
“Byrne” v. 0.2.2 package for METAPOST and
LATEX

Sergey Slyusarev

February 7, 2022

Abstract

This document describes “Byrne” package for METAPOST and LATEX.

This document is distributed under CC-BY-SA 4.0 license
cba

https://github.com/jemmybutton/byrne-latex

1 Introduction
Oliver Byrne’s 1847 quirky edition on the first six books of Euclid’s “Elements”[1]
is an interesting example of tight interplay between text and graphics in infor-
mation visualization. The main feature of this book is that instead of relying on
letter designations to describe lines, angles, etc., all the diagrams in it are colored
and parts of these diagrams are directly incorporated into text.

Recently this work met somewhat of a renaissance and in the span of a couple
of years at least three independent attempts were made at reviving Byrne’s work.
In early 2017 the first six books remade in ConTEXt were published on GitHub[4],
in late 2018 an interactive web-version was published by Nicholas Rougeux[3] and
in late 2019 a printed version of all Euclid’s 15 books was published by Kronecker
Wallis. All three are very different in terms of approach and goals.

The ConTEXt version’s main objective was to develop a toolkit for applying
Byrne’s approach to a variety of geometry problems in the least time-consuming
manner. This package is a LATEX (specifically LuaLATEX) version of the toolkit.
It consists of two parts: METAPOST code to describe and render geometric con-
structions and LATEX code to incorporate these constructions in text.

2 Requirements
This package works with LuaLATEX and requires luamplib v2.23.0 or higher.

1

https://github.com/jemmybutton/byrne-latex
https://archive.org/details/firstsixbooksofe00byrn/
https://github.com/jemmybutton/byrne-euclid/
https://www.c82.net/euclid/
https://www.kroneckerwallis.com/product/euclids-elements-completing-oliver-byrnes-work/

3 Example

A

B

C

In
A

B

C

the angle
B

CA

is a right angle, therefore
A

B

C

is a right-angled

triangle. In it C B
C B >

A B
A B and B C

B C >
A C
A C .

The construction above is described like this:

\usepackage{byrne}
...
\defineNewPicture{ % MetaPost code to describe the main diagram is placed inside

textLabels := true; % This turns text labels on
pair A, B, C;
A := (0, 0);
B := (0, 2cm);
C := (3cm, 0);
byAngleDefine(C, B, A, byyellow, 0); % This defines a yellow angle CBA
byAngleDefine(B, A, C, byblue, 0);
byAngleDefine(A, C, B, byred, 0);
draw byNamedAngleResized(); % Draws angles.
byLineDefine(A, B, byred, 0, 0); % This defines a red line AB.
byLineDefine(B, C, byblue, 0, 0);
byLineDefine(C, A, byyellow, 0, 0);
draw byNamedLineSeq(1)(AB,BC,CA); % Draws joint lines in sequence
draw byLabelsOnPolygon(A, B, C)(0, 0); % Draws text labels

}
\drawCurrentPicture % Draws the diagram

In
\drawFromCurrentPicture[middle][triangleABC]{

startAutoLabeling;
draw byNamedLineSeq(0)(AB,BC,CA);
stopAutoLabeling;

}
the angle \drawAngle{A} is a right angle, therefore \triangleABC\ is
a right-angled triangle. In it $\drawUnitLine{CB} > \drawUnitLine{AB}$
and $\drawUnitLine{BC} > \drawUnitLine{AC}$.

Several things to note here.
In the METAPOST part: All points are ordinary METAPOST pairs and can

be defined and manipulated as such. Normally every part of the diagram is first
defined (e.g. byAngleDefine or byLineDefine) and then is drawn (e.g. draw
byNamedAngleResized... or draw byNamedLineSeq...). Also, although Byrne
didn’t use text labels in his book, they are implemented in this package 4.8.
Normally they are placed semi-manually in the main diagram (using functions like

2

byLabelsOnPolygon) and mostly automatically in offspring pictures. By default
they are turned off, and to turn them on textLabels := true; should be set.

In the LATEX part: The most general way to reference main diagram is to
use \drawFromCurrentPicture. It will process arbitrary METAPOST code based
on the main diagram’s code and output an image. However, it would be too
cumbersome to use this route every time, so a few shortcuts are in place. If you
do need to process arbitrary code, you can give picture a name (in the example it’s
triangleABC). It will define a macro of the same name \triangleABC which will
output the same image again. For most common cases there are special macros
which don’t require you to write any METAPOST code. For instance \drawAngle
and \drawUnitLine allow you to call angles and lines simply by name. The names
don’t have to match the initial definition exactly. For instance, the angle in the
example can be called A, BAC or ABC interchangeably, or the same line segment can
be called either BC or CB.

For more examples you can look at the source code of the ConTEXt version of
Byrne’s book. This package shares syntax with it and its code can be transferred
to LATEX with minimal changes.

The following reference guide is not complete and will be updated in the future.

4 METAPOST part reference
4.1 Global variables and settings
4.1.1 Global variables

There are several variables which control the looks and behaviour.
lineWidth — the width for regular lines, set to 2pt by default. Normally

referenced as 0.
lineWidthThin — the width for thin lines, set to 1pt by default. Normally

referenced as 1.
lineWidthHair — the width for superthin lines, set to 1/2pt by default. Nor-

mally referenced as 2.
pointMarkSize — size of point marks, set to 4pt by default.
pointLinesSize — size for line segments used to depict points, set to 1/2cm

by default.
defaultScaleFactor — global default scale factor, set to 1 by default.
angleSize — angle arc radius, set to 1cm by default.
angleScale — scale factor for angle arcs, set to 1 by default.
globalRotation — angle to rotate the whole picture.
markLength — size of marks on lines, set to 3lineWidth by default.
rayExtension — length for a ray depiction, set to 1/3cm by default.
textLabels — whether to render text labels, set to false by default.
autoRightAngles — whether to depict right angles using angles instead of

arcs, set to false by default.
textLabelShift — how far away to put text labels from points, set to

lineWidth by default.

3

https://github.com/jemmybutton/byrne-euclid/
https://github.com/jemmybutton/byrne-euclid/

4.1.2 defineColor.ColorName(color)

Defines a color. Colors can be defined as regular METAPOST colors as well, this
is just a shorthand version.

ColorName — mandatory color name of suffix type.
color — an actual calor, can be either of color type or of cmykcolor type.
Some colors are predefined. Colors similar to the ones Byrne used for his book

are: byblack , byred , byblue , byyellow . One obvious issue of any
color coding is whether the colors are discernible by colorblind people. Byrne’s
colors should be mostly fine, but there are only foru of them. In case more colors
are necessary, eight colors from colorblind-friendly palette by Okabe and Ito [2] are
defined: oiBlack , oiOrange , oiSkyBlue , oiGreen , oiYellow ,

oiBlue , oiVermillion , oiPurple . Also text labels 4.8 are helpful as
a secondary means of identification.

4.1.3 startTempScale(tmpScale); ... METAPOST code ... stopTemp-
Scale;

Used to temporarily set scale factor for a section of code;
tmpScale — scale factor for a section of code.

4.1.4 startTempAngleScale(tmpAngleScale); ... METAPOST code ...
stopTempAngleScale;

Used to temporarily set angle scale factor for a section of code;
tmpAngleScale — angle scale factor for a section of code.

4.1.5 startGlobalRotation(rotationAngle); ... METAPOST code ...
stopGlobalRotation;

Used to temporarily set global rotation for a section of code;
rotationAngle — global rotation for a section of code.

4.1.6 startAutoLabeling; ... METAPOST code ... stopAutoLabeling

Used to turn auto labeling for a section of code. Most of the drawing functions
have auto labeling which is turned off by default. Sometimes it’s handy to use it
instead of labeling items by hand.

4.2 Lines
4.2.1 byLineDefine.LineName(A, B, color, dashed, thick)

Defines a straight line. Does not return anything.
LineName — optional line name of suffix type. If no name is provided, it is

being constructed from point names, e.g. AB.
A, B — point names, of suffix type (i.e., variable names should be provided).

4

https://jfly.uni-koeln.de/color/

color — line color, of color type.
dashed — is line dashed. 0 for solid line and 1 for dashed line.
thick — is line thick. 0 for regular line and 1 for thin line 4.1.1.
For example, this line A B

A B is defined as byLineDefine(A, B, byred, 0,
0); and this line C D

C D is defined as byLineDefine(C, D, byblue, 1, 1);

4.2.2 byLine.LineName(A, B, color, dashed, thick)

Defines and draws a straight line. Returns a picture of the line.
Arguments are the same as in byLineDefine 4.2.1.

4.2.3 byNamedLine(LINES_LIST)

Draws lines. Returns a picture of the lines.
LINES_LIST — a comma-separated list of line names.

4.2.4 byNamedLineSeq(lineShift)(LINES_LIST)

Draws lines joined in sequence. Line joints look like this: . Returns a picture
of the lines.

lineShift — how much the lines are shifted perpendicular lines’ axis. 1 is for

one regular line thickness to one side , -1 is for one regular line thickness to
the other side .

LINES_LIST — a comma-separated list of line names.

4.2.5 byMarkLine(position, color)(LineName)

Defines and draws a mark on a line.
position — a position of the mark. 0 for one end of the line, 1 for the other

end of the line.
color — mark color, of color type.
LineName — line name, of suffix type.
For example this line mark A B is drawn with draw byMarkLine(1/4,

byred, AB);.

4.2.6 byNamedMarkLine(LineName)

Draws a defined mark on the given line.
LineName — line name, of suffix type.

4.3 Points
4.3.1 byPointLabelDefine(A, pointLabel)

Defines a point text label, returns nothing. By default point names are the same
as the names of respective variables.

5

A — a name of a point of suffix type (i.e., variable name should be provided).
pointLabel — point label of string type.

4.3.2 byPointLabelRemove(POINTS_LIST)

Sets text labels of multiple points to blank. Useful if text labels are turned on,
but you don’t want labels on certain points.

POINTS_LIST — a comma-separated list of point names.

4.3.3 byPointMarkDefine(PointName)(color, style)

Defines a point mark.
color — mark color, of color type.
style — 0 for solid circle , 1 for white circle with outline . Mark size is

controlled by pointMarkSize 4.1.1.

4.4 Arcs and circles
4.4.1 byArcDefineBE.ArcName(O, begin, end, radius, color, dashed,

thick, shift, endType)

Defines an arc based on its center, radius and two angles. Returns nothing.
ArcName — optional arc name of suffix type. If no name is provided, it is

being constructed from center point name, e.g. O.
O — the center of the circle an arc is from, of suffix type (i.e., variable name

should be provided).
begin, end — beginning and ending of the arc in eighths (in essence, arctime

of fullcircle). 0 for 3 o’clock, 2 for 12 o’clock etc. For instance, this is 0,
3 and this is 5, 7.

radius — arc radius.
color — arc color, of color type.
dashed — is arc line dashed. 0 for solid line and 1 for dashed line.
thick — is arc line thick. 0 for regular line and 1 for thin line 4.1.1.
shift — how much arc line is shifted. 1 is for one regular line thickness

outwards , -1 is for one regular line thickness inwards .
endType — type of arc line ends. 0 for ends cut by the radii and 1 for

ends cut by the chord .

4.4.2 byArcBE.arcName(O, begin, end, radius, color, dashed, thick,
shift, endType)

Defines and draws an arc based on its center, radius and two angles. Returns the
picture of the arc.

Arguments are the same as in byArcDefineBE 4.4.1.

6

4.4.3 byArcDefine.ArcName(O, B, E, radius, color, dashed, thick,
shift, endType)

Defines an arc based on its center, radius and two points. Returns nothing.
Arguments are the same as in byArcDefineBE 4.4.1, except for instead of angles

in eights points are used.
ArcName — optional arc name of suffix type. If no name is provided, it is

being constructed from point names, e.g. BOE.
B, E — points in the direction of the beginning and the ending of the arc

respectively. Of suffix type (i.e., variable names should be provided).

4.4.4 byArc.ArcName(O, B, E, radius, color, dashed, thick, shift, end-
Type))

Arguments are the same as in byArcDefine 4.4.3.

4.4.5 byNamedArcExact(ARCS_LIST)

Draws a picture of arcs just as they were defined. Returns a picture of the arcs.
ARCS_LIST — a comma-separated list of arc names.

4.4.6 byNamedArc(ARCS_LIST)

Draws a picture of arcs, except of it ignores shift and endType. Returns a picture
of the arcs.

ARCS_LIST — a comma-separated list of arc names.

4.4.7 byCircleDefineFree.CircleName(o, radius, color, dashed, thick,
shift)

Defines a circle based on its center and radius. Returns nothing.
CircleName — optional circle name of suffix type. If no name is provided,

aCircle is used for a name.
o — the center of the circle, of pair type.
radius — circle radius.
color — circle color, of color type.
dashed — is circle line dashed. 0 for solid line and 1 for dashed line.
thick — is circle line thick. 0 for regular line and 1 for thin line 4.1.1.
shift — how much circle line is shifted. 1 is for one regular line thickness

outwards , -1 is for one regular line thickness inwards .

4.4.8 byCircleDefineR.CircleName(O, radius, color, dashed, thick,
shift)

Defines a circle based on its center and radius. Returns nothing.

7

Arguments are the same as in byCircleDefineFree 4.4.7, except for the center
is not defined directly by a pair.

CircleName — optional circle name of suffix type. If no name is provided,
it is being constructed from center name, e.g. O.

O — the center of the circle. Of suffix type (i.e., variable name should be
provided).

4.4.9 byCircleR.CircleName(O, radius, color, dashed, thick, shift)

Defines and draws circle based on its center and radius. Returns a picture of that
circle.

Arguments are the same as in byCircleDefineR 4.4.8.

4.4.10 byCircleDefine.CircleName(O, A, color, dashed, thick, shift)

Defines circle based on its center and a point. Returns nothing.
Arguments are the same as in byCircleDefineR 4.4.8, except for instead of

the radius, a point through which the circle is drawn is used.
CircleName — optional circle name of suffix type. If no name is provided,

it is being constructed from point names, e.g. OA.
A — a point through which the circle is drawn. Of suffix type (i.e., variable

name should be provided).

4.4.11 byCircle.CircleName(O, A, color, dashed, thick, shift)

Defines and draws circle based on its center and a point. Returns a picture of that
circle.

Arguments are the same as in byCircleDefine 4.4.10.

4.4.12 byCircleABC.CircleName(A, B, C, color, dashed, thick, shift)

Arguments are the same as in byCircleDefineR 4.4.8, except for instead of the
center and the radius, three points through which the circle is drawn are used.

CircleName — optional circle name of suffix type. If no name is provided,
it is being constructed from point names, e.g. ABC.

A, B, C — points through which the circle is drawn. Of suffix type (i.e.,
variable names should be provided).

4.4.13 byNamedCircle(CIRCLES_LIST)

Draws circles. Returns a picture of the circles.
CIRCLES_LIST — a comma-separated list of circle names.

8

4.5 Arbitraty figures
4.5.1 byArbitraryFigureDefine.ArbitraryFigureName(figurePath, col-

or, dashed, thick)

Defines an arbitrary figure (basically, any path). Returns nothing.
ArbitraryFigureName — optional figure name of suffix type. If no name is

provided, anArbitraryFigure is used for a name.
figurePath — figure path, of path type.
color — figure color, of color type.
dashed — is figure line dashed. 0 for solid line and 1 for dashed line.
thick — is figure line thick. 0 for regular line and 1 for thin line 4.1.1.

4.5.2 byArbitraryFigure.ArbitraryFigureName(figurePath, color, dash-
ed, thick)

Defines an arbitrary figure. Returns nothing.
Arguments are the same as in byArbitraryFigure 4.5.2.

4.5.3 byNamedArbitraryFigure(ARBITRARY_FIGURES_LIST)

Draws arbitrary figures. Returns a picture of the figures.
ARBITRARY_FIGURES_LIST — a comma-separated list of figure names.

4.6 Filled figures
4.6.1 byPolygonDefine.PolygonName(POINTS_LIST)(Color)

Defines a polygon based on its vertex points. Returns nothing.
PolygonName — optional polygon name suffix.
POINTS_LIST — a comma-separated list of point names.
Color — line color, of suffix type (i.e. a variable name should be provided).

4.6.2 byPolygon.polygonName(POINTS_LIST)(Color)

Defines and draws a polygon based on its vertex points. Returns a picture of the
polygon.

Arguments are the same as in byPolygonDefine 4.6.1.

4.6.3 byNamedPolygon(POLYGONS_LIST)

Draws polygons. Returns a picture of the polygons.
POLYGONS_LIST — a comma-separated list of polygon names.

9

4.7 Angles
4.7.1 byAngleDefine.AngleName(A, B, C, color, style)

Defines an angle based on three points. Returns nothing.
AngleName — optional angle name suffix.
A, B, C — angle points. Of suffix type (i.e., variable names should be

provided).
color — angle color, of color type.
style — angle arc style. 0 for solid filled sector , 1 for arc , 2 for

dashed arc . Default arc radius is determined by angleSize 4.1.1. It can be
temporarily changed using angleScale 4.1.1. You can also define custom angle
styles 4.7.7.

4.7.2 byConsiderAngleRight(AngleName)

Makes a defined angle look like an angle instead of a circle arc , as right
angles are often depicted. Useful if an angle is not actually right in the diagram,
but is meant to be right or assumed to be right. To make all the right angles look
like this automatically, you can set autoRightAngles := true;4.1.1.

AngleName — name of the angle.

4.7.3 byAngle.AngleName(A, B, C, color, style)

Defines and draws an angle based on three points. Returns a picture of the angle.
Arguments are the same as in byAngleDefine 4.7.1.

4.7.4 byAngleDefineExtended.AngleName(A, B, C, color, style)(OP-
TIONAL_COLORS_LIST)

Defines an angle based on three points. Returns nothing.
Arguments are the same as in byAngleDefine 4.7.1, except for using this

function it’s possible to define optional colors for an angle.
OPTIONAL_COLORS_LIST — a comma-separated list of optional color names.

See 4.7.7 for details.

4.7.5 byAngleExtended.AngleName(A, B, C, color, style)(OPTION-
AL_COLORS_LIST)

Defines and draws an angle based on three points. Returns a picture of the angle.
Arguments are the same as in byAngleDefineExtended 4.7.4.

4.7.6 byNamedAngle(ANGLES_LIST)

Draws angles. Returns a picture of the angles.
ANGLES_LIST — a comma-separated list of polygon names.

10

4.7.7 Angle styles

It’s possible to add custom angle styles. To do this, you first need to define a
function, with a particular set of arguments and then include this function’s name
into a special list. As an example here’s the function which describes a regular
solid angle sector:
vardef byAngleMSolid (expr angleArc, angleColor)(suffix AngleOptionalColors) =

save p;
path p;
p := angleArc scaled (angleScale*angleSize);
image(

fill ((0, 0)--p--cycle) withcolor angleColor;
)

enddef;

Note the argument AngleOptionalColors. It is not used for solid an-
gles and is not defined with byAngleDefine, but several optional colors can
be defined using byAngleDefineExtended 4.7.4 and can be accessed using
AngleOptionalColors[0], AngleOptionalColors[1] etc.

And here’s how this angle style is included in the list:
byAngleMacroName[0] := "byAngleMSolid";

Here 0 is the value of sty argument used in byAngleDefine 4.7.1 and such to
call this particular angle style.

As a more practical example, in Byrne’s book, in a couple of places for some
reason he chooses not to use ordinary arcs and sectors, but instead goes with
unique angle designs. In order not to include these peculiarities into the main
lib in the ConTEXt version they were defined in situ. Here’s the definition from
IV.III:
vardef byAngleMSectors (expr angleArc, angleColor)(suffix angleOptionalColors) =

save p;
path p[];
p1 := (subpath(0, arctime (1/3arclength(angleArc)) of angleArc)

of angleArc)
scaled (angleScale*angleSize);

p2 := (subpath(arctime (1/3arclength(angleArc))
of angleArc, arctime(2/3arclength(angleArc)) of angleArc) of angleArc)
scaled (angleScale*angleSize);

p3 := (subpath(arctime (2/3arclength(angleArc))
of angleArc, length(angleArc)) of angleArc)
scaled (angleScale*angleSize);

image(
fill ((0, 0)--p1--cycle) withcolor angleOptionalColors[0];
fill ((0, 0)--p2--cycle) withcolor angleColor;
fill ((0, 0)--p3--cycle) withcolor angleOptionalColors[1];

)
enddef;
byAngleMacroName[3] := "byAngleMSectors";

This angle style employs two optional colors and can be called by setting style
argument 4.7.1 to 3. This is what the result of byAngleDefineExtended(A, B,
C, byred, 3)(byblue, byyellow); (4.7.4) looks like: .

11

4.8 Text labels
There are no text labels in Byrne’s book, but, as Edward Tufte points out in
his 1990 book, adding small text labels can actually help speed recognition of
geometric elements [5]. It’s not clear whether it’s indeed the case for the reader,
but at the very least text labels provide the author with the means of linking source
code with the rendered pages. Several functions listed below allow for adding text
labels very similar to the ones suggested by Tufte.

Text labels are turned off by default. As a result, simply adding code for text
labels won’t make them visible. They only appear when textLabels := true; is
set in the beginning of a main picture or globally by defining \def\{...} mpPre
5.1.1. Text labels don’t always have to be added manually, most elements can do
auto labeling 4.1.6 which is intended to work with standalone angles, polygons,
etc.

4.8.1 byLabelPoint(A, labelAngle, distance)

Draws a text label for a point. Returns a picture of the label.
A — the point to label, of suffix type (i.e., point name should be provided).
labelAngle — angle at which the label should be drawn in degrees.
distance — distance at which the label should be drawn in textLabelShift

units.

4.8.2 byLabelLine(distance)(LINES_LIST)

Draws text labels for lines. Returns a picture of the labels.
distance — distance at which the labels should be drawn in textLabelShift

units.
LINES_LIST — a comma-separated list of line names.

4.8.3 byLabelPolygon(distance)(POLYGONS_LIST)

Draws text labels for polygons. Returns a picture of the labels.
distance — distance at which the labels should be drawn in textLabelShift

units.
POLYGONS_LIST — a comma-separated list of polygon names.

4.8.4 byLabelsOnCircle(POINTS_LIST)(CircleName)

Draws text labels for points on a circle. Returns a picture of the labels.
POINTS_LIST — a comma-separated list of point names.
CircleName — circle name of suffix type.

4.8.5 byLabelsOnPolygon(POINTS_LIST)(style, shift)

Draws text labels for points on a polygon. Returns a picture of the labels.
POINTS_LIST — a comma-separated list of point names.

12

style — specifies which points to omit. 0 to draw labels for all listed points
A

BCD
, 1 to draw labels for all listed points, except for the ones at straight angles

A

BD
, 2 omits first and last points BC

, 3 omits the first point BCD
, 4

omits the last point
A

BC

.

shift — negative to move labels closer, positive to move labels farther.

4.8.6 byLabelLineEnd(A, B)(distance)

Draws a text label for a line end. Returns a picture of the label.
A, B — line ends, of suffix type (i.e., point name should be provided).
distance — negative to move labels closer, positive to move labels farther.

5 LATEX part reference
5.1 General purpose
5.1.1 \defineNewPicture [offspringPictureScaleFactor] [mainPicture-

ScaleFactor] {METAPOST code}

This macro is used to describe a main diagram.
offspringPictureScaleFactor — how much smaller offspring pictures should

be. 1/3 by default.
mainPictureScaleFactor — scale factor for the main picture. 1 by default.
METAPOST code — actual METAPOST code to describe the main picture. To

have some snippets of code always executed before and after the code for the main
picture (e.g. to turn on text labels by default with textLabels := true;), define
\mpPre and \mpPost macros respectively in the preamble of your document, like
this:
\def\mpPre{...some \METAPOST\ code...}
\def\mpPost{...some \METAPOST\ code...}

5.1.2 \drawCurrentPicture

Draws the main diagram.

5.1.3 \defineFromCurrentPicture {verticalAlignment} {Picture-
Name} {METAPOST code}

This macro is used to describe a diagram, based on the main diagram.
verticalAlignment — vertical alignment declaration. middle to align the

picture with the middle of the line, anything else for bottom alignment.
PictureName — picture name.
MP code — actual METAPOST code to describe the picture.
Can be drawn using \PictureName.

13

5.1.4 \drawFromCurrentPicture [verticalAlignment] [PictureName]
{METAPOST code}

This macro is used to describe and draw a diagram, based on the main diagram.
verticalAlignment — optional vertical alignment declaration. middle to

align the picture with the middle of the line, anything else for bottom alignment.
PictureName — optional picture name.
METAPOST code — actual METAPOST code to describe the picture.
Can be drawn again later using \PictureName.

5.2 Specialized
5.2.1 \drawUnitLine[LineSecondName]{LineName}

Draws a line of unit length with colors and labels based on the line of the same
name in the main diagram.

LineSecondName — optional line name.
LineName — name of the line to reference in the main diagram.
If a name is given, can be called later using \ulineLineNameLineSecondName,

otherwise — \ulineLineName.

5.2.2 \drawProportionalLine{LineName}

Draws a line with colors and labels based on and length linearly proportional to
the line of the same name in the main diagram.

LineName — name of the line to reference in the main diagram.
Can be called later using \plineLineName.

5.2.3 \drawSizedLine[LineSecondName]{LineName}

Draws a line with colors and labels based on and length proportional to the line
of the same name in the main diagram.

LineSecondName — optional line name.
LineName — name of the line to reference in the main diagram.
If a name is given, can be called later using \slineLineNameLineSecondName,

otherwise — \slineLineName.

5.2.4 \drawUnitRay[RayName]{LineName}

Draws a ray of unit length with colors and labels based on the line of the same
name in the main diagram.

RayName — optional ray name.
LineName — name of the line to reference in the main diagram.
If a name is given, can be called later using \urayLineNameRayName, other-

wise — \urayLineName.

14

5.2.5 \drawRightAngle, \drawTwoRightAngles

Draws a right angle and two right angles respectively.

More broadly, following generic right angles are defined: rightAngleNE ,

rightAngleES , rightAngleSW , rightAngleWN .
If you choose to go with angles instead of arcs for right angles (4.1.1, 4.7.2),

adding autoRightAngles := true; to \mpPre 5.1.1 won’t change the appearance
of these angles, since they are defined before \mpPre commands are executed.
Instead, these angles should be redefined. There’s a special command for this
purpose: byDefineGenericRightAngles(true); where true tells this command
to run byConsiderAngleRight 4.7.2 for each of the generic right angles.

5.2.6 \drawAngle{AngleName}

Draws an angle.
AngleName — name of the angle to reference in the main diagram. When just

one letter is used, all the angles defined at this point will be drawn, e.g. .

When used to reference one single defined angle, the direction doesn’t matter. E.g.

AOB and BOA will return the same picture
A

B

O

. When used to reference an angle

composed of several defined angles, the name sould be given counterclockwise.

E.g. \drawAngle{AOD} is A

D

O
and \drawAngle{DOA} is

D

A
O

.

Can be called later using \angleAngleName.

5.2.7 \drawAngleWithSides {AngleName}

Draws an angle and sections of its adjacent sides placed if angle portion style is

not 0. E.g., this angle
C

A

B

is drawn with \drawAngle{B}, and this angle
C

A

B

is drawn with \drawAngleWithSides{B}.
AngleName — the same as in 5.2.6.
Can be called later using \anglewithsidesAngleName.

5.2.8 \drawPolygon[verticalAlignment][PolygonNewName] {Polygon-
Name}

Draws a polygon.
verticalAlignment — optional vertical alignment declaration. middle to

align the picture with the middle of the line, anything else for bottom alignment.
PolygonNewName — optional polygon name.
PolygonName — name of the polygon to reference in the main diagram.

15

If a name is given, can be called later using \PolygonNewName, otherwise —
\polygonPolygonName.

5.2.9 \drawCircle[verticalAlignment][scaleFactor]{CircleName}

Draws a circle.
verticalAlignment — optional vertical alignment declaration. middle to

align the picture with the middle of the line, anything else for bottom alignment.
scaleFactor — optional scale factor for the circle to replace the default off-

spring picture scale factor.
CircleName — name of the circle to reference in the main diagram.
Can be called later using \circleCircleName.

5.2.10 \drawArc[verticalAlignment][scaleFactor]{ArcName}

Draws an arc.
verticalAlignment — optional vertical alignment declaration. middle to

align the picture with the middle of the line, anything else for bottom alignment.
scaleFactor — optional scale factor for the arc to replace the default offspring

picture scale factor.
ArcName — name of the arc to reference in the main diagram.
Can be called later using \arcCircleName.

5.2.11 \drawLine[verticalAlignment][LineNewName]{LineName}

Draws a line.
verticalAlignment — optional vertical alignment declaration. middle to

align the picture with the middle of the line, anything else for bottom alignment.
LineNewName — optional line name.
LineName — name of the line to reference in the main diagram.
If a name is given, can be called later using \LineNewName, otherwise —

\lineLineName.

5.2.12 \drawPointM{PointName}

Draws a point, depicted as a small circle A .
PointName — name of the point to reference in the main diagram.
Can be called later using \pointmPointName.

5.2.13 \drawPointL[verticalAlignment][LinesToOmit]{PointName}

Draws a point, depicted as line segments starting/ending in it A

A

. Only the

lines which were actually drawn, not just defined, are used. Line segments’ length
is controlled by pointLinesSize 4.1.1.

verticalAlignment — optional vertical alignment declaration. middle to
align the picture with the middle of the line, anything else for bottom alignment.

16

LinesToOmit — a comma-separated list lines, segments of which not to draw.
PointName — name of the point to reference in the main diagram.
If a list of lines to omit is given, can be called later using \pointlPointName-

MinusLinesToOmit, otherwise — \pointlPointName.

5.2.14 \drawPoint[verticalAlignment][LinesToOmit]{PointName}

Draws a point, depicted as line segments starting/ending in it with a point mark

if defined A

A

. Only the lines which were actually drawn, not just defined, are

used.
Arguments are the same as in drawPointL 5.2.13.
If a list of lines to omit is given, can be called later using \pointPointName-

MinusLinesToOmit, otherwise — \pointPointName.

References
[1] Oliver Byrne. The first six books of the elements of Euclid, in which coloured

diagrams and symbols are used instead of letters for the greater ease of learners.
William Pickering, 1847.

[2] Masataka Okabe and Kei Ito. Color Universal Design (CUD) How to make
figures and presentations that are friendly to Colorblind people. https://
jfly.uni-koeln.de/color/, 2008.

[3] Nicholas Rougeux. Byrne’s Euclid. https://www.c82.net/euclid/, 2018.

[4] Sergey Slyusarev. MetaPost + ConTeXt rendition of Oliver Byrne’s ”The first
six books of the Elements of Euclid”. https://github.com/jemmybutton/
byrne-euclid, 2017.

[5] Edward R. Tufte. Envisioning Information. Graphics Press, 1990.

17

https://jfly.uni-koeln.de/color/
https://jfly.uni-koeln.de/color/
https://www.c82.net/euclid/
https://github.com/jemmybutton/byrne-euclid
https://github.com/jemmybutton/byrne-euclid

	Introduction
	Requirements
	Example
	METAPOST part reference
	Global variables and settings
	Global variables
	defineColor.ColorName(color)
	startTempScale(tmpScale); ... METAPOST code ... stopTempScale;
	startTempAngleScale(tmpAngleScale); ... METAPOST code ... stopTempAngleScale;
	startGlobalRotation(rotationAngle); ... METAPOST code ... stopGlobalRotation;
	startAutoLabeling; ... METAPOST code ... stopAutoLabeling

	Lines
	byLineDefine.LineName(A, B, color, dashed, thick)
	byLine.LineName(A, B, color, dashed, thick)
	byNamedLine(LINES_LIST)
	byNamedLineSeq(lineShift)(LINES_LIST)
	byMarkLine(position, color)(LineName)
	byNamedMarkLine(LineName)

	Points
	byPointLabelDefine(A, pointLabel)
	byPointLabelRemove(POINTS_LIST)
	byPointMarkDefine(PointName)(color, style)

	Arcs and circles
	byArcDefineBE.ArcName(O, begin, end, radius, color, dashed, thick, shift, endType)
	byArcBE.arcName(O, begin, end, radius, color, dashed, thick, shift, endType)
	byArcDefine.ArcName(O, B, E, radius, color, dashed, thick, shift, endType)
	byArc.ArcName(O, B, E, radius, color, dashed, thick, shift, endType))
	byNamedArcExact(ARCS_LIST)
	byNamedArc(ARCS_LIST)
	byCircleDefineFree.CircleName(o, radius, color, dashed, thick, shift)
	byCircleDefineR.CircleName(O, radius, color, dashed, thick, shift)
	byCircleR.CircleName(O, radius, color, dashed, thick, shift)
	byCircleDefine.CircleName(O, A, color, dashed, thick, shift)
	byCircle.CircleName(O, A, color, dashed, thick, shift)
	byCircleABC.CircleName(A, B, C, color, dashed, thick, shift)
	byNamedCircle(CIRCLES_LIST)

	Arbitraty figures
	byArbitraryFigureDefine.ArbitraryFigureName(figurePath, color, dashed, thick)
	byArbitraryFigure.ArbitraryFigureName(figurePath, color, dashed, thick)
	byNamedArbitraryFigure(ARBITRARY_FIGURES_LIST)

	Filled figures
	byPolygonDefine.PolygonName(POINTS_LIST)(Color)
	byPolygon.polygonName(POINTS_LIST)(Color)
	byNamedPolygon(POLYGONS_LIST)

	Angles
	byAngleDefine.AngleName(A, B, C, color, style)
	byConsiderAngleRight(AngleName)
	byAngle.AngleName(A, B, C, color, style)
	byAngleDefineExtended.AngleName(A, B, C, color, style)(OPTIONAL_COLORS_LIST)
	byAngleExtended.AngleName(A, B, C, color, style)(OPTIONAL_COLORS_LIST)
	byNamedAngle(ANGLES_LIST)
	Angle styles

	Text labels
	byLabelPoint(A, labelAngle, distance)
	byLabelLine(distance)(LINES_LIST)
	byLabelPolygon(distance)(POLYGONS_LIST)
	byLabelsOnCircle(POINTS_LIST)(CircleName)
	byLabelsOnPolygon(POINTS_LIST)(style, shift)
	byLabelLineEnd(A, B)(distance)

	LaTeX part reference
	General purpose
	\defineNewPicture [offspringPictureScaleFactor] [mainPictureScaleFactor] {METAPOST code}
	\drawCurrentPicture
	\defineFromCurrentPicture {verticalAlignment} {PictureName} {METAPOST code}
	\drawFromCurrentPicture [verticalAlignment] [PictureName] {METAPOST code}

	Specialized
	\drawUnitLine[LineSecondName]{LineName}
	\drawProportionalLine{LineName}
	\drawSizedLine[LineSecondName]{LineName}
	\drawUnitRay[RayName]{LineName}
	\drawRightAngle, \drawTwoRightAngles
	\drawAngle{AngleName}
	\drawAngleWithSides {AngleName}
	\drawPolygon[verticalAlignment][PolygonNewName] {PolygonName}
	\drawCircle[verticalAlignment][scaleFactor]{CircleName}
	\drawArc[verticalAlignment][scaleFactor]{ArcName}
	\drawLine[verticalAlignment][LineNewName]{LineName}
	\drawPointM{PointName}
	\drawPointL[verticalAlignment][LinesToOmit]{PointName}
	\drawPoint[verticalAlignment][LinesToOmit]{PointName}

