Package ‘unilasso’

January 26, 2026
Type Package

Title Univariate-Guided Sparse Regression
Version 2.11

Date 2026-01-13

Depends glmnet, stats, R (>=3.6.0)
Imports methods, utils, MASS

Suggests testthat

Description Fit a univariate-guided sparse regression (lasso), by a two-stage proce-
dure. The first stage fits p separate univariate models to the response. The sec-
ond stage gives more weight to the more important univariate features, and pre-
serves their signs. Conveniently, it returns an objects that inherits from class 'glm-
net', so that all of the methods for 'glmnet' are available. See Chatterjee, Hastie and Tibshi-
rani (2025) <doi:10.1162/99608f92.c79ff6db> for details.

Encoding UTF-8
License GPL-2
NeedsCompilation no
RoxygenNote 7.3.2

Author Trevor Hastie [aut, cre],
Rob Tibshirani [aut],
Sourav Chatterjee [aut]

Maintainer Trevor Hastie <hastie@stanford.edu>
Repository CRAN
Date/Publication 2026-01-26 17:00:02 UTC

Contents
ciuniReg e e 2
cvaunilasso 6
plotevauniReg oL 10
polish.unilasso L 11
predict.cvauniReg 13

https://doi.org/10.1162/99608f92.c79ff6db

2 ci.uniReg

printeviuniReg e 14
simulate_counterexample L. e e 15
simulate_Gaussian e e e e e e e e 16
simulate twoclass e e, 17
simulate_unilasso 17
uniCoef L e 18
unilnfo oL 19
Index 21
ci.uniReg Compute bootstrap confidence intervals for a univariate guided re-

gression model

Description

Fit a univariate-guided sparse regression (lasso), by a two-stage procedure. The first stage fits
p separate univariate models to the response. The second stage gives more weight to the more
important univariate features, and preserves their signs. Conveniently, it returns an objects that
inherits from glmnet, so that all of the methods for glmnet can be applied, such as predict, plot,
coef andprint.

Fit a univariate-guided regression, by a two-stage procedure. The first stage fits p separate univariate
models to the response. The second stage fits a regression model, preserving the univariate signs.

Usage

ci.uniReg(
X?
Y,
family = c("gaussian”, "binomial”, "cox"),
weights = NULL,
B = 500,
alpha = 0.05,

)

unilLasso(
X,
Y,
family = c("gaussian”, "binomial”, "cox"),
weights = NULL,
loo = TRUE,

lower.limits = 0,
standardize = FALSE,
info = NULL,
loob.nit = 2,
loob.ridge = 0,
loob.eps = 1e-06,

ci.uniReg 3

uniReg(
X,
Y,
family = c("gaussian”, "binomial”, "cox"),
weights = NULL,
loo = TRUE,
lower.limits = 0,
standardize = FALSE,
info = NULL,
loob.nit = 2,
loob.ridge = 0,
loob.eps = 1e-04,
hard.zero = TRUE,

)
Arguments

X Input matrix, of dimension nobs x nvars; each row is an observation vector.

y Response variable. Quantitative for family = "gaussian” or family = "poisson”
(non-negative counts). For family="binomial”, should be a numeric vector
consisting of Os and 1s. For family="cox", y should be a two-column matrix
with columns named ’time’ and ’status’. The latter is a binary variable, with ' 1’
indicating death, and 0’ indicating right-censored.

family one of "gaussian","binomial" or "cox". Currently only these families are imple-
mented. In the future others will be added.

weights optional vector of non-negative weights, default is NULL which results in all
weights = 1.

B Number of bootstrap samples. Default is 500.

alpha size of confidence interval.

loo TRUE (the default) means that uniLasso uses the prevalidated loo fits (approxi-
mate loo or "alo’ for "binomial" and "cox") for each univariate model as features
to avoid overfitting. 100=FALSE means it uses the univariate fitted predictor.

lower.limits = 0 (default) means that uniLasso constrains the sign of the coefs produced in
the second round to be the same as those in the univariate fits. (Since uniLasso
uses the univariate fits as features, a positivity constraint at the second stage is
equivalent.)

standardize input argument to glmnet for final non-negative lasso fit. Strongly recommend
standardize=FALSE (default) since the univariate fit determines the correct
scale for each variable.

info Users can supply results of uniInfo on external datasets rather than compute

them on the same data used to fit the model.

4 ci.uniReg

loob.nit Number of Newton iterations for GLM or Cox in computing univariate linear
predictors. Default is 2.

loob.ridge A nonnegative number to apply ridge penalization to the slope parameters. This
is helpful if some of the variables are near constant or have very small standard
deviations. Default is 0.0.

loob.eps A small number used in regularizing the Hessian for the Cox model. Default is
le-6.
hard. zero if TRUE (default), the model fits the unpenalized regression. This is potentially

unstable when p > n. In this case hard.zero = FALSE might be preferable, and
the model is then fit using the smallest value of 1ambda in the path.

additional arguments passed to glmnet.

Details

Fits a two stage lasso model. First stage replaces each feature by the univariate fit for that feature.
Second stage fits a (positive) lasso using the first stage features (which preserves the signs of the
first stage model). Hence the second stage selects and modifies the coefficients of the first stage
model, similar to the adaptive lasso. Leads to sparser and more interpretable models.

For "binomial" family y is a binary response. For "cox" family, y should be a Surv object for right
censored data, or a matrix with columns labeled ’time’ and ’status’ Although glmnet has more
flexible options say for binary responses, and for cox responses, these are not yet implemented (but
are possible and will appear in future versions). Likewise, other glm families are possible as well,
but not yet implemented.

loo = TRUE means it uses the prevalidated loo fits (approximate loo or ’alo’ for binomial and cox)
for each univariate model as features to avoid overfitting in the second stage. The coefficients are
then multiplied into the original univariate coefficients to get the final model.

loo = FALSE means it uses the univariate fitted predictor, and hence it is a form of adaptive lasso, but
tends to overfit. lower.limits = @ means unilLasso constrains the sign of the coefs in the second
round to be that of the univariate fits.

Value

An object that inherits from "glmnet"”. There is one additional parameter returned, which is info
and has two components. They are beta@ and beta, the intercepts and slopes for the usual (non-
LOO) univariate fits from stage 1.

Examples

ci.uniReg usage

sigma =3

set.seed(1)

n <-100; p <- 20

x <= matrix(rnorm(n * p), n, p)

beta <- matrix(c(rep(2, 5), rep(@, 15)), ncol = 1)
y <= x %*% beta + rnorm(n)*sigma

ci <- ci.uniReg(x, y, B=100)

print(ci)

ci.uniReg 5

unilLasso usage
Default unilLasso usage for Gaussian data

sigma =3

set.seed(1)

n <-100; p <- 20

x <= matrix(rnorm(n * p), n, p)

beta <- matrix(c(rep(2, 5), rep(@, 15)), ncol = 1)
y <= x %*% beta + rnorm(n)*sigma
xtest=matrix(rnorm(n * p), n, p)

ytest <- xtest %*% beta + rnorm(n)*sigma

fit <- uniLasso(x, y)
plot(fit)
predict(fit,xtest[1:10,],s=1) #predict on test data

Two-stage variation where we carve off a small dataset for computing the univariate coefs.
cset=1:20

info = uniInfo(x[cset,],y[cset])

fit_two_stage <- unilLasso(x[-cset,], y[-cset], info = info)

plot(fit_two_stage)

Binomial response unilLasso

yb =as.numeric(y>0)

fitb = uniLasso(x, y)

predict(fitb, xtest[1:10,]1, s=1, type="response")

unilLasso with same positivity constraints, but starting “beta”

from univariate fits on the same data. With loo=FALSE, does not tend to do as well,

probably due to overfitting.

fit_pos_adapt <- unilLasso(x, y, loo = FALSE)
plot(fit_pos_adapt)

unilLasso with no constraints, but starting “beta™ from univariate fits.
This is a version of the adaptive lasso, which tends to overfit, and loses interpretability.

fit_adapt <- unilLasso(x, y, loo = FALSE, lower.limits = -Inf)
plot(fit_adapt)

Cox response unilLasso

set.seed(10101)

N = 1000
p = 30
nzc = p/3

x = matrix(rnorm(N * p), N, p)
beta = rnorm(nzc)

fx = x[, seq(nzc)] %*% beta/3
hx = exp(fx)

6 cv.uniLasso

ty = rexp(N, hx)

tcens = rbinom(n = N, prob = 0.3, size = 1) # censoring indicator

y = cbind(time = ty, status = 1 - tcens) # y=Surv(ty,l-tcens) with library(survival)
fitc = uniLasso(x, y, family = "cox")

plot(fitc)

uniReg usage

sigma =3

set.seed(1)

n <- 100; p <- 20

x <= matrix(rnorm(n * p), n, p)

beta <- matrix(c(rep(2, 5), rep(@, 15)), ncol = 1)
y <= X %*% beta + rnorm(n)*sigma
xtest=matrix(rnorm(n * p), n, p)

fit <- uniReg(x, y)

predict(fit,xtest[1:10,]) #predict on test data
coef (fit)

print(fit)

fita <- uniReg(x, y, hard.zero = FALSE)
print(fita)

fitb <- uniReg(x, y>@, family = "binomial")
coef (fitb)
print(fitb)

cv.unilLasso Fit a cross-validated univariate guided lasso model.

Description

Fit a univariate-guided sparse regression unilasso model using cross-validation to select the second
stage lasso penalty parameter. Conveniently, it returns an object that inherits from cv.glmnet, so
that all of the methods for cv.glmnet can be applied, such as predict, plot, coef, print, and
assess.glmnet.

Fit a cross-validated univariate-guided sparse regression unilLasso model, with a focus on the end
of the path which corresponds to the uniReg fit. Conveniently, it returns an object that inherits from
cv.glmnet,and methods such as predict, plot, coef, print all gives sensible results.

Usage
cv.unilasso(
X’
Y,
family = c("gaussian”, "binomial”, "cox"),

weights = NULL,

cv.uniLasso 7

loo = TRUE,
lower.limits = 9,
standardize = FALSE,
info = NULL,
loob.nit = 2,
loob.ridge = 0,
loob.eps = 1e-06,

cv.uniReg(
X)
Y,
family = c("gaussian”, "binomial”, "cox"),
weights = NULL,
loo = TRUE,
lower.limits = 0,
standardize = FALSE,
info = NULL,
loob.nit = 2,
loob.ridge = 0,
loob.eps = 1e-06,
hard.zero = TRUE,

)
Arguments

X Input matrix, of dimension nobs x nvars; each row is an observation vector.

y Response variable. Quantitative for family = "gaussian” or family = "poisson”
(non-negative counts). For family="binomial”, should be a numeric vector
consisting of Os and 1s. For family="cox", y should be a two-column matrix
with columns named ’time’ and ’status’. The latter is a binary variable, with 1’
indicating death, and 0’ indicating right-censored.

family one of "gaussian","binomial" or "cox". Currently only these families are imple-
mented. In the future others will be added.

weights optional vector of non-negative weights, default is NULL which results in all
weights = 1.

loo TRUE (the default) means that unilLasso uses the prevalidated loo fits (approxi-
mate loo or "alo’ for "binomial" and "cox") for each univariate model as features
to avoid overfitting. 100=FALSE means it uses the univariate fitted predictor.

lower.limits = 0 (default) means that uniLasso constrains the sign of the coefs in the second
round to be that of the univariate fits.

standardize input argument to glmnet for final non-negative lasso fit. Strongly recommend

standardize=FALSE (default) since the univariate fit determines the right scale
for each variable.

8 cv.uniLasso

info Users can supply results of uniInfo on external datasets rather than compute
them on the same data used to fit the model. If this is supplied, its $betas are
used. Default is NULL.

loob.nit Number of Newton iterations for GLM or Cox in computing univariate linear
predictors. Default is 2.

loob.ridge A nonnegative number to apply ridge penalization to the slope parameters. This
is helpful if some of the variables are near constant or have very small standard
deviations. Default is 0.0.

loob.eps A small number used in regularizing the Hessian for the Cox model. Default is
0.0001.
hard.zero if TRUE (default), the model fits the unpenalized regression. This is potentially

unstable when p > n. In this case hard.zero = FALSE might be preferable, and
the model is then fit using the smallest value of 1ambda in the path.

additional arguments passed to cv.glmnet.

Details

Fits a two stage lasso model and selects the penalty parameter by cross validation. First stage
replaces each feature by the univariate fit for that feature. Second stage fits a (positive) lasso using
the first stage features. Hence the second stage selects and modifies the coefficients of the first stage
model, similar to the adaptive lasso. Leads to potentially sparser models.

For "binomial" family y is a binary response. For "cox" family, y should be a Surv object for right
censored data, or a matrix with columns labeled ’time’ and ’status’ Although glmnet has more
flexible options say for binary responses, and for cox responses, these are not yet implemented (but
are possible and will appear in future versions). Likewise, other glm families are possible as well,
but not yet implemented.

This is a one-visit function that returns a 'cv.glmnet' object. You can make predictions from the
whole path, at ’lambda.min’ etc just like you can for a 'cv.glmnet object'.

loo = TRUE means it uses the prevalidated loo fits (approximate loo or ’alo’ for binomial and cox)
for each univariate model as features to avoid overfitting in the second stage. The coefficients are
then multiplied into the original univariate coefficients to get the final model.

loo = FALSE means it uses the univariate fitted predictor, and hence it is a form of adaptive lasso, but
tends to overfit. lower.limits = @ means unilLasso constrains the sign of the coefs in the second
round to be that of the univariate fits.

Value

An object that inherits from class "cv.glmnet"”. There is one additional parameter returned, which
is info and has two components. They are beta@ and beta, the intercepts and slopes for the usual
(non-LOO) univariate fits from stage 1.

Examples

cv.uniLasso examples
Default usage with Gaussian data

sigma =3

cv.uniLasso 9

set.seed(1)

n <- 100; p <- 20

x <= matrix(rnorm(n * p), n, p)

beta <- matrix(c(rep(2, 5), rep(@, 15)), ncol = 1)
y <= x %*% beta + rnorm(n)*sigma
xtest=matrix(rnorm(n * p), n, p)

ytest <- xtest %x% beta + rnorm(n)*sigma

cvfit <- cv.unilLasso(x, y)
plot(cvfit)
predict(cvfit,xtest[1:10,], s="lambda.min") # predict at some test data points

Two-stage variation where we carve off a small dataset for computing the univariate coefs.
cset=1:20

info = uniInfo(x[cset,],y[cset])

cvfit_two_stage <- cv.unilLasso(x[-cset,], y[-cset], info = info)

plot(cvfit_two_stage)

Binomial response cv.unilLasso

yb =as.numeric(y>0)

cvfitb = cv.uniLasso(x, yb, family="binomial")
predict(cvfitb, xtest[1:10,], type="response”) # predict at default s = "lambda.1se”

cv.uniLasso with same positivity constraints, but starting “beta”
from univariate fits on the same data. With loo=FALSE, does not tend to do as well,
probably due to overfitting.

cvfit_pos_adapt <- cv.unilLasso(x, y, loo = FALSE)
plot(cvfit_pos_adapt)

cv.unilLasso with no constraints, but starting “beta® from univariate fits.
This is a version of the adaptive lasso, which tends to overfit, and loses interpretability.

cvfit_adapt <- cv.unilLasso(x, y, loo = FALSE, lower.limits = -Inf)
plot(cvfit_adapt)

Cox response cv.unilLasso

set.seed(10101)

N = 1000
p = 30
nzc = p/3

x = matrix(rnorm(N * p), N, p)

beta = rnorm(nzc)

fx = x[, seq(nzc)] %*% beta/3

hx = exp(fx)

ty = rexp(N, hx)

tcens = rbinom(n = N, prob = 0.3, size = 1) # censoring indicator

y = cbind(time = ty, status = 1 - tcens) # y=Surv(ty,1-tcens) with library(survival)
cvfitc = cv.unilLasso(x, y, family = "cox")

10 plot.cv.uniReg

plot(cvfitc)
cv.uniReg usage

sigma =3

set.seed(1)

n <-100; p <- 20

x <= matrix(rnorm(n * p), n, p)

beta <- matrix(c(rep(2, 5), rep(@, 15)), ncol = 1)
y <= x %*% beta + rnorm(n)*sigma
xtest=matrix(rnorm(n * p), n, p)

fit <- cv.uniReg(x, y)

plot(fit)

coef (fit)

print(fit)

predict(fit,xtest[1:10,]) #predict on test data

fita <- cv.uniReg(x, y, hard.zero = FALSE)
plot(fita)
print(fita)

fitb <- cv.uniReg(x, y>@, family = "binomial”)
plot(fitb)
print(fitb)

plot.cv.uniReg plot the cross-validation curve produced by cv.uniReg

Description

Plots the cross-validation cv.unilLasso curve (which is a cv.glmnet curve), and upper and lower
standard deviation curves, as a function of the 1ambda values used. It highlights the value at the end
of the path, which is either 1ambda = 9, or else the smallest lambda if hard.zero = FALSE.

Usage
S3 method for class 'cv.uniReg'
plot(x, ...)
Arguments
X fitted "cv.uniReg” object, which inherits from "cv.unilLasso”. negative if

sign.lambda=-1.

Other graphical parameters to plot

polish.uniLasso 11

Details

A plot is produced, and nothing is returned.

Value

A plot is produced, and nothing is returned.

Author(s)

Trevor Hastie and Rob Tibshirani
Maintainer: Trevor Hastie hastie @stanford.edu

See Also

cv.unilasso and glmnet:::cv.glmnet.

Examples

set.seed(1010)

n = 1000

p = 100

nzc = trunc(p/10)

x = matrix(rnorm(n * p), n, p)
beta = rnorm(nzc)

fx = (x[, seq(nzc)] %*% beta)
eps = rnorm(n) * 5

y = drop(fx + eps)

cvob® = cv.uniReg(x, y)

plot(cvobd)
cvob = cv.uniReg(x, y, hard.zero = FALSE)
plot(cvob)
polish.uniLasso Fit a cross-validated univariate guided lasso model, followed by a
lasso polish.
Description

This function has two stages. In the first we fit a univariate-guided sparse regression uniLasso
model using cross-validation to select the lasso penalty parameter (using s = "lambda.min"”). In the
second stage, we use the predictions from this chosen model as an offset, and fit a cross-validated
unrestricted lasso model. For squared error loss, this means we post-fit a lasso model to the resid-
uals. Conveniently, it returns an object that inherits from cv.glmnet, in which the two models are
stitched together. What this means is that the chosen coefficients from the first model are added to
the coefficients from the second, and other related components are updated as well. This means at
predict time we do not have to fiddle with offsets. All of the methods for cv.glmnet can be applied,
such as predict, plot, coef, print, and assess.glmnet.

mailto:hastie@stanford.edu

12 polish.uniLasso

Usage
polish.unilLasso(
X7
Y,
family = c("gaussian”, "binomial”, "cox"),

weights = NULL,

Arguments

X Input matrix, of dimension nobs x nvars; each row is an observation vector.

y Response variable. Quantitative for family = "gaussian” or family = "poisson”
(non-negative counts). For family="binomial”, should be a numeric vector
consisting of Os and 1s. For family="cox", y should be a two-column matrix
with columns named ’time’ and ’status’. The latter is a binary variable, with ' 1’
indicating death, and 0’ indicating right-censored.

family one of "gaussian","binomial" or "cox". Currently only these families are imple-
mented. In the future others will be added.

weights optional vector of non-negative weights, default is NULL which results in all
weights = 1.

additional arguments passed to cv.unilLasso and cv.glmnet. Note: by defaults
cv.unilasso() uses standardize=FALSE, and cv.glmnet () uses standardize=TRUE.
These are both the sensible defaults for this function. Users can supply standardize=FALSE
(viathe ... argument) which will overide the cv. glmnet () default. Users should

avoid using standardize=TRUE, since this will affect the first stage model as

well, where this is not a suitable choice.

Value

An object of class "polish.unilasso” that inherits from class "cv.glmnet”. The "glmnet.fit"
is the stitched second-stage model, from which predictions are made. An additional component
named "cv.unilLasso” is the first stage model.

Examples

Gaussian data, p=1000, n=300, SNR=1 "medium SNR"

use the built-in simulate function to create Gaussian data
set.seed(101)

data <- simulate_unilLasso("medium-SNR")

attach(data) # has components "x","y","xtest”,"ytest","mutest”,"sigma”
pfit <- polish.unilLasso(x,y)

plot(pfit)

pred <- predict(pfit, newx = xtest, s = "lambda.min") # ie predict from a "cv.glmnet" object.
mean((ytest-pred)*2) # test error

print(pfit)

print(pfit$glmnet.fit)

plot(pfit$glmnet.fit) # coefficient plot of the second stage

predict.cv.uniReg 13

plot(pfit$cv.unilLasso) # cv.glmnet plot of the first stage
plot(pfit$cv.unilLasso$glmnet.fit) # coefficient plot of the first stage

Binomial response

yb =as.numeric(y>0)

pfitb = polish.unilLasso(x, yb, family="binomial")

predict(pfitb, xtest[1:10,], type="response”) # predict at default s = "lambda.l1se”
plot(pfitb)

plot(pfitb$glmnet.fit) # plot second stage lasso coefficient path
plot(pfitb$cv.unilLasso) # plot first stage cv.unilasso results

Cox response

set.seed(10101)

N = 1000
p = 30
nzc = p/3

x = matrix(rnorm(N * p), N, p)

beta = rnorm(nzc)

fx = x[, seq(nzc)] %*% beta/3

hx = exp(fx)

ty = rexp(N, hx)

tcens = rbinom(n = N, prob = 0.3, size = 1) # censoring indicator

y = cbind(time = ty, status = 1 - tcens) # y=Surv(ty,1-tcens) with library(survival)
pfitc = polish.unilLasso(x, y, family = "cox")

plot(pfitc)

plot(pfitc$cv.unilLasso)

predict.cv.uniReg make predictions from a "cv.uniReg" object.

Description

This function makes predictions from a cross-validated uniReg model, using the stored "glmnet.fit"
object, and by default the smallest value of 1ambda used.

Usage

S3 method for class 'cv.uniReg'

predict(object, newx, s = c("zero”, "lambda.lse”, "lambda.min"), ...)
Arguments

object Fitted "cv.uniReg".

newx Matrix of new values for x at which predictions are to be made. Must be a ma-

trix; can be sparse as in Matrix package. See documentation for predict.glmnet

14 print.cv.uniReg

s Value(s) of the penalty parameter lambda at which predictions are required. De-
fault is the value s="zero" which corresponds to the smallest value of lambda
used. Alternatively s="1lambda.1se"” or s="lambda.min” can be used. If s is
numeric, it is taken as the value(s) of 1ambda to be used.

Not used. Other arguments to predict.

Details

This function makes it easier to use the results of cross-validation to make a prediction.

Value

The object returned depends on the ...argument which is passed on to the predict method for
glmnet objects.

Author(s)

Trevor Hastie and Rob Tibshirani
Maintainer: Trevor Hastie hastie @stanford.edu

See Also

print, and coef methods, and cv.uniReg.

Examples

x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)

cv.fit = cv.uniReg(x, y)
predict(cv.fit, newx = x[1:5, 1)
coef(cv.fit)

print.cv.uniReg print a cross-validated uniReg object

Description

Print a summary of the results of cross-validation for a uniReg model.

Usage

S3 method for class 'cv.uniReg'
print(x, digits = max(3, getOption("digits"”) - 3), ...)

mailto:hastie@stanford.edu

simulate_counterexample 15

Arguments
X fitted *cv.uniReg’ object
digits significant digits in printout
additional print arguments
Details

A summary of the cross-validated uniReg fit is produced. This is an augmented summary of a
cv.glmnet object, with an extra row corresponding to the smallest lambda in the path

Value

A summary is printed, and nothing is returned.

Author(s)

Trevor Hastie and Rob Tibshirani
Maintainer: Trevor Hastie hastie @stanford.edu

Examples

X = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)

fitl = cv.uniReg(x, y)

print(fit1)

simulate_counterexample
simulate counterexample data

Description
A particular counterexample where the first two features are strongly positively correlated, yet they
have coefficients of opposite sign in a multiple regression.

Usage

simulate_counterexample(ntrain, ntest)

Arguments
ntrain number of training examples.
ntest number of test examples.
Value

[T T TR] non non

a list with components "x", "y", "xtest", "ytest", "mutest", and "sigma", where "mutest" is the true
test mean, and "ytest <- mutest + rnorm(ntest)*sigma."

mailto:hastie@stanford.edu

16 simulate_Gaussian

Examples

dat = simulate_counterexample(300,3000)
fit = cv.unilLasso(datx, daty)
err = mean((predict(fit, dat$xtest,s="lambda.min")- dat$mutest)*2)

simulate_Gaussian simulate Gaussian data

Description

A simulator that builds a training and test set with particular characteristics, as used in our "uni-
Lasso" paper.

Usage

simulate_Gaussian(
ntrain = 300,
ntest = 3000,
p = 1000,
snr = 1,
rho = 0.8,
sparsity = 0.1,
homecourt = FALSE

)
Arguments
ntrain number of training examples.
ntest number of test examples.
p number of features.
snr desired SNR (signal-to-noise ratio).
rho for homecourt=TRUE ’rho’ controls the autocorrelation between variables. Vari-
ables k units apart have correlation rho*k.
sparsity fraction of variables with nonzero coefficients.
homecourt logical; if TRUE then correlated features, with a special boost for large coeffi-
cients, mimicking the uniLasso two-stage algorithm.
Value

nyNn o ononon non non

a list with components "x", "y", "xtest", "ytest", "mutest”, and "sigma", where "mutest” is the true
test mean, and "ytest <- mutest + rnorm(ntest)*sigma."

Examples

dat = simulate_Gaussian(300,3000,p=500,snr=1.2)
fit = cv.unilLasso(datx, daty)
mse = mean((predict(fit, dat$xtest)- dat$mutest)”2)

simulate_twoclass 17

simulate_twoclass simulate two class data

Description

simulate two class data

Usage

simulate_twoclass(ntrain, ntest, wide = TRUE)

Arguments

ntrain number of training examples.

ntest number of test examples.

wide logical. If TRUE p=500, else p=100.
Value

nyM o ononon non non

a list with components "x", "y", "xtest", "ytest", "mutest", and "sigma", where "mutest" is the true
test mean, and "ytest <- mutest + rnorm(ntest)*sigma."

Examples

dat = simulate_twoclass(300,3000)
fit = cv.unilLasso(datx, daty, family="binomial")
misclass = mean(sign(predict(fit, dat$xtest,s="lambda.min"))== sign(dat$ytest-0.5))

simulate_unilLasso Simulate data for use in uniLasso and uniReg

Description

We use some standard examples in our unilasso paper, and for convenience we provide generators
for these datasets.

Usage

simulate_unilasso(
example = c("low-SNR", "medium-SNR", "high-SNR", "home-court”, "two-class"”,
"counter-example”),
wide = TRUE

18 uniCoef

Arguments
example which of the prepackaged examples to use. Choices are "low-SNR","medium-
SNR","high-SNR","home-court","two-class","counter-example", as described in
the uniLasso paper. The three SNRs used are 0.5 (low), 1.0 (medium) and 2.0
(high) (also used for home-court). The training sizes for the first four are 300,
and test sizes 3000.
wide logical variable which determines if p>n (default, 1000) or not (100). This func-
tion calls worker functions simulate_gaussian(), simulate_two-class(), and sim-
ulate_counterexample(), which are currently not documented.
Value

a list with components "x", "y", "xtest", "ytest", "mutest", and "sigma", where "mutest" is the true
test mean, and "ytest <- mutest + rnorm(nrow(xtest))*sigma."

Examples

dat = simulate_unilLasso("high-SNR")
fit = cv.unilLasso(datx, daty)
mse = mean((predict(fit, dat$xtest)- dat$mutest)”2)

uniCoef Compare the nonzero coefficients and univariate counterparts

Description

For a cv.unilLasso object, compare the CV-selected nonzero coefficients to their univariate coun-
terparts. Also works for a cv.glmnet object.

Usage
uniCoef(cv.object, info = NULL, s = c("lambda.min”, "lambda.l1se"), ...)
Arguments
cv.object acv.unilasso oracv.glmnet object.
info the result of a call to uniInfo(). If cv.object inherits from cv.unilLasso, the
$info component will be used.
S the value of lambda to be used, with default s="1ambda.min"”. Alternatively,

can be ‘s="lambda.lse".

other arguments to coef.

unilnfo 19

Value

a three-columns data frame with the second column being the non-zero coefficients from the cv.object,
the first the corresponding univariate coefficients, and the third an indication if there was a sign
change.

@examples

sigma <- 3 set.seed(1) n <- 100 p <- 20 x <- matrix(rnorm(n * p), n, p) beta <- matrix(c(rep(2, 5),
rep(0, 15)), ncol = 1) y <- x %*% beta + rnorm(n)*sigma

cvfit <- cv.uniLasso(x, y) uniCoef(cvfit) cvfit2 <- cv.glmnet(x,y) uniCoef(cvfit2, info=cvfit$info)

uniInfo Create the univariate info for use in uniLasso

Description

Fit p separate univariate fits, and if requested computes the loo fit matrix F. It is called internally by
unilasso, or can be called externally on separate data and passed as input to unilLasso. Currently
this function can accommodate "gaussian", "binomial”, and "Cox" families.

Usage
uniInfo(
X,
Y,
family = c("gaussian”, "binomial”, "cox"),
weights = NULL,
nit = 2,
loo = FALSE,
ridge = 0,
eps = 1e-06
)
Arguments
X An n x p feature matrix
y A response object, depending on the family. For "gaussian" it is just a response
vector. For "binomial" either a binary vector, a two level factor, or a two column
non-negative matrix with rows summing to 1. For "cox" it is a Surv object
(currently for right censored data).
family one of "gaussian","binomial" or "cox". Currently only these families are imple-
mented. In the future others will be added.
weights Vector of non-negative weights. Default is NULL, which results in all weights
equal to 1.
nit Number of iterations if Newton steps are required (in "binomial" and "cox").

Default is 2. In principal more is better, but in some cases can run into conver-
gence issues.

20 unilnfo

loo A logical, default=FALSE. If TRUE it computes the matrix of loo fits F.
ridge A positive number that penalizes the square of the slope parameters. This is
useful if some of the variables are nearly constant, or have very small variances.
Default is 0.0.
eps A small number to regularize the hessian for "cox"; default is 1e-6.
Value

a list with components $beta and $beta@, and if 10o=TRUE, a n x p matrix F with the loo fits.

Examples

Gaussian model

set.seed(1)

sigma=3

n <-100; p <- 20

x <= matrix(rnorm(n * p), n, p)

beta <- matrix(c(rep(2, 5), rep(@, 15)), ncol = 1)

y <= x %*% beta + rnorm(n)*sigma

info = unilInfo(x,y)

names(info)

yb = as.numeric(y>0)

info = uniInfo(x,yb, family = "binomial”, loo = TRUE)

names(info)

Index

+ models
plot.cv.uniReg, 10
predict.cv.uniReg, 13

* regression
plot.cv.uniReg, 10
predict.cv.uniReg, 13

ci.uniReg, 2
cv.unilLasso, 6
cv.uniReg (cv.unilLasso), 6

plot.cv.uniReg, 10
polish.unilLasso, 11
predict.cv.uniReg, 13
print.cv.uniReg, 14

simulate_counterexample, 15
simulate_Gaussian, 16
simulate_twoclass, 17
simulate_unilasso, 17

uniCoef, 18

uniInfo, 19

unilLasso (ci.uniReg), 2
uniReg (ci.uniReg), 2

21

	ci.uniReg
	cv.uniLasso
	plot.cv.uniReg
	polish.uniLasso
	predict.cv.uniReg
	print.cv.uniReg
	simulate_counterexample
	simulate_Gaussian
	simulate_twoclass
	simulate_uniLasso
	uniCoef
	uniInfo
	Index

