Package ‘gimSTARMA’

January 26, 2026

Type Package

Title (Double) Generalized Linear Models for Spatio-Temporal Data
Version 1.0.0

Date 2026-01-14

Author Steffen Maletz [aut, cre] (ORCID:
<https://orcid.org/0009-0004-4851-0947>),
Konstantinos Fokianos [aut] (ORCID:
<https://orcid.org/0000-0002-0051-711X>),
Roland Fried [aut] (ORCID: <https://orcid.org/0000-0002-9830-9713>),
Valerie Weismann [ctb]

Maintainer Steffen Maletz <maletz@statistik.tu-dortmund.de>
Description Fit spatio-temporal models within a (double) generalized linear modelling frame-
work. The package includes functions for estimation, simulation and inference.

URL https://github.com/stmaletz/glmSTARMA

BugReports https://github.com/stmaletz/gImSTARMA/issues
Imports Rcpp (>= 1.0.10), copula, nloptr (>= 1.2.0)
LinkingTo Rcpp, ReppArmadillo, roptim, nloptr (>= 1.2.0)
Suggests Matrix, testthat, spdep

Depends R (>=4.5.0)

SystemRequirements C++17

License GPL (>=3)

ByteCompile true

NeedsCompilation yes

Encoding UTF-8

RoxygenNote 7.3.3

Repository CRAN

Date/Publication 2026-01-26 16:30:07 UTC


https://orcid.org/0009-0004-4851-0947
https://orcid.org/0000-0002-0051-711X
https://orcid.org/0000-0002-9830-9713
https://github.com/stmaletz/glmSTARMA
https://github.com/stmaletz/glmSTARMA/issues

2

gImSTARMA -package

Contents
gImSTARMA-package . . . . . . . . . . . . e 2
chickenpox . . . . . . . .. 4
coef.glmstarma . . . . . . . . ... 5
delete_gImSTARMA data . . . . . . . .. .. ... . . 6
dglmstarma . . . . . . . .. e e e e e e e 7
dglmstarma.control . . . . . .. ... 11
dglmstarma.sim . . . . . . . ... 16
fitted.glmstarma . . . . . . . ... e 19
generateW . . . . . L e e e 20
glmstarma . . . . . ... e e 22
glmstarma.control . . . . . . ... L e e 26
glmstarma.sim . . . . . . . .. e 29
glmstarma_sim.control . . . . . . ... 31
Information_Criteria . . . . . . . . . o v v o e e e e e e e 32
load_data . . . . . . . . e 34
QIC . e 35
residuals.glmstarma . . . . . . . ... L e 37
TOLA . . ot e e e e e e e e e e 38
SpatialConstant . . . . . . . . . . ... e 40
S8 e 41
stfamily . . . .. e e e 42
summary.dglmstarma . . . . . . .. L. e 46
summary.glmstarma . . . . . . .. ... L e 48
TimeConstant . . . . . . . . ... e e e e e 49
veovdglmstarma . . . ... e 50

Index 52

g1lmSTARMA-package gImSTARMA: (Double) Generalized Linear Models for Spatio-
Temporal Data
Description

Fit spatio-temporal models within a (double) generalized linear modelling framework. The package
includes functions for estimation, simulation and inference.

Details

The implemented models are based on spatio-temporal autoregressive moving average (STARMA)
models. They incorporate spatial and temporal dependencies by spatial lagging, via spatial weight
matrices, and temporal lagging via past observations and past values of the linear predictor.

The main functions for fitting such models are glmstarma and dglmstarma. The main difference
between the two functions is that glmstarma fits a model for the (conditional) mean of the spatio-
temporal process and dglmstarma fits two models, one for the (conditional) mean and another one
for the (conditional) dispersion. The mean model in both functions generalizes the structure of



gImSTARMA-package 3

spatio-temporal Poisson autoregressions, and allows for various distributions from the exponential
dispersion family. The dispersion model can be seen as an generalization of an spatio-temporal
GARCH or log-GARCH model. Data can be simulated with glmstarma.simand dglmstarma.sim.

For more details on the models see the documentation of the fitting functions glmstarma and
dglmstarma.

Author(s)

Maintainer: Steffen Maletz <maletz@statistik. tu-dortmund.de> (ORCID)
Authors:

» Konstantinos Fokianos <fokianos@ucy.ac.cy> (ORCID)
* Roland Fried <fried@statistik.tu-dortmund.de> (ORCID)

Other contributors:

¢ Valerie Weismann [contributor]

References

* Armillotta, M., Tsagris, M., & Fokianos, K. (2024). Inference for Network Count Time Series
with the R Package PNAR. The R Journal, 15(4), 255-269. doi:10.32614/RJ2023094

* Barreto-Souza, W., Piancastelli, L. S., Fokianos, K., & Ombao, H. (2025). Time-Varying
Dispersion Integer-Valued GARCH Models. Journal of Time Series Analysis. doi:10.1111/
jtsa.12838

* Cliff, A. D., & Ord, J. K. (1975). Space-Time Modelling with an Application to Regional
Forecasting. Transactions of the Institute of British Geographers, 64, 119-128. doi:10.2307/
621469

e Jahn, M., Wei}, C.H., Kim, H.Y. (2023), Approximately linear INGARCH models for spatio-
temporal counts, Journal of the Royal Statistical Society Series C: Applied Statistics, 72(2),
476-497, doi:10.1093/jrsssc/qlad018

 Jgrgensen, B. (1987), Exponential Dispersion Models. Journal of the Royal Statistical Society:
Series B (Methodological), 49(2), 127-145. doi:10.1111/j.25176161.1987.tb01685.x

* Knight, M., Leeming, K., Nason, G., & Nunes, M. (2020). Generalized Network Autore-
gressive Processes and the GNAR Package. Journal of Statistical Software, 96(5), 1-36.
doi:10.18637/jss.v096.105

* Maletz, S., Fokianos, K., & Fried, R. (2024). Spatio-Temporal Count Autoregression. Data
Science in Science, 3(1). doi:10.1080/26941899.2024.2425171

* Meyer, S., Held, L., & Hohle, M. (2017). Spatio-Temporal Analysis of Epidemic Phenomena
Using the R Package surveillance. Journal of Statistical Software, 77(11), 1-55. doi:10.18637/
jss.v077.111

* Otto, P. (2024). A multivariate spatial and spatiotemporal ARCH Model. Spatial Statistics,
60. doi:10.1016/j.spasta.2024.100823

 Pfeifer, P. E., & Deutsch, S. J. (1980). A Three-Stage Iterative Procedure for Space-Time
Modeling Phillip. Technometrics, 22(1), 35-47. doi:10.2307/1268381

* Smyth, G.K. (1989), Generalized Linear Models with Varying Dispersion. Journal of the
Royal Statistical Society: Series B (Methodological), 51(1), 47-60. doi:10.1111/.25176161.1989.tb01747.x


https://orcid.org/0009-0004-4851-0947
https://orcid.org/0000-0002-0051-711X
https://orcid.org/0000-0002-9830-9713
https://doi.org/10.32614/RJ-2023-094
https://doi.org/10.1111/jtsa.12838
https://doi.org/10.1111/jtsa.12838
https://doi.org/10.2307/621469
https://doi.org/10.2307/621469
https://doi.org/10.1093/jrsssc/qlad018
https://doi.org/10.1111/j.2517-6161.1987.tb01685.x
https://doi.org/10.18637/jss.v096.i05
https://doi.org/10.1080/26941899.2024.2425171
https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.1016/j.spasta.2024.100823
https://doi.org/10.2307/1268381
https://doi.org/10.1111/j.2517-6161.1989.tb01747.x

4 chickenpox

See Also
Useful links:

e https://github.com/stmaletz/glmSTARMA
* Report bugs at https://github.com/stmaletz/glmSTARMA/issues

chickenpox Chickenpox Infections in Hungary

Description

Multivariate count time series consisting of weekly chickenpox infections in the districts of Hun-
gary.

Format

chickenpox A matrix with counts of chickenpox infections (rows = districts, columns = time
points).

W_hungary A list of matrices containing spatial weight matrices:

1. Identity matrix.

2. Row-normalized adjacency matrix of the districts.

population_hungary A numeric matrix containing the population per 10000 inhabitants of each
district over time.

Details

This dataset contains chickenpox counts in the 20 districts (NUTS 3) of Hungary over a time period
of 522 weeks (from 2005 to 2014).

The row-normalized adjacency matrix indicates which districts share a common border.

The population data is only availabyle on a yearly basis and has been linearly interpolated by us to
obtain weekly estimates.

The dataset is not included directly in the package. Use load_data("chickenpox”) to download
it.

