correct to gnu/linux during the next big refactor
 need_lib_prefix=no
 need_version=no
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 shlibpath_var=LD_LIBRARY_PATH
 shlibpath_overrides_runpath=no
 hardcode_into_libs=yes
 ;;

uts4*)
 version_type=linux # correct to gnu/linux during the next big refactor
 library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext'
 soname_spec='$libname$release$shared_ext$major'
 shlibpath_var=LD_LIBRARY_PATH
 ;;

*)
 dynamic_linker=no
 ;;
esac
AC_MSG_RESULT([$dynamic_linker])
test no = "$dynamic_linker" && can_build_shared=no

variables_saved_for_relink="PATH $shlibpath_var $runpath_var"
if test yes = "$GCC"; then
 variables_saved_for_relink="$variables_saved_for_relink GCC_EXEC_PREFIX COMPILER_PATH LIBRARY_PATH"
fi

if test set = "${lt_cv_sys_lib_search_path_spec+set}"; then
 sys_lib_search_path_spec=$lt_cv_sys_lib_search_path_spec
fi

if test set = "${lt_cv_sys_lib_dlsearch_path_spec+set}"; then
 sys_lib_dlsearch_path_spec=$lt_cv_sys_lib_dlsearch_path_spec
fi

remember unaugmented sys_lib_dlsearch_path content for libtool script decls...
configure_time_dlsearch_path=$sys_lib_dlsearch_path_spec

... but it needs LT_SYS_LIBRARY_PATH munging for other configure-time code
func_munge_path_list sys_lib_dlsearch_path_spec "$LT_SYS_LIBRARY_PATH"

to be used as default LT_SYS_LIBRARY_PATH value in generated libtool
configure_time_lt_sys_library_path=$LT_SYS_LIBRARY_PATH

_LT_DECL([], [variables_saved_for_relink], [1],
 [Variables whose values should be saved in libtool wrapper scripts and
 restored at link time])
_LT_DECL([], [need_lib_prefix], [0],
 [Do we need the "lib" prefix for modules?])
_LT_DECL([], [need_version], [0], [Do we need a version for libraries?])
_LT_DECL([], [version_type], [0], [Library versioning type])
_LT_DECL([], [runpath_var], [0], [Shared library runtime path variable])
_LT_DECL([], [shlibpath_var], [0],[Shared library path variable])
_LT_DECL([], [shlibpath_overrides_runpath], [0],
 [Is shlibpath searched before the hard-coded library search path?])
_LT_DECL([], [libname_spec], [1], [Format of library name prefix])
_LT_DECL([], [library_names_spec], [1],
 [[List of archive names. First name is the real one, the rest are links.
 The last name is the one that the linker finds with -lNAME]])
_LT_DECL([], [soname_spec], [1],
 [[The coded name of the library, if different from the real name]])
_LT_DECL([], [install_override_mode], [1],
 [Permission mode override for installation of shared libraries])
_LT_DECL([], [postinstall_cmds], [2],
 [Command to use after installation of a shared archive])
_LT_DECL([], [postuninstall_cmds], [2],
 [Command to use after uninstallation of a shared archive])
_LT_DECL([], [finish_cmds], [2],
 [Commands used to finish a libtool library installation in a directory])
_LT_DECL([], [finish_eval], [1],
 [[As "finish_cmds", except a single script fragment to be evaled but
 not shown]])
_LT_DECL([], [hardcode_into_libs], [0],
 [Whether we should hardcode library paths into libraries])
_LT_DECL([], [sys_lib_search_path_spec], [2],
 [Compile-time system search path for libraries])
_LT_DECL([sys_lib_dlsearch_path_spec], [configure_time_dlsearch_path], [2],
 [Detected run-time system search path for libraries])
_LT_DECL([], [configure_time_lt_sys_library_path], [2],
 [Explicit LT_SYS_LIBRARY_PATH set during ./configure time])
])# _LT_SYS_DYNAMIC_LINKER

_LT_PATH_TOOL_PREFIX(TOOL)

find a file program that can recognize shared library
AC_DEFUN([_LT_PATH_TOOL_PREFIX],
[m4_require([_LT_DECL_EGREP])dnl
AC_MSG_CHECKING([for $1])
AC_CACHE_VAL(lt_cv_path_MAGIC_CMD,
[case $MAGIC_CMD in
[[\\/*] | ?:[\\/]*])
 lt_cv_path_MAGIC_CMD=$MAGIC_CMD # Let the user override the test with a path.
 ;;
*)
 lt_save_MAGIC_CMD=$MAGIC_CMD
 lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR
dnl $ac_dummy forces splitting on constant user-supplied paths.
dnl POSIX.2 word splitting is done only on the output of word expansions,
dnl not every word. This closes a longstanding sh security hole.
 ac_dummy="m4_if([$2], , $PATH, [$2])"
 for ac_dir in $ac_dummy; do
 IFS=$lt_save_ifs
 test -z "$ac_dir" && ac_dir=.
 if test -f "$ac_dir/$1"; then
 lt_cv_path_MAGIC_CMD=$ac_dir/"$1"
 if test -n "$file_magic_test_file"; then
	case $deplibs_check_method in
	"file_magic "*)
	 file_magic_regex=`expr "$deplibs_check_method" : "file_magic \(.*\)"`
	 MAGIC_CMD=$lt_cv_path_MAGIC_CMD
	 if eval $file_magic_cmd \$file_magic_test_file 2> /dev/null |
	 $EGREP "$file_magic_regex" > /dev/null; then
	 :
	 else
	 cat <<_LT_EOF 1>&2

*** Warning: the command libtool uses to detect shared libraries,
*** $file_magic_cmd, produces output that libtool cannot recognize.
*** The result is that libtool may fail to recognize shared libraries
*** as such. This will affect the creation of libtool libraries that
*** depend on shared libraries, but programs linked with such libtool
*** libraries will work regardless of this problem. Nevertheless, you
*** may want to report the problem to your system manager and/or to
*** bug-libtool@gnu.org

_LT_EOF
	 fi ;;
	esac
 fi
 break
 fi
 done
 IFS=$lt_save_ifs
 MAGIC_CMD=$lt_save_MAGIC_CMD
 ;;
esac])
MAGIC_CMD=$lt_cv_path_MAGIC_CMD
if test -n "$MAGIC_CMD"; then
 AC_MSG_RESULT($MAGIC_CMD)
else
 AC_MSG_RESULT(no)
fi
_LT_DECL([], [MAGIC_CMD], [0],
	 [Used to examine libraries when file_magic_cmd begins with "file"])dnl
])# _LT_PATH_TOOL_PREFIX

Old name:
AU_ALIAS([AC_PATH_TOOL_PREFIX], [_LT_PATH_TOOL_PREFIX])
dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([AC_PATH_TOOL_PREFIX], [])

_LT_PATH_MAGIC

find a file program that can recognize a shared library
m4_defun([_LT_PATH_MAGIC],
[_LT_PATH_TOOL_PREFIX(${ac_tool_prefix}file, /usr/bin$PATH_SEPARATOR$PATH)
if test -z "$lt_cv_path_MAGIC_CMD"; then
 if test -n "$ac_tool_prefix"; then
 _LT_PATH_TOOL_PREFIX(file, /usr/bin$PATH_SEPARATOR$PATH)
 else
 MAGIC_CMD=:
 fi
fi
])# _LT_PATH_MAGIC

LT_PATH_LD

find the pathname to the GNU or non-GNU linker
AC_DEFUN([LT_PATH_LD],
[AC_REQUIRE([AC_PROG_CC])dnl
AC_REQUIRE([AC_CANONICAL_HOST])dnl
AC_REQUIRE([AC_CANONICAL_BUILD])dnl
m4_require([_LT_DECL_SED])dnl
m4_require([_LT_DECL_EGREP])dnl
m4_require([_LT_PROG_ECHO_BACKSLASH])dnl

AC_ARG_WITH([gnu-ld],
 [AS_HELP_STRING([--with-gnu-ld],
	[assume the C compiler uses GNU ld @<:@default=no@:>@])],
 [test no = "$withval" || with_gnu_ld=yes],
 [with_gnu_ld=no])dnl

ac_prog=ld
if test yes = "$GCC"; then
 # Check if gcc -print-prog-name=ld gives a path.
 AC_MSG_CHECKING([for ld used by $CC])
 case $host in
 --mingw*)
 # gcc leaves a trailing carriage return, which upsets mingw
 ac_prog=`($CC -print-prog-name=ld) 2>&5 | tr -d '\015'` ;;
 *)
 ac_prog=`($CC -print-prog-name=ld) 2>&5` ;;
 esac
 case $ac_prog in
 # Accept absolute paths.
 [[\\/]]* | ?:[[\\/]]*)
 re_direlt='/[[^/]][[^/]]*/\.\./'
 # Canonicalize the pathname of ld
 ac_prog=`$ECHO "$ac_prog"| $SED 's%\\\\%/%g'`
 while $ECHO "$ac_prog" | $GREP "$re_direlt" > /dev/null 2>&1; do
	ac_prog=`$ECHO $ac_prog| $SED "s%$re_direlt%/%"`
 done
 test -z "$LD" && LD=$ac_prog
 ;;
 "")
 # If it fails, then pretend we aren't using GCC.
 ac_prog=ld
 ;;
 *)
 # If it is relative, then search for the first ld in PATH.
 with_gnu_ld=unknown
 ;;
 esac
elif test yes = "$with_gnu_ld"; then
 AC_MSG_CHECKING([for GNU ld])
else
 AC_MSG_CHECKING([for non-GNU ld])
fi
AC_CACHE_VAL(lt_cv_path_LD,
[if test -z "$LD"; then
 lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR
 for ac_dir in $PATH; do
 IFS=$lt_save_ifs
 test -z "$ac_dir" && ac_dir=.
 if test -f "$ac_dir/$ac_prog" || test -f "$ac_dir/$ac_prog$ac_exeext"; then
 lt_cv_path_LD=$ac_dir/$ac_prog
 # Check to see if the program is GNU ld. I'd rather use --version,
 # but apparently some variants of GNU ld only accept -v.
 # Break only if it was the GNU/non-GNU ld that we prefer.
 case `"$lt_cv_path_LD" -v 2>&1 </dev/null` in
 GNU | *'with BFD'*)
	test no != "$with_gnu_ld" && break
	;;
 *)
	test yes != "$with_gnu_ld" && break
	;;
 esac
 fi
 done
 IFS=$lt_save_ifs
else
 lt_cv_path_LD=$LD # Let the user override the test with a path.
fi])
LD=$lt_cv_path_LD
if test -n "$LD"; then
 AC_MSG_RESULT($LD)
else
 AC_MSG_RESULT(no)
fi
test -z "$LD" && AC_MSG_ERROR([no acceptable ld found in \$PATH])
_LT_PATH_LD_GNU
AC_SUBST([LD])

_LT_TAGDECL([], [LD], [1], [The linker used to build libraries])
])# LT_PATH_LD

Old names:
AU_ALIAS([AM_PROG_LD], [LT_PATH_LD])
AU_ALIAS([AC_PROG_LD], [LT_PATH_LD])
dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([AM_PROG_LD], [])
dnl AC_DEFUN([AC_PROG_LD], [])

_LT_PATH_LD_GNU
#- --------------
m4_defun([_LT_PATH_LD_GNU],
[AC_CACHE_CHECK([if the linker ($LD) is GNU ld], lt_cv_prog_gnu_ld,
[# I'd rather use --version here, but apparently some GNU lds only accept -v.
case `$LD -v 2>&1 </dev/null` in
GNU | *'with BFD'*)
 lt_cv_prog_gnu_ld=yes
 ;;
*)
 lt_cv_prog_gnu_ld=no
 ;;
esac])
with_gnu_ld=$lt_cv_prog_gnu_ld
])# _LT_PATH_LD_GNU

_LT_CMD_RELOAD

find reload flag for linker
-- PORTME Some linkers may need a different reload flag.
m4_defun([_LT_CMD_RELOAD],
[AC_CACHE_CHECK([for $LD option to reload object files],
 lt_cv_ld_reload_flag,
 [lt_cv_ld_reload_flag='-r'])
reload_flag=$lt_cv_ld_reload_flag
case $reload_flag in
"" | " "*) ;;
*) reload_flag=" $reload_flag" ;;
esac
reload_cmds='LDreload_flag -o $output$reload_objs'
case $host_os in
 cygwin* | mingw* | pw32* | cegcc*)
 if test yes != "$GCC"; then
 reload_cmds=false
 fi
 ;;
 darwin*)
 if test yes = "$GCC"; then
 reload_cmds='$LTCC $LTCFLAGS -nostdlib $wl-r -o $output$reload_objs'
 else
 reload_cmds='LDreload_flag -o $output$reload_objs'
 fi
 ;;
esac
_LT_TAGDECL([], [reload_flag], [1], [How to create reloadable object files])dnl
_LT_TAGDECL([], [reload_cmds], [2])dnl
])# _LT_CMD_RELOAD

_LT_PATH_DD

find a working dd
m4_defun([_LT_PATH_DD],
[AC_CACHE_CHECK([for a working dd], [ac_cv_path_lt_DD],
[printf 0123456789abcdef0123456789abcdef >conftest.i
cat conftest.i conftest.i >conftest2.i
: ${lt_DD:=$DD}
AC_PATH_PROGS_FEATURE_CHECK([lt_DD], [dd],
[if "$ac_path_lt_DD" bs=32 count=1 <conftest2.i >conftest.out 2>/dev/null; then
 cmp -s conftest.i conftest.out \
 && ac_cv_path_lt_DD="$ac_path_lt_DD" ac_path_lt_DD_found=:
fi])
rm -f conftest.i conftest2.i conftest.out])
])# _LT_PATH_DD

_LT_CMD_TRUNCATE

find command to truncate a binary pipe
m4_defun([_LT_CMD_TRUNCATE],
[m4_require([_LT_PATH_DD])
AC_CACHE_CHECK([how to truncate binary pipes], [lt_cv_truncate_bin],
[printf 0123456789abcdef0123456789abcdef >conftest.i
cat conftest.i conftest.i >conftest2.i
lt_cv_truncate_bin=
if "$ac_cv_path_lt_DD" bs=32 count=1 <conftest2.i >conftest.out 2>/dev/null; then
 cmp -s conftest.i conftest.out \
 && lt_cv_truncate_bin="$ac_cv_path_lt_DD bs=4096 count=1"
fi
rm -f conftest.i conftest2.i conftest.out
test -z "$lt_cv_truncate_bin" && lt_cv_truncate_bin="$SED -e 4q"])
_LT_DECL([lt_truncate_bin], [lt_cv_truncate_bin], [1],
 [Command to truncate a binary pipe])
])# _LT_CMD_TRUNCATE

_LT_CHECK_MAGIC_METHOD

how to check for library dependencies
-- PORTME fill in with the dynamic library characteristics
m4_defun([_LT_CHECK_MAGIC_METHOD],
[m4_require([_LT_DECL_EGREP])
m4_require([_LT_DECL_OBJDUMP])
AC_CACHE_CHECK([how to recognize dependent libraries],
lt_cv_deplibs_check_method,
[lt_cv_file_magic_cmd='$MAGIC_CMD'
lt_cv_file_magic_test_file=
lt_cv_deplibs_check_method='unknown'
Need to set the preceding variable on all platforms that support
interlibrary dependencies.
'none' -- dependencies not supported.
'unknown' -- same as none, but documents that we really don't know.
'pass_all' -- all dependencies passed with no checks.
'test_compile' -- check by making test program.
'file_magic [[regex]]' -- check by looking for files in library path
that responds to the $file_magic_cmd with a given extended regex.
If you have 'file' or equivalent on your system and you're not sure
whether 'pass_all' will *always* work, you probably want this one.

case $host_os in
aix[[4-9]]*)
 lt_cv_deplibs_check_method=pass_all
 ;;

beos*)
 lt_cv_deplibs_check_method=pass_all
 ;;

bsdi[[45]]*)
 lt_cv_deplibs_check_method='file_magic ELF [[0-9]][[0-9]]*-bit [[ML]]SB (shared object|dynamic lib)'
 lt_cv_file_magic_cmd='/usr/bin/file -L'
 lt_cv_file_magic_test_file=/shlib/libc.so
 ;;

cygwin*)
 # func_win32_libid is a shell function defined in ltmain.sh
 lt_cv_deplibs_check_method='file_magic ^x86 archive import|^x86 DLL'
 lt_cv_file_magic_cmd='func_win32_libid'
 ;;

mingw* | pw32*)
 # Base MSYS/MinGW do not provide the 'file' command needed by
 # func_win32_libid shell function, so use a weaker test based on 'objdump',
 # unless we find 'file', for example because we are cross-compiling.
 if (file /) >/dev/null 2>&1; then
 lt_cv_deplibs_check_method='file_magic ^x86 archive import|^x86 DLL'
 lt_cv_file_magic_cmd='func_win32_libid'
 else
 # Keep this pattern in sync with the one in func_win32_libid.
 lt_cv_deplibs_check_method='file_magic file format (pei*-i386(.*architecture: i386)?|pe-arm-wince|pe-x86-64)'
 lt_cv_file_magic_cmd='$OBJDUMP -f'
 fi
 ;;

cegcc*)
 # use the weaker test based on 'objdump'. See mingw*.
 lt_cv_deplibs_check_method='file_magic file format pe-arm-.*little(.*architecture: arm)?'
 lt_cv_file_magic_cmd='$OBJDUMP -f'
 ;;

darwin* | rhapsody*)
 lt_cv_deplibs_check_method=pass_all
 ;;

freebsd* | dragonfly*)
 if echo __ELF__ | $CC -E - | $GREP __ELF__ > /dev/null; then
 case $host_cpu in
 i*86)
 # Not sure whether the presence of OpenBSD here was a mistake.
 # Let's accept both of them until this is cleared up.
 lt_cv_deplibs_check_method='file_magic (FreeBSD|OpenBSD|DragonFly)/i[[3-9]]86 (compact)?demand paged shared library'
 lt_cv_file_magic_cmd=/usr/bin/file
 lt_cv_file_magic_test_file=`echo /usr/lib/libc.so.*`
 ;;
 esac
 else
 lt_cv_deplibs_check_method=pass_all
 fi
 ;;

haiku*)
 lt_cv_deplibs_check_method=pass_all
 ;;

hpux10.20* | hpux11*)
 lt_cv_file_magic_cmd=/usr/bin/file
 case $host_cpu in
 ia64*)
 lt_cv_deplibs_check_method='file_magic (s[[0-9]][[0-9]][[0-9]]|ELF-[[0-9]][[0-9]]) shared object file - IA64'
 lt_cv_file_magic_test_file=/usr/lib/hpux32/libc.so
 ;;
 hppa*64*)
 [lt_cv_deplibs_check_method='file_magic (s[0-9][0-9][0-9]|ELF[-][0-9][0-9])(-bit)?([LM]SB)? shared object(file)?[, -]* PA-RISC [0-9]\.[0-9]']
 lt_cv_file_magic_test_file=/usr/lib/pa20_64/libc.sl
 ;;
 *)
 lt_cv_deplibs_check_method='file_magic (s[[0-9]][[0-9]][[0-9]]|PA-RISC[[0-9]]\.[[0-9]]) shared library'
 lt_cv_file_magic_test_file=/usr/lib/libc.sl
 ;;
 esac
 ;;

interix[[3-9]]*)
 # PIC code is broken on Interix 3.x, that's why |\.a not |_pic\.a here
 lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so|\.a)$'
 ;;

irix5* | irix6* | nonstopux*)
 case $LD in
 -32|"-32 ") libmagic=32-bit;;
 -n32|"-n32 ") libmagic=N32;;
 -64|"-64 ") libmagic=64-bit;;
 *) libmagic=never-match;;
 esac
 lt_cv_deplibs_check_method=pass_all
 ;;

This must be glibc/ELF.
linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*)
 lt_cv_deplibs_check_method=pass_all
 ;;

netbsd* | netbsdelf*-gnu)
 if echo __ELF__ | $CC -E - | $GREP __ELF__ > /dev/null; then
 lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so\.[[0-9]]+\.[[0-9]]+|_pic\.a)$'
 else
 lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so|_pic\.a)$'
 fi
 ;;

newos6*)
 lt_cv_deplibs_check_method='file_magic ELF [[0-9]][[0-9]]*-bit [[ML]]SB (executable|dynamic lib)'
 lt_cv_file_magic_cmd=/usr/bin/file
 lt_cv_file_magic_test_file=/usr/lib/libnls.so
 ;;

nto | *qnx*)
 lt_cv_deplibs_check_method=pass_all
 ;;

openbsd* | bitrig*)
 if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then
 lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so\.[[0-9]]+\.[[0-9]]+|\.so|_pic\.a)$'
 else
 lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so\.[[0-9]]+\.[[0-9]]+|_pic\.a)$'
 fi
 ;;

osf3* | osf4* | osf5*)
 lt_cv_deplibs_check_method=pass_all
 ;;

rdos*)
 lt_cv_deplibs_check_method=pass_all
 ;;

solaris*)
 lt_cv_deplibs_check_method=pass_all
 ;;

sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*)
 lt_cv_deplibs_check_method=pass_all
 ;;

sysv4 | sysv4.3*)
 case $host_vendor in
 motorola)
 lt_cv_deplibs_check_method='file_magic ELF [[0-9]][[0-9]]*-bit [[ML]]SB (shared object|dynamic lib) M[[0-9]][[0-9]]* Version [[0-9]]'
 lt_cv_file_magic_test_file=`echo /usr/lib/libc.so*`
 ;;
 ncr)
 lt_cv_deplibs_check_method=pass_all
 ;;
 sequent)
 lt_cv_file_magic_cmd='/bin/file'
 lt_cv_deplibs_check_method='file_magic ELF [[0-9]][[0-9]]*-bit [[LM]]SB (shared object|dynamic lib)'
 ;;
 sni)
 lt_cv_file_magic_cmd='/bin/file'
 lt_cv_deplibs_check_method="file_magic ELF [[0-9]][[0-9]]*-bit [[LM]]SB dynamic lib"
 lt_cv_file_magic_test_file=/lib/libc.so
 ;;
 siemens)
 lt_cv_deplibs_check_method=pass_all
 ;;
 pc)
 lt_cv_deplibs_check_method=pass_all
 ;;
 esac
 ;;

tpf*)
 lt_cv_deplibs_check_method=pass_all
 ;;
os2*)
 lt_cv_deplibs_check_method=pass_all
 ;;
esac
])

file_magic_glob=
want_nocaseglob=no
if test "$build" = "$host"; then
 case $host_os in
 mingw* | pw32*)
 if (shopt | grep nocaseglob) >/dev/null 2>&1; then
 want_nocaseglob=yes
 else
 file_magic_glob=`echo aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ | $SED -e "s/\(..\)/s\/[[\1]]\/[[\1]]\/g;/g"`
 fi
 ;;
 esac
fi

file_magic_cmd=$lt_cv_file_magic_cmd
deplibs_check_method=$lt_cv_deplibs_check_method
test -z "$deplibs_check_method" && deplibs_check_method=unknown

_LT_DECL([], [deplibs_check_method], [1],
 [Method to check whether dependent libraries are shared objects])
_LT_DECL([], [file_magic_cmd], [1],
 [Command to use when deplibs_check_method = "file_magic"])
_LT_DECL([], [file_magic_glob], [1],
 [How to find potential files when deplibs_check_method = "file_magic"])
_LT_DECL([], [want_nocaseglob], [1],
 [Find potential files using nocaseglob when deplibs_check_method = "file_magic"])
])# _LT_CHECK_MAGIC_METHOD

LT_PATH_NM

find the pathname to a BSD- or MS-compatible name lister
AC_DEFUN([LT_PATH_NM],
[AC_REQUIRE([AC_PROG_CC])dnl
AC_CACHE_CHECK([for BSD- or MS-compatible name lister (nm)], lt_cv_path_NM,
[if test -n "$NM"; then
 # Let the user override the test.
 lt_cv_path_NM=$NM
else
 lt_nm_to_check=${ac_tool_prefix}nm
 if test -n "$ac_tool_prefix" && test "$build" = "$host"; then
 lt_nm_to_check="$lt_nm_to_check nm"
 fi
 for lt_tmp_nm in $lt_nm_to_check; do
 lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR
 for ac_dir in $PATH /usr/ccs/bin/elf /usr/ccs/bin /usr/ucb /bin; do
 IFS=$lt_save_ifs
 test -z "$ac_dir" && ac_dir=.
 tmp_nm=$ac_dir/$lt_tmp_nm
 if test -f "$tmp_nm" || test -f "$tmp_nm$ac_exeext"; then
	# Check to see if the nm accepts a BSD-compat flag.
	# Adding the 'sed 1q' prevents false positives on HP-UX, which says:
	# nm: unknown option "B" ignored
	# Tru64's nm complains that /dev/null is an invalid object file
	# MSYS converts /dev/null to NUL, MinGW nm treats NUL as empty
	case $build_os in
	mingw*) lt_bad_file=conftest.nm/nofile ;;
	*) lt_bad_file=/dev/null ;;
	esac
	case `"$tmp_nm" -B $lt_bad_file 2>&1 | sed '1q'` in
	$lt_bad_file | *'Invalid file or object type'*)
	 lt_cv_path_NM="$tmp_nm -B"
	 break 2
	 ;;
	*)
	 case `"$tmp_nm" -p /dev/null 2>&1 | sed '1q'` in
	 /dev/null)
	 lt_cv_path_NM="$tmp_nm -p"
	 break 2
	 ;;
	 *)
	 lt_cv_path_NM=${lt_cv_path_NM="$tmp_nm"} # keep the first match, but
	 continue # so that we can try to find one that supports BSD flags
	 ;;
	 esac
	 ;;
	esac
 fi
 done
 IFS=$lt_save_ifs
 done
 : ${lt_cv_path_NM=no}
fi])
if test no != "$lt_cv_path_NM"; then
 NM=$lt_cv_path_NM
else
 # Didn't find any BSD compatible name lister, look for dumpbin.
 if test -n "$DUMPBIN"; then :
 # Let the user override the test.
 else
 AC_CHECK_TOOLS(DUMPBIN, [dumpbin "link -dump"], :)
 case `$DUMPBIN -symbols -headers /dev/null 2>&1 | sed '1q'` in
 COFF)
 DUMPBIN="$DUMPBIN -symbols -headers"
 ;;
 *)
 DUMPBIN=:
 ;;
 esac
 fi
 AC_SUBST([DUMPBIN])
 if test : != "$DUMPBIN"; then
 NM=$DUMPBIN
 fi
fi
test -z "$NM" && NM=nm
AC_SUBST([NM])
_LT_DECL([], [NM], [1], [A BSD- or MS-compatible name lister])dnl

