Title: | Empirical Bayes Variable Selection via ICM/M Algorithm |
Version: | 1.2 |
Author: | Vitara Pungpapong [aut, cre], Min Zhang [ctb], Dabao Zhang [ctb] |
Maintainer: | Vitara Pungpapong <vitara@cbs.chula.ac.th> |
Description: | Empirical Bayes variable selection via ICM/M algorithm for normal, binary logistic, and Cox's regression. The basic problem is to fit high-dimensional regression which sparse coefficients. This package allows incorporating the Ising prior to capture structure of predictors in the modeling process. More information can be found in the papers listed in the URL below. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | https://www.researchgate.net/publication/279279744_Selecting_massive_variables_using_an_iterated_conditional_modesmedians_algorithm, https://doi.org/10.1089/cmb.2019.0319 |
Encoding: | UTF-8 |
Imports: | EbayesThresh |
Suggests: | MASS, stats |
LazyData: | true |
RoxygenNote: | 7.1.1 |
Packaged: | 2021-05-26 04:52:07 UTC; vpungpap |
Repository: | CRAN |
Date/Publication: | 2021-05-26 05:20:02 UTC |
NeedsCompilation: | no |
Empirical Bayes Variable Selection via ICM/M
Description
Carries out empirical Bayes variable selection via ICM/M algorithm. The basic problem is to fit a high-dimensional regression which most of the coefficients are assumed to be zero. This package allows incorporating the Ising prior to capture structure of predictors in the modeling process. The current version of this package can handle the normal, binary logistic, and Cox's regression.
Details
Package: | icmm |
Type: | Package |
Version: | 1.2 |
Date: | 2021-5-12 |
License: | GPL-2 |
LazyLoad: | yes |
Author(s)
Vitara Pungpapong, Min Zhang, Dabao Zhang
Maintainer: Vitara Pungpapong <vitara@cbs.chula.ac.th>
References
Pungpapong, V., Zhang, M. and Zhang, D. (2015). Selecting massive variables using an iterated conditional modes/medians algorithm. Electronic Journal of Statistics. 9:1243-1266. <doi:10.1214/15-EJS1034>.
Pungpapong, V., Zhang, M. and Zhang, D. (2020). Integrating Biological Knowledge Into Case-Control Analysis Through Iterated Conditional Modes/Medians Algorithm. Journal of Computational Biology. 27(7): 1171-1179. <doi:10.1089/cmb.2019.0319>.
Hyperparameter estimation for a
and b
.
Description
This function estimates the hyperparameters a
and b
for the Ising prior. This function is for internal use called by the icmm
function.
Usage
get.ab(beta, structure, edgeind)
Arguments
beta |
a (p*1) matrix of regression coefficients. |
structure |
a data frame stores the information of structure among predictors. |
edgeind |
a vector stores primary keys of |
Details
Estimate hyperparameters, a
and b
, using maximum pseudolikelihood estimators.
Value
Return a two-dimensional vector where the fist element is a
and the second element is b
.
Author(s)
Vitara Pungpapong, Min Zhang, Dabao Zhang
Examples
data(simGaussian)
data(linearrelation)
Y<-as.matrix(simGaussian[,1])
X<-as.matrix(simGaussian[,-1])
# Suppose obtain beta from lasso
data(initbetaGaussian)
beta<-as.matrix(initbetaGaussian)
edgeind<-sort(unique(linearrelation[,1]))
hyperparameter<-get.ab(beta=beta, structure=linearrelation, edgeind=edgeind)
Hyperparameter estimation for alpha
.
Description
This function estimates a hyperparameter alpha
, a scale parameter in Laplace denstiy. This function is for internal use called by the icmm
function.
Usage
get.alpha(beta, scaledfactor)
Arguments
beta |
a (p*1) matrix of regression coefficients. |
scaledfactor |
a scalar value of multiplicative factor. |
Details
This function estimates a hyperparameter alpha
, a scale parameter in Laplace density as the mode of its full conditional distribution function.
Value
Return a scalar value of alpha
.
Author(s)
Vitara Pungpapong, Min Zhang, Dabao Zhang
Examples
data(simGaussian)
Y<-as.matrix(simGaussian[,1])
X<-as.matrix(simGaussian[,-1])
n<-dim(X)[1]
# Obtain initial values of beta from lasso
data(initbetaGaussian)
beta<-as.matrix(initbetaGaussian)
# Initiate alpha
alpha<-0.5
# Estimate sigma
e<-Y-X%*%beta
nz<-sum(beta[,1]!=0)
sigma<-get.sigma(Y=Y, X=X, beta=beta, alpha=alpha)
# Update alpha as the mode of its full conditional distribution function
alpha<-get.alpha(beta=beta, scaledfactor=1/(sqrt(n-1)*sum(abs(beta))/sigma))
Obtain model coefficient without assuming prior on structure of predictors.