Source

The data originate from the UCI Machine Learning Repository and the Hungarian Central Statistical
Office and are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0)
license:

* https://archive.ics.uci.edu/dataset/580/hungarian+chickenpox+cases

* https://www.ksh.hu/stadat_files/nep/en/nep@34.html


https://github.com/stmaletz/glmSTARMA
https://github.com/stmaletz/glmSTARMA/issues
https://archive.ics.uci.edu/dataset/580/hungarian+chickenpox+cases
https://www.ksh.hu/stadat_files/nep/en/nep0034.html

coef.glmstarma 5

Examples

dat <- load_data("chickenpox"”, directory = tempdir())
chickenpox <- dat$chickenpox

population_hungary <- dat$population_hungary
W_hungary <- dat$W_hungary

covariates <- list(population = population_hungary,
season_cos = SpatialConstant(cos(2 * pi / 52 * 1:522)),
season_sin = SpatialConstant(sin(2 * pi / 52 * 1:522)))
glmstarma(chickenpox, list(past_obs = 1), wlist = W_hungary,
covariates = covariates, family = vpoisson("log"))
glmstarma(chickenpox, list(past_obs = 1), wlist = W_hungary,
covariates = covariates, family = vnegative.binomial("log"))

mean_model <- list(past_obs = rep(1, 7))

dispersion_model <- list(past_obs = 1)

dglmstarma(chickenpox, mean_model, dispersion_model, mean_family = vquasipoisson(”log"),
dispersion_link = "log", wlist = W_hungary, mean_covariates = covariates)

coef.glmstarma Extract Coefficients of glmstarma and dglmstarma Models

Description

Extracts model coefficients from objects of class glmstarma and dglmstarma.

Usage

## S3 method for class 'glmstarma'
coef(object, aslList = FALSE)

## S3 method for class 'dglmstarma'
coef(object, asList = FALSE)

Arguments
object An object of class glmstarma or dglmstarma
aslList Logical; if TRUE, returns coefficients as a list, or otherwise as a numeric vector.
Default is FALSE.
Value

A numeric vector, or a list, of model coefficients.



6 delete_gImSTARMA_data

Examples

dat <- load_data("chickenpox"”, directory = tempdir())
chickenpox <- dat$chickenpox

population_hungary <- dat$population_hungary
W_hungary <- dat$W_hungary

model_autoregressive <- list(past_obs = rep(1, 7))

fit <- glmstarma(chickenpox, model_autoregressive, W_hungary, family = vpoisson(”log"),
covariates = list(population = population_hungary))

coef (fit)

coef(fit, asList = TRUE)

mean_model <- list(past_obs = rep(1, 7))

dispersion_model <- list(past_obs = 1)

fit2 <- dglmstarma(chickenpox, mean_model, dispersion_model, mean_family = vquasipoisson("”log"),
dispersion_link = "log",
wlist = W_hungary,
mean_covariates = list(population = population_hungary))

coef(fit2)

coef(fit2, asList = TRUE)

delete_glmSTARMA_data Delete cached example datasets

Description

Delete one or more cached example datasets downloaded via load_data().

Usage

delete_glmSTARMA_data(name = NULL)

Arguments
name Name(s) of the dataset(s) to delete. One or more of "rota”, "chickenpox”, or
"sst"”. If NULL (default), no action is taken.
Details

This function deletes datasets that were previously downloaded and cached using load_data()
from the user-specific data directory. If no datasets are found in the cache, a message is printed and
no action is taken.

Value

Invisibly returns TRUE if all specified datasets were deleted, FALSE otherwise.



dglmstarma 7
See Also

load_data, rota, chickenpox, sst

Examples

delete_glmSTARMA_data("chickenpox"”) # Only gives a message if dataset is not cached

dglmstarma Fit STARMA Models based on double generalized linear models

Description

The function dglmstarma estimates a multivariate time series model based on double generalized
linear models (DGLM) introduced by Smyth (1989). The primary application is for spatio-temporal
data, but different applications, such as network data, are also feasible. Conditionally on the past,
each component of the multivariate time series is assumed to follow a distribution from the expo-
nential dispersion family, see Jgrgensen (1987). In contrast to standard generalized linear models,
the dispersion parameter of the distribution is allowed to vary. The model framework links the
mean of the time series conditional on the past, to a linear predictor. This linear predictor allows
regression on past observations, past values of the linear predictor and covariates, as described in
the details. Additionally, the dispersion parameter of the distribution is modeled with an additional
linear predictor, which can also include spatial and temporal dependencies as well as covariates.
Various distributions with several link-functions are available.

Usage

dglmstarma(
ts,
mean_model = list(),
dispersion_model = list(),
mean_family = NULL,
dispersion_link = c("log", "identity"”, "inverse"),
wlist = NULL,
mean_covariates = list(),
dispersion_covariates = list(),
pseudo_observations = c("deviance”, "pearson”),
wlist_past_mean = NULL,
wlist_covariates = NULL,
wlist_pseudo_obs = NULL,
wlist_past_dispersion = NULL,
wlist_covariates_dispersion = NULL,
control = list()



8 dglmstarma

Arguments
ts Multivariate time series. Rows indicate the locations and columns the time.
mean_model a named list specifying the model orders of the linear predictor, which can be of

the following elements:

* intercept : (Optional) character

— 'homogenous' (default) for a homogenous model, i.e. the same inter-
cept for all components

— 'inhomogenous' for inhomogenous models, i.e. fitting an individual
intercept for each component

* past_obs : (Optional)

— Integer vector with the maximal spatial orders for the time lags in
past_obs_time_lags.

— Alternatively: a binary matrix, with the entry in row ¢ and column j
indicating whether the (i—1)-spatial lag for the j-th time lag is included
in the model.

* past_obs_time_lags : (Optional) integer vector

— indicates the time lags for past_obs. Defaults to seq(length(past_obs))

(for vectors) and seq(ncol (past_obs)) (for a matrix)
* past_mean : (Optional)

— Spatial orders for the regression on past values of (latent) linear process
values.

— Values can be entered in the same format as in past_obs. If not speci-
fied, no regression to the feedback process is performed.

e past_mean_time_lags : (Optional) integer vector

— Time lags for the regression on the (latent) linear process. Values can

be entered in the same format as in past_obs_time_lags.
e covariates : (Optional)

— spatial orders for the covariate processes passed in the argument covariates.
The values can be passed as in past_obs and past_means, where the
j-th entry or column represents the j-th covariate.

— Default is spatial order O for all covariates, which corresponds to the
first matrix in argument wlist_covariates.

dispersion_model
anamed list specifying the model orders of the dispersion linear predictor, which
can have the same elements as the mean_model argument.

mean_family A list generated by one of the family functions of this package, see stfamily.
This argument specifies the marginal conditional distributions of the observa-
tions and the type of model fitted for the mean linear predictor.

dispersion_link
Link function that is used for the dispersion model. Available options are "log"
(default), "identity" and "inverse".

wlist A list of quadratic matrices, with the same dimension as the time series has
rows, which describe the spatial dependencies. Row-normalized matrices are
recommended. See Details.



dglmstarma 9

mean_covariates
List of covariates for the mean linear predictor, containing matrices of same
dimension as ts or returns of the covariate functions of this package (see also
TimeConstant, SpatialConstant).
dispersion_covariates
List of covariates for the dispersion linear predictor, containing matrices of same
dimension as ts or returns of the covariate functions of this package (see also
TimeConstant, SpatialConstant).
pseudo_observations
(character vector) Defines how pseudo observations for the past dispersion val-
ues are calculated. Options are "deviance" (default) and "pearson”. See Details.
wlist_past_mean
(Optional) List of matrices, which describes spatial dependencies for the values
of the linear predictor. If this is NULL, the matrices from wlist are used.
wlist_covariates
(Optional) List of matrices, which describes spatial dependencies for the covari-
ates. If this is NULL, the matrices from wlist are used.
wlist_pseudo_obs
(Optional) List of matrices, which describes spatial dependencies for past values
of the pseudo observations. If this is NULL, the matrices from wlist are used.
wlist_past_dispersion
(Optional) List of matrices, which describes spatial dependencies for the past
dispersion values (latent process). If this is NULL, the matrices from wlist are
used.
wlist_covariates_dispersion
(Optional) List of matrices, which describes spatial dependencies for the co-
variates in the dispersion model. If this is NULL, the matrices from wlist are
used.

control A list of parameters for controlling the fitting process. This list is passed to
dglmstarma.control.

Details

For a multivariate time series {Y; = (Y14,...,Yp)'}, we assume that the (marginal) conditional
components Y;; | Fi—1, on the past, follow a distribution that is a member of the exponential
dispersion family. The joint multivariate distribution of Y; | F;_1 is assumed to be generated
by a process involving copulas. The distributional assumptions imply that the conditional mean
pe = E(Y; | F¢—1) and the conditional variance Var(Y;; | Fi—1) = ¢4V (1i,¢), where V() is
the variance function of the chosen distribution and ¢; ; is the dispersion parameter for location ¢
at time ¢t. The conditional mean is linked to a linear process by the link-function, i.e. g(p:) = s,
which is applied elementwise. A second linear process (; is linked to the dispersion parameters
of the distributions via a second link-function g4, i.e. gq(¢:) = ;. The linear predictor for the
mean process is defined by regression on past observations, past values of the linear predictor and
covariates. It has the following structure:

r by

q ag m  Ck
Pr =0+ Z Z ai W Oh(h i) + Z Z ﬂj,lW[gZ)iL(thj) + Z Z Vi WAO X4,

i=1 ¢=0 j=1£=0 k=1 ¢=0



10 dglmstarma

where the matrices Wo(f), B(E), and WW(E) are taken from the lists wlist_past_mean, wlist, and
wlist_covariates, respectively, and ¢ denotes the spatial order. If § = dg1 with a scalar Jg, the
model is called homogenous with respect to the intercept; otherwise, it is inhomogenous. Spatial or-
ders, intercept structure and time lags for the mean model are specified in the argument mean_model.
If past_mean is specified, it is also required that past_mean is specified for identifiability.