AC_CACHE_CHECK([the name lister ($NM) interface], [lt_cv_nm_interface],
 [lt_cv_nm_interface="BSD nm"
 echo "int some_variable = 0;" > conftest.$ac_ext
 (eval echo "\"\$as_me:$LINENO: $ac_compile\"" >&AS_MESSAGE_LOG_FD)
 (eval "$ac_compile" 2>conftest.err)
 cat conftest.err >&AS_MESSAGE_LOG_FD
 (eval echo "\"\$as_me:$LINENO: $NM \\\"conftest.$ac_objext\\\"\"" >&AS_MESSAGE_LOG_FD)
 (eval "$NM \"conftest.$ac_objext\"" 2>conftest.err > conftest.out)
 cat conftest.err >&AS_MESSAGE_LOG_FD
 (eval echo "\"\$as_me:$LINENO: output\"" >&AS_MESSAGE_LOG_FD)
 cat conftest.out >&AS_MESSAGE_LOG_FD
 if $GREP 'External.*some_variable' conftest.out > /dev/null; then
 lt_cv_nm_interface="MS dumpbin"
 fi
 rm -f conftest*])
])# LT_PATH_NM

Old names:
AU_ALIAS([AM_PROG_NM], [LT_PATH_NM])
AU_ALIAS([AC_PROG_NM], [LT_PATH_NM])
dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([AM_PROG_NM], [])
dnl AC_DEFUN([AC_PROG_NM], [])

_LT_CHECK_SHAREDLIB_FROM_LINKLIB

how to determine the name of the shared library
associated with a specific link library.
-- PORTME fill in with the dynamic library characteristics
m4_defun([_LT_CHECK_SHAREDLIB_FROM_LINKLIB],
[m4_require([_LT_DECL_EGREP])
m4_require([_LT_DECL_OBJDUMP])
m4_require([_LT_DECL_DLLTOOL])
AC_CACHE_CHECK([how to associate runtime and link libraries],
lt_cv_sharedlib_from_linklib_cmd,
[lt_cv_sharedlib_from_linklib_cmd='unknown'

case $host_os in
cygwin* | mingw* | pw32* | cegcc*)
 # two different shell functions defined in ltmain.sh;
 # decide which one to use based on capabilities of $DLLTOOL
 case `$DLLTOOL --help 2>&1` in
 --identify-strict)
 lt_cv_sharedlib_from_linklib_cmd=func_cygming_dll_for_implib
 ;;
 *)
 lt_cv_sharedlib_from_linklib_cmd=func_cygming_dll_for_implib_fallback
 ;;
 esac
 ;;
*)
 # fallback: assume linklib IS sharedlib
 lt_cv_sharedlib_from_linklib_cmd=$ECHO
 ;;
esac
])
sharedlib_from_linklib_cmd=$lt_cv_sharedlib_from_linklib_cmd
test -z "$sharedlib_from_linklib_cmd" && sharedlib_from_linklib_cmd=$ECHO

_LT_DECL([], [sharedlib_from_linklib_cmd], [1],
 [Command to associate shared and link libraries])
])# _LT_CHECK_SHAREDLIB_FROM_LINKLIB

_LT_PATH_MANIFEST_TOOL

locate the manifest tool
m4_defun([_LT_PATH_MANIFEST_TOOL],
[AC_CHECK_TOOL(MANIFEST_TOOL, mt, :)
test -z "$MANIFEST_TOOL" && MANIFEST_TOOL=mt
AC_CACHE_CHECK([if $MANIFEST_TOOL is a manifest tool], [lt_cv_path_mainfest_tool],
 [lt_cv_path_mainfest_tool=no
 echo "$as_me:$LINENO: $MANIFEST_TOOL '-?'" >&AS_MESSAGE_LOG_FD
 $MANIFEST_TOOL '-?' 2>conftest.err > conftest.out
 cat conftest.err >&AS_MESSAGE_LOG_FD
 if $GREP 'Manifest Tool' conftest.out > /dev/null; then
 lt_cv_path_mainfest_tool=yes
 fi
 rm -f conftest*])
if test yes != "$lt_cv_path_mainfest_tool"; then
 MANIFEST_TOOL=:
fi
_LT_DECL([], [MANIFEST_TOOL], [1], [Manifest tool])dnl
])# _LT_PATH_MANIFEST_TOOL

_LT_DLL_DEF_P([FILE])

True iff FILE is a Windows DLL '.def' file.
Keep in sync with func_dll_def_p in the libtool script
AC_DEFUN([_LT_DLL_DEF_P],
[dnl
 test DEF = "`$SED -n dnl
 -e '\''s/^[[]]*//'\'' dnl Strip leading whitespace
 -e '\''/^\(;.*\)*$/d'\'' dnl Delete empty lines and comments
 -e '\''s/^\(EXPORTS\|LIBRARY\)\([[]].*\)*$/DEF/p'\'' dnl
 -e q dnl Only consider the first "real" line
 $1`" dnl
])# _LT_DLL_DEF_P

LT_LIB_M

check for math library
AC_DEFUN([LT_LIB_M],
[AC_REQUIRE([AC_CANONICAL_HOST])dnl
LIBM=
case $host in
--beos* | *-*-cegcc* | *-*-cygwin* | *-*-haiku* | *-*-pw32* | *-*-darwin*)
 # These system don't have libm, or don't need it
 ;;
-ncr-sysv4.3)
 AC_CHECK_LIB(mw, _mwvalidcheckl, LIBM=-lmw)
 AC_CHECK_LIB(m, cos, LIBM="$LIBM -lm")
 ;;
*)
 AC_CHECK_LIB(m, cos, LIBM=-lm)
 ;;
esac
AC_SUBST([LIBM])
])# LT_LIB_M

Old name:
AU_ALIAS([AC_CHECK_LIBM], [LT_LIB_M])
dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([AC_CHECK_LIBM], [])

_LT_COMPILER_NO_RTTI([TAGNAME])

m4_defun([_LT_COMPILER_NO_RTTI],
[m4_require([_LT_TAG_COMPILER])dnl

_LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)=

if test yes = "$GCC"; then
 case $cc_basename in
 nvcc*)
 _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)=' -Xcompiler -fno-builtin' ;;
 *)
 _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)=' -fno-builtin' ;;
 esac

 _LT_COMPILER_OPTION([if $compiler supports -fno-rtti -fno-exceptions],
 lt_cv_prog_compiler_rtti_exceptions,
 [-fno-rtti -fno-exceptions], [],
 [_LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)="$_LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1) -fno-rtti -fno-exceptions"])
fi
_LT_TAGDECL([no_builtin_flag], [lt_prog_compiler_no_builtin_flag], [1],
	[Compiler flag to turn off builtin functions])
])# _LT_COMPILER_NO_RTTI

_LT_CMD_GLOBAL_SYMBOLS

m4_defun([_LT_CMD_GLOBAL_SYMBOLS],
[AC_REQUIRE([AC_CANONICAL_HOST])dnl
AC_REQUIRE([AC_PROG_CC])dnl
AC_REQUIRE([AC_PROG_AWK])dnl
AC_REQUIRE([LT_PATH_NM])dnl
AC_REQUIRE([LT_PATH_LD])dnl
m4_require([_LT_DECL_SED])dnl
m4_require([_LT_DECL_EGREP])dnl
m4_require([_LT_TAG_COMPILER])dnl

Check for command to grab the raw symbol name followed by C symbol from nm.
AC_MSG_CHECKING([command to parse $NM output from $compiler object])
AC_CACHE_VAL([lt_cv_sys_global_symbol_pipe],
[
These are sane defaults that work on at least a few old systems.
[They come from Ultrix. What could be older than Ultrix?!! ;)]

Character class describing NM global symbol codes.
symcode='[[BCDEGRST]]'

Regexp to match symbols that can be accessed directly from C.
sympat='\([[_A-Za-z]][[_A-Za-z0-9]]*\)'

Define system-specific variables.
case $host_os in
aix*)
 symcode='[[BCDT]]'
 ;;
cygwin* | mingw* | pw32* | cegcc*)
 symcode='[[ABCDGISTW]]'
 ;;
hpux*)
 if test ia64 = "$host_cpu"; then
 symcode='[[ABCDEGRST]]'
 fi
 ;;
irix* | nonstopux*)
 symcode='[[BCDEGRST]]'
 ;;
osf*)
 symcode='[[BCDEGQRST]]'
 ;;
solaris*)
 symcode='[[BDRT]]'
 ;;
sco3.2v5*)
 symcode='[[DT]]'
 ;;
sysv4.2uw2*)
 symcode='[[DT]]'
 ;;
sysv5* | sco5v6* | unixware* | OpenUNIX*)
 symcode='[[ABDT]]'
 ;;
sysv4)
 symcode='[[DFNSTU]]'
 ;;
esac

If we're using GNU nm, then use its standard symbol codes.
case `$NM -V 2>&1` in
GNU | *'with BFD'*)
 symcode='[[ABCDGIRSTW]]' ;;
esac

if test "$lt_cv_nm_interface" = "MS dumpbin"; then
 # Gets list of data symbols to import.
 lt_cv_sys_global_symbol_to_import="sed -n -e 's/^I .* \(.*\)$/\1/p'"
 # Adjust the below global symbol transforms to fixup imported variables.
 lt_cdecl_hook=" -e 's/^I .* \(.*\)$/extern __declspec(dllimport) char \1;/p'"
 lt_c_name_hook=" -e 's/^I .* \(.*\)$/ {\"\1\", (void *) 0},/p'"
 lt_c_name_lib_hook="\
 -e 's/^I .* \(lib.*\)$/ {\"\1\", (void *) 0},/p'\
 -e 's/^I .* \(.*\)$/ {\"lib\1\", (void *) 0},/p'"
else
 # Disable hooks by default.
 lt_cv_sys_global_symbol_to_import=
 lt_cdecl_hook=
 lt_c_name_hook=
 lt_c_name_lib_hook=
fi

Transform an extracted symbol line into a proper C declaration.
Some systems (esp. on ia64) link data and code symbols differently,
so use this general approach.
lt_cv_sys_global_symbol_to_cdecl="sed -n"\
$lt_cdecl_hook\
" -e 's/^T .* \(.*\)$/extern int \1();/p'"\
" -e 's/^$symcode$symcode* .* \(.*\)$/extern char \1;/p'"

Transform an extracted symbol line into symbol name and symbol address
lt_cv_sys_global_symbol_to_c_name_address="sed -n"\
$lt_c_name_hook\
" -e 's/^: \(.*\) .*$/ {\"\1\", (void *) 0},/p'"\
" -e 's/^$symcode$symcode* .* \(.*\)$/ {\"\1\", (void *) \&\1},/p'"

Transform an extracted symbol line into symbol name with lib prefix and
symbol address.
lt_cv_sys_global_symbol_to_c_name_address_lib_prefix="sed -n"\
$lt_c_name_lib_hook\
" -e 's/^: \(.*\) .*$/ {\"\1\", (void *) 0},/p'"\
" -e 's/^$symcode$symcode* .* \(lib.*\)$/ {\"\1\", (void *) \&\1},/p'"\
" -e 's/^$symcode$symcode* .* \(.*\)$/ {\"lib\1\", (void *) \&\1},/p'"

Handle CRLF in mingw tool chain
opt_cr=
case $build_os in
mingw*)
 opt_cr=`$ECHO 'x\{0,1\}' | tr x '\015'` # option cr in regexp
 ;;
esac

Try without a prefix underscore, then with it.
for ac_symprfx in "" "_"; do

 # Transform symcode, sympat, and symprfx into a raw symbol and a C symbol.
 symxfrm="\\1 $ac_symprfx\\2 \\2"

 # Write the raw and C identifiers.
 if test "$lt_cv_nm_interface" = "MS dumpbin"; then
 # Fake it for dumpbin and say T for any non-static function,
 # D for any global variable and I for any imported variable.
 # Also find C++ and __fastcall symbols from MSVC++,
 # which start with @ or ?.
 lt_cv_sys_global_symbol_pipe="$AWK ['"\
" {last_section=section; section=\$ 3};"\
" /^COFF SYMBOL TABLE/{for(i in hide) delete hide[i]};"\
" /Section length .*#relocs.*(pick any)/{hide[last_section]=1};"\
" /^ *Symbol name *: /{split(\$ 0,sn,\":\"); si=substr(sn[2],2)};"\
" /^ *Type *: code/{print \"T\",si,substr(si,length(prfx))};"\
" /^ *Type *: data/{print \"I\",si,substr(si,length(prfx))};"\
" \$ 0!~/External *\|/{next};"\
" / 0+ UNDEF /{next}; / UNDEF \([^|]\)*()/{next};"\
" {if(hide[section]) next};"\
" {f=\"D\"}; \$ 0~/\(\).*\|/{f=\"T\"};"\
" {split(\$ 0,a,/\||\r/); split(a[2],s)};"\
" s[1]~/^[@?]/{print f,s[1],s[1]; next};"\
" s[1]~prfx {split(s[1],t,\"@\"); print f,t[1],substr(t[1],length(prfx))}"\
" ' prfx=^$ac_symprfx]"
 else
 lt_cv_sys_global_symbol_pipe="sed -n -e 's/^.*[[]]\($symcode$symcode*\)[[]][[]]*$ac_symprfx$sympatopt_cr/$symxfrm/p'"
 fi
 lt_cv_sys_global_symbol_pipe="$lt_cv_sys_global_symbol_pipe | sed '/ __gnu_lto/d'"

 # Check to see that the pipe works correctly.
 pipe_works=no

 rm -f conftest*
 cat > conftest.$ac_ext <<_LT_EOF
#ifdef __cplusplus
extern "C" {
#endif
char nm_test_var;
void nm_test_func(void);
void nm_test_func(void){}
#ifdef __cplusplus
}
#endif
int main(){nm_test_var='a';nm_test_func();return(0);}
_LT_EOF

 if AC_TRY_EVAL(ac_compile); then
 # Now try to grab the symbols.
 nlist=conftest.nm
 if AC_TRY_EVAL(NM conftest.$ac_objext \| "$lt_cv_sys_global_symbol_pipe" \> $nlist) && test -s "$nlist"; then
 # Try sorting and uniquifying the output.
 if sort "$nlist" | uniq > "$nlist"T; then
	mv -f "$nlist"T "$nlist"
 else
	rm -f "$nlist"T
 fi

 # Make sure that we snagged all the symbols we need.
 if $GREP ' nm_test_var$' "$nlist" >/dev/null; then
	if $GREP ' nm_test_func$' "$nlist" >/dev/null; then
	 cat <<_LT_EOF > conftest.$ac_ext
/* Keep this code in sync between libtool.m4, ltmain, lt_system.h, and tests. */
#if defined _WIN32 || defined __CYGWIN__ || defined _WIN32_WCE
/* DATA imports from DLLs on WIN32 can't be const, because runtime
 relocations are performed -- see ld's documentation on pseudo-relocs. */
define LT@&t@_DLSYM_CONST
#elif defined __osf__
/* This system does not cope well with relocations in const data. */
define LT@&t@_DLSYM_CONST
#else
define LT@&t@_DLSYM_CONST const
#endif

#ifdef __cplusplus
extern "C" {
#endif

_LT_EOF
	 # Now generate the symbol file.
	 eval "$lt_cv_sys_global_symbol_to_cdecl"' < "$nlist" | $GREP -v main >> conftest.$ac_ext'

	 cat <<_LT_EOF >> conftest.$ac_ext

/* The mapping between symbol names and symbols. */
LT@&t@_DLSYM_CONST struct {
 const char *name;
 void *address;
}
lt__PROGRAM__LTX_preloaded_symbols[[]] =
{
 { "@PROGRAM@", (void *) 0 },
_LT_EOF
	 $SED "s/^$symcode$symcode* .* \(.*\)$/ {\"\1\", (void *) \&\1},/" < "$nlist" | $GREP -v main >> conftest.$ac_ext
	 cat <<_LT_EOF >> conftest.$ac_ext
 {0, (void *) 0}
};

/* This works around a problem in FreeBSD linker */
#ifdef FREEBSD_WORKAROUND
static const void *lt_preloaded_setup() {
 return lt__PROGRAM__LTX_preloaded_symbols;
}
#endif

#ifdef __cplusplus
}
#endif
_LT_EOF
	 # Now try linking the two files.
	 mv conftest.$ac_objext conftstm.$ac_objext
	 lt_globsym_save_LIBS=$LIBS
	 lt_globsym_save_CFLAGS=$CFLAGS
	 LIBS=conftstm.$ac_objext
	 CFLAGS="$CFLAGS$_LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)"
	 if AC_TRY_EVAL(ac_link) && test -s conftest$ac_exeext; then
	 pipe_works=yes
	 fi
	 LIBS=$lt_globsym_save_LIBS
	 CFLAGS=$lt_globsym_save_CFLAGS
	else
	 echo "cannot find nm_test_func in $nlist" >&AS_MESSAGE_LOG_FD
	fi
 else
	echo "cannot find nm_test_var in $nlist" >&AS_MESSAGE_LOG_FD
 fi
 else
 echo "cannot run $lt_cv_sys_global_symbol_pipe" >&AS_MESSAGE_LOG_FD
 fi
 else
 echo "$progname: failed program was:" >&AS_MESSAGE_LOG_FD
 cat conftest.$ac_ext >&5
 fi
 rm -rf conftest* conftst*

 # Do not use the global_symbol_pipe unless it works.
 if test yes = "$pipe_works"; then
 break
 else
 lt_cv_sys_global_symbol_pipe=
 fi
done
])
if test -z "$lt_cv_sys_global_symbol_pipe"; then
 lt_cv_sys_global_symbol_to_cdecl=
fi
if test -z "$lt_cv_sys_global_symbol_pipe$lt_cv_sys_global_symbol_to_cdecl"; then
 AC_MSG_RESULT(failed)
else
 AC_MSG_RESULT(ok)
fi

Response file support.
if test "$lt_cv_nm_interface" = "MS dumpbin"; then
 nm_file_list_spec='@'
elif $NM --help 2>/dev/null | grep '[[@]]FILE' >/dev/null; then
 nm_file_list_spec='@'
fi

_LT_DECL([global_symbol_pipe], [lt_cv_sys_global_symbol_pipe], [1],
 [Take the output of nm and produce a listing of raw symbols and C names])
_LT_DECL([global_symbol_to_cdecl], [lt_cv_sys_global_symbol_to_cdecl], [1],
 [Transform the output of nm in a proper C declaration])
_LT_DECL([global_symbol_to_import], [lt_cv_sys_global_symbol_to_import], [1],
 [Transform the output of nm into a list of symbols to manually relocate])
_LT_DECL([global_symbol_to_c_name_address],
 [lt_cv_sys_global_symbol_to_c_name_address], [1],
 [Transform the output of nm in a C name address pair])
_LT_DECL([global_symbol_to_c_name_address_lib_prefix],
 [lt_cv_sys_global_symbol_to_c_name_address_lib_prefix], [1],
 [Transform the output of nm in a C name address pair when lib prefix is needed])
_LT_DECL([nm_interface], [lt_cv_nm_interface], [1],
 [The name lister interface])
_LT_DECL([], [nm_file_list_spec], [1],
 [Specify filename containing input files for $NM])
]) # _LT_CMD_GLOBAL_SYMBOLS

_LT_COMPILER_PIC([TAGNAME])

m4_defun([_LT_COMPILER_PIC],
[m4_require([_LT_TAG_COMPILER])dnl
_LT_TAGVAR(lt_prog_compiler_wl, $1)=
_LT_TAGVAR(lt_prog_compiler_pic, $1)=
_LT_TAGVAR(lt_prog_compiler_static, $1)=

m4_if([$1], [CXX], [
 # C++ specific cases for pic, static, wl, etc.
 if test yes = "$GXX"; then
 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
 _LT_TAGVAR(lt_prog_compiler_static, $1)='-static'

 case $host_os in
 aix*)
 # All AIX code is PIC.
 if test ia64 = "$host_cpu"; then
	# AIX 5 now supports IA64 processor
	_LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
 fi
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC'
 ;;

 amigaos*)
 case $host_cpu in
 powerpc)
 # see comment about AmigaOS4 .so support
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC'
 ;;
 m68k)
 # FIXME: we need at least 68020 code to build shared libraries, but
 # adding the '-m68020' flag to GCC prevents building anything better,
 # like '-m68040'.
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-m68020 -resident32 -malways-restore-a4'
 ;;
 esac
 ;;

 beos* | irix5* | irix6* | nonstopux* | osf3* | osf4* | osf5*)
 # PIC is the default for these OSes.
 ;;
 mingw* | cygwin* | os2* | pw32* | cegcc*)
 # This hack is so that the source file can tell whether it is being
 # built for inclusion in a dll (and should export symbols for example).
 # Although the cygwin gcc ignores -fPIC, still need this for old-style
 # (--disable-auto-import) libraries
 m4_if([$1], [GCJ], [],
	[_LT_TAGVAR(lt_prog_compiler_pic, $1)='-DDLL_EXPORT'])
 case $host_os in
 os2*)
	_LT_TAGVAR(lt_prog_compiler_static, $1)='$wl-static'
	;;
 esac
 ;;
 darwin* | rhapsody*)
 # PIC is the default on this platform
 # Common symbols not allowed in MH_DYLIB files
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fno-common'
 ;;
 djgpp)
 # DJGPP does not support shared libraries at all
 _LT_TAGVAR(lt_prog_compiler_pic, $1)=
 ;;
 haiku*)
 # PIC is the default for Haiku.
 # The "-static" flag exists, but is broken.
 _LT_TAGVAR(lt_prog_compiler_static, $1)=
 ;;
 interix[[3-9]]*)
 # Interix 3.x gcc -fpic/-fPIC options generate broken code.
 # Instead, we relocate shared libraries at runtime.
 ;;
 sysv4*MP*)
 if test -d /usr/nec; then
	_LT_TAGVAR(lt_prog_compiler_pic, $1)=-Kconform_pic
 fi
 ;;
 hpux*)
 # PIC is the default for 64-bit PA HP-UX, but not for 32-bit
 # PA HP-UX. On IA64 HP-UX, PIC is the default but the pic flag
 # sets the default TLS model and affects inlining.
 case $host_cpu in
 hppa*64*)
	;;
 *)
	_LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC'
	;;
 esac
 ;;
 qnx | *nto*)
 # QNX uses GNU C++, but need to define -shared option too, otherwise
 # it will coredump.
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC -shared'
 ;;
 *)
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC'
 ;;
 esac
 else
 case $host_os in
 aix[[4-9]]*)
	# All AIX code is PIC.
	if test ia64 = "$host_cpu"; then
	 # AIX 5 now supports IA64 processor
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
	else
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-bnso -bI:/lib/syscalls.exp'
	fi
	;;
 chorus*)
	case $cc_basename in
	cxch68*)
	 # Green Hills C++ Compiler
	 # _LT_TAGVAR(lt_prog_compiler_static, $1)="--no_auto_instantiation -u __main -u __premain -u _abort -r $COOL_DIR/lib/libOrb.a $MVME_DIR/lib/CC/libC.a $MVME_DIR/lib/classix/libcx.s.a"
	 ;;
	esac
	;;
 mingw* | cygwin* | os2* | pw32* | cegcc*)
	# This hack is so that the source file can tell whether it is being
	# built for inclusion in a dll (and should export symbols for example).
	m4_if([$1], [GCJ], [],
	 [_LT_TAGVAR(lt_prog_compiler_pic, $1)='-DDLL_EXPORT'])
	;;
 dgux*)
	case $cc_basename in
	 ec++*)
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC'
	 ;;
	 ghcx*)
	 # Green Hills C++ Compiler
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic'
	 ;;
	 *)
	 ;;
	esac
	;;
 freebsd* | dragonfly*)
	# FreeBSD uses GNU C++
	;;
 hpux9* | hpux10* | hpux11*)
	case $cc_basename in
	 CC*)
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='$wl-a ${wl}archive'
	 if test ia64 != "$host_cpu"; then
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='+Z'
	 fi
	 ;;
	 aCC*)
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='$wl-a ${wl}archive'
	 case $host_cpu in
	 hppa*64*|ia64*)
	 # +Z the default
	 ;;
	 *)
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='+Z'
	 ;;
	 esac
	 ;;
	 *)
	 ;;
	esac
	;;
 interix*)
	# This is c89, which is MS Visual C++ (no shared libs)
	# Anyone wants to do a port?
	;;
 irix5* | irix6* | nonstopux*)
	case $cc_basename in
	 CC*)
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared'
	 # CC pic flag -KPIC is the default.
	 ;;
	 *)
	 ;;
	esac
	;;
 linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*)
	case $cc_basename in
	 KCC*)
	 # KAI C++ Compiler
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)='--backend -Wl,'
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC'
	 ;;
	 ecpc*)
	 # old Intel C++ for x86_64, which still supported -KPIC.
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC'
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-static'
	 ;;
	 icpc*)
	 # Intel C++, used to be incompatible with GCC.
	 # ICC 10 doesn't accept -KPIC any more.
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC'
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-static'
	 ;;
	 pgCC* | pgcpp*)
	 # Portland Group C++ compiler
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fpic'
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
	 ;;
	 cxx*)
	 # Compaq C++
	 # Make sure the PIC flag is empty. It appears that all Alpha
	 # Linux and Compaq Tru64 Unix objects are PIC.
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)=
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared'
	 ;;
	 xlc* | xlC* | bgxl[[cC]]* | mpixl[[cC]]*)
	 # IBM XL 8.0, 9.0 on PPC and BlueGene
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-qpic'
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-qstaticlink'
	 ;;
	 *)
	 case `$CC -V 2>&1 | sed 5q` in
	 Sun\ C)
	 # Sun C++ 5.9
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC'
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld '
	 ;;
	 esac
	 ;;
	esac
	;;
 lynxos*)
	;;
 m88k*)
	;;
 mvs*)
	case $cc_basename in
	 cxx*)
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-W c,exportall'
	 ;;
	 *)
	 ;;
	esac
	;;
 netbsd* | netbsdelf*-gnu)
	;;
 qnx | *nto*)
 # QNX uses GNU C++, but need to define -shared option too, otherwise
 # it will coredump.
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC -shared'
 ;;
 osf3* | osf4* | osf5*)
	case $cc_basename in
	 KCC*)
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)='--backend -Wl,'
	 ;;
	 RCC*)
	 # Rational C++ 2.4.1
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic'
	 ;;
	 cxx*)
	 # Digital/Compaq C++
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	 # Make sure the PIC flag is empty. It appears that all Alpha
	 # Linux and Compaq Tru64 Unix objects are PIC.
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)=
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared'
	 ;;
	 *)
	 ;;
	esac
	;;
 psos*)
	;;
 solaris*)
	case $cc_basename in
	 CC* | sunCC*)
	 # Sun C++ 4.2, 5.x and Centerline C++
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC'
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld '
	 ;;
	 gcx*)
	 # Green Hills C++ Compiler
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-PIC'
	 ;;
	 *)
	 ;;
	esac
	;;
 sunos4*)
	case $cc_basename in
	 CC*)
	 # Sun C++ 4.x
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic'
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
	 ;;
	 lcc*)
	 # Lucid
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic'
	 ;;
	 *)
	 ;;
	esac
	;;
 sysv5* | unixware* | sco3.2v5* | sco5v6* | OpenUNIX*)
	case $cc_basename in
	 CC*)
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC'
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
	 ;;
	esac
	;;
 tandem*)
	case $cc_basename in
	 NCC*)
	 # NonStop-UX NCC 3.20
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC'
	 ;;
	 *)
	 ;;
	esac
	;;
 vxworks*)
	;;
 *)
	_LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no
	;;
 esac
 fi
],
[
 if test yes = "$GCC"; then
 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
 _LT_TAGVAR(lt_prog_compiler_static, $1)='-static'

 case $host_os in
 aix*)
 # All AIX code is PIC.
 if test ia64 = "$host_cpu"; then
	# AIX 5 now supports IA64 processor
	_LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
 fi
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC'
 ;;

 amigaos*)
 case $host_cpu in
 powerpc)
 # see comment about AmigaOS4 .so support
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC'
 ;;
 m68k)
 # FIXME: we need at least 68020 code to build shared libraries, but
 # adding the '-m68020' flag to GCC prevents building anything better,
 # like '-m68040'.
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-m68020 -resident32 -malways-restore-a4'
 ;;
 esac
 ;;

 beos* | irix5* | irix6* | nonstopux* | osf3* | osf4* | osf5*)
 # PIC is the default for these OSes.
 ;;

 mingw* | cygwin* | pw32* | os2* | cegcc*)
 # This hack is so that the source file can tell whether it is being
 # built for inclusion in a dll (and should export symbols for example).
 # Although the cygwin gcc ignores -fPIC, still need this for old-style
 # (--disable-auto-import) libraries
 m4_if([$1], [GCJ], [],
	[_LT_TAGVAR(lt_prog_compiler_pic, $1)='-DDLL_EXPORT'])
 case $host_os in
 os2*)
	_LT_TAGVAR(lt_prog_compiler_static, $1)='$wl-static'
	;;
 esac
 ;;

 darwin* | rhapsody*)
 # PIC is the default on this platform
 # Common symbols not allowed in MH_DYLIB files
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fno-common'
 ;;

 haiku*)
 # PIC is the default for Haiku.
 # The "-static" flag exists, but is broken.
 _LT_TAGVAR(lt_prog_compiler_static, $1)=
 ;;

 hpux*)
 # PIC is the default for 64-bit PA HP-UX, but not for 32-bit
 # PA HP-UX. On IA64 HP-UX, PIC is the default but the pic flag
 # sets the default TLS model and affects inlining.
 case $host_cpu in
 hppa*64*)
	# +Z the default
	;;
 *)
	_LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC'
	;;
 esac
 ;;

 interix[[3-9]]*)
 # Interix 3.x gcc -fpic/-fPIC options generate broken code.
 # Instead, we relocate shared libraries at runtime.
 ;;

 msdosdjgpp*)
 # Just because we use GCC doesn't mean we suddenly get shared libraries
 # on systems that don't support them.
 _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no
 enable_shared=no
 ;;

 nto | *qnx*)
 # QNX uses GNU C++, but need to define -shared option too, otherwise
 # it will coredump.
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC -shared'
 ;;

 sysv4*MP*)
 if test -d /usr/nec; then
	_LT_TAGVAR(lt_prog_compiler_pic, $1)=-Kconform_pic
 fi
 ;;