Description
Given a sufficient statistic for a regression coefficient, this funciton estimates a regression coefficient without assuming prior on structure of predictors.
Usage
get.beta(SS, w, alpha, scaledfactor)
Arguments
SS |
a scalar value of sufficient statistic for a regression coefficient. |
w |
a scalar value of mixing weight. |
alpha |
a scalar value of hyperparameter |
scaledfactor |
a scalar value of multiplicative factor. |
Details
Empirical Bayes thresholding is employed to obtain a posterior median of a regression coefficient.
Value
a scalar value of regression coefficient.
Author(s)
Vitara Pungpapong, Min Zhang, Dabao Zhang
Examples
data(simGaussian)
Y<-as.matrix(simGaussian[,1])
X<-as.matrix(simGaussian[,-1])
n<-dim(X)[1]
# Obtain initial values from lasso
data(initbetaGaussian)
beta<-as.matrix(initbetaGaussian)
# Initiate all other parameters
w<-0.5
alpha<-0.5
sigma<-get.sigma(Y=Y, X=X, beta=beta, alpha=alpha)
# Obtain a sufficient statistic
j<-1
Yres<-Y-X%*%beta+X[,j]*beta[j,1]
sxy<-t(Yres)%*%X[,j]
ssx<-sum(X[,j]^2)
SS<-sqrt(n-1)*sxy/(sigma*ssx)
beta[j,1]<-get.beta(SS=SS, w=w, alpha=alpha, scaledfactor=sigma/sqrt(n-1))
Obtain a regression coefficient when assuming Ising prior (with structured predictors).
Description
Given a sufficient statistic for a regression coefficient, this function estimates a coefficient when assuming the Ising model to incorporate the prior of structured predictors.
Usage
get.beta.ising(SS, wpost, alpha, scaledfactor)
Arguments
SS |
a sufficient statistic for a regression coefficient. |
wpost |
a posterior probability of mixing weight. |
alpha |
a scalar value for hyperparameter |
scaledfactor |
a scalar value for multiplicative factor. |
Details
Given a posterior probability of mixing weight, empirical Bayes thresholding is employed to obtain a posterior median of a regression coefficient.
Value
a scalar value of regression coefficient.
Author(s)
Vitara Pungpapong, Min Zhang, Dabao Zhang
Examples
data(simGaussian)
Y<-as.matrix(simGaussian[,1])
X<-as.matrix(simGaussian[,-1])
n<-dim(X)[1]
data(linearrelation)
edgeind<-sort(unique(linearrelation[,1]))
# Obtain initial values from lasso
data(initbetaGaussian)
beta<-as.matrix(initbetaGaussian)
# Initiate all other parameters
alpha<-0.5
sigma<-get.sigma(Y=Y, X=X, beta=beta, alpha=alpha)
hyperparam<-get.ab(beta, linearrelation, edgeind)
# Obtain regression coefficient
j<-1
Yres<-Y-X%*%beta+X[,j]*beta[j,1]
sxy<-t(Yres)%*%X[,j]
ssx<-sum(X[,j]^2)
SS<-sqrt(n-1)*sxy/(sigma*ssx)
wpost<-get.wpost(SS, beta, alpha, hyperparam, linearrelation, edgeind, j)
beta[j,1]<-get.beta.ising(SS=SS, wpost=wpost, alpha=alpha,
scaledfactor=sigma/sqrt(n-1))
Obtain pseudodata based on the binary logistic regression model.
Description
For logistic regression, given the current estimates of regression coefficients, working responses and their corresponding weights are obtained.
Usage
get.pseudodata.binomial(Y, X, beta0, beta, niter)
Arguments
Y |
an (n*1) numeric matrix of responses. |
X |
an (n*p) numeric design matrix. |
beta0 |
a scalar value of intercept term. |
beta |
a (p*1) matrix of regression coefficients. |
niter |
number of iterations in ICM/M algorithm. |
Value
Return a list including elements
z |
an (n*1) matrix of working responses |
sigma2 |
an (n*1) matrix of inverse of weights. |
Author(s)
Vitara Pungpapong, Min Zhang, Dabao Zhang
Examples
data(simBinomial)
Y<-as.matrix(simBinomial[,1])
X<-as.matrix(simBinomial[,-1])
p<-dim(X)[2]
# Obtain initial values from lasso
data(initbetaBinomial)
initbeta<-as.matrix(initbetaBinomial)
# Get Pseudodata
pseudodata<-get.pseudodata.binomial(Y=Y, X=X, beta0=0, beta=initbeta, niter=1)
z<-pseudodata$z
sigma<-sqrt(pseudodata$sigma2)
Obtain pseudodata based on the Cox's regression model.
Description
For Cox's regression model, given the current estimates of regression coefficients, working responses and their corresponding weights are obtained.
Usage
get.pseudodata.cox(Y, X, event, beta, time, ntime, sumevent)
Arguments
Y |
an (n*1) numeric matrix of time response. |
X |
an (n*p) numeric design matrix. |
event |
an (n*1) numeric matrix of status: of status indicator: |
beta |
a (p*1) matrix of regression coefficients. |
time |
a vector or sorted value of |
ntime |
length of the vector |
sumevent |
a vector of size |
Value
Return a list including elements
z |
an (n*1) matrix of working responses |
sigma2 |
an (n*1) matrix of inverse of weights. |
Author(s)
Vitara Pungpapong, Min Zhang, Dabao Zhang
Examples
data(simCox)
Y<-as.matrix(simCox[,1])
event<-as.matrix(simCox[,2])
X<-as.matrix(simCox[,-(1:2)])
time<-sort(unique(Y))
ntime<-length(time)
# sum of event_i where y_i =time_k
sumevent<-rep(0, ntime)
for(j in 1:ntime)
{
sumevent[j]<-sum(event[Y[,1]==time[j]])
}
# Obtain initial values from lasso
data(initbetaCox)
initbeta<-as.matrix(initbetaCox)
# Get Pseudodata
pseudodata<-get.pseudodata.cox(Y, X, event, initbeta, time, ntime, sumevent)
z<-pseudodata$z
sigma<-sqrt(pseudodata$sigma2)
Standard deviation estimation.
Description
This function estimates the standard deviation when family="gaussian"
. This function is for internal use called by the icmm
function.
Usage
get.sigma(Y, X, beta, alpha)
Arguments
Y |
an (n*1) numeric matrix of responses. |
X |
an (n*p) numeric design matrix. |
beta |
a (p*1) matrix of regression coefficients. |
alpha |
a scalar value of hyperparmeter |
Details
Estimate standard deviation as the mode of its full conditional distribution function when specify family="gaussian"
. This function is for internal use called by the icmm
function.
Value
Return a scalar value of standard deviation.
Author(s)
Vitara Pungpapong, Min Zhang, Dabao Zhang
Examples
data(simGaussian)
Y<-as.matrix(simGaussian[,1])
X<-as.matrix(simGaussian[,-1])
alpha<-0.5
# Obtain initial values from lasso
data(initbetaGaussian)
beta<-as.matrix(initbetaGaussian)
# Obtain sigma
sigma<-get.sigma(Y=Y, X=X, beta=beta, alpha=alpha)
Estimate posterior probability of mixing weight.
Description
With the Ising prior on structured predictors, this function gets the posterior probability of mixing weight.
Usage
get.wpost(SS, beta, alpha, hyperparam, structure, edgeind, j)
Arguments
SS |
a scalar value of sufficient statistic for regression coefficient. |
beta |
a (p*1) matrix of regression coefficients. |
alpha |
a scalar value of hyperparameter |
hyperparam |
a two-dimensional vector of hyperparameters |
structure |
a data frame stores the information of structure among predictors. |
edgeind |
a vector stores primary keys of |
j |
an index ranges from 1 to p. This function estimates a posterior probability of a mixing weight corresponding to predictor |
Details
With the Ising prior on structured predictors, the problem is transformed into the realm of empirical Bayes thresholding with Laplace prior by estimating the posterior probability of mixing weight. The posterior probability is used to find the posterior median of a regression coefficient.
Value
Return a scalar value of a posterior probability of mixing weight for predictor.