The linear process of the dispersion model is defined similarly, but instead of direct observations it
includes pseudo observations d;, which are either defined based on deviance or Pearson residuals.
The linear process of the dispersion model has the following structure:

Rl

a; Cl

q  a 7
:g ZZ&ZZ ¢Ct 1"‘22 B¢h¢ dt ] Z EW(¢th>

=0 j=1£=0 k=1 ¢=0

The model orders, neighborhood structures are specified analogously to the mean model via the
argument dispersion_model and the wlist_ arguments.

The unknown parameters of the model are estimated with an iterative procedure, which alternates
between estimating the mean and dispersion model until convergence. Within each step, a quasi-
maximum likelihood approach is used, where for the mean model the quasi-log-likelihood of the
observations resulting from the mean_family argument is maximized. For the dispersion model,
the quasi-likelihood resulting from a Gamma-Density with fixed dispersion parameter of 2 is max-
imized.

In case of a negative binomial family, the pseudo-observations are always calculated based on Pear-
son residuals using the Poisson variance function. The dispersion model is defined on these pseudo-
observations, which have expectation 1 + ¢; ;14; ¢.

Value

The function returns an object of class dglmstarma, which includes

* mean A list containing information about the mean model, see glmstarma for details. Addi-
tionally, it contains:

— param_history The sequence of parameters estimates of the mean model during the
fitting process.

— log_likelihood_history The sequence of log-likelihood evaluations of the mean model
during the fitting process.

 dispersion Information about the dispersion model, see glmstarma for details. In ts it stores
the final pseudo-observations. Additionally, it contains:
— pseudo_type Type of pseudo observations used ("deviance" or "pearson").

— param_history The sequence of parameters estimates of the dispersion model during
the fitting process.

— log_likelihood_history The sequence of log-likelihood evaluations of the dispersion
model during the fitting process.

* target_dim Number of parameters in the model.

* algorithm_info Information about the fitting algorithm for each iteration of the inner fitting
loop.

* convergence_info Information about the convergence of the inner fitting loop.



dglmstarma.control 11

* total_log_likelihood_history Evolution of the log-likelihood during the fitting process.
* total_log_likelihood The final log-likelihood of the fitted model.

* aic AIC of the (full) model based on the log-likelihood, see information_criteria.

* bic BIC of the (full) model based on the log-likelihood, see information_criteria.

* gic QIC of the (full) model based on the log-likelihood, see QIC.

* call The function call.

» control The control parameters used for fitting the model.

References

» Jgrgensen, B. (1987), Exponential Dispersion Models. Journal of the Royal Statistical Society:
Series B (Methodological), 49: 127-145. doi:10.1111/j.25176161.1987.tb01685.x

* Smyth, G.K. (1989), Generalized Linear Models with Varying Dispersion. Journal of the
Royal Statistical Society: Series B (Methodological), 51: 47-60. doi:10.1111/j.25176161.1989.tb01747.x

See Also

stfamily, glmstarma.control, dglmstarma, TimeConstant, SpatialConstant

Examples

dat <- load_data("chickenpox"”, directory = tempdir())
chickenpox <- dat$chickenpox

population_hungary <- dat$population_hungary
W_hungary <- dat$W_hungary

model_autoregressive <- list(past_obs = rep(1, 7))

dglmstarma(chickenpox, model_autoregressive, dispersion_model = list(past_obs = 1),
mean_covariates = list(population = population_hungary),
wlist = W_hungary, mean_family = vquasipoisson("”log"))

dglmstarma.control Control Parameters for dglmstarma Fitting

Description

List of control parameters to be passed as an an argument to dglmstarma.

Usage

dglmstarma.control(
parameter_init = "zero",
parameter_init_dispersion = "zero"”,
use_sparsity = TRUE,
sparsity_threshold = 2/3,


https://doi.org/10.1111/j.2517-6161.1987.tb01685.x
https://doi.org/10.1111/j.2517-6161.1989.tb01747.x

12 dglmstarma.control

init_link = "first_obs",
init_dispersion = "first_obs",
use_backtracking = TRUE,

alpha_shrink = 0.5,

alpha_start =1,

min_alpha = 0.05,

print_progress = TRUE,

print_warnings = FALSE,
convergence_threshold = 1e-06,
max_fits = 50L,
use_fast_if_const_dispersion = FALSE,
lower_dispersion = 1e-07,
upper_dispersion = 1e+06,
drop_max_mean_lag = TRUE,
previous_param_as_start = FALSE,
method = "nloptr”,

constrained_mean = TRUE,
constrained_dispersion = TRUE,
constraint_tol = 1e-08,
constrain_method_mean = "sum_of_absolutes”,
constrain_method_dispersion = "sum_of_absolutes”,
gradtol = sqrt(.Machine$double.eps),
changetol = sqrt(.Machine$double.eps),
trace = 0L,

fnscale = 1,

maxit = 10000L,

abstol = -Inf,

reltol = sqrt(.Machine$double.eps),

1mm = 5,
factr = 1e+07,
pgtol = @
)
Arguments

parameter_init Character or list. Start values for parameter estimation. See details.
parameter_init_dispersion

Character or list. Start values for dispersion parameter estimation. See details.
use_sparsity  Logical; whether to use sparse matrices for the neighborhood matrices.
sparsity_threshold

Numeric in [0, 1]. Threshold for proportion of non-zero elements for considering

neighborhood matrices as sparse (default: 2/3).

init_link Character or matrix, specifing how to initialize the linear process of the mean
model, if regression on the feedback process is included.

e "first_obs": Use the first (transformed) observed values at each location.

¢ "mean”: Use the mean of the (transformed) observed values at each loca-
tion.



dglmstarma.control 13

e "transformed_mean": Calculates the mean of the obsverved values at each
location and transforms it by the link function.

* "zero": Use zero as initial value.
* (numeric matrix) specifying starting values (rows = location, columns =
time, must match maximum temporal order of model)
init_dispersion
Character or matrix, specifing how to initialize the linear process of the disper-
sion model, if feedback mechanism is included in the dispersion model.
e "first_obs": Use the first (transformed) values at each location.
¢ "mean”: Use the mean of the (transformed) values at each location.
* "transformed_mean"”: Calculates the mean of the values at each location
and transforms it by the link function.
* "zero": Use zero as initial value.
e (numeric matrix) specifying starting values (rows = location, columns =
time, must match maximum temporal order of the dispersion model)
use_backtracking
Logical; whether to use backtracking line search when updating parameters in
the fitting procedure. Default is TRUE. See details.
alpha_shrink  Numeric; shrinkage factor for backtracking line search. Default is 0. 5.
alpha_start Numeric; initial step size for backtracking line search. Default is 1. @.
min_alpha Numeric; minimum step size for backtracking line search. Default is 0. 05.
print_progress Logical; whether to print progress information during fitting.
print_warnings Logical; whether to print warnings if convergence was not achieved (only appli-
cable if print_progress is TRUE).
convergence_threshold
Numeric. Convergence threshold for fitting procedure. See details.
max_fits Integer. Maximum number of iterations between fitting mean and dispersion

model. See details.
use_fast_if_const_dispersion
Logical; whether to use a faster fitting method if the dispersion model is con-
stant, i.e. only an intercept model. See details.
lower_dispersion
Numeric. Lower bound for pseudo observations. See details.
upper_dispersion
Numeric. Upper bound for pseudo observations. See details.
drop_max_mean_lag
Logical; whether to drop the first max_time_lag observations of the mean model
when fitting the dispersion model. Default is TRUE (recommended).
previous_param_as_start
Logical; whether to use the parameter estimates of the previous fitting step as
starting values for the next fitting step when iterating between fitting mean and
dispersion model. If FALSE, the initial parameter values specified via parameter_init

and parameter_init_dispersion are used for each fitting step. Default is
FALSE.



14 dglmstarma.control

method Character. Optimization method to be used. Options are:

* "nloptr” (requires nloptr, default),
e "optim” (base R optim)
constrained_mean
Logical; whether to use parameter constraints ensuring a stable solution. Only
works with method = "nloptr”.
constrained_dispersion
Logical; whether to use parameter constraints ensuring a stable solution for the
dispersion model. Only works with method = "nloptr".

constraint_tol Numeric. Tolerance for fulfilling constraint.
constrain_method_mean
Character. Method for applying parameter constraints.
* "sum_of_absolutes”: Sum of absolute values of parameters is constrained

* "absolute_sum”: Absolute sum of parameters is constrained. (only in-
tended for univariate models)

e "soft": Constraints for "softplus” and "softclipping” link functions
(not available for different link functions).
constrain_method_dispersion
Character. Method for applying parameter constraints for the dispersion model.

* "sum_of_absolutes”: Sum of absolute values of parameters is constrained

e "absolute_sum": Absolute sum of parameters is constrained. (only in-
tended for univariate models)

gradtol Numeric. Tolerance for gradient convergence. See details.

changetol Numeric. Tolerance for parameter change convergence. See details.

trace Integer. Level of tracing output. See details.

fnscale Numeric. Scaling factor for the objective function. See details.

maxit Integer. Maximum number of iterations. See details.

abstol Numeric. Absolute convergence tolerance. See details.

reltol Numeric. Relative convergence tolerance. See details.

1mm Integer. Limited-memory BFGS parameter. See details.

factr Numeric. Factor for controlling the convergence tolerance. See details.

pgtol Numeric. Tolerance for projected gradient convergence. See details.
Details

This function is called internally in dglmstarma to validate control parameters in the control
argument.

The arguments constraint_tol, gradtol, changetol, trace, fnscale, maxit, abstol, reltol,
1mm, factr, and pgtol are passed to the optimization routines and control the convergence behavior
and output. Some of these arguments are not used by all optimization methods.

Iteration between fitting the mean and dispersion model stops when relative change in log-likelihood
or absolute change in parameters is below convergence_threshold or when max_f1its is reached.



dglmstarma.control 15

The optim method uses the L-BFGS-B algorithm when non-negative parameters are required, other-
wise the BFGS algorithm is used. Stability constraints cannot be applied when using optim. Only if
method = "nloptr” stability constraints are supported, and the specified constrain_method is ap-
plied. For optimization we use the SLSQP routine. The constraints implied by constrain_method
are given by:

e "sum_of_absolutes”:

q
Z Iaze\ + ZZ Bjel <1

i=1 0= j=1¢=0
e "absolute_sum”:
q a; T bj
S >t D | <1
i=1 =0 j=1¢=0
e "soft":
q
Z maX{O et + ZZIH&X{O Bie} <1
i=1 =0 j=1¢=0
and
q a;
DO il <1
i=1 ¢=0

To avoid numerical issues when fitting the dispersion model, the pseudo observations are clamped
in between lower_dispersion and upper_dispersion.

If the dispersion model is constant (i.e., only an intercept), setting use_fast_if_const_dispersion
= TRUE the dispersion parameters are estimated using means or colMeans of the Pearson or deviance
residuals instead of optimizing the dispersion model. Note that this sets the dispersion_link to iden-
tity during fitting.

If use_backtracking = TRUE, the fitting procedure aims to increase the total log-likelihood of the
model after each fit by applying a backtracking line search.

Start values for the optimization can be provided as a named list via parameter_init or as a
character. If a named list is provided, these must match the model orders, see glmstarma.sim.
Otherwise, parameter_init must be one of the following:

* "zero": All parameters initialized to (near) zero. If parameters must be non-negative a small
value within the feasible region is used.

* "random”: All parameters initialized to random values in the stationary region of the model.

Value

A named list of control parameters

See Also

dglmstarma, nloptr, optim



16 dglmstarma.sim

Examples

dat <- load_data("chickenpox"”, directory = tempdir())

chickenpox <- dat$chickenpox

population_hungary <- dat$population_hungary

W_hungary <- dat$W_hungary

mean_model <- list(past_obs = 1)

dispersion_model <- list(past_obs = 1)

dglmstarma(chickenpox, mean_model, dispersion_model, mean_family = vquasipoisson(”log"),
dispersion_link = "log", W_hungary,

control = list(parameter_init = "random”, print_progress = FALSE))
dglmstarma.sim Simulate spatial time-series based on double generalized linear mod-
els

Description

Generates a simulated multivariate time series based on a GLM-like model (see dglmstarma for
details)

Usage

dglmstarma.sim(
ntime,
parameters_mean,
parameters_dispersion,
model_mean,
model_dispersion,
mean_family = NULL,
dispersion_link = c("log", "identity"”, "inverse"),
wlist = NULL,
mean_covariates = list(),
dispersion_covariates = list(),
pseudo_observations = c("deviance”, "pearson”),
wlist_past_mean = NULL,
wlist_covariates = NULL,
wlist_pseudo_obs = NULL,
wlist_past_dispersion = NULL,
wlist_covariates_dispersion = NULL,
n_start = 100L,
control = list()

Arguments

ntime Number of observation times to be simulated



dglmstarma.sim

parameters_mean

17

a named list specifying the parameters of the model to be simulated:
* intercept (numeric): Intercept parameter. If an inhomogeneous model is
simulated, a value must be specified for each component of the time series.
* past_obs (numeric matrix): Parameter values for the past observations.
* past_mean (numeric matrix): Parameter values for the past means.

e covariates (numeric matrix): Parameter values for the covariates.

parameters_dispersion

model_mean

a named list specifying the parameters of the dispersion model to be simulated,
with the same possible elements as in parameters_mean.

a named list specifying the model for the linear predictor, which can be of the
following elements:

* intercept (character): "homogenous’ (default) for a homogenous model,
i.e. the same intercept for all components, inhomogenous’ for inhomoge-
nous models, i.e. an individual intercept for each component.

* past_obs (integer vector/binary matrix): Maximal spatial orders for the
time lags in past_obs_time_lags. A binary matrix can be passed as an
alternative, with the entry in row ¢ and column j indicating whether the
(¢ — 1)-spatial lag for the j-th time lag is included in the model. If not
specified, no regression on past observations is performed.

* past_obs_time_lags (optional integer vector) indicates the time lags for
regression on past observations. Defaults are seq(length(past_obs))
(for vectors) and seq(ncol (past_obs)) (for a matrix)

* past_mean (integer vector/binary matrix): Spatial orders for the regression
on the (latent) feedback process. Values can be entered in the same format
as in past_obs. If not specified, no regression to the feedback process is
performed.

* past_mean_time_lags (optional integer vector) indicates the time lags for
regression on past values of the feedback process. Defaults are seq(length(past_mean))
(for vectors) and seq(ncol (past_mean)) (for a matrix)

* covariates (integer vector/binary matrix) spatial orders for the covariate
processes passed in the argument covariates. The values can be passed
as in past_obs and past_means, where the j-th entry or column represents
the j-th covariable. If no values are specified but covariates are included,
the spatial order O is used by default, which corresponds to the first matrix
in argument wlist_covariates.

model_dispersion

mean_family

dispersion_link

a named list specifying the model for the dispersion linear predictor, with the
same possible elements as in model_mean. Orders supplied in past_obs are
applied to the pseudo-observations.

An object of class stfamily that specifies the marginal distributions of the ob-
servations and the link-function for the mean model.

Link function for the dispersion model. Possible values are "log" (default),
"identity”, and "inverse".



18 dglmstarma.sim

wlist A list of quadratic matrices, with the same dimension as the time series, which
describe the spatial dependencies. Row-normalized matrices are recommended.

mean_covariates
List of covariates included in the mean model, containing matrices or returns of
the covariate functions of this package (see also TimeConstant, SpatialConstant).

dispersion_covariates
List of covariates included in the dispersion model.

pseudo_observations
Method to generate the pseudo-observations for the dispersion model. Possible
values are "deviance” (default) and "pearson”.

wlist_past_mean
(Optional) List of matrices, which describes spatial dependencies for the past
mean. If this is NULL, the matrices from wlist are used.

wlist_covariates
(Optional) List of matrices, which describes spatial dependencies for the covari-
ates. If this is NULL, the matrices from wlist are used.

wlist_pseudo_obs
(Optional) List of matrices, which describes spatial dependencies for the pseudo-
observations in the dispersion model. If this is NULL, the matrices from wlist
are used.

wlist_past_dispersion
(Optional) List of matrices, which describes spatial dependencies for the past
dispersion in the dispersion model. If this is NULL, the matrices from wlist are
used.

wlist_covariates_dispersion
(Optional) List of matrices, which describes spatial dependencies for the co-
variates in the dispersion model. If this is NULL, the matrices from wlist are

used.
n_start Number of observations to be used for the burn-in period
control A list of parameters for controlling the fitting process. This list is passed to

dglmstarma.control.