 *)
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC'
 ;;
 esac

 case $cc_basename in
 nvcc*) # Cuda Compiler Driver 2.2
 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Xlinker '
 if test -n "$_LT_TAGVAR(lt_prog_compiler_pic, $1)"; then
 _LT_TAGVAR(lt_prog_compiler_pic, $1)="-Xcompiler $_LT_TAGVAR(lt_prog_compiler_pic, $1)"
 fi
 ;;
 esac
 else
 # PORTME Check for flag to pass linker flags through the system compiler.
 case $host_os in
 aix*)
 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
 if test ia64 = "$host_cpu"; then
	# AIX 5 now supports IA64 processor
	_LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
 else
	_LT_TAGVAR(lt_prog_compiler_static, $1)='-bnso -bI:/lib/syscalls.exp'
 fi
 ;;

 darwin* | rhapsody*)
 # PIC is the default on this platform
 # Common symbols not allowed in MH_DYLIB files
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fno-common'
 case $cc_basename in
 nagfor*)
 # NAG Fortran compiler
 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,-Wl,,'
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-PIC'
 _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
 ;;
 esac
 ;;

 mingw* | cygwin* | pw32* | os2* | cegcc*)
 # This hack is so that the source file can tell whether it is being
 # built for inclusion in a dll (and should export symbols for example).
 m4_if([$1], [GCJ], [],
	[_LT_TAGVAR(lt_prog_compiler_pic, $1)='-DDLL_EXPORT'])
 case $host_os in
 os2*)
	_LT_TAGVAR(lt_prog_compiler_static, $1)='$wl-static'
	;;
 esac
 ;;

 hpux9* | hpux10* | hpux11*)
 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
 # PIC is the default for IA64 HP-UX and 64-bit HP-UX, but
 # not for PA HP-UX.
 case $host_cpu in
 hppa*64*|ia64*)
	# +Z the default
	;;
 *)
	_LT_TAGVAR(lt_prog_compiler_pic, $1)='+Z'
	;;
 esac
 # Is there a better lt_prog_compiler_static that works with the bundled CC?
 _LT_TAGVAR(lt_prog_compiler_static, $1)='$wl-a ${wl}archive'
 ;;

 irix5* | irix6* | nonstopux*)
 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
 # PIC (with -KPIC) is the default.
 _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared'
 ;;

 linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*)
 case $cc_basename in
 # old Intel for x86_64, which still supported -KPIC.
 ecc*)
	_LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	_LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC'
	_LT_TAGVAR(lt_prog_compiler_static, $1)='-static'
 ;;
 # icc used to be incompatible with GCC.
 # ICC 10 doesn't accept -KPIC any more.
 icc* | ifort*)
	_LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	_LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC'
	_LT_TAGVAR(lt_prog_compiler_static, $1)='-static'
 ;;
 # Lahey Fortran 8.1.
 lf95*)
	_LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	_LT_TAGVAR(lt_prog_compiler_pic, $1)='--shared'
	_LT_TAGVAR(lt_prog_compiler_static, $1)='--static'
	;;
 nagfor*)
	# NAG Fortran compiler
	_LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,-Wl,,'
	_LT_TAGVAR(lt_prog_compiler_pic, $1)='-PIC'
	_LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
	;;
 tcc*)
	# Fabrice Bellard et al's Tiny C Compiler
	_LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	_LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC'
	_LT_TAGVAR(lt_prog_compiler_static, $1)='-static'
	;;
 pgcc* | pgf77* | pgf90* | pgf95* | pgfortran*)
 # Portland Group compilers (*not* the Pentium gcc compiler,
	# which looks to be a dead project)
	_LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	_LT_TAGVAR(lt_prog_compiler_pic, $1)='-fpic'
	_LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
 ;;
 ccc*)
 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
 # All Alpha code is PIC.
 _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared'
 ;;
 xl* | bgxl* | bgf* | mpixl*)
	# IBM XL C 8.0/Fortran 10.1, 11.1 on PPC and BlueGene
	_LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	_LT_TAGVAR(lt_prog_compiler_pic, $1)='-qpic'
	_LT_TAGVAR(lt_prog_compiler_static, $1)='-qstaticlink'
	;;
 *)
	case `$CC -V 2>&1 | sed 5q` in
	Sun\ Ceres\ Fortran | *Sun*Fortran*\ [[1-7]].* | *Sun*Fortran*\ 8.[[0-3]]*)
	 # Sun Fortran 8.3 passes all unrecognized flags to the linker
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC'
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)=''
	 ;;
	Sun\ F | *Sun*Fortran*)
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC'
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld '
	 ;;
	Sun\ C)
	 # Sun C 5.9
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC'
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	 ;;
 Intel\ [[CF]]*Compiler*)
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC'
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-static'
	 ;;
	Portland\ Group)
	 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
	 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fpic'
	 _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
	 ;;
	esac
	;;
 esac
 ;;

 newsos6)
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC'
 _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
 ;;

 nto | *qnx*)
 # QNX uses GNU C++, but need to define -shared option too, otherwise
 # it will coredump.
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC -shared'
 ;;

 osf3* | osf4* | osf5*)
 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
 # All OSF/1 code is PIC.
 _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared'
 ;;

 rdos*)
 _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared'
 ;;

 solaris*)
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC'
 _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
 case $cc_basename in
 f77* | f90* | f95* | sunf77* | sunf90* | sunf95*)
	_LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld ';;
 *)
	_LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,';;
 esac
 ;;

 sunos4*)
 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld '
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-PIC'
 _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
 ;;

 sysv4 | sysv4.2uw2* | sysv4.3*)
 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC'
 _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
 ;;

 sysv4*MP*)
 if test -d /usr/nec; then
	_LT_TAGVAR(lt_prog_compiler_pic, $1)='-Kconform_pic'
	_LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
 fi
 ;;

 sysv5* | unixware* | sco3.2v5* | sco5v6* | OpenUNIX*)
 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC'
 _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
 ;;

 unicos*)
 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,'
 _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no
 ;;

 uts4*)
 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic'
 _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic'
 ;;

 *)
 _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no
 ;;
 esac
 fi
])
case $host_os in
 # For platforms that do not support PIC, -DPIC is meaningless:
 djgpp)
 _LT_TAGVAR(lt_prog_compiler_pic, $1)=
 ;;
 *)
 _LT_TAGVAR(lt_prog_compiler_pic, $1)="$_LT_TAGVAR(lt_prog_compiler_pic, $1)@&t@m4_if([$1],[],[-DPIC],[m4_if([$1],[CXX],[-DPIC],[])])"
 ;;
esac

AC_CACHE_CHECK([for $compiler option to produce PIC],
 [_LT_TAGVAR(lt_cv_prog_compiler_pic, $1)],
 [_LT_TAGVAR(lt_cv_prog_compiler_pic, $1)=$_LT_TAGVAR(lt_prog_compiler_pic, $1)])
_LT_TAGVAR(lt_prog_compiler_pic, $1)=$_LT_TAGVAR(lt_cv_prog_compiler_pic, $1)

#
Check to make sure the PIC flag actually works.
#
if test -n "$_LT_TAGVAR(lt_prog_compiler_pic, $1)"; then
 _LT_COMPILER_OPTION([if $compiler PIC flag $_LT_TAGVAR(lt_prog_compiler_pic, $1) works],
 [_LT_TAGVAR(lt_cv_prog_compiler_pic_works, $1)],
 [$_LT_TAGVAR(lt_prog_compiler_pic, $1)@&t@m4_if([$1],[],[-DPIC],[m4_if([$1],[CXX],[-DPIC],[])])], [],
 [case $_LT_TAGVAR(lt_prog_compiler_pic, $1) in
 "" | " "*) ;;
 *) _LT_TAGVAR(lt_prog_compiler_pic, $1)=" $_LT_TAGVAR(lt_prog_compiler_pic, $1)" ;;
 esac],
 [_LT_TAGVAR(lt_prog_compiler_pic, $1)=
 _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no])
fi
_LT_TAGDECL([pic_flag], [lt_prog_compiler_pic], [1],
	[Additional compiler flags for building library objects])

_LT_TAGDECL([wl], [lt_prog_compiler_wl], [1],
	[How to pass a linker flag through the compiler])
#
Check to make sure the static flag actually works.
#
wl=$_LT_TAGVAR(lt_prog_compiler_wl, $1) eval lt_tmp_static_flag=\"$_LT_TAGVAR(lt_prog_compiler_static, $1)\"
_LT_LINKER_OPTION([if $compiler static flag $lt_tmp_static_flag works],
 _LT_TAGVAR(lt_cv_prog_compiler_static_works, $1),
 $lt_tmp_static_flag,
 [],
 [_LT_TAGVAR(lt_prog_compiler_static, $1)=])
_LT_TAGDECL([link_static_flag], [lt_prog_compiler_static], [1],
	[Compiler flag to prevent dynamic linking])
])# _LT_COMPILER_PIC

_LT_LINKER_SHLIBS([TAGNAME])

See if the linker supports building shared libraries.
m4_defun([_LT_LINKER_SHLIBS],
[AC_REQUIRE([LT_PATH_LD])dnl
AC_REQUIRE([LT_PATH_NM])dnl
m4_require([_LT_PATH_MANIFEST_TOOL])dnl
m4_require([_LT_FILEUTILS_DEFAULTS])dnl
m4_require([_LT_DECL_EGREP])dnl
m4_require([_LT_DECL_SED])dnl
m4_require([_LT_CMD_GLOBAL_SYMBOLS])dnl
m4_require([_LT_TAG_COMPILER])dnl
AC_MSG_CHECKING([whether the $compiler linker ($LD) supports shared libraries])
m4_if([$1], [CXX], [
 _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols'
 _LT_TAGVAR(exclude_expsyms, $1)=['_GLOBAL_OFFSET_TABLE_|_GLOBAL__F[ID]_.*']
 case $host_os in
 aix[[4-9]]*)
 # If we're using GNU nm, then we don't want the "-C" option.
 # -C means demangle to GNU nm, but means don't demangle to AIX nm.
 # Without the "-l" option, or with the "-B" option, AIX nm treats
 # weak defined symbols like other global defined symbols, whereas
 # GNU nm marks them as "W".
 # While the 'weak' keyword is ignored in the Export File, we need
 # it in the Import File for the 'aix-soname' feature, so we have
 # to replace the "-B" option with "-P" for AIX nm.
 if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then
 _LT_TAGVAR(export_symbols_cmds, $1)='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && ([substr](\$ 3,1,1) != ".")) { if (\$ 2 == "W") { print \$ 3 " weak" } else { print \$ 3 } } }'\'' | sort -u > $export_symbols'
 else
 _LT_TAGVAR(export_symbols_cmds, $1)='`func_echo_all $NM | $SED -e '\''s/B\([[^B]]*\)$/P\1/'\''` -PCpgl $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W") || (\$ 2 == "V") || (\$ 2 == "Z")) && ([substr](\$ 1,1,1) != ".")) { if ((\$ 2 == "W") || (\$ 2 == "V") || (\$ 2 == "Z")) { print \$ 1 " weak" } else { print \$ 1 } } }'\'' | sort -u > $export_symbols'
 fi
 ;;
 pw32*)
 _LT_TAGVAR(export_symbols_cmds, $1)=$ltdll_cmds
 ;;
 cygwin* | mingw* | cegcc*)
 case $cc_basename in
 cl*)
 _LT_TAGVAR(exclude_expsyms, $1)='_NULL_IMPORT_DESCRIPTOR|_IMPORT_DESCRIPTOR_.*'
 ;;
 *)
 _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[[BCDGRS]][[]]/s/.*[[]]\([[^]]*\)/\1 DATA/;s/^.*[[]]__nm__\([[^]]*\)[[]][[^]]*/\1 DATA/;/^I[[]]/d;/^[[AITW]][[]]/s/.* //'\'' | sort | uniq > $export_symbols'
 _LT_TAGVAR(exclude_expsyms, $1)=['[_]+GLOBAL_OFFSET_TABLE_|[_]+GLOBAL__[FID]_.*|[_]+head_[A-Za-z0-9_]+_dll|[A-Za-z0-9_]+_dll_iname']
 ;;
 esac
 ;;
 linux* | k*bsd*-gnu | gnu*)
 _LT_TAGVAR(link_all_deplibs, $1)=no
 ;;
 *)
 _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols'
 ;;
 esac
], [
 runpath_var=
 _LT_TAGVAR(allow_undefined_flag, $1)=
 _LT_TAGVAR(always_export_symbols, $1)=no
 _LT_TAGVAR(archive_cmds, $1)=
 _LT_TAGVAR(archive_expsym_cmds, $1)=
 _LT_TAGVAR(compiler_needs_object, $1)=no
 _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=no
 _LT_TAGVAR(export_dynamic_flag_spec, $1)=
 _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols'
 _LT_TAGVAR(hardcode_automatic, $1)=no
 _LT_TAGVAR(hardcode_direct, $1)=no
 _LT_TAGVAR(hardcode_direct_absolute, $1)=no
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)=
 _LT_TAGVAR(hardcode_libdir_separator, $1)=
 _LT_TAGVAR(hardcode_minus_L, $1)=no
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=unsupported
 _LT_TAGVAR(inherit_rpath, $1)=no
 _LT_TAGVAR(link_all_deplibs, $1)=unknown
 _LT_TAGVAR(module_cmds, $1)=
 _LT_TAGVAR(module_expsym_cmds, $1)=
 _LT_TAGVAR(old_archive_from_new_cmds, $1)=
 _LT_TAGVAR(old_archive_from_expsyms_cmds, $1)=
 _LT_TAGVAR(thread_safe_flag_spec, $1)=
 _LT_TAGVAR(whole_archive_flag_spec, $1)=
 # include_expsyms should be a list of space-separated symbols to be *always*
 # included in the symbol list
 _LT_TAGVAR(include_expsyms, $1)=
 # exclude_expsyms can be an extended regexp of symbols to exclude
 # it will be wrapped by ' (' and ')$', so one must not match beginning or
 # end of line. Example: 'a|bc|.*d.*' will exclude the symbols 'a' and 'bc',
 # as well as any symbol that contains 'd'.
 _LT_TAGVAR(exclude_expsyms, $1)=['_GLOBAL_OFFSET_TABLE_|_GLOBAL__F[ID]_.*']
 # Although _GLOBAL_OFFSET_TABLE_ is a valid symbol C name, most a.out
 # platforms (ab)use it in PIC code, but their linkers get confused if
 # the symbol is explicitly referenced. Since portable code cannot
 # rely on this symbol name, it's probably fine to never include it in
 # preloaded symbol tables.
 # Exclude shared library initialization/finalization symbols.
dnl Note also adjust exclude_expsyms for C++ above.
 extract_expsyms_cmds=

 case $host_os in
 cygwin* | mingw* | pw32* | cegcc*)
 # FIXME: the MSVC++ port hasn't been tested in a loooong time
 # When not using gcc, we currently assume that we are using
 # Microsoft Visual C++.
 if test yes != "$GCC"; then
 with_gnu_ld=no
 fi
 ;;
 interix*)
 # we just hope/assume this is gcc and not c89 (= MSVC++)
 with_gnu_ld=yes
 ;;
 openbsd* | bitrig*)
 with_gnu_ld=no
 ;;
 linux* | k*bsd*-gnu | gnu*)
 _LT_TAGVAR(link_all_deplibs, $1)=no
 ;;
 esac

 _LT_TAGVAR(ld_shlibs, $1)=yes

 # On some targets, GNU ld is compatible enough with the native linker
 # that we're better off using the native interface for both.
 lt_use_gnu_ld_interface=no
 if test yes = "$with_gnu_ld"; then
 case $host_os in
 aix*)
	# The AIX port of GNU ld has always aspired to compatibility
	# with the native linker. However, as the warning in the GNU ld
	# block says, versions before 2.19.5* couldn't really create working
	# shared libraries, regardless of the interface used.
	case `$LD -v 2>&1` in
	 \ \(GNU\ Binutils\)\ 2.19.5) ;;
	 \ \(GNU\ Binutils\)\ 2.[[2-9]]) ;;
	 \ \(GNU\ Binutils\)\ [[3-9]]) ;;
	 *)
	 lt_use_gnu_ld_interface=yes
	 ;;
	esac
	;;
 *)
	lt_use_gnu_ld_interface=yes
	;;
 esac
 fi

 if test yes = "$lt_use_gnu_ld_interface"; then
 # If archive_cmds runs LD, not CC, wlarc should be empty
 wlarc='$wl'

 # Set some defaults for GNU ld with shared library support. These
 # are reset later if shared libraries are not supported. Putting them
 # here allows them to be overridden if necessary.
 runpath_var=LD_RUN_PATH
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath wllibdir'
 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic'
 # ancient GNU ld didn't support --whole-archive et. al.
 if $LD --help 2>&1 | $GREP 'no-whole-archive' > /dev/null; then
 _LT_TAGVAR(whole_archive_flag_spec, $1)=$wlarc'--whole-archive$convenience '$wlarc'--no-whole-archive'
 else
 _LT_TAGVAR(whole_archive_flag_spec, $1)=
 fi
 supports_anon_versioning=no
 case `$LD -v | $SED -e 's/([^)]\+)\s\+//' 2>&1` in
 GNU\ gold) supports_anon_versioning=yes ;;
 \ [[01]]. | *\ 2.[[0-9]].* | *\ 2.10.*) ;; # catch versions < 2.11
 *\ 2.11.93.0.2\ *) supports_anon_versioning=yes ;; # RH7.3 ...
 *\ 2.11.92.0.12\ *) supports_anon_versioning=yes ;; # Mandrake 8.2 ...
 \ 2.11.) ;; # other 2.11 versions
 *) supports_anon_versioning=yes ;;
 esac

 # See if GNU ld supports shared libraries.
 case $host_os in
 aix[[3-9]]*)
 # On AIX/PPC, the GNU linker is very broken
 if test ia64 != "$host_cpu"; then
	_LT_TAGVAR(ld_shlibs, $1)=no
	cat <<_LT_EOF 1>&2

*** Warning: the GNU linker, at least up to release 2.19, is reported
*** to be unable to reliably create shared libraries on AIX.
*** Therefore, libtool is disabling shared libraries support. If you
*** really care for shared libraries, you may want to install binutils
*** 2.20 or above, or modify your PATH so that a non-GNU linker is found.
*** You will then need to restart the configuration process.

_LT_EOF
 fi
 ;;

 amigaos*)
 case $host_cpu in
 powerpc)
 # see comment about AmigaOS4 .so support
 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
 _LT_TAGVAR(archive_expsym_cmds, $1)=''
 ;;
 m68k)
 _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/a2ixlibrary.data~$ECHO "#define NAME $libname" > $output_objdir/a2ixlibrary.data~$ECHO "#define LIBRARY_ID 1" >> $output_objdir/a2ixlibrary.data~$ECHO "#define VERSION $major" >> $output_objdir/a2ixlibrary.data~$ECHO "#define REVISION $revision" >> $output_objdir/a2ixlibrary.data~$AR $AR_FLAGS $lib $libobjs~$RANLIB $lib~(cd $output_objdir && a2ixlibrary -32)'
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir'
 _LT_TAGVAR(hardcode_minus_L, $1)=yes
 ;;
 esac
 ;;

 beos*)
 if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then
	_LT_TAGVAR(allow_undefined_flag, $1)=unsupported
	# Joseph Beckenbach <jrb3@best.com> says some releases of gcc
	# support --undefined. This deserves some investigation. FIXME
	_LT_TAGVAR(archive_cmds, $1)='$CC -nostart $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
 else
	_LT_TAGVAR(ld_shlibs, $1)=no
 fi
 ;;

 cygwin* | mingw* | pw32* | cegcc*)
 # _LT_TAGVAR(hardcode_libdir_flag_spec, $1) is actually meaningless,
 # as there is no search path for DLLs.
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir'
 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-all-symbols'
 _LT_TAGVAR(allow_undefined_flag, $1)=unsupported
 _LT_TAGVAR(always_export_symbols, $1)=no
 _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes
 _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[[BCDGRS]][[]]/s/.*[[]]\([[^]]*\)/\1 DATA/;s/^.*[[]]__nm__\([[^]]*\)[[]][[^]]*/\1 DATA/;/^I[[]]/d;/^[[AITW]][[]]/s/.* //'\'' | sort | uniq > $export_symbols'
 _LT_TAGVAR(exclude_expsyms, $1)=['[_]+GLOBAL_OFFSET_TABLE_|[_]+GLOBAL__[FID]_.*|[_]+head_[A-Za-z0-9_]+_dll|[A-Za-z0-9_]+_dll_iname']

 if $LD --help 2>&1 | $GREP 'auto-import' > /dev/null; then
 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib'
	# If the export-symbols file already is a .def file, use it as
	# is; otherwise, prepend EXPORTS...
	_LT_TAGVAR(archive_expsym_cmds, $1)='if _LT_DLL_DEF_P([$export_symbols]); then
 cp $export_symbols $output_objdir/$soname.def;
 else
 echo EXPORTS > $output_objdir/$soname.def;
 cat $export_symbols >> $output_objdir/$soname.def;
 fi~
 $CC -shared $output_objdir/$soname.def $libobjs $deplibs $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib'
 else
	_LT_TAGVAR(ld_shlibs, $1)=no
 fi
 ;;

 haiku*)
 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
 _LT_TAGVAR(link_all_deplibs, $1)=yes
 ;;

 os2*)
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir'
 _LT_TAGVAR(hardcode_minus_L, $1)=yes
 _LT_TAGVAR(allow_undefined_flag, $1)=unsupported
 shrext_cmds=.dll
 _LT_TAGVAR(archive_cmds, $1)='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~
	$ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~
	$ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~
	$ECHO EXPORTS >> $output_objdir/$libname.def~
	emxexp $libobjs | $SED /"_DLL_InitTerm"/d >> $output_objdir/$libname.def~
	$CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~
	emximp -o $lib $output_objdir/$libname.def'
 _LT_TAGVAR(archive_expsym_cmds, $1)='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~
	$ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~
	$ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~
	$ECHO EXPORTS >> $output_objdir/$libname.def~
	prefix_cmds="$SED"~
	if test EXPORTS = "`$SED 1q $export_symbols`"; then
	 prefix_cmds="$prefix_cmds -e 1d";
	fi~
	prefix_cmds="$prefix_cmds -e \"s/^\(.*\)$/_\1/g\""~
	cat $export_symbols | $prefix_cmds >> $output_objdir/$libname.def~
	$CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~
	emximp -o $lib $output_objdir/$libname.def'
 _LT_TAGVAR(old_archive_From_new_cmds, $1)='emximp -o $output_objdir/${libname}_dll.a $output_objdir/$libname.def'
 _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes
 ;;

 interix[[3-9]]*)
 _LT_TAGVAR(hardcode_direct, $1)=no
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir'
 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E'
 # Hack: On Interix 3.x, we cannot compile PIC because of a broken gcc.
 # Instead, shared libraries are loaded at an image base (0x10000000 by
 # default) and relocated if they conflict, which is a slow very memory
 # consuming and fragmenting process. To avoid this, we pick a random,
 # 256 KiB-aligned image base between 0x50000000 and 0x6FFC0000 at link
 # time. Moving up from 0x10000000 also allows more sbrk(2) space.
 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 * 262144 + 1342177280` -o $lib'
 _LT_TAGVAR(archive_expsym_cmds, $1)='sed "s|^|_|" $export_symbols >$output_objdir/$soname.expsym~$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--retain-symbols-file,$output_objdir/$soname.expsym $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 * 262144 + 1342177280` -o $lib'
 ;;

 gnu* | linux* | tpf* | k*bsd*-gnu | kopensolaris*-gnu)
 tmp_diet=no
 if test linux-dietlibc = "$host_os"; then
	case $cc_basename in
	 diet\ *) tmp_diet=yes;;	# linux-dietlibc with static linking (!diet-dyn)
	esac
 fi
 if $LD --help 2>&1 | $EGREP ': supported targets:.* elf' > /dev/null \
	 && test no = "$tmp_diet"
 then
	tmp_addflag=' $pic_flag'
	tmp_sharedflag='-shared'
	case $cc_basename,$host_cpu in
 pgcc*)				# Portland Group C compiler
	 _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive'
	 tmp_addflag=' $pic_flag'
	 ;;
	pgf77* | pgf90* | pgf95* | pgfortran*)
					# Portland Group f77 and f90 compilers
	 _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive'
	 tmp_addflag=' $pic_flag -Mnomain' ;;
	ecc*,ia64* | icc*,ia64*)	# Intel C compiler on ia64
	 tmp_addflag=' -i_dynamic' ;;
	efc*,ia64* | ifort*,ia64*)	# Intel Fortran compiler on ia64
	 tmp_addflag=' -i_dynamic -nofor_main' ;;
	ifc* | ifort*)			# Intel Fortran compiler
	 tmp_addflag=' -nofor_main' ;;
	lf95*)				# Lahey Fortran 8.1
	 _LT_TAGVAR(whole_archive_flag_spec, $1)=
	 tmp_sharedflag='--shared' ;;
 nagfor*) # NAGFOR 5.3
 tmp_sharedflag='-Wl,-shared' ;;
	xl[[cC]]* | bgxl[[cC]]* | mpixl[[cC]]*) # IBM XL C 8.0 on PPC (deal with xlf below)
	 tmp_sharedflag='-qmkshrobj'
	 tmp_addflag= ;;
	nvcc*)	# Cuda Compiler Driver 2.2
	 _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive'
	 _LT_TAGVAR(compiler_needs_object, $1)=yes
	 ;;
	esac
	case `$CC -V 2>&1 | sed 5q` in
	Sun\ C)			# Sun C 5.9
	 _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`new_convenience=; for conv in $convenience\"\"; do test -z \"$conv\" || new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive'
	 _LT_TAGVAR(compiler_needs_object, $1)=yes
	 tmp_sharedflag='-G' ;;
	Sun\ F)			# Sun Fortran 8.3
	 tmp_sharedflag='-G' ;;
	esac
	_LT_TAGVAR(archive_cmds, $1)='$CC '"$tmp_sharedflag""$tmp_addflag"' $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'

 if test yes = "$supports_anon_versioning"; then
 _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $output_objdir/$libname.ver~
 cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~
 echo "local: *; };" >> $output_objdir/$libname.ver~
 $CC '"$tmp_sharedflag""$tmp_addflag"' $libobjs $deplibs $compiler_flags $wl-soname wlsoname $wl-version-script wloutput_objdir/$libname.ver -o $lib'
 fi

	case $cc_basename in
	tcc*)
	 _LT_TAGVAR(export_dynamic_flag_spec, $1)='-rdynamic'
	 ;;
	xlf* | bgf* | bgxlf* | mpixlf*)
	 # IBM XL Fortran 10.1 on PPC cannot create shared libs itself
	 _LT_TAGVAR(whole_archive_flag_spec, $1)='--whole-archive$convenience --no-whole-archive'
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath wllibdir'
	 _LT_TAGVAR(archive_cmds, $1)='$LD -shared $libobjs $deplibs $linker_flags -soname $soname -o $lib'
	 if test yes = "$supports_anon_versioning"; then
	 _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $output_objdir/$libname.ver~
 cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~
 echo "local: *; };" >> $output_objdir/$libname.ver~
 $LD -shared $libobjs $deplibs $linker_flags -soname $soname -version-script $output_objdir/$libname.ver -o $lib'
	 fi
	 ;;
	esac
 else
 _LT_TAGVAR(ld_shlibs, $1)=no
 fi
 ;;

 netbsd* | netbsdelf*-gnu)
 if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then
	_LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable $libobjs $deplibs $linker_flags -o $lib'
	wlarc=
 else
	_LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
	_LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'
 fi
 ;;

 solaris*)
 if $LD -v 2>&1 | $GREP 'BFD 2\.8' > /dev/null; then
	_LT_TAGVAR(ld_shlibs, $1)=no
	cat <<_LT_EOF 1>&2

*** Warning: The releases 2.8.* of the GNU linker cannot reliably
*** create shared libraries on Solaris systems. Therefore, libtool
*** is disabling shared libraries support. We urge you to upgrade GNU
*** binutils to release 2.9.1 or newer. Another option is to modify
*** your PATH or compiler configuration so that the native linker is
*** used, and then restart.

_LT_EOF
 elif $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then
	_LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
	_LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'
 else
	_LT_TAGVAR(ld_shlibs, $1)=no
 fi
 ;;

 sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX*)
 case `$LD -v 2>&1` in
 \ [[01]]. | *\ 2.[[0-9]].* | *\ 2.1[[0-5]].*)
	_LT_TAGVAR(ld_shlibs, $1)=no
	cat <<_LT_EOF 1>&2

*** Warning: Releases of the GNU linker prior to 2.16.91.0.3 cannot
*** reliably create shared libraries on SCO systems. Therefore, libtool
*** is disabling shared libraries support. We urge you to upgrade GNU
*** binutils to release 2.16.91.0.3 or newer. Another option is to modify
*** your PATH or compiler configuration so that the native linker is
*** used, and then restart.

_LT_EOF
	;;
	*)
	 # For security reasons, it is highly recommended that you always
	 # use absolute paths for naming shared libraries, and exclude the
	 # DT_RUNPATH tag from executables and libraries. But doing so
	 # requires that you compile everything twice, which is a pain.
	 if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath wllibdir'
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
	 _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'
	 else
	 _LT_TAGVAR(ld_shlibs, $1)=no
	 fi
	;;
 esac
 ;;

 sunos4*)
 _LT_TAGVAR(archive_cmds, $1)='$LD -assert pure-text -Bshareable -o $lib $libobjs $deplibs $linker_flags'
 wlarc=
 _LT_TAGVAR(hardcode_direct, $1)=yes
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
 ;;

 *)
 if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then
	_LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
	_LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'
 else
	_LT_TAGVAR(ld_shlibs, $1)=no
 fi
 ;;
 esac

 if test no = "$_LT_TAGVAR(ld_shlibs, $1)"; then
 runpath_var=
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)=
 _LT_TAGVAR(export_dynamic_flag_spec, $1)=
 _LT_TAGVAR(whole_archive_flag_spec, $1)=
 fi
 else
 # PORTME fill in a description of your system's linker (not GNU ld)
 case $host_os in
 aix3*)
 _LT_TAGVAR(allow_undefined_flag, $1)=unsupported
 _LT_TAGVAR(always_export_symbols, $1)=yes
 _LT_TAGVAR(archive_expsym_cmds, $1)='$LD -o $output_objdir/$soname $libobjs $deplibs $linker_flags -bE:$export_symbols -T512 -H512 -bM:SRE~$AR $AR_FLAGS $lib $output_objdir/$soname'
 # Note: this linker hardcodes the directories in LIBPATH if there
 # are no directories specified by -L.
 _LT_TAGVAR(hardcode_minus_L, $1)=yes
 if test yes = "$GCC" && test -z "$lt_prog_compiler_static"; then
	# Neither direct hardcoding nor static linking is supported with a
	# broken collect2.
	_LT_TAGVAR(hardcode_direct, $1)=unsupported
 fi
 ;;

 aix[[4-9]]*)
 if test ia64 = "$host_cpu"; then
	# On IA64, the linker does run time linking by default, so we don't
	# have to do anything special.
	aix_use_runtimelinking=no
	exp_sym_flag='-Bexport'
	no_entry_flag=
 else
	# If we're using GNU nm, then we don't want the "-C" option.
	# -C means demangle to GNU nm, but means don't demangle to AIX nm.
	# Without the "-l" option, or with the "-B" option, AIX nm treats
	# weak defined symbols like other global defined symbols, whereas
	# GNU nm marks them as "W".
	# While the 'weak' keyword is ignored in the Export File, we need
	# it in the Import File for the 'aix-soname' feature, so we have
	# to replace the "-B" option with "-P" for AIX nm.
	if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then
	 _LT_TAGVAR(export_symbols_cmds, $1)='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && ([substr](\$ 3,1,1) != ".")) { if (\$ 2 == "W") { print \$ 3 " weak" } else { print \$ 3 } } }'\'' | sort -u > $export_symbols'
	else
	 _LT_TAGVAR(export_symbols_cmds, $1)='`func_echo_all $NM | $SED -e '\''s/B\([[^B]]*\)$/P\1/'\''` -PCpgl $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W") || (\$ 2 == "V") || (\$ 2 == "Z")) && ([substr](\$ 1,1,1) != ".")) { if ((\$ 2 == "W") || (\$ 2 == "V") || (\$ 2 == "Z")) { print \$ 1 " weak" } else { print \$ 1 } } }'\'' | sort -u > $export_symbols'
	fi
	aix_use_runtimelinking=no

	# Test if we are trying to use run time linking or normal
	# AIX style linking. If -brtl is somewhere in LDFLAGS, we
	# have runtime linking enabled, and use it for executables.
	# For shared libraries, we enable/disable runtime linking
	# depending on the kind of the shared library created -
	# when "with_aix_soname,aix_use_runtimelinking" is:
	# "aix,no" lib.a(lib.so.V) shared, rtl:no, for executables
	# "aix,yes" lib.so shared, rtl:yes, for executables
	# lib.a static archive
	# "both,no" lib.so.V(shr.o) shared, rtl:yes
	# lib.a(lib.so.V) shared, rtl:no, for executables
	# "both,yes" lib.so.V(shr.o) shared, rtl:yes, for executables
	# lib.a(lib.so.V) shared, rtl:no
	# "svr4,*" lib.so.V(shr.o) shared, rtl:yes, for executables
	# lib.a static archive
	case $host_os in aix4.[[23]]|aix4.[[23]].*|aix[[5-9]]*)
	 for ld_flag in $LDFLAGS; do
	 if (test x-brtl = "x$ld_flag" || test x-Wl,-brtl = "x$ld_flag"); then
	 aix_use_runtimelinking=yes
	 break
	 fi
	 done
	 if test svr4,no = "$with_aix_soname,$aix_use_runtimelinking"; then
	 # With aix-soname=svr4, we create the lib.so.V shared archives only,
	 # so we don't have lib.a shared libs to link our executables.
	 # We have to force runtime linking in this case.
	 aix_use_runtimelinking=yes
	 LDFLAGS="$LDFLAGS -Wl,-brtl"
	 fi
	 ;;
	esac

	exp_sym_flag='-bexport'
	no_entry_flag='-bnoentry'
 fi

 # When large executables or shared objects are built, AIX ld can
 # have problems creating the table of contents. If linking a library
 # or program results in "error TOC overflow" add -mminimal-toc to
 # CXXFLAGS/CFLAGS for g++/gcc. In the cases where that is not
 # enough to fix the problem, add -Wl,-bbigtoc to LDFLAGS.

 _LT_TAGVAR(archive_cmds, $1)=''
 _LT_TAGVAR(hardcode_direct, $1)=yes
 _LT_TAGVAR(hardcode_direct_absolute, $1)=yes
 _LT_TAGVAR(hardcode_libdir_separator, $1)=':'
 _LT_TAGVAR(link_all_deplibs, $1)=yes
 _LT_TAGVAR(file_list_spec, $1)='$wl-f,'
 case $with_aix_soname,$aix_use_runtimelinking in
 aix,*) ;; # traditional, no import file
 svr4,* | *,yes) # use import file
	# The Import File defines what to hardcode.
	_LT_TAGVAR(hardcode_direct, $1)=no
	_LT_TAGVAR(hardcode_direct_absolute, $1)=no
	;;
 esac

 if test yes = "$GCC"; then
	case $host_os in aix4.[[012]]|aix4.[[012]].*)
	# We only want to do this on AIX 4.2 and lower, the check
	# below for broken collect2 doesn't work under 4.3+
	 collect2name=`$CC -print-prog-name=collect2`
	 if test -f "$collect2name" &&
	 strings "$collect2name" | $GREP resolve_lib_name >/dev/null
	 then
	 # We have reworked collect2
	 :
	 else
	 # We have old collect2
	 _LT_TAGVAR(hardcode_direct, $1)=unsupported
	 # It fails to find uninstalled libraries when the uninstalled
	 # path is not listed in the libpath. Setting hardcode_minus_L
	 # to unsupported forces relinking
	 _LT_TAGVAR(hardcode_minus_L, $1)=yes
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir'
	 _LT_TAGVAR(hardcode_libdir_separator, $1)=
	 fi
	 ;;
	esac
	shared_flag='-shared'
	if test yes = "$aix_use_runtimelinking"; then
	 shared_flag="$shared_flag "'$wl-G'
	fi
	# Need to ensure runtime linking is disabled for the traditional
	# shared library, or the linker may eventually find shared libraries
	# /with/ Import File - we do not want to mix them.
	shared_flag_aix='-shared'
	shared_flag_svr4='-shared $wl-G'
 else
	# not using gcc
	if test ia64 = "$host_cpu"; then
	# VisualAge C++, Version 5.5 for AIX 5L for IA-64, Beta 3 Release
	# chokes on -Wl,-G. The following line is correct:
	 shared_flag='-G'
	else
	 if test yes = "$aix_use_runtimelinking"; then
	 shared_flag='$wl-G'
	 else
	 shared_flag='$wl-bM:SRE'
	 fi
	 shared_flag_aix='$wl-bM:SRE'
	 shared_flag_svr4='$wl-G'
	fi
 fi

 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-bexpall'
 # It seems that -bexpall does not export symbols beginning with
 # underscore (_), so it is better to generate a list of symbols to export.
 _LT_TAGVAR(always_export_symbols, $1)=yes
 if test aix,yes = "$with_aix_soname,$aix_use_runtimelinking"; then
	# Warning - without using the other runtime loading flags (-brtl),
	# -berok will link without error, but may produce a broken library.
	_LT_TAGVAR(allow_undefined_flag, $1)='-berok'
 # Determine the default libpath from the value encoded in an
 # empty executable.
 _LT_SYS_MODULE_PATH_AIX([$1])
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-blibpath:$libdir:'"$aix_libpath"
 _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -o $output_objdir/$soname $libobjs $deplibs wl'no_entry_flag' $compiler_flags `if test -n "$allow_undefined_flag"; then func_echo_all "wlallow_undefined_flag"; else :; fi` wl'exp_sym_flag:\$export_symbols' '$shared_flag
 else
	if test ia64 = "$host_cpu"; then
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-R $libdir:/usr/lib:/lib'
	 _LT_TAGVAR(allow_undefined_flag, $1)="-z nodefs"
	 _LT_TAGVAR(archive_expsym_cmds, $1)="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs '"\$wl$no_entry_flag"' $compiler_flags wlallow_undefined_flag '"\wlexp_sym_flag:\$export_symbols"
	else
	 # Determine the default libpath from the value encoded in an
	 # empty executable.
	 _LT_SYS_MODULE_PATH_AIX([$1])
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-blibpath:$libdir:'"$aix_libpath"
	 # Warning - without using the other run time loading flags,
	 # -berok will link without error, but may produce a broken library.
	 _LT_TAGVAR(no_undefined_flag, $1)=' $wl-bernotok'
	 _LT_TAGVAR(allow_undefined_flag, $1)=' $wl-berok'
	 if test yes = "$with_gnu_ld"; then
	 # We only use this code for GNU lds that support --whole-archive.
	 _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive$convenience $wl--no-whole-archive'
	 else
	 # Exported symbols can be pulled into shared objects from archives
	 _LT_TAGVAR(whole_archive_flag_spec, $1)='$convenience'
	 fi
	 _LT_TAGVAR(archive_cmds_need_lc, $1)=yes
	 _LT_TAGVAR(archive_expsym_cmds, $1)='$RM -r $output_objdir/$realname.d~$MKDIR $output_objdir/$realname.d'
	 # -brtl affects multiple linker settings, -berok does not and is overridden later
	 compiler_flags_filtered='`func_echo_all "$compiler_flags " | $SED -e "s%-brtl\\([[,]]\\)%-berok\\1%g"`'
	 if test svr4 != "$with_aix_soname"; then
	 # This is similar to how AIX traditionally builds its shared libraries.
	 _LT_TAGVAR(archive_expsym_cmds, $1)="$_LT_TAGVAR(archive_expsym_cmds, $1)"'~$CC '$shared_flag_aix' -o $output_objdir/$realname.d/$soname $libobjs $deplibs $wl-bnoentry '$compiler_flags_filtered'$wl-bE:$export_symbols$allow_undefined_flag~$AR $AR_FLAGS $output_objdir/$libname$release.a $output_objdir/$realname.d/$soname'
	 fi
	 if test aix != "$with_aix_soname"; then
	 _LT_TAGVAR(archive_expsym_cmds, $1)="$_LT_TAGVAR(archive_expsym_cmds, $1)"'~$CC '$shared_flag_svr4' -o $output_objdir/$realname.d/$shared_archive_member_spec.o $libobjs $deplibs $wl-bnoentry '$compiler_flags_filtered'$wl-bE:$export_symbols$allow_undefined_flag~$STRIP -e $output_objdir/$realname.d/$shared_archive_member_spec.o~(func_echo_all "#! $soname($shared_archive_member_spec.o)"; if test shr_64 = "$shared_archive_member_spec"; then func_echo_all "# 64"; else func_echo_all "# 32"; fi; cat $export_symbols) > $output_objdir/$realname.d/$shared_archive_member_spec.imp~$AR $AR_FLAGS $output_objdir/$soname $output_objdir/$realname.d/$shared_archive_member_spec.o $output_objdir/$realname.d/$shared_archive_member_spec.imp'
	 else
	 # used by -dlpreopen to get the symbols
	 _LT_TAGVAR(archive_expsym_cmds, $1)="$_LT_TAGVAR(archive_expsym_cmds, $1)"'~$MV $output_objdir/$realname.d/$soname $output_objdir'
	 fi
	 _LT_TAGVAR(archive_expsym_cmds, $1)="$_LT_TAGVAR(archive_expsym_cmds, $1)"'~$RM -r $output_objdir/$realname.d'
	fi
 fi
 ;;

 amigaos*)
 case $host_cpu in
 powerpc)
 # see comment about AmigaOS4 .so support
 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
 _LT_TAGVAR(archive_expsym_cmds, $1)=''
 ;;
 m68k)
 _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/a2ixlibrary.data~$ECHO "#define NAME $libname" > $output_objdir/a2ixlibrary.data~$ECHO "#define LIBRARY_ID 1" >> $output_objdir/a2ixlibrary.data~$ECHO "#define VERSION $major" >> $output_objdir/a2ixlibrary.data~$ECHO "#define REVISION $revision" >> $output_objdir/a2ixlibrary.data~$AR $AR_FLAGS $lib $libobjs~$RANLIB $lib~(cd $output_objdir && a2ixlibrary -32)'
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir'
 _LT_TAGVAR(hardcode_minus_L, $1)=yes
 ;;
 esac
 ;;

 bsdi[[45]]*)
 _LT_TAGVAR(export_dynamic_flag_spec, $1)=-rdynamic
 ;;

 cygwin* | mingw* | pw32* | cegcc*)
 # When not using gcc, we currently assume that we are using
 # Microsoft Visual C++.
 # hardcode_libdir_flag_spec is actually meaningless, as there is
 # no search path for DLLs.
 case $cc_basename in
 cl*)
	# Native MSVC
	_LT_TAGVAR(hardcode_libdir_flag_spec, $1)=' '
	_LT_TAGVAR(allow_undefined_flag, $1)=unsupported
	_LT_TAGVAR(always_export_symbols, $1)=yes
	_LT_TAGVAR(file_list_spec, $1)='@'
	# Tell ltmain to make .lib files, not .a files.
	libext=lib
	# Tell ltmain to make .dll files, not .so files.
	shrext_cmds=.dll
	# FIXME: Setting linknames here is a bad hack.
	_LT_TAGVAR(archive_cmds, $1)='$CC -o $output_objdir/$soname $libobjs $compiler_flags $deplibs -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~linknames='
	_LT_TAGVAR(archive_expsym_cmds, $1)='if _LT_DLL_DEF_P([$export_symbols]); then
 cp "$export_symbols" "$output_objdir/$soname.def";
 echo "$tool_output_objdir$soname.def" > "$output_objdir/$soname.exp";
 else
 $SED -e '\''s/^/-link -EXPORT:/'\'' < $export_symbols > $output_objdir/$soname.exp;
 fi~
 $CC -o $tool_output_objdir$soname $libobjs $compiler_flags $deplibs "@$tool_output_objdir$soname.exp" -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~
 linknames='
	# The linker will not automatically build a static lib if we build a DLL.
	# _LT_TAGVAR(old_archive_from_new_cmds, $1)='true'
	_LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes
	_LT_TAGVAR(exclude_expsyms, $1)='_NULL_IMPORT_DESCRIPTOR|_IMPORT_DESCRIPTOR_.*'
	_LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[[BCDGRS]][[]]/s/.*[[]]\([[^]]*\)/\1,DATA/'\'' | $SED -e '\''/^[[AITW]][[]]/s/.*[[]]//'\'' | sort | uniq > $export_symbols'
	# Don't use ranlib
	_LT_TAGVAR(old_postinstall_cmds, $1)='chmod 644 $oldlib'
	_LT_TAGVAR(postlink_cmds, $1)='lt_outputfile="@OUTPUT@"~
 lt_tool_outputfile="@TOOL_OUTPUT@"~
 case $lt_outputfile in
 .exe|.EXE) ;;
 *)
 lt_outputfile=$lt_outputfile.exe
 lt_tool_outputfile=$lt_tool_outputfile.exe
 ;;
 esac~
 if test : != "$MANIFEST_TOOL" && test -f "$lt_outputfile.manifest"; then
 $MANIFEST_TOOL -manifest "$lt_tool_outputfile.manifest" -outputresource:"$lt_tool_outputfile" || exit 1;
 $RM "$lt_outputfile.manifest";
 fi'
	;;
 *)
	# Assume MSVC wrapper
	_LT_TAGVAR(hardcode_libdir_flag_spec, $1)=' '
	_LT_TAGVAR(allow_undefined_flag, $1)=unsupported
	# Tell ltmain to make .lib files, not .a files.
	libext=lib
	# Tell ltmain to make .dll files, not .so files.
	shrext_cmds=.dll
	# FIXME: Setting linknames here is a bad hack.
	_LT_TAGVAR(archive_cmds, $1)='$CC -o $lib $libobjs $compiler_flags `func_echo_all "$deplibs" | $SED '\''s/ -lc$//'\''` -link -dll~linknames='
	# The linker will automatically build a .lib file if we build a DLL.
	_LT_TAGVAR(old_archive_from_new_cmds, $1)='true'
	# FIXME: Should let the user specify the lib program.
	_LT_TAGVAR(old_archive_cmds, $1)='lib -OUT:$oldlib$oldobjs$old_deplibs'
	_LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes
	;;
 esac
 ;;

 darwin* | rhapsody*)
 _LT_DARWIN_LINKER_FEATURES($1)
 ;;

 dgux*)
 _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags'
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir'
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
 ;;

 # FreeBSD 2.2.[012] allows us to include c++rt0.o to get C++ constructor
 # support. Future versions do this automatically, but an explicit c++rt0.o
 # does not break anything, and helps significantly (at the cost of a little
 # extra space).
 freebsd2.2*)
 _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags /usr/lib/c++rt0.o'
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir'
 _LT_TAGVAR(hardcode_direct, $1)=yes
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
 ;;

 # Unfortunately, older versions of FreeBSD 2 do not have this feature.
 freebsd2.*)
 _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags'
 _LT_TAGVAR(hardcode_direct, $1)=yes
 _LT_TAGVAR(hardcode_minus_L, $1)=yes
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
 ;;

 # FreeBSD 3 and greater uses gcc -shared to do shared libraries.
 freebsd* | dragonfly*)
 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags'
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir'
 _LT_TAGVAR(hardcode_direct, $1)=yes
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
 ;;

 hpux9*)
 if test yes = "$GCC"; then
	_LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/$soname~$CC -shared $pic_flag $wl+b wlinstall_libdir -o $output_objdir/$soname $libobjs $deplibs $compiler_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib'
 else
	_LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/$soname~$LD -b +b $install_libdir -o $output_objdir/$soname $libobjs $deplibs $linker_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib'
 fi
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl+b wllibdir'
 _LT_TAGVAR(hardcode_libdir_separator, $1)=:
 _LT_TAGVAR(hardcode_direct, $1)=yes

 # hardcode_minus_L: Not really in the search PATH,
 # but as the default location of the library.
 _LT_TAGVAR(hardcode_minus_L, $1)=yes
 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E'
 ;;

 hpux10*)
 if test yes,no = "$GCC,$with_gnu_ld"; then
	_LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $wl+h wlsoname $wl+b wlinstall_libdir -o $lib $libobjs $deplibs $compiler_flags'
 else
	_LT_TAGVAR(archive_cmds, $1)='$LD -b +h $soname +b $install_libdir -o $lib $libobjs $deplibs $linker_flags'
 fi
 if test no = "$with_gnu_ld"; then
	_LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl+b wllibdir'
	_LT_TAGVAR(hardcode_libdir_separator, $1)=:
	_LT_TAGVAR(hardcode_direct, $1)=yes
	_LT_TAGVAR(hardcode_direct_absolute, $1)=yes
	_LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E'
	# hardcode_minus_L: Not really in the search PATH,
	# but as the default location of the library.
	_LT_TAGVAR(hardcode_minus_L, $1)=yes
 fi
 ;;

 hpux11*)
 if test yes,no = "$GCC,$with_gnu_ld"; then
	case $host_cpu in
	hppa*64*)
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $wl+h wlsoname -o $lib $libobjs $deplibs $compiler_flags'
	 ;;
	ia64*)
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $wl+h wlsoname $wl+nodefaultrpath -o $lib $libobjs $deplibs $compiler_flags'
	 ;;
	*)
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $wl+h wlsoname $wl+b wlinstall_libdir -o $lib $libobjs $deplibs $compiler_flags'
	 ;;
	esac
 else
	case $host_cpu in
	hppa*64*)
	 _LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h wlsoname -o $lib $libobjs $deplibs $compiler_flags'
	 ;;
	ia64*)
	 _LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h wlsoname $wl+nodefaultrpath -o $lib $libobjs $deplibs $compiler_flags'
	 ;;
	*)
	m4_if($1, [], [
	 # Older versions of the 11.00 compiler do not understand -b yet
	 # (HP92453-01 A.11.01.20 doesn't, HP92453-01 B.11.X.35175-35176.GP does)
	 _LT_LINKER_OPTION([if $CC understands -b],
	 _LT_TAGVAR(lt_cv_prog_compiler__b, $1), [-b],
	 [_LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h wlsoname $wl+b wlinstall_libdir -o $lib $libobjs $deplibs $compiler_flags'],
	 [_LT_TAGVAR(archive_cmds, $1)='$LD -b +h $soname +b $install_libdir -o $lib $libobjs $deplibs $linker_flags'])],
	 [_LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h wlsoname $wl+b wlinstall_libdir -o $lib $libobjs $deplibs $compiler_flags'])
	 ;;
	esac
 fi
 if test no = "$with_gnu_ld"; then
	_LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl+b wllibdir'
	_LT_TAGVAR(hardcode_libdir_separator, $1)=:

	case $host_cpu in
	hppa*64*|ia64*)
	 _LT_TAGVAR(hardcode_direct, $1)=no
	 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
	 ;;
	*)
	 _LT_TAGVAR(hardcode_direct, $1)=yes
	 _LT_TAGVAR(hardcode_direct_absolute, $1)=yes
	 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E'

