GNU PROLOG

A Native Prolog Compiler with Constraint Solving over Finite Domains

Edition 1.9, for GNU Prolog version 1.3.1
February 10, 2009

by Daniel Diaz

http://pauillac.inria.fr/~{}diaz

Copyright (C) 1999-2009 Daniel Diaz

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice
and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the [Free Software Foundation, 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

http://www.fsf.org/

CONTENTS 1
Contents

[T Acknowledgements| 9

2__Introductionl 11

Using GNU P g 13

Bl Tntroduction]. v v oo 13

3.2 The GNU Prolog interactive interpreter| 13

B.2.1 Starting/exiting the interactive interpreter] 13

3.2.2 The interactive interpreter read-execute-write loop| 14

8.2.3 Consulting a Prolog program|. L. 16

3.2.4 Interrupting a query| 17

B25 Theline editorl . - . .« v v v v e e e 18

13.3 Adjusting the size of Prolog stacks| oo 19

3.4 The GNU Prolog compiler|. 20

B.41 Different kindsof codes|o o 20

3.4.2 Compilation scheme|. 20

3.4.3 Using the compiler|] 22

44 TRunning an executable 25

8.4.5 Generating a new interactive interpreter| Lo 26

3.4.6 The hexadecimal predicate name encoding| 26

Debugging; 29

4.1 _Introductionl. e e 29

4.2 The procedure box modell L 29

4.3 Debugging predicates|. e e 29

1.3.1 Running and stopping the debugger] v oot i i 29

4.3.2 Leashing ports|. 30

4.3.3 Spy-points| e e e 30

4.4 Debugging messages|o e 31

4.5 Debugger commands| oL 31

4.6 e ebugger] 32

[F_Format of definitions 35

bl General formatl 35

.2 Typesand modes| e 35

B3EITONS . - o o o o e 37

5.3.1 General format and error contextl 37

0.3.2 Instantiation errorl. L. L 37

P.3.3 Typeerror L e 38

0.3.4 Domaln errorlo e e e e e e 38

B35 Existence errorl 39

B.3.6 Permission errorl e 39

5.3.7 Representation error| 39

B.3.8 Evaluation error L 40

0.3.9 Resource error]o e 40

0.3.10 Syntax error|o 40

5.3.11 System error| e e e e e e e 40

|6 Prolog directives and control constructs| 41

6.1 rolog directives| L 41

BT Infroductionl v v et 41

6.1.2 dynamic/1| 41

B3 DUBLIC/T. - -« o o o oo a1

6.1.4 multifile/d]. 42

6.1.5 discontiguous/1| 42

6.1.6 ensure linked/1| e e e 43

2 CONTENTS
6.1.7 built_in/0, built_in/1, built_in £d/0, built infa/1. o o v oot .. 43
6.1.8 dinclude/1| e e 44
6.1.9 ensure loaded/1] e 44
0.1.10 op/3] e 44
[TIT char conversion/2]. o v v v v vt 44
0.1.12 set_prolog flag/2| 45
6.1.13 initialization/d] e e 45
[6.1.14 foreign/2, foreign/1| 45
6.2 rolog control constructs| L L L 46
[6.2.1 true/0, fail/0, /O] 46
6.2.2 (’,’)/2 - conjunction, (;)/2 - disjunction, (->)/2 - if-then| 46
6.2.3 call/al e e 47
6.2.4 catch/3, throw/1|. e 47
|7 Prolog built-in predicates| 49
7.1 Type testing] 49
[711 var/1, nonvar/1, atom/1, integer/1, float/1, number/1, atomic/1, |
[compound/1, callable/1, 1ist/1, partial list/1, list_or_partial list/1]. . 49
... 50
[7.2.1 (=)/2 - Prolog unification| 50
7.2.2 unify with occurs_check/2|. 50
2.3 =)/2 - not Prolog unifiable| 000000 50
[7.3 Term comparison| oL e e e e e e e 51
[7.3.1 Standard total ordering of terms|. Lo oo 51
[7.3.2 (==)/2 - term 1dentical, (\==)/2 - term not identical, |
| (6<) /2 - term less than, (6=<)/2 - term less than or equal to |
| (@>) /2 - term greater than, (8>=)/2 - term greater than or equal to] 51
|2.3.3 comEare/3| .. 52
[74 Term processing] o o v i e 52
7.4.1 functor/3| e 52
A, arg/3|. . . e 53
(43 (Go72-0nivl. - o o oo 53
7.4.4 copy_term/2|. e e e 54
4.5 setarg/4, setarg/3| 54
[7.5 Variable naming/mnumbering| o o 55
[51 name_singletonvars/I] 55
[[52 nmamequeryvars/2 55
E.5.3 bind variables/2, numbervars/3, numbervars/1|. 56
(54 termref/2 o 57
[(.6 _Arithmeticl. e e 57
[7.6.1 Evaluation of an arithmetic expression| 57
[7.6.2 (is)/2 - evaluate expression| o 59

[7.6.3 (=:=)/2 - arithmetic equal, (=\=)/2 - arithmetic not equal,

(<) /2 - arithmetic less than, (=<)/2 - arithmetic less than or equal to,

(>) /2 - arithmetic greater than, (>=)/2 - arithmetic greater than or equal to] . . 60
[7.7 Dynamic clause management|o oL 60
[t.7. Introductionl e 60
[7.7.2 asserta/1,assertz/1| 61
[[73 retract/a] o o o 62
(.74 retractall/1 e 62
[1.7.5 clause/2|. e e e 63
[(.7.6 abolish/1l e e e e 63
[[.8 Predicate information] L 64
7.8.1 current_predicate/1] 64
[7.82 predicate property/2. v i i 65
[[.9 All solutionsl. e e 66

CONTENTS 3

[7.9.2 findall/3| e e e e e 66
[7.9.3 Dbagof/3,setof/3|. 66
[(10 Streamsl« . o e e e e e 67
[(.10.1 Introductionl oL e 67
7.10.2 current_input/1] L L 69
[[I03 curromtooutput/a] « . . o v ooooe e 69
[[104 set_imput/I]. 69
|2.10.5 set_output/1] 70
10.6 open/4, open/3| L e e e e e e e 70
.10. close/2, close/1|. L e 72
[7.10.8 flush output/1, flush_output/0. 72
[[I0.9 current_stream/d] 73

[7.10.10 stream property/2|. 73
[710.11 at_end of _stream/1, at_end of stream/0] v it 74

[7.10.12 stream position/2[. 74

.10.13 set_stream_position/2 Lo 75

[[I0T4d seek/d] o o 75

[7.10.15 character_count/2|.o e e 76

[7.10.16 line_count/2[. L 7

[7.10.17 line_position/2] 7

7.10.18 stream_line_column/3| 7

7.10.19 set stream line column/3[.o 78

7.10.20 add_stream_alias/2 79

[7.10.21 current_alias/2[. e 79

7.10.22 add_streammirror/2[. 79

7.10.23 remove stream mirror/2|. 80

[7.10.24 current mirror/2 80

[7.10.25 set_stream type/2| 81

[710.26 set stream eof acCtion/2] . . . « « v v v v e v e e e 81
[7.10.27 set_stream buffering/2[. L 82

[[11T Constant term streams . -+« o 82
[(11.1 Introductionl e 82

[7.11.2 open_input_atom _stream/2, open_input_chars_stream/2, |

| open_input_codes_stream/2[. oo 83
[711.3" close_input_atom stream/1, close_input_chars_stream/1, |

| close_input_codes_stream/1| Lo Lo 83
[711.4 open_output_atom_stream/1, open_output_chars_stream/1, |

| open_output_codes_stream/1| Lo 84
[11.5 close output_atom_stream/2, close output_chars_stream/2, |
close_output_codes_stream/2[. oo 84

[7.12 Character input/output| 85
.12.1 get_char/2, get_char/1, get_code/1, get code/2[. 85

[[122 get_key/2, get key/1 get_key no_echo/2, get keyno_echo/1| 86

[[.12.3 peek_char/2, peek_char/1, peek_code/1, peekcode/2|. 87

|f.12.4 unget_char/2, unget_char/1, unget_code/2, unget _code/1| 88
[712.5 put_char/2, put_char/1, put_code/1, put_code/2, n1/1,nl/0 88

[7.13 Byte input/output| 89
13.1 et_byte/2, get byte/1| 89

[[I32 Pookbyte/2, POk byto/T . « o o v o o oo e 90

[[13.3 ungetbyte/2, unget byte/1] 90

[[13.4 put_byte/2,putbyte/d] 91

[7.14 Term input/output| 91
[7141 read term/3, read term/2, read/2, read/d| o v o i 92

[7.14.2 read_atom/2, read_atom/1, read_integer/2, read_integer/1, |

| read_number/2, read number/1| Lo 93
............................. 94

.14.4 syntax_error_info/4|. L 95

CONTENTS

[(.14.5 last read start line column/2[. 95
[7.14.6 write_term/3, write_term/2, write/2, write/1, writeq/2, writeq/1,

write_canonical/2, write_canonical/1, display/2, display/1, print/2,

‘ print/1] 96

147 format/3, format/2] 98
[7.14.8 portray_clause/2, portray_clause/1| 99
[[149 getprintstream/d] 100
[[I430 op/3] o 100
...................................... 102

14.12 char _conversion/2|.o e e e 102
7.14.13 current_char conversion/2o o 103

[7.15 Input/output from/to constant terms| L. L L 104

|Z.15.1 read_term_from_atom/3, read_from_atom/2, read_token from_.atom/2| 104
[15.2 read term from chars/3, read from chars/2, read_token from chars/2 104
[7.15.3 read_term_from_codes/3, read _from_codes/2, read_token from_codes/2[. . . . 105
[7.15.4 write_term to_atom/3, write_to_atom/2, writeq to_atom/2,

write_canonical_to_atom/2, display_to_atom/2, print_to_atom/2,

format_to_atom/3|. 105

[7.15.5 write_term_to_chars/3, write_to_chars/2, writeq_to_chars/2,

write_canonical _to_chars/2, display_to_chars/2, print_to_chars/2,

Tormat_to CHArS/al « « v v v o e e e e, 106

[7.15.6 write_term to_codes/3, write_to_codes/2, writeq_to_codes/2,

write_canonical_to_codes/2, display_to_codes/2, print_to_codes/2,

format to codes/3 106

[7.16 DEC-10 compatibility input/output| 107
CI16.1 Infroductionl oot 107
[7.16.2 see/1, tell/1,append/1|. 107
[[16.3 seeing/1, telling/1]. 108
[[16.4 seen/0, told/0] . . - « v v v vt 108
16.5 get0/1, get/1, skip/1| L 108
[[16.6 put/1, tab/I] oo 109
[7I7 Term expansion] o v v v e et e 109
[7.17.1 Definite clause grammars| Lo L e 109
[7.17.2 expand_term/2, term expansion/2 L. 111

|/1/3 phrase/3, phrase/2| 111
[7I8 Togic, control and exceptions] v v o i it 112

7.18.1 abort/0, stop/0, top_level/0, break/0, halt/1, halt/0 112
.18.2 once/1, (\+)/1 - not provable, call/2-11, call with args/1-11, call det/2| . 113
[[I83 repeat/0]. 113
[[I84 for/3. 114
[7.19 Atomic term processing] v i it e e e e e e e e e 114
7.19.1 atom_length/2| e 114
[[19:2 atom concat/3] o v vt 115
[7.19.3 sub_atom/5| e e e 115
[7.19.4 char_code/2l. e e 116
7.19.5 lower _upper/2| e e 116
[719.6 atom chars/2, atom_codes/2 o v v i i 117
[7.19.7 number_atom/2, number_chars/2, number_codes/2| 117
.. 118
[7.19.9 atom hash/2|. e 119
[7.19.10 new_atom/3, new_atom/2, new_atom/1|. L. 119
7.19.11 current_atom/1]. e 120

[7.19.12 atom_property/2| 120
[720 Tist processing] o o o 121
[720.1 append/3|. 121

|Z.20.2 member/2, memberchk/2| oo 121
7.20.3 _reverse/2l 122

CONTENTS 5

[7.20.4 delete/3,select/3| 122
20.5 permutation/2] L L e e e e 122
20.6 prefix/2, suffix/2] L. L 123

7.20.7 sublist/2| e 123

.. 124
[7.20.9 Tength/2|. 124
7.20.10 nth/3|. e e e 124
[7.20.11 max_1ist/2, min_list/2, sum_list/2|. 125
[7:20.12 sort/2, sort0/2, keysort/2 sort/1, sort0/1, keysort/1. 125

[(21 Global variablesl. 126
[(21.1 Introductionl 126
[7.21.2 g assign/2, g_assignb/2, g link/2 127
[[213 gread/2. 128

21, _array-size/2| e e 128

.21.5 g_inc/3, g_.inc/2, g_inco/2, g_inc/1, g_dec/3, g_dec/2, g_.deco/2, g dec/1| . . . 129

7.22 Prolog state| e 133
|?.22.1 set_prolog flag/2| 133
22,2 current_prolog_flag/2| e e e 135
..................................... 135
(224 currentbipmame/d] . . . o oo oo 135
[225 write pl state file/1, read pl state file/d|. 136

[(.23 Program state[. 136
[723.17 consult/1, ’.7/2 - program CONSUIL « o v v v v v e e e et 136
7.23.2 Toad/1] e e e 137
[7.23.3 1listing/1, listing/0f 138
[7224 System statistics] 138
[[241 statistics/0, Statistics/2 v v v v vt 138
[7242 user time/1, system time/1, cpu_time/1, real time/1] 139

[7.25 Random number generator] 139
[7.25.1 set_seed/1, randomize/O0| Lo 139
[7.20.2 get_seed/1| 140
[[253 random/dl.o 140
[71.25.4 random/3|. e e e 140

[7.26 File name processing] 141
7.26.1 absolute filemname/2| e 141
[7.26.2 decompose_filemname/4| 142
[726.3 prolog filemname/2 o o v v i 142
[7.27 Operating system interface] L. 143
27.1 argument_counter/1| L L. 143
................................... 143
[[273 argument Tist/I]t 143
[[274 environ/2 o 144
[7.27.5 make directory/1, delete directory/1, change directory/1] 144
|{2(6 working directory/1] 145

277 directory files/2|. L L e e 145
[[278 rename File/2] o v i i 145
[7.27.9 delete file/1, unlink/1| 146
[7.27.10 file permission/2, fileexists/1| 146
|2.2f.11 fileproperty/2 147
................................... 148
................................... 149
(2714 date time/d] o o o i 149
7.27.15 hostmame/1|. 150
[1.27.16 os_version/1] e e e 150

7.27.17 architecture/1]. 151

6 CONTENTS

[7.27.18 shell/2, shell/1, shell/0| 151
.................................. 152
.................................... 152
... 153
[72722 exec/5, eXeC/a 153
[7.27.23 fork prolog/1| 154
[F2T20 cToatopipe/d - « « o o o oo e 154
[T2725 wait/2] e 155
7.27.26 prolog pid/1] e 155
..................................... 156
8 o/ 1| 156
7.27.29 select/Bl. L e e e 156
[7.28 Sockets input/output|. 157
281 Tntroductionl ¢ o v v vt e 157
7.28.2 _socket/2|. e e e 158
[71.28.3 _socket_close/1l. e e e 158
[[.28.4 socket bind/2] e 159
[71.28.5 socket_connect/4]l 159
[7.28.6 _socket_listen/2| e e e e 160
7.28.7 socket_accept/4, socket_accept/3| 160
7.28.8 hostname_address/2 161
[7.29 Linedit management| 162
7.29.1 get_linedit_prompt/1|. 162
.29.2 set_linedit_prompt/1| L e 162

|2.29.3 add_linedit_comﬁletionz1| 162
[729.4 find linedit_completion/2] o v o v v v it 163

[7.30 Source reader facility| oL L 163
301 Tntroductionl oo 163
7.30.2 sr_open/3| e 164

.30.3 sr.change options/2|. 164
[30.4 srclose/dl o o 164
[7.30.56 sr read term/4| e e 164
7.30.6 sr_current._descriptor/1|. oL 164
|f.30.7 sr_get_stream/2| 164

30.8 sr_get_module/3| L 164

.30.9 sr_get_filemname/2| Lo e e e 164
................................... 164
[T30.11 STgotinclude Tist/2] - . « o v o v o oo 164
[7.30.12 sr_get_include_stream 1ist/2] 164
|?.30.13 sr_get_size_counters/3| 164
............................... 164
7.30.15 sr_set_error_counters/3|o 164
[7.30.16 sr_error_from_exception/2|. 164
[7.30.17 sr_write message/8, sr_write message/6, sr_writemessage/4] 164
[7.30.18 sr_write_error/6, sr_write_error/4, sr_write_error/2 164

|18 Finite domain solver and built-in predicates| 165

BI Tntroductionl. 165
RI1 Finite Domain varfabled Lo oo 165

8.2 FD variable parameters| 166
[8.2.1 fdmax_integer/1[. 166

2.2 fd vectormax/1| e 166
8.2.3 fd set vectormax/1|. e 167

B3 Tnitial value constraintd 167
8.3.1 fd domain/3, fd_domain bool/1f. L 167
8.3.2 fd. domain/2|. e 168

8.4 Typetesting] o e 168

CONTENTS 7

8.4.1 fd_var/1, non_fd_var/1, generic_var/1, non_genericvar/1 168
8.5 FD variable informationl 169
8.5.1 fd min/2, fd max/2, fd_size/2, fd.dom/2| 169
8.5.2 fd_has_extra_cstr/1, fd_has _vector/1, fd use vector/1|. 170
8.6 Arithmetic constraints| 170
8.6.1 FD arithmetic expressions| L e 170

18.6.2 Partial AC: (#=)/2 - constraint equal, (#\=)/2 - constraint not equal

(#<) /2 - constraint less than, (#=<)/2 - constraint less than or equal

(#>) /2 - constraint greater than, (#>=)/2 - constraint greater than or equal| . . . 171

8.6.3 Full AC: (#=#)/2 - constraint equal, (#\=#)/2 - constraint not equal, |

| (#<#) /2 - constraint less than, (#<#) /2 - constraint less than or equal, |
| (#>#) /2 - constraint greater than, (#>=#)/2 - constraint greater than or equal. . 172
8.6.4 fd prime/1, fd not_prime/1|. 173

8.7.1 Boolean FD expressions|. o o 173
18.7.2 (#\) /1 - constraint NOT, (#<=>)/2 - constraint equivalent |

(#\<=>) /2 - constraint different, (##)/2 - constraint XOR

(#==>) /2 - constraint imply, (#\==>)/2 - constraint not imply,

#/\)/2 - constraint AND, (#\/\)/2 - constraint NAND,
(#\/) /2 - constraint OR, (#\\/)/2 - constraint NOR]. 174
8.7.3 fd_cardinality/2, fd_cardinality/3, fd_at_least_one/1, fd_at _most_one/1, |
L fd_only one/1|. 175
[8:8 Symbolic constraints 176
8.8.1 fd.all different/1] 176
8.8.2 fd.element/3| L 176
8.8.3 fd element var/3|. e e 177
[8.8.4 fd_atmost/3, fd_atleast/3, fd_exactly/3| 177
B85 fdrelation/2, fd relationc/2] o i i 178
8.9 Labeling constraints| 179
B91 fd Tabeling/2, fd labeling/1, fd labelingff/1] 179
3.1 ptimization constraints|. L L Lo 180
8.10.1 fd minimize/2, fd maximize/2|o 180
|9 Interfacing Prolog and C| 183
9.1 Introductionl. L 183
9.2 Including and usin; rolog.hl Lo 183
9.3 Calling C from Prolog| 184
....................................... 184
9.3.2 foreign/2 directivel. L L e 184
9.3.3 e Unctionl oL e e e e e e e e 185
9.3.4 Input arguments|. L 185
9.3.5 Output arguments|. L 186
9.3.6 Input/output arguments| Lo Lo 186
9.3.7 Writing non-deterministic C code] Lo L. 187
[03.8 Example: input and output arguments| 187
9.3.9 Example: non-deterministic code]o oo 188
9.3.10 Example: input/output arguments| L. 190
9.4 anipulating Prolog terms| 191
DT Tntroduction] . . .« « v v v v 191
9.4.2 Managing Prolog atoms|. oL o 192
9.4.3 Reading Prolog terms| 192
9.4.4 Unitying Prolog terms| 193
9.4.5 Creating Prolog terms| o 195
9.4.6 esting the type of Prolog terms|. 195
9.4.7 omparing Prolog terms| oo oo 196
9.4.8 Term processing]o e 196

9.4.9 Comparing and evaluating arithmetic expressions| 197

CONTENTS

9.5 Raising Prolog errors|. o 0.
[05.1 Managing the error context|.o oo

9.5.3 Typeerror|

0.5.7 Representationerror|

9.56.9 Resourceerrorl s
9.5.10 Syntax error|

9.5.11 System error|

9.6 Calling Prolog from C|

9.6.2 Example: my_call/1-acall/lclone.

[976.3 Example: recovering the list of all operators|

9.7 Defining a new C main() function|
[O71 Example: asking for ancestors|

[References|
[Tndex]

1 Acknowledgements

I would like to thank the department of computing science at the university of Paris 1 for allowing me
the time and freedom necessary to achieve this project.

