
A iA

IP(7P) IP(7P)

NAME
IP - Internet Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

s = socket(AF_INET, SOCK_DGRAM, 0);

DESCRIPTION
IP is the network-layer protocol used by the Internet protocol family. It encapsulates TCP and UDP mes-
sages into datagrams to be transmitted by the network interface. Normally, applications do not need to
interface directly to IP. However, certain multicast socket options are controlled by passing options to the
IPPROTO_IP protocol level through a UDP socket, and IP Type of Service is controlled by passing an
option to the IPPROTO_IP protocol level through either a TCP or UDP socket. (See the getsockopt (2)
manual page.)

The following socket options are defined in the include file <netinet/in.h>. The type of the variable
pointed to by the optval parameter is indicated in parentheses. The data types struct ip_mreq,
struct ip_mreq_source, struct group_req, struct group_source_req, and struct
in_addr are defined in <netinet/in.h>.

IP_TOS (unsigned int) Sets the IP Type of Service. Allowable values for
optval are 4 for high reliability, 8 for high throughput, and 16 for low
delay. Other values will not return an error, but may have unpredict-
able results. Default: zero.

IP_ADD_MEMBERSHIP (struct ip_mreq) Requests that the system join a multicast group in
"exclude" mode.

MCAST_JOIN_GROUP (struct group_req) Requests that the system join a multicast group
in "exclude" mode.

IP_DROP_MEMBERSHIP (struct ip_mreq) Allows the system to leave a multicast group.

MCAST_LEAVE_GROUP (struct group_req) Allows the system to leave a multicast group.

IP_BLOCK_SOURCE (struct ip_mreq_source) Adds a source address to the list of
blocked sources for a multicast group in "exclude" mode.

MCAST_BLOCK_SOURCE (struct group_source_req) Adds a source address to the list of
blocked sources for a multicast group in "exclude" mode.

IP_UNBLOCK_SOURCE (struct ip_mreq_source) Removes a source address from the list of
blocked sources for a multicast group in "exclude" mode.

MCAST_UNBLOCK_SOURCE
(struct group_source_req) Removes a source address from the list
of blocked sources for a multicast group in "exclude" mode.

IP_ADD_SOURCE_MEMBERSHIP
(struct ip_mreq_source) Adds a source address to the list of
allowed sources for a multicast group in "include" mode, joining the
group in "include" mode if not already joined.

MCAST_JOIN_SOURCE_GROUP
(struct group_source_req) Adds a source address to the list of
allowed sources for a multicast group in "include" mode, joining the
group in "include" mode if not already joined.

IP_DROP_SOURCE_MEMBERSHIP
(struct ip_mreq_source) Removes a source address from the list of
allowed sources for a multicast group in "include" mode, leaving the
group when the last source is removed.

MCAST_LEAVE_SOURCE_GROUP
(struct group_source_req) Removes a source address from the list
of allowed sources for a multicast group in "include" mode, leaving the
group when the last source is removed.

HP-UX 11i Version 3: September 2010 − 1 − Hewlett-Packard Company 1



A iA

IP(7P) IP(7P)

IP_MULTICAST_IF (struct in_addr) Specifies a network interface other than the default
to be used when sending multicast datagrams through this socket.
Default: multicast datagrams are sent from the interface associated with
the specific multicast group, with the default multicast route or with the
default route.

IP_MULTICAST_LOOP (unsigned char; boolean) Enables or disables loopback in the IP layer
for multicast datagrams sent through this socket. The value of the vari-
able pointed to by optval is zero (disable) or non-zero (enable). This
option is provided for compatibility only. Normally, multicast datagrams
are always looped back if the system has joined the group. See DEPEN-
DENCIES below. Default: enabled.

IP_MULTICAST_TTL (unsigned char) Specifies the time-to-live value for multicast
datagrams sent through this socket. The value of the variable pointed to
by optval can be zero through 255. Default: one.

An application joins a multicast group on a network interface in order to receive multicast datagrams
sent on the network to which that interface connects. An application can join up to
IP_MAX_MEMBERSHIPS multicast groups on each socket. IP_MAX_MEMBERSHIPS is defined in
<netinet/in.h>. However, each network interface may impose a smaller system-wide limit because
of interface resource limitations and because the system uses some link-layer multicast addresses.

The application must also bind to the destination port number in order to receive datagrams that are sent
to that port number. If the application binds to the address INADDR_ANY, it may receive all datagrams
that are sent to the port number. If the application binds to a multicast group address, it may receive
only datagrams sent to that group and port number. It is not necessary to join a multicast group in order
to send datagrams to it.

For each multicast group that an application joins on a given socket and network interface, there is an
associated filter mode and source list. The filter mode can be "exclude" mode or "include" mode. The
source list is a set of IP addresses which will be compared to the source addresses of received multicast
datagrams.

An application uses "exclude" mode when it wants to block reception of multicast datagrams from a
specific set of sources, while allowing multicast datagrams from all other sources. For groups in "exclude"
mode, the source list may be empty, thus allowing reception of multicast datagrams from all sources.

An application uses "include" mode when it wants to allow reception of multicast datagrams from a
specific set of sources, while blocking multicast datagrams from all other sources. For groups in "include"
mode, the source list needs to contain at least one member in order for the application to stay joined to
the group; removing the last address from an "include" mode source list will cause the application to leave
the group.

IP_ADD_MEMBERSHIP and MCAST_JOIN_GROUP request that the system join a multicast group on the
specified interface. The group is joined in "exclude" mode, with an empty source list. The
imr_interface field holds the IPv4 address of a local interface, or INADDR_ANY. The
gr_interface field holds the interface index of a local interface, or zero. If the interface address is
INADDR_ANY, or if the interface index is zero, the system joins the specified group on the interface from
which datagrams for that group would be sent, based on the routing configuration. For example:

struct ip_mreq mreq;
mreq.imr_multiaddr.s_addr = inet_addr("224.1.2.3");
mreq.imr_interface.s_addr = INADDR_ANY;
setsockopt(s, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq));

struct group_req gr;
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)&gr.gr_group;
bzero(sin, sizeof(*sin));
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = inet_addr("224.1.2.3");
gr.gr_interface = 0;
setsockopt(s, IPPROTO_IP, MCAST_JOIN_GROUP, &gr, sizeof(gr));

IP_DROP_MEMBERSHIP and MCAST_LEAVE_GROUP allow the system to leave a multicast group. The
imr_interface field holds the IPv4 address of a local interface, or INADDR_ANY. The

2 Hewlett-Packard Company − 2 − HP-UX 11i Version 3: September 2010



A iA

IP(7P) IP(7P)

gr_interface field holds the interface index of a local interface, or zero. If the interface address is
INADDR_ANY, or if the interface index is zero, the system chooses a multicast group by matching the
multicast address only. For example:

struct ip_mreq mreq;
mreq.imr_multiaddr.s_addr = inet_addr("224.1.2.3");
mreq.imr_interface.s_addr = INADDR_ANY;
setsockopt(s, IPPROTO_IP, IP_DROP_MEMBERSHIP, &mreq, sizeof(mreq));

struct group_req gr;
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)&gr.gr_group;
bzero(sin, sizeof(*sin));
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = inet_addr("224.1.2.3");
gr.gr_interface = 0;
setsockopt(s, IPPROTO_IP, MCAST_LEAVE_GROUP, &gr, sizeof(gr));

IP_BLOCK_SOURCE and MCAST_BLOCK_SOURCE add a source address to the list of sources being
blocked. IP_UNBLOCK_SOURCE and MCAST_UNBLOCK_SOURCE remove a source address from the list
of sources being blocked. The group must already be joined, and must be in "exclude" mode. The
imr_interface field holds the IPv4 address of a local interface, or INADDR_ANY. The
gsr_interface field holds the interface index of a local interface, or zero. If the interface address is
INADDR_ANY, or if the interface index is zero, the system chooses a multicast group by matching the
multicast address only. For example:

struct ip_mreq_source imr;
imr.imr_multiaddr.s_addr = inet_addr("224.1.2.3");
imr.imr_sourceaddr.s_addr = inet_addr("10.4.5.6");
imr.imr_interface.s_addr = INADDR_ANY;
setsockopt(s, IPPROTO_IP, IP_BLOCK_SOURCE, &imr, sizeof(imr));
setsockopt(s, IPPROTO_IP, IP_UNBLOCK_SOURCE, &imr, sizeof(imr));

struct group_source_req gsr;
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)&gsr.gsr_group;
bzero(sin, sizeof(*sin));
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = inet_addr("224.1.2.3");
sin = (struct sockaddr_in *)&gsr.gsr_source;
bzero(sin, sizeof(*sin));
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = inet_addr("10.4.5.6");
gsr.gsr_interface = 0;
setsockopt(s, IPPROTO_IP, MCAST_BLOCK_SOURCE, &gsr, sizeof(gsr));
setsockopt(s, IPPROTO_IP, MCAST_UNBLOCK_SOURCE, &gsr, sizeof(gsr));

IP_ADD_SOURCE_MEMBERSHIP and MCAST_JOIN_SOURCE_GROUP add a source address to the list
of allowed sources for a multicast group in "include" mode, joining the group in "include" mode if not
already joined. IP_DROP_SOURCE_MEMBERSHIP and MCAST_LEAVE_SOURCE_GROUP remove a
source address from the list of allowed sources for a multicast group in "include" mode, leaving the group
if the last source is being removed. The imr_interface field holds the IPv4 address of a local inter-
face, or INADDR_ANY. The gsr_interface field holds the interface index of a local interface, or zero.
If the interface address is INADDR_ANY or the interface index is zero, the behavior depends on whether
the group is being joined. If the group is being joined, the system joins the specified group on the inter-
face from which datagrams for that group would be sent, based on the routing configuration; otherwise,
the system chooses a multicast group by matching the multicast address only. For example:

struct ip_mreq_source imr;
imr.imr_multiaddr.s_addr = inet_addr("224.1.2.3");
imr.imr_sourceaddr.s_addr = inet_addr("10.4.5.6");
imr.imr_interface.s_addr = INADDR_ANY;
setsockopt(s, IPPROTO_IP, IP_ADD_SOURCE_MEMBERSHIP, &imr, sizeof(imr));
setsockopt(s, IPPROTO_IP, IP_DROP_SOURCE_MEMBERSHIP, &imr, sizeof(imr));

HP-UX 11i Version 3: September 2010 − 3 − Hewlett-Packard Company 3



A iA

IP(7P) IP(7P)

struct group_source_req gsr;
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)&gsr.gsr_group;
bzero(sin, sizeof(*sin));
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = inet_addr("224.1.2.3");
sin = (struct sockaddr_in *)&gsr.gsr_source;
bzero(sin, sizeof(*sin));
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = inet_addr("10.4.5.6");
gsr.gsr_interface = 0;
setsockopt(s, IPPROTO_IP, MCAST_JOIN_SOURCE_GROUP, &gsr, sizeof(gsr));
setsockopt(s, IPPROTO_IP, MCAST_LEAVE_SOURCE_GROUP, &gsr, sizeof(gsr));

IP_MULTICAST_IF specifies a local network interface to be used when sending multicast datagrams
through this socket. For example:

#include <arpa/inet.h>
struct in_addr addr;
addr.s_addr = inet_addr("192.1.2.3");
setsockopt(s, IPPROTO_IP, IP_MULTICAST_IF, &addr, sizeof(addr));

Normally, applications do not need to specify the interface. By default, multicast datagrams are sent
from the interface specified by the routing configuration, namely the interface associated with the specific
multicast group, with the default multicast route or with the default route. If addr is set to the address
INADDR_ANY, the default interface is selected. Otherwise, addr should be the IP address of a local
interface.

IP_MULTICAST_LOOP enables or disables loopback for multicast datagrams sent through this socket.
For example:

unsigned char loop = 1;
setsockopt(s, IPPROTO_IP, IP_MULTICAST_LOOP, &loop, sizeof(loop));

Note that the type of the optval parameter is unsigned char instead of int, which is common for
boolean socket options. This option is provided for compatibility only. Normally, if a multicast datagram
is sent to a group that the system has joined, a copy of the datagram is always looped back and delivered
to any applications that are bound to the destination port. See DEPENDENCIES below.

IP_MULTICAST_TTL controls the scope a multicast by setting the time-to-live value for multicast
datagrams sent through this socket. For example:

unsigned char ttl = 64;
setsockopt(s, IPPROTO_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl));

Note that the type of optval parameter is unsigned char instead int, which is common for socket
options. By default, the time-to-live field (TTL) is one, which limits the multicast to the local network. If
the TTL is zero, the multicast is limited to the local system (loopback). If the TTL is two, the multicast
can be forwarded through at most one gateway; and so forth. Multicast datagrams can be forwarded to
other networks only if there are special multicast routers on the local and intermediate networks.

DEPENDENCIES
The behavior of IP_MULTICAST_LOOP depends on the network driver and interface card. Normally,
loopback cannot be disabled, even if IP_MULTICAST_LOOP is set to zero, because it occurs in the driver
or in the network interface. However, if the outbound interface is lo0 (127.0.0.1), or if
IP_MULTICAST_TTL is set to zero, setting IP_MULTICAST_LOOP to zero will disable loopback for
multicast datagrams sent through the socket.

ERRORS
One of the following errors may be returned if a call to setsockopt() or getsockopt() fails.

[EADDRINUSE] The specified multicast group has been joined already on socket.

[EADDRNOTAVAIL] The specified IP address is not a local interface address; or there is no
route for the specified multicast address; or the specified multicast group
has not been joined.

4 Hewlett-Packard Company − 4 − HP-UX 11i Version 3: September 2010



A iA

IP(7P) IP(7P)

[EINVAL] The parameter level is not IPPROTO_IP; or optval is the NULL address;
or the specified multicast address is not valid; or the specified source
address is not valid; or the specified interface index is not valid; or the
option is not valid for the current filter mode.

[ENOBUFS] Insufficient memory is available for internal system data structures; or the
number of sources in a multicast source filter exceeds the maximum
number of sources allowed, as determined by the ndd tunable parameters
ip_ipc_mcast_maxsrc and ip_igmp_maxsrc.

[ENOPROTOOPT] The parameter optname is not a valid socket option for the IPPROTO_IP
level.

[EOPNOTSUPP] The socket type is not SOCK_DGRAM.

[ETOOMANYREFS] An attempt to join more than IP_MAX_MEMBERSHIPS multicast groups
on a socket.

AUTHOR
The socket interfaces to IP were developed by the University of California, Berkeley. Multicast exten-
sions were developed by the Stanford University.

SEE ALSO
ndd(1M), bind(2), getsockopt(2), recv(2), send(2), socket(2), getipv4sourcefilter(3N), getsourcefilter(3N),
if_nameindex(3N), setipv4sourcefilter(3N), setsourcefilter(3N), inet(7F).

RFC 3678 Socket Interface Extensions for Multicast Source Filters.

HP-UX 11i Version 3: September 2010 − 5 − Hewlett-Packard Company 5



A iA

(Notes) (Notes)

6 Hewlett-Packard Company − 1 − HP-UX 11i Version 3: September 2010