	 # hardcode_minus_L: Not really in the search PATH,
	 # but as the default location of the library.
	 _LT_TAGVAR(hardcode_minus_L, $1)=yes
	 ;;
	esac
 fi
 ;;

 irix5* | irix6* | nonstopux*)
 if test yes = "$GCC"; then
	_LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname `test -n "$verstring" && func_echo_all "$wl-set_version wlverstring"` $wl-update_registry wloutput_objdir/so_locations -o $lib'
	# Try to use the -exported_symbol ld option, if it does not
	# work, assume that -exports_file does not work either and
	# implicitly export all symbols.
	# This should be the same for all languages, so no per-tag cache variable.
	AC_CACHE_CHECK([whether the $host_os linker accepts -exported_symbol],
	 [lt_cv_irix_exported_symbol],
	 [save_LDFLAGS=$LDFLAGS
	 LDFLAGS="$LDFLAGS -shared $wl-exported_symbol ${wl}foo $wl-update_registry $wl/dev/null"
	 AC_LINK_IFELSE(
	 [AC_LANG_SOURCE(
	 [AC_LANG_CASE([C], [[int foo (void) { return 0; }]],
			 [C++], [[int foo (void) { return 0; }]],
			 [Fortran 77], [[
 subroutine foo
 end]],
			 [Fortran], [[
 subroutine foo
 end]])])],
	 [lt_cv_irix_exported_symbol=yes],
	 [lt_cv_irix_exported_symbol=no])
 LDFLAGS=$save_LDFLAGS])
	if test yes = "$lt_cv_irix_exported_symbol"; then
 _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname `test -n "$verstring" && func_echo_all "$wl-set_version wlverstring"` $wl-update_registry wloutput_objdir/so_locations $wl-exports_file wlexport_symbols -o $lib'
	fi
	_LT_TAGVAR(link_all_deplibs, $1)=no
 else
	_LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib'
	_LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -exports_file $export_symbols -o $lib'
 fi
 _LT_TAGVAR(archive_cmds_need_lc, $1)='no'
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath wllibdir'
 _LT_TAGVAR(hardcode_libdir_separator, $1)=:
 _LT_TAGVAR(inherit_rpath, $1)=yes
 _LT_TAGVAR(link_all_deplibs, $1)=yes
 ;;

 linux*)
 case $cc_basename in
 tcc*)
	# Fabrice Bellard et al's Tiny C Compiler
	_LT_TAGVAR(ld_shlibs, $1)=yes
	_LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags'
	;;
 esac
 ;;

 netbsd* | netbsdelf*-gnu)
 if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then
	_LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags' # a.out
 else
	_LT_TAGVAR(archive_cmds, $1)='$LD -shared -o $lib $libobjs $deplibs $linker_flags' # ELF
 fi
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir'
 _LT_TAGVAR(hardcode_direct, $1)=yes
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
 ;;

 newsos6)
 _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags'
 _LT_TAGVAR(hardcode_direct, $1)=yes
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath wllibdir'
 _LT_TAGVAR(hardcode_libdir_separator, $1)=:
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
 ;;

 nto | *qnx*)
 ;;

 openbsd* | bitrig*)
 if test -f /usr/libexec/ld.so; then
	_LT_TAGVAR(hardcode_direct, $1)=yes
	_LT_TAGVAR(hardcode_shlibpath_var, $1)=no
	_LT_TAGVAR(hardcode_direct_absolute, $1)=yes
	if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags'
	 _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags $wl-retain-symbols-file,$export_symbols'
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir'
	 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E'
	else
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags'
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir'
	fi
 else
	_LT_TAGVAR(ld_shlibs, $1)=no
 fi
 ;;

 os2*)
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir'
 _LT_TAGVAR(hardcode_minus_L, $1)=yes
 _LT_TAGVAR(allow_undefined_flag, $1)=unsupported
 shrext_cmds=.dll
 _LT_TAGVAR(archive_cmds, $1)='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~
	$ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~
	$ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~
	$ECHO EXPORTS >> $output_objdir/$libname.def~
	emxexp $libobjs | $SED /"_DLL_InitTerm"/d >> $output_objdir/$libname.def~
	$CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~
	emximp -o $lib $output_objdir/$libname.def'
 _LT_TAGVAR(archive_expsym_cmds, $1)='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~
	$ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~
	$ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~
	$ECHO EXPORTS >> $output_objdir/$libname.def~
	prefix_cmds="$SED"~
	if test EXPORTS = "`$SED 1q $export_symbols`"; then
	 prefix_cmds="$prefix_cmds -e 1d";
	fi~
	prefix_cmds="$prefix_cmds -e \"s/^\(.*\)$/_\1/g\""~
	cat $export_symbols | $prefix_cmds >> $output_objdir/$libname.def~
	$CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~
	emximp -o $lib $output_objdir/$libname.def'
 _LT_TAGVAR(old_archive_From_new_cmds, $1)='emximp -o $output_objdir/${libname}_dll.a $output_objdir/$libname.def'
 _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes
 ;;

 osf3*)
 if test yes = "$GCC"; then
	_LT_TAGVAR(allow_undefined_flag, $1)=' $wl-expect_unresolved $wl*'
	_LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags $wl-soname wlsoname `test -n "$verstring" && func_echo_all "$wl-set_version wlverstring"` $wl-update_registry wloutput_objdir/so_locations -o $lib'
 else
	_LT_TAGVAR(allow_undefined_flag, $1)=' -expect_unresolved *'
	_LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib'
 fi
 _LT_TAGVAR(archive_cmds_need_lc, $1)='no'
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath wllibdir'
 _LT_TAGVAR(hardcode_libdir_separator, $1)=:
 ;;

 osf4* | osf5*)	# as osf3* with the addition of -msym flag
 if test yes = "$GCC"; then
	_LT_TAGVAR(allow_undefined_flag, $1)=' $wl-expect_unresolved $wl*'
	_LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $pic_flag $libobjs $deplibs $compiler_flags $wl-msym $wl-soname wlsoname `test -n "$verstring" && func_echo_all "$wl-set_version wlverstring"` $wl-update_registry wloutput_objdir/so_locations -o $lib'
	_LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath wllibdir'
 else
	_LT_TAGVAR(allow_undefined_flag, $1)=' -expect_unresolved *'
	_LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags -msym -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib'
	_LT_TAGVAR(archive_expsym_cmds, $1)='for i in `cat $export_symbols`; do printf "%s %s\\n" -exported_symbol "\$i" >> $lib.exp; done; printf "%s\\n" "-hidden">> $lib.exp~
 $CC -shared$allow_undefined_flag $wl-input wllib.exp $compiler_flags $libobjs $deplibs -soname $soname `test -n "$verstring" && $ECHO "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib~$RM $lib.exp'

	# Both c and cxx compiler support -rpath directly
	_LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-rpath $libdir'
 fi
 _LT_TAGVAR(archive_cmds_need_lc, $1)='no'
 _LT_TAGVAR(hardcode_libdir_separator, $1)=:
 ;;

 solaris*)
 _LT_TAGVAR(no_undefined_flag, $1)=' -z defs'
 if test yes = "$GCC"; then
	wlarc='$wl'
	_LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $wl-z ${wl}text $wl-h wlsoname -o $lib $libobjs $deplibs $compiler_flags'
	_LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~
 $CC -shared $pic_flag $wl-z ${wl}text $wl-M wllib.exp $wl-h wlsoname -o $lib $libobjs $deplibs $compiler_flags~$RM $lib.exp'
 else
	case `$CC -V 2>&1` in
	"Compilers 5.0")
	 wlarc=''
	 _LT_TAGVAR(archive_cmds, $1)='$LD -G$allow_undefined_flag -h $soname -o $lib $libobjs $deplibs $linker_flags'
	 _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~
 $LD -G$allow_undefined_flag -M $lib.exp -h $soname -o $lib $libobjs $deplibs $linker_flags~$RM $lib.exp'
	 ;;
	*)
	 wlarc='$wl'
	 _LT_TAGVAR(archive_cmds, $1)='$CC -G$allow_undefined_flag -h $soname -o $lib $libobjs $deplibs $compiler_flags'
	 _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~
 $CC -G$allow_undefined_flag -M $lib.exp -h $soname -o $lib $libobjs $deplibs $compiler_flags~$RM $lib.exp'
	 ;;
	esac
 fi
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir'
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
 case $host_os in
 solaris2.[[0-5]] | solaris2.[[0-5]].*) ;;
 *)
	# The compiler driver will combine and reorder linker options,
	# but understands '-z linker_flag'. GCC discards it without '$wl',
	# but is careful enough not to reorder.
	# Supported since Solaris 2.6 (maybe 2.5.1?)
	if test yes = "$GCC"; then
	 _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl-z ${wl}allextract$convenience $wl-z ${wl}defaultextract'
	else
	 _LT_TAGVAR(whole_archive_flag_spec, $1)='-z allextract$convenience -z defaultextract'
	fi
	;;
 esac
 _LT_TAGVAR(link_all_deplibs, $1)=yes
 ;;

 sunos4*)
 if test sequent = "$host_vendor"; then
	# Use $CC to link under sequent, because it throws in some extra .o
	# files that make .init and .fini sections work.
	_LT_TAGVAR(archive_cmds, $1)='$CC -G $wl-h $soname -o $lib $libobjs $deplibs $compiler_flags'
 else
	_LT_TAGVAR(archive_cmds, $1)='$LD -assert pure-text -Bstatic -o $lib $libobjs $deplibs $linker_flags'
 fi
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir'
 _LT_TAGVAR(hardcode_direct, $1)=yes
 _LT_TAGVAR(hardcode_minus_L, $1)=yes
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
 ;;

 sysv4)
 case $host_vendor in
	sni)
	 _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags'
	 _LT_TAGVAR(hardcode_direct, $1)=yes # is this really true???
	;;
	siemens)
	 ## LD is ld it makes a PLAMLIB
	 ## CC just makes a GrossModule.
	 _LT_TAGVAR(archive_cmds, $1)='$LD -G -o $lib $libobjs $deplibs $linker_flags'
	 _LT_TAGVAR(reload_cmds, $1)='$CC -r -o $output$reload_objs'
	 _LT_TAGVAR(hardcode_direct, $1)=no
 ;;
	motorola)
	 _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags'
	 _LT_TAGVAR(hardcode_direct, $1)=no #Motorola manual says yes, but my tests say they lie
	;;
 esac
 runpath_var='LD_RUN_PATH'
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
 ;;

 sysv4.3*)
 _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags'
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
 _LT_TAGVAR(export_dynamic_flag_spec, $1)='-Bexport'
 ;;

 sysv4*MP*)
 if test -d /usr/nec; then
	_LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags'
	_LT_TAGVAR(hardcode_shlibpath_var, $1)=no
	runpath_var=LD_RUN_PATH
	hardcode_runpath_var=yes
	_LT_TAGVAR(ld_shlibs, $1)=yes
 fi
 ;;

 sysv4*uw2* | sysv5OpenUNIX* | sysv5UnixWare7.[[01]].[[10]]* | unixware7* | sco3.2v5.0.[[024]]*)
 _LT_TAGVAR(no_undefined_flag, $1)='$wl-z,text'
 _LT_TAGVAR(archive_cmds_need_lc, $1)=no
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
 runpath_var='LD_RUN_PATH'

 if test yes = "$GCC"; then
	_LT_TAGVAR(archive_cmds, $1)='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	_LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
 else
	_LT_TAGVAR(archive_cmds, $1)='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	_LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
 fi
 ;;

 sysv5* | sco3.2v5* | sco5v6*)
 # Note: We CANNOT use -z defs as we might desire, because we do not
 # link with -lc, and that would cause any symbols used from libc to
 # always be unresolved, which means just about no library would
 # ever link correctly. If we're not using GNU ld we use -z text
 # though, which does catch some bad symbols but isn't as heavy-handed
 # as -z defs.
 _LT_TAGVAR(no_undefined_flag, $1)='$wl-z,text'
 _LT_TAGVAR(allow_undefined_flag, $1)='$wl-z,nodefs'
 _LT_TAGVAR(archive_cmds_need_lc, $1)=no
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-R,$libdir'
 _LT_TAGVAR(hardcode_libdir_separator, $1)=':'
 _LT_TAGVAR(link_all_deplibs, $1)=yes
 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-Bexport'
 runpath_var='LD_RUN_PATH'

 if test yes = "$GCC"; then
	_LT_TAGVAR(archive_cmds, $1)='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	_LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
 else
	_LT_TAGVAR(archive_cmds, $1)='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	_LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
 fi
 ;;

 uts4*)
 _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags'
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir'
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
 ;;

 *)
 _LT_TAGVAR(ld_shlibs, $1)=no
 ;;
 esac

 if test sni = "$host_vendor"; then
 case $host in
 sysv4 | sysv4.2uw2* | sysv4.3* | sysv5*)
	_LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-Blargedynsym'
	;;
 esac
 fi
 fi
])
AC_MSG_RESULT([$_LT_TAGVAR(ld_shlibs, $1)])
test no = "$_LT_TAGVAR(ld_shlibs, $1)" && can_build_shared=no

_LT_TAGVAR(with_gnu_ld, $1)=$with_gnu_ld

_LT_DECL([], [libext], [0], [Old archive suffix (normally "a")])dnl
_LT_DECL([], [shrext_cmds], [1], [Shared library suffix (normally ".so")])dnl
_LT_DECL([], [extract_expsyms_cmds], [2],
 [The commands to extract the exported symbol list from a shared archive])

#
Do we need to explicitly link libc?
#
case "x$_LT_TAGVAR(archive_cmds_need_lc, $1)" in
x|xyes)
 # Assume -lc should be added
 _LT_TAGVAR(archive_cmds_need_lc, $1)=yes

 if test yes,yes = "$GCC,$enable_shared"; then
 case $_LT_TAGVAR(archive_cmds, $1) in
 '~')
 # FIXME: we may have to deal with multi-command sequences.
 ;;
 '$CC '*)
 # Test whether the compiler implicitly links with -lc since on some
 # systems, -lgcc has to come before -lc. If gcc already passes -lc
 # to ld, don't add -lc before -lgcc.
 AC_CACHE_CHECK([whether -lc should be explicitly linked in],
	[lt_cv_]_LT_TAGVAR(archive_cmds_need_lc, $1),
	[$RM conftest*
	echo "$lt_simple_compile_test_code" > conftest.$ac_ext

	if AC_TRY_EVAL(ac_compile) 2>conftest.err; then
	 soname=conftest
	 lib=conftest
	 libobjs=conftest.$ac_objext
	 deplibs=
	 wl=$_LT_TAGVAR(lt_prog_compiler_wl, $1)
	 pic_flag=$_LT_TAGVAR(lt_prog_compiler_pic, $1)
	 compiler_flags=-v
	 linker_flags=-v
	 verstring=
	 output_objdir=.
	 libname=conftest
	 lt_save_allow_undefined_flag=$_LT_TAGVAR(allow_undefined_flag, $1)
	 _LT_TAGVAR(allow_undefined_flag, $1)=
	 if AC_TRY_EVAL(_LT_TAGVAR(archive_cmds, $1) 2\>\&1 \| $GREP \" -lc \" \>/dev/null 2\>\&1)
	 then
	 lt_cv_[]_LT_TAGVAR(archive_cmds_need_lc, $1)=no
	 else
	 lt_cv_[]_LT_TAGVAR(archive_cmds_need_lc, $1)=yes
	 fi
	 _LT_TAGVAR(allow_undefined_flag, $1)=$lt_save_allow_undefined_flag
	else
	 cat conftest.err 1>&5
	fi
	$RM conftest*
])
 _LT_TAGVAR(archive_cmds_need_lc, $1)=$lt_cv_[]_LT_TAGVAR(archive_cmds_need_lc, $1)
 ;;
 esac
 fi
 ;;
esac

_LT_TAGDECL([build_libtool_need_lc], [archive_cmds_need_lc], [0],
 [Whether or not to add -lc for building shared libraries])
_LT_TAGDECL([allow_libtool_libs_with_static_runtimes],
 [enable_shared_with_static_runtimes], [0],
 [Whether or not to disallow shared libs when runtime libs are static])
_LT_TAGDECL([], [export_dynamic_flag_spec], [1],
 [Compiler flag to allow reflexive dlopens])
_LT_TAGDECL([], [whole_archive_flag_spec], [1],
 [Compiler flag to generate shared objects directly from archives])
_LT_TAGDECL([], [compiler_needs_object], [1],
 [Whether the compiler copes with passing no objects directly])
_LT_TAGDECL([], [old_archive_from_new_cmds], [2],
 [Create an old-style archive from a shared archive])
_LT_TAGDECL([], [old_archive_from_expsyms_cmds], [2],
 [Create a temporary old-style archive to link instead of a shared archive])
_LT_TAGDECL([], [archive_cmds], [2], [Commands used to build a shared archive])
_LT_TAGDECL([], [archive_expsym_cmds], [2])
_LT_TAGDECL([], [module_cmds], [2],
 [Commands used to build a loadable module if different from building
 a shared archive.])
_LT_TAGDECL([], [module_expsym_cmds], [2])
_LT_TAGDECL([], [with_gnu_ld], [1],
 [Whether we are building with GNU ld or not])
_LT_TAGDECL([], [allow_undefined_flag], [1],
 [Flag that allows shared libraries with undefined symbols to be built])
_LT_TAGDECL([], [no_undefined_flag], [1],
 [Flag that enforces no undefined symbols])
_LT_TAGDECL([], [hardcode_libdir_flag_spec], [1],
 [Flag to hardcode $libdir into a binary during linking.
 This must work even if $libdir does not exist])
_LT_TAGDECL([], [hardcode_libdir_separator], [1],
 [Whether we need a single "-rpath" flag with a separated argument])
_LT_TAGDECL([], [hardcode_direct], [0],
 [Set to "yes" if using DIR/libNAME$shared_ext during linking hardcodes
 DIR into the resulting binary])
_LT_TAGDECL([], [hardcode_direct_absolute], [0],
 [Set to "yes" if using DIR/libNAME$shared_ext during linking hardcodes
 DIR into the resulting binary and the resulting library dependency is
 "absolute", i.e impossible to change by setting $shlibpath_var if the
 library is relocated])
_LT_TAGDECL([], [hardcode_minus_L], [0],
 [Set to "yes" if using the -LDIR flag during linking hardcodes DIR
 into the resulting binary])
_LT_TAGDECL([], [hardcode_shlibpath_var], [0],
 [Set to "yes" if using SHLIBPATH_VAR=DIR during linking hardcodes DIR
 into the resulting binary])
_LT_TAGDECL([], [hardcode_automatic], [0],
 [Set to "yes" if building a shared library automatically hardcodes DIR
 into the library and all subsequent libraries and executables linked
 against it])
_LT_TAGDECL([], [inherit_rpath], [0],
 [Set to yes if linker adds runtime paths of dependent libraries
 to runtime path list])
_LT_TAGDECL([], [link_all_deplibs], [0],
 [Whether libtool must link a program against all its dependency libraries])
_LT_TAGDECL([], [always_export_symbols], [0],
 [Set to "yes" if exported symbols are required])
_LT_TAGDECL([], [export_symbols_cmds], [2],
 [The commands to list exported symbols])
_LT_TAGDECL([], [exclude_expsyms], [1],
 [Symbols that should not be listed in the preloaded symbols])
_LT_TAGDECL([], [include_expsyms], [1],
 [Symbols that must always be exported])
_LT_TAGDECL([], [prelink_cmds], [2],
 [Commands necessary for linking programs (against libraries) with templates])
_LT_TAGDECL([], [postlink_cmds], [2],
 [Commands necessary for finishing linking programs])
_LT_TAGDECL([], [file_list_spec], [1],
 [Specify filename containing input files])
dnl FIXME: Not yet implemented
dnl _LT_TAGDECL([], [thread_safe_flag_spec], [1],
dnl [Compiler flag to generate thread safe objects])
])# _LT_LINKER_SHLIBS

_LT_LANG_C_CONFIG([TAG])

Ensure that the configuration variables for a C compiler are suitably
defined. These variables are subsequently used by _LT_CONFIG to write
the compiler configuration to 'libtool'.
m4_defun([_LT_LANG_C_CONFIG],
[m4_require([_LT_DECL_EGREP])dnl
lt_save_CC=$CC
AC_LANG_PUSH(C)

Source file extension for C test sources.
ac_ext=c

Object file extension for compiled C test sources.
objext=o
_LT_TAGVAR(objext, $1)=$objext

Code to be used in simple compile tests
lt_simple_compile_test_code="int some_variable = 0;"

Code to be used in simple link tests
lt_simple_link_test_code='int main(){return(0);}'

_LT_TAG_COMPILER
Save the default compiler, since it gets overwritten when the other
tags are being tested, and _LT_TAGVAR(compiler, []) is a NOP.
compiler_DEFAULT=$CC

save warnings/boilerplate of simple test code
_LT_COMPILER_BOILERPLATE
_LT_LINKER_BOILERPLATE

CAVEAT EMPTOR:
There is no encapsulation within the following macros, do not change
the running order or otherwise move them around unless you know exactly
what you are doing...
if test -n "$compiler"; then
 _LT_COMPILER_NO_RTTI($1)
 _LT_COMPILER_PIC($1)
 _LT_COMPILER_C_O($1)
 _LT_COMPILER_FILE_LOCKS($1)
 _LT_LINKER_SHLIBS($1)
 _LT_SYS_DYNAMIC_LINKER($1)
 _LT_LINKER_HARDCODE_LIBPATH($1)
 LT_SYS_DLOPEN_SELF
 _LT_CMD_STRIPLIB

 # Report what library types will actually be built
 AC_MSG_CHECKING([if libtool supports shared libraries])
 AC_MSG_RESULT([$can_build_shared])

 AC_MSG_CHECKING([whether to build shared libraries])
 test no = "$can_build_shared" && enable_shared=no

 # On AIX, shared libraries and static libraries use the same namespace, and
 # are all built from PIC.
 case $host_os in
 aix3*)
 test yes = "$enable_shared" && enable_static=no
 if test -n "$RANLIB"; then
 archive_cmds="$archive_cmds~\$RANLIB \$lib"
 postinstall_cmds='$RANLIB $lib'
 fi
 ;;

 aix[[4-9]]*)
 if test ia64 != "$host_cpu"; then
 case $enable_shared,$with_aix_soname,$aix_use_runtimelinking in
 yes,aix,yes) ;;			# shared object as lib.so file only
 yes,svr4,*) ;;			# shared object as lib.so archive member only
 yes,*) enable_static=no ;;	# shared object in lib.a archive as well
 esac
 fi
 ;;
 esac
 AC_MSG_RESULT([$enable_shared])

 AC_MSG_CHECKING([whether to build static libraries])
 # Make sure either enable_shared or enable_static is yes.
 test yes = "$enable_shared" || enable_static=yes
 AC_MSG_RESULT([$enable_static])

 _LT_CONFIG($1)
fi
AC_LANG_POP
CC=$lt_save_CC
])# _LT_LANG_C_CONFIG

_LT_LANG_CXX_CONFIG([TAG])

Ensure that the configuration variables for a C++ compiler are suitably
defined. These variables are subsequently used by _LT_CONFIG to write
the compiler configuration to 'libtool'.
m4_defun([_LT_LANG_CXX_CONFIG],
[m4_require([_LT_FILEUTILS_DEFAULTS])dnl
m4_require([_LT_DECL_EGREP])dnl
m4_require([_LT_PATH_MANIFEST_TOOL])dnl
if test -n "$CXX" && (test no != "$CXX" &&
 ((test g++ = "$CXX" && `g++ -v >/dev/null 2>&1`) ||
 (test g++ != "$CXX"))); then
 AC_PROG_CXXCPP
else
 _lt_caught_CXX_error=yes
fi

AC_LANG_PUSH(C++)
_LT_TAGVAR(archive_cmds_need_lc, $1)=no
_LT_TAGVAR(allow_undefined_flag, $1)=
_LT_TAGVAR(always_export_symbols, $1)=no
_LT_TAGVAR(archive_expsym_cmds, $1)=
_LT_TAGVAR(compiler_needs_object, $1)=no
_LT_TAGVAR(export_dynamic_flag_spec, $1)=
_LT_TAGVAR(hardcode_direct, $1)=no
_LT_TAGVAR(hardcode_direct_absolute, $1)=no
_LT_TAGVAR(hardcode_libdir_flag_spec, $1)=
_LT_TAGVAR(hardcode_libdir_separator, $1)=
_LT_TAGVAR(hardcode_minus_L, $1)=no
_LT_TAGVAR(hardcode_shlibpath_var, $1)=unsupported
_LT_TAGVAR(hardcode_automatic, $1)=no
_LT_TAGVAR(inherit_rpath, $1)=no
_LT_TAGVAR(module_cmds, $1)=
_LT_TAGVAR(module_expsym_cmds, $1)=
_LT_TAGVAR(link_all_deplibs, $1)=unknown
_LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds
_LT_TAGVAR(reload_flag, $1)=$reload_flag
_LT_TAGVAR(reload_cmds, $1)=$reload_cmds
_LT_TAGVAR(no_undefined_flag, $1)=
_LT_TAGVAR(whole_archive_flag_spec, $1)=
_LT_TAGVAR(enable_shared_with_static_runtimes, $1)=no

Source file extension for C++ test sources.
ac_ext=cpp

Object file extension for compiled C++ test sources.
objext=o
_LT_TAGVAR(objext, $1)=$objext

No sense in running all these tests if we already determined that
the CXX compiler isn't working. Some variables (like enable_shared)
are currently assumed to apply to all compilers on this platform,
and will be corrupted by setting them based on a non-working compiler.
if test yes != "$_lt_caught_CXX_error"; then
 # Code to be used in simple compile tests
 lt_simple_compile_test_code="int some_variable = 0;"