I am grateful to the members of the Loco project|at INRIA Rocquencourt| for their encouragement. Their
involvement in this work led to useful feedback and exchange.

I would particularly like to thank Jonathan Hodgson/ for the time and effort he put into the proofreading
of this manual. His suggestions, both regarding ISO technical aspects as well as the language in which it
was expressed, proved invaluable.

The on-line HTML version of this document was created using [HEVEA| developed by Luc Maranget who
kindly devoted so much of his time extending the capabilities of HEVEA in order to handle such a sizeable
manual.

Jean-Christophe Aude kindly improved the visual aspect of both the illustrations and the GNU Prolog
web pages.

Thanks to Richard A. O’Keefe for his advice regarding the implementation of some Prolog built-in
predicates and for suggesting me the in-place installation feature.

Many thanks to the following contributors:
e Alexander Diemand® for his initial port to alpha/linux.
e Clive Cox? and Edmund Grimley Evans for their port to ix86/SCO.
e Nicolas Ollinger?® to for his port to ix86/FreeBSD.
e Brook Milligan* for his port to ix86/NetBSD and for general configuration improvements.
e Andreas Stolcke| for his port to ix86/Solaris.
e Lindsey Spratt® for his port to powerpc/Darwin (MacOS X).
e Gwenolé Beauchesne® for his port to x86_64/Linux.
e Jason Beegan” for his port to sparc/NetBSD and to powerpc/NetBSD.
e Cesar Rabak® for his initial port to ix86/MinGW.
e Scott L. Burson? for his port to x86_64/Solaris.
e David Holland!® for his port to x86_64/BSD systems.

Many thanks to all those people at (GNU| who helped me to finalize the GNU Prolog project.

Finally, I would like to thank everybody who tested preliminary releases and helped me to put the
finishing touches to this system.

1ax@apax.net
2clive@laluna.demon. co.uk
3nollinge@ens-lyon.fr
4prook@nmsu. edu
5spratt@alum.mit.edu
6gbeauchesne@mandrakesoft.com
7jtb@netbsd.org

8csrabak@ig. com.br
9Scott@corals.com
10dholland@netbsd.org

http://panoramix.univ-paris1.fr/CRINFO/
http://loco.inria.fr/
http://www.inria.fr/Unites/ROCQUENCOURT-eng.html
http://www.sju.edu/~jhodgson
http://pauillac.inria.fr/~maranget/hevea/
http://www.rano.org/
http://www.speech.sri.com/people/stolcke/
http://www.gnu.org

10

1 ACKNOWLEDGEMENTS

11

2 Introduction

GNU Prolog [5] is a free Prolog compiler with constraint solving over finite domains developed by Daniel
Diaz. For recent information about GNU Prolog please consult the GNU Prolog page.

GNU Prolog is a Prolog compiler based on the Warren Abstract Machine (WAM) [9] []. It first compiles
a Prolog program to a WAM file which is then translated to a low-level machine independent language
called mini-assembly specifically designed for GNU Prolog. The resulting file is then translated to the
assembly language of the target machine (from which an object is obtained). This allows GNU Prolog
to produce a native stand alone executable from a Prolog source (similarly to what does a C compiler
from a C program). The main advantage of this compilation scheme is to produce native code and to be
fast. Another interesting feature is that executables are small. Indeed, the code of most unused built-in
predicates is not included in the executables at link-time.

A lot of work has been devoted to the ISO compatibility. Indeed, GNU Prolog is very close to the ISO
standard for Prolog| [6].

GNU Prolog also offers various extensions very useful in practice (global variables, OS interface, sock-
ets,...). In particular, GNU Prolog contains an efficient constraint solver over Finite Domains (FD). This
opens constraint logic programming to the user combining the power of constraint programming to the
declarativity of logic programming. The key feature of the GNU Prolog solver is the use of a single (low-
level) primitive to define all (high-level) FD constraints. There are many advantages of this approach:
constraints can be compiled, the user can define his own constraints (in terms of the primitive), the solver
is open and extensible (as opposed to black-box solvers like CHIP),. .. Moreover, the GNU Prolog solver
is rather efficient, often more than commercial solvers.

GNU Prolog is inspired from two systems developed by the same author:

e wamcc: a Prolog to C compiler [3]. the key point of wamcc was its ability to produce stand alone
executables using an original compilation scheme: the translation of Prolog to C via the WAM.
Its drawback was the time needed by gcc to compile the produced sources. GNU Prolog can also
produce stand alone executables but using a faster compilation scheme.

e clp(FD): a constraint programming language over FD [4]. Its key feature was the use of a single
primitive to define FD constraints. GNU Prolog is based on the same idea but offers an extended
constraint definition language. In comparison to c1lp(FD), GNU Prolog offers new predefined con-
straints, new predefined heuristics, reified constraints,. ..

Here are some features of GNU Prolog:

e Prolog system:
— conforms to the ISO standard for Prolog (floating point numbers, streams, dynamic code,. ..).

— a lot of extensions: global variables, definite clause grammars (DCG), sockets interface, oper-
ating system interface,. . .

more than 300 Prolog built-in predicates.

Prolog debugger and a low-level WAM debugger.
— line editing facility under the interactive interpreter with completion on atoms.
— powerful bidirectional interface between Prolog and C.

e Compiler:
— native-code compiler producing stand alone executables.

— simple command-line compiler accepting a wide variety of files: Prolog files, C files, WAM
files,. ..

— direct generation of assembly code 15 times faster than wamcc + gcc.

— most of unused built-in predicates are not linked (to reduce the size of the executables).

http://pauillac.inria.fr/~{}diaz
http://pauillac.inria.fr/~{}diaz
http://www.gnu.org/software/prolog
http://www.logic-programming.org/prolog_std.html
http://www.logic-programming.org/prolog_std.html

12 2 INTRODUCTION

— compiled predicates (native-code) as fast as wamcc on average.
— consulted predicates (byte-code) 5 times faster than wamcc.
e Constraint solver:

— FD variables well integrated into the Prolog environment (full compatibility with Prolog vari-
ables and integers). No need for explicit FD declarations.

— very efficient FD solver (comparable to commercial solvers).
— high-level constraints can be described in terms of simple primitives.

— a lot of predefined constraints: arithmetic constraints, boolean constraints, symbolic con-
straints, reified constraints,. . .

— several predefined enumeration heuristics.
— the user can define his own new constraints.

— more than 50 FD built-in constraints/predicates.

13

3 Using GNU Prolog

3.1 Introduction

GNU Prolog offers two ways to execute a Prolog program:

e interpreting it using the GNU Prolog interactive interpreter.
e compiling it to a (machine-dependent) executable using the GNU Prolog native-code compiler.

Running a program under the interactive interpreter allows the user to list it and to make full use of the
debugger on it (section [4] page . Compiling a program to native code makes it possible to obtain a
stand alone executable, with a reduced size and optimized for speed. Running a Prolog program compiled
to native-code is around 3-5 times faster than running it under the interpreter. However, it is not possible
to make full use of the debugger on a program compiled to native-code. Nor is it possible to list the
program. In general, it is preferable to run a program under the interpreter for debugging and then
use the native-code compiler to produce an autonomous executable. It is also possible to combine these
two modes by producing an executable that contains some parts of the program (e.g. already debugged
predicates whose execution-time speed is crucial) and interpreting the other parts under this executable.
In that case, the executable has the same facilities as the GNU Prolog interpreter but also integrates
the native-code predicates. This way to define a new enriched interpreter is detailed later (section

page .

3.2 The GNU Prolog interactive interpreter
3.2.1 Starting/exiting the interactive interpreter

GNU Prolog offers a classical Prolog interactive interpreter also called top-level. It allows the user to
execute queries, to consult Prolog programs, to list them, to execute them and to debug them. The
top-level can be invoked using the following command:

% gprolog [OPTION]... (the % symbol is the operating system shell prompt)
Options:
--init-goal GOAL execute GOAL before top_level/0
-—entry-goal GOAL execute GOAL inside top_level /0
--query-goal GOAL execute GOAL as a query for top_level/0
--help print a help and exit
--version print version number and exit

-- do not parse the rest of the command-line

The main role of the gprolog command is to execute the top-level itself, i.e. to execute the built-in
predicate top_level/0 (section|7.18.1} page[112)) which will produce something like:

GNU Prolog 1.3.1
By Daniel Diaz

Copyright (C) 1999-2009 Daniel Diaz
| 7-

The top-level is ready to execute your queries as explained in the next section.

To quit the top-level type the end-of-file key sequence (Ct1-D) or its term representation: end_-of file.
It is also possible to use the built-in predicate halt/0 (section [7.18.1] page|112).

However, before entering the top-level itself, the command-line is processed to treat all known options
(those listed above). All unrecognized arguments are collected together to form the argument list which

14 3 USING GNU PROLOG

will be available using argument_value/2 (section [7.27.2] page|143)) or argument_list/1 (section |7.27.3
page [143]). The -- option stops the parsing of the command-line, all remainding options are collected
into the argument list.

Several options are provided to execute a goal before entering the interaction with the user:

e The --init-goal option executes the GOAL as soon as it is encountered (while the command-line
is processed). GOAL is thus executed before entering top_level/O0.

e The —-entry-goal option executes the GOAL at the entry of top_level/0 just after the banner is
displayed.

e The --query-goal option executes the GOAL as if the user has typed in.

The above order is thus the order in which each kind of goal (init, entry, query) is executed. If there
are several goals of a same kind they are executed in the order of appearance. Thus, all init goals are
executed (in the order of appearance) before all entry goals and all entry goals are executed before all
query goals.

Each GOAL is passed as a shell argument (i.e. one shell string) and should not contain a terminal dot.
Example: --init-goal ’write(hello), nl’ under a sh-like. To be executed, a GOAL is transformed
into a term using read_term from atom(Goal, Term, [end_of term(eof)]). Respecting both the syn-
tax of shell strings and of Prolog can be heavy. For instance, passing a backslash character \ can be
difficult since it introduces an escape sequence both in sh and inside Prolog quoted atoms. The use of
back quotes can then be useful since, by default, no escape sequence is processed inside back quotes (this
behavior can be controlled using the back_quotes Prolog flag (section page)

Since the Prolog argument list is created when the whole command-line is parsed, if a ——init-goal option
uses argument_value/2 or argument_list/1 it will obtained the original command-line arguments (i.e.
including all recognized arguments).

Here is an example of using execution goal options:

% gprolog --init-goal ’write(before), nl’ --entry-goal ’write(inside), nl’
--query-goal ’append([a,b], [c,d],X)’

will produce the following;:

before

GNU Prolog 1.3.1

By Daniel Diaz

Copyright (C) 1999-2009 Daniel Diaz
inside

| ?- append([a,b], [c,d],X).

x = [a,b,C,d]
yes

| 7-

3.2.2 The interactive interpreter read-execute-write loop

The GNU Prolog top-level is built on a classical read-execute-write loop that also allows for re-executions
(when the query is not deterministic) as follows:

e display the prompt, i.e. ’| ?-".

e read a query (i.e. a goal).

3.2 The GNU Prolog interactive interpreter 15

e execute the query.
e in case of success display the values of the variables of the query.

e if there are remaining alternatives (i.e. the query is not deterministic), display a ? and ask the user
who can use one of the following commands: RETURN to stop the execution, ; to compute the next
solution or a to compute all remaining solution.

Here is an example of execution of a query (“find the lists X and Y such that the concatenation of X and
Y is [a,b]”):

| ?- append(X,Y,[a,b,c]).

X =1

Y = [a,b,c] ? ; (here the user presses ; to compute another solution)

X = [a]

Y = [b,c] 7 a (here the user presses a to compute all remaining solutions)

X = [a,b]

Y = [c] (here the user is not asked and the next solution is computed)
X = [a,b,c]

Y =[] (here the user is not asked and the next solution is computed)
no (no more solution)

In some cases the top-level can detect that the current solution is the last one (no more alternatives
remaining). In such a case it does not display the 7 symbol (and does not ask the user). Example:

| 7= (X=1 ; X=2).

X=17 ; (here the user presses ; to compute another solution)
X =2 (here the user is not prompted since there are no more alternatives)
yes

The user can stop the execution even if there are more alternatives by typing RETURN.

| 7- (X=1 ; X=2).
X=17 (here the user presses RETURN to stop the execution)

yes

The top-level tries to display the values of the variables of the query in a readable manner. For instance,
when a variable is bound to a query variable, the name of this variable appears. When a variable is a
singleton an underscore symbol _ is displayed (- is a generic name for a singleton variable, it is also called
an anonymous variable). Other variables are bound to new brand variable names. When a query variable
name X appears as the value of another query variable Y it is because X is itself not instantiated otherwise
the value of X is displayed. In such a case, nothing is output for X itself (since it is a variable). Example:

| 7- X=£f(A,B,_,A), A=k.

A
X

k (the value of A is displayed also in £/3 for X)
f(k,B,_,k) (since B is a variable which is also a part of X, B is not displayed)

| ?- functor(T,f,3), arg(1,T,X), arg(3,T,X).

=
I

£(X,_,X) (the 1% and 3"¢ args are equal to X, the 2"? is an anonymous variable)

16 3 USING GNU PROLOG

| ?- read_from_atom(’k(X,Y,X).’,T).

T = k(4A,_,0) (the 1t and 37¢ args are unified, a new variable name A is introduced)

The top-level uses variable binding predicates (section page . To display the value of a variable,
the top-level calls write_term/3 with the following option list: [quoted(true) ,numbervars(false),
namevars (true)] (section page [96). A term of the form ’$VARNAME’ (Name) where Name is an
atom is displayed as a variable name while a term of the form >$VAR’ (N) where N is an integer is displayed
as a normal compound term (such a term could be output as a variable name by write_term/3). Example:

| 7- X="$VARNAME’ (°Y’), Y="$VAR’(1).

X=Y (the term ’$VARNAME’ (°Y’) is displayed as Y)
Y = ’$VAR’ (1) (the term ’$VAR’ (1) is displayed as is)

| 7- X=Y, Y="$VAR’(1).

X >$VAR’ (1)
Y = $VAR’ (1)

In the first example, X is explicitly bound to >$VARNAME’ (°Y’) by the query so the top-level displays Y
as the value of X. Y is unified with >$VAR’ (1) so the top-level displays it as a normal compound term.
It should be clear that X is not bound to Y (whereas it is in the second query). This behavior should be
kept in mind when doing variable binding operations.

Finally, the top-level computes the user-time (section [7.24.2] page [139) taken by a query and displays it
when it is significant. Example:

| 7- retractall(p(.)), assertz(p(0)),

repeat,
retract(p(X)),
Yis X + 1,
assertz(p(Y)),
X = 1000, !.
X = 1000
Y = 1001
(180 ms) yes (the query took 180ms of user time)

3.2.3 Consulting a Prolog program

The top-level allows the user to consult Prolog source files. Consulted predicates can be listed, executed
and debugged (while predicates compiled to native-code cannot). For more information about the differ-
ence between a native-code predicate and a consulted predicate refer to the introduction of this section

(section page and to the part devoted to the compiler (section page .

To consult a program use the built-in predicate consult/1 (section page . The argument
of this predicate is a Prolog file name or user to specify the terminal. This allows the user to directly
input the predicates from the terminal. In that case the input shall be terminated by the end-of-file key
sequence (Ct1-D) or its term representation: end_of file. A shorthand for consult(FILE) is [FILE].
Example:

3.2 The GNU Prolog interactive interpreter 17

| ?- [user].
{compiling user for byte code...}
even(0) .
even(s(s(X))):-
even(X) .
(here the user presses Ct1-D to end the input)
{user compiled, 3 lines read - 350 bytes written, 1180 ms}

| 7- even(X).

X=07 ; (here the user presses ; to compute another solution)
X =s(s(0) 7 ; (here the user presses ; to compute another solution)
X = s(s(s(s(0)))) 7 (here the user presses RETURN to stop the execution)

yes
| 7- listing.

even(0).
even(s(s(h))) :-
even(A).

When consult/1 (section page is invoked on a Prolog file it first runs the GNU Prolog
compiler (section page ' as a child process to generate a temporary WAM file for byte-code. If
the compilation fails a message is displayed and nothing is loaded. If the compilation succeeds, the
produced file is loaded into memory using load/1 (section page . Namely, the byte-code of
each predicate is loaded. When a predicate P is loaded if there is a previous definition for P it is removed
(i.e. all clauses defining P are erased). We say that P is redefined. Note that only consulted predicates
can be redefined. If P is a native-code predicate, trying to redefine it will produce an error at load-time:
the predicate redefinition will be ignored and the following message displayed:

native code procedure P cannot be redefined

Finally, an existing predicate will not be removed if it is not re-loaded. This means that if a predicate P
is loaded when consulting the file F, and if later the definition of P is removed from the file F, consulting
F again will not remove the previously loaded definition of P from the memory.

Consulted predicates can be debugged using the Prolog debugger. Use the debugger predicate trace/0
or debug/0 (section page to activate the debugger.

3.2.4 Interrupting a query

Under the top-level it is possible to interrupt the execution of a query by typing the interruption key
(Ct1-C). This can be used to abort a query, to stop an infinite loop, to activate the debugger,... When an
interruption occurs the top-level displays the following message: Prolog interruption (h for help) 7
The user can then type one of the following commands:

] Command \ Name \ Description ‘

a abort abort the current execution. Same as abort/0 (section [7.18.1] page[112))
e exit quit the current Prolog process. Same as halt/0 (section |7.18.1|7 pa@l?b
b break [invoke a recursive top-level. Same as break/0 (section [7.18.1] page [112)
c continue | resume the execution
t trace start the debugger using trace/0 (section 4.3.1} page [29
d debug start the debugger using debug/0 (section [4.3.1] page |29

hor? help display a summary of available commands

18 3 USING GNU PROLOG

3.2.5 The line editor

The line editor (linedit) allows the user to build/update the current input line using a variety of
commands. This facility is available if the 1inedit part of GNU Prolog has been installed. linedit is
implicitly called by any built-in predicate reading from a terminal (e.g. get_char/1, read/1,...). This
is the case when the top-level reads a query.

Bindings: each command of linedit is activated using a key. For some commands another key is also
available to invoke the command (on some terminals this other key may not work properly while the
primary key always works). Here is the list of available commands:

’ Key \ Alternate key \ Description ‘
Ctl-B — go to the previous character
Ctl-F — go to the next character
Esc-B Ctl-«— go to the previous word
Esc-F Ctl-— go to the next word
Ctl-A Home go to the beginning of the line
Ctl-E End go to the end of the line
Ctl-H Backspace delete the previous character
Ctl-D Delete delete the current character
Ctl-U Ctl-Home delete from beginning of the line to the current character
Ctl-K Ctl-End delete from the current character to the end of the line
Esc-L lower case the next word
Esc-U upper case the next word
Esc-C capitalize the next word
Ctl-T exchange last two characters
Ctl-v Insert switch on/off the insert/replace mode
Ctl-I Tab complete word (twice displays all possible completions)
Esc-Ctl-I Esc-Tab insert spaces to emulate a tabulation
Ctl-space mark beginning of the selection
Esc-W copy (from the begin selection mark to the current character)
Ctl-W cut (from the begin selection mark to the current character)
Ctl-Y paste
Ctl-P 1 recall previous history line
Ctl-N 1 recall next history line
Esc-P recall previous history line beginning with the current prefix
Esc-N recall next history line beginning with the current prefix
Esc-< Page Up recall first history line
Esc-> Page Down recall last history line
Ctl-C generate an interrupt signal (section [3.2.4] page|[17)
Ctl-D generate an end-of-file character (at the begin of the line)
RETURN validate a line
Esc-7 display a summary of available commands

History: when a line is entered (i.e. terminated by RETURN), linedit records it in an internal list called
history. It is later possible to recall history lines using appropriate commands (e.g. Ct1-P recall the last
entered line) and to modify them as needed. It is also possible to recall a history line beginning with a
given prefix. For instance to recall the previous line beginning with write simply type write followed
by Esc-P. Another Esc-P will recall an earlier line beginning with write,. ..