Author(s)
Vitara Pungpapong, Min Zhang, Dabao Zhang
Examples
data(simGaussian)
Y<-as.matrix(simGaussian[,1])
X<-as.matrix(simGaussian[,-1])
n<-dim(X)[1]
data(linearrelation)
edgeind<-sort(unique(linearrelation[,1]))
# Obtain initial values from lasso
data(initbetaGaussian)
beta<-as.matrix(initbetaGaussian)
# Initiate all other parameters
alpha<-0.5
sigma<-get.sigma(Y=Y, X=X, beta=beta, alpha=alpha)
hyperparam<-get.ab(beta, linearrelation, edgeind)
# Estimate the posterior probability of first predictor
j<-1
Yres<-Y-X%*%beta+X[,j]*beta[j,1]
sxy<-t(Yres)%*%X[,j]
ssx<-sum(X[,j]^2)
SS<-sqrt(n-1)*sxy/(sigma*ssx)
wpost<-get.wpost(SS=SS, beta=beta, alpha=alpha, hyperparam=hyperparam,
structure=linearrelation, edgeind=edgeind, j=j)
Mixing weight estimation.
Description
Given other parameters, this function estimates a mixing weight from the mode of its full conditional distribution function.
Usage
get.wprior(beta)
Arguments
beta |
a (p*1) matrix of regression coefficients. |
Details
Given other parameters, this function estimates a mixing weight from the mode of its full conditional distribution function. This function is called when use the independent prior of predictors (no prior on structured predictors).
Value
Return a scalar value of a mixing weight.
Author(s)
Vitara Pungpapong, Min Zhang, Dabao Zhang
Examples
data(simGaussian)
Y<-as.matrix(simGaussian[,1])
X<-as.matrix(simGaussian[,-1])
# Obtain initial values from lasso
data(initbetaGaussian)
beta<-as.matrix(initbetaGaussian)
# Estimate the mixing weight
w<-get.wprior(beta)
Local posterior probability estimation
Description
This function estimates the local posterior probability when assuming no prior on structured predictors.
Usage
get.zeta(SS, w, alpha)
Arguments
SS |
a scalar value of sufficient statistic for regression coefficient. |
w |
a scalar value of mixing weight. |
alpha |
a scalar value of hyperparameter |
Details
Given all other parameters, this function estimates the local posterior probability or the probability that a regression coefficient is not zero conditional on other parameters. This function is called when assuming no prior on structured predictors.
Value
Return a scalar value of local posterior probability.
Author(s)
Vitara Pungpapong, Min Zhang, Dabao Zhang
Examples
data(simGaussian)
Y<-as.matrix(simGaussian[,1])
X<-as.matrix(simGaussian[,-1])
n<-dim(X)[1]
# Obtain initial values from lasso
data(initbetaGaussian)
initbeta<-as.matrix(initbetaGaussian)
# Obtain the final output from ebvs
output<-icmm(Y, X, b0.start=0, b.start=initbeta, family = "gaussian",
ising.prior = FALSE, estalpha = FALSE, alpha = 0.5, maxiter = 100)
b0<-output$coef[1]
beta<-matrix(output$coef[-1], ncol=1)
# Get all parameters for function arguments
w<-get.wprior(beta)
alpha<-0.5
sigma<-get.sigma(Y,X,beta,alpha)
# Estimate local posterior probability
j<-1
Yres<-Y-b0-X%*%beta+X[,j]*beta[j,1]
sxy<-t(Yres)%*%X[,j]
ssx<-sum(X[,j]^2)
SS<-sqrt(n-1)*sxy/(sigma*ssx)
zeta<-get.zeta(SS=SS, w=w, alpha=alpha)
Local posterior probability estimation.
Description
This function estimates the local posterior probability when assuming Ising prior on structured predictors.
Usage
get.zeta.ising(SS, beta, alpha, hyperparam, structure, edgeind, j)
Arguments
SS |
a scalar value of sufficient statistic for regression coefficient. |
beta |
a (p*1) matrix of regression coefficients. |
alpha |
a scalar value of hyperparameter |
hyperparam |
a two-dimensional vector of hyperparameters |
structure |
a data frame stores the information of structure among predictors. |
edgeind |
a vector stores primary keys of |
j |
an index ranges from 1 to p. This function estimate a local posterior probability of predictor |
Details
Given all other parameters, this function estimates the local posterior probability or the probability that a regression coefficient is not zero conditional on other par ameters. This function is called when assuming Ising prior on structured predictors.
Value
Return a scalar value of local posterior probability.
Author(s)
Vitara Pungpapong, Min Zhang, Dabao Zhang
Examples
data(simGaussian)
data(linearrelation)
Y<-as.matrix(simGaussian[,1])
X<-as.matrix(simGaussian[,-1])
n<-dim(X)[1]
# Obtain initial values from lasso
data(initbetaGaussian)
initbeta<-as.matrix(initbetaGaussian)
# Get final output from ebvs
output<-icmm(Y, X, b0.start=0, b.start=initbeta, family = "gaussian",
ising.prior = TRUE, structure=linearrelation, estalpha = FALSE,
alpha = 0.5, maxiter = 100)
b0<-output$coef[1]
beta<-matrix(output$coef[-1], ncol=1)
# Get all parameters for function arguments
w<-get.wprior(beta)
alpha<-0.5
sigma<-get.sigma(Y,X,beta,alpha)
edgeind<-sort(unique(linearrelation[,1]))
hyperparam<-get.ab(beta, linearrelation, edgeind)
# Estimate local posterior probability
j<-1
Yres<-Y-b0-X%*%beta+X[,j]*beta[j,1]
sxy<-t(Yres)%*%X[,j]
ssx<-sum(X[,j]^2)
SS<-sqrt(n-1)*sxy/(sigma*ssx)
zeta<-get.zeta.ising(SS=SS, beta=beta, alpha=alpha, hyperparam=hyperparam,
structure=linearrelation, edgeind=edgeind, j=j)
Empirical Bayes Variable Selection
Description
Empirical Bayes variable selection via the ICM/M algorithm.
Usage
icmm(Y, X, event, b0.start, b.start, family = "gaussian",
ising.prior = FALSE, structure, estalpha = FALSE,
alpha = 0.5, maxiter = 100)
Arguments
Y |
an (n*1) numeric matrix of responses. |
X |
an (n*p) numeric design matrix. |
event |
an (n*1) numeric matrix of status for censored data: |
b0.start |
a starting value of intercept term (optional). |
b.start |
a (p*1) matrix of starting values for regression coefficients. |
family |
specification of the model. It can be one of these three models: |
ising.prior |
a logical flag for Ising prior utilization. |
structure |
a data frame stores the information of structured predictors (need to specify when |
estalpha |
a logical flag specifying whether to obtain |
alpha |
a scalar value of scale parameter in Laplace density (non-zero part of prior). The default value is |
maxiter |
a maximum values of iterations for ICM/M algorithm. |
Details
The main function for empirical Bayes variable selection. Iterative conditional modes/medians (ICM/M) is implemented in this function. The basic problem is to estimate regression coefficients in high-dimensional data (i.e., large p small n) and we assume that most coefficients are zero. This function also allows the prior of structure of covariates to be incorporated in the model.
Value
Return a list including elements
coef |
a vector of model coefficients. The first element is an intercept term when specifying |
iterations |
number of iterations of ICM/M. |
alpha |
a scalar value of |
postprob |
a p-vector of local posterior probabilities or zeta. |
Author(s)
Vitara Pungpapong, Min Zhang, Dabao Zhang
References
Pungpapong, V., Zhang, M. and Zhang, D. (2015). Selecting massive variables using an iterated conditional modes/medians algorithm. Electronic Journal of Statistics. 9:1243-1266. <doi:10.1214/15-EJS1034>.
Pungpapong, V., Zhang, M. and Zhang, D. (2020). Integrating Biological Knowledge Into Case-Control Analysis Through Iterated Conditional Modes/Medians Algorithm. Journal of Computational Biology. 27(7): 1171-1179. <doi:10.1089/cmb.2019.0319>.
See Also
get.ab
, get.alpha
, get.beta
, get.beta.ising
, get.pseudodata.binomial
,
get.pseudodata.cox
, get.sigma
, get.wprior
, get.zeta
, get.zeta.ising
Examples
# Normal linear regression model
# With no prior on structure among predictors
data(simGaussian)
Y<-as.matrix(simGaussian[,1])
X<-as.matrix(simGaussian[,-1])
# Obtain initial values from lasso
data(initbetaGaussian)
initbeta<-as.matrix(initbetaGaussian)
result<-icmm(Y=Y, X=X, b.start=initbeta, family="gaussian",
ising.prior=FALSE, estalpha=FALSE, alpha=0.5, maxiter=100)
result$coef
result$iterations
result$alpha
result$wpost
# With prior on structure among predictors
data(linearrelation)
result<-icmm(Y=Y, X=X, b.start=initbeta, family="gaussian",
ising.prior=TRUE, structure=linearrelation,
estalpha=FALSE, alpha=0.5, maxiter=100)
result$coef
result$iterations
result$alpha
result$wpost
# Binary logistic regression model
data(simBinomial)
Y<-as.matrix(simBinomial[,1])
X<-as.matrix(simBinomial[,-1])
p<-dim(X)[2]
# Obtain initial values from lasso
data(initbetaBinomial)
initbeta<-as.matrix(initbetaBinomial)
result<-icmm(Y=Y, X=X, b0.start=0, b.start=initbeta, family="binomial",
ising.prior=TRUE, structure=linearrelation, estalpha=FALSE,
alpha=0.5, maxiter=100)
result$coef
result$iterations
result$alpha
result$wpost
# Cox's model
data(simCox)
Y<-as.matrix(simCox[,1])
event<-as.matrix(simCox[,2])
X<-as.matrix(simCox[,-(1:2)])
# Obtain initial values from lasso
data(initbetaCox)
initbeta<-as.matrix(initbetaCox)
result <- icmm(Y=Y, X=X, event=event, b.start=initbeta, family="cox",
ising.prior=TRUE, structure=linearrelation, estalpha=FALSE,
alpha=0.5, maxiter=100)
result$coef
result$iterations
result$alpha
result$wpost
Initial values for the regression coefficients used in example for running ICM/M algorithm in binary logistic model
Description
Initial values for the regression coefficients obtained from binary logistic model with lasso regularization for simBinomial
data set.
Usage
data(initbetaBinomial)
Format
A data frame with 400 rows.
V1
a numeric vector of the regression coefficients.
Examples
data(initbetaBinomial)
Initial values for the regression coefficients used in example for running ICM/M algorithm in Cox's model
Description
Initial values for the regression coefficients obtained from Cox's model with lasso regularization for simCox
data set.
Usage
data(initbetaCox)
Format
A data frame with 400 rows.
V1
a numeric vector of the regression coefficients.
Examples
data(initbetaCox)
Initial values for the regression coefficients used in example for running ICM/M algorithm in normal linear regression model
Description
Initial values for the regression coefficients obtained from normal linear regression model with lasso regularization for simGaussian
data set.
Usage
data(initbetaGaussian)
Format
A data frame with 400 rows.
V1
a numeric vector of the regression coefficients.
Examples
data(initbetaGaussian)
Linear structure of predictors
Description
This data frame is used as an example to store the structure of predictors or the edge set of an undirected graph. For this data frame, the linear chain is assumed for each predictor.
Usage
data(linearrelation)
Format
A data frame with 400 observations and 2 variables as follows.
Index
an index of the predictor/node which has at least one edge.
EdgeIndices
a string of all indices having an edge connected to
Index
separated by semicolon(;).
Details
This structure of predictors assumes a linear chain for each predictor which its immediate neighbors. For example, j-predictor is connected to (j-1)-predictor and (j+1)-predictor. The example for the entry in the data frame is Index="5"
and EdgeIndices="4;6"
.
Examples
data(linearrelation)
# To see the format of linearrelation data frame
head(linearrelation)
Simulated data from the binary logistic regression model
Description
Simulated data from the binary logistic regression model. A data frame with 100 observations and 401 variables. The included variables are
V1
A numeric vector of binary responses where each entry is either 0
or 1
.
V2-V401
400 vectors of covariates.
Usage
data(simBinomial)
Format
A data frame of simulated data from the binary logistic regression with 100 observations and 401 variables.
Examples
data(simBinomial)
Y<-as.matrix(simBinomial[,1])
X<-as.matrix(simBinomial[,-1])
Simulated data from Cox's regression model
Description
Simulated data from Cox's regression model. A data frame with 100 observations and 402 variables. The included variables are
V1
A numeric vector of responses for right censored data.
V2
A numeric vector of status indicator: 0
=right censored, 1
=event at time V1
.
V3
-V402
400 vectors of covariates.
Usage
data(simCox)
Format
A data frame of simulated data from Cox's regression model with 100 observations and 402 variables.
Examples
data(simCox)
Y<-as.matrix(simCox[,1])
event<-as.matrix(simCox[,2])
X<-as.matrix(simCox[,-(1:2)])
Simulated data from the normal linear regression model
Description
Simulated data from the normal linear regression model. A data frame with 100 observations and 401 variables. The included variables are
V1
A numeric vector of responses.
V2-V401
400 vectors of covariates.
Usage
data(simGaussian)
Format
A data frame of simulated data from the normal linear regression with 100 observations and 401 variables.
Examples
data(simGaussian)
Y<-as.matrix(simGaussian[,1])
X<-as.matrix(simGaussian[,-1])