The latex-lab-enumitem package
Emulating enumitem

ETEX Project”
v0.80b 2026-01-16

Abstract

The following code implements an emulation of enumitem usable with the Tagging
Support Code. It does not emulate every key and command of enumitem. Also
syntax and behaviour can differ in place.

1 Introduction

The enumitem package offers customizable and enhanced list environments but is not
compatible with the Tagging Support Code where lists are reimplemented with templates.

The following code partly emulates enumitem and should be loaded instead of the
package.

2 Key emulation

A large part of the enumitem functionality is provided through keys. Such keys can
be set in the optional argument of single lists and globally for some or all lists in the
\setlist command. Some keys are simple interfaces to list parameters, other have quite
complicated effects, e.g. if they force recalculations of dependant parameters.

With the new KTEXimplementation lists do have an optional argument too which
process a key-value list. The key names differ to the one of enumitem but in a number
of cases a simple mapping is possible. The IXTEX key names are noted in the following
tabular in the second column. They can be used instead of the enumitem keys (and will be
a bit faster). The third column shows if the enumitem key has been already emulated and
is usable in the optional argument. The fourth column shows if it is usable in \setlist.

Table 1: List of enumitem keys

enumitem key IATEX key opt. arg. \setlist comment

label (related: item-label) see key description
labelx*

ref

font,format label-format yes see key description!!
format

*Initial implementation done by Ulrike Fischer



Table 1: List of enumitem keys

enumitem key TEX key opt. arg. \setlist comment

align label-align yes see key description
topsep begin-vspace yes

partopsep begin-extra-vspace yes

parsep para-vspace yes

itemsep item-vspace yes

labelindent

labelindentx*

leftmargin left-margin see key description
rightmargin right-margin see key description
listparindent para-indent see key description
itemindent item-indent see key description
labelsep label-sep see key description
labelsep*

labelwidth label-width see key description
left

widest

widest*

start start yes ?

resume resume yes ? see key description
resumex*

series

beginpenalty  begin-penalty yes ?

midpenalty item-penalty yes ?

endpenalty end-penalty yes ?

before

beforex*

after

after*

first

firstx*

style

noitemsep meta-key yes

nosep meta-key yes

wide partly

itemjoin

itemjoinx*

afterlabel

mode

3 Package options

enumitem has a number of package options, but none of them will be supported by the
emulation: adding support for the enumerate syntax (shortlabels) is not planed; inline
lists are not yet implemented but once they are they will be available always.



Table 2: List of enumitem package options

enumitem option

shortlabels
inline

ignoredisplayed
series=override

sizes
loadonly

4 Commands

Table 3: List of enumitem user commands

name

emulated comment

\SetLabelAlign
\DrawEnumitemLabel
\labelindent
\EnumitemId
\SetEnumitemKey
\SetEnumitemValue
\SetEnumerateShortLabel
\newlist

\renewlist

\setlist
\setlistdepth
\AddEnumerateCounter
\restartlist
\SetEnumitemSize

5 Calculating values

yes

When setting up the dimension of lists the values related to the left margin and placement
of the label are typically the most challenging as four dimensions are involved (which can
be negative). enumitem introduces a fifth dimension \labelindent.

\labelsep

\labelindent

]

—

\labelwidth itemindent

\leftmargin

The relation between the five values is set through the following equation:

\labelindent + \labelwidth + \labelsep = \leftmargin + \itemindent

So obviously one of the dimensions is redundant and can be calculated if the others
are given. By default enumitem calculates the new, “fake” dimension \labelindent



but it is possible to give \labelindent a specific value and declare that another one is
calculated by using ! as value.

Calculation should happen after all keys are set. The code here therefore executes
a key calculate in the list code which looks which key is currently the dependant one
and calculates its value.

enumitem also offers an option to calculate \labelwidth based on the widest entry
(which can be declared with the widest key) by using a star * as value.

6 Alignment

1 (xpackage)

7 Implementation

> \ProvidesExplPackage {latex-lab-enumitem} {\ltlabenumdate} {\ltlabenumversion}
{Emulating enumitem}

7.1 Key emulation
7.1.1 label

The key item-label from the new IXTEX list code changes the label representation from
e.g. \labelenumi to the key value. Internally the representation of the current list is
stored in \1__block_item_label_tl. It does not change \labelenumi, \theenumi or
\p@enumi and so also doesn’t affect references.