Completion: another important feature of 1inedit is its completion facility. Indeed, linedit maintains
a list of known words and uses it to complete the prefix of a word. Initially this list contains all predefined
atoms and the atoms corresponding to available predicates. This list is dynamically updated when a new
atom appears in the system (whether read at the top-level, created with a built-in predicate, associated
with a new consulted predicate,...). When the completion key (Tab) is pressed linedit acts as follows:

3.3 Adjusting the size of Prolog stacks 19

e use the current word as a prefix.

e collect all words of the list that begin with this prefix.

e complete the current word with the longest common part of all matching words.

e if more than one word matches emit a beep (a second Tab will display all possibilities).
Example:

| 7- argu (here the user presses Tab to complete the word)

| 7- argument_ (linedit completes argu with argument_ and emits a beep)
(the user presses again Tab to see all possible completions)

argument_counter (1inedit shows 3 possible completions)

argument_list

argument_value

| ?- argument_ (linedit redisplays the input line)

| ?- argument_c (to select argument_counter the user presses ¢ and Tab)
| ?- argument_counter (linedit completes with argument_counter)

Finally, 1inedit allows the user to check that (square/curly) brackets are well balanced. For this, when
a close bracket symbol, i.e.),] or }, is typed, linedit determines the associated open bracket, i.e. (, [
or {, and temporarily repositions the cursor on it to show the match.

3.3 Adjusting the size of Prolog stacks

GNU Prolog uses several stacks to execute a Prolog program. Each stack has a static size and cannot be
dynamically increased during the execution. For each stack there is a default size but the user can define
a new size by setting an environment variable. When a GNU Prolog program is run it first consults these
variables and if they are not defined uses the default sizes. The following table presents each stack of
GNU Prolog with its default size and the name of its associated environment variable:

Stack Default | Environment | Description

name | size (Kb) variable

local 8192 LOCALSZ control stack (environments and choice-points)
global 16384 GLOBALSZ heap (compound terms)

trail 8192 TRAILSZ conditional bindings (bindings to undo at backtracking)
cstr 8192 CSTRSZ finite domain constraint stack (FD variables and constraints)

If the size of a stack is too small an overflow will occur during the execution. In that case GNU Prolog
emits the following error message before stopping:

S stack overflow (size: N Kb, environment variable used: E)

where S is the name of the stack, N is the current stack size in Kb and E the name of the associated
environment variable. When such a message occurs it is possible to (re)define the variable E with the
new size. For instance to allocate Kb to the local stack under a Unix shell use:

LOCALSZ=32768; export LOCALSZ (under sh or bash)
setenv LOCALSZ 32768 (under csh or tcsh)

This method allows the user to adjust the size of Prolog stacks. However, in some cases it is preferable
not to allow the user to modify these sizes. For instance, when providing a stand alone executable whose
behavior should be independent of the environment in which it is run. In that case the program should
not consult environment variables and the programmer should be able to define new default stack sizes.
The GNU Prolog compiler offers this facilities via several command-line options such as --local-size

or --fixed-sizes (section page [22)).

20 3 USING GNU PROLOG

Finally note that GNU Prolog stacks are virtually allocated (i.e. use virtual memory). This means that
a physical memory page is allocated only when needed (i.e. when an attempt to read/write it occurs).
Thus it is possible to define very large stacks. At the execution, only the needed amount of space will be
physically allocated.

3.4 The GNU Prolog compiler
3.4.1 Different kinds of codes

One of the main advantages of GNU Prolog is its ability to produce stand alone executables. A Prolog
program can be compiled to native code to give rise to a machine-dependent executable using the GNU
Prolog compiler. However native-code predicates cannot be listed nor fully debugged. So there is an
alternative to native-code compilation: byte-code compilation. By default the GNU Prolog compiler
produces native-code but via a command-line option it can produce a file ready for byte-code loading.
This is exactly what consult/1 does as was explained above (section page . GNU Prolog also
manages interpreted code using a Prolog interpreter written in Prolog. Obviously interpreted code is
slower than byte-code but does not require the invocation of the GNU Prolog compiler. This interpreter
is used each time a meta-call is needed as by call/1 (section page [47). This also the case of
dynamically asserted clauses. The following table summarizes these three kinds of codes:

| Type | Speed [Debug ? | For what |
interpreted-code | slow yes meta-call and dynamically asserted clauses
byte-code medium yes consulted predicates
native-code fast no compiled predicates

3.4.2 Compilation scheme

Native-code compilation: a Prolog source is compiled in several stages to produce an object file that
is linked to the GNU Prolog libraries to produce an executable. The Prolog source is first compiled to
obtain a WAM [J] file. For a detailed study of the WAM the interested reader can refer to “Warren’s
Abstract Machine: A Tutorial Reconstruction”| [I]. The WAM file is translated to a machine-independent
language specifically designed for GNU Prolog. This language is close to a (universal) assembly language
and is based on a very reduced instruction set. For this reason this language is called mini-assembly
(MA). The mini-assembly file is then mapped to the assembly language of the target machine. This
assembly file is assembled to give rise to an object file which is then linked with the GNU Prolog libraries
to provide an executable. The compiler also takes into account Finite Domain constraint definition files.
It translates them to C and invoke the C compiler to obtain object files. The following figure presents
this compilation scheme:

http://www.isg.sfu.ca/~{}hak/documents/wam.html
http://www.isg.sfu.ca/~{}hak/documents/wam.html

3.4 The GNU Prolog compiler

21

Prolog
files

B

pl 2wam

WAM
files

M

wannma

mini-assembly
files

ma2asm

-

FD constraint
definition files

assembly
files

'

fd2c

assenbl

#

Cfiles

er

object
files

C conpil er

Eii - =

i nker

executable

S =

Prolog/FD libraries
and user libraries

Obviously all intermediate stages are hidden to the user who simply invokes the compiler on his Prolog
However, it is also possible to stop the

file(s) (plus other files: C,...
compiler at any given stage. This can be useful, for instance, to see the WAM code produced (perhaps

)

and obtains an executable.

when learning the WAM). Finally it is possible to give any kind of file to the compiler which will insert
it in the compilation chain at the stage corresponding to its type. The type of a file is determined using
the suffix of its file name. The following table presents all recognized types/suffixes:

] Suffix of the file \ Type of the file \ Handled by:
.pl, .pro Prolog source file pl2wam
.wam WAM source file wam2ma
.ma Mini-assembly source file ma2asm
.8 Assembly source file the assembler

.c, .C, .CC, .cc, .cxx,

.Cc++

)

. Cpp

C or C++ source file

the C compiler

.fd

Finite Domain constraint source file

fd2c

any other suffix (.o, .a,...

)

any other type (object, library,...)

the linker (C linker)

Byte-code compilation: the same compiler can be used to compile a source Prolog file for byte-code.
In that case the Prolog to WAM compiler is invoked using a specific option and produces a WAM for
byte-code source file (suffixed .wbc) that can be later loaded using load/1 (section page [137).
Note that this is exactly what consult/1 (section page does as explained above (section

22 3 USING GNU PROLOG

page [16]).

3.4.3 Using the compiler

The GNU Prolog compiler is a command-line compiler similar in spirit to a Unix C compiler like gcc.
To invoke the compiler use the gplc command as follows:

% gplc [OPTION]... FILE... (the % symbol is the operating system shell prompt)

The arguments of gplc are file names that are dispatched in the compilation scheme depending on the
type determined from their suffix as was explained previously (section page . All object files are
then linked to produce an executable. Note however that GNU Prolog has no module facility (since there
is not yet an ISO reference for Prolog modules) thus a predicate defined in a Prolog file is visible from
any other predicate defined in any other file. GNU Prolog allows the user to split a big Prolog source
into several files but does not offer any way to hide a predicate from others.

The simplest way to obtain an executable from a Prolog source file prog.pl is to use:
% gplc prog.pl

This will produce an native executable called prog which can be executed as follows:
% prog

However, there are several options that can be used to control the compilation:

General options:

-o FILE, --output FILE use FILE as the name of the output file

-W, ~—wam-for-native stop after producing WAM files(s)

-w, ——wam-for-byte-code stop after producing WAM for byte-code file(s) (force ——no-call-c)
-M, --mini-assembly stop after producing mini-assembly files(s)

-S, ——assembly stop after producing assembly files (s)

-F, --fd-to-c stop after producing C files(s) from FD constraint definition file(s)
-c, ——object stop after producing object files(s)

—-—temp-dir PATH use PATH as directory for temporary files

--no-del-temp do not delete temporary files

--no-decode-hexa do not decode hexadecimal predicate names

-v, -—verbose print executed commands

-h, --help print a help and exit

--version print version number and exit

Prolog to WAM compiler options:

3.4 The GNU Prolog compiler

23

--pl-state FILE
--no-susp-warn
--no-singl-warn
--no-warn-warn
--no-redef-error
-—-foreign-only
--no-call-c
—--no-inline
--no-reorder
--no-reg-opt
--min-reg-opt

--no-opt-last-subterm

--fast-math
--keep-void-inst
--compile-msg
--statistics

read FILE to set the initial Prolog state

do not show warnings for suspicious predicates

do not show warnings for named singleton variables

do not show warnings for unsupported multifile directives
do not show errors for built-in predicate redefinitions
only compile foreign/1-2 directives

do not allow the use of fd_tell, *$call c’,...

do not inline predicates

do not reorder predicate arguments

do not optimize registers

minimally optimize registers

do not optimize last subterm compilation

use fast mathematical mode (assume integer arithmetics)
keep void WAM instructions in the output file

print a compile message

print statistics information

WAM to mini-assembly translator options:

——comment

include comments in the output file

Mini-assembly to assembly translator options:

——comment

C compiler options:

--c-compiler FILE
-C OPTION

Assembler options:
-A OPTION
Linker options:

--linker FILE
--local-size N
--global-size N
-—trail-size N
--cstr-size N
--fixed-sizes
--no-top-level
--no-debugger
--min-pl-bips
--min-fd-bips
--min-bips
--min-size
--no-fd-1ib
-s, ——-strip

-L OPTION

include comments in the output file

use FILE as C compiler/linker
pass OPTION to the C compiler

pass OPTION to the assembler

use FILE as linker

set default local stack size to N Kb

set default global stack size to ¥ Kb

set default trail stack size to N Kb

set default constraint stack size to N Kb

do not consult environment variables at run-time (use default sizes)
do not link the top-level (force --no-debugger)

do not link the Prolog/WAM debugger

link only used Prolog built-in predicates

link only used FD solver built-in predicates

shorthand for: --no-top-level --min-pl-bips —-min-fd-bips
shorthand for: --min-bips --strip

do not look for the FD library (maintenance only)

strip the executable

Pass OPTION to the linker

It is possible to only give the prefix of an option if there is no ambiguity.

The name of the output file is controlled via the ~o FILE option. If present the output file produced will
be named FILE. If not specified, the output file name depends on the last stage reached by the compiler.
If the link is not done the output file name(s) is the input file name(s) with the suffix associated with

24 3 USING GNU PROLOG

the last stage. If the link is done, the name of the executable is the name (without suffix) of the first file
name encountered in the command-line. Note that if the link is not done -o has no sense in the presence
of multiple input file names. For this reason, several meta characters are available for substitution in
FILE:

e f is substitued by the whole input file name.

e JF is similar to %f but the directory part is omitted.

e p is substitued by the whole prefix file name (omitting the suffix).

e P is similar to %p but the directory part is omitted.

e s is substitued by the file suffix (including the dot).

e ’d is substitued by the directory part (empty if no directory is specified).

e J.c is substitued by the value of an internal counter starting from 1 and auto-incremented.

By default the compiler runs in the native-code compilation scheme. To generate a WAM file for byte-code
use the --wam-for-byte-code option. The resulting file can then be loaded using load/1 (section|(7.23.2

page [137).

To execute the Prolog to WAM compiler in a given read environment (operator definitions, character
conversion table,...) use -—pl-state FILE. The state file should be produced by write pl_state file/1

(section [7.22.5] page [136]).

By default the Prolog to WAM compiler inlines calls to some deterministic built-in predicates (e.g. arg/3
and functor/3). Namely a call to such a predicate will not yield a classical predicate call but a simple
C function call (which is obviously faster). It is possible to avoid this using --no-inline.

Another optimization performed by the Prolog to WAM compiler is unification reordering. The arguments
of a predicate are reordered to optimize unification. This can be deactivated using --no-reorder. The
compiler also optimizes the unification/loading of nested compound terms. More precisely, the compiler
emits optimized instructions when the last subterm of a compound term is itself a compound term (e.g.
lists). This can be deactivated using --no-opt-last-subterm.

By default the Prolog to WAM compiler fully optimizes the allocation of registers to decrease both the
number of instruction produced and the number of used registers. A good allocation will generate many
void instructions that are removed from the produced file except if --keep-void-inst is specified. To
prevent any optimization use --no-reg-opt while —-min-reg-opt forces the compiler to only perform
simple register optimizations.

The Prolog to WAM compiler emits an error when a control construct or a built-in predicate is redefined.
This can be avoided using --no-redef-error. The compiler also emits warnings for suspicious predicate
definitions like -/2 since this often corresponds to an earlier syntax error (e.g. - instead of _. This can
be deactivated by specifying —-no-susp-warn. Finally, the compiler warns when a singleton variable has
a name (i.e. not the generic anonymous name _). This can be deactivated specifying ~-no-singl-warn.

Predicate names are encoded with an hexadecimal representation. This is explained in more detail later
(section page. By default the error messages from the linker (e.g. multiple definitions for a given
predicate, reference to an undefined predicate,...) are filtered to replace any hexadecimal representation
by the real predicate name. Specifying the —~—no-decode-hexa prevents gplc from filtering linker output
messages and hexadecimal representations are then shown.

When producing an executable it is possible to specify default stack sizes (using --STACK_NAME-size)
and to prevent it from consulting environment variables (using --fixed-sizes) as was explained above
(section page . By default the produced executable will include the top-level, the Prolog/WAM
debugger and all Prolog and FD built-in predicates. It is possible to avoid linking the top-level (sec-
tion page [13)) by specifying ~-no-top-level. In this case, at least one initialization/1 directive

3.4 The GNU Prolog compiler 25

(section6.1.13] page should be defined. The option -—no-debugger does not link the debugger. To in-
clude only used built-in predicates that are actually used the options ~-no-pl-bips and/or --no-fd-bips
can be specified. For the smallest executable all these options should be specified. This can be abbre-
viated by using the shorthand option —-min-bips. By default, executables are not stripped, i.e. their
symbol table is not removed. This table is only useful for the C debugger (e.g. when interfacing Prolog
and C). To remove the symbol table (and then to reduce the size of the final executable) use --strip.
Finally -—-min-size is a shortcut for --min-bips and --strip, i.e. the produced executable is as small
as possible.

Example: compile and link two Prolog sources progl.pl and prog2.pl. The resulting executable will
be named progl (since -o is not specified):

% gplc progl.pl prog2.pl
Example: compile the Prolog file prog.pl to study basic WAM code. The resulting file will be named
prog.wam:

% gplc -W --no-inline --no-reorder --keep-void-inst prog.pl

Example: compile the Prolog file prog.pl and its C interface file utils.c to provide an autonomous
executable called mycommand. The executable is not stripped to allow the use of the C debugger:

% gplc -o mycommand prog.pl utils.c

Example: detail all steps to compile the Prolog file prog.pl (the resulting executable is stripped). All
intermediate files are produced (prog.wam, prog.ma, prog.s, prog.o and the executable prog):

% gplc -W prog.pl

% gplc -M --comment prog.wam
% gplc -S --comment prog.ma
% gplc -c prog.s

% gplc -o prog -s prog.o

3.4.4 Running an executable

In this section we explain what happens when running an executable produced by the GNU Prolog native-
code compiler. The default main function first starts the Prolog engine. This function collects all linked
objects (issued from the compilation of Prolog files) and initializes them. The initialization of a Prolog
object file consists in adding to appropriate tables new atoms, new predicates and executing its system
directives. A system directive is generated by the Prolog to WAM compiler to reflect a (user) directive
executed at compile-time such as op/3 (section page . Indeed, when the compiler encounters
such a directive it immediately executes it and also generates a system directive to execute it at the
start of the executable. When all system directives have been executed the Prolog engine executes all
initialization directives defined with initialization/1 (section|6.1.13] page . If several initialization
directives appear in the same file they are executed in the order of appearance. If several initialization
directives appear in different files the order in which they are executed is machine-dependant. However,
on most machines the order will be the reverse order in which the associated files have been linked (this
is not true under native win32). When all initialization directives have been executed the default main
function looks for the GNU Prolog top-level. If present (i.e. it has been linked) it is called otherwise the
program simply ends. Note that if the top-level is not linked and if there is no initialization directive the
program is useless since it simply ends without doing any work. The default main function detects such
a behavior and emits a warning message.

Example: compile an empty file prog.pl without linking the top-level and execute it:

% gplc --no-top-level prog.pl

% prog
Warning: no initial goal executed
use a directive :- initialization(Goal)

or remove the link option --no-top-level (or --min-bips or --min-size)

26 3 USING GNU PROLOG

3.4.5 Generating a new interactive interpreter

In this section we show how to define a new top-level extending the GNU Prolog interactive interpreter
with new predicate definitions. The obtained top-level can then be considered as an enriched version of
the basic GNU Prolog top-level (section page . Indeed, each added predicate can be viewed as
a predefined predicate just like any other built-in predicate. This can be achieved by compiling these
predicates and including the top-level at link-time.

The real question is: why would we include some predicates in a new top-level instead of simply consulting
them under the GNU Prolog top-level 7 There are two reasons for this:

e the predicate cannot be consulted. This is the case of a predicate calling foreign code, like a
predicate interfacing with C (section @ page |183)) or a predicate defining a new FD constraint.

e the performance of the predicate is crucial. Since it is compiled to native-code such a predicate will
be executed very quickly. Consulting will load it as byte-code. The gain is much more noticeable if
the program is run under the debugger. The included version will not be affected by the debugger
while the consulted version will be several times slower. Obviously, a predicate should be included
in a new top-level only when it is itself debugged since it is difficult to debug native-code.

To define a new top-level simply compile the set of desired predicates and linking them with the GNU
Prolog top-level (this is the default) using gplc (section page 22)).
Example: let us define a new top-level called my_top_level including all predicates defined in prog.pl:
% gplc -o my_top_level prog.pl
By the way, note that if prog.pl is an empty Prolog file the previous command will simply create a new
interactive interpreter similar to the GNU Prolog top-level.
Example: as before where some predicates of prog.pl call C functions defined in utils.c:
% gplc -o my_top_level prog.pl utils.c

In conclusion, defining a particular top-level is nothing else but a particular case of the native-code
compilation. It is simple to do and very useful in practice.

3.4.6 The hexadecimal predicate name encoding

When the GNU Prolog compiler compiles a Prolog source to an object file it has to associate a symbol to
each predicate name. However, the syntax of symbols is restricted to identifiers: string containing only
letters, digits or underscore characters. On the other hand, predicate names (i.e. atoms) can contain
any character with quotes if necessary (e.g. ’x+y=z’ is a valid predicate name). The compiler has then
to encode predicate names respecting the syntax of identifiers. To achieve this, GNU Prolog uses an
hexadecimal representation where each predicate name is translated to a symbol beginning with an X
followed by the hexadecimal notation of the code of each character of the name.

Example: ’x+y=z’ will be encoded as X782B793D7A since 78 is the hexadecimal representation of the
code of x, 2B of the code of +, etc.

Since Prolog allows the user to define several predicates with the same name but with a different arity
GNU Prolog encodes predicate indicators (predicate name followed by the arity). The symbol associated
with the predicate name is then followed by an underscore and by the decimal notation of the arity.

Example: ’x+y=z’/3 will be encoded as X782B793D7A_3.

So, from the mini-assembly stage, each predicate indicator is replaced by its hexadecimal encoding. The
knowledge of this encoding is normally not of interest for the user, i.e. the Prolog programmer. For this

3.4 The GNU Prolog compiler 27

reason the GNU Prolog compiler hides this encoding. When an error occurs on a predicate (undefined
predicate, predicate with multiple definitions,...) the compiler has to decode the symbol associated
with the predicate indicator. For this gplc filters each message emitted by the linker to locate and
decode eventual predicate indicators. This filtering can be deactivated specifying —-no-decode-hexa

when invoking gplc (section page [22]).

This filter is provided as an utility that can be invoked using the hexgplc command as follows:

% hexgplc [OPTION]... FILE... (the % symbol is the operating system shell prompt)
Options:
--encode encoding mode (default mode is decoding)
--relax decode also predicate names (not only predicate indicators)
--printf FORMAT pass encoded/decoded string to C printf (3) with FORMAT
—-—aux-father decode an auxiliary predicate as its father
—-—aux-father2 decode an auxiliary predicate as its father + auxiliary number
--cmd-line encode/decode each argument of the command-line
-H same as: ——cmd-line --encode
-P same as: --cmd-line --relax
—--help print a help and exit
--version print version number and exit

It is possible to give a prefix of an option if there is no ambiguity.

Without arguments hexgplc runs in decoding mode reading its standard input and decoding each symbol
corresponding to a predicate indicator. To use hexgplc in the encoding mode the —-encode option must
be specified. By default hexgplc only decodes predicate indicators, this can be relaxed using --relax
to also take into account simple predicate names (the arity can be omitted). It is possible to format the
output of an encoded/decoded string using —-printf FORMAT in that case each string S is passed to the
C printf (3) function as printf (FORMAT,S).

Auxiliary predicates are generated by the Prolog to WAM compiler when simplifying some control con-
structs like > ;’/2 present in the body of a clause. They are of the form ’>$NAME /ARITY _$auxlN’ where
NAME /ARITY is the predicate indicator of the simplified (i.e. father) predicate and ¥ is a sequential num-
ber (a predicate can give rise to several auxiliary predicates). It is possible to force hexgplc to decode
an auxiliary predicate as its father predicate indicator using --aux-father or as its father predicate
indicator followed by the sequential number using --aux-father?2.

If no file is specified, hexgplc processes its standard input otherwise each file is treated sequentially.
Specifying the -—cmd-line option informs hexgplc that each argument is not a file name but a string
that must be encoded (or decoded). This is useful to encode/decode a particular string. For this reason
the option -H (encode to hexadecimal) and -P (decode to Prolog) are provided as shorthand. Then, to
obtain the hexadecimal representation of a predicate P use:

% hexgplc -H P
Example:

% hexgplc -H ’x+y=z’
X782B793D7A

28

3 USING GNU PROLOG

29

4 Debugging

4.1 Introduction

The GNU Prolog debugger provides information concerning the control flow of the program. The debugger
can be fully used on consulted predicates (i.e. byte-code). For native compiled code only the calls/exits
are traced, no internal behavior is shown. Under the debugger it is possible to exhaustively trace the
execution or to set spy-points to only debug a specific part of the program. Spy-points allow the user to
indicate on which predicates the debugger has to stop to allow the user to interact with it. The debugger
uses the “procedure box control flow model”, also called the Byrd Box model since it is due to Lawrence
Byrd.

4.2 The procedure box model

The procedure box model of Prolog execution provides a simple way to show the control flow. This
model is very popular and has been adopted in many Prolog systems (e.g. SICStus Prolog, Quintus
Prolog,...). A good introduction is the chapter 8 of “Programming in Prolog” of Clocksin & Mellish [2].
The debugger executes a program step by step tracing an invocation to a predicate (call) and the
return from this predicate due to either a success (exit) or a failure (fail). When a failure occurs
the execution backtracks to the last predicate with an alternative clause. The predicate is then re-
invoked (redo). Another source of change of the control flow is due to exceptions. When an exception is
raised from a predicate (exception) by throw/1 (section page the control is given back to the
most recent predicate that has defined a handler to recover this exception using catch/3 (section
page . The procedure box model shows these different changes in the control flow, as illustrated here:

cal ——— = exit
predicate
redo

fal -———

exception «———————————

Each arrow corresponds to a port. An arrow to the box indicates that the control is given to this predicate
while an arrow from the box indicates that the control is given back from the procedure. This model
visualizes the control flow through these five ports and the connections between the boxes associated with
subgoals. Finally, it should be clear that a box is associated with one invocation of a given predicate. In
particular, a recursive predicate will give raise to a box for each invocation of the predicate with different
entries/exits in the control flow. Since this might get confusing for the user, the debugger associates with
each box a unique identifier (i.e. the invocation number).

4.3 Debugging predicates
4.3.1 Running and stopping the debugger

trace/0 activates the debugger. The next invocation of a predicate will be traced.

debug/0 activates the debugger. The next invocation of a predicate on which a spy-point has been set
will be traced.

It is important to understand that the information associated with the control flow is only available when

30 4 DEBUGGING

the debugger is on. For efficiency reasons, when the debugger is off the information concerning the control
flow (i.e. the boxes) is not retained. So, if the debugger is activated in the middle of a computation (by
a call to debug/0 or trace/0 in the program or after the interrupt key sequence (Ct1-C) by choosing
trace or debug), information prior to this point is not available.

debugging/0: prints onto the terminal information about the current debugging state (whether the
debugger is switched on, what are the leashed ports, spy-points defined,. ..).

notrace/0 or nodebug/0 switches the debugger off.

wam_debug/0 invokes the sub-debugger devoted to the WAM data structures (section page . It
can be also invoked using the W debugger command (section page .

4.3.2 Leashing ports

leash(Ports) requests the debugger to prompt the user, as he creeps through the program, for every
port defined in the Ports list. Each element of Ports is an atom in call, exit, redo, fail, exception.
Ports can also be an atom defining a shorthand:

e full: equivalent to [call, exit, redo, fail, exception]
e half: equivalent to [call, redol

e loose: equivalent to [calll

e none: equivalent to []

e tight: equivalent to [call, redo, fail, exception]

When an unleashed port is encountered the debugger continues to show the associated goal but does not
stop the execution to prompt the user.

4.3.3 Spy-points

When dealing with big sources it is not very practical to creep through the entire program. It is preferable
to define a set of spy-points on interesting predicates to be prompted when the debugger reaches one of
these predicates. Spy-points can be added either using spy/1 (or spypoint_condition/3) or dynamically
when prompted by the debugger using the + (or *) debugger command (section page. The current
mode of leashing does not affect spy-points in the sense that user interaction is requested on every port.

spy (PredSpec) sets a spy-point on all the predicates given by PredSpec. PredSpec defines one or several
predicates and has one of the following forms:

e [PredSpecl, PredSpec2,...]: set a spy-point for each element of the list.
e Name: set a spy-point for any predicate whose name is Name (whatever the arity).
e Name/Arity: set a spy-point for the predicate whose name is Name and arity is Arity.

e Name/A1-A2: set a spy-point for the each predicate whose name is Name and arity is between A1
and A2.

It is not possible to set a spy-point on an undefined predicate.
The following predicate is used to remove one or several spy-points:

nospy (PredSpec) removes the spy-points from the specified predicates.

4.4 Debugging messages 31

nospyall/0 removes all spy-points:
It is also possible to define conditional spy-points.

spypoint_condition(Goal, Port, Test) sets a conditional spy-point on the predicate for Goal. When
the debugger reaches a conditional spy-point it only shows the associated goal if the following conditions
are verified:

e the actual goal unifies with Goal.
e the actual port unifies with Port.

e the Prolog goal Test succeeds.

4.4 Debugging messages

We here described which information is displayed by the debugger when it shows a goal. The basic format
is as follows:

S N M Port: Goal 7

S is a spy-point indicator: if there is a spy-point on the current goal the + symbol is displayed else a space
is displayed. N is the invocation number. This unique number can be used to correlate the trace messages
for the various ports, since it is unique for every invocation. M is an index number which represents the
number of direct ancestors of the goal (i.e. the current depth of the goal). Port specifies the particular
port (call, exit, fail, redo, exception). Goal is the current goal (it is then possible to inspect its
current instantiation) which is displayed using write_term/3 with quoted(true) and max depth(D)
options (section [7.14.6] page|96)). Initially D (the print depth) is set to 10 but can be redefined using the
< debugger command (sectio page . The ? symbol is displayed when the debugger is waiting
a command from the user. (i.e. Port is a leashed port). If the port is unleashed, this symbol is not
displayed and the debugger continues the execution displaying the next goal.

4.5 Debugger commands

When the debugger reaches a leashed port it shows the current goal followed by the ? symbol. At this
point there are many commands available. Typing RETURN will creep into the program. Continuing to
creep will show all the control flow. The debugger shows every port for every predicate encountered
during the execution. It is possible to select the ports at which the debugger will prompt the user using
the built-in predicate leash/1 (section page . Each command is only one character long:

32 4 DEBUGGING

’ Command \ Name \ Description ‘
RET or ¢ creep single-step to the next port

1 leap continue the execution only stopping when a goal with a spy-point
is reached

s skip skip over the entire execution of the current goal. No message will
be shown until control returns

G go to ask for an invocation number and continue the execution until a port
is reached for that invocation number

r retry try to restart the invocation of the current goal by failing until reach-
ing the invocation of the goal. The state of execution is the same
as when the goal was initially invoked (except when using side-effect
predicates)

f fail force the current goal to fail immediately

W write show the current goal using write/2 (section 7.14.6, page |96

d display show the current goal using display/2 (section |7.14.6|, page 96[)

P print show the current goal using print/2 (section [7.14.6, page |96

e exception show the pending exception. Only applicable to an exception port

g ancestors show the list of ancestors of the current goal

A alternatives show the list of ancestors of the current goal combined with choice-
points

u unify ask for a term and unify the current goal with this term. This is
convenient for getting a specific solution. Only available at a call
port

father file show the Prolog file name and the line number where the current

predicate is defined

n no debug switch the debugger off. Same as nodebug/0 (section |4.3.1L page [29)

= debugging show debugger information. Same as debugging/0 (section M
page

+ spy this set a spy-point on the current goal. Uses spy/1 (section M
page

- nospy this remove a spy-point on the current goal. Uses nospy/1 (section m
page

* spy conditionally | ask for a term Goal, Port, Test (terminated by a dot) and
set a conditional spy-point on the current predicate. Goal and
the current goal must have the same predicate indicator. Uses
spypoint_condition/3 (section m page

L listing list all the clauses associated with the current predicate. Uses
listing/1 (section [7.23.3] page[138)

a abort abort the current execution. Same as abort/0 (section 7.18.1|7
page |112)

b break invoke a recursive top-level. Same as break/0 (section 7.18.1',
page [112)

@ execute goal ask for a goal and execute it

< set print depth | ask for an integer and set the print depth to this value (-1 for no
depth limit)

hor? help display a summary of available commands
W WAM debugger | invoke the low-level WAM debugger (section page

4.6 The WAM debugger

In some cases it is interesting to have access to the WAM data structures. This sub-debugger allows
the user to inspect/modify the contents of any stack or register of the WAM. The WAM debugger is
invoked using the built-in predicate wam_debug/0 (section m page or the W debugger command
(section page . The following table presents the specific commands of the WAM debugger:

4.6 The WAM debugger

33

’ Command \ Description ‘
write 4 [N] write N terms starting at the address 4 using write/1 (section |7.14.6|7 page
data 4 [N] display N words starting at the address 4
modify 4 [N] display and modify ¥ words starting at the address 4
where 4 display the real address corresponding to 4
what RA display what corresponds to the real address R4
deref A display the dereferenced word starting at the address 4
envir [S4] display the contents of the environment located at SA (or the current one)
backtrack [S4] | display the contents of the choice-point located at SA (or the current one)
backtrack all | display all choice-points
quit quit the WAM debugger
help display a summary of available commands

In the above table the following conventions apply:

e elements between [and | are optional.

e N is an optional integer (defaults to 1).

e 4 is a WAM address, its syntax is: BANK.NAME [[N 1], i.e. a bank name possibly followed by an

index (defaults to 0). BANK_NAME is either:

reg: WAM general register (stack pointers, continuation, ...).

x: WAM X register (temporary variables, i.e. arguments).

y: WAM Y register (permanent variables).

ab: WAM X register saved in the current choice-point.

STACK_NAME: WAM stack (STACK_NAME in local, global, trail, cstr).

e S4 is a WAM stack address, i.e. STACK.NAME [[N]] (special case of WAM addresses).

e RA is a real address, its syntax is the syntax of C integers (in particular the notation Ox... is

recognized).

It is possible to only use the first letters of a commands and bank names when there is no ambiguity. Also
the square brackets [] enclosing the index of a bank name can be omitted. For instance the following
command (showing the contents of 25 consecutive words of the global stack from the index 3): data
global[3] 25 can be abbreviated as: d g 3 25.

34

4 DEBUGGING

35

5 Format of definitions

5.1 General format

The definition of control constructs, directives and built-in predicates is presented as follows:
Templates

Specifies the types of the arguments and which of them shall be instantiated (mode). Types and modes
are described later (section page .

Description

Describes the behavior (in the absence of any error conditions). It is explicitly mentioned when a built-
in predicate is re-executable on backtracking. Predefined operators involved in the definition are also
mentioned.

Errors

Details the error conditions. Possible errors are detailed later (section page [37). For directives, this
part is omitted.

Portability

Specifies whether the definition conforms to the ISO standard or is a GNU Prolog extension.

5.2 Types and modes

The templates part defines, for each argument of the concerned built-in predicate, its mode and type.
The mode specifies whether or not the argument must be instantiated when the built-in predicate is
called. The mode is encoded with a symbol just before the type. Possible modes are:

e +: the argument must be instantiated.
e —: the argument must be a variable (will be instantiated if the built-in predicate succeeds).
e 7: the argument can be instantiated or a variable.

The type of an argument is defined by the following table:

36 5 FORMAT OF DEFINITIONS
’ Type Description
TYPE 1ist a list whose the type of each element is TYPE
TYPE1 or_TYPE2 a term whose type is either TYPE! or TYPE2
atom an atom
atom_property an atom property (section |7.19.12|7 pagel@b
boolean the atom true or false
byte an integer > 0 and < 255
callable_term an atom or a compound term
character a single character atom
character_code an integer > 1 and < 255
clause a clause (fact or rule)

close_option

a close option (section [7.10.7] page [72)

compound_term

a compound term

evaluable

an arithmetic expression (section[7.6.1] page [57)

fd_bool_evaluable

a boolean FD expression (section [8.7.1} page[173

fd_labeling option

an FD labeling option (section [8.9.1] page[179)

fd_evaluable

an arithmetic FD expression (section |8.6.1 page |170)

fd_variable

an FD variable

flag a Prolog flag (section [7.22.1] page[133)

float a floating point number

head a head of a clause (atom or compound term)
integer an integer

in byte an integer > 0 and < 255 or -1 (for the end-of-file)

in_character

a single character atom or the atom end_of _file (for the end-of-file)

in_character_code

an integer > 1 and < 255 or -1 (for the end-of-file)

io_mode an atom in: read, write or append

list the empty list [1 or a non-empty list [_]_]
nonvar any term that is not a variable

number an integer or a floating point number

operator_specifier

an operator specifier (section |7.14.10|7 page |100

os_file_property

an operating system file property (section |7 27 .IIL page [147)

predicate_indicator

a term Name/Arity where Name is an atom and Arity an integer > 0. A
callable term can be given if the strict_iso Prolog flag is switched off

(section [7.22.1] page [133)

predicate_property

a predicate property (section |7.8.2|, page

read_option

a read option (section |7.14.1L pageIQ_QD

socket_address

a term of the form >AF_UNIX’ (A) or ’AF_INET’ (A,N) where A is an atom
and N an integer

socket_domain

an atom in: ’AF_UNIX’ or ’AF_INET’

source_sink

an atom identifying a source or a sink

stream

a stream-term: a term of the form ’$stream’ (N) where N is an integer > 0

stream_option

a stream option (section |7.1O.6|7 page D

stream_or_alias

a stream-term or an alias (atom)

stream_position

a stream position: a term ’$stream position’(I1, I2, I3, I4) where
I1, I2, I3 and I4 are integers

stream_property

a stream property (section |7.10.10L page)

stream_seek_method

an atom in: bof, current or eof

term

any term

var_binding_option

a variable binding option (section [7.5.3] page

write_option

a write option (section [7.14.6] page [96)

5.3 Errors 37

5.3 FErrors
5.3.1 General format and error context

When an error occurs an exception of the form: error (ErrorTerm, Caller) is raised. ErrorTerm is
a term specifying the error (detailed in next sections) and Caller is a term specifying the context of
the error. The context is either the predicate indicator of the last invoked built-in predicate or an atom
giving general context information.

Using exceptions allows the user both to recover an error using catch/3 (section page and to
raise an error using throw/1 (section page [47)).

To illustrate how to write error cases, let us write a predicate my_pred(X) where X must be an integer:

my_pred(X) :-
(nonvar(X) ->
true
; throw(error (instantiation_error, my_pred/1)),
),
(integer(X) ->
true
; throw(error(type_error(integer, X), my_pred/1))
),

To help the user to write these error cases, a set of system predicates is provided to raise errors. These
predicates are of the form ’$pl_err_. ..’ and they all refer to the implicit error context. The predicates
set_bip_name/2 (section page and current_bip_name/2 (section page are pro-
vided to set and recover the name and the arity associated with this context (an arity < 0 means that
only the atom corresponding to the functor is significant). Using these system predicates the user could
define the above predicate as follow:

my_pred(X) :-
set_bip_name (my_pred,1),
(nonvar(X) ->
true
; ’$pl_err_instantiation’

),
(integer(X) ->
true
; ’$pl_err_type’ (integer, X)
),

The following sections detail each kind of errors (and associated system predicates).

5.3.2 Instantiation error

An instantiation error occurs when an argument or one of its components is variable while an instantiated
argument was expected. ErrorTerm has the following form: instantiation_error.

The system predicate >$pl_err_instantiation’ raises this error in the current error context (sec-

tion page .

38 5 FORMAT OF DEFINITIONS

5.3.3 Type error

A type error occurs when the type of an argument or one of its components is not the expected type
(but not a variable). ErrorTerm has the following form: type_error(Type, Culprit) where Type is
the expected type and Culprit the argument which caused the error. Type is one of:

e atom e evaluable e integer

e atomic e fd_bool_evaluable e list

e boolean e fd_evaluable e number

e byte e fd variable e predicate_indicator
e callable e float e variable

e character e in byte

e compound e in _character

The system predicate ’$pl_err_type’ (Type, Culprit) raises this error in the current error context

(section page [37).

5.3.4 Domain error

A domain error occurs when the type of an argument is correct but its value is outside the expected
domain. ErrorTerm has the following form: domain_error(Domain, Culprit) where Domain is the
expected domain and Culprit the argument which caused the error. Domain is one of:

atom_property
buffering mode
character_code_list
close_option
date_time
eof_action
fd_labeling option
flag_value
format_control_sequence
g-array_index
io_mode
non_empty_list

not_less_than_zero

operator_priority
operator_specifier
os_file permission
os_file_property
os_path
predicate_property
prolog_flag
read_option
selectable_item
socket_address
socket_domain
source_sink

statistics_key

statistics_value
stream
stream_option
stream or_alias
stream_position
stream_property
stream_seek method
stream_type
term_stream or_alias
var_binding option

write_option

The system predicate *$pl_err_domain’ (Domain, Culprit) raises this error in the current error context

(section page [37).

5.3 Errors 39

5.3.5 Existence error

an existence error occurs when an object on which an operation is to be performed does not exist.
ErrorTerm has the following form: existence_error(Object, Culprit) where Object is the type of
the object and Culprit the argument which caused the error. Object is one of:

e procedure e source_sink e stream

The system predicate ’$pl_err_existence’ (Object, Culprit) raises this error in the current error

context (section [5.3.1] page [B7).

5.3.6 Permission error

A permission error occurs when an attempt to perform a prohibited operation is made. ErrorTerm
has the following form: permission_error(Operation, Permission, Culprit) where Operation is
the operation which caused the error, Permission the type of the tried permission and Culprit the
argument which caused the error. Operation is one of:

® access ® create e open
e add_alias e input e output
e close e modify e reposition

and Permission is one of:

e binary_stream e past_end_of_stream e static_procedure
e flag e private_procedure e stream
e operator e source_sink e text_stream

The system predicate ’$pl_err_permission’ (Operation, Permission, Culprit) raises this error in

the current error context (section page [37).

5.3.7 Representation error

A representation error occurs when an implementation limit has been breached. ErrorTerm has the
following form: representation_error(Limit) where Limit is the name of the reached limit. Limit
is one of:

e character e max_arity e too many_variables
e character_code e max_integer
e in _character_code e min_integer

The errors max_integer and min_integer are not currently implemented.

The system predicate ’$pl_err_representation’ (Limit) raises this error in the current error context

(section [5.3.1] page [37).

40 5 FORMAT OF DEFINITIONS

5.3.8 Evaluation error

An evaluation error occurs when an arithmetic expression gives rise to an exceptional value. ErrorTerm
has the following form: evaluation_error (Error) where Error is the name of the error. Error is one

of:

e float_overflow e undefined e zero_divisor

e int_overflow e underflow
The errors float_overflow, int_overflow, undefined and underflow are not currently implemented.
The system predicate ’$pl_err_evaluation’ (Error) raises this error in the current error context (sec-

tion page .

5.3.9 Resource error

A resource error occurs when GNU Prolog does not have enough resources. ErrorTerm has the following
form: resource_error(Resource) where Resource is the name of the resource. Resource is one of:

e print_object_not_linked e too_big fd constraint
The system predicate ’$pl_err_resource’ (Resource) raises this error in the current error context (sec-

tion m page .

5.3.10 Syntax error

A syntax error occurs when a sequence of character does not conform to the syntax of terms. ErrorTerm
has the following form: syntax_error (Error) where Error is an atom explaining the error.

The system predicate ’$pl_err_syntax’ (Error) raises this error in the current error context (sec-

tion m page .

5.3.11 System error

A system error can occur at any stage. A system error is generally associated with an external component
(e.g. operating system). ErrorTerm has the following form: system_error(Error) where Error is
an atom explaining the error. This is an extension to ISO which only defines system_error without
arguments.

The system predicate ’$pl_err_system’ (Error) raises this error in the current error context (sec-

tion page .

41

6 Prolog directives and control constructs

6.1 Prolog directives
6.1.1 Introduction

Prolog directives are annotations inserted in Prolog source files for the compiler. A Prolog directive is
used to specify:

e the properties of some procedures defined in the source file.
e the format and the syntax for read-terms in the source file (using changeable Prolog flags).
e included source files.

e a goal to be executed at run-time.

6.1.2 dynamic/1

Templates

dynamic (+predicate_indicator)
dynamic(+predicate_indicator_list)
dynamic (+predicate_indicator_sequence)

Description
dynamic (Pred) specifies that the procedure whose predicate indicator is Pred is a dynamic procedure.

This directive makes it possible to alter the definition of Pred by adding or removing clauses. For more
information refer to the section about dynamic clause management (section |7.7.1] page .

This directive shall precede the definition of Pred in the source file.

If there is no clause for Pred in the source file, Pred exists however as an empty predicate (this means
that current_predicate(Pred) succeeds).

In order to allow multiple definitions, Pred can also be a list of predicate indicators or a sequence of
predicate indicators using ’,’/2 as separator.

Portability

ISO directive.

6.1.3 public/1

Templates

public(+predicate_indicator)
public(+predicate_indicator_list)
public(+predicate_indicator_sequence)

Description
public(Pred) specifies that the procedure whose predicate indicator is Pred is a public procedure. This

directive makes it possible to inspect the clauses of Pred. For more information refer to the section about
dynamic clause management (section [7.7.1] page [60).

42 6 PROLOG DIRECTIVES AND CONTROL CONSTRUCTS

This directive shall precede the definition of Pred in the source file. Since a dynamic procedure is also
public. It is useless (but correct) to define a public directive for a predicate already declared as dynamic.

In order to allow multiple definitions, Pred can also be a list of predicate indicators or a sequence of
predicate indicators using ’,’/2 as separator.

Portability

GNU Prolog directive. The ISO reference does not define any directive to declare a predicate public
but it does distinguish public predicates. It is worth noting that in most Prolog systems the public/1
directive is as a visibility declaration. Indeed, declaring a predicate as public makes it visible from any
predicate defined in any other file (otherwise the predicate is only visible from predicates defined in the
same source file as itself). When a module system is incorporated in GNU Prolog a more general visibility
declaration shall be provided conforming to the ISO reference.

6.1.4 multifile/1

Templates

multifile(+predicate_indicator)
multifile(+predicate_indicator_list)
multifile(+predicate_indicator_sequence)

Description

multifile(Pred) is not supported by GNU Prolog. When such a directive is encountered it is simply
ignored. All clauses for a given predicate must reside in a single file.

Portability

ISO directive. Not supported.

6.1.5 discontiguous/1

Templates

discontiguous(+predicate_indicator)
discontiguous (+predicate_indicator_list)
discontiguous (+predicate_indicator_sequence)

Description

discontiguous(Pred) specifies that the procedure whose predicate indicator is Pred is a discontiguous
procedure. Namely, the clauses defining Pred are not restricted to be consecutive but can appear anywhere
in the source file.

This directive shall precede the definition of Pred in the source file.

In order to allow multiple definitions, Pred can also be a list of predicate indicators or a sequence of
predicate indicators using ’,’/2 as separator.

Portability
ISO directive. The ISO reference document states that if there is no clause for Pred in the source file,

Pred exists however as an empty predicate (i.e. current_predicate(Pred) will succeed). This is not
the case for GNU Prolog.

6.1 Prolog directives 43

6.1.6 ensure_linked/1

Templates

ensure_linked(+predicate_indicator)
ensure_linked(+predicate_indicator_list)
ensure_linked(+predicate_indicator_sequence)

Description

ensure_linked(Pred) specifies that the procedure whose predicate indicator is Pred must be included
by the linker. This directive is useful when compiling to native code to force the linker to include the code
of a given predicate. Indeed, if the gplc is invoked with an option to reduce the size of the executable
(section page [22), the linker only includes the code of predicates that are statically referenced.
However, the linker cannot detect dynamically referenced predicates (used as data passed to a meta-call
predicate). The use of this directive prevents it to exclude the code of such predicates.

In order to allow multiple definitions, Pred can also be a list of predicate indicators or a sequence of
predicate indicators using ’,’/2 as separator.

Portability

GNU Prolog directive.

6.1.7 built_in/0, built_in/1, built_in £d/0, built_in fd/1

Templates

built_in

built_in(+predicate_indicator)
built_in(+predicate_indicator_list)
built_in(+predicate_indicator_sequence)
built_in_fd
built_in_fd(+predicate_indicator)
built_in_fd(+predicate_indicator_list)
built_in fd(+predicate_indicator_sequence)

Description

built_in specifies that the procedures defined from now have the built_in property (section m

page .

built_in(Pred) is similar to built_in/0 but only affects the procedure whose predicate indicator is
Pred.

This directive shall precede the definition of Pred in the source file.

In order to allow multiple definitions, Pred can also be a list of predicate indicators or a sequence of
predicate indicators using ’,’/2 as separator.

built_in fd (resp. built_in fd(Pred)) is similar to built_in (resp. built_in(Pred)) but sets the
built_in_fd predicate property (section m page .

Portability

GNU Prolog directives.

44 6 PROLOG DIRECTIVES AND CONTROL CONSTRUCTS

6.1.8 include/1

Templates

include (+atom)
Description
include(File) specifies that the content of the Prolog source File shall be inserted. The resulting
Prolog text is identical to the Prolog text obtained by replacing the directive by the content of the Prolog
source File.
See absolute_file name/2 for information about the syntax of File (section [7.26.1] page [L41]).
Portability

ISO directive.

6.1.9 ensure_loaded/1

Templates
ensure_loaded(+atom)

Description

ensure_loaded(File) is not supported by GNU Prolog. When such a directive is encountered it is
simply ignored.

Portability

ISO directive. Not supported.

6.1.10 op/3

Templates

op(+integer, +operator_specifier, +atom_or_atom list)
Description
op(Priority, OpSpecifier, Operator) alters the operator table. This directive is executed as soon
as it is encountered by calling the built-in predicate op/3 (section [7.14.10] page[100). A system directive
is also generated to reflect the effect of this directive at run-time (section page [25)).
Portability

ISO directive.

6.1.11 char_conversion/2

Templates

char_conversion(+character, +character)

6.1 Prolog directives 45

Description

char_conversion(InChar, OutChar) alters the character-conversion mapping. This directive is exe-
cuted as soon as it is encountered by a call to the built-in predicate char_conversion/2 (section [7.14.12
page [102). A system directive is also generated to reflect the effect of this directive at run-time (sec-

tion [3.4.4] page 25).
Portability

ISO directive.

6.1.12 set_prolog flag/2

Templates
set_prolog_flag(+flag, +term)

Description

set_prolog_flag(Flag, Value) sets the value of the Prolog flag Flag to Value. This directive is exe-
cuted as soon as it is encountered by a call to the built-in predicate set_prolog flag/2 (section [7.22.1
page [133). A system directive is also generated to reflect the effect of this directive at run-time (sec-

tion page [25)).
Portability

ISO directive.

6.1.13 initialization/1

Templates
initialization(+callable_term)

Description

initialization(Goal) adds Goal to the set of goal which shall be executed at run-time. A user directive
is generated to execute Goal at run-time. If several initialization directives appear in the same file they
are executed in the order of appearance (section page [25).

Portability

ISO directive.

6.1.14 foreign/2, foreign/1

Templates

foreign(+callable_term, +foreign option_list)
foreign(+callable_term)

Description

46 6 PROLOG DIRECTIVES AND CONTROL CONSTRUCTS

foreign(Template, Options) defines an interface predicate whose prototype is Template according to
the options given by Options. Refer to the foreign code interface for more information (section

page [184)).
foreign(Template) is equivalent to foreign(Template, []).
Portability

GNU Prolog directive.

6.2 Prolog control constructs
6.2.1 true/0, fail/0, '/0

Templates

true
fail
!
Description
true always succeeds.

fail always fails (enforces backtracking).

! always succeeds and the for side-effect of removing all choice-points created since the invocation of the
predicate activating it.

Errors
None.
Portability

ISO control constructs.

6.2.2 (’,’)/2 - conjunction, (;)/2 - disjunction, (->)/2 - if-then

Templates

> 7 (+callable_term, +callable_term)
; (+callable_term, +callable_term)
->(+callable_term, +callable_term)

Description

Goall , Goal2 executes Goall and, in case of success, executes Goal2.

Goall ; Goal2 first creates a choice-point and executes Goall. On backtracking Goal2 is executed.
Goall -> Goal2 first executes Goall and, in case of success, removes all choice-points created by Goall

and executes Goal2. This control construct acts like an if-then (Goall is the test part and Goal2 the then
part). Note that if Goall fails ->/2 fails also. ->/2 is often combined with ;/2 to define an if-then-else

6.2 Prolog control constructs

as follows: Goall -> Goal2 ; Goal3. Note that Goall -> Goal2 is the first argument of the (;)/2
and Goal3 (the else part) is the second argument. Such an if-then-else control construct first creates
a choice-point for the else-part (intuitively associated with ;/2) and then executes Goall. In case of
success, all choice-points created by Goall together with the choice-point for the else-part are removed

and Goal?2 is executed. If Goal1l fails then Goal3 is executed.

>,?,; and -> are predefined infix operators (section [7.14.10} page [100).

Errors

Goall or Goal2 is a variable

instantiation_error

Goall is neither a variable nor a callable term

type_error(callable, Goall)

Goal?2 is neither a variable nor a callable term

type_error(callable, Goal2)

The predicate indicator Pred of Goall or Goal2
does not correspond to an existing procedure
and the value of the unknown Prolog flag is

error (section [7.22.1] page [133))

existence_error(procedure, Pred)

Portability

ISO control constructs.

6.2.3 call/1

Templates
call(+callable_term)

Description

call(Goal) executes Goal. call/1 succeeds if Goal represents a goal which is true. When Goal contains
a cut symbol ! (section page as a subgoal, the effect of ! does not extend outside Goal.

Errors

Goal is a variable

instantiation_error

Goal is neither a variable nor a callable term

type_error(callable, Goal)

The predicate indicator Pred of Goal does not
correspond to an existing procedure and the
value of the unknown Prolog flag is error

(section [7.22.1] page [133)

existence_error (procedure, Pred)

Portability

ISO control construct.

6.2.4 catch/3, throw/1

Templates

catch(?7callable_term, ?term, 7term)
throw (+nonvar)

Description

48 6 PROLOG DIRECTIVES AND CONTROL CONSTRUCTS

catch(Goal, Catcher, Recovery) is similar to call(Goal) (section page . If this succeeds or
fails, so does the call to catch/3. If however, during the execution of Goal, there is a call to throw(Ball),
the current flow of control is interrupted, and control returns to a call of catch/3 that is being executed.
This can happen in one of two ways:

e implicitly, when an error condition for a built-in predicate is satisfied.

e explicitly, when the program executes a call of throw/1 because the program wishes to abandon
the current processing, and instead to take an alternative action.

throw(Ball) causes the normal flow of control to be transferred back to an existing call of catch/3.
When a call to throw(Ball) happens, Ball is copied and the stack is unwound back to the call to
catch/3, whereupon the copy of Ball is unified with Catcher. If this unification succeeds, then catch/3
executes the goal Recovery using call/1 (section page in order to determine the success or
failure of catch/3. Otherwise, in case the unification fails, the stack keeps unwinding, looking for an
earlier invocation of catch/3. Ball may be any non-variable term.

Errors
Goal is a variable instantiation_error
Goal is neither a variable nor a callable term type_error(callable, Goal)
The predicate indicator Pred of Goal does not existence_error(procedure, Pred)

correspond to an existing procedure and the
value of the unknown Prolog flag is error

(section 7.22.1|, page [133))

Ball is a variable instantiation_error

If Ball does not unify with the Catcher argument of any call of catch/3, a system error message is
displayed and throw/1 fails.

When catch/3 calls Recovery it uses call/1 (section page [{7), an instantiation_error, a
type_error or an existence_error can then occur depending on Recovery.

Portability

ISO control constructs.

49

7 Prolog built-in predicates

7.1 Type testing

7.1.1 var/1, nonvar/1, atom/1, integer/1, float/1, number/1, atomic/1,
compound/1, callable/1, list/1, partial 1list/1, list_or_partial list/1

Templates

var (7term) atomic(7term)

nonvar (7term) compound (?term)

atom(?7term) callable(?term)

integer (7term) list(7term)

float(7term) partial list(7term)

number (?term) list_or_partial_list(?term)
Description

var (Term) succeeds if Term is currently uninstantiated (which therefore has not been bound to anything,
except possibly another uninstantiated variable).

nonvar (Term) succeeds if Term is currently instantiated (opposite of var/1).

atom(Term) succeeds if Term is currently instantiated to an atom.

integer(Term) succeeds if Term is currently instantiated to an integer.

float (Term) succeeds if Term is currently instantiated to a floating point number.

number (Term) succeeds if Term is currently instantiated to an integer or a floating point number.
atomic(Term) succeeds if Term is currently instantiated to an atom, an integer or a floating point number.

compound (Term) succeeds if Term is currently instantiated to a compound term, i.e. a term of arity > 0
(a list or a structure).

callable(Term) succeeds if Term is currently instantiated to a callable term, i.e. an atom or a compound
term.

list(Term) succeeds if Term is currently instantiated to a list, i.e. the atom [] (empty list) or a term
with principal functor *.°/2 and with second argument (the tail) a list.

partial list(Term) succeeds if Term is currently instantiated to a partial list, i.e. a variable or a term
whose the main functor is ’.’/2 and the second argument (the tail) is a partial list.

list_or_partial list(Term) succeeds if Term is currently instantiated to a list or a partial list.
Errors

None.

Portability

var/1, nonvar/1, atom/1, integer/1, float/1, number/1, atomic/1, compound/1 and callable/1 are
ISO predicates.

a0 7 PROLOG BUILT-IN PREDICATES

list/1, partial 1ist/1 and list_or_partial 1list/1 are GNU Prolog predicates.

7.2 Term unification
7.2.1 (=)/2 - Prolog unification

Templates
=(7term, 7term)

Description

Terml = Term2 unifies Term1 and Term2. No occurs check is done, i.e. this predicate does not check if a
variable is unified with a compound term containing this variable (this can lead to an infinite loop).

= is a predefined infix operator (section page .
Errors

None.

Portability

ISO predicate.

7.2.2 unify with occurs_check/2

Templates
unify with occurs_check(?term, ?term)

Description

unify with_occurs_check(Terml, Term2) unifies Terml and Term2. The occurs check test is done (i.e.
the unification fails if a variable is unified with a compound term containing this variable).

Errors
None.
Portability

ISO predicate.

7.2.3 (\=)/2 - not Prolog unifiable

Templates
\=(7term, 7term)

Description

Terml \= Term2 succeeds if Terml and Term2 are not unifiable (no occurs check is done).

7.3 Term comparison 51

\= is a predefined infix operator (section page [100)).
Errors

None.

Portability

ISO predicate.

7.3 Term comparison
7.3.1 Standard total ordering of terms

The built-in predicates described in this section allows the user to compare Prolog terms. Prolog terms
are totally ordered according to the standard total ordering of terms which is as follows (from the smallest
term to the greatest):

e variables, oldest first.

e finite domain variables (section page , oldest first.
e floating point numbers, in numeric order.

e integers, in numeric order.

e atoms, in alphabetical (i.e. character code) order.

e compound terms, ordered first by arity, then by the name of the principal functor and by the
arguments in left-to-right order.

A list is treated as a compound term (whose principal functor is *.’/2).

The portability of the order of variables is not guaranteed (in the ISO reference the order of variables is
system dependent).

7.3.2 ==)/2 - term identical, (\==)/2 - term not identical,
(@<)/2 - term less than, (@=<)/2 - term less than or equal to,
(@>)/2 - term greater than, (@>=)/2 - term greater than or equal to

Templates
==(7term, 7term) 0=<(7term, 7term)
\==(7term, 7term) @>(7term, 7term)
@< (7term, 7term) @>=(7term, 7term)
Description

These predicates compare two terms according to the standard total ordering of terms (section

page .
Terml == Term2 succeeds if Terml and Term2 are equal.

Terml \== Term2 succeeds if Terml and Term2 are different.

Terml @< Term2 succeeds if Terml is less than Term?2.

92 7 PROLOG BUILT-IN PREDICATES

Terml @=< Term2 succeeds if Terml is less than or equal to Term2.

Terml @> Term2 succeeds if Terml is greater than Term?2.

Terml @>= Term?2 succeeds if Terml is greater than or equal to Term2.

==, \==, 0<, @=<, @> and @>= are predefined infix operators (section [7.14.10} page [100)]).
Errors

None.

Portability

ISO predicates.

7.3.3 compare/3

Templates
compare(?7atom, +term, +term)

Description

compare(Result, Terml, Term2) compares Terml and Term2 according to the standard (section
page and unifies Result with:

e the atom < if Terml is less than Term2.

e the atom = if Term1 and Term2 are equal.
e the atom > if Terml is greater than Term2.

Errors

’ Result is neither a variable nor an atom type_error(atom, Result)

Portability

GNU Prolog predicate.

7.4 Term processing
7.4.1 functor/3

Templates

functor (+nonvar, 7atomic, ?7integer)
functor(-nonvar, +atomic, +integer)

Description
functor(Term, Name, Arity) succeeds if the principal functor of Term is Name and its arity is Arity.
This predicate can be used in two ways:

e Term is not a variable: extract the name (an atom or a number if Term is a number) and the arity
of Term (if Term is atomic Arity = 0).

7.4 Term processing

93

e Term is a variable: unify Term with a general term whose principal functor is given by Name and

arity is given by Arity.

Errors

Term and Name are both variables

instantiation_error

Term and Arity are both variables

instantiation_error

Term is a variable and Name is neither a variable
nor an atomic term

type_error (atomic, Name)

Term is a variable and Arity is neither a variable
nor an integer

type-error(integer, Arity)

Term is a variable, Name is a constant but not an
atom and Arity is an integer > 0

type_error(atom, Name)

Term is a variable and Arity is an integer >
max_arity flag (section [7.22.1] page[133)

representation_error (max_arity)

Term is a variable and Arity is an integer < 0

domain_error(not_less_than _zero, Arity)

Portability

ISO predicate.

7.4.2 arg/3

Templates
arg(+integer, +compound_term, 7term)

Description

arg(N, Term, Arg) succeeds if the Nth argument of Term is Arg.

Errors

N is a variable

instantiation_error

Term is a variable

instantiation_error

N is neither a variable nor an integer

type_error(integer, N)

Term is neither a variable nor a compound term

type_error (compound, Term)

N is an integer < 0

domain_error(not_less_than_zero, N)

Portability

ISO predicate.

7.4.3 (=..)/2 - univ
Templates
=..(+nonvar, 7list)
=..(-nonvar, +list)
Description
Term =..

of Term and whose tail is a list of the arguments of Term.

=.. is a predefined infix operator (section [7.14.10} page [100].

List succeeds if List is a list whose head is the atom corresponding to the principal functor

o4

7 PROLOG BUILT-IN PREDICATES

Errors

Term is a variable and List is a partial list

instantiation_error

List is neither a partial list nor a list

type_error(list, List)

Term is a variable and List is a list whose head
is a variable

instantiation_error

List is a list whose head H is neither an atom nor
a variable and whose tail is not the empty list

type_error (atom, H)

List is a list whose head H is a compound term
and whose tail is the empty list

type_error(atomic, H)

Term is a variable and List is the empty list

domain_error(non_empty_list, [])

Term is a variable and the tail of List has a
length > max_arity flag (section [7.22.1

poge 159

representation_error(max_arity)

Portability

ISO predicate.

7.4.4 copy_term/2

Templates
copy-term(?term, ?term)

Description

copy_term(Terml, Term2) succeeds if Term2 unifies with a term T which is a renamed copy of Term1.

Errors
None.
Portability

ISO predicate.

7.4.5 setarg/4, setarg/3

Templates

setarg(+integer, +compound_term, +term, +boolean)

setarg(+integer, +compound_term, +term)

Description
setarg(N, Term, NewValue, Undo) replaces destructively the Nth argument of Term with NewValue.
This assignment is undone on backtracking if Undo = true. This should only used if there is no further
use of the old value of the replaced argument. If Undo = false then NewValue must be either an atom
or an integer.

setarg(N, Term, NewValue) is equivalent to setarg(N, Term, NewValue, true).

Errors

7.5 Variable naming/numbering 55

N is a variable instantiation_error

N is neither a variable nor an integer type_error(integer, N)

N is an integer < 0 domain_error(not_less_than zero, N)
Term is a variable instantiation_error

Term is neither a variable nor a compound term | type_error (compound, Term)
NewValue is neither an atom nor an integer and type_error(atomic, NewValue)
Undo = false

Undo is a variable instantiation_error
Undo is neither a variable nor a boolean type_error(boolean, Undo)
Portability

GNU Prolog predicate.

7.5 Variable naming/numbering
7.5.1 name_singleton_vars/1

Templates
name_singleton_vars(7term)

Description

name_singleton_vars(Term) binds each singleton variable appearing in Term with a term of the form
>$VARNAME’ (°_?). Such a term can be output by write_term/3 as a variable name (section [7.14.6

page [96)).
Errors
None.
Portability

GNU Prolog predicates.

7.5.2 name_query_vars/2

Templates
name_query_vars(+list, ?list)

Description

name_query_vars(List, Rest) for each element of List of the form Name = Var where Name is an
atom and Var a variable, binds Var with the term >$VARNAME’ (Name). Such a term can be output by
write_ term/3 as a variable name (section page . Rest is unified with the list of elements
of List that have not given rise to a binding. This predicate is provided as a way to name the vari-
able lists obtained returned by read_term/3 with variable names(List) or singletons(List) options

(section [7.14.1} page .

Errors

96 7 PROLOG BUILT-IN PREDICATES

List is a partial list instantiation_error

List is neither a partial list nor a list type_error(list, List)

Rest is neither a partial list nor a list type_error(list, Rest)
Portability

GNU Prolog predicate.

7.5.3 Dbind _variables/2, numbervars/3, numbervars/1

Templates

bind_variables(7term, +var_binding option_list)
numbervars(?term, +integer, 7integer)
numbervars (?term)

Description

bind_variables(Term, Options) binds each variable appearing in Term according to the options given
by Options.

Variable binding options: Options is a list of variable binding options. If this list contains contradic-
tory options, the rightmost option is the one which applies. Possible options are:

e numbervars: specifies that each variable appearing in Term should be bound to a term of the form
>$VAR’ (N) where N is an integer. Such a term can be output by write_term/3 as a variable name

(section [7.14.6] page[96). This is the default.

e namevars: specifies that each variables appearing in Term shall be bound to a term of the form
>$VARNAME’ (Name) where Name is the atom that would be output by write _term/3 seeing a term
of the $VAR’ (N) where N is an integer. Such a term can be output by write_term/3 as a variable
name (section page . This is the alternative to numbervars.

e from(From): the first integer N to use for number/name variables of Term is From. The default
value is 0.

e next(Next): when bind variables/2 succeeds, Next is unified with the (last integer N)+1 used to
bind the variables of Term.

e exclude(List): collects all variable names appearing in List to avoid a clash when binding a
variable of Term. Precisely a number N > From will not be used to bind a variable of Term if:
— there is a sub-term of List of the form ’>$VAR’ (N) or >$VARNAME’ (Name) where Name is the
constant that would be output by write_term/3 seeing a term of the >$VAR’ (N).

— an element of List is of the form Name = Var where Name is an atom that would be output
by write_term/3 on seeing a term of the from ’$VAR’ (N). This case allows for lists returned
by read_term/3 (with variable names(List) or singletons(List) options) (section|7.14.1

page and by name_query_vars/2 (section page [55).

numbervars(Term, From, Next) is equivalent to bind variables(Term, [from(From), next(Next)],
i.e. each variable of Term is bound to >$VAR’ (N) where From < N < Next.

numbervars (Term) is equivalent to numbervars(Term, 0, _).

Errors

7.6 Arithmetic

o7

Options is a partial list or a list with an element
E which is a variable

instantiation_error

Options is neither a partial list nor a list

type_error(list, Options)

an element E of the Options list is neither a
variable nor a variable binding option

domain_error(var_binding option, E)

From is a variable

instantiation_error

From is neither a variable nor an integer

type_error(integer, From)

Next is neither a variable nor an integer

type_error(integer, Next)

List is a partial list

instantiation_error

List is neither a partial list nor a list

type_error(list, List)

Portability

GNU Prolog predicates.

7.5.4 term._ref/2

Templates

term_ref (+term, 7integer)
term ref (7term, +integer)

Description

term_ref (Term, Ref) succeeds if the internal reference of Term is Ref. This predicate can be used either
to obtain the internal reference of a term or to obtain the term associated with a given reference. Note
that two identical terms can have different internal references. A good way to use this predicate is to

first record the internal reference of a given term and to later re-obtain the term via this reference.

Errors

Term and Ref are both variables

instantiation_error

Ref is neither a variable nor an integer

type_error (integer, Ref)

Ref is an integer < 0

domain_error(not_less_than_zero, Ref)

Portability

GNU Prolog predicate.

7.6 Arithmetic

7.6.1 Evaluation of an arithmetic expression

An arithmetic expression is a Prolog term built from numbers, variables, and functors (or operators)
that represent arithmetic functions. When an expression is evaluated each variable must be bound to
a non-variable expression. An expression evaluates to a number, which may be an integer or a floating
point number. The following table details the components of an arithmetic expression, how they are
evaluated, the types expected/returned and if they are ISO or an extension:

98 7 PROLOG BUILT-IN PREDICATES

’ Expression \ Result = eval(Expression) \ Signature \ ISO ‘
Variable must be bound to a non-variable expression E. IF — IF Y
The result is eval(E)
integer number this number I—-1 Y
floating point number this number F—-F Y
+ E eval(E) IF — IF N
- E - eval(E) IF — IF Y
inc(E) eval(E) —|— 1 IF — IF N
dec(E) eval(E) - IF — IF N
E1 + E2 eval(E1) + eval(E2) IF,IF - 1IF | Y
El - E2 eval(E1) - eval(E2) IF,IF -IF | Y
El * E2 eval(E1) * eval(E2) IF,IF - 1IF | Y
El / E2 eval(E1) / eval(E2) IF,IF -F | Y
E1 // E2 rnd(eval(E1) / eval(E2)) LT—-1 Y
El rem E2 eval(E1) - (rnd(eval(E1) / eval(E2))*eval(E2)) L[I—-1 Y
El mod E2 eval(E1) - (|eval(E1l) / eval(E2)| *eval(E2)) LI—-1 Y
El /\ E2 eval(E1) bitwise_and eval(E2) L[I—-1 Y
E1 \/ E2 eval(E1) bitwise_or eval(E2) L[I-1 Y
El - E2 eval(E1) bitwise_xor eval(E2) L[I—-1 N
\ E bitwise_not eval(E) I—-1 Y
El << E2 eval(E1) integer_shift_left eval(E2) L[I—-1 Y
El1 >> E2 eval(E1) integer_shift right eval(E2) LI -1 Y
abs(E) absolute value of eval(E) IF — IF Y
sign(E) sign of eval(E) (-1 if < 0, 0if = 0, +1 if > 0) IF — IF Y
nmin(E1,E2) minimal value between eval(E1) and eval(E2) IF, IF — 7 N
max (E1,E2) maximal value between eval(E1) and eval(E2) IF, IF — 7 N
El **x E2 eval(E1) raised to the power of eval(E2) IF,IF-F | Y
sqrt (E) square root of eval(E) IF - F Y
atan(E) arc tangent of eval(E) IF - F Y
cos(E) cosine of eval(E) IF - F Y
acos(E) arc cosine of eval(E) IF - F N
sin(E) sine of eval(E) IF - F Y
asin(E) arc sine of eval(E) IF - F N
exp(E) e raised to the power of eval(E) IF - F Y
log(E) natural logarithms of eval(E) IF - F Y
float(E) the floating point number equal to eval(E) IF - F Y
ceiling(E) rounds eval(E) upward to the nearest integer F—1 Y
floor(E) rounds eval(E) downward to the nearest integer F—-1I Y
round (E) rounds eval(E) to the nearest integer F—1 Y
truncate (E) the integer value of eval(E) F—1I Y
float_fractional part(E) | the float equal to the fractional part of eval(E) F—F Y
float_integer_part (E) the float equal to the integer part of eval(E) F—-F Y

The meaning of the signature field is as follows:
e [— I: unary function, the operand must be an integer and the result is an integer.

e F — F: unary function, the operand must be a floating point number and the result is a floating
point number.

e F — I: unary function, the operand must be a floating point number and the result is an integer.

e [F — F: unary function, the operand can be an integer or a floating point number and the result
is a floating point number.

e IF — IF: unary function, the operand can be an integer or a floating point number and the result
has the same type as the operand.

7.6 Arithmetic 59

e I, I — I: binary function: each operand must be an integer and the result is an integer.

e IF IF — IF: binary function: each operand can be an integer or a floating point number and
the result is a floating point number if at least one operand is a floating point number, an integer
otherwise.

e IF IF — 7: binary function: each operand can be an integer or a floating point number and the
result has the same type as the selected operand. This is used for min and max. Note that in case
of equality between an integer and a floating point number the result is an integer.

is, +, -, *, //, /, rem, and mod are predefined infix operators. + and - are predefined prefix operators

(section [7.14.10} page [L0O]).

Integer division rounding function: the integer division rounding function rnd (X) rounds the floating
point number X to an integer. There are two possible definitions (depending on the target machine) for
this function which differ on negative numbers:

e rnd (X) = integer part of X, e.g. 7nd (-1.5) = -1 (round toward 0)
e rnd (X) = |X/, e.g. 7rd (-1.5) = -2 (round toward —oo)

The definition of this function determines the precise definition of the integer division (//)/2 and of the
integer remainder (rem)/2. Rounding toward zero is the most common case. In any case it is possible
to test the value (toward zero or down) of the integer rounding function Prolog flag to determine

which function being used (section [7.22.1] page [133).

Fast mathematical mode: in order to speed-up integer computations, the GNU Prolog compiler can
generate faster code when invoked with the --fast-math option (section page 22). In this mode
only integer operations are allowed and a variable in an expression must be bound at evaluation time to
an integer. No type checking is done.

Errors
a sub-expression E is a variable instantiation_error
a sub-expression E is neither a number nor an type_error (evaluable, E)
evaluable functor
a sub-expression E is a floating point number type_error(integer, E)

while an integer is expected
a sub-expression E is an integer while a floating type_error(float, E)
point number is expected
a division by zero occurs evaluation_error(zero_divisor)

Portability

Refer to the above table to determine which evaluable functors are ISO and which are GNU Prolog
extensions. For efficiency reasons, GNU Prolog does not detect the following ISO arithmetic errors:
float_overflow, int_overflow, int_underflow, and undefined.

7.6.2 (is)/2 - evaluate expression

Templates
is(?term, +evaluable)

Description

Result is Expression succeeds if Result can be unified with eval(Expression). Refer to the evaluation
of an arithmetic expression for the definition of the eval function (section page [57).

60 7 PROLOG BUILT-IN PREDICATES

is is a predefined infix operator (section [7.14.10} page [L00]).

Errors

Refer to the evaluation of an arithmetic expression for possible errors (section [7.6.1] page [57).
Portability

ISO predicate.

7.6.3 (=:=)/2 - arithmetic equal, (=\=)/2 - arithmetic not equal,

(<) /2 - arithmetic less than, (=<)/2 - arithmetic less than or equal to,
(>)/2 - arithmetic greater than, (>=)/2 - arithmetic greater than or equal to

Templates
=:=(+evaluable, +evaluable) =< (+evaluable, +evaluable)
=\=(+evaluable, +evaluable) >(+evaluable, +evaluable)
<(+evaluable, +evaluable) >=(+evaluable, +evaluable)

Description

Exprl =:= Expr2 succeeds if eval(Exprl) = eval(Expr2).

Exprl =\= Expr2 succeeds if eval(Exprl) # eval(Expr2).
Exprl < Expr2 succeeds if eval(Exprl) < eval(Expr2).
Exprl =< Expr2 succeeds if eval(Exprl) < eval(Expr2).
Exprl > Expr2 succeeds if eval(Exprl) > eval(Expr2).
Exprl >= Expr2 succeeds if eval(Exprl) > eval(Expr2).

Refer to the evaluation of an arithmetic expression for the definition of the eval function (section [7.6.1]

page .

=:=, =\=, <, =<, > and >= are predefined infix operators (section page .

Errors

Refer to the evaluation of an arithmetic expression for possible errors (section page [57)).

Portability

ISO predicates.
7.7 Dynamic clause management

7.7.1 Introduction

Static and dynamic procedures: a procedure is either dynamic or static. All built-in predicates are
static. A user-defined procedure is static by default unless a dynamic/1 directive precedes its definition

7.7 Dynamic clause management 61

(section page . Adding a clause to a non-existent procedure creates a dynamic procedure. The
clauses of a dynamic procedure can be altered (e.g. using asserta/1), the clauses of a static procedure
cannot be altered.

Private and public procedures: each procedure is either public or private. A dynamic procedure is
always public. Each built-in predicate is private, and a static user-defined procedure is private by default
unless a public/1 directive precedes its definition (section page [41). If a dynamic declaration
exists it is unnecessary to add a public declaration since a dynamic procedure is also public. A clause
of a public procedure can be inspected (e.g. using clause/2), a clause of a private procedure cannot be
inspected.

A logical database update view: any change in the database that occurs as the result of executing
a goal (e.g. when a sub-goal is a call of assertz/1 or retract/1) only affects subsequent activations.
The change does not affect any activation that is currently being executed. Thus the database is frozen
during the execution of a goal, and the list of clauses defining a predication is fixed at the moment of its
execution.

7.7.2 asserta/l, assertz/1

Templates

asserta(+clause)
assertz(+clause)

Description

asserta(Clause) first converts the term Clause to a clause and then adds it to the current internal
database. The predicate concerned must be dynamic (sectionm page [60)) or undefined and the clause
is inserted before the first clause of the predicate. If the predicated is undefined it is created as a dynamic
procedure.

assertz(Clause) acts like asserta/1 except that the clause is added at the end of all existing clauses
of the concerned predicate.

Converting a term Clause to a clause Clausel:

e extract the head and the body of Clause: either Clause = (Head :- Body) or Clause = Head and
Body = true.

e Head must be a callable term (or else the conversion fails).

e convert Body to a body clause (i.e. a goal) Body1.

e the converted clause Clausel = (Head :- Bodyl).
Converting a term T to a goal:

e if T is a variable it is replaced by the term call(T).

e if T is a control construct (?,?)/2, (;)/2 or (=>)/2 each argument of the control construct is
recursively converted to a goal.

e if T is a callable term it remains unchanged.
e otherwise the conversion fails (T is neither a variable nor a callable term).

Errors

62 7 PROLOG BUILT-IN PREDICATES

Head is a variable instantiation_error

Head is neither a variable nor a callable term type_error(callable, Head)

Body cannot be converted to a goal type_error(callable, Body)

The predicate indicator Pred of Head is that of a | permission_error(modify,

static procedure static_procedure, Pred)
Portability

ISO predicates.

7.7.3 retract/1

Templates
retract (+clause)

Description

retract (Clause) erases the first clause of the database that unifies with Clause. The concerned pred-
icate must be a dynamic procedure (section m page . Removing all clauses of a procedure does
not erase the procedure definition. To achieve this use abolish/1 (section page . retract/1 is
re-executable on backtracking.

Errors
Head is a variable instantiation_error
Head is neither a variable nor a callable term type_error(callable, Head)
The predicate indicator Pred of Head is that of a | permission_error (modify,
static procedure static_procedure, Pred)
Portability

ISO predicate. In the ISO reference, the operation associated with the permission_error is access
while it is modify in GNU Prolog. This seems to be an error of the ISO reference since for asserta/1
(which is similar in spirit to retract/1) the operation is also modify.

7.7.4 retractall/1l

Templates
retractall (+head)

Description

retractall (Head) erases all clauses whose head unifies with Head. The concerned predicate must be a
dynamic procedure (section page . The procedure definition is not removed so that it is found
by current_predicate/1 (section page [64). abolish/1 should be used to remove the procedure

(section page [63)).

Errors
Head is a variable instantiation_error
Head is not a callable term type-error(callable, Head)

The predicate indicator Pred of Head is that of a | permission_error(modify,
static procedure static_procedure, Pred)

7.7 Dynamic clause management 63

Portability

GNU Prolog predicate.

7.7.5 clause/2

Templates
clause(+head, 7callable_term)

Description

clause(Head, Body) succeeds if there exists a clause in the database that unifies with Head :- Body.
The predicate in question must be a public procedure (section page. Clauses are delivered from
the first to the last. This predicate is re-executable on backtracking.

Errors
Head is a variable instantiation_error
Head is neither a variable nor a callable term type_error(callable, Head)
The predicate indicator Pred of Head is that of a | permission_error(access,
private procedure private_procedure, Pred)
Body is neither a variable nor a callable term type_error(callable, Body)
Portability

ISO predicate.

7.7.6 abolish/1

Templates
abolish(+predicate_indicator)

Description

abolish(Pred) removes from the database the procedure whose predicate indicator is Pred. The con-
cerned predicate must be a dynamic procedure (section [7.7.1] page [60).

Errors

64

7 PROLOG BUILT-IN PREDICATES

Pred is a variable

instantiation_error

Pred is a term Name/Arity and either Name or
Arity is a variable

instantiation_error

Pred is neither a variable nor a predicate
indicator

type_error(predicate_indicator, Pred)

Pred is a term Name/Arity and Arity is neither
a variable nor an integer

type_error(integer, Arity)

Pred is a term Name/Arity and Name is neither a
variable nor an atom

type_error(atom, Name)

Pred is a term Name/Arity and Arity is an
integer < 0

domain_error(not_less_than_zero, Arity)

Pred is a term Name/Arity and Arity is an

integer > max_arity flag (section[7.22.1
page |133)

representation_error(max_arity)

The predicate indicator Pred is that of a static
procedure

permission_error (modify,
static_procedure, Pred)

Portability

ISO predicate.

7.8 Predicate information
7.8.1

current_predicate/1

Templates

current_predicate(?predicate_indicator)

Description

current_predicate(Pred) succeeds if there exists a predicate indicator of a defined procedure that
unifies with Pred. All user defined procedures are found, whether static or dynamic. Internal system
procedures whose name begins with ’$’ are not found. A user-defined procedure is found even when
it has no clauses. A user-defined procedure is not found if it has been abolished. To conform to the
ISO reference, built-in predicates are not found except if the strict_iso Prolog flag is switched off
(section page . This predicate is re-executable on backtracking.

Errors

Pred is neither a variable nor a predicate
indicator

type_error (predicate_indicator, Pred)

Pred is a term Name/Arity and Arity is neither
a variable nor an integer

type_error(integer, Arity)

Pred is a term Name/Arity and Name is neither a
variable nor an atom

type_error(atom, Name)

Pred is a term Name/Arity and Arity is an
integer < 0

domain_error(not_less_than_zero, Arity)

Pred is a term Name/Arity and Arity is an

integer > max_arity flag (section [7.22.1
page 133)

representation_error(max_arity)

Portability

ISO predicate.

7.8 Predicate information 65

7.8.2 predicate_property/2

Templates
predicate_property(?predicate_indicator, ?7predicate_property)

Description

predicate_property(Pred, Property) succeeds if there exists a predicate indicator of a defined pro-
cedure that unifies with Pred and if Property unifies with one of the properties of the procedure. All
user defined procedures and built-in predicates are found. Internal system procedures whose name begins
with >$’ are not found. This predicate is re-executable on backtracking.

Predicate properties:
e static: if the procedure is static.
e dynamic: if the procedure is dynamic.
e private: if the procedure is private.
e public: if the procedure is public.
e user: if the procedure is a user-defined procedure.
e built_in: if the procedure is a Prolog built-in predicate.
e built_in fd: if the procedure is an FD built-in predicate.
e native_code: if the procedure is compiled in native code.
e prolog file(File): source file from which the predicate has been read.
e prolog-line(Line): line number of the source file.

Errors

Pred is neither a variable nor a predicate type_error(predicate_indicator, Pred)
indicator
Pred is a term Name/Arity and Arity is neither | type_error(integer, Arity)
a variable nor an integer
Pred is a term Name/Arity and Name is neither a | type_error(atom, Name)
variable nor an atom

Pred is a term Name/Arity and Arity is an domain_error(not_less_than zero, Arity)
integer < 0
Pred is a term Name/Arity and Arity is an representation_error(max_arity)

integer > max_arity flag (section [7.22.1

page

Property is neither a variable nor a predicate domain_error(predicate_property,
property term Property)

Property = prolog_file(File) and File is type_error(atom, File)

neither a variable nor an atom

Property = prolog_line(Line) and Line is type_error(integer, Line)

neither a variable nor an integer

Portability

GNU Prolog predicate.

66 7 PROLOG BUILT-IN PREDICATES

7.9 All solutions
7.9.1 Introduction

It is sometimes useful to collect all solutions for a goal. This can be done by repeatedly backtracking and
gradually building the list of solutions. The following built-in predicates are provided to automate this
process.

The built-in predicates described in this section invoke call/1 (section [6.2.3] page [47]) on the argument
Goal. When efficiency is crucial and Goal is complex it is better to define an auxiliary predicate which
can then be compiled, and have Goal call this predicate.

7.9.2 findall/3

Templates
findall(?term, +callable_term, 7list)

Description

findall(Template, Goal, Instances) succeeds if Instances unifies with the list of values to which
a variable X not occurring in Template or Goal would be instantiated by successive re-executions of
call(Goal), X = Template after systematic replacement of all variables in X by new variables. Thus,
the order of the list Instances corresponds to the order in which the proofs are found.

Errors
Goal is a variable instantiation_error
Goal is neither a variable nor a callable term type_error(callable, Goal)
The predicate indicator Pred of Goal does not existence_error(procedure, Pred)

correspond to an existing procedure and the
value of the unknown Prolog flag is error

(section 7.22.1L page [133))

Instances is neither a partial list nor a list type_error(list, Instances)

Portability

ISO predicate.

7.9.3 Dbagof/3, setof/3

Templates

bagof (?term, +callable_term, 7list)
setof (7term, +callable_term, ?7list)

Description

bagof (Template, Goal, Instances) assembles as a list the set of solutions of Goal for each different
instantiation of the free variables in Goal. The elements of each list are in order of solution, but the order
in which each list is found is undefined. This predicate is re-executable on backtracking.

Free variable set: bagof/3 groups the solutions of Goal according to the free variables in Goal. This
set corresponds to all variables occurring in Goal but not in Template. It is sometimes useful to exclude

7.10 Streams 67

some additional variables of Goal. For that, bagof/3 recognizes a goal of the form T"Goal and exclude all
variables occurring in T from the free variable set. (*)/2 can be viewed as an existential quantifier (the
logical reading of X~Goal being “there exists an X such that Goal is true”). The use of this existential
qualifier is superfluous outside bagof/3 (and setof/3) and then is not recognized.

(") /2 is a predefined infix operator (section [7.14.10} page [100]).

setof (Template, Goal, Instances) isequivalent to bagof (Template,Goal,I), sort(I,Instances).
Each list is then a sorted list (duplicate elements are removed).

From the implementation point of view setof/3 is as fast as bagof/3. Both predicates use an in-place
(i.e. destructive) sort (section [7.20.12] page|[125) and require the same amount of memory.

Errors
Goal is a variable instantiation_error
Goal is neither a variable nor a callable term type_error(callable, Goal)
The predicate indicator Pred of Goal does not existence_error(procedure, Pred)

correspond to an existing procedure and the
value of the unknown Prolog flag is error

(section [7.22.1] page

Instances is neither a partial list nor a list type-error(list, Instances)

Portability

ISO predicates.

7.10 Streams
7.10.1 Introduction

A stream provides a logical view of a source/sink.

Sources and sinks: a program can output results to a sink or input data from a source. A source/sink
may be a file (regular file, terminal, device,. ..), a constant term, a pipe, a socket,. . .

Associating a stream to a source/sink: to manipulate a source/sink it must be associated with a
stream. This provides a logical and uniform view of the source/sink whatever its type. Once this asso-
ciation has been established, i.e. a stream has been created, all subsequent references to the source/sink
are made by referring the stream. A stream is unidirectional: it is either an input stream or an out-
put stream. For a classical file, the association is done by opening the file (whose name is specified as
an atom) with the open/4 (section page . GNU Prolog makes it possible to treat a Prolog
constant term as a source/sink and provides built-in predicates to associate a stream to such a term (sec-
tion page . GNU Prolog provides operating system interface predicates defining pipes between
GNU Prolog and child processes with streams associated with these pipes, e.g. popen/3 (section
page. Similarly, socket interface predicates associate streams to a socket to allow the communication,

e.g. socket_connect/4 (section |7.28.5 page [159).

Stream-term: a stream-term identifies a stream during a call of an input/output built-in predicate.
It is created as a result of associating a stream to a source/sink (section above). A stream-term is a
compound term of the form ’$stream’ (I) where I is an integer.

Stream aliases: any stream may be associated with a stream alias which is an atom which may be
used to refer to that stream. The association can be done at open time or using add_stream_alias/2

68 7 PROLOG BUILT-IN PREDICATES

(section page[79). Such an association automatically ends when the stream is closed. A particular
alias only refers to at most one stream at any one time. However, more than one alias can be associated
with a stream. Most built-in predicates which have a stream-term as an input argument also accept a
stream alias as that argument. However, built-in predicates which return a stream-term do not accept a
stream alias.

Standard streams: two streams are predefined and open during the execution of every goal: the
standard input stream which has the alias user_input and the standard output stream which has the
alias user_output. A goal which attempts to close either standard stream succeeds, but does not close
the stream.

Current streams: during execution there is a current input stream and a current output stream. By
default, the current input and output streams are the standard input and output streams, but the built-
in predicates set_input/1 (section page and set_output/1 (section page can be
used to change them. When the current input stream is closed, the standard input stream becomes the
current input stream. When the current output stream is closed, the standard output stream becomes
the current output stream.

Text streams and binary streams: a text stream is a sequence of characters. A text stream is also
regarded as a sequence of lines where each line is a possibly empty sequence of characters followed by
a new line character. GNU Prolog may add or remove space characters at the ends of lines in order
to conform to the conventions for representing text streams in the operating system. A binary stream
is a sequence of bytes. Only a few built-in predicates can deal with binary streams, e.g. get_byte/2

(section page [39).

Stream positions: the stream position of a stream identifies an absolute position of the source/sink to
which the stream is connected and defines where in the source/sink the next input or output will take
place. A stream position is a ground term of the form ’$stream position’(I1, I2, I3, I4) where
I1, I2, I3 and I4 are integers. Stream positions are used to reposition a stream (when possible) using

for instance set_stream position/2 (section [7.10.13| page .

The position end of stream: when all data of a stream S has been input S has a stream position
end-of-stream. At this stream position a goal to input more data will return a specific value to indicate
that end of stream has been reached (e.g. -1 for get_code/2 or end_of_file for get_char/2,...). When
this terminating value has been input, the stream has a stream position past-end-of-stream.

Buffering mode: input/output on a stream can be buffered (line-buffered or block-buffered) or not
buffered at all. The buffering mode can be specified at open time or using set_stream buffering/2
(section page . Line buffering is used on output streams, output data are only written to the
sink when a new-line character is output (or at the close time). Block buffering is used on input or output.
On input streams, when an input is requested on the source, if the buffer is empty, all available characters
are read (within the limits of the size of the buffer), subsequent reads will first use the characters in the
buffer. On output streams, output data are stored in the buffer and only when the buffer is full is it
physically written on the sink. Thus, an output to a buffered stream may not be sent immediately to the
sink connected to that stream. When it is necessary to be certain that output has been delivered, the
built-in predicate flush_output/1 (section page should be used. Finally, it is also possible
to use non-buffered streams, in that case input/output are directly done on the connected source/sink.
This can be useful for communication purposes (e.g. sockets) or when a precise control is needed, e.g.

select/5 (section [7.27.25| page [155]).

Stream mirrors: any stream may be associated with mirror streams specified at open time or using
add_stream mirror/2 (section page [79). Then, all characters/bytes read from/written to the
stream are also written on each mirror stream. The association automatically ends when either the
stream or the mirror stream is closed. It is also possible to explicitly remove a mirror stream using

remove_stream mirror/2 (section |7.10.23] page .

7.10 Streams 69

7.10.2 current_input/1

Templates
current_input (?stream)

Description
current_input (Stream) unifies Stream with the stream-term identifying the current input stream.

Errors

Stream is neither a variable nor a stream domain_error(stream, Stream)

Portability

ISO predicate.

7.10.3 current_output/1

Templates
current_output (?stream)

Description
current_output (Stream) unifies Stream with the stream-term identifying the current output stream.

Errors

Stream is neither a variable nor a stream domain_error(stream, Stream)

Portability

ISO predicate.

7.10.4 set_input/1

Templates
set_input (+stream or_alias)

Description

set_input (SorA) sets the current input stream to be the stream associated with the stream-term or alias
SorA.

Errors
SorA is a variable instantiation_error
SorA is neither a variable nor a stream-term or domain_error(stream_or_alias, SorA)
alias
SorA is not associated with an open stream existence_error(stream, SorA)
SorA is an output stream permission_error (input, stream, SorA)

Portability

70 7 PROLOG BUILT-IN PREDICATES

ISO predicate.

7.10.5 set_output/1

Templates
set_output (+stream or_alias)

Description

set_output (SorA) sets the current output stream to be the stream associated with the stream-term or
alias SorA.

Errors
SorA is a variable instantiation_error
SorA is neither a variable nor a stream-term or domain_error (stream_or_alias, SorA)
alias
SorA is not associated with an open stream existence_error(stream, SorA)
SorA is an input stream permission_error (output, stream, SorA)
Portability

ISO predicate.

7.10.6 open/4, open/3

Templates

open(+source_sink, +io_mode, -stream, +stream option_list)
open(+source_sink, +io_mode, -stream)

Description

open(SourceSink, Mode, Stream, Options) opens the source/sink SourceSink for input or output
as indicated by Mode and the list of stream-options Options and unifies Stream with the stream-term
which is associated with this stream. See absolute_file name/2 for information about the syntax of

SourceSink (section [7.26.1] page [L41]).

Input/output modes: Mode is an atom which defines the input/output operations that may be per-
formed the stream. Possible modes are:

e read: the source/sink is a source and must already exist. Input starts at the beginning of the
source.

e write: the source/sink is a sink. If the sink already exists then it is emptied else an empty sink is
created. Output starts at the beginning of that sink.

e append: the source/sink is a sink. If the sink does not exist it is created. Output starts at the end
of that sink.

Stream options: Options is a list of stream options. If this list contains contradictory options, the
rightmost option is the one which applies. Possible options are:

e type(text/binary): specifies whether the stream is a text stream or a binary stream. The default
value is text.

7.10 Streams 71

reposition(true/false): specifies whether it is possible to reposition the stream. The default
value is true except if the stream cannot be repositioned (e.g. a terminal).

eof _action(error/eof_code/reset): specifies the effect of attempting to input from a stream
whose stream position is past-end-of-stream:
— error: a permission_error is raised signifying that no more input exists in this stream.

— eof_code: the result of input is as if the stream position is end-of-stream.

— reset: the stream position is reset so that it is not past-end-of-stream, and another attempt
de to input from it (this is useful when inputting from a terminal
The ésefm t value % eof code(P &)-
alias(Alias): specifies that the atom Alias is to be an alias for the stream. By default no alias
is attached to the stream. Several aliases can be defined for a same stream.

mirror (Mirror): specifies the stream associated with the stream-term or alias Mirror is a mirror
for the stream. By default no mirror is attached to the stream. Several mirrors can be defined for
a same stream.

buffering(none/line/block): specifies which type of buffering is used by input/output operations

on this stream:
— none: no buffering.

— line: output operations buffer data emitted until a new-line occurs

— block: input/output operations buffer data until a given number (implementation dependant)

f characters/bytes have been tre
The é) fault value /1b}i1ne 5

open(SourceSink, Mode,

Errors

Stream) is equivalent to open(SourceSink, Mode,

te
r a termina g}‘TY , block otherwise.

Stream, []).

SourceSink is a variable

instantiation_error

Mode is a variable

instantiation_error

Options is a partial list or a list with an element
E which is a variable

instantiation_error

Mode is neither a variable nor an atom

type_error(atom, Mode)

Options is neither a partial list nor a list

type_error(list, Options)

Stream is not a variable

type_error(variable, Stream)

SourceSink is neither a variable nor a
source/sink

domain_error (source_sink, SourceSink)

Mode is an atom but not an input/output mode

domain_error (io_mode, Mode)

an element E of the Options list is neither a
variable nor a stream-option

domain_error(stream option, E)

the source/sink specified by SourceSink does
not exist

existence_error(source_sink, SourceSink)

the source/sink specified by SourceSink cannot
be opened

permission_error (open , source_sink,
SourceSink)

an element E of the Options list is alias(A) and
A is already associated with an open stream

permission_error (open, source_sink,
alias(A))

an element E of the Options list is mirror (M)
and M is not associated with an open stream

existence_error(stream, M)

an element E of the Options list is mirror (M)
and M is an input stream

permission_error (output, stream, M)

an element E of the Options list is
reposition(true) and it is not possible to
reposition this stream

permission_error (open, source_sink,
reposition(true))

Portability

ISO predicates. The mirror/1 and buffering/1 stream options are GNU Prolog extensions.

72 7 PROLOG BUILT-IN PREDICATES

7.10.7 close/2, close/1

Templates

close(+stream or_alias, +close_option_list)
close(+stream_or_alias)

Description

close(SorA, Options) closes the stream associated with the stream-term or alias SorA. If SorA is
the standard input stream or the standard output stream close/2 simply succeeds else the associated
source/sink is physically closed. If SorA is the current input stream the current input stream becomes
the standard input stream user_input. If SorA is the current output stream the current output stream
becomes the standard output stream user_output.

Close options: Options is a list of close options. For the moment only one option is available:

e force(true/false): with false, if an error occurs when trying to close the source/sink, the stream
is not closed and an error (system_error or resource_error) is raised (but close/2 succeeds).
With true, if an error occurs it is ignored and the stream is closed. The purpose of force/1 option
is to allow an error handling routine to do its best to reclaim resources. The default value is false.

close(SorA) is equivalent to close(SorA, []1).

Errors

SorA is a variable

instantiation_error

Options is a partial list or a list with an element
E which is a variable

instantiation_error

Options is neither a partial list nor a list

type_error(list, Options)

SorA is neither a variable nor a stream-term or
alias

domain_error(stream_or_alias, SorA)

an element E of the Options list is neither a
variable nor a close-option

domain_error(close_option, E)

SorA is not associated with an open stream

existence_error(stream, SorA)

SorA needs a special close (section |7.11|, page

system_error (needs_special _close)

Portability

ISO predicates. The system_error (needs_special_close) is a GNU Prolog extension.

7.10.8 flush output/1, flush_output/0

Templates

flush output (+stream_or_alias)
flush_output

Description

flush_output (SorA) sends any buffered output characters/bytes to the stream.

flush_output/0 applies to the current output stream.

Errors

7.10 Streams

73

SorA is a variable

instantiation_error

SorA is neither a variable nor a stream-term or
alias

domain_error(stream_or_alias, SorA)

SorA is not associated with an open stream

existence_error(stream, SorA)

SorA is an input stream

permission_error (output, stream, SorA)

Portability

ISO predicates.

7.10.9 current_stream/1

Templates
current_stream(?stream)

Description

current_stream(Stream) succeeds if there exists a stream-term that unifies with Stream. This predicate

is re-executable on backtracking.

Errors

Stream is neither a variable nor a stream-term

domain_error(stream, Stream)

Portability

GNU Prolog predicate.

7.10.10 stream property/2

Templates

stream _property(7stream, 7stream property)

Description

stream property(Stream, Property) succeeds if current_stream(Stream) succeeds (section [7.10.9
page and if Property unifies with one of the properties of the stream. This predicate is re-executable

on backtracking.

Stream properties:

e file name(F): the name of the connected source/sink.

e mode(M): M is the open mode (read, write, append).

e input: if it is an input stream.
e output: if it is an output stream.

e alias(A): A is an alias of the stream.

e mirror (M): M is a mirror stream of the stream.

e type(T): T is the type of the stream (text, binary).

e reposition(R): R is the reposition boolean (true, false).

74 7 PROLOG BUILT-IN PREDICATES

e cof action(A): A is the end-of-file action (error, eof_code, reset).
e buffering(B): B is the buffering mode (none, line, block).

e end of _stream(E): E is the current end-of-stream status (not, at, past). If the stream position is
end-of-stream then E is unified with at else if the stream position is past-end-of-stream then E is
unified with past else E is unified with not.

e position(P): P is the stream-position term associated with the current position.

Errors
Stream is a variable instantiation_error
Stream is neither a variable nor a stream-term domain_error(stream, Stream)
Property is neither a variable nor a stream domain_error(stream property, Property)
property

Property = file_name(E), mode(E), alias(E), | type_error(atom, E)
end_of _stream(E), eof _action(E),
reposition(E), type(E) or buffering(E) and
E is neither a variable nor an atom

Portability

ISO predicate. The buffering/1 property is a GNU Prolog extension.

7.10.11 at_end_of _stream/1, at_end_of_stream/0

Templates

at_end_of_stream(+stream_or_alias)
at_end_of_stream

Description

at_end_of _stream(SorA) succeeds if the stream associated with stream-term or alias SorA has a stream
position end-of-stream or past-end-of-stream. This predicate can be defined using stream_property/2

(section [7.10.10} page [73).

at_end_of stream/0 applies to the current input stream.

Errors
SorA is a variable instantiation_error
SorA is neither a variable nor a stream-term or domain_error (stream_or_alias, SorA)
alias
SorA is not associated with an open stream existence_error(stream, SorA)
SorA is an output stream permission_error (input, stream, SorA)
Portability

ISO predicates. The permission_error(input, stream, SorA) is a GNU Prolog extension.

7.10.12 stream position/2

Templates

7.10 Streams

(6]

stream position(+stream or_alias, 7stream_position)

Description

stream_position(SorA, Position) succeeds unifying Position with the stream-position term associ-
ated with the current position of the stream-term or alias SorA. This predicate can be defined using

stream_property/2 (section [7.10.10} page .

Errors

SorA is a variable

instantiation_error

SorA is neither a variable nor a stream-term or
alias

domain_error(stream_or_alias, SorA)

Position is neither a variable nor a
stream-position term

domain_error(stream position, Position)

SorA is not associated with an open stream

existence_error(stream, SorA)

Portability

GNU Prolog predicate.

7.10.13 set_stream position/2

Templates

set_stream position(+stream_or_alias, +stream position)

Description

set_stream position(SorA, Position) sets the position of the stream associated with the stream-
term or alias SorA to Position. Position should have previously been returned by stream property/2

(section [7.10.10} page or by stream position/2 (section [7.10.12] page [74).

Errors

SorA is a variable

instantiation_error

Position is a variable

instantiation_error

SorA is neither a variable nor a stream-term or
alias

domain_error(stream_or_alias, SorA)

Position is neither a variable nor a
stream-position term

domain_error(stream position, Position)

SorA is not associated with an open stream

existence_error(stream, SorA)

SorA has stream property reposition(false)

permission_error(reposition, stream,
SorA)

Portability

ISO predicate.

7.10.14 seek/4

Templates

seek(+stream or_alias, +stream seek method, +integer, 7integer)

76 7 PROLOG BUILT-IN PREDICATES

Description

seek(SorA, Whence, Offset, NewOffset) sets the position of the stream associated with the stream-
term or alias SorA to Offset according to Whence and unifies NewOffset with the new offset from the

beginning of the file. seek/4 can only be used on binary streams. Whence is an atom from:

e bof: the position is set relatively to the begin of the file (0ffset should be > 0).

e current: the position is set relatively to the current position (0ffset can be > 0 or < 0).

e ecof: the position is set relatively to the end of the file (0ffset should be < 0).

This predicate is an interface to the C Unix function 1seek(2).

Errors

SorA is a variable

instantiation_error

Whence is a variable

instantiation_error

Offset is a variable

instantiation_error

SorA is neither a variable nor a stream-term or
alias

domain_error (stream_or_alias, SorA)

Whence is neither a variable nor an atom

type_error (atom, Whence)

Whence is an atom but not a valid stream seek
method

domain_error (stream_seek_method, Whence)

Offset is neither a variable nor an integer

type_error(integer, Offset)

NewOffset is neither a variable nor an integer

type_error(integer, NewOffset)

SorA is not associated with an open stream

existence_error(stream, SorA)

SorA has stream property reposition(false)

permission_error(reposition, stream,
SorA)

SorA is associated with a text stream

permission_error(reposition, text_stream,
SorA)

Portability

GNU Prolog predicate.

7.10.15 character_count/2

Templates

character_count (+stream_or_alias, 7integer)

Description

character_count (SorA, Count) unifies Count with the number of characters/bytes read/written on the
stream associated with stream-term or alias SorA.

Errors

SorA is a variable

instantiation_error

Count is neither a variable nor an integer

type_error (integer, Count)

SorA is neither a variable nor a stream-term or
alias

domain_error(stream_or_alias, SorA)

SorA is not associated with an open stream

existence_error(stream, SorA)

Portability

GNU Prolog predicate.

7.10 Streams 77

7.10.16 1line_count/2

Templates
line_count(+stream or_alias, 7integer)

Description

line_count(SorA, Count) unifies Count with the number of lines read/written on the stream associated
with the stream-term or alias SorA. This predicate can only be used on text streams.

Errors
SorA is a variable instantiation_error
Count is neither a variable nor an integer type_error(integer, Count)
SorA is neither a variable nor a stream-term or domain_error(stream_or_alias, SorA)
alias
SorA is not associated with an open stream existence_error(stream, SorA)
SorA is associated with a binary stream permission_error(access, binary_stream,
SorA)
Portability

GNU Prolog predicate.

7.10.17 1line_position/2

Templates
line_position(+stream or_alias, ?7integer)

Description

line_position(SorA, Count) unifies Count with the number of characters read/written on the current
line of the stream associated with the stream-term or alias SorA. This predicate can only be used on text
streams.

Errors
SorA is a variable instantiation_error
Count is neither a variable nor an integer type_error(integer, Count)
SorA is neither a variable nor a stream-term or domain_error(stream_or_alias, SorA)
alias
SorA is not associated with an open stream existence_error(stream, SorA)
SorA is associated with a binary stream permission_error(access, binary_stream,
SorA)
Portability

GNU Prolog predicate.

7.10.18 stream_line_column/3

Templates

78 7 PROLOG BUILT-IN PREDICATES

stream_line column(+stream or_alias, 7integer, 7integer)

Description

stream_line_column(SorA, Line, Column) unifies Line (resp. Column) with the current line number
(resp. column number) of the stream associated with the stream-term or alias SorA. This predicate can
only be used on text streams. Note that Line corresponds to the value returned by line_count/2 + 1
(section page and Column to the value returned by line position/2 + 1 (section
page [77)).

Errors

SorA is a variable

instantiation_error

Line is neither a variable nor an integer

type_error(integer, Line)

Column is neither a variable nor an integer

type_error(integer, Column)

SorA is neither a variable nor a stream-term or
alias

domain_error(stream_or_alias, SorA)

SorA is not associated with an open stream

existence_error(stream, SorA)

SorA is associated with a binary stream

permission_error (access, binary_stream,

SorA)

Portability

GNU Prolog predicate.

7.10.19 set_stream_line_column/3

Templates
set_stream_line column(+stream or_alias, +integer, +integer)

Description

set_stream_line_column(SorA, Line, Column) sets the stream position of the stream associated with
the stream-term or alias SorA according to the line number Line and the column number Column. This
predicate can only be used on text streams. It first repositions the stream to the beginning of the file
and then reads character by character until the required position is reached.

Errors

instantiation_error
instantiation_error
instantiation_error
type-error(integer, Line)
type_error(integer, Column)
domain_error(stream_or_alias, SorA)

SorA is a variable

Line is a variable

Column is a variable

Line is neither a variable nor an integer
Column is neither a variable nor an integer
SorA is neither a variable nor a stream-term or
alias

SorA is not associated with an open stream
SorA is associated with a binary stream

existence_error(stream, SorA)
permission_error(reposition,
binary_stream, SorA)
permission_error(reposition, stream,
SorA)

SorA has stream property reposition(false)

Portability

GNU Prolog predicate.

7.10 Streams 79

7.10.20 add_stream_alias/2

Templates
add_stream_alias(+stream_or_alias, +atom)

Description

add_stream_alias(SorA, Alias) adds Alias as a new alias to the stream associated with the stream-
term or alias SorA.

Errors
SorA is a variable instantiation_error
Alias is a variable instantiation_error
Alias is neither a variable nor an atom type_error(atom, Alias)
SorA is neither a variable nor a stream-term or domain_error(stream_or_alias, SorA)
alias
SorA is not associated with an open stream existence_error(stream, SorA)
Alias is already associated with an open stream | permission_error(add._alias, source_sink,
alias(Alias))
Portability

GNU Prolog predicate.

7.10.21 current_alias/2

Templates
current_alias(?stream, 7atom)

Description

current_alias(Stream, Alias) succeeds if current_stream(Stream) succeeds (section7.10.9 page
and if Alias unifies with one of the aliases of the stream. It can be defined using stream property/2
(section [7.10.10} page . This predicate is re-executable on backtracking.

Errors
Stream is neither a variable nor a stream-term domain_error(stream, Stream)
Alias is neither a variable nor an atom type_error(atom, Alias)
Portability

GNU Prolog predicate.

7.10.22 add_stream_mirror/2

Templates
add_stream mirror (+stream_or_alias, +stream_or_alias)

Description

80 7 PROLOG BUILT-IN PREDICATES

add_stream_mirror (SorA, Mirror) adds the stream associated with the stream-term or alias Mirror as
a new mirror to the stream associated with the stream-term or alias SorA. After this, all characters (or
bytes) read from (or written to) SorA are also written to Mirror. This mirroring occurs until Mirror is
explicitly removed using remove_stream mirror/2 (section page or implicitly when Mirror
is closed. Several mirror streams can be associated with a same stream. If Mirror represents the same
stream as SorA or if Mirror is already a mirror for SorA, no mirror is added.

Errors
SorA is a variable instantiation_error
Mirror is a variable instantiation_error
SorA is neither a variable nor a stream-term or domain_error (stream_or_alias, SorA)
alias

Mirror is neither a variable nor a stream-term or | domain_error(stream_or_alias, Mirror)
alias

SorA is not associated with an open stream existence_error(stream, SorA)

Mirror is not associated with an open stream existence_error(stream, Mirror)

Mirror is an input stream permission_error (output, stream, Mirror)
Portability

GNU Prolog predicate.

7.10.23 remove_stream mirror/2

Templates
remove_stream mirror (+stream_or_alias, +stream_or_alias)
Description
remove_stream_mirror (SorA, Mirror) removes the stream associated with the stream-term or alias

Mirror from the list of mirrors of the stream associated with the stream-term or alias SorA. This predicate
fails if Mirror is not a mirror stream for SorA.

Errors
SorA is a variable instantiation_error
Mirror is a variable instantiation_error
SorA is neither a variable nor a stream-term or domain_error(stream_or_alias, SorA)
alias

Mirror is neither a variable nor a stream-term or | domain_error(stream_or_alias, Mirror)
alias

SorA is not associated with an open stream existence_error(stream, SorA)
Mirror is not associated with an open stream existence_error(stream, Mirror)
Portability

GNU Prolog predicate.

7.10.24 current mirror/2

Templates

current_mirror(?stream, 7stream)

7.10 Streams 81

Description

current mirror(Stream, M) succeeds if current_stream(Stream) succeeds (section [7.10.9) page (73
and if M unifies with one of the mirrors of the stream. It can be defined using stream_property/2

(section [7.10.10} page . This predicate is re-executable on backtracking.

Errors
Stream is neither a variable nor a stream-term domain_error(stream, Stream)
M is neither a variable nor a stream-term domain_error (stream, M)
Portability

GNU Prolog predicate.

7.10.25 set_stream type/2

Templates
set_stream type(+stream or_alias, +atom)

Description

set_stream_type(SorA, Type) updates the type associated with stream-term or alias SorA. The value
of Type is an atom in text or binary as for open/4 (section[7.10.6] page[70)). The type of a stream can
only be changed before any input/output operation is executed.

Errors
SorA is a variable instantiation_error
Type is a variable instantiation_error
Type is neither a variable nor a valid type domain_error(stream type, Type)
SorA is neither a variable nor a stream-term or domain_error(stream_or_alias, SorA)
alias
SorA is not associated with an open stream existence_error(stream, SorA)
An T/0 operation has already been executed on permission_error (modify, stream, SorA)
SorA

Portability

GNU Prolog predicate.

7.10.26 set_stream_eof_action/2

Templates
set_stream_eof_action(+stream_or_alias, +atom)

Description

set_stream_eof action(SorA, Action) updates the eof_action option associated with the stream-
term or alias SorA. The value of Action is one of the atoms error, eof_code, reset as for open/4

(section [7.10.6] page [70).

Errors

82 7 PROLOG BUILT-IN PREDICATES

SorA is a variable instantiation_error

Action is a variable instantiation_error

Action is neither a variable nor a valid eof action | domain_error(eof_action, Action)

SorA is neither a variable nor a stream-term or domain_error(stream_or_alias, SorA)

alias

SorA is not associated with an open stream existence_error(stream, SorA)

SorA is an output stream permission_error (modify, stream, SorA)
Portability

GNU Prolog predicate.

7.10.27 set_stream buffering/2

Templates
set_stream buffering(+stream or_alias, +atom)

Description

set_stream buffering(SorA, Buffering) updates the buffering mode associated with the stream-term
or alias SorA. The value of Buffering is one of the atoms none, line or block as for open/4 (sec-
tion page . This predicate may only be used after opening a stream and before any other
operations have been performed on it.

Errors
SorA is a variable instantiation_error
Buffering is a variable instantiation_error
Buffering is neither a variable nor a valid domain_error (buffering mode, Buffering)
buffering mode
SorA is neither a variable nor a stream-term or domain_error(stream_or_alias, SorA)
alias
SorA is not associated with an open stream existence_error(stream, SorA)
Portability

GNU Prolog predicate.

7.11 Constant term streams
7.11.1 Introduction

Constant term streams allow the user to consider a constant term (atom, character list or character code
list) as a source/sink by associating to them a stream. Reading from a constant term stream will deliver
the characters of the constant term as if they had been read from a standard file. Characters written
on a constant term stream are stored to form the final constant term when the stream is closed. The
built-in predicates described in this section allow the user to open and close a constant term stream for
input or output. However, very often, a constant term stream is created to be only read or written once
and then closed. To avoid the creation and the destruction of such a stream, GNU Prolog offers several
built-in predicates to perform single input/output from/to constant terms (section page .

7.11 Constant term streams 83

7.11.2 open_input_atom _stream/2, open_input_chars_stream/2,
open_input_codes_stream/2

Templates

open_input_atom_stream(+atom, -stream)
open_input_chars_stream(+character_list, -stream)
open_input_codes_stream(+character_code_list, -stream)

Description

open_input_atom_stream(Atom, Stream) unifies Stream with the stream-term which is associated with
a new input text-stream whose data are the characters of Atom.

open_input_chars_stream(Chars, Stream) is similar to open_input_atom_stream/2 except that data
are the content of the character list Chars.

open_input_codes_stream(Codes, Stream) is similar to open_input_atom_stream/2 except that data
are the content of the character code list Codes.

Errors
Stream is not a variable type_error(variable, Stream)
Atom is a variable instantiation_error

Chars is a partial list or a list with an element E | instantiation_error
which is a variable
Codes is a partial list or a list with an element E | instantiation_error
which is a variable

Atom is neither a variable nor a an atom type_error(atom, Atom)

Chars is neither a partial list nor a list type-error(list, Chars)

Codes is neither a partial list nor a list type_error(list, Codes)

an element E of the Chars list is neither a type_error(character, E)

variable nor a character

an element E of the Codes list is neither a type_error(integer, E)

variable nor an integer

an element E of the Codes list is an integer but representation_error(character_code)

not a character code

Portability

GNU Prolog predicates.

7.11.3 close_input_atom_stream/1, close_input_chars_stream/1,
close_input_codes_stream/1

Templates

close_input_atom_stream(+stream or_alias)
close_input_chars_stream(+stream_or_alias)
close_input_codes_stream(+stream_ or_alias)

Description

close_input_atom_stream(SorA) closes the constant term stream associated with the stream-term or
alias SorA. SorA must a stream open with open_input_atom_stream/2 (section[7.11.1] page .

close_input_chars_stream(SorA) acts similarly for a character list stream.

84 7 PROLOG BUILT-IN PREDICATES

close_input_codes_stream(SorA) acts similarly for a character code list stream.

Errors
SorA is a variable instantiation_error
SorA is neither a variable nor a stream-term or domain_error(stream_or_alias, SorA)
alias
SorA is not associated with an open stream existence_error(stream, SorA)
SorA is an output stream permission_error(close, stream, SorA)
SorA is a stream-term or alias but does not refer | domain_error (term_stream_or_alias, SorA)
to a constant term stream.

Portability

GNU Prolog predicates.

7.11.4 open_output_atom stream/1, open_output_chars_stream/1,
open_output_codes_stream/1

Templates

open_output_atom_stream(-stream)
open_output_chars_stream(-stream)
open_output_codes_stream(-stream)

Description
open_output_atom_stream(Stream) unifies Stream with the stream-term which is associated with a new
output text-stream. All characters written to this stream are collected and will be returned as an atom

when the stream is closed by close_output_atom_stream/2 (section [7.11.5| page .

open_output_chars_stream(Stream) is similar to open_output_atom_stream/1 except that the result
will be a character list.

open_output_codes_stream(Stream) is similar to open_output_atom_stream/1 except that the result
will be a character code list.

Errors

’ Stream is not a variable type_error(variable, Stream)

Portability

GNU Prolog predicates.

7.11.5 close_output_atom_stream/2, close_output_chars_stream/2,
close_output_codes_stream/2

Templates

close_output_atom_stream(+stream_or_alias, 7atom)
close_output_chars_stream(+stream or_alias, ?character_list)
close_output_codes_stream(+stream or_alias, ?character_code_list)

Description

7.12 Character input/output 85

close_output_atom_stream(SorA, Atom) closes the constant term stream associated with the stream-
term or alias SorA. SorA must be associated with a stream open with open_output_atom_stream/1
(section [7.11.4] page . Atom is unified with an atom formed with all characters written on the stream.

close_output_chars_stream(SorA, Chars) acts similarly for a character list stream.

close_output_codes_stream(SorA, Codes) acts similarly for a character code list stream.

Errors
SorA is a variable instantiation_error
Atom is neither a variable nor an atom type_error(atom, Atom)
Chars is neither a partial list nor a list type_error(list, Chars)
Codes is neither a partial list nor a list type_error(list, Codes)
SorA is neither a variable nor a stream-term or domain_error(stream_or_alias, SorA)
alias
SorA is not associated with an open stream existence_error(stream, SorA)
SorA is an input stream permission_error(close, stream, SorA)
SorA is a stream-term or alias but does not refer | domain_error(term_stream_or_alias, SorA)
to a constant term stream

Portability

GNU Prolog predicates.

7.12 Character input/output

These built-in predicates enable a single character or character code to be input from and output to a
text stream. The atom end_of file is returned as character to indicate the end-of-file. -1 is returned as
character code to indicate the end-of-file.

7.12.1 get_char/2, get_char/1, get_code/1, get_code/2

Templates

get_char(+stream or_alias, ?7in_character)
get_char(?7in_character)
get_code(+stream_or_alias, 7in_character_code)
get_code(?7in_character_code)

Description

get_char(SorA, Char) succeeds if Char unifies with the next character read from the stream associated
with the stream-term or alias SorA.

get_code/2 is similar to get_char/2 but deals with character codes.
get_char/1 and get_code/1 apply to the current input stream.

Errors

86 7 PROLOG BUILT-IN PREDICATES

SorA is a variable instantiation_error

Char is neither a variable nor an in-character type_error(in_character, Char)

Code is neither a variable nor an integer type_error (integer, Code)

SorA is neither a variable nor a stream-term or domain_error(stream_or_alias, SorA)

alias

SorA is not associated with an open stream existence_error(stream, SorA)

SorA is an output stream permission_error (input, stream, SorA)

SorA is associated with a binary stream permission_error (input, binary_stream,

Sorh)

SorA has stream properties permission_error (input,

end_of _stream(past) and eof_action(error) past_end_of stream, SorA)

The entity input from the stream is not a representation_error (character)

character

Code is an integer but not an in-character code representation_error(in_character_code)
Portability

ISO predicates.

7.12.2 get_key/2, get_key/1 get_key no_echo/2, get_key no_echo/1

Templates

get_key(+stream_or_alias, 7integer)
get_key(7integer)

get key no_echo(+stream or_alias, ?7integer)
get _key no_echo(?integer)

Description

get key(SorA, Code) succeeds if Code unifies with the character code of the next key read from the
stream associated with the stream-term or alias SorA. It is intended to read a single key from the keyboard
(thus SorA should refer to current input stream). No buffering is performed (a character is read as soon as
available) and function keys can also be read (in that case, Code is an integer > 255). The read character
is echoed if it is printable.

This facility is only possible if the linedit facility has been installed (section page otherwise
get_key/2 behaves similarly to get_code/2 (section page (the code of the first character is
returned) but also pumps remaining characters until a character < space (0x20) is read (in particular
RETURN). The same behavior occurs if SorA does not refer to the current input stream or if this stream
is not attached to a terminal.

get_key_no_echo/2 behaves similarly to get_key/2 except that the read character is not echoed.
get_key/1 and get_key no_echo/1 apply to the current input stream.

Errors

7.12 Character input/output 87

SorA is a variable instantiation_error
Code is neither a variable nor an integer type_error(integer, Code)
SorA is neither a variable nor a stream-term or domain_error(stream_or_alias, SorA)
alias
SorA is not associated with an open stream existence_error(stream, SorA)
SorA is an output stream permission_error (input, stream, SorA)
SorA is associated with a binary stream permission_error (input, binary_stream,
Sorh)
SorA has stream properties permission_error (input,
end_of stream(past) and eof_action(error) past_end_of _stream, SorA)
Portability

GNU Prolog predicates.

7.12.3 peek_char/2, peek_char/1, peek_code/1, peek_code/2

Templates

peek_char (+stream or_alias, 7in_character)
peek_char (?in_character)

peek_code(+stream or_alias, 7in_character_code)
peek_code(?in_character_code)

Description

peek_char (SorA, Char) succeeds if Char unifies with the next character that will be read from the
stream associated with the stream-term or alias SorA. The character is not read.

peek_code/2 is similar to peek_char/2 but deals with character codes.

peek_char/1 and peek_code/1 apply to the current input stream.

Errors
SorA is a variable instantiation_error
Char is neither a variable nor an in-character type_error (in_character, Char)
Code is neither a variable nor an integer type_error (integer, Code)
SorA is neither a variable nor a stream-term or domain_error (stream_or_alias, SorA)
alias
SorA is not associated with an open stream existence_error(stream, SorA)
SorA is an output stream permission_error (input, stream, SorA)
SorA is associated with a binary stream permission_error (input, binary_stream,
Sorh)
SorA has stream properties permission_error (input,
end_of _stream(past) and eof_action(error) past_end_of _stream, SorA)
The entity input from the stream is not a representation_error(character)
character
Code is an integer but not an in-character code representation_error (in_character_code)
Portability

ISO predicates.

88 7 PROLOG BUILT-IN PREDICATES

7.12.4 unget_char/2, unget_char/1, unget_code/2, unget_code/1

Templates

unget_char(+stream or_alias, +character)
unget_char (+character)

unget_code (+stream_or_alias, +character_code)
unget_code (+character_code)

Description

unget_char(SorA, Char) pushes back Char onto the stream associated with the stream-term or alias
SorA. Char will be the next character read by get_char/2. The maximum number of characters that can
be cumulatively pushed back is given by the max_unget Prolog flag (section [7.22.1] page [133).

unget_code/2 is similar to unget_char/2 but deals with character codes.

unget_char/1 and unget_code/1 apply to the current input stream.

Errors

SorA is a variable

instantiation_error

Char is a variable

instantiation_error

Code is a variable

instantiation_error

Char is neither a variable nor a character

type_error(character, Char)

Code is neither a variable nor an integer

type_error(integer, Code)

SorA is neither a variable nor a stream-term or
alias

domain_error(stream_or_alias, SorA)

SorA is not associated with an open stream

existence_error(stream, SorA)

SorA is an output stream

permission_error (input, stream, SorA)

SorA is associated with a binary stream

permission_error (input, binary_stream,
SorA)

Code is an integer but not a character code

representation_error(character_code)

Portability

GNU Prolog predicates.

7.12.5 put_char/2, put_char/1, put_code/1, put_code/2, n1/1, n1/0

Templates

put_char(+stream_or_alias, +character)

put_char (+character)

put_code(+stream or_alias, +character_code)

put_code (+character_code)
nl(+stream_or_alias)
nl

Description

put_char(SorA, Char) writes Char onto the stream associated with the stream-term or alias SorA.

put_code/2 is similar to put_char/2 but deals with character codes.

nl (SorA) writes a new-line character onto the stream associated with the stream-term or alias SorA.

This is equivalent to put_char(SorA, ’\n’).

7.13 Byte input/output

89

put_char/1, put_code/1 and nl/0 apply to the current output stream.

Errors

SorA is a variable

instantiation_error

Char is a variable

instantiation_error

Code is a variable

instantiation_error

Char is neither a variable nor a character

type_error(character, Char)

Code is neither a variable nor an integer

type_error(integer, Code)

SorA is neither a variable nor a stream-term or
alias

domain_error(stream_or_alias, SorA)

SorA is not associated with an open stream

existence_error(stream