
Package ‘starling’
January 26, 2026

Type Package

Title Link Infectious Disease Cases to Vaccination and Hospitalization
Records

Version 0.6.5

Description Facilitates probabilistic record linkage between infectious disease
surveillance datasets (notifiable disease registers, outbreak line-lists),
vaccination registries, and hospitalization records using methods based on
Fellegi and Sunter (1969) <doi:10.1080/01621459.1969.10501049> and
Sayers et al. (2016) <doi:10.1093/ije/dyv322>. The package provides
core functions for data preparation, linkage, and analysis: clean_the_nest()
standardizes variable names and formats across heterogeneous datasets;
murmuration() performs machine learning-based record linkage using blocking
variables and similarity metrics; molting() deidentifies datasets for secure
sharing; homing() re-identifies previously deidentified datasets; plumage()
identifies and categorizes comorbidities; and preening() creates analysis-ready
variables including age categories and temporal groupings. Designed for
epidemiological research linking acute and post-acute disease outcomes to
vaccination status and healthcare utilization. Supports multiple linkage
scenarios including case-to-vaccination, case-to-hospitalization, and
event-based vaccination status determination (e.g., outbreak attendees, flight
passengers, exposure site visitors).

License GPL (>= 3)

Depends R (>= 3.5.0)

Imports dplyr, lubridate, janitor, stringr, tidyr, reclin2,
datawizard, digest, rlang, magrittr

Suggests testthat (>= 3.0.0), knitr, gtsummary, rmarkdown

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

VignetteBuilder knitr

Language en-US

NeedsCompilation no

1

https://doi.org/10.1080/01621459.1969.10501049
https://doi.org/10.1093/ije/dyv322

2 clean_the_nest

Author Nicolas Smoll [aut, cre] (ORCID:
<https://orcid.org/0000-0002-6923-9701>)

Maintainer Nicolas Smoll <nrsmoll@gmail.com>

Repository CRAN

Date/Publication 2026-01-26 16:20:08 UTC

Contents
clean_the_nest . 2
dx_data . 6
homing . 7
hosp_data . 8
linelist_data . 9
manifest_data . 10
molting . 11
murmuration . 13
plumage . 17
preening . 19
tweet . 22
vax_data . 23

Index 25

clean_the_nest Clean datasets and establishes common variable name nomenclature

Description

Cleans three dataset types and prepares them for data-linkage. This command is the first step in
creating the datasets for analysis. Building a solid "nest" is akin to building a solid foundation for
future work. Of note, Starlings are cavity nesters, meaning that they prefer to build their homes
inside holes and crevices. This command is meant to work with diagnosis datasets (linelists like
Notifiable Conditions registers) and, hospitalization datasets (administrative datasets), and vaccina-
tion datasets. This command is used to prepare datasets for linkage with murmuration. There are
no mandatory variables to include. However, a dataset of infections would include at minimum an
onset date (date of diagnosis), a dataset of admissions would include admission dates, and a dataset
of vaccinations would include dates of vaccination and type of vaccines. All of the datasets should
include information that would allow for data-linkage, such as first name, last name, date of birth,
address etc etc.

Classic workflow would be:

1. clean_the_nest to clean and prep data for linkage. Pay close attention to your linkage vari-
ables (letternames, date of birth, medicare number, gender and/or postcode), and ensure all
dates are formatted as dates.

2. murmuration to link cases to vaccination data (named here "c2v").

https://orcid.org/0000-0002-6923-9701

clean_the_nest 3

3. murmuration to link c2v to hospitalization data (named here c2v2h). Of note, you can skip
linking the vaccination dataset.

4. preening to prettify the dataframe prepping it for exploration, analysis and presentation.
Great to use with gtsummary::tbl_summary().

Usage

clean_the_nest(
data,
id_var = NULL,
event_id_var = NULL,
drop_eggs = FALSE,
data_type = NULL,
lie_nest_flat = FALSE,
drop_the_na_vax = TRUE,
keep_vars = NULL,
diagnosis = NULL,
lettername1 = NULL,
lettername2 = NULL,
dob = NULL,
age = NULL,
medicare = NULL,
postcode = NULL,
gender = NULL,
fn = NULL,
latitude = NULL,
longitude = NULL,
onset_date = NULL,
vax_type = NULL,
vax_date = NULL,
lag = 0,
admission_date = NULL,
discharge_date = NULL,
hospital = NULL,
icd_code = NULL,
diagnosis_description = NULL,
drg = NULL,
icu_date = NULL,
icu_hours = NULL,
dialysis = NULL,
genomics = NULL,
dod = NULL,
died = NULL

)

Arguments

data The dataset, which can be a case notifications dataset (infections), hospital ad-
missions or vaccination dataset (must pre-specify if it is a vaccinations dataset).

4 clean_the_nest

Make sure dates are in date format.

id_var Any format as long as unique to individual. This is important This ID variable
is critical. Must ensure for case data that it only has one row per person, or first
infection only. Identifies the multiple rows associated with a person who has
multiple vaccines, admissions or infections. Cannot have missing data, or the
observation will be lost in the linking process.

event_id_var Any format as long as unique for the whole dataset. This represents the ID of
the vaccination event, or the hospitalization event, which MUST be distinct. A
person (id_var) can have multiple events (event_id). Some datasets will surprise
you with multiple entries for the same admission.

drop_eggs This effectively drops the variables that are not being used. May turn this off if
you need lots of extra information, but certainly good for the early stages of an
analysis. Enables a lean dataset.

data_type Three options: "vaccination", "hospital", or "cases". The key information re-
quired is that for linkage, and the vaccination events. No age or age categories
will be calculated if it is a vaccination dataset.

lie_nest_flat Takes a long vaccination dataset (like Australian Immunization Register; 1 or
more rows per person) and turns it into a wide dataset - one row per person

drop_the_na_vax

Drops (removes) vaccines that are listed as having no names.

keep_vars Vector list of variables. Variables in a vector list with quotation marks, as it will
be used in a select statement.

diagnosis Character format. The column with the infectious disease diagnosis listed. e.g.
COVID-19, SARS-CoV-2, RSV, Influenza.

lettername1 Character format. First Name variable. If there is a second first name (some
cases this might be a middle name), it will be removed during cleaning. All
non-alphanumeric characters will be removed and everything becomes lower
case.

lettername2 Character format. Last name variable. All non-alphanumeric characters will be
removed and everything becomes lower case. Two part last names will be kept.

dob Date format. The date of birth (make sure dates are in date format).

age Numeric format. Include age only if it has been pre-specified in the dataset, and
you don’t want it re-calculated.

medicare Numeric format. Medicare number. A medicare number with 9, 10 and 11
numbers will have been created. In Australia, the 10th number represents the
card ID, and the 11th number represents the person ID. A family or individual
will get a new card id (10th digit) every time their card expires.

postcode Numeric format. Post code of person with no restriction on the number of digits.

gender Character format. Pay close attention that your genders are in a similar format
for data-linkage - "F", vs "0" vs "Female". This is left up to the user to clean.

fn Character format. First Nations Status.

latitude Numeric format. Latitude of address. Not explicitly required for linkage.

longitude Numeric format. Longitude of address. Not explicitly required for linkage.

clean_the_nest 5

onset_date Date format. Onset date of the illness. Commonly the date of diagnosis (date of
the lab test or date of the first symptom). Must be in date format.

vax_type Character format. Variable that indicates the vaccine type, brand, or antigen

vax_date Date format. Variable that indicates the vaccination event date. Make sure is in
date format, and arranged in order of dates you would like it to appear when it
goes to wide format. For example, if it is not in order, vax_date_1 (an output
variable) may be the latest vaccination date, instead of the first.

lag Numeric format. Number of days to add to the vaccination event date. Useful to
define when a person reaches peak immunity post-vaccination. For COVID-19
this is often thought to be 14 days. Default lag is zero days.

admission_date Date format. Admission date variable. Typically, this should be later than the
date of onset, but there are times when the disease is diagnosed in hospital.

discharge_date Date format. Discharge date variable. This date should be later than the date of
admission.

hospital Hospital identifier. Typically name of the hospital.

icd_code Character format. ICD code variable for the admission. No pre-specified format
required.

diagnosis_description

Character format. Written description of the ICD code. For ease of understand-
ing what the ICD codes mean, not a critical variable.

drg Character format. Diagnostic related group variable for the admission. No pre-
specified format required.

icu_date Date format. ICU admission date preferably. Typically, this should be later
than the date of onset and admission, but there are times when the disease is
diagnosed in ICU.

icu_hours ICU hours. Hours spent in ICU. Should be numeric.

dialysis Dialysis indicator (0/1).

genomics Character format. Genomics variable. Can be variant of SARS-CoV-2, or simi-
larly the Hepatitis A.

dod Date format. Variable representing date of death. Must only have one date of
death chosen (in diagnosis dataset or hospitalization dataset, not both). If dod
selected is from the hospitalization dataset, it will be deleted for persons without
an admission.

died Variable representing death, best use 0 and 1.

Value

The output is a dataframe that is cleaned and could be ready for machine learning data-linkage.

Examples

Basic usage of clean_the_nest.
Use this to set up for datalinkage using the murmuration command and then cleaning with preening
data(dx_data)
df_diag <- clean_the_nest(dx_data, drop_eggs=TRUE, data_type = "cases",

6 dx_data

id_var ="identity",
diagnosis = "disease_name",
lettername1 = "first_name",
lettername2 = "surname",
dob = "date_of_birth",
medicare = "medicare_no",
gender = "gender",
postcode="postcode",
fn="indigenous_status",
onset_date = "diagnosis_date")

data(hosp_data)
df_hosp <- clean_the_nest(hosp_data, drop_eggs=TRUE,

data_type = "hospital",
id_var ="patient_id",
lettername1 = "firstname",
lettername2 = "last_name",
dob = "birth_date",
medicare = "medicare_number",
gender = "sex",
postcode="zip_codes",
fn="cultural_heritage",
icd_code = "icd_codes",
admission_date = "date_of_admission",
discharge_date = "date_of_discharge")

data(vax_data)
df_vax <- clean_the_nest(data = vax_data,

data_type = "vaccination",
lie_nest_flat=TRUE,
id_var = "patient_id",
lettername1="firstname",
lettername2="last_name",
dob="birth_date",
medicare="medicare_number",
gender = "gender",
postcode = "postcode",
vax_type = "vaccine_delivered",
vax_date = "service_date")

dx_data Example Diagnosis Dataset

Description

A sample dataset containing diagnosis records for 10 individuals with respiratory illnesses (In-
fluenza A/B, COVID-19, RSV).

Usage

dx_data

homing 7

Format

A data frame with 10 rows and 10 variables:

identity Patient identifier

disease_name Name of diagnosed disease

first_name Patient’s first name

surname Patient’s surname

date_of_birth Patient’s date of birth

medicare_no Medicare number

gender Gender (M/F)

postcode Postcode of residence

indigenous_status Indigenous status

diagnosis_date Date of diagnosis

Examples

data(dx_data)
head(dx_data)

homing Homing: Relink De-identified Data Using Lookup Table

Description

Like homing pigeons finding their way back, this function relinks de-identified data with original
identifiers using the lookup table created by molting().

Usage

homing(
deidentified_data,
lookup_table,
hash_col_name = "row_hash",
keep_hash = TRUE

)

Arguments

deidentified_data

A de-identified data frame containing a hash column (typically the output from
molting()$deidentified).

8 hosp_data

lookup_table The lookup table data frame that maps anonymous hash values back to original
identifiers. Created by molting(), it contains the hash column plus all removed
identifier columns (names, dates of birth, medical record numbers, etc.). This
serves as the secure "key" for relinking de-identified data back to real identities.
Each row maps one hash to one set of identifiers. Typically obtained as molt-
ing()$lookup. Example structure for a dataset that had patient_name, dob, and
mrn removed: row_hash | patient_name | dob | mrn.

hash_col_name The name of the hash column used for linking. Must exist in both deidenti-
fied_data and lookup_table. Defaults to "row_hash".

keep_hash Logical. If TRUE (default), keeps the hash column in the relinked data. If
FALSE, removes it after relinking.

Value

A data frame with the original identifiers merged back in.

Examples

Not run:
First, de-identify the data
result <- molting(patient_data)

Later, relink when needed
original_data <- homing(

result$deidentified,
result$lookup

)

End(Not run)

hosp_data Example Hospitalization Dataset

Description

A sample dataset containing hospitalization records for 10 individuals, with 3 overlapping with
dx_data.

Usage

hosp_data

linelist_data 9

Format

A data frame with 10 rows and 11 variables:

patient_id Patient identifier
firstname Patient’s first name
last_name Patient’s last name
birth_date Patient’s date of birth
medicare_number Medicare number with check digit
sex Sex (1=Male, 2=Female)
zip_codes Postcode
cultural_heritage Indigenous status
icd_codes ICD-10 diagnosis code
date_of_admission Hospital admission date
date_of_discharge Hospital discharge date

Examples

data(hosp_data)
head(hosp_data)

linelist_data Example Outbreak Linelist Dataset

Description

A sample dataset containing measles outbreak cases associated with a music festival on 2024-06-01.

Usage

linelist_data

Format

A data frame with 10 rows and 10 variables:

case_id Case identifier
first_name Patient’s first name
surname Patient’s surname
date_of_birth Patient’s date of birth
medicare_no Medicare number
gender Gender (M/F)
postcode Postcode of residence
onset_date Date of symptom onset
notification_date Date case was notified
case_classification Case classification (Confirmed/Probable)

10 manifest_data

Examples

data(linelist_data)
head(linelist_data)

manifest_data Example Flight Manifest Dataset

Description

A sample dataset containing passenger manifest for flight QF123 on 2024-03-15, used to demon-
strate event-based vaccination linkage.

Usage

manifest_data

Format

A data frame with 8 rows and 8 variables:

passenger_id Passenger identifier

first_name Passenger’s first name

surname Passenger’s surname

date_of_birth Passenger’s date of birth

gender Gender (M/F)

seat_number Seat assignment

flight_number Flight number

flight_date Date of flight

Examples

data(manifest_data)
head(manifest_data)

molting 11

molting Molt: De-identify a Dataset with Hash-based Relinking

Description

Like a bird molting its feathers for new plumage, this function removes identifiable information and
replaces it with a unique hash for each row. It returns both the de-identified dataset and a lookup
table for relinking. Age category variables (age2cat, age3cat, etc.) are automatically retained.

Usage

molting(
data,
id_cols = NULL,
pii_patterns = NULL,
additional_pii_cols = NULL,
hash_method = "sha256",
hash_col_name = "row_hash",
return_lookup = TRUE,
seed = NULL

)

Arguments

data A data frame to be de-identified.

id_cols An optional character vector of column names to use for creating the hash. If
NULL (the default), the function will use the PII columns it automatically de-
tects.

pii_patterns An optional character vector of regular expression patterns used to detect PII
columns for removal. The default list includes common identifiers.

additional_pii_cols

An optional character vector of specific column names to remove as PII, in ad-
dition to those detected by pattern matching. Useful for adding dataset-specific
identifiers without modifying patterns.

hash_method The hashing algorithm to use. Options include "sha256" (default), "md5", "sha1",
"sha512", "crc32", "xxhash32", "xxhash64", "murmur32", "spookyhash", or
"blake3". See ?digest::digest for details.

hash_col_name A string for the name of the new hash column. Defaults to "row_hash".

return_lookup Logical. If TRUE (default), returns a list containing both the de-identified data
and a lookup table. If FALSE, returns only the de-identified data frame.

seed An optional integer seed for reproducible hashing with certain algorithms. De-
faults to NULL.

12 molting

Details

The function identifies PII columns based on pattern matching, creates a unique hash for each row
based on the concatenated identifier values, and returns both a de-identified dataset and a secure
lookup table.

Age category variables (variables matching the pattern "age\d+cat" such as age2cat, age5cat, age10cat,
etc.) are automatically retained in the de-identified dataset as they are not considered directly iden-
tifying.

Security Note: The lookup table contains sensitive information and should be stored securely with
appropriate access controls. Consider encrypting this file if storing to disk.

Value

If return_lookup = TRUE (default), a list with two elements:

• deidentified: The de-identified data frame with hash column

• lookup: A data frame containing only the identifier columns and the hash for relinking

If return_lookup = FALSE, returns only the de-identified data frame.

Examples

Create sample data
patient_data <- data.frame(

patient_name = c("John Doe", "Jane Smith"),
dob = as.Date(c("1980-01-01", "1975-05-15")),
mrn = c("12345", "67890"),
age5cat = factor(c("18-64", "18-64")),
diagnosis = c("Condition A", "Condition B"),
lab_value = c(120, 95)

)

Basic de-identification (age categories automatically retained)
result <- suppressMessages(molting(patient_data))
names(result$deidentified) # Check column names
head(result$deidentified, 2) # View de-identified data

Use different hash method
result_md5 <- suppressMessages(

molting(patient_data, hash_method = "md5")
)

Return only de-identified data (no lookup table)
deidentified_only <- suppressMessages(

molting(patient_data, return_lookup = FALSE)
)

Add specific columns to PII removal
result_custom <- suppressMessages(

molting(patient_data, additional_pii_cols = c("study_id"))
)

murmuration 13

Specify custom identifier columns for hashing
result_ids <- suppressMessages(

molting(patient_data, id_cols = c("mrn", "dob"))
)

murmuration Links case, hospital or vaccination datasets

Description

Machine learning data linkage. The murmuration command will link diagnostic registry data (cases
or linelist) to hospitalization and immunization records (e.g. Australian Immunization Register).

Usage

murmuration(
df1,
df2,
linkage_type = "c2h",
onset_date = NULL,
event_date = NULL,
id_var = id_var,
blocking_var,
compare_vars,
threshold_value = 12,
days_allowed_before_event = 7,
days_allowed_after_event = 14,
one_row_per_person = TRUE,
clean_eggs = TRUE,
days_between_onset_death = 30,
last_follow_up = NULL

)

Arguments

df1 This is a dataframe object, cleaned using clean_build_nest, and would often
represent the base, or "x" dataset (when doing left joins). Typically this would
be a dataset of cases, have enough data to create linkages, and have onset dates.

df2 This is a dataframe object, cleaned using clean_build_nest, and would often rep-
resent the admissions or vaccination dataset ("y" dataset when doing left joins).
Typically this would have enough data to create linkages, and include either ad-
mission data or vaccination event data (e.g. Australian Immunization Register).

linkage_type Parameter name. Either "c2h", for linkage of cases to hospital admissions data
(default). "v2c" for linkage of cases to vaccination datasets. "v2h" for linkage of
hospitalizations to vaccination history (e.g. building a dataset for test-negative

14 murmuration

case-control studies). Use "v2h" if you want to link a "v2c" dataset to a hospital-
ization dataset. "v2e" for linkage of event participants (flight manifest, outbreak
linelist) to vaccination history to determine vaccination status at time of event.
If using linking to a vaccination dataset, must use single row per person dataset.
If you have multiple vaccines per person, run it through the clean_the_nest com-
mand with "lie_nest_flat" option set to TRUE.

onset_date Variable name for onset date (used in c2h and v2c linkage types). Should be
present in df1.

event_date A date object (e.g., ymd(’2024-12-15’)) representing when the event occurred.
Required for v2e linkage type. All valid vaccinations must occur before this
date.

id_var Variable name (e.g. "id")This is critical for data-linkage and the base dataset is
the dataset you would left join onto (e.g. the "x" dataset). Cannot have missing
data, or the observation will be lost in the linking process.

blocking_var Variable name (e.g. "block1"). Choice of blocking variable. You can create your
own. Up to three blocking vars are created in the past

compare_vars Vector of variables. Used to compare variables between each dataset and cal-
culate the string score differences. Typically names, dates of births and medi-
care/social security numbers.

threshold_value

Numeric (e.g. "12"), default is 12. This represents the threshold above which
you decide that the linkage is true or false. The higher the number, the higher
the specificity of your linkages (compare_vars match more exactly). The lower
the threshold, the more sensitive you are to selecting matches, at the expense of
specificity. Default is 12, and arbitrarily chosen.

days_allowed_before_event

Numeric (e.g. "7"). How much time you choose to allow prior to the onset_date
of a disease-related admission for a c2h dataset (see linkage type). For c2h link-
ages, this represents the lower limit of the window for disease related admis-
sions. For v2h datasets this represents the minimum time between latest vacci-
nation date and admission date to be considered a valid vaccination dose. For a
v2c datasets this represents the minimum time between latest vaccination date
and onset_date to be considered a valid vaccination dose. For v2e datasets this
represents the minimum time between latest vaccination date and event_date to
be considered a valid vaccination dose. For example, if you choose seven days,
then you are allowing for an admission to occur up to seven days prior to the
diagnosis, which means the disease was diagnosed while an inpatient.

days_allowed_after_event

Numeric (e.g. "30"). How much time you choose to allow after the onset of
a disease related admission. Upper limit of window for disease related admis-
sions. For example, if you choose 30 days, then you are allowing for a disease-
related admission to occur up to 30 days after the diagnosis, which means the
disease was diagnosed very close to or prior to the admission.

one_row_per_person

Logical (TRUE or FALSE) with the default being TRUE. It will take multiple
admissions per person, and create a series of variables prefixed with "first_",

murmuration 15

such as "first_admission_date", and put into a single row all admission events,
and create a series of variables suffixed with "s", such as "admission_dates".
Will work with single admissions per person.

clean_eggs Logical (TRUE or FALSE) with the default being TRUE. Drops all the .y vari-
ables that are duplicates of the second dataset (df2), and keeps the variables and
removes the .x from df1. If you leave this on, many, if not most variables will
have ".x" or ".y" attached to them (e.g. gender) and thus keep this as TRUE for
default, and FALSE if you want to check the linkages are true and working.

days_between_onset_death

Numeric (e.g. "30"). If you have put a date of death into the clean_build_nest
command (which will rename it to dod), then the command will find disease
related dates of death. This is chosen number of days between onset and death
for a disease-related death. Often this may be 30 days for SARS-CoV-2 or can
be much longer for HIV. If you don’t want an upper limit, use "9999".

last_follow_up represents a date (input as ymd(2024-11-22)) that represents last follow-up. This
could be the latest admission date of a dataset. Used for calculating survival
time.

Details

A murmuration is a shape-shifting flock of thousands of starlings all flying in synch with each
other. Murmuration means that each bird must be linked (through observation of their movements)
to approximately seen other birds to achieve the beautiful sky art that moves through the sky. Make
sure that you do not have the same variables (other than linkage variables e.g. letternames, DOB,
gender) in both datasets. Always make sure your date columns are properly formatted using as_date,
or as.Date. For example, if both datasets have date of death, choose the dataset with the highest
confidence, and drop out the date of death from the other dataset. If the dataset is being linked
to a hospitalization dataset, the difference in time between onset_date and admission_date will be
used to identify related hospitalizations. The user can filter out unrelated hospitalizations using
diagnostic-related groups or ICD-10 codes separately, prior to linkage. Classic workflow would be:

1. clean_the_nest to clean and prep data for linkage. Pay close attention to your linkage vari-
ables (letternames, date of birth, medicare number, gender and/or postcode), and ensure all
dates are formatted as dates.

2. murmuration with linkage_type="v2c" to link cases to vaccination data.

3. murmuration with linkage_type="v2h" to link a v2c dataset to hospitalization data. Or skip
linking to case data, and just build a v2h dataset for test-negative case-control studies.

4. murmuration with linkage_type="v2e" to link event linelists (flight manifests, outbreak in-
vestigations) to vaccination data.

5. preening to prettify the dataframe prepping it for exploration, analysis and presentation.
Great to use with gtsummary::tbl_summary().

Value

A linked dataset with some new variables.

16 murmuration

Note

Ensure there are no missing vaccination dates in vaccination dataset prior to murmuration. Murmu-
ration requires complete vaccination data (equal date and type columns per observation) to achieve
correct matching of vaccination columns. If there are too few variables to match on, then match-
ing will not work well. For example, if you have first name, last name and date of birth, and a
very large dataset (Immunization Register), then the scoring will not differentiate true from false
matches. Consider deterministic linkage when there is a paucity of information to use to derive
linkage scores.

Examples

Example 1: Link cases to vaccination history
First, clean the datasets to standardize column names
dx_clean <- clean_the_nest(dx_data,

data_type = "cases",
id_var = "identity",
lettername1 = "first_name",
lettername2 = "surname",
dob = "date_of_birth",
gender = "gender",
postcode = "postcode",
medicare = "medicare_no",
diagnosis = "disease_name")

vax_clean <- clean_the_nest(vax_data,
data_type = "vaccination",
id_var = "patient_id",
lettername1 = "firstname",
lettername2 = "last_name",
dob = "birth_date",
gender = "gender",
postcode = "postcode",
medicare = "medicare_number",
vax_type = "vaccine_delivered",
vax_date = "service_date")

Now link cases to vaccination history
df1 <- murmuration(dx_clean, vax_clean,

linkage_type = "v2c",
blocking_var = "gender",
compare_vars = c("lettername1", "lettername2", "dob"),
clean_eggs = FALSE)

Example 2: Link hospitalization data to vaccination history
hosp_clean <- clean_the_nest(hosp_data,

data_type = "hospital",
id_var = "patient_id",
lettername1 = "firstname",
lettername2 = "last_name",
dob = "birth_date",
gender = "sex",

plumage 17

postcode = "zip_codes",
medicare = "medicare_number",
admission_date = "date_of_admission",
discharge_date = "date_of_discharge")

df2 <- murmuration(hosp_clean, vax_clean,
linkage_type = "v2c",
blocking_var = "gender",
compare_vars = c("lettername1", "lettername2", "medicare10", "dob"),
clean_eggs = FALSE,
one_row_per_person = TRUE)

Example 3: Link flight manifest to vaccination history
manifest_clean <- clean_the_nest(manifest_data,

data_type = "cases",
id_var = "passenger_id",
lettername1 = "first_name",
lettername2 = "surname",
dob = "date_of_birth",
gender = "gender")

df_flight <- murmuration(manifest_clean, vax_clean,
linkage_type = "v2e",
event_date = as.Date("2024-03-15"),
blocking_var = "gender",
compare_vars = c("lettername1", "lettername2", "dob"),
days_allowed_before_event = 14,
clean_eggs = FALSE)

Example 4: Link outbreak linelist to vaccination history
linelist_clean <- clean_the_nest(linelist_data,

data_type = "cases",
id_var = "case_id",
lettername1 = "first_name",
lettername2 = "surname",
dob = "date_of_birth",
gender = "gender",
postcode = "postcode",
medicare = "medicare_no",
onset_date = "onset_date")

df_outbreak <- murmuration(linelist_clean, vax_clean,
linkage_type = "v2e",
event_date = as.Date("2024-06-01"),
blocking_var = "postcode",
compare_vars = c("lettername1", "lettername2", "dob", "medicare10"),
days_allowed_before_event = 7,
clean_eggs = FALSE)

plumage Identify Chronic Conditions Using ICD-10-AM U-Codes

18 plumage

Description

Analyzes a hospitalization dataset to identify chronic conditions based on ICD-10-AM U-codes.
Like identifying a bird by its distinctive plumage (feathers), this function identifies patients by
their chronic condition patterns. Creates binary indicators for each condition and calculates total
condition counts by category.

Usage

plumage(df, icd_column, prefix = NULL, decimal = TRUE, drop_eggs = FALSE)

Arguments

df A data frame containing hospitalization records

icd_column Character string specifying the name of the column containing ICD-10-AM
codes

prefix Optional character string to prefix all output column names (default: NULL)

decimal Logical indicating whether to match U-codes with decimal points (TRUE, de-
fault) or without decimal points (FALSE). When TRUE, matches "U78.1" for-
mat; when FALSE, matches "U781" format.

drop_eggs Logical indicating whether to drop individual condition columns and retain only
summary columns. Default is FALSE.

Details

This function identifies chronic conditions from ICD-10-AM U-codes (Australian modification
codes for chronic conditions). The function recognizes the following conditions:

Metabolic/Endocrine: * U78.1: Obesity * U78.2: Cystic fibrosis

Mental Health: * U79.1: Dementia * U79.2: Schizophrenia * U79.3: Depression * U79.4:
Intellectual/developmental disability

Neurological: * U80.1: Parkinson’s disease * U80.2: Multiple sclerosis * U80.3: Epilepsy *
U80.4: Cerebral palsy * U80.5: Paralysis

Cardiovascular: * U82.1: Ischaemic heart disease * U82.2: Heart failure * U82.3: Hyperten-
sion

Respiratory: * U83.1: Emphysema * U83.2: COPD * U83.3: Asthma * U83.4: Bronchiectasis
* U83.5: Respiratory failure

Gastrointestinal: * U84.1: Crohn’s disease * U84.2: Ulcerative colitis * U84.3: Liver failure

Musculoskeletal: * U86.1: Rheumatoid arthritis * U86.2: Osteoarthritis * U86.3: Systemic
lupus erythematosus * U86.4: Osteoporosis

Renal: * U87.1: Chronic kidney disease

Congenital: * U88.1: Spina bifida * U88.2: Down syndrome

The function searches for these codes within the specified ICD column and creates binary indicators
for each condition. It also calculates summary measures including total conditions overall and by
disease category.

Note: Cystic fibrosis (U78.2) is counted in both metabolic and respiratory categories.

preening 19

Value

Returns the input data frame with additional columns: * Binary indicators (0/1) for each chronic
condition, optionally prefixed (unless drop_eggs = TRUE) * total_conditions: Sum of all identified
conditions * total_metabolic_conditions: Sum of metabolic/endocrine conditions * total_mental_health_conditions:
Sum of mental health conditions * total_neurological_conditions: Sum of neurological conditions *
total_cardiovascular_conditions: Sum of cardiovascular conditions * total_respiratory_conditions:
Sum of respiratory conditions * total_gastrointestinal_conditions: Sum of gastrointestinal condi-
tions * total_musculoskeletal_conditions: Sum of musculoskeletal conditions * total_renal_conditions:
Sum of renal conditions * total_congenital_conditions: Sum of congenital conditions * condi-
tions_category: Factor with levels "0", "1", "2", "3+" based on total_conditions

Examples

Create sample hospitalization data
hospital_data <- data.frame(

patient_id = 1:4,
icd_codes = c(
"K29.70",
"U78.1, U83.2, U82.3",
"U79.3, U83.3",
"U80.1, U86.2"

)
)

Identify chronic conditions with decimal format (default)
results1 <- plumage(hospital_data, "icd_codes")

View category summaries
results1[, c("patient_id", "total_conditions",

"total_cardiovascular_conditions",
"total_respiratory_conditions")]

Identify chronic conditions without decimal format
results2 <- plumage(hospital_data, "icd_codes", decimal = FALSE)

Identify chronic conditions with prefix
results3 <- plumage(hospital_data, "icd_codes", prefix = "chronic_")

Keep only summary columns, drop individual conditions
results4 <- plumage(hospital_data, "icd_codes", drop_eggs = TRUE)

preening Prettification of infectious diseases datasets

Description

Prettifies your dataset in preparation for data exploration and presenting tables. Adds variable labels
and creates a series of age and time categories for analysis. Just list the dataframe and it let it clean

20 preening

your variables and create exploratory variables. Use it as late in the workflow as possible, but, can
be used at anytime.

Classic workflow would be:

1. clean_the_nest to clean and prep data for linkage. Pay close attention to your linkage vari-
ables (letternames, date of birth, medicare number, gender and/or postcode), and ensure all
dates are formatted as dates.

2. murmuration to link cases to vaccination data (named here "c2v").

3. murmuration to link c2v to hospitalization data (named here c2v2h). Of note, you can skip
linking the vaccination dataset.

4. preening to prettify the dataframe prepping it for exploration, analysis and presentation.
Great to use with gtsummary::tbl_summary().

Usage

preening(
df,
create_age_categories = TRUE,
create_temporal_vars = TRUE,
calculate_age = TRUE,
age_reference_date = NULL

)

Arguments

df The dataset as a dataframe, which can be a case notifications dataset (infections),
hospital admissions or vaccination dataset.

create_age_categories

Logical. If TRUE (default), creates 21 standardized age category variables. Re-
quires an ’age’ variable in the dataset.

create_temporal_vars

Logical. If TRUE (default), creates temporal variables (ISO weeks, quarters,
months) for date columns.

calculate_age Logical. If TRUE (default), attempts to calculate age from dob if age variable is
missing.

age_reference_date

Character. Column name to use as reference date for age calculation if age is
missing. If NULL (default), uses first available from: event_date, onset_date,
admission_date, first_vax_date, last_vax_date, vax_date_*.

Details

This function enhances infectious disease datasets by:

• Adding descriptive variable labels for cleaner tables and graphics

• Creating comprehensive temporal variables (ISO weeks, quarters, months) from date fields

• Generating 21 standardized age category variables for flexible analysis

preening 21

• Calculating age from date of birth if not already present

• Adding useful derived variables for epidemiological analysis

IMPORTANT - Date Format Requirements:

All date columns MUST be in R’s Date format before using this function. The function expects
dates to already be properly formatted and will error with a clear message if they are not.

Common date conversions:

• From character: data$dob <- as.Date(data$dob, format = "%Y-%m-%d")

• From character (alternative): data$dob <- lubridate::ymd(data$dob)

• From Excel dates: data$dob <- as.Date(data$dob, origin = "1899-12-30")

• Always check: class(data$dob) should return "Date"

If you receive an error like "column must be in Date format", convert your date columns first, then
run preening().

Age Categorization: If create_age_categories = TRUE and an ’age’ variable exists (or can be cal-
culated), the function creates 21 standardized age category variables with nomenclature age[x]cat
where x indicates the number of categories:

age2cat 2 categories: Pediatric vs Adult (<18, 18+)

age3cat 3 categories: Child, Adult, Older Adult (<18, 18-64, 65+)

age4cat 4 categories: Infant/Child, Young Adult, Adult, Older Adult (<5, 5-17, 18-64, 65+)

age5cat 5 categories: Standard public health categories (0-4, 5-17, 18-64, 65-74, 75+)

age6cat 6 categories: Granular infant categories (<1, 1-4, 5-17, 18-64, 65-74, 75+)

age7cat 7 categories: Fine pediatric cuts (<1, 1, 2-4, 5-11, 12-17, 18-64, 65+)

age8cat 8 categories: Infant subcategories (<3mo, 3-5mo, 6-11mo, 1-4, 5-17, 18-64, 65-74, 75+)

age9cat 9 categories: Monthly infant categories (<1mo, 1mo, 2-5mo, 6-11mo, 1-4, 5-17, 18-64,
65-74, 75+)

age10cat 10 categories: Decade bands (0-4, 5-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79,
80+)

age11cat 11 categories: Fine older adult categories (0-4, 5-17, 18-29, 30-39, 40-49, 50-59, 60-69,
70-79, 80-89, 90-99, 100+)

age12cat 12 categories: Detailed pediatric + adult decades (<1, 1-4, 5-9, 10-14, 15-19, 20-29,
30-39, 40-49, 50-59, 60-69, 70-79, 80+)

age13cat 13 categories: Very fine infant + standard adult (<1mo, 1mo, 2mo, 3-5mo, 6-11mo, 1,
2-4, 5-11, 12-17, 18-39, 40-64, 65-79, 80+)

age14cat 14 categories: ABS-like with fine elderly (0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-39,
40-49, 50-59, 60-69, 70-79, 80-84, 85-89, 90+)

age15cat 15 categories: Vaccine schedule aligned (<2mo, 2-3mo, 4-5mo, 6-11mo, 1, 2-3, 4, 5-11,
12-17, 18-49, 50-64, 65-74, 75-84, 85-94, 95+)

age16cat 16 categories: Granular pediatric + 10-year adult bands (<1, 1, 2, 3, 4, 5-9, 10-14, 15-19,
20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90+)

22 tweet

age17cat 17 categories: WHO/UNICEF standard with extensions (<1mo, 1-5mo, 6-11mo, 1, 2-4,
5-9, 10-14, 15-19, 20-24, 25-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90+)

age18cat 18 categories: Standard 5-year bands (census/ABS style) (0-4, 5-9, 10-14, 15-19, 20-24,
25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, 85+)

age19cat 19 categories: Extended 5-year bands with fine elderly (0-4, 5-9, ..., 80-84, 85-89, 90+)
age20cat 20 categories: Monthly up to 12 months + standard thereafter (<1mo, 1mo, 2mo, 3mo,

4mo, 5mo, 6mo, 7mo, 8mo, 9mo, 10mo, 11mo, 1-4, 5-17, 18-39, 40-64, 65-74, 75-84, 85-94,
95+)

age21cat 21 categories: Comprehensive life course categories (<1mo, 1-2mo, 3-5mo, 6-11mo, 1,
2-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-74,
75-84, 85+)

Value

The output is a dataframe with variable labels (useful for making pretty tables and graphics), and
creates several age categories and time categories (month-year, quarter-year etc.)

tweet Examine and summarize variables in a dataset

Description

Provides a comprehensive summary of variables in a dataset after cleaning with clean_the_nest.
This function examines variables by type, providing appropriate statistics for numeric, date, factor,
and character variables. For numeric variables, it shows min/max values, quartiles and missing data
counts. For date variables, it displays the date range and percentage of non-missing values. For
factor and character variables, it shows the number of unique levels, frequency of top levels, and
missing data counts.

Usage

tweet(data, select_vars = NULL, top_n = 3, sort_by = "type")

Arguments

data The dataset, typically output from clean_the_nest function
select_vars Optional vector of variable names to examine. If NULL, all variables will be

summarized.
top_n Number of top categories to display for factor and character variables. Default

is 3.
sort_by How to sort variables in the output. Options are "name" (alphabetical) or "type"

(grouped by data type). Default is "type".

Value

A data frame with one row per variable, containing variable name, type, missingness, and type-
specific statistics.

vax_data 23

Examples

basic usage of tweet after clean_the_nest
data(dx_data)
df_diag <- clean_the_nest(dx_data, drop_eggs=TRUE, data_type = "cases",

id_var ="identity",
diagnosis = "disease_name",
lettername1 = "first_name",
lettername2 = "surname",
dob = "date_of_birth",
medicare = "medicare_no",
gender = "gender",
postcode="postcode",
fn="indigenous_status",
onset_date = "diagnosis_date")

Examine all variables in the cleaned dataset
summary_df <- tweet(df_diag)

Examine only specific variables
summary_df_subset <- tweet(df_diag, select_vars = c("age", "gender", "onset_date"))

Show more categories for factor variables
summary_df_detailed <- tweet(df_diag, top_n = 5)

vax_data Example Vaccination Dataset

Description

A sample dataset containing vaccination records in long format for multiple individuals, with some
having multiple vaccination entries.

Usage

vax_data

Format

A data frame with 15 rows and 9 variables:

patient_id Patient identifier
firstname Patient’s first name
last_name Patient’s last name
birth_date Patient’s date of birth
medicare_number Medicare number
gender Gender (Male/Female)
postcode Postcode of residence
vaccine_delivered Type of vaccine administered
service_date Date of vaccination

24 vax_data

Examples

data(vax_data)
head(vax_data)

Index

∗ datasets
dx_data, 6
hosp_data, 8
linelist_data, 9
manifest_data, 10
vax_data, 23

clean_the_nest, 2, 2, 15, 20

dx_data, 6

homing, 7
hosp_data, 8

linelist_data, 9

manifest_data, 10
molting, 11
murmuration, 2, 3, 13, 15, 20

plumage, 17
preening, 3, 15, 19, 20

tweet, 22

vax_data, 23

25

	clean_the_nest
	dx_data
	homing
	hosp_data
	linelist_data
	manifest_data
	molting
	murmuration
	plumage
	preening
	tweet
	vax_data
	Index