The key label from enumitem works quite differently: it changes the label represen-
tation command \labelenumi, the counter representation \theenumi and sets \p@enumi
to empty. So by default the reference is identical to the label representation and if a dif-
ferent reference is wanted it must be set with the ref key. To allow to use \labelenumi
in nested list to create chained labels enumitem replaces all \roman* by \roman{enumi}
(and similar for the other counter representations). The replacement code uses expansion
and so enumitem will error if the star is used with an unknown counter representation
like 1label=\fnsymbol* or \alphalph. Such unknown counter representation must first
be added with \AddEnumerateCounter.

The new code is less fragile. Counter representation must only be declared with
\AddEnumerateCounter if the star-counter is used outside the current list (e.g. with the
labelx key.

+ (@@=block) % we might want a different module in the end

At first a rather crude (slow) method to replace e.g. \roman* by \roman{enumi} in
the label representation. TODO: speed up.

5 \clist_new:N \1__block_normalize_cnt_clist
s \clist_set:Nn \1__block_normalize_cnt_clist
7 {\alph,\Alph, \roman, \Roman, \arabic, \fnsymbol}

This command should only be used if \1__block_counter_tl is not empty!

¢ \cs_new:Npn\__block_normalize_label:N #1
o {
10 \clist_map_inline:Nn\1l__block_normalize_cnt_clist

11 {



12 \tl_replace_all:Nne#1 {##1x}{\exp_not:N##1{\1__block_counter_tl1l}}
13 }
14 }

15 \cs_generate_variant:Nn\__block_normalize_label:N{c}

16 \keys_define:nn{template/list/std}

1w A

18 label .code:n =

19 {

20 \tl_if_empty:NTF\1__block_counter_tl

21 {

2 \tl_if_eq:NnTF\1__block_inner_instance_tl{itemize}

23 {

2 \tl_set:cn{labelitem\int_to_roman:n{\1__block_inner_level_counter_t1}}{#1}
25 }

26 {

27 \tl_set:cn{label\l__block_inner_instance_tl\int_to_roman:n{\1__block_inner_level_cc

28 }

29 }

30 {

31 \tl_set:cn{label\l__block_counter_tl1}{#1}

32 \__block_normalize_label:c{label\l__block_counter_tl}

33 \tl_set_eq:cc{the\l__block_counter_tl}{label\l__block_counter_t1l}
34 \tl_set:cn{p@\1l__block_counter_t1}{}

35 }

36 }

37}

7.1.2 label*
TODO:

7.1.3 ref
TODO:

7.1.4 font, format

w

¢ \keys_define:nn{template/item/std}

s { font .meta:n = {label-format={#1{##1}}}}
20 \keys_define:nn{template/item/std}

2 { format .meta:n = {label-format={#1{##1}}}}

7.1.5 align

Note: this also supports the value center but parleft is not implemented yet. TODO:
test for differences in behavior.

2 \keys_define:nn{template/list/std}
43 { align .meta:n = {label-align=#1}}
7.1.6 topsep

2 \keys_define:nn{template/block/std}
45 { topsep .meta:n = {begin-vspace=#1}}



7.1.7 partopsep

s \keys_define:nn{template/block/std}
47 { partopsep .meta:n = {begin-extra-vspace=#1}}

7.1.8 parsep

2 \keys_define:nn{template/block/std}
49 { parsep .meta:n = {para-vspace=#1}}

7.1.9 itemsep

so0 \keys_define:nn{template/block/std}
51 { itemsep .meta:n = {item-vspace=#1}}

7.1.10 1leftmargin

TODO: handle special values ! and *.
Special values do not work with IXTEX key at the moment as it is a register!

52 \keys_define:nn{template/block/std}
53 { leftmargin .meta:n = {left-margin=#1}}

7.1.11 rightmargin
TODO: handle special values ! and *.

Special values do not work with IATEX key!

s \keys_define:nn{template/block/std}
55 { rightmargin .meta:n = {right-margin=#1}}

7.1.12 1listparindent
TODO: handle special values ! and *.
Special values do not work with IATEX key!

56 \keys_define:nn{template/block/std}
57 { listparindent .meta:n = {para-indent=#1}}

7.1.13 itemindent
TODO: handle special values ! and *.
Special values do not work with IATEX key!

st \keys_define:nn{template/list/std}
50 { itemindent .meta:n = {item-indent=#1}}

7.1.14 1labelsep, labelsep*
TODO: handle special values ! and *.
Special values do not work with IATEX key!

o \keys_define:nn{template/list/std}
61 { labelsep .meta:n = {label-sep=#1}}



7.1.15 1labelwidth

TODO: handle special values ! and *.
Special values do not work with IATEX key!

e \keys_define:nn{template/list/std}
63 { labelwidth .meta:n = {label-width=#1}}
7.1.16 1labelindent, labelindent*

TODO:, see also \labelindent, note special value ! and *

7.1.17 1left
TODO:

7.1.18 widest, widestx*

TODO:

7.1.19 start
TODO: Test with setlist

7.1.20 resume

TODO: Test with setlist.

The behavior of the key is different to enumitem, where grouping of the environments
matters: in enumitem a enumerate that is e.g. in quote environment can not be resumed
outside of the quote. With the IXTEX code grouping does not matter.

7.1.21 resume*

TODO: decide if it should be implemented

7.1.22 series
TODO: decide if it should be implemented

7.1.23 beginpenalty, midpenalty, endpenalty

o+ \keys_define:nn{template/block/std}

s {

66 beginpenalty .meta:n = {begin-penalty=#1},
67 endpenalty .meta:n = {end-penalty=#1},
68 midpenalty .meta:n = {item-penalty=#1}
69 }

7.1.24 before, beforex

TODO: describe behavior (second argument of list does not make sense) Implement with
hooks?



7.1.25 after, afterx

TODO: implement with hooks?

7.1.26 first, first*
TODO: implement with hooks?

7.1.27 style

TODO: values for description lists: standard, unboxed, nextline, sameline, multiline

7.1.28 noitemsep, nosep

70 \keys_define:nn{template/blockenv/std}

o {

72 nosep .meta:n =

7 {

74 begin-extra-vspace=0pt,
75 begin-vspace=0pt,

76 item-vspace=0pt,

7 para-vspace=0pt

78 }

o}

20 \keys_define:nn{template/blockenv/std}
81 {

82 noitemsep .meta:n =

: {

84 item-vspace=0pt,

85 para-vspace=0pt

86 }

i}

7.1.29 wide

TODO: calculated value should be delayed ...
2 \keys_define:nn{template/blockenv/std}

90 {

o1 wide .meta:n =

02 {

03 label-align=left,

94 para-indent=#1,

95 left-margin=0pt,

% label-width=0pt,

07 item-indent=\dimeval{#1+\labelsep} %should be delayed ....
98 },

oo  wide .default:n = \parindent
100 }

7.1.30 itemjoin, itemjoin#*, afterlabel

TODO



7.1.31 mode
TODO

7.2 Package options
7.2.1 shortlabels
7.2.2 inline

TODO, creates three environments enumerate*, itemize* and description*

7.2.3 sizes

7.2.4 loadonly

7.3 Command emulation
7.3.1 \SetLabelAlign

7.3.2 \DrawEnumitemLabel
7.3.3 \labelindent

see also key labelindent

7.3.4 \EnumitemId
7.3.5 \SetEnumitemKey

The \SetEnumitemKey defines shortcuts. We can defines them as .meta:n on the block
level. If they are for the inner instances, they get passed down as necessary (this is
slightly less efficient than defining them at the right level, but makes life easier).

101 \NewDocumentCommand \SetEnumitemKey {mm} {
102 \keys_define:nn { template/block/std }
103 { #1 .meta:n = { #2 } }
104 }

As an example, something like noitemsep could have been defined as
\SetEnumitemKey{noitemsep}{ itemsep=Opt, parsep=Opt }
And this can even be done recursively, e.g.,

\SetEnumitemKey{nosep} { noitemsep, topsep=Opt, partopsep=Opt }

7.3.6 \SetEnumitemValue
7.3.7 \SetEnumerateShortLabel
7.3.8 \newlist

The \newlist command allows to define new lists which clones the standard lists. The
last number describes the maximum number of levels. Note that with itemize and de-
scription at most 6 levels are allowed. This could be changed with

\setcounter{maxblocklevels}{7}
\DeclareInstance{block}{std-list-7}{display}{}



\__block_setup_itemize:nn

\

\newlist

\__block _setup description:nn

but as enumitem doesn’t allow more levels either the code does not force it.

\NewDocumentCommand\newlist{mmm} %name, type, number

{

\str_case:nnF{#2}

{
{itemize} {\__block_setup_itemize:nn{#1}{#3}}
{enumerate} {\__block_setup_enumerate:nn{#1}{#3}}
{description}{\__block_setup_description:nn{#1}{#3}}
}

TODO: message

113

114

}

{\typeout{unknown~list~type~#2}}

(End of definition for \newlist. This function is documented on page 77.)

\cs

{

_new_protected:Npn \__block_setup_itemize:nn #1#2 %#1 name of new list, #2 max levels

\DeclareInstanceCopy{blockenv}{#1}{itemize}
\EditInstance{blockenv}{#1}{inner-instance=#1}
\NewDocumentEnvironment{#1}{!0{}}
{ \SimpleBlockEnv {#1} {max-inner-levels= \int_min:nn{\c@maxblocklevels}{#2},##1} }
{ \BlockEnvEnd }
\int_step_inline:nnn{1}{\int_min:nn{\c@maxblocklevels}{#2}}
{

\IfInstanceExistsTF{list}{itemize-##1}

{

\DeclareInstanceCopy{list}{#1-##1}{itemize-##1}
}

The default label for lists below 4 is simply \labelitemi.

128

129

130

131

135

}

{
\ExpandArgs{c}
\providecommand{labelitem\int_to_roman:n{##1}}{\labelitemi}
\DeclareInstance{list}{#1-##1}{std}
{ item-label = \use:c{labelitem\int_to_roman:n{##1}}}

(End of definition for \__block_setup_itemize:nn.)

138

139

140

141

142

143

144

s \cs

{

}

_new_protected:Npn \__block_setup_description:nn #1#2

\DeclareInstanceCopy{blockenv}{#1}{description}
\EditInstance{blockenv}{#1}{inner-instance=#1}
\DeclareInstanceCopy{list}{#1}{description}

\NewDocumentEnvironment{#1}{!0{}}

{ \SimpleBlockEnv{#1} {max-inner-levels= \int_min:nn{\c@maxblocklevels}{#2},##1} }
{ \BlockEnvEnd }

(End of definition for \__block_setup_description:nn.)

10



\__block_setup_enumerate:nn

15 \cs_new_protected:Npn \__block_setup_enumerate:nn #1#2

146 {

147 \DeclareInstanceCopy{blockenv}{#1}{enumerate}

148 \EditInstance{blockenv}{#1}{inner-instance=#1}

149 \NewDocumentEnvironment{#1}{!0{}}

150 { \SimpleBlockEnv {#1} {max-inner-levels= #2,##1} }
151 { \BlockEnvEnd }

152 \int_step_inline:nnn{1}{#2}

153 {

154 \newcounter{#1\int_to_roman:n{##1}}

155 \ExpandArgs{c}

156 \newcommand{label#1\int_to_roman:n{##1}}

157 {\arabic{#1\int_to_roman:n{##1}}.}
158 \DeclareInstance{list}{#1-##1}{std}

159 {

160 item-label = \use:c{label#1\int_to_roman:n{##1}} ,
161 counter = {#1\int_to_roman:n{##1}}

162 }

163 }

164 }

(End of definition for \__block_setup_enumerate:nn.)

7.3.9 \renewlist

7.3.10 \setlist

165 \NewDocumentCommand\setlist{0{Im}{} %dummy for now

7.3.11 \setlistdepth

7.3.12 \AddEnumerateCounter

7.3.13 \SetEnumitemSize

7.3.14 \restartlist

16 {/package)

11



	1 Introduction
	2 Key emulation
	3 Package options
	4 Commands
	5 Calculating values
	6 Alignment
	7 Implementation
	7.1 Key emulation
	7.1.1 label
	7.1.2 label*
	7.1.3 ref
	7.1.4 font, format
	7.1.5 align
	7.1.6 topsep
	7.1.7 partopsep
	7.1.8 parsep
	7.1.9 itemsep
	7.1.10 leftmargin
	7.1.11 rightmargin
	7.1.12 listparindent
	7.1.13 itemindent
	7.1.14 labelsep, labelsep*
	7.1.15 labelwidth
	7.1.16 labelindent, labelindent*
	7.1.17 left
	7.1.18 widest, widest*
	7.1.19 start
	7.1.20 resume
	7.1.21 resume*
	7.1.22 series
	7.1.23 beginpenalty, midpenalty, endpenalty
	7.1.24 before, before*
	7.1.25 after, after*
	7.1.26 first, first*
	7.1.27 style
	7.1.28 noitemsep, nosep
	7.1.29 wide
	7.1.30 itemjoin, itemjoin*, afterlabel
	7.1.31 mode

	7.2 Package options
	7.2.1 shortlabels
	7.2.2 inline
	7.2.3 sizes
	7.2.4 loadonly

	7.3 Command emulation
	7.3.1 \SetLabelAlign
	7.3.2 \DrawEnumitemLabel
	7.3.3 \labelindent
	7.3.4 \EnumitemId
	7.3.5 \SetEnumitemKey
	7.3.6 \SetEnumitemValue
	7.3.7 \SetEnumerateShortLabel
	7.3.8 \newlist
	7.3.9 \renewlist
	7.3.10 \setlist
	7.3.11 \setlistdepth
	7.3.12 \AddEnumerateCounter
	7.3.13 \SetEnumitemSize
	7.3.14 \restartlist