 # Code to be used in simple link tests
 lt_simple_link_test_code='int main(int, char *[[]]) { return(0); }'

 # ltmain only uses $CC for tagged configurations so make sure $CC is set.
 _LT_TAG_COMPILER

 # save warnings/boilerplate of simple test code
 _LT_COMPILER_BOILERPLATE
 _LT_LINKER_BOILERPLATE

 # Allow CC to be a program name with arguments.
 lt_save_CC=$CC
 lt_save_CFLAGS=$CFLAGS
 lt_save_LD=$LD
 lt_save_GCC=$GCC
 GCC=$GXX
 lt_save_with_gnu_ld=$with_gnu_ld
 lt_save_path_LD=$lt_cv_path_LD
 if test -n "${lt_cv_prog_gnu_ldcxx+set}"; then
 lt_cv_prog_gnu_ld=$lt_cv_prog_gnu_ldcxx
 else
 $as_unset lt_cv_prog_gnu_ld
 fi
 if test -n "${lt_cv_path_LDCXX+set}"; then
 lt_cv_path_LD=$lt_cv_path_LDCXX
 else
 $as_unset lt_cv_path_LD
 fi
 test -z "${LDCXX+set}" || LD=$LDCXX
 CC=${CXX-"c++"}
 CFLAGS=$CXXFLAGS
 compiler=$CC
 _LT_TAGVAR(compiler, $1)=$CC
 _LT_CC_BASENAME([$compiler])

 if test -n "$compiler"; then
 # We don't want -fno-exception when compiling C++ code, so set the
 # no_builtin_flag separately
 if test yes = "$GXX"; then
 _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)=' -fno-builtin'
 else
 _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)=
 fi

 if test yes = "$GXX"; then
 # Set up default GNU C++ configuration

 LT_PATH_LD

 # Check if GNU C++ uses GNU ld as the underlying linker, since the
 # archiving commands below assume that GNU ld is being used.
 if test yes = "$with_gnu_ld"; then
 _LT_TAGVAR(archive_cmds, $1)='$CC $pic_flag -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname -o $lib'
 _LT_TAGVAR(archive_expsym_cmds, $1)='$CC $pic_flag -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'

 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath wllibdir'
 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic'

 # If archive_cmds runs LD, not CC, wlarc should be empty
 # XXX I think wlarc can be eliminated in ltcf-cxx, but I need to
 # investigate it a little bit more. (MM)
 wlarc='$wl'

 # ancient GNU ld didn't support --whole-archive et. al.
 if eval "`$CC -print-prog-name=ld` --help 2>&1" |
	 $GREP 'no-whole-archive' > /dev/null; then
 _LT_TAGVAR(whole_archive_flag_spec, $1)=$wlarc'--whole-archive$convenience '$wlarc'--no-whole-archive'
 else
 _LT_TAGVAR(whole_archive_flag_spec, $1)=
 fi
 else
 with_gnu_ld=no
 wlarc=

 # A generic and very simple default shared library creation
 # command for GNU C++ for the case where it uses the native
 # linker, instead of GNU ld. If possible, this setting should
 # overridden to take advantage of the native linker features on
 # the platform it is being used on.
 _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $lib'
 fi

 # Commands to make compiler produce verbose output that lists
 # what "hidden" libraries, object files and flags are used when
 # linking a shared library.
 output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"'

 else
 GXX=no
 with_gnu_ld=no
 wlarc=
 fi

 # PORTME: fill in a description of your system's C++ link characteristics
 AC_MSG_CHECKING([whether the $compiler linker ($LD) supports shared libraries])
 _LT_TAGVAR(ld_shlibs, $1)=yes
 case $host_os in
 aix3*)
 # FIXME: insert proper C++ library support
 _LT_TAGVAR(ld_shlibs, $1)=no
 ;;
 aix[[4-9]]*)
 if test ia64 = "$host_cpu"; then
 # On IA64, the linker does run time linking by default, so we don't
 # have to do anything special.
 aix_use_runtimelinking=no
 exp_sym_flag='-Bexport'
 no_entry_flag=
 else
 aix_use_runtimelinking=no

 # Test if we are trying to use run time linking or normal
 # AIX style linking. If -brtl is somewhere in LDFLAGS, we
 # have runtime linking enabled, and use it for executables.
 # For shared libraries, we enable/disable runtime linking
 # depending on the kind of the shared library created -
 # when "with_aix_soname,aix_use_runtimelinking" is:
 # "aix,no" lib.a(lib.so.V) shared, rtl:no, for executables
 # "aix,yes" lib.so shared, rtl:yes, for executables
 # lib.a static archive
 # "both,no" lib.so.V(shr.o) shared, rtl:yes
 # lib.a(lib.so.V) shared, rtl:no, for executables
 # "both,yes" lib.so.V(shr.o) shared, rtl:yes, for executables
 # lib.a(lib.so.V) shared, rtl:no
 # "svr4,*" lib.so.V(shr.o) shared, rtl:yes, for executables
 # lib.a static archive
 case $host_os in aix4.[[23]]|aix4.[[23]].*|aix[[5-9]]*)
	 for ld_flag in $LDFLAGS; do
	 case $ld_flag in
	 -brtl)
	 aix_use_runtimelinking=yes
	 break
	 ;;
	 esac
	 done
	 if test svr4,no = "$with_aix_soname,$aix_use_runtimelinking"; then
	 # With aix-soname=svr4, we create the lib.so.V shared archives only,
	 # so we don't have lib.a shared libs to link our executables.
	 # We have to force runtime linking in this case.
	 aix_use_runtimelinking=yes
	 LDFLAGS="$LDFLAGS -Wl,-brtl"
	 fi
	 ;;
 esac

 exp_sym_flag='-bexport'
 no_entry_flag='-bnoentry'
 fi

 # When large executables or shared objects are built, AIX ld can
 # have problems creating the table of contents. If linking a library
 # or program results in "error TOC overflow" add -mminimal-toc to
 # CXXFLAGS/CFLAGS for g++/gcc. In the cases where that is not
 # enough to fix the problem, add -Wl,-bbigtoc to LDFLAGS.

 _LT_TAGVAR(archive_cmds, $1)=''
 _LT_TAGVAR(hardcode_direct, $1)=yes
 _LT_TAGVAR(hardcode_direct_absolute, $1)=yes
 _LT_TAGVAR(hardcode_libdir_separator, $1)=':'
 _LT_TAGVAR(link_all_deplibs, $1)=yes
 _LT_TAGVAR(file_list_spec, $1)='$wl-f,'
 case $with_aix_soname,$aix_use_runtimelinking in
 aix,*) ;;	# no import file
 svr4,* | *,yes) # use import file
 # The Import File defines what to hardcode.
 _LT_TAGVAR(hardcode_direct, $1)=no
 _LT_TAGVAR(hardcode_direct_absolute, $1)=no
 ;;
 esac

 if test yes = "$GXX"; then
 case $host_os in aix4.[[012]]|aix4.[[012]].*)
 # We only want to do this on AIX 4.2 and lower, the check
 # below for broken collect2 doesn't work under 4.3+
	 collect2name=`$CC -print-prog-name=collect2`
	 if test -f "$collect2name" &&
	 strings "$collect2name" | $GREP resolve_lib_name >/dev/null
	 then
	 # We have reworked collect2
	 :
	 else
	 # We have old collect2
	 _LT_TAGVAR(hardcode_direct, $1)=unsupported
	 # It fails to find uninstalled libraries when the uninstalled
	 # path is not listed in the libpath. Setting hardcode_minus_L
	 # to unsupported forces relinking
	 _LT_TAGVAR(hardcode_minus_L, $1)=yes
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir'
	 _LT_TAGVAR(hardcode_libdir_separator, $1)=
	 fi
 esac
 shared_flag='-shared'
	 if test yes = "$aix_use_runtimelinking"; then
	 shared_flag=$shared_flag' $wl-G'
	 fi
	 # Need to ensure runtime linking is disabled for the traditional
	 # shared library, or the linker may eventually find shared libraries
	 # /with/ Import File - we do not want to mix them.
	 shared_flag_aix='-shared'
	 shared_flag_svr4='-shared $wl-G'
 else
 # not using gcc
 if test ia64 = "$host_cpu"; then
	 # VisualAge C++, Version 5.5 for AIX 5L for IA-64, Beta 3 Release
	 # chokes on -Wl,-G. The following line is correct:
	 shared_flag='-G'
 else
	 if test yes = "$aix_use_runtimelinking"; then
	 shared_flag='$wl-G'
	 else
	 shared_flag='$wl-bM:SRE'
	 fi
	 shared_flag_aix='$wl-bM:SRE'
	 shared_flag_svr4='$wl-G'
 fi
 fi

 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-bexpall'
 # It seems that -bexpall does not export symbols beginning with
 # underscore (_), so it is better to generate a list of symbols to
	# export.
 _LT_TAGVAR(always_export_symbols, $1)=yes
	if test aix,yes = "$with_aix_soname,$aix_use_runtimelinking"; then
 # Warning - without using the other runtime loading flags (-brtl),
 # -berok will link without error, but may produce a broken library.
 # The "-G" linker flag allows undefined symbols.
 _LT_TAGVAR(no_undefined_flag, $1)='-bernotok'
 # Determine the default libpath from the value encoded in an empty
 # executable.
 _LT_SYS_MODULE_PATH_AIX([$1])
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-blibpath:$libdir:'"$aix_libpath"

 _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -o $output_objdir/$soname $libobjs $deplibs wl'no_entry_flag' $compiler_flags `if test -n "$allow_undefined_flag"; then func_echo_all "wlallow_undefined_flag"; else :; fi` wl'exp_sym_flag:\$export_symbols' '$shared_flag
 else
 if test ia64 = "$host_cpu"; then
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-R $libdir:/usr/lib:/lib'
	 _LT_TAGVAR(allow_undefined_flag, $1)="-z nodefs"
	 _LT_TAGVAR(archive_expsym_cmds, $1)="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs '"\$wl$no_entry_flag"' $compiler_flags wlallow_undefined_flag '"\wlexp_sym_flag:\$export_symbols"
 else
	 # Determine the default libpath from the value encoded in an
	 # empty executable.
	 _LT_SYS_MODULE_PATH_AIX([$1])
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-blibpath:$libdir:'"$aix_libpath"
	 # Warning - without using the other run time loading flags,
	 # -berok will link without error, but may produce a broken library.
	 _LT_TAGVAR(no_undefined_flag, $1)=' $wl-bernotok'
	 _LT_TAGVAR(allow_undefined_flag, $1)=' $wl-berok'
	 if test yes = "$with_gnu_ld"; then
	 # We only use this code for GNU lds that support --whole-archive.
	 _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive$convenience $wl--no-whole-archive'
	 else
	 # Exported symbols can be pulled into shared objects from archives
	 _LT_TAGVAR(whole_archive_flag_spec, $1)='$convenience'
	 fi
	 _LT_TAGVAR(archive_cmds_need_lc, $1)=yes
	 _LT_TAGVAR(archive_expsym_cmds, $1)='$RM -r $output_objdir/$realname.d~$MKDIR $output_objdir/$realname.d'
	 # -brtl affects multiple linker settings, -berok does not and is overridden later
	 compiler_flags_filtered='`func_echo_all "$compiler_flags " | $SED -e "s%-brtl\\([[,]]\\)%-berok\\1%g"`'
	 if test svr4 != "$with_aix_soname"; then
	 # This is similar to how AIX traditionally builds its shared
	 # libraries. Need -bnortl late, we may have -brtl in LDFLAGS.
	 _LT_TAGVAR(archive_expsym_cmds, $1)="$_LT_TAGVAR(archive_expsym_cmds, $1)"'~$CC '$shared_flag_aix' -o $output_objdir/$realname.d/$soname $libobjs $deplibs $wl-bnoentry '$compiler_flags_filtered'$wl-bE:$export_symbols$allow_undefined_flag~$AR $AR_FLAGS $output_objdir/$libname$release.a $output_objdir/$realname.d/$soname'
	 fi
	 if test aix != "$with_aix_soname"; then
	 _LT_TAGVAR(archive_expsym_cmds, $1)="$_LT_TAGVAR(archive_expsym_cmds, $1)"'~$CC '$shared_flag_svr4' -o $output_objdir/$realname.d/$shared_archive_member_spec.o $libobjs $deplibs $wl-bnoentry '$compiler_flags_filtered'$wl-bE:$export_symbols$allow_undefined_flag~$STRIP -e $output_objdir/$realname.d/$shared_archive_member_spec.o~(func_echo_all "#! $soname($shared_archive_member_spec.o)"; if test shr_64 = "$shared_archive_member_spec"; then func_echo_all "# 64"; else func_echo_all "# 32"; fi; cat $export_symbols) > $output_objdir/$realname.d/$shared_archive_member_spec.imp~$AR $AR_FLAGS $output_objdir/$soname $output_objdir/$realname.d/$shared_archive_member_spec.o $output_objdir/$realname.d/$shared_archive_member_spec.imp'
	 else
	 # used by -dlpreopen to get the symbols
	 _LT_TAGVAR(archive_expsym_cmds, $1)="$_LT_TAGVAR(archive_expsym_cmds, $1)"'~$MV $output_objdir/$realname.d/$soname $output_objdir'
	 fi
	 _LT_TAGVAR(archive_expsym_cmds, $1)="$_LT_TAGVAR(archive_expsym_cmds, $1)"'~$RM -r $output_objdir/$realname.d'
 fi
 fi
 ;;

 beos*)
	if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then
	 _LT_TAGVAR(allow_undefined_flag, $1)=unsupported
	 # Joseph Beckenbach <jrb3@best.com> says some releases of gcc
	 # support --undefined. This deserves some investigation. FIXME
	 _LT_TAGVAR(archive_cmds, $1)='$CC -nostart $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
	else
	 _LT_TAGVAR(ld_shlibs, $1)=no
	fi
	;;

 chorus*)
 case $cc_basename in
 *)
	 # FIXME: insert proper C++ library support
	 _LT_TAGVAR(ld_shlibs, $1)=no
	 ;;
 esac
 ;;

 cygwin* | mingw* | pw32* | cegcc*)
	case $GXX,$cc_basename in
	,cl* | no,cl*)
	 # Native MSVC
	 # hardcode_libdir_flag_spec is actually meaningless, as there is
	 # no search path for DLLs.
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)=' '
	 _LT_TAGVAR(allow_undefined_flag, $1)=unsupported
	 _LT_TAGVAR(always_export_symbols, $1)=yes
	 _LT_TAGVAR(file_list_spec, $1)='@'
	 # Tell ltmain to make .lib files, not .a files.
	 libext=lib
	 # Tell ltmain to make .dll files, not .so files.
	 shrext_cmds=.dll
	 # FIXME: Setting linknames here is a bad hack.
	 _LT_TAGVAR(archive_cmds, $1)='$CC -o $output_objdir/$soname $libobjs $compiler_flags $deplibs -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~linknames='
	 _LT_TAGVAR(archive_expsym_cmds, $1)='if _LT_DLL_DEF_P([$export_symbols]); then
 cp "$export_symbols" "$output_objdir/$soname.def";
 echo "$tool_output_objdir$soname.def" > "$output_objdir/$soname.exp";
 else
 $SED -e '\''s/^/-link -EXPORT:/'\'' < $export_symbols > $output_objdir/$soname.exp;
 fi~
 $CC -o $tool_output_objdir$soname $libobjs $compiler_flags $deplibs "@$tool_output_objdir$soname.exp" -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~
 linknames='
	 # The linker will not automatically build a static lib if we build a DLL.
	 # _LT_TAGVAR(old_archive_from_new_cmds, $1)='true'
	 _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes
	 # Don't use ranlib
	 _LT_TAGVAR(old_postinstall_cmds, $1)='chmod 644 $oldlib'
	 _LT_TAGVAR(postlink_cmds, $1)='lt_outputfile="@OUTPUT@"~
 lt_tool_outputfile="@TOOL_OUTPUT@"~
 case $lt_outputfile in
 .exe|.EXE) ;;
 *)
 lt_outputfile=$lt_outputfile.exe
 lt_tool_outputfile=$lt_tool_outputfile.exe
 ;;
 esac~
 func_to_tool_file "$lt_outputfile"~
 if test : != "$MANIFEST_TOOL" && test -f "$lt_outputfile.manifest"; then
 $MANIFEST_TOOL -manifest "$lt_tool_outputfile.manifest" -outputresource:"$lt_tool_outputfile" || exit 1;
 $RM "$lt_outputfile.manifest";
 fi'
	 ;;
	*)
	 # g++
	 # _LT_TAGVAR(hardcode_libdir_flag_spec, $1) is actually meaningless,
	 # as there is no search path for DLLs.
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir'
	 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-all-symbols'
	 _LT_TAGVAR(allow_undefined_flag, $1)=unsupported
	 _LT_TAGVAR(always_export_symbols, $1)=no
	 _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes

	 if $LD --help 2>&1 | $GREP 'auto-import' > /dev/null; then
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib'
	 # If the export-symbols file already is a .def file, use it as
	 # is; otherwise, prepend EXPORTS...
	 _LT_TAGVAR(archive_expsym_cmds, $1)='if _LT_DLL_DEF_P([$export_symbols]); then
 cp $export_symbols $output_objdir/$soname.def;
 else
 echo EXPORTS > $output_objdir/$soname.def;
 cat $export_symbols >> $output_objdir/$soname.def;
 fi~
 $CC -shared -nostdlib $output_objdir/$soname.def $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib'
	 else
	 _LT_TAGVAR(ld_shlibs, $1)=no
	 fi
	 ;;
	esac
	;;
 darwin* | rhapsody*)
 _LT_DARWIN_LINKER_FEATURES($1)
	;;

 os2*)
	_LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir'
	_LT_TAGVAR(hardcode_minus_L, $1)=yes
	_LT_TAGVAR(allow_undefined_flag, $1)=unsupported
	shrext_cmds=.dll
	_LT_TAGVAR(archive_cmds, $1)='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~
	 $ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~
	 $ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~
	 $ECHO EXPORTS >> $output_objdir/$libname.def~
	 emxexp $libobjs | $SED /"_DLL_InitTerm"/d >> $output_objdir/$libname.def~
	 $CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~
	 emximp -o $lib $output_objdir/$libname.def'
	_LT_TAGVAR(archive_expsym_cmds, $1)='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~
	 $ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~
	 $ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~
	 $ECHO EXPORTS >> $output_objdir/$libname.def~
	 prefix_cmds="$SED"~
	 if test EXPORTS = "`$SED 1q $export_symbols`"; then
	 prefix_cmds="$prefix_cmds -e 1d";
	 fi~
	 prefix_cmds="$prefix_cmds -e \"s/^\(.*\)$/_\1/g\""~
	 cat $export_symbols | $prefix_cmds >> $output_objdir/$libname.def~
	 $CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~
	 emximp -o $lib $output_objdir/$libname.def'
	_LT_TAGVAR(old_archive_From_new_cmds, $1)='emximp -o $output_objdir/${libname}_dll.a $output_objdir/$libname.def'
	_LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes
	;;

 dgux*)
 case $cc_basename in
 ec++*)
	 # FIXME: insert proper C++ library support
	 _LT_TAGVAR(ld_shlibs, $1)=no
	 ;;
 ghcx*)
	 # Green Hills C++ Compiler
	 # FIXME: insert proper C++ library support
	 _LT_TAGVAR(ld_shlibs, $1)=no
	 ;;
 *)
	 # FIXME: insert proper C++ library support
	 _LT_TAGVAR(ld_shlibs, $1)=no
	 ;;
 esac
 ;;

 freebsd2.*)
 # C++ shared libraries reported to be fairly broken before
	# switch to ELF
 _LT_TAGVAR(ld_shlibs, $1)=no
 ;;

 freebsd-elf*)
 _LT_TAGVAR(archive_cmds_need_lc, $1)=no
 ;;

 freebsd* | dragonfly*)
 # FreeBSD 3 and later use GNU C++ and GNU ld with standard ELF
 # conventions
 _LT_TAGVAR(ld_shlibs, $1)=yes
 ;;

 haiku*)
 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
 _LT_TAGVAR(link_all_deplibs, $1)=yes
 ;;

 hpux9*)
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl+b wllibdir'
 _LT_TAGVAR(hardcode_libdir_separator, $1)=:
 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E'
 _LT_TAGVAR(hardcode_direct, $1)=yes
 _LT_TAGVAR(hardcode_minus_L, $1)=yes # Not in the search PATH,
				 # but as the default
				 # location of the library.

 case $cc_basename in
 CC*)
 # FIXME: insert proper C++ library support
 _LT_TAGVAR(ld_shlibs, $1)=no
 ;;
 aCC*)
 _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/$soname~$CC -b $wl+b wlinstall_libdir -o $output_objdir/$soname $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib'
 # Commands to make compiler produce verbose output that lists
 # what "hidden" libraries, object files and flags are used when
 # linking a shared library.
 #
 # There doesn't appear to be a way to prevent this compiler from
 # explicitly linking system object files so we need to strip them
 # from the output so that they don't get included in the library
 # dependencies.
 output_verbose_link_cmd='templist=`($CC -b $CFLAGS -v conftest.$objext 2>&1) | $EGREP "\-L"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"'
 ;;
 *)
 if test yes = "$GXX"; then
 _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/$soname~$CC -shared -nostdlib $pic_flag $wl+b wlinstall_libdir -o $output_objdir/$soname $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib'
 else
 # FIXME: insert proper C++ library support
 _LT_TAGVAR(ld_shlibs, $1)=no
 fi
 ;;
 esac
 ;;

 hpux10*|hpux11*)
 if test no = "$with_gnu_ld"; then
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl+b wllibdir'
	 _LT_TAGVAR(hardcode_libdir_separator, $1)=:

 case $host_cpu in
 hppa*64*|ia64*)
 ;;
 *)
	 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E'
 ;;
 esac
 fi
 case $host_cpu in
 hppa*64*|ia64*)
 _LT_TAGVAR(hardcode_direct, $1)=no
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
 ;;
 *)
 _LT_TAGVAR(hardcode_direct, $1)=yes
 _LT_TAGVAR(hardcode_direct_absolute, $1)=yes
 _LT_TAGVAR(hardcode_minus_L, $1)=yes # Not in the search PATH,
					 # but as the default
					 # location of the library.
 ;;
 esac

 case $cc_basename in
 CC*)
	 # FIXME: insert proper C++ library support
	 _LT_TAGVAR(ld_shlibs, $1)=no
	 ;;
 aCC*)
	 case $host_cpu in
	 hppa*64*)
	 _LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h wlsoname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags'
	 ;;
	 ia64*)
	 _LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h wlsoname $wl+nodefaultrpath -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags'
	 ;;
	 *)
	 _LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h wlsoname $wl+b wlinstall_libdir -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags'
	 ;;
	 esac
	 # Commands to make compiler produce verbose output that lists
	 # what "hidden" libraries, object files and flags are used when
	 # linking a shared library.
	 #
	 # There doesn't appear to be a way to prevent this compiler from
	 # explicitly linking system object files so we need to strip them
	 # from the output so that they don't get included in the library
	 # dependencies.
	 output_verbose_link_cmd='templist=`($CC -b $CFLAGS -v conftest.$objext 2>&1) | $GREP "\-L"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"'
	 ;;
 *)
	 if test yes = "$GXX"; then
	 if test no = "$with_gnu_ld"; then
	 case $host_cpu in
	 hppa*64*)
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib -fPIC $wl+h wlsoname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags'
	 ;;
	 ia64*)
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $pic_flag $wl+h wlsoname $wl+nodefaultrpath -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags'
	 ;;
	 *)
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $pic_flag $wl+h wlsoname $wl+b wlinstall_libdir -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags'
	 ;;
	 esac
	 fi
	 else
	 # FIXME: insert proper C++ library support
	 _LT_TAGVAR(ld_shlibs, $1)=no
	 fi
	 ;;
 esac
 ;;

 interix[[3-9]]*)
	_LT_TAGVAR(hardcode_direct, $1)=no
	_LT_TAGVAR(hardcode_shlibpath_var, $1)=no
	_LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir'
	_LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E'
	# Hack: On Interix 3.x, we cannot compile PIC because of a broken gcc.
	# Instead, shared libraries are loaded at an image base (0x10000000 by
	# default) and relocated if they conflict, which is a slow very memory
	# consuming and fragmenting process. To avoid this, we pick a random,
	# 256 KiB-aligned image base between 0x50000000 and 0x6FFC0000 at link
	# time. Moving up from 0x10000000 also allows more sbrk(2) space.
	_LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 * 262144 + 1342177280` -o $lib'
	_LT_TAGVAR(archive_expsym_cmds, $1)='sed "s|^|_|" $export_symbols >$output_objdir/$soname.expsym~$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--retain-symbols-file,$output_objdir/$soname.expsym $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 * 262144 + 1342177280` -o $lib'
	;;
 irix5* | irix6*)
 case $cc_basename in
 CC*)
	 # SGI C++
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared -all -multigot $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib'

	 # Archives containing C++ object files must be created using
	 # "CC -ar", where "CC" is the IRIX C++ compiler. This is
	 # necessary to make sure instantiated templates are included
	 # in the archive.
	 _LT_TAGVAR(old_archive_cmds, $1)='$CC -ar -WR,-u -o $oldlib $oldobjs'
	 ;;
 *)
	 if test yes = "$GXX"; then
	 if test no = "$with_gnu_ld"; then
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname `test -n "$verstring" && func_echo_all "$wl-set_version wlverstring"` $wl-update_registry wloutput_objdir/so_locations -o $lib'
	 else
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname `test -n "$verstring" && func_echo_all "$wl-set_version wlverstring"` -o $lib'
	 fi
	 fi
	 _LT_TAGVAR(link_all_deplibs, $1)=yes
	 ;;
 esac
 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath wllibdir'
 _LT_TAGVAR(hardcode_libdir_separator, $1)=:
 _LT_TAGVAR(inherit_rpath, $1)=yes
 ;;

 linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*)
 case $cc_basename in
 KCC*)
	 # Kuck and Associates, Inc. (KAI) C++ Compiler

	 # KCC will only create a shared library if the output file
	 # ends with ".so" (or ".sl" for HP-UX), so rename the library
	 # to its proper name (with version) after linking.
	 _LT_TAGVAR(archive_cmds, $1)='tempext=`echo $shared_ext | $SED -e '\''s/\([[^()0-9A-Za-z{}]]\)/\\\\\1/g'\''`; templib=`echo $lib | $SED -e "s/\$tempext\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib; mv \$templib $lib'
	 _LT_TAGVAR(archive_expsym_cmds, $1)='tempext=`echo $shared_ext | $SED -e '\''s/\([[^()0-9A-Za-z{}]]\)/\\\\\1/g'\''`; templib=`echo $lib | $SED -e "s/\$tempext\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib $wl-retain-symbols-file,$export_symbols; mv \$templib $lib'
	 # Commands to make compiler produce verbose output that lists
	 # what "hidden" libraries, object files and flags are used when
	 # linking a shared library.
	 #
	 # There doesn't appear to be a way to prevent this compiler from
	 # explicitly linking system object files so we need to strip them
	 # from the output so that they don't get included in the library
	 # dependencies.
	 output_verbose_link_cmd='templist=`$CC $CFLAGS -v conftest.$objext -o libconftest$shared_ext 2>&1 | $GREP "ld"`; rm -f libconftest$shared_ext; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"'

	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir'
	 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic'

	 # Archives containing C++ object files must be created using
	 # "CC -Bstatic", where "CC" is the KAI C++ compiler.
	 _LT_TAGVAR(old_archive_cmds, $1)='$CC -Bstatic -o $oldlib $oldobjs'
	 ;;
	 icpc* | ecpc*)
	 # Intel C++
	 with_gnu_ld=yes
	 # version 8.0 and above of icpc choke on multiply defined symbols
	 # if we add $predep_objects and $postdep_objects, however 7.1 and
	 # earlier do not add the objects themselves.
	 case `$CC -V 2>&1` in
	 "Version 7.")
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname -o $lib'
		_LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'
		;;
	 *) # Version 8.0 or newer
	 tmp_idyn=
	 case $host_cpu in
		 ia64*) tmp_idyn=' -i_dynamic';;
		esac
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared'"$tmp_idyn"' $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
		_LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared'"$tmp_idyn"' $libobjs $deplibs $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'
		;;
	 esac
	 _LT_TAGVAR(archive_cmds_need_lc, $1)=no
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir'
	 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic'
	 _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive$convenience $wl--no-whole-archive'
	 ;;
 pgCC* | pgcpp*)
 # Portland Group C++ compiler
	 case `$CC -V` in
	 pgCC\ [[1-5]]. | *pgcpp\ [[1-5]].*)
	 _LT_TAGVAR(prelink_cmds, $1)='tpldir=Template.dir~
 rm -rf $tpldir~
 $CC --prelink_objects --instantiation_dir $tpldir $objs $libobjs $compile_deplibs~
 compile_command="$compile_command `find $tpldir -name *.o | sort | $NL2SP`"'
	 _LT_TAGVAR(old_archive_cmds, $1)='tpldir=Template.dir~
 rm -rf $tpldir~
 $CC --prelink_objects --instantiation_dir $tpldir $oldobjs$old_deplibs~
 $AR $AR_FLAGS $oldlib$oldobjs$old_deplibs `find $tpldir -name *.o | sort | $NL2SP`~
 $RANLIB $oldlib'
	 _LT_TAGVAR(archive_cmds, $1)='tpldir=Template.dir~
 rm -rf $tpldir~
 $CC --prelink_objects --instantiation_dir $tpldir $predep_objects $libobjs $deplibs $convenience $postdep_objects~
 $CC -shared $pic_flag $predep_objects $libobjs $deplibs `find $tpldir -name *.o | sort | $NL2SP` $postdep_objects $compiler_flags $wl-soname wlsoname -o $lib'
	 _LT_TAGVAR(archive_expsym_cmds, $1)='tpldir=Template.dir~
 rm -rf $tpldir~
 $CC --prelink_objects --instantiation_dir $tpldir $predep_objects $libobjs $deplibs $convenience $postdep_objects~
 $CC -shared $pic_flag $predep_objects $libobjs $deplibs `find $tpldir -name *.o | sort | $NL2SP` $postdep_objects $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'
	 ;;
	 *) # Version 6 and above use weak symbols
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname -o $lib'
	 _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname $wl-retain-symbols-file wlexport_symbols -o $lib'
	 ;;
	 esac

	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl--rpath wllibdir'
	 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic'
	 _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive'
 ;;
	 cxx*)
	 # Compaq C++
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname -o $lib'
	 _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname -o $lib $wl-retain-symbols-file wlexport_symbols'

	 runpath_var=LD_RUN_PATH
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-rpath $libdir'
	 _LT_TAGVAR(hardcode_libdir_separator, $1)=:

	 # Commands to make compiler produce verbose output that lists
	 # what "hidden" libraries, object files and flags are used when
	 # linking a shared library.
	 #
	 # There doesn't appear to be a way to prevent this compiler from
	 # explicitly linking system object files so we need to strip them
	 # from the output so that they don't get included in the library
	 # dependencies.
	 output_verbose_link_cmd='templist=`$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP "ld"`; templist=`func_echo_all "$templist" | $SED "s/\(^.*ld.*\)\(.*ld .*$\)/\1/"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "X$list" | $Xsed'
	 ;;
	 xl* | mpixl* | bgxl*)
	 # IBM XL 8.0 on PPC, with GNU ld
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath wllibdir'
	 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic'
	 _LT_TAGVAR(archive_cmds, $1)='$CC -qmkshrobj $libobjs $deplibs $compiler_flags $wl-soname wlsoname -o $lib'
	 if test yes = "$supports_anon_versioning"; then
	 _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $output_objdir/$libname.ver~
 cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~
 echo "local: *; };" >> $output_objdir/$libname.ver~
 $CC -qmkshrobj $libobjs $deplibs $compiler_flags $wl-soname wlsoname $wl-version-script wloutput_objdir/$libname.ver -o $lib'
	 fi
	 ;;
	 *)
	 case `$CC -V 2>&1 | sed 5q` in
	 Sun\ C)
	 # Sun C++ 5.9
	 _LT_TAGVAR(no_undefined_flag, $1)=' -zdefs'
	 _LT_TAGVAR(archive_cmds, $1)='$CC -G$allow_undefined_flag -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags'
	 _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G$allow_undefined_flag -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-retain-symbols-file wlexport_symbols'
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir'
	 _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`new_convenience=; for conv in $convenience\"\"; do test -z \"$conv\" || new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive'
	 _LT_TAGVAR(compiler_needs_object, $1)=yes

	 # Not sure whether something based on
	 # $CC $CFLAGS -v conftest.$objext -o libconftest$shared_ext 2>&1
	 # would be better.
	 output_verbose_link_cmd='func_echo_all'

	 # Archives containing C++ object files must be created using
	 # "CC -xar", where "CC" is the Sun C++ compiler. This is
	 # necessary to make sure instantiated templates are included
	 # in the archive.
	 _LT_TAGVAR(old_archive_cmds, $1)='$CC -xar -o $oldlib $oldobjs'
	 ;;
	 esac
	 ;;
	esac
	;;

 lynxos*)
 # FIXME: insert proper C++ library support
	_LT_TAGVAR(ld_shlibs, $1)=no
	;;

 m88k*)
 # FIXME: insert proper C++ library support
 _LT_TAGVAR(ld_shlibs, $1)=no
	;;

 mvs*)
 case $cc_basename in
 cxx*)
	 # FIXME: insert proper C++ library support
	 _LT_TAGVAR(ld_shlibs, $1)=no
	 ;;
	 *)
	 # FIXME: insert proper C++ library support
	 _LT_TAGVAR(ld_shlibs, $1)=no
	 ;;
	esac
	;;

 netbsd*)
 if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then
	 _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable -o $lib $predep_objects $libobjs $deplibs $postdep_objects $linker_flags'
	 wlarc=
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir'
	 _LT_TAGVAR(hardcode_direct, $1)=yes
	 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
	fi
	# Workaround some broken pre-1.5 toolchains
	output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP conftest.$objext | $SED -e "s:-lgcc -lc -lgcc::"'
	;;

 nto | *qnx*)
 _LT_TAGVAR(ld_shlibs, $1)=yes
	;;

 openbsd* | bitrig*)
	if test -f /usr/libexec/ld.so; then
	 _LT_TAGVAR(hardcode_direct, $1)=yes
	 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
	 _LT_TAGVAR(hardcode_direct_absolute, $1)=yes
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $lib'
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir'
	 if test -z "`echo __ELF__ | $CC -E - | grep __ELF__`"; then
	 _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-retain-symbols-file,$export_symbols -o $lib'
	 _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E'
	 _LT_TAGVAR(whole_archive_flag_spec, $1)=$wlarc'--whole-archive$convenience '$wlarc'--no-whole-archive'
	 fi
	 output_verbose_link_cmd=func_echo_all
	else
	 _LT_TAGVAR(ld_shlibs, $1)=no
	fi
	;;

 osf3* | osf4* | osf5*)
 case $cc_basename in
 KCC*)
	 # Kuck and Associates, Inc. (KAI) C++ Compiler

	 # KCC will only create a shared library if the output file
	 # ends with ".so" (or ".sl" for HP-UX), so rename the library
	 # to its proper name (with version) after linking.
	 _LT_TAGVAR(archive_cmds, $1)='tempext=`echo $shared_ext | $SED -e '\''s/\([[^()0-9A-Za-z{}]]\)/\\\\\1/g'\''`; templib=`echo "$lib" | $SED -e "s/\$tempext\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib; mv \$templib $lib'

	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir'
	 _LT_TAGVAR(hardcode_libdir_separator, $1)=:

	 # Archives containing C++ object files must be created using
	 # the KAI C++ compiler.
	 case $host in
	 osf3*) _LT_TAGVAR(old_archive_cmds, $1)='$CC -Bstatic -o $oldlib $oldobjs' ;;
	 *) _LT_TAGVAR(old_archive_cmds, $1)='$CC -o $oldlib $oldobjs' ;;
	 esac
	 ;;
 RCC*)
	 # Rational C++ 2.4.1
	 # FIXME: insert proper C++ library support
	 _LT_TAGVAR(ld_shlibs, $1)=no
	 ;;
 cxx*)
	 case $host in
	 osf3*)
	 _LT_TAGVAR(allow_undefined_flag, $1)=' $wl-expect_unresolved $wl*'
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $soname `test -n "$verstring" && func_echo_all "$wl-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib'
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath wllibdir'
		;;
	 *)
	 _LT_TAGVAR(allow_undefined_flag, $1)=' -expect_unresolved *'
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -msym -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib'
	 _LT_TAGVAR(archive_expsym_cmds, $1)='for i in `cat $export_symbols`; do printf "%s %s\\n" -exported_symbol "\$i" >> $lib.exp; done~
 echo "-hidden">> $lib.exp~
 $CC -shared$allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -msym -soname $soname $wl-input wllib.exp `test -n "$verstring" && $ECHO "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib~
 $RM $lib.exp'
	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-rpath $libdir'
		;;
	 esac

	 _LT_TAGVAR(hardcode_libdir_separator, $1)=:

	 # Commands to make compiler produce verbose output that lists
	 # what "hidden" libraries, object files and flags are used when
	 # linking a shared library.
	 #
	 # There doesn't appear to be a way to prevent this compiler from
	 # explicitly linking system object files so we need to strip them
	 # from the output so that they don't get included in the library
	 # dependencies.
	 output_verbose_link_cmd='templist=`$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP "ld" | $GREP -v "ld:"`; templist=`func_echo_all "$templist" | $SED "s/\(^.*ld.*\)\(.*ld.*$\)/\1/"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"'
	 ;;
	 *)
	 if test yes,no = "$GXX,$with_gnu_ld"; then
	 _LT_TAGVAR(allow_undefined_flag, $1)=' $wl-expect_unresolved $wl*'
	 case $host in
	 osf3*)
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname wlsoname `test -n "$verstring" && func_echo_all "$wl-set_version wlverstring"` $wl-update_registry wloutput_objdir/so_locations -o $lib'
		 ;;
	 *)
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -nostdlib $allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-msym $wl-soname wlsoname `test -n "$verstring" && func_echo_all "$wl-set_version wlverstring"` $wl-update_registry wloutput_objdir/so_locations -o $lib'
		 ;;
	 esac

	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath wllibdir'
	 _LT_TAGVAR(hardcode_libdir_separator, $1)=:

	 # Commands to make compiler produce verbose output that lists
	 # what "hidden" libraries, object files and flags are used when
	 # linking a shared library.
	 output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"'

	 else
	 # FIXME: insert proper C++ library support
	 _LT_TAGVAR(ld_shlibs, $1)=no
	 fi
	 ;;
 esac
 ;;

 psos*)
 # FIXME: insert proper C++ library support
 _LT_TAGVAR(ld_shlibs, $1)=no
 ;;

 sunos4*)
 case $cc_basename in
 CC*)
	 # Sun C++ 4.x
	 # FIXME: insert proper C++ library support
	 _LT_TAGVAR(ld_shlibs, $1)=no
	 ;;
 lcc*)
	 # Lucid
	 # FIXME: insert proper C++ library support
	 _LT_TAGVAR(ld_shlibs, $1)=no
	 ;;
 *)
	 # FIXME: insert proper C++ library support
	 _LT_TAGVAR(ld_shlibs, $1)=no
	 ;;
 esac
 ;;

 solaris*)
 case $cc_basename in
 CC* | sunCC*)
	 # Sun C++ 4.2, 5.x and Centerline C++
 _LT_TAGVAR(archive_cmds_need_lc,$1)=yes
	 _LT_TAGVAR(no_undefined_flag, $1)=' -zdefs'
	 _LT_TAGVAR(archive_cmds, $1)='$CC -G$allow_undefined_flag -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags'
	 _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~
 $CC -G$allow_undefined_flag $wl-M wllib.exp -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp'

	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir'
	 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
	 case $host_os in
	 solaris2.[[0-5]] | solaris2.[[0-5]].*) ;;
	 *)
		# The compiler driver will combine and reorder linker options,
		# but understands '-z linker_flag'.
	 # Supported since Solaris 2.6 (maybe 2.5.1?)
		_LT_TAGVAR(whole_archive_flag_spec, $1)='-z allextract$convenience -z defaultextract'
	 ;;
	 esac
	 _LT_TAGVAR(link_all_deplibs, $1)=yes

	 output_verbose_link_cmd='func_echo_all'

	 # Archives containing C++ object files must be created using
	 # "CC -xar", where "CC" is the Sun C++ compiler. This is
	 # necessary to make sure instantiated templates are included
	 # in the archive.
	 _LT_TAGVAR(old_archive_cmds, $1)='$CC -xar -o $oldlib $oldobjs'
	 ;;
 gcx*)
	 # Green Hills C++ Compiler
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-h wlsoname -o $lib'

	 # The C++ compiler must be used to create the archive.
	 _LT_TAGVAR(old_archive_cmds, $1)='$CC $LDFLAGS -archive -o $oldlib $oldobjs'
	 ;;
 *)
	 # GNU C++ compiler with Solaris linker
	 if test yes,no = "$GXX,$with_gnu_ld"; then
	 _LT_TAGVAR(no_undefined_flag, $1)=' $wl-z ${wl}defs'
	 if $CC --version | $GREP -v '^2\.7' > /dev/null; then
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-h wlsoname -o $lib'
	 _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~
 $CC -shared $pic_flag -nostdlib $wl-M wllib.exp $wl-h wlsoname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp'

	 # Commands to make compiler produce verbose output that lists
	 # what "hidden" libraries, object files and flags are used when
	 # linking a shared library.
	 output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"'
	 else
	 # g++ 2.7 appears to require '-G' NOT '-shared' on this
	 # platform.
	 _LT_TAGVAR(archive_cmds, $1)='$CC -G -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-h wlsoname -o $lib'
	 _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~
 $CC -G -nostdlib $wl-M wllib.exp $wl-h wlsoname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp'

	 # Commands to make compiler produce verbose output that lists
	 # what "hidden" libraries, object files and flags are used when
	 # linking a shared library.
	 output_verbose_link_cmd='$CC -G $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"'
	 fi

	 _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-R wllibdir'
	 case $host_os in
		solaris2.[[0-5]] | solaris2.[[0-5]].*) ;;
		*)
		 _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl-z ${wl}allextract$convenience $wl-z ${wl}defaultextract'
		 ;;
	 esac
	 fi
	 ;;
 esac
 ;;

 sysv4*uw2* | sysv5OpenUNIX* | sysv5UnixWare7.[[01]].[[10]]* | unixware7* | sco3.2v5.0.[[024]]*)
 _LT_TAGVAR(no_undefined_flag, $1)='$wl-z,text'
 _LT_TAGVAR(archive_cmds_need_lc, $1)=no
 _LT_TAGVAR(hardcode_shlibpath_var, $1)=no
 runpath_var='LD_RUN_PATH'

 case $cc_basename in
 CC*)
	 _LT_TAGVAR(archive_cmds, $1)='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	 _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	 ;;
	*)
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	 _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	 ;;
 esac
 ;;

 sysv5* | sco3.2v5* | sco5v6*)
	# Note: We CANNOT use -z defs as we might desire, because we do not
	# link with -lc, and that would cause any symbols used from libc to
	# always be unresolved, which means just about no library would
	# ever link correctly. If we're not using GNU ld we use -z text
	# though, which does catch some bad symbols but isn't as heavy-handed
	# as -z defs.
	_LT_TAGVAR(no_undefined_flag, $1)='$wl-z,text'
	_LT_TAGVAR(allow_undefined_flag, $1)='$wl-z,nodefs'
	_LT_TAGVAR(archive_cmds_need_lc, $1)=no
	_LT_TAGVAR(hardcode_shlibpath_var, $1)=no
	_LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-R,$libdir'
	_LT_TAGVAR(hardcode_libdir_separator, $1)=':'
	_LT_TAGVAR(link_all_deplibs, $1)=yes
	_LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-Bexport'
	runpath_var='LD_RUN_PATH'

	case $cc_basename in
 CC*)
	 _LT_TAGVAR(archive_cmds, $1)='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	 _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	 _LT_TAGVAR(old_archive_cmds, $1)='$CC -Tprelink_objects $oldobjs~
 '"$_LT_TAGVAR(old_archive_cmds, $1)"
	 _LT_TAGVAR(reload_cmds, $1)='$CC -Tprelink_objects $reload_objs~
 '"$_LT_TAGVAR(reload_cmds, $1)"
	 ;;
	 *)
	 _LT_TAGVAR(archive_cmds, $1)='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	 _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags'
	 ;;
	esac
 ;;

 tandem*)
 case $cc_basename in
 NCC*)
	 # NonStop-UX NCC 3.20
	 # FIXME: insert proper C++ library support
	 _LT_TAGVAR(ld_shlibs, $1)=no
	 ;;
 *)
	 # FIXME: insert proper C++ library support
	 _LT_TAGVAR(ld_shlibs, $1)=no
	 ;;
 esac
 ;;

 vxworks*)
 # FIXME: insert proper C++ library support
 _LT_TAGVAR(ld_shlibs, $1)=no
 ;;

 *)
 # FIXME: insert proper C++ library support
 _LT_TAGVAR(ld_shlibs, $1)=no
 ;;
 esac

 AC_MSG_RESULT([$_LT_TAGVAR(ld_shlibs, $1)])
 test no = "$_LT_TAGVAR(ld_shlibs, $1)" && can_build_shared=no

 _LT_TAGVAR(GCC, $1)=$GXX
 _LT_TAGVAR(LD, $1)=$LD

 ## CAVEAT EMPTOR:
 ## There is no encapsulation within the following macros, do not change
 ## the running order or otherwise move them around unless you know exactly
 ## what you are doing...
 _LT_SYS_HIDDEN_LIBDEPS($1)
 _LT_COMPILER_PIC($1)
 _LT_COMPILER_C_O($1)
 _LT_COMPILER_FILE_LOCKS($1)
 _LT_LINKER_SHLIBS($1)
 _LT_SYS_DYNAMIC_LINKER($1)
 _LT_LINKER_HARDCODE_LIBPATH($1)

 _LT_CONFIG($1)
 fi # test -n "$compiler"

 CC=$lt_save_CC
 CFLAGS=$lt_save_CFLAGS
 LDCXX=$LD
 LD=$lt_save_LD
 GCC=$lt_save_GCC
 with_gnu_ld=$lt_save_with_gnu_ld
 lt_cv_path_LDCXX=$lt_cv_path_LD
 lt_cv_path_LD=$lt_save_path_LD
 lt_cv_prog_gnu_ldcxx=$lt_cv_prog_gnu_ld
 lt_cv_prog_gnu_ld=$lt_save_with_gnu_ld
fi # test yes != "$_lt_caught_CXX_error"

AC_LANG_POP
])# _LT_LANG_CXX_CONFIG

_LT_FUNC_STRIPNAME_CNF

func_stripname_cnf prefix suffix name
strip PREFIX and SUFFIX off of NAME.
PREFIX and SUFFIX must not contain globbing or regex special
characters, hashes, percent signs, but SUFFIX may contain a leading
dot (in which case that matches only a dot).
#
This function is identical to the (non-XSI) version of func_stripname,
except this one can be used by m4 code that may be executed by configure,
rather than the libtool script.
m4_defun([_LT_FUNC_STRIPNAME_CNF],[dnl
AC_REQUIRE([_LT_DECL_SED])
AC_REQUIRE([_LT_PROG_ECHO_BACKSLASH])
func_stripname_cnf ()
{
 case @S|@2 in
 .*) func_stripname_result=`$ECHO "@S|@3" | $SED "s%^@S|@1%%; s%\\\\@S|@2\$%%"`;;
 *) func_stripname_result=`$ECHO "@S|@3" | $SED "s%^@S|@1%%; s%@S|@2\$%%"`;;
 esac
} # func_stripname_cnf
])# _LT_FUNC_STRIPNAME_CNF

_LT_SYS_HIDDEN_LIBDEPS([TAGNAME])

Figure out "hidden" library dependencies from verbose
compiler output when linking a shared library.
Parse the compiler output and extract the necessary
objects, libraries and library flags.
m4_defun([_LT_SYS_HIDDEN_LIBDEPS],
[m4_require([_LT_FILEUTILS_DEFAULTS])dnl
AC_REQUIRE([_LT_FUNC_STRIPNAME_CNF])dnl
Dependencies to place before and after the object being linked:
_LT_TAGVAR(predep_objects, $1)=
_LT_TAGVAR(postdep_objects, $1)=
_LT_TAGVAR(predeps, $1)=
_LT_TAGVAR(postdeps, $1)=
_LT_TAGVAR(compiler_lib_search_path, $1)=

dnl we can't use the lt_simple_compile_test_code here,
dnl because it contains code intended for an executable,
dnl not a library. It's possible we should let each
dnl tag define a new lt_????_link_test_code variable,
dnl but it's only used here...
m4_if([$1], [], [cat > conftest.$ac_ext <<_LT_EOF
int a;
void foo (void) { a = 0; }
_LT_EOF
], [$1], [CXX], [cat > conftest.$ac_ext <<_LT_EOF
class Foo
{
public:
 Foo (void) { a = 0; }
private:
 int a;
};
_LT_EOF
], [$1], [F77], [cat > conftest.$ac_ext <<_LT_EOF
 subroutine foo
 implicit none
 integer*4 a
 a=0
 return
 end
_LT_EOF
], [$1], [FC], [cat > conftest.$ac_ext <<_LT_EOF
 subroutine foo
 implicit none
 integer a
 a=0
 return
 end
_LT_EOF
], [$1], [GCJ], [cat > conftest.$ac_ext <<_LT_EOF
public class foo {
 private int a;
 public void bar (void) {
 a = 0;
 }
};
_LT_EOF
], [$1], [GO], [cat > conftest.$ac_ext <<_LT_EOF
package foo
func foo() {
}
_LT_EOF
])

_lt_libdeps_save_CFLAGS=$CFLAGS
case "$CC $CFLAGS " in #(
\ -flto\ *) CFLAGS="$CFLAGS -fno-lto" ;;
\ -fwhopr\ *) CFLAGS="$CFLAGS -fno-whopr" ;;
\ -fuse-linker-plugin\ *) CFLAGS="$CFLAGS -fno-use-linker-plugin" ;;
esac

dnl Parse the compiler output and extract the necessary
dnl objects, libraries and library flags.
if AC_TRY_EVAL(ac_compile); then
 # Parse the compiler output and extract the necessary
 # objects, libraries and library flags.

 # Sentinel used to keep track of whether or not we are before
 # the conftest object file.
 pre_test_object_deps_done=no

 for p in `eval "$output_verbose_link_cmd"`; do
 case $prev$p in

 -L* | -R* | -l*)
 # Some compilers place space between "-{L,R}" and the path.
 # Remove the space.
 if test x-L = "$p" ||
 test x-R = "$p"; then
	 prev=$p
	 continue
 fi

 # Expand the sysroot to ease extracting the directories later.
 if test -z "$prev"; then
 case $p in
 -L*) func_stripname_cnf '-L' '' "$p"; prev=-L; p=$func_stripname_result ;;
 -R*) func_stripname_cnf '-R' '' "$p"; prev=-R; p=$func_stripname_result ;;
 -l*) func_stripname_cnf '-l' '' "$p"; prev=-l; p=$func_stripname_result ;;
 esac
 fi
 case $p in
 =*) func_stripname_cnf '=' '' "$p"; p=$lt_sysroot$func_stripname_result ;;
 esac
 if test no = "$pre_test_object_deps_done"; then
	 case $prev in
	 -L | -R)
	 # Internal compiler library paths should come after those
	 # provided the user. The postdeps already come after the
	 # user supplied libs so there is no need to process them.
	 if test -z "$_LT_TAGVAR(compiler_lib_search_path, $1)"; then
	 _LT_TAGVAR(compiler_lib_search_path, $1)=$prev$p
	 else
	 _LT_TAGVAR(compiler_lib_search_path, $1)="${_LT_TAGVAR(compiler_lib_search_path, $1)} $prev$p"
	 fi
	 ;;
	 # The "-l" case would never come before the object being
	 # linked, so don't bother handling this case.
	 esac
 else
	 if test -z "$_LT_TAGVAR(postdeps, $1)"; then
	 _LT_TAGVAR(postdeps, $1)=$prev$p
	 else
	 _LT_TAGVAR(postdeps, $1)="${_LT_TAGVAR(postdeps, $1)} $prev$p"
	 fi
 fi
 prev=
 ;;

 *.lto.$objext) ;; # Ignore GCC LTO objects
 *.$objext)
 # This assumes that the test object file only shows up
 # once in the compiler output.
 if test "$p" = "conftest.$objext"; then
	 pre_test_object_deps_done=yes
	 continue
 fi

 if test no = "$pre_test_object_deps_done"; then
	 if test -z "$_LT_TAGVAR(predep_objects, $1)"; then
	 _LT_TAGVAR(predep_objects, $1)=$p
	 else
	 _LT_TAGVAR(predep_objects, $1)="$_LT_TAGVAR(predep_objects, $1) $p"
	 fi
 else
	 if test -z "$_LT_TAGVAR(postdep_objects, $1)"; then
	 _LT_TAGVAR(postdep_objects, $1)=$p
	 else
	 _LT_TAGVAR(postdep_objects, $1)="$_LT_TAGVAR(postdep_objects, $1) $p"
	 fi
 fi
 ;;

 *) ;; # Ignore the rest.

 esac
 done

 # Clean up.
 rm -f a.out a.exe
else
 echo "libtool.m4: error: problem compiling $1 test program"
fi

$RM -f confest.$objext
CFLAGS=$_lt_libdeps_save_CFLAGS

PORTME: override above test on systems where it is broken
m4_if([$1], [CXX],
[case $host_os in
interix[[3-9]]*)
 # Interix 3.5 installs completely hosed .la files for C++, so rather than
 # hack all around it, let's just trust "g++" to DTRT.
 _LT_TAGVAR(predep_objects,$1)=
 _LT_TAGVAR(postdep_objects,$1)=
 _LT_TAGVAR(postdeps,$1)=
 ;;
esac
])

case " $_LT_TAGVAR(postdeps, $1) " in
" -lc ") _LT_TAGVAR(archive_cmds_need_lc, $1)=no ;;
esac
 _LT_TAGVAR(compiler_lib_search_dirs, $1)=
if test -n "${_LT_TAGVAR(compiler_lib_search_path, $1)}"; then
 _LT_TAGVAR(compiler_lib_search_dirs, $1)=`echo " ${_LT_TAGVAR(compiler_lib_search_path, $1)}" | $SED -e 's! -L! !g' -e 's!^ !!'`
fi
_LT_TAGDECL([], [compiler_lib_search_dirs], [1],
 [The directories searched by this compiler when creating a shared library])
_LT_TAGDECL([], [predep_objects], [1],
 [Dependencies to place before and after the objects being linked to
 create a shared library])
_LT_TAGDECL([], [postdep_objects], [1])
_LT_TAGDECL([], [predeps], [1])
_LT_TAGDECL([], [postdeps], [1])
_LT_TAGDECL([], [compiler_lib_search_path], [1],
 [The library search path used internally by the compiler when linking
 a shared library])
])# _LT_SYS_HIDDEN_LIBDEPS

_LT_LANG_F77_CONFIG([TAG])

Ensure that the configuration variables for a Fortran 77 compiler are
suitably defined. These variables are subsequently used by _LT_CONFIG
to write the compiler configuration to 'libtool'.
m4_defun([_LT_LANG_F77_CONFIG],
[AC_LANG_PUSH(Fortran 77)
if test -z "$F77" || test no = "$F77"; then
 _lt_disable_F77=yes
fi

_LT_TAGVAR(archive_cmds_need_lc, $1)=no
_LT_TAGVAR(allow_undefined_flag, $1)=
_LT_TAGVAR(always_export_symbols, $1)=no
_LT_TAGVAR(archive_expsym_cmds, $1)=
_LT_TAGVAR(export_dynamic_flag_spec, $1)=
_LT_TAGVAR(hardcode_direct, $1)=no
_LT_TAGVAR(hardcode_direct_absolute, $1)=no
_LT_TAGVAR(hardcode_libdir_flag_spec, $1)=
_LT_TAGVAR(hardcode_libdir_separator, $1)=
_LT_TAGVAR(hardcode_minus_L, $1)=no
_LT_TAGVAR(hardcode_automatic, $1)=no
_LT_TAGVAR(inherit_rpath, $1)=no
_LT_TAGVAR(module_cmds, $1)=
_LT_TAGVAR(module_expsym_cmds, $1)=
_LT_TAGVAR(link_all_deplibs, $1)=unknown
_LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds
_LT_TAGVAR(reload_flag, $1)=$reload_flag
_LT_TAGVAR(reload_cmds, $1)=$reload_cmds
_LT_TAGVAR(no_undefined_flag, $1)=
_LT_TAGVAR(whole_archive_flag_spec, $1)=
_LT_TAGVAR(enable_shared_with_static_runtimes, $1)=no

Source file extension for f77 test sources.
ac_ext=f

Object file extension for compiled f77 test sources.
objext=o
_LT_TAGVAR(objext, $1)=$objext

No sense in running all these tests if we already determined that
the F77 compiler isn't working. Some variables (like enable_shared)
are currently assumed to apply to all compilers on this platform,
and will be corrupted by setting them based on a non-working compiler.
if test yes != "$_lt_disable_F77"; then
 # Code to be used in simple compile tests
 lt_simple_compile_test_code="\
 subroutine t
 return
 end
"

 # Code to be used in simple link tests
 lt_simple_link_test_code="\
 program t
 end
"

 # ltmain only uses $CC for tagged configurations so make sure $CC is set.
 _LT_TAG_COMPILER

 # save warnings/boilerplate of simple test code
 _LT_COMPILER_BOILERPLATE
 _LT_LINKER_BOILERPLATE

 # Allow CC to be a program name with arguments.
 lt_save_CC=$CC
 lt_save_GCC=$GCC
 lt_save_CFLAGS=$CFLAGS
 CC=${F77-"f77"}
 CFLAGS=$FFLAGS
 compiler=$CC
 _LT_TAGVAR(compiler, $1)=$CC
 _LT_CC_BASENAME([$compiler])
 GCC=$G77
 if test -n "$compiler"; then
 AC_MSG_CHECKING([if libtool supports shared libraries])
 AC_MSG_RESULT([$can_build_shared])

 AC_MSG_CHECKING([whether to build shared libraries])
 test no = "$can_build_shared" && enable_shared=no

 # On AIX, shared libraries and static libraries use the same namespace, and
 # are all built from PIC.
 case $host_os in
 aix3*)
 test yes = "$enable_shared" && enable_static=no
 if test -n "$RANLIB"; then
 archive_cmds="$archive_cmds~\$RANLIB \$lib"
 postinstall_cmds='$RANLIB $lib'
 fi
 ;;
 aix[[4-9]]*)
	if test ia64 != "$host_cpu"; then
	 case $enable_shared,$with_aix_soname,$aix_use_runtimelinking in
	 yes,aix,yes) ;;		# shared object as lib.so file only
	 yes,svr4,*) ;;		# shared object as lib.so archive member only
	 yes,*) enable_static=no ;;	# shared object in lib.a archive as well
	 esac
	fi
 ;;
 esac
 AC_MSG_RESULT([$enable_shared])

 AC_MSG_CHECKING([whether to build static libraries])
 # Make sure either enable_shared or enable_static is yes.
 test yes = "$enable_shared" || enable_static=yes
 AC_MSG_RESULT([$enable_static])

 _LT_TAGVAR(GCC, $1)=$G77
 _LT_TAGVAR(LD, $1)=$LD

 ## CAVEAT EMPTOR:
 ## There is no encapsulation within the following macros, do not change
 ## the running order or otherwise move them around unless you know exactly
 ## what you are doing...
 _LT_COMPILER_PIC($1)
 _LT_COMPILER_C_O($1)
 _LT_COMPILER_FILE_LOCKS($1)
 _LT_LINKER_SHLIBS($1)
 _LT_SYS_DYNAMIC_LINKER($1)
 _LT_LINKER_HARDCODE_LIBPATH($1)

 _LT_CONFIG($1)
 fi # test -n "$compiler"

 GCC=$lt_save_GCC
 CC=$lt_save_CC
 CFLAGS=$lt_save_CFLAGS
fi # test yes != "$_lt_disable_F77"

AC_LANG_POP
])# _LT_LANG_F77_CONFIG

_LT_LANG_FC_CONFIG([TAG])

Ensure that the configuration variables for a Fortran compiler are
suitably defined. These variables are subsequently used by _LT_CONFIG
to write the compiler configuration to 'libtool'.
m4_defun([_LT_LANG_FC_CONFIG],
[AC_LANG_PUSH(Fortran)

if test -z "$FC" || test no = "$FC"; then
 _lt_disable_FC=yes
fi

_LT_TAGVAR(archive_cmds_need_lc, $1)=no
_LT_TAGVAR(allow_undefined_flag, $1)=
_LT_TAGVAR(always_export_symbols, $1)=no
_LT_TAGVAR(archive_expsym_cmds, $1)=
_LT_TAGVAR(export_dynamic_flag_spec, $1)=
_LT_TAGVAR(hardcode_direct, $1)=no
_LT_TAGVAR(hardcode_direct_absolute, $1)=no
_LT_TAGVAR(hardcode_libdir_flag_spec, $1)=
_LT_TAGVAR(hardcode_libdir_separator, $1)=
_LT_TAGVAR(hardcode_minus_L, $1)=no
_LT_TAGVAR(hardcode_automatic, $1)=no
_LT_TAGVAR(inherit_rpath, $1)=no
_LT_TAGVAR(module_cmds, $1)=
_LT_TAGVAR(module_expsym_cmds, $1)=
_LT_TAGVAR(link_all_deplibs, $1)=unknown
_LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds
_LT_TAGVAR(reload_flag, $1)=$reload_flag
_LT_TAGVAR(reload_cmds, $1)=$reload_cmds
_LT_TAGVAR(no_undefined_flag, $1)=
_LT_TAGVAR(whole_archive_flag_spec, $1)=
_LT_TAGVAR(enable_shared_with_static_runtimes, $1)=no

Source file extension for fc test sources.
ac_ext=${ac_fc_srcext-f}

Object file extension for compiled fc test sources.
objext=o
_LT_TAGVAR(objext, $1)=$objext

No sense in running all these tests if we already determined that
the FC compiler isn't working. Some variables (like enable_shared)
are currently assumed to apply to all compilers on this platform,
and will be corrupted by setting them based on a non-working compiler.
if test yes != "$_lt_disable_FC"; then
 # Code to be used in simple compile tests
 lt_simple_compile_test_code="\
 subroutine t
 return
 end
"

 # Code to be used in simple link tests
 lt_simple_link_test_code="\
 program t
 end
"

 # ltmain only uses $CC for tagged configurations so make sure $CC is set.
 _LT_TAG_COMPILER

 # save warnings/boilerplate of simple test code
 _LT_COMPILER_BOILERPLATE
 _LT_LINKER_BOILERPLATE

 # Allow CC to be a program name with arguments.
 lt_save_CC=$CC
 lt_save_GCC=$GCC
 lt_save_CFLAGS=$CFLAGS
 CC=${FC-"f95"}
 CFLAGS=$FCFLAGS
 compiler=$CC
 GCC=$ac_cv_fc_compiler_gnu

 _LT_TAGVAR(compiler, $1)=$CC
 _LT_CC_BASENAME([$compiler])

 if test -n "$compiler"; then
 AC_MSG_CHECKING([if libtool supports shared libraries])
 AC_MSG_RESULT([$can_build_shared])

 AC_MSG_CHECKING([whether to build shared libraries])
 test no = "$can_build_shared" && enable_shared=no

 # On AIX, shared libraries and static libraries use the same namespace, and
 # are all built from PIC.
 case $host_os in
 aix3*)
 test yes = "$enable_shared" && enable_static=no
 if test -n "$RANLIB"; then
 archive_cmds="$archive_cmds~\$RANLIB \$lib"
 postinstall_cmds='$RANLIB $lib'
 fi
 ;;
 aix[[4-9]]*)
	if test ia64 != "$host_cpu"; then
	 case $enable_shared,$with_aix_soname,$aix_use_runtimelinking in
	 yes,aix,yes) ;;		# shared object as lib.so file only
	 yes,svr4,*) ;;		# shared object as lib.so archive member only
	 yes,*) enable_static=no ;;	# shared object in lib.a archive as well
	 esac
	fi
 ;;
 esac
 AC_MSG_RESULT([$enable_shared])

 AC_MSG_CHECKING([whether to build static libraries])
 # Make sure either enable_shared or enable_static is yes.
 test yes = "$enable_shared" || enable_static=yes
 AC_MSG_RESULT([$enable_static])

 _LT_TAGVAR(GCC, $1)=$ac_cv_fc_compiler_gnu
 _LT_TAGVAR(LD, $1)=$LD

 ## CAVEAT EMPTOR:
 ## There is no encapsulation within the following macros, do not change
 ## the running order or otherwise move them around unless you know exactly
 ## what you are doing...
 _LT_SYS_HIDDEN_LIBDEPS($1)
 _LT_COMPILER_PIC($1)
 _LT_COMPILER_C_O($1)
 _LT_COMPILER_FILE_LOCKS($1)
 _LT_LINKER_SHLIBS($1)
 _LT_SYS_DYNAMIC_LINKER($1)
 _LT_LINKER_HARDCODE_LIBPATH($1)

 _LT_CONFIG($1)
 fi # test -n "$compiler"

 GCC=$lt_save_GCC
 CC=$lt_save_CC
 CFLAGS=$lt_save_CFLAGS
fi # test yes != "$_lt_disable_FC"

AC_LANG_POP
])# _LT_LANG_FC_CONFIG

_LT_LANG_GCJ_CONFIG([TAG])

Ensure that the configuration variables for the GNU Java Compiler compiler
are suitably defined. These variables are subsequently used by _LT_CONFIG
to write the compiler configuration to 'libtool'.
m4_defun([_LT_LANG_GCJ_CONFIG],
[AC_REQUIRE([LT_PROG_GCJ])dnl
AC_LANG_SAVE

Source file extension for Java test sources.
ac_ext=java

Object file extension for compiled Java test sources.
objext=o
_LT_TAGVAR(objext, $1)=$objext

Code to be used in simple compile tests
lt_simple_compile_test_code="class foo {}"

Code to be used in simple link tests
lt_simple_link_test_code='public class conftest { public static void main(String[[]] argv) {}; }'

ltmain only uses $CC for tagged configurations so make sure $CC is set.
_LT_TAG_COMPILER

save warnings/boilerplate of simple test code
_LT_COMPILER_BOILERPLATE
_LT_LINKER_BOILERPLATE

Allow CC to be a program name with arguments.
lt_save_CC=$CC
lt_save_CFLAGS=$CFLAGS
lt_save_GCC=$GCC
GCC=yes
CC=${GCJ-"gcj"}
CFLAGS=$GCJFLAGS
compiler=$CC
_LT_TAGVAR(compiler, $1)=$CC
_LT_TAGVAR(LD, $1)=$LD
_LT_CC_BASENAME([$compiler])

GCJ did not exist at the time GCC didn't implicitly link libc in.
_LT_TAGVAR(archive_cmds_need_lc, $1)=no

_LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds
_LT_TAGVAR(reload_flag, $1)=$reload_flag
_LT_TAGVAR(reload_cmds, $1)=$reload_cmds

CAVEAT EMPTOR:
There is no encapsulation within the following macros, do not change
the running order or otherwise move them around unless you know exactly
what you are doing...
if test -n "$compiler"; then
 _LT_COMPILER_NO_RTTI($1)
 _LT_COMPILER_PIC($1)
 _LT_COMPILER_C_O($1)
 _LT_COMPILER_FILE_LOCKS($1)
 _LT_LINKER_SHLIBS($1)
 _LT_LINKER_HARDCODE_LIBPATH($1)

 _LT_CONFIG($1)
fi

AC_LANG_RESTORE

GCC=$lt_save_GCC
CC=$lt_save_CC
CFLAGS=$lt_save_CFLAGS
])# _LT_LANG_GCJ_CONFIG

_LT_LANG_GO_CONFIG([TAG])

Ensure that the configuration variables for the GNU Go compiler
are suitably defined. These variables are subsequently used by _LT_CONFIG
to write the compiler configuration to 'libtool'.
m4_defun([_LT_LANG_GO_CONFIG],
[AC_REQUIRE([LT_PROG_GO])dnl
AC_LANG_SAVE

Source file extension for Go test sources.
ac_ext=go

Object file extension for compiled Go test sources.
objext=o
_LT_TAGVAR(objext, $1)=$objext

Code to be used in simple compile tests
lt_simple_compile_test_code="package main; func main() { }"

Code to be used in simple link tests
lt_simple_link_test_code='package main; func main() { }'

ltmain only uses $CC for tagged configurations so make sure $CC is set.
_LT_TAG_COMPILER

save warnings/boilerplate of simple test code
_LT_COMPILER_BOILERPLATE
_LT_LINKER_BOILERPLATE

Allow CC to be a program name with arguments.
lt_save_CC=$CC
lt_save_CFLAGS=$CFLAGS
lt_save_GCC=$GCC
GCC=yes
CC=${GOC-"gccgo"}
CFLAGS=$GOFLAGS
compiler=$CC
_LT_TAGVAR(compiler, $1)=$CC
_LT_TAGVAR(LD, $1)=$LD
_LT_CC_BASENAME([$compiler])

Go did not exist at the time GCC didn't implicitly link libc in.
_LT_TAGVAR(archive_cmds_need_lc, $1)=no

_LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds
_LT_TAGVAR(reload_flag, $1)=$reload_flag
_LT_TAGVAR(reload_cmds, $1)=$reload_cmds

CAVEAT EMPTOR:
There is no encapsulation within the following macros, do not change
the running order or otherwise move them around unless you know exactly
what you are doing...
if test -n "$compiler"; then
 _LT_COMPILER_NO_RTTI($1)
 _LT_COMPILER_PIC($1)
 _LT_COMPILER_C_O($1)
 _LT_COMPILER_FILE_LOCKS($1)
 _LT_LINKER_SHLIBS($1)
 _LT_LINKER_HARDCODE_LIBPATH($1)

 _LT_CONFIG($1)
fi

AC_LANG_RESTORE

GCC=$lt_save_GCC
CC=$lt_save_CC
CFLAGS=$lt_save_CFLAGS
])# _LT_LANG_GO_CONFIG

_LT_LANG_RC_CONFIG([TAG])

Ensure that the configuration variables for the Windows resource compiler
are suitably defined. These variables are subsequently used by _LT_CONFIG
to write the compiler configuration to 'libtool'.
m4_defun([_LT_LANG_RC_CONFIG],
[AC_REQUIRE([LT_PROG_RC])dnl
AC_LANG_SAVE

Source file extension for RC test sources.
ac_ext=rc

Object file extension for compiled RC test sources.
objext=o
_LT_TAGVAR(objext, $1)=$objext

Code to be used in simple compile tests
lt_simple_compile_test_code='sample MENU { MENUITEM "&Soup", 100, CHECKED }'

Code to be used in simple link tests
lt_simple_link_test_code=$lt_simple_compile_test_code

ltmain only uses $CC for tagged configurations so make sure $CC is set.
_LT_TAG_COMPILER

save warnings/boilerplate of simple test code
_LT_COMPILER_BOILERPLATE
_LT_LINKER_BOILERPLATE

Allow CC to be a program name with arguments.
lt_save_CC=$CC
lt_save_CFLAGS=$CFLAGS
lt_save_GCC=$GCC
GCC=
CC=${RC-"windres"}
CFLAGS=
compiler=$CC
_LT_TAGVAR(compiler, $1)=$CC
_LT_CC_BASENAME([$compiler])
_LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)=yes

if test -n "$compiler"; then
 :
 _LT_CONFIG($1)
fi

GCC=$lt_save_GCC
AC_LANG_RESTORE
CC=$lt_save_CC
CFLAGS=$lt_save_CFLAGS
])# _LT_LANG_RC_CONFIG

LT_PROG_GCJ

AC_DEFUN([LT_PROG_GCJ],
[m4_ifdef([AC_PROG_GCJ], [AC_PROG_GCJ],
 [m4_ifdef([A][M_PROG_GCJ], [A][M_PROG_GCJ],
 [AC_CHECK_TOOL(GCJ, gcj,)
 test set = "${GCJFLAGS+set}" || GCJFLAGS="-g -O2"
 AC_SUBST(GCJFLAGS)])])[]dnl
])

Old name:
AU_ALIAS([LT_AC_PROG_GCJ], [LT_PROG_GCJ])
dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([LT_AC_PROG_GCJ], [])

LT_PROG_GO

AC_DEFUN([LT_PROG_GO],
[AC_CHECK_TOOL(GOC, gccgo,)
])

LT_PROG_RC

AC_DEFUN([LT_PROG_RC],
[AC_CHECK_TOOL(RC, windres,)
])

Old name:
AU_ALIAS([LT_AC_PROG_RC], [LT_PROG_RC])
dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([LT_AC_PROG_RC], [])

_LT_DECL_EGREP

If we don't have a new enough Autoconf to choose the best grep
available, choose the one first in the user's PATH.
m4_defun([_LT_DECL_EGREP],
[AC_REQUIRE([AC_PROG_EGREP])dnl
AC_REQUIRE([AC_PROG_FGREP])dnl
test -z "$GREP" && GREP=grep
_LT_DECL([], [GREP], [1], [A grep program that handles long lines])
_LT_DECL([], [EGREP], [1], [An ERE matcher])
_LT_DECL([], [FGREP], [1], [A literal string matcher])
dnl Non-bleeding-edge autoconf doesn't subst GREP, so do it here too
AC_SUBST([GREP])
])

_LT_DECL_OBJDUMP

If we don't have a new enough Autoconf to choose the best objdump
available, choose the one first in the user's PATH.
m4_defun([_LT_DECL_OBJDUMP],
[AC_CHECK_TOOL(OBJDUMP, objdump, false)
test -z "$OBJDUMP" && OBJDUMP=objdump
_LT_DECL([], [OBJDUMP], [1], [An object symbol dumper])
AC_SUBST([OBJDUMP])
])

_LT_DECL_DLLTOOL

Ensure DLLTOOL variable is set.
m4_defun([_LT_DECL_DLLTOOL],
[AC_CHECK_TOOL(DLLTOOL, dlltool, false)
test -z "$DLLTOOL" && DLLTOOL=dlltool
_LT_DECL([], [DLLTOOL], [1], [DLL creation program])
AC_SUBST([DLLTOOL])
])

_LT_DECL_SED

Check for a fully-functional sed program, that truncates
as few characters as possible. Prefer GNU sed if found.
m4_defun([_LT_DECL_SED],
[AC_PROG_SED
test -z "$SED" && SED=sed
Xsed="$SED -e 1s/^X//"
_LT_DECL([], [SED], [1], [A sed program that does not truncate output])
_LT_DECL([], [Xsed], ["\$SED -e 1s/^X//"],
 [Sed that helps us avoid accidentally triggering echo(1) options like -n])
])# _LT_DECL_SED

m4_ifndef([AC_PROG_SED], [
##
NOTE: This macro has been submitted for inclusion into
GNU Autoconf as AC_PROG_SED. When it is available in
a released version of Autoconf we should remove this
macro and use it instead.
##

m4_defun([AC_PROG_SED],
[AC_MSG_CHECKING([for a sed that does not truncate output])
AC_CACHE_VAL(lt_cv_path_SED,
[# Loop through the user's path and test for sed and gsed.
Then use that list of sed's as ones to test for truncation.
as_save_IFS=$IFS; IFS=$PATH_SEPARATOR
for as_dir in $PATH
do
 IFS=$as_save_IFS
 test -z "$as_dir" && as_dir=.
 for lt_ac_prog in sed gsed; do
 for ac_exec_ext in '' $ac_executable_extensions; do
 if $as_executable_p "$as_dir/lt_ac_progac_exec_ext"; then
 lt_ac_sed_list="$lt_ac_sed_list $as_dir/$lt_ac_prog$ac_exec_ext"
 fi
 done
 done
done
IFS=$as_save_IFS
lt_ac_max=0
lt_ac_count=0
Add /usr/xpg4/bin/sed as it is typically found on Solaris
along with /bin/sed that truncates output.
for lt_ac_sed in $lt_ac_sed_list /usr/xpg4/bin/sed; do
 test ! -f "$lt_ac_sed" && continue
 cat /dev/null > conftest.in
 lt_ac_count=0
 echo $ECHO_N "0123456789$ECHO_C" >conftest.in
 # Check for GNU sed and select it if it is found.
 if "$lt_ac_sed" --version 2>&1 < /dev/null | grep 'GNU' > /dev/null; then
 lt_cv_path_SED=$lt_ac_sed
 break
 fi
 while true; do
 cat conftest.in conftest.in >conftest.tmp
 mv conftest.tmp conftest.in
 cp conftest.in conftest.nl
 echo >>conftest.nl
 $lt_ac_sed -e 's/a$//' < conftest.nl >conftest.out || break
 cmp -s conftest.out conftest.nl || break
 # 10000 chars as input seems more than enough
 test 10 -lt "$lt_ac_count" && break
 lt_ac_count=`expr $lt_ac_count + 1`
 if test "$lt_ac_count" -gt "$lt_ac_max"; then
 lt_ac_max=$lt_ac_count
 lt_cv_path_SED=$lt_ac_sed
 fi
 done
done
])
SED=$lt_cv_path_SED
AC_SUBST([SED])
AC_MSG_RESULT([$SED])
])#AC_PROG_SED
])#m4_ifndef

Old name:
AU_ALIAS([LT_AC_PROG_SED], [AC_PROG_SED])
dnl aclocal-1.4 backwards compatibility:
dnl AC_DEFUN([LT_AC_PROG_SED], [])

_LT_CHECK_SHELL_FEATURES

Find out whether the shell is Bourne or XSI compatible,
or has some other useful features.
m4_defun([_LT_CHECK_SHELL_FEATURES],
[if ((MAIL=60; unset MAIL) || exit) >/dev/null 2>&1; then
 lt_unset=unset
else
 lt_unset=false
fi
_LT_DECL([], [lt_unset], [0], [whether the shell understands "unset"])dnl

test EBCDIC or ASCII
case `echo X|tr X '\101'` in
 A) # ASCII based system
 # \n is not interpreted correctly by Solaris 8 /usr/ucb/tr
 lt_SP2NL='tr \040 \012'
 lt_NL2SP='tr \015\012 \040\040'
 ;;
 *) # EBCDIC based system
 lt_SP2NL='tr \100 \n'
 lt_NL2SP='tr \r\n \100\100'
 ;;
esac
_LT_DECL([SP2NL], [lt_SP2NL], [1], [turn spaces into newlines])dnl
_LT_DECL([NL2SP], [lt_NL2SP], [1], [turn newlines into spaces])dnl
])# _LT_CHECK_SHELL_FEATURES

_LT_PATH_CONVERSION_FUNCTIONS

Determine what file name conversion functions should be used by
func_to_host_file (and, implicitly, by func_to_host_path). These are needed
for certain cross-compile configurations and native mingw.
m4_defun([_LT_PATH_CONVERSION_FUNCTIONS],
[AC_REQUIRE([AC_CANONICAL_HOST])dnl
AC_REQUIRE([AC_CANONICAL_BUILD])dnl
AC_MSG_CHECKING([how to convert $build file names to $host format])
AC_CACHE_VAL(lt_cv_to_host_file_cmd,
[case $host in
 --mingw*)
 case $build in
 --mingw*) # actually msys
 lt_cv_to_host_file_cmd=func_convert_file_msys_to_w32
 ;;
 --cygwin*)
 lt_cv_to_host_file_cmd=func_convert_file_cygwin_to_w32
 ;;
 *) # otherwise, assume *nix
 lt_cv_to_host_file_cmd=func_convert_file_nix_to_w32
 ;;
 esac
 ;;
 --cygwin*)
 case $build in
 --mingw*) # actually msys
 lt_cv_to_host_file_cmd=func_convert_file_msys_to_cygwin
 ;;
 --cygwin*)
 lt_cv_to_host_file_cmd=func_convert_file_noop
 ;;
 *) # otherwise, assume *nix
 lt_cv_to_host_file_cmd=func_convert_file_nix_to_cygwin
 ;;
 esac
 ;;
 *) # unhandled hosts (and "normal" native builds)
 lt_cv_to_host_file_cmd=func_convert_file_noop
 ;;
esac
])
to_host_file_cmd=$lt_cv_to_host_file_cmd
AC_MSG_RESULT([$lt_cv_to_host_file_cmd])
_LT_DECL([to_host_file_cmd], [lt_cv_to_host_file_cmd],
 [0], [convert $build file names to $host format])dnl

AC_MSG_CHECKING([how to convert $build file names to toolchain format])
AC_CACHE_VAL(lt_cv_to_tool_file_cmd,
[#assume ordinary cross tools, or native build.
lt_cv_to_tool_file_cmd=func_convert_file_noop
case $host in
 --mingw*)
 case $build in
 --mingw*) # actually msys
 lt_cv_to_tool_file_cmd=func_convert_file_msys_to_w32
 ;;
 esac
 ;;
esac
])
to_tool_file_cmd=$lt_cv_to_tool_file_cmd
AC_MSG_RESULT([$lt_cv_to_tool_file_cmd])
_LT_DECL([to_tool_file_cmd], [lt_cv_to_tool_file_cmd],
 [0], [convert $build files to toolchain format])dnl
])# _LT_PATH_CONVERSION_FUNCTIONS

