
The latex-lab-enumitem package
Emulating enumitem

LATEX Project∗

v0.80b 2026-01-16

Abstract

The following code implements an emulation of enumitem usable with the Tagging
Support Code. It does not emulate every key and command of enumitem. Also
syntax and behaviour can differ in place.

1 Introduction
The enumitem package offers customizable and enhanced list environments but is not
compatible with the Tagging Support Code where lists are reimplemented with templates.

The following code partly emulates enumitem and should be loaded instead of the
package.

2 Key emulation
A large part of the enumitem functionality is provided through keys. Such keys can
be set in the optional argument of single lists and globally for some or all lists in the
\setlist command. Some keys are simple interfaces to list parameters, other have quite
complicated effects, e.g. if they force recalculations of dependant parameters.

With the new LATEXimplementation lists do have an optional argument too which
process a key-value list. The key names differ to the one of enumitem but in a number
of cases a simple mapping is possible. The LATEX key names are noted in the following
tabular in the second column. They can be used instead of the enumitem keys (and will be
a bit faster). The third column shows if the enumitem key has been already emulated and
is usable in the optional argument. The fourth column shows if it is usable in \setlist.

Table 1: List of enumitem keys

enumitem key LATEX key opt. arg. \setlist comment
label (related: item-label) see key description
label*
ref
font,format label-format yes see key description!!
format

∗Initial implementation done by Ulrike Fischer

1

Table 1: List of enumitem keys

enumitem key LATEX key opt. arg. \setlist comment
align label-align yes see key description
topsep begin-vspace yes
partopsep begin-extra-vspace yes
parsep para-vspace yes
itemsep item-vspace yes
labelindent
labelindent*
leftmargin left-margin see key description
rightmargin right-margin see key description
listparindent para-indent see key description
itemindent item-indent see key description
labelsep label-sep see key description
labelsep*
labelwidth label-width see key description
left
widest
widest*
start start yes ?
resume resume yes ? see key description
resume*
series
beginpenalty begin-penalty yes ?
midpenalty item-penalty yes ?
endpenalty end-penalty yes ?
before
before*
after
after*
first
first*
style
noitemsep meta-key yes
nosep meta-key yes
wide partly
itemjoin
itemjoin*
afterlabel
mode

3 Package options
enumitem has a number of package options, but none of them will be supported by the
emulation: adding support for the enumerate syntax (shortlabels) is not planed; inline
lists are not yet implemented but once they are they will be available always.

2

Table 2: List of enumitem package options

enumitem option
shortlabels
inline
ignoredisplayed
series=override
sizes
loadonly

4 Commands

Table 3: List of enumitem user commands

name emulated comment
\SetLabelAlign
\DrawEnumitemLabel
\labelindent
\EnumitemId
\SetEnumitemKey
\SetEnumitemValue
\SetEnumerateShortLabel
\newlist yes
\renewlist
\setlist
\setlistdepth
\AddEnumerateCounter
\restartlist
\SetEnumitemSize

5 Calculating values
When setting up the dimension of lists the values related to the left margin and placement
of the label are typically the most challenging as four dimensions are involved (which can
be negative). enumitem introduces a fifth dimension \labelindent.

\labelwidth

\leftmargin

\labelsep

\itemindent

\labelindent

The relation between the five values is set through the following equation:
\labelindent + \labelwidth + \labelsep = \leftmargin + \itemindent
So obviously one of the dimensions is redundant and can be calculated if the others

are given. By default enumitem calculates the new, “ fake” dimension \labelindent

3

but it is possible to give \labelindent a specific value and declare that another one is
calculated by using ! as value.

Calculation should happen after all keys are set. The code here therefore executes
a key calculate in the list code which looks which key is currently the dependant one
and calculates its value.

enumitem also offers an option to calculate \labelwidth based on the widest entry
(which can be declared with the widest key) by using a star * as value.

6 Alignment
 1 ⟨∗package⟩

7 Implementation
 2 \ProvidesExplPackage {latex-lab-enumitem} {\ltlabenumdate} {\ltlabenumversion}
 3 {Emulating enumitem}

7.1 Key emulation
7.1.1 label

The key item-label from the new LATEX list code changes the label representation from
e.g. \labelenumi to the key value. Internally the representation of the current list is
stored in \l__block_item_label_tl. It does not change \labelenumi, \theenumi or
\p@enumi and so also doesn’t affect references.

The key label from enumitem works quite differently: it changes the label represen­
tation command \labelenumi, the counter representation \theenumi and sets \p@enumi
to empty. So by default the reference is identical to the label representation and if a dif­
ferent reference is wanted it must be set with the ref key. To allow to use \labelenumi
in nested list to create chained labels enumitem replaces all \roman* by \roman{enumi}
(and similar for the other counter representations). The replacement code uses expansion
and so enumitem will error if the star is used with an unknown counter representation
like label=\fnsymbol* or \alphalph. Such unknown counter representation must first
be added with \AddEnumerateCounter.

The new code is less fragile. Counter representation must only be declared with
\AddEnumerateCounter if the star-counter is used outside the current list (e.g. with the
label* key.
 4 ⟨@@=block⟩ % we might want a different module in the end

At first a rather crude (slow) method to replace e.g. \roman* by \roman{enumi} in
the label representation. TODO: speed up.
 5 \clist_new:N \l__block_normalize_cnt_clist
 6 \clist_set:Nn \l__block_normalize_cnt_clist
 7 {\alph,\Alph,\roman,\Roman,\arabic,\fnsymbol}

This command should only be used if \l__block_counter_tl is not empty!
 8 \cs_new:Npn__block_normalize_label:N #1
 9 {
 10 \clist_map_inline:Nn\l__block_normalize_cnt_clist
 11 {

4

 12 \tl_replace_all:Nne#1 {##1*}{\exp_not:N##1{\l__block_counter_tl}}
 13 }
 14 }
 15 \cs_generate_variant:Nn__block_normalize_label:N{c}

 16 \keys_define:nn{template/list/std}
 17 {
 18 label .code:n =
 19 {
 20 \tl_if_empty:NTF\l__block_counter_tl
 21 {
 22 \tl_if_eq:NnTF\l__block_inner_instance_tl{itemize}
 23 {
 24 \tl_set:cn{labelitem\int_to_roman:n{\l__block_inner_level_counter_tl}}{#1}
 25 }
 26 {
 27 \tl_set:cn{label\l__block_inner_instance_tl\int_to_roman:n{\l__block_inner_level_counter_tl}}{#1}
 28 }
 29 }
 30 {
 31 \tl_set:cn{label\l__block_counter_tl}{#1}
 32 __block_normalize_label:c{label\l__block_counter_tl}
 33 \tl_set_eq:cc{the\l__block_counter_tl}{label\l__block_counter_tl}
 34 \tl_set:cn{p@\l__block_counter_tl}{}
 35 }
 36 }
 37 }

7.1.2 label*

TODO:

7.1.3 ref

TODO:

7.1.4 font, format

 38 \keys_define:nn{template/item/std}
 39 { font .meta:n = {label-format={#1{##1}}}}
 40 \keys_define:nn{template/item/std}
 41 { format .meta:n = {label-format={#1{##1}}}}

7.1.5 align

Note: this also supports the value center but parleft is not implemented yet. TODO:
test for differences in behavior.
 42 \keys_define:nn{template/list/std}
 43 { align .meta:n = {label-align=#1}}

7.1.6 topsep

 44 \keys_define:nn{template/block/std}
 45 { topsep .meta:n = {begin-vspace=#1}}

5

7.1.7 partopsep

 46 \keys_define:nn{template/block/std}
 47 { partopsep .meta:n = {begin-extra-vspace=#1}}

7.1.8 parsep

 48 \keys_define:nn{template/block/std}
 49 { parsep .meta:n = {para-vspace=#1}}

7.1.9 itemsep

 50 \keys_define:nn{template/block/std}
 51 { itemsep .meta:n = {item-vspace=#1}}

7.1.10 leftmargin

TODO: handle special values ! and *.
Special values do not work with LATEX key at the moment as it is a register!
 52 \keys_define:nn{template/block/std}
 53 { leftmargin .meta:n = {left-margin=#1}}

7.1.11 rightmargin

TODO: handle special values ! and *.
Special values do not work with LATEX key!
 54 \keys_define:nn{template/block/std}
 55 { rightmargin .meta:n = {right-margin=#1}}

7.1.12 listparindent

TODO: handle special values ! and *.
Special values do not work with LATEX key!
 56 \keys_define:nn{template/block/std}
 57 { listparindent .meta:n = {para-indent=#1}}

7.1.13 itemindent

TODO: handle special values ! and *.
Special values do not work with LATEX key!
 58 \keys_define:nn{template/list/std}
 59 { itemindent .meta:n = {item-indent=#1}}

7.1.14 labelsep, labelsep*

TODO: handle special values ! and *.
Special values do not work with LATEX key!
 60 \keys_define:nn{template/list/std}
 61 { labelsep .meta:n = {label-sep=#1}}

6

7.1.15 labelwidth

TODO: handle special values ! and *.
Special values do not work with LATEX key!
 62 \keys_define:nn{template/list/std}
 63 { labelwidth .meta:n = {label-width=#1}}

7.1.16 labelindent, labelindent*

TODO:, see also \labelindent, note special value ! and *

7.1.17 left

TODO:

7.1.18 widest, widest*

TODO:

7.1.19 start

TODO: Test with setlist

7.1.20 resume

TODO: Test with setlist.
The behavior of the key is different to enumitem, where grouping of the environments
matters: in enumitem a enumerate that is e.g. in quote environment can not be resumed
outside of the quote. With the LATEX code grouping does not matter.

7.1.21 resume*

TODO: decide if it should be implemented

7.1.22 series

TODO: decide if it should be implemented

7.1.23 beginpenalty, midpenalty, endpenalty

 64 \keys_define:nn{template/block/std}
 65 {
 66 beginpenalty .meta:n = {begin-penalty=#1},
 67 endpenalty .meta:n = {end-penalty=#1},
 68 midpenalty .meta:n = {item-penalty=#1}
 69 }

7.1.24 before, before*

TODO: describe behavior (second argument of list does not make sense) Implement with
hooks?

7

7.1.25 after, after*

TODO: implement with hooks?

7.1.26 first, first*

TODO: implement with hooks?

7.1.27 style

TODO: values for description lists: standard, unboxed, nextline, sameline, multiline

7.1.28 noitemsep, nosep

 70 \keys_define:nn{template/blockenv/std}
 71 {
 72 nosep .meta:n =
 73 {
 74 begin-extra-vspace=0pt,
 75 begin-vspace=0pt,
 76 item-vspace=0pt,
 77 para-vspace=0pt
 78 }
 79 }
 80 \keys_define:nn{template/blockenv/std}
 81 {
 82 noitemsep .meta:n =
 83 {
 84 item-vspace=0pt,
 85 para-vspace=0pt
 86 }
 87 }
 88

7.1.29 wide

TODO: calculated value should be delayed ...
 89 \keys_define:nn{template/blockenv/std}
 90 {
 91 wide .meta:n =
 92 {
 93 label-align=left,
 94 para-indent=#1,
 95 left-margin=0pt,
 96 label-width=0pt,
 97 item-indent=\dimeval{#1+\labelsep} %should be delayed
 98 },
 99 wide .default:n = \parindent
100 }

7.1.30 itemjoin, itemjoin*, afterlabel

TODO

8

7.1.31 mode

TODO

7.2 Package options
7.2.1 shortlabels

7.2.2 inline

TODO, creates three environments enumerate*, itemize* and description*

7.2.3 sizes

7.2.4 loadonly

7.3 Command emulation
7.3.1 \SetLabelAlign

7.3.2 \DrawEnumitemLabel

7.3.3 \labelindent

see also key labelindent

7.3.4 \EnumitemId

7.3.5 \SetEnumitemKey

The \SetEnumitemKey defines shortcuts. We can defines them as .meta:n on the block
level. If they are for the inner instances, they get passed down as necessary (this is
slightly less efficient than defining them at the right level, but makes life easier).
101 \NewDocumentCommand \SetEnumitemKey {mm} {
102 \keys_define:nn { template/block/std }
103 { #1 .meta:n = { #2 } }
104 }

As an example, something like noitemsep could have been defined as

 \SetEnumitemKey{noitemsep}{ itemsep=0pt, parsep=0pt }

And this can even be done recursively, e.g.,

 \SetEnumitemKey{nosep} { noitemsep, topsep=0pt, partopsep=0pt }

7.3.6 \SetEnumitemValue

7.3.7 \SetEnumerateShortLabel

7.3.8 \newlist

The \newlist command allows to define new lists which clones the standard lists. The
last number describes the maximum number of levels. Note that with itemize and de­
scription at most 6 levels are allowed. This could be changed with

\setcounter{maxblocklevels}{7}
\DeclareInstance{block}{std-list-7}{display}{}

9

but as enumitem doesn’t allow more levels either the code does not force it.

\newlist

105 \NewDocumentCommand\newlist{mmm} %name, type, number
106 {
107 \str_case:nnF{#2}
108 {
109 {itemize} {__block_setup_itemize:nn{#1}{#3}}
110 {enumerate} {__block_setup_enumerate:nn{#1}{#3}}
111 {description}{__block_setup_description:nn{#1}{#3}}
112 }

TODO: message
113 {\typeout{unknown~list~type~#2}}
114 }
(End of definition for \newlist. This function is documented on page ??.)

__block_setup_itemize:nn

115 \cs_new_protected:Npn __block_setup_itemize:nn #1#2 %#1 name of new list, #2 max levels
116 {
117 \DeclareInstanceCopy{blockenv}{#1}{itemize}
118 \EditInstance{blockenv}{#1}{inner-instance=#1}
119 \NewDocumentEnvironment{#1}{!O{}}
120 { \SimpleBlockEnv {#1} {max-inner-levels= \int_min:nn{\c@maxblocklevels}{#2},##1} }
121 { \BlockEnvEnd }
122 \int_step_inline:nnn{1}{\int_min:nn{\c@maxblocklevels}{#2}}
123 {
124 \IfInstanceExistsTF{list}{itemize-##1}
125 {
126 \DeclareInstanceCopy{list}{#1-##1}{itemize-##1}
127 }

The default label for lists below 4 is simply \labelitemi.
128 {
129 \ExpandArgs{c}
130 \providecommand{labelitem\int_to_roman:n{##1}}{\labelitemi}
131 \DeclareInstance{list}{#1-##1}{std}
132 { item-label = \use:c{labelitem\int_to_roman:n{##1}}}
133 }
134 }
135 }
(End of definition for __block_setup_itemize:nn.)

__block_setup_description:nn

136 \cs_new_protected:Npn __block_setup_description:nn #1#2
137 {
138 \DeclareInstanceCopy{blockenv}{#1}{description}
139 \EditInstance{blockenv}{#1}{inner-instance=#1}
140 \DeclareInstanceCopy{list}{#1}{description}
141 \NewDocumentEnvironment{#1}{!O{}}
142 { \SimpleBlockEnv{#1} {max-inner-levels= \int_min:nn{\c@maxblocklevels}{#2},##1} }
143 { \BlockEnvEnd }
144 }
(End of definition for __block_setup_description:nn.)

10

__block_setup_enumerate:nn

145 \cs_new_protected:Npn __block_setup_enumerate:nn #1#2
146 {
147 \DeclareInstanceCopy{blockenv}{#1}{enumerate}
148 \EditInstance{blockenv}{#1}{inner-instance=#1}
149 \NewDocumentEnvironment{#1}{!O{}}
150 { \SimpleBlockEnv {#1} {max-inner-levels= #2,##1} }
151 { \BlockEnvEnd }
152 \int_step_inline:nnn{1}{#2}
153 {
154 \newcounter{#1\int_to_roman:n{##1}}
155 \ExpandArgs{c}
156 \newcommand{label#1\int_to_roman:n{##1}}
157 {\arabic{#1\int_to_roman:n{##1}}.}
158 \DeclareInstance{list}{#1-##1}{std}
159 {
160 item-label = \use:c{label#1\int_to_roman:n{##1}} ,
161 counter = {#1\int_to_roman:n{##1}}
162 }
163 }
164 }
(End of definition for __block_setup_enumerate:nn.)

7.3.9 \renewlist

7.3.10 \setlist

165 \NewDocumentCommand\setlist{O{}m}{} %dummy for now

7.3.11 \setlistdepth

7.3.12 \AddEnumerateCounter

7.3.13 \SetEnumitemSize

7.3.14 \restartlist

166 ⟨/package⟩

11

	1 Introduction
	2 Key emulation
	3 Package options
	4 Commands
	5 Calculating values
	6 Alignment
	7 Implementation
	7.1 Key emulation
	7.1.1 label
	7.1.2 label*
	7.1.3 ref
	7.1.4 font, format
	7.1.5 align
	7.1.6 topsep
	7.1.7 partopsep
	7.1.8 parsep
	7.1.9 itemsep
	7.1.10 leftmargin
	7.1.11 rightmargin
	7.1.12 listparindent
	7.1.13 itemindent
	7.1.14 labelsep, labelsep*
	7.1.15 labelwidth
	7.1.16 labelindent, labelindent*
	7.1.17 left
	7.1.18 widest, widest*
	7.1.19 start
	7.1.20 resume
	7.1.21 resume*
	7.1.22 series
	7.1.23 beginpenalty, midpenalty, endpenalty
	7.1.24 before, before*
	7.1.25 after, after*
	7.1.26 first, first*
	7.1.27 style
	7.1.28 noitemsep, nosep
	7.1.29 wide
	7.1.30 itemjoin, itemjoin*, afterlabel
	7.1.31 mode

	7.2 Package options
	7.2.1 shortlabels
	7.2.2 inline
	7.2.3 sizes
	7.2.4 loadonly

	7.3 Command emulation
	7.3.1 \SetLabelAlign
	7.3.2 \DrawEnumitemLabel
	7.3.3 \labelindent
	7.3.4 \EnumitemId
	7.3.5 \SetEnumitemKey
	7.3.6 \SetEnumitemValue
	7.3.7 \SetEnumerateShortLabel
	7.3.8 \newlist
	7.3.9 \renewlist
	7.3.10 \setlist
	7.3.11 \setlistdepth
	7.3.12 \AddEnumerateCounter
	7.3.13 \SetEnumitemSize
	7.3.14 \restartlist