Value
a named list with the following elements:

e observations (numeric matrix): The simulated time series

* link_values (numeric matrix): The underlying linear predictor resulting from the model and
simulation

* pseudo_observations (numeric matrix): The pseudo-observations generated for the disper-
sion model

* dispersion_values (numeric matrix): The dispersion values resulting from the dispersion
model

e mean_model (list): The mean model used for the simulation
* dispersion_model (list): The dispersion model used for the simulation
* parameters_mean (list): The true parameters used for the mean model

* parameters_dispersion (list): The true parameters used for the dispersion model



fitted.glmstarma

Examples

set.seed(42)

n_obs <- 200L
W <- generateW("rectangle”, 100, 2, 10)
model_orders_mean <- list(intercept = "homogeneous”,
past_obs = 2, past_mean = 1,
covariates = c(0, 9))
model_orders_dispersion <- list(intercept = "homogeneous”,
past_obs = 1,
covariates = c(0, 0))

covariates_mean <- list(season = SpatialConstant(sin(2 * pi / 12 x seq(n_obs))),
location = TimeConstant(rnorm(100, sd = 0.81)))

covariates_dispersion <- list(season = SpatialConstant(sin(2 * pi / 24 * seq(n_obs))),
location = TimeConstant(runif(100)))

params_mean <- list(intercept = 0.6,
past_mean = matrix(c(0.2, 0.1), nrow = 2),
past_obs = matrix(c(@.2, @.1, @.05), nrow = 3),
covariates = matrix(c(0.9, 0.2), ncol = 2))
params_dispersion <- list(intercept = 0.5,
past_obs = matrix(c(@.5, @.2), nrow = 2),
covariates = matrix(c(@.1, @.75), ncol = 2))
family <- vnormal(copula = "frank"”, copula_param = 2)
dglmstarma.sim(n_obs, params_mean, params_dispersion, model_orders_mean,
model_orders_dispersion, mean_family = family,
wlist = W, pseudo_observations = "deviance”,
mean_covariates = covariates_mean,
dispersion_covariates = covariates_dispersion)

fitted.glmstarma Fitted values for glmstarma Models

Description

Compute fitted values for glmstarma and dglmstarma models.

Usage

## S3 method for class 'glmstarma'
fitted(object, drop_init = TRUE)

## S3 method for class 'dglmstarma'
fitted(object, return_value = c("mean”, "dispersion”), drop_init = TRUE)



20 generateW
Arguments

object A glmstarma or dglmstarma object.

drop_init Logical; if TRUE, initial first max_time_lag columns of fitted values are dropped.

return_value Character; return fitted values of the mean model ("mean”) or the dispersion
model ("dispersion”).

Value

A matrix of fitted values.

See Also

fitted, glmstarma, dglmstarma

Examples

dat <- load_data("chickenpox”, directory = tempdir())
chickenpox <- dat$chickenpox

population_hungary <- dat$population_hungary
W_hungary <- dat$W_hungary

model_autoregressive <- list(past_obs = rep(1, 7))

fit <- glmstarma(chickenpox, model_autoregressive, W_hungary, family = vpoisson("log"),
covariates = list(population = population_hungary))

fitted.values(fit)

mean_model <- list(past_obs = rep(1, 7))
dispersion_model <- list(past_obs = 1)
fit2 <- dglmstarma(chickenpox, mean_model, dispersion_model, mean_family = vquasipoisson("”log"),
dispersion_link = "log",
wlist = W_hungary,
mean_covariates = list(population = population_hungary))
fitted.values(fit2)

fitted.values(fit2, return_value = "dispersion”)
generateW Generate spatial weight matrices for simulation
Description

This function generates row-normalized spatial weight matrices for different types of neighborhood
structures.



generateW 21
Usage
generateW(
method = c("rectangle”, "line", "circle”, "full”, "independent"),
dim,
maxOrder = NULL,
width = NULL,
)
Arguments
method (character scalar) Defines type of neighborhood structure. Options are "rectan-
gle", "line", "circle", "full", and "independent". Default is "rectangle".
dim (integer scalar) Number of locations, i.e. dimension of the time series.
maxOrder (integer scalar) Maximum spatial order up to which the spatial weight matrices
are generated. Ignored if ‘method* is "full" or "independent".
width (integer scalar) Width of the rectangular grid. Must be a divisor of dim. Ignored
if method is not "rectangle".
Additional arguments passed to specific methods.
Details

The function generates spatial weight matrices for different types of neighborhood structures. The
options are:

Value

* "rectangle" - A regular rectangular grid (2 dimensional) with width columns and dim / width

rows. The spatial order is defined by the Euclidean distances between locations.

"line" - Locations are placed on a line (1 dimensional). The spatial order is defined by the
Euclidean distances between locations.

"circle" - Locations are placed on a circle. The spatial order is defined by the Euclidean
distances between locations. In contrast to the "line" neighborhood, there are no boundary
locations.

"full" - Generates a list with dim*2 matrices. Allows simulation/fitting of a full time series
model without any restrictions in dependencies between the locations. Not recommended if
dimis large.

"independent" - Generates a list with dim matrices. Each matrix is a spatial weight matrix
with a single 1 in the diagonal. Allows simultaneously simulation/fitting of dim univariate
time series models without spatial dependencies.

A list of (row normalized) spatial weight matrices.



22 glmstarma

References

For more advanced spatial weight matrices, consider using the spdep package.

* Bivand R, Pebesma E, Gomez-Rubio V (2013). Applied spatial data analysis with R, Second
edition. Springer, NY. https://asdar-book.org/.

* Pebesma E, Bivand R (2023). Spatial Data Science With Applications in R. Chapman & Hall.
https://r-spatial.org/book/.

Examples

generateW(method = "rectangle”, dim = 100, maxOrder = 2, width = 5)
generateW(method = "full”, dim = 4)

glmstarma Fit STARMA Models based on generalized linear models

Description

The function glmstarma estimates a multivariate time series model based on generalised linear
models (GLM). The primary application is for spatio-temporal data, but different applications, like
time-varying network data can be ttacked by this methodology. The model framework links the
mean of the time series conditional on the past, to a linear predictor. This linear predictor allows
regression on past observations, past values of the linear predictor and covariates, as described in
the details. Various distributions with several link-functions are available.

Usage

glmstarma(
ts,
model = list(),
wlist,
family = NULL,
covariates = NULL,
wlist_past_mean = NULL,
wlist_covariates = NULL,
control = list()

)

Arguments
ts Multivariate time-series. Rows indicate the locations and columns the time.
model a named list specifying the model orders of the linear predictor, which can be of

the following elements:

* intercept : (Optional) character

— 'homogenous' (default) for a homogenous model, i.e. the same inter-
cept for all components


https://asdar-book.org/
https://r-spatial.org/book/

glmstarma 23

— '"inhomogenous' for inhomogenous models, i.e. fitting an individual

intercept for each component
* past_obs:

— Integer vector with the maximal spatial orders for the time lags in
past_obs_time_lags.

— Alternatively: a binary matrix, with the entry in row ¢ and column j
indicating whether the (i—1)-spatial lag for the j-th time lag is included
in the model.

* past_obs_time_lags : (Optional) integer vector

— indicates the time lags for past_obs. Defaults to seq(length(past_obs))

(for vectors) and seq(ncol (past_obs)) (for a matrix)
* past_mean : (Optional)

— Spatial orders for the regression on past values of (latent) linear process
values.

— Values can be entered in the same format as in past_obs. If not speci-
fied, no regression to the feedback process is performed.

* past_mean_time_lags : (Optional) integer vector

— Time lags for the regression on the (latent) linear process. Values can

be entered in the same format as in past_obs_time_lags.
* covariates : (Optional)

— spatial orders for the covariate processes passed in the argument covariates.
The values can be passed as in past_obs and past_means, where the
j-th entry or column represents the j-th covariate.

— Default is spatial order O for all covariates, which corresponds to the
first matrix in argument wlist_covariates.
wlist A list of quadratic matrices, with the same dimension as the time series has

rows, which describe the spatial dependencies. Row-normalized matrices are
recommended. See Details.

family A list generated by one of the family functions of this package stfamily. This
argument specifies the marginal distributions and the type of model fitted.

covariates (Potentially named) list of covariates, containing matrices of same dimension
as ts or returns of the covariate functions of this package (see TimeConstant,
SpatialConstant).

wlist_past_mean
(Optional) List of matrices, which describes spatial dependencies for the values
of the linear predictor. If this is NULL, the matrices from wlist are used.
wlist_covariates
(Optional) List of matrices, which describes spatial dependencies for the covari-
ates. If this is NULL, the matrices from wlist are used.
control A list of parameters for controlling the fitting process. This list is passed to
glmstarma.control.

Details

For the time series {Y; = (Y1 4,...,Y, )"}, we assume that the (marginal) conditional components
Yi+ | Fi—1 follow a distribution that is a member of the exponential family. The term F;_; denotes



24

glmstarma

the history of the process up to time ¢ — 1. The multivariate distribution of Y; | F;_1 is not
necessarily identifiable. The conditional expected value p; := E(Y; | F;—1) is connected to the
linear process by the link-function, i.e. g(u:) = ¢, which is applied elementwise. The linear
process has the following structure:

m  ck

q a; r b
=0+ Z Z i WO () + Z Z Bj,ZWég)il(Yt—j) + Z Z 'Yk,ZW—\(,z)Xk,ty

i=1 £=0 j=14=0 k=1 ¢=0

(

where the matrices Waz), W[gz), and Wy) are taken from the lists wlist_past_mean, wlist, and
wlist_covariates, respectively, and ¢ denotes the spatial order. If § = Jy1 with a scalar §, the
model is called homogenous with respect to the intercept; otherwise, it is inhomogenous. Spatial
orders, intercept structure and deviating time lags are specified in the argument model. If past_mean
is specified, it is also required that past_mean is specified for identifiability.

The functions % and & are set internally with the family argument. In nearly all cases, i corre-
sponds to the identity function, i.e. h(t;_;) = 1;—;, and h is similar to the link-function. Using
count data as an example, for family = vpoisson(”identity”) and family = vpoisson("log")
result in the linear and log-linear Poisson STARMA models from Maletz et al. (2024), where
vpoisson("”softplus"”) results in the approximately linear model by Jahn et al. (2023).

The unknown parameters J, o ¢, 3;.¢, and 7y ¢ are estimated by quasi-maximum likelihood esti-
mation, assuming conditional independence of the components given the past for calculating the
quasi-likelihood. Parameter estimation is by default performed under stability constraints to ensure
stability of the model. These constraints can be modified or deactivated via the control argument.
See glmstarma.control for details.

Value

The function returns an object of class glmstarma, which contains beside the (maybe revised) input
to the function:

target_dim Number of locations. Corresponds to the number of rows in ts.

n_obs_effective Effective number of observation times. Corresponds to the number of
columns in ts minus the maximum time lag of the model.

max_time_lag Maximum time lag in the model.

log_likelihood The (quasi)-log-likelihood of the fitted model, which is based on n_obs_effective
observation times.

score The (quasi)-score vector at the quasi maximum likelihood estimation.
information The (quasi)-information matrix at the quasi maximum likelihood estimation.

variance_estimation The variance estimation of the parameter estimates. Calculated based
on a sandwich estimator.

aic AIC of the model based on the quasi log-likelihood, see information_criteria.
bic BIC of the model based on the quasi log-likelihood, see information_criteria.
gic QIC of the model based on the quasi log-likelihood, see QIC.
design_matrix The final design matrix of the model

derivatives The derivatives of the linear predictor with respect to the parameters at each
time point.



glmstarma

25

* fitted.values The fitted values of the model, which can be extracted by the fitted method.

e link_values Fitted values of the linear process, i.e. ;.

* algorithm Information about the fitting method.

* convergence A named list with information about the convergence of the optimization:

start The values used for the coefficients at the start of the estimation.
fncount Number of calls of the quasi-loglikelihood during optimization.
grcount Number of calls of the quasi-score during optimization.

hecount Number of calls of the quasi-information during optimization. In algorithms not
using the information, this is 0 or the number how often constrains are evaluated.

fitting_time The time in milliseconds it took to estimate the model.
convergence Logical value indicating the convergence of the algorithm.
message An optional message by the optimization algorithm.

¢ call The function call.

References

* Cliff, A. D., & Ord, J. K. (1975). Space-Time Modelling with an Application to Regional
Forecasting. Transactions of the Institute of British Geographers, 64, 119—-128. doi:10.2307/
621469

e Jahn, M., WeiB}, C.H., & Kim, H., (2023), Approximately linear INGARCH models for spatio-
temporal counts, Journal of the Royal Statistical Society Series C: Applied Statistics, 72(2),
476497, doi:10.1093/jrsssc/qlad018

* Maletz, S., Fokianos, K., & Fried, R. (2024). Spatio-Temporal Count Autoregression. Data
Science in Science, 3(1), doi:10.1080/26941899.2024.2425171

 Pfeifer, P. E., & Deutsch, S. J. (1980). A Three-Stage Iterative Procedure for Space-Time
Modeling Phillip. Technometrics, 22(1), 35-47. doi:10.2307/1268381

See Also

stfamily, glmstarma.control, dglmstarma, TimeConstant, SpatialConstant

Examples

dat <- load_data("chickenpox"”, directory = tempdir())
chickenpox <- dat$chickenpox

population_hungary <- dat$population_hungary
W_hungary <- dat$W_hungary

model_autoregressive <- list(intercept = "homogeneous”, past_obs = rep(1, 7))
glmstarma(chickenpox, model_autoregressive, W_hungary, family = vpoisson("log"),

covariates = list(population = population_hungary),
control = list(parameter_init = "zero"))


https://doi.org/10.2307/621469
https://doi.org/10.2307/621469
https://doi.org/10.1093/jrsssc/qlad018
https://doi.org/10.1080/26941899.2024.2425171
https://doi.org/10.2307/1268381

26

glmstarma.control

glmstarma.control

Control Parameters for glmstarma Fitting

Description

List of control parameters to be passed as an an argument to glmstarma.

Usage

glmstarma

.control(

parameter_init = "zero",

init_link = "first_obs",
dispersion_est_type = "deviance”,
use_sparsity = TRUE,
sparsity_threshold = 2/3,

method = "nloptr”,

constrained = TRUE,

constraint_tol = 1e-08,
constrain_method = "sum_of_absolutes”,
gradtol = sqgrt(.Machine$double.eps),
changetol = sqrt(.Machine$double.eps),

trace =
fnscale
maxit =

oL,
= ‘]’
10000L,

abstol = -Inf,
reltol = sqrt(.Machine$double.eps),

Imm =5
factr =
pgtol =

Arguments

’

le+Q7,
0

parameter_init Character or list. Start values for parameter estimation. See details.

init_link

Character or matrix, specifing how to initialize the linear process of the mean

model, if regression on the feedback process is included.

"first_obs": Use the first (transformed) observed values at each location.

"mean": Use the mean of the (transformed) observed values at each loca-

tion.

"transformed_mean": Calculates the mean of the obsverved values at each

location and transforms it by the link function.

"zero": Use zero as initial value.

(numeric matrix) specifying starting values (rows = location, columns =

time, must match maximum temporal order of model)



glmstarma.control 27

dispersion_est_type
Character. Estimation of global dispersion parameter either based on deviance
("deviance") or pearson residuals ("pearson”), if applicable.
use_sparsity  Logical; whether to use sparse matrices for the neighborhood matrices.
sparsity_threshold
Numeric in [0, 1]. Threshold for proportion of non-zero elements for considering
neighborhood matrices as sparse (default: 2/3).
method Character. Optimization method to be used. Options are:

* "nloptr” (requires nloptr, default),
e "optim” (base R optim)
constrained Logical; whether to use parameter constraints ensuring a stationary solution.
Only works with method = "nloptr”.
constraint_tol Numeric. Tolerance for constraint satisfaction.
constrain_method
Character. Method for applying parameter constraints.
e "sum_of_absolutes”: Sum of absolute values of parameters is constrained
* "absolute_sum”: Absolute sum of parameters is constrained. (only in-
tended for univariate models)
e "soft": Constraints for "softplus” and "softclipping” link functions
(not available for different link functions).

gradtol Numeric. Tolerance for gradient convergence. See details.

changetol Numeric. Tolerance for parameter change convergence. See details.

trace Integer. Level of tracing output. See details.

fnscale Numeric. Scaling factor for the objective function. See details.

maxit Integer. Maximum number of iterations. See details.

abstol Numeric. Absolute convergence tolerance. See details.

reltol Numeric. Relative convergence tolerance. See details.

1mm Integer. Limited-memory BFGS parameter. See details.

factr Numeric. Factor for controlling the convergence tolerance. See details.

pgtol Numeric. Tolerance for projected gradient convergence. See details.
Details

This function is called internally in glmstarma to validate control parameters in the control argu-
ment.

The arguments constraint_tol, gradtol, changetol, trace, fnscale, maxit, abstol, reltol,
1mm, factr, and pgtol are passed to the optimization routines and control the convergence behavior
and output. Some of these arguments are not used by all optimization methods.

The optim method uses the L-BFGS-B algorithm when non-negative parameters are required, oth-
erwise the BFGS algorithm is used. Stationarity constraints cannot be applied when using optim.
Only if method = "nloptr"” stationarity constraints are supported, and the specified constrain_method
is applied. For optimization we use the SLSQP routine. The constraints implied by constrain_method
are given by:



28

glmstarma.control

e "sum_of_absolutes”:

q
Z |aze\+ZZ|ﬂge| <1

i=1 0= j=1¢=0

e "absolute_sum”:

a;

Z O‘M""ZZBJ@ <1

i=1 (= j=1¢=0

* "soft":
a; ro b

q
Z max{0, a;e} + max{0, B¢} <1
i=1 £=0 Jj=14£=0

and

Start values for the optimization can be provided as a named list via parameter_init or as a
character. If a named list is provided, these must match the model orders, see glmstarma.sim.
Otherwise, parameter_init must be one of the following:

e "zero": All parameters initialized to (near) zero. If parameters must be non-negative a small
value within the feasible region is used.
* "random”: All parameters initialized to random values in the stationary region of the model.
In case of a negative binomial family, the global dispersion parameter is always estimated using

dispersion_est_type = "pearson”. It corresponds to the shape parameter of the negative binomial
distribution.

Value

A named list of control parameters

See Also

glmstarma, nloptr, optim

Examples

dat <- load_data("chickenpox"”, directory = tempdir())
chickenpox <- dat$chickenpox

population_hungary <- dat$population_hungary
W_hungary <- dat$W_hungary

model_autoregressive <- list(past_obs = rep(1, 7))
glmstarma(chickenpox, model_autoregressive, W_hungary, family = vpoisson("log"),
control = list(parameter_init = "random”, init_link = "mean"))



glmstarma.sim

29

glmstarma.sim

Simulate spatial time-series based on generalized linear models

Description

Generates a simulated multivariate time series based on a GLM-like model (see glmstarma for

details)

Usage

glmstarma.sim(
ntime,
parameters,
model,
family = NULL,
wlist,

covariates = list(),

wlist_past_mean

= NULL,

wlist_covariates = NULL,

n_start = 100L,

control = list()

)
Arguments
ntime Number of observation times to be simulated
parameters a named list specifying the parameters of the model to be simulated, which has
the following elements:
* intercept (numeric): Intercept parameter. If an inhomogeneous model is
simulated, a value must be specified for each component of the time series.

* past_obs (numeric matrix): Parameter values for the past observations.
* past_mean (numeric matrix): Parameter values for the past means.
* covariates (numeric matrix): Parameter values for the covariates.

model a named list specifying the model for the linear predictor, which can be of the

following elements:

e intercept (character): ’homogenous’ (default) for a homogenous model,
i.e. the same intercept for all components, ’inhomogenous’ for inhomoge-
nous models, i.e. an individual intercept for each component.

* past_obs (integer vector/binary matrix): Maximal spatial orders for the
time lags in past_obs_time_lags. A binary matrix can be passed as an
alternative, with the entry in row ¢ and column j indicating whether the
(¢ — 1)-spatial lag for the j-th time lag is included in the model. If not
specified, no regression on past observations is performed.

* past_obs_time_lags (optional integer vector) indicates the time lags for
regression on past observations. Defaults are seq(length(past_obs))
(for vectors) and seq(ncol (past_obs)) (for a matrix)



30 glmstarma.sim

* past_mean (integer vector/binary matrix): Spatial orders for the regression
on the (latent) feedback process. Values can be entered in the same format
as in past_obs. If not specified, no regression to the feedback process is
performed.

* past_mean_time_lags (optional integer vector) indicates the time lags for
regression on past values of the feedback process. Defaults are seq(length(past_mean))
(for vectors) and seq(ncol (past_mean)) (for a matrix)

* covariates (integer vector/binary matrix) spatial orders for the covariate
processes passed in the argument covariates. The values can be passed
as in past_obs and past_means, where the jth entry or column represents
the jth covariable. If no values are specified but covariates are included, the
spatial order O is used by default, which corresponds to the first matrix in
argument wlist_covariates.

family An object of class stfamily that specifies the marginal distributions and the
type of model fitted.
wlist A list of quadratic matrices, with the same dimension as the time series, which

describe the spatial dependencies. Row-normalized matrices are recommended.

covariates List of covariates, containing matrices or returns of the covariate functions of
this package (see also TimeConstant, SpatialConstant). The matrices must
have the same dimension as ts

wlist_past_mean
(Optional) List of matrices, which describes spatial dependencies for the past
mean. If this is NULL, the matrices from wlist are used.

wlist_covariates
(Optional) List of matrices, which describes spatial dependencies for the covari-
ates. If this is NULL, the matrices from wlist are used.

n_start Number of observations to be used for the burn-in period

control A list of parameters for controlling the fitting process. This list is passed to
glmstarma.control.
Value
a named list with the following elements:

¢ observations (numeric matrix): The simulated time series

e link_values (numeric matrix): The underlying linear predictor resulting from the model and
simulation

model (list): The model used for the simulation

* parameters (list): The true parameters used for the simulation

Examples

set.seed(42)

n_obs <- 200L
W <- generateW("rectangle”, 100, 2, 10)
model_orders <- list(intercept = "homogeneous"”, past_obs = 2, past_mean = 1)

parameter <- list(intercept = 0.5, past_obs = matrix(c(0.3, 0.2, 0.05), nrow = 3),



glmstarma_sim.control 31

past_mean = matrix(c(@.1, @0.05), nrow = 2),

covariates = c(0.75, 0.5))
covariates <- list(season = SpatialConstant(sin(2* pi / 12 * seq(n_obs))),

location = TimeConstant(rnorm(100, sd = 0.81)))
# Simulation using marginal poisson distribution
glmstarma.sim(n_obs, parameter, model_orders, W, covariates, family = vpoisson(”log"))
# Simulation using negative binomial marginals
glmstarma.sim(n_obs, parameter, model_orders, W, covariates,
family = vnegative.binomial(dispersion = 3))

glmstarma_sim.control Control Parameters for Simulation of glmstarma Models

Description

List of control parameters to be passed to the glmstarma. sim function.

Usage

glmstarma_sim.control(
return_burn_in = FALSE,
init_link = "parameter”,
use_sparsity = TRUE,
sparsity_threshold = 2/3

Arguments

return_burn_in Logical; if TRUE, include the burn-in period in the returned simulated data. De-
fault is FALSE.

init_link Character or matrix. Method to initialize first link values in the burn-in period.
See details.

use_sparsity Logical; whether to use sparse matrices for the neighborhood matrices.
sparsity_threshold

Numeric in [0, 1]. Threshold for proportion of non-zero elements for considering
neighborhood matrices as sparse (default: 2/3).

Details

This function validates control arguments for glmstarma.sim. By default, the initial link values
for the burn-in period are generated by calculating the unconditional mean of the process based on
the model parameters, ignoring covariates. Different initial link values can submitted as a numeric
matrix, with p rows (number of locations) and max_time_lag columns (maximum time lag of the
model).

Value

A named list of control parameters



32 information_criteria

See Also

glmstarma.sim, glmstarma.control

information_criteria Information Criteria for glmstarma and dglmstarma objects

Description

Compute AIC, BIC, and QIC and (Quasi-)log-likelihood for glmstarma and dglmstarma objects.

Usage

## S3 method for class 'glmstarma'
AIC(object, k = 2, adjust = TRUE)

## S3 method for class 'dglmstarma'
AIC(object, k = 2, adjust = TRUE)

## S3 method for class 'glmstarma'
BIC(object, adjust = TRUE)

## S3 method for class 'dglmstarma'
BIC(object, adjust = TRUE)

## S3 method for class 'glmstarma'
logLik(object, adjust = TRUE)

## S3 method for class 'dglmstarma'
loglLik(object, adjust = TRUE)

Arguments
object An object of class glmstarma or dglmstarma
k Numeric; penalty per parameter to be used. Default is 2 (standard AIC).
adjust Logical; if TRUE (default), the (quasi-)log-likelihood is adjusted for the effective
sample size. See Details.
Details

During model fitting, the (quasi-)log-likelihood is computed only on the last n_eff time-points,

where n_eff =n - max_time_lag_mean - max_time_lag_dispersion. Here n is the total number

of time-points, max_time_lag_mean the maximum temporal lag in the mean model, and max_time_lag_dispersion
the maximum temporal lag in the dispersion model (for dglmstarma objects). If no dispersion

model is present (class glmstarma), max_time_lag_dispersion is zero.



information_criteria 33

To be more specific the (quasi-)log-likelihood calculated during model estimation is given by

£00) = Zzei,t(9)7

where ¢; +(#) denotes the (quasi-)log-likelihood of the observation at location ¢ at time ¢, and 7 =
T — Neff.

This calculation of the (quasi-)log-likelihood introduces bias when comparing models of differ-
ent temporal orders. If adjust = TRUE, the (quasi-)log-likelihood is rescaled to n observations by
multiplying with n/n.q, before calculating the AIC, BIC, QIC or (quasi)-log-likelihood.

Value

A numeric value for the (possibly adjusted) AIC, BIC, QIC or (quasi-)log-likelihood.

See Also

AIC, BIC, loglLik, QIC

Examples

dat <- load_data("chickenpox"”, directory = tempdir())
chickenpox <- dat$chickenpox

population_hungary <- dat$population_hungary
W_hungary <- dat$W_hungary

model_autoregressive <- list(past_obs = rep(1, 7))

fit <- glmstarma(chickenpox, model_autoregressive, W_hungary, family = vpoisson("log"),
covariates = list(population = population_hungary))

AIC(fit)

BIC(fit)

loglLik(fit)

QIC(fit)

mean_model <- list(past_obs = rep(1, 7))

dispersion_model <- list(past_obs = 1)

fit2 <- dglmstarma(chickenpox, mean_model, dispersion_model, mean_family = vquasipoisson("”log"),
dispersion_link = "log",
wlist = W_hungary,
mean_covariates = list(population = population_hungary))

AIC(fit2)

BIC(fit2)

loglLik(fit2)

QIC(fit2)



34 load_data

load_data Load example datasets

Description

Download and return datasets from the gImSTARMA GitHub repository

Usage

load_data(
name = NULL,
refresh = FALSE,
directory = tools::R_user_dir("glmSTARMA" 6 which = "data")

)
Arguments
name Name of the dataset to load. One of "rota”, "chickenpox”, or "sst".
refresh Logical; re-download the dataset if it already exists locally.
directory Directory where the dataset should be cached. Defaults to a user-specific data
directory of the glmSTARMA package.
Details

This function downloads example datasets from the gImSTARMA GitHub repository and caches
them in a directory specified by the user. The default directory is a user-specific data directory of
the glmSTARMA package. If the dataset has already been downloaded to the specified directory, it is
loaded from the local cache unless refresh = TRUE is specified.

Value

A named list of objects

See Also

delete_glmSTARMA_data, rota, chickenpox, sst

Examples

# Load the 'chickenpox' dataset
chickenpox_data <- load_data("”chickenpox"”, directory = tempdir())
str(chickenpox_data)



QIC 35

QIC Quasi Information Criterion (QIC) for glmstarma and dglmstarma ob-
jects

Description

Generic function to compute the QIC (Pan, 2001), a model selection criterion commonly used for
Generalized Estimating Equations (GEE) and related models.

Usage
QIC(object, ...)

## S3 method for class 'glmstarma'
QIC(object, adjust = TRUE, ...)

## S3 method for class 'dglmstarma'

QIC(object, adjust = TRUE, ...)
Arguments
object Object of class glmstarma or dglmstarma.

Additional arguments passed to specific methods.

adjust Logical; if TRUE (default), an adjustment for the temporal orders of the model is
applied to the likelihood. See Details.

Details

The quasi information criterion (QIC) has been proposed by Pan (2001) as alternative to Akaike’s
information criterion (AIC) which is properly adjusted for regression analysis based on the gener-
alized estimating equations (GEE). It is defined as

QIC =-2-4+2- (traC@(G;lHu) + trace(G(;lH@) )

where ¢ is the (quasi-)log-likelihood of the estimated model, G, is the expected information matrix
of the regression parameters of the mean model, and H, the empirical covariance matrix of the
regression parameters of the mean model. Similarly, G4 and H 4 denote the corresponding matrices
for the dispersion model (only for dglmstarma objects). For glmstarma objects, the second term
reduces to trace(G, ' H,).

For more details on the calculation of G and H, see sandwich_variance

During model estimation, the (quasi-)log-likelihood is computed only on the last n_eff time-
points, where n_eff =n - max_time_lag_mean - max_time_lag_dispersion. Here n is the total
number of time-points, max_time_lag_mean the maximum temporal lag in the mean model, and
max_time_lag_dispersion the maximum temporal lag in the dispersion model (for dglmstarma
objects). If no dispersion model is present (class glmstarma), max_time_lag_dispersion is zero.



36

QIC

To be more specific the (quasi-)log-likelihood calculated during model estimation is given by

5(9) = Zzéi,t(e)v

where ¢; ;(0) denotes the (quasi-)log-likelihood of the observation at location ¢ at time ¢, and 7 =
T — Neft-

This calculation of the (quasi-)log-likelihood introduces bias when comparing models of differ-
ent temporal orders. If adjust = TRUE, the (quasi-)log-likelihood is rescaled to n observations by
multiplying with n/n.g, before calculating the QIC.

Value

A numeric value for the QIC.

References

Pan, W. (2001). Akaike’s Information Criterion in Generalized Estimating Equations. Biometrics,
57(1), 120-125. doi:10.1111/5.0006341X.2001.00120.x

See Also

AIC, BIC, logLik, information_criteria

Examples

dat <- load_data("chickenpox"”, directory = tempdir())
chickenpox <- dat$chickenpox

population_hungary <- dat$population_hungary
W_hungary <- dat$W_hungary

model_autoregressive <- list(past_obs = rep(1, 7))

fit <- glmstarma(chickenpox, model_autoregressive, W_hungary, family = vpoisson("log"),
covariates = list(population = population_hungary))

QIC(fit)

mean_model <- list(past_obs = rep(1, 7))

dispersion_model <- list(past_obs = 1)

fit2 <- dglmstarma(chickenpox, mean_model, dispersion_model, mean_family = vquasipoisson("”log"),
dispersion_link = "log",
wlist = W_hungary,
mean_covariates = list(population = population_hungary))

QIC(fit2)


https://doi.org/10.1111/j.0006-341X.2001.00120.x

residuals.glmstarma 37

residuals.glmstarma Residuals for glmstarma and dglmstarma Models

Description

Compute residuals for fitted glmstarma and dglmstarma models.

Usage
## S3 method for class 'glmstarma'
residuals(
object,
type = c("response”, "pearson”, "deviance"),

drop_init = TRUE,
ignore_dispersion = TRUE

)
## S3 method for class 'dglmstarma'
residuals(
object,
type = c("response”, "pearson”, "deviance"),

drop_init = TRUE,
ignore_dispersion = TRUE

)
Arguments
object A fitted glmstarma or dglmstarma object.
type Type of residuals to compute. Options are "response” (raw residuals), "pearson”.
See details.
drop_init Logical; if TRUE, initial first max_time_lag columns of residuals are dropped.

ignore_dispersion
Logical; if TRUE, values are not scaled by the dispersion parameter

Details

The type argument specifies the type of residuals to compute:

* "response”: Raw residuals, computed as the difference between observed and fitted values.
e "pearson”: Pearson residuals, defined as
YT e
;= 2t
V()

, where V' (11;) is the variance function of the specified family.



38 rota

e "deviance": Deviance residuals, defined as

ri =2 (U(yis yi) — i i),

i.e. the log-likelihood difference of a saturated model and the fitted model. If ignore_dispersion
is set to FALSE, pearson and deviance residuals are scaled by the dispersion parameter(s).

Value

A matrix of residuals.

Examples

dat <- load_data("chickenpox"”, directory = tempdir())
chickenpox <- dat$chickenpox

population_hungary <- dat$population_hungary
W_hungary <- dat$W_hungary

model_autoregressive <- list(past_obs = rep(1, 7))

fit <- glmstarma(chickenpox, model_autoregressive, W_hungary, family = vpoisson("log"),
covariates = list(population = population_hungary))

residuals(fit)

mean_model <- list(past_obs = rep(1, 7))

dispersion_model <- list(past_obs = 1)

fit2 <- dglmstarma(chickenpox, mean_model, dispersion_model, mean_family = vquasipoisson("”log"),
dispersion_link = "log",
wlist = W_hungary,
mean_covariates = list(population = population_hungary))

residuals(fit2)

rota Rota Virus Infections in Germany

Description

Multivariate count time series with rota virus infections in the counties of Germany.

Format

rota A matrix with counts of rota virus infections (rows = counties, columns = time points).

gdr_feature A numeric vector indicating whether a county was part of the former German Demo-
cratic Republic (1) or not (0). Counties in the Capital Berlin have the value 0.5.

population_germany A numeric matrix containing the population in 10000 inhabitants of each
district over time.

W_germany A list of matrices containing spatial weight matrices:
1. Identity matrix.
2. Row-normalized adjacency matrix of the districts. See details.
3. Row-normalized adjacency matrix of order 2. See details.



rota 39

Details

This dataset contains weekly rota virus counts in 411 counties of Germany over a time period of
1252 weeks (from 2001 to 2024). Estimates of the population size of each county are only available
on a yearly basis and have been linearly interpolated to obtain weekly estimates.

Throughout the observation period, there were several territorial reforms in which certain regions
were merged or reorganized. The data source (RKI) for infection counts takes into account the
regional divisions that were in existence at the time the data was queried from the website. The
data on population size contains the data for the divisions valid at the time of data collection. For
the purpose of standardisation, the data was aggregated in order to reflect the territorial reforms
as accurately as possible and to align it with the infection figures. For Berlin, annual population
estimates are only available for Berlin as a whole. We use data from the 2022 census to divide the
population proportionally among the 12 districts.

The row-normalized adjacency matrix of first order indicates which districts share a common border.
The weight matrix of order 2 indicates which districts can be reached in two steps (i.e., via a
common neighbor).

The dataset is not included directly in the package. Use load_data("rota") to download it.

Source

The data originate from the Robert Koch Institute (RKI) and the Federal Statistical Office of Ger-
many (Destatis).

Infection data: Robert Koch Institute: SurvStat@RKI 2.0, https://survstat.rki.de, retrieved
on 2025-02-03.

Population data: Federal Statistical Office of Germany (Destatis), Data licence Germany — at-
tribution — version 2.0, https://www-genesis.destatis.de/datenbank/online/statistic/
12411/table/12411-0015/table-toolbar, retrieved on 2025-12-08.

Census data (Berlin): Federal Statistical Office of Germany (Destatis), Data licence Germany — at-
tribution — version 2.0, https://ergebnisse.zensus2022.de/datenbank/online/statistic/
1000A/table/1000A-0000, retrieved on 2025-12-08.

Examples

# Note: Complete examples take around 2,5 minutes to run #
dat <- load_data("rota”, directory = tempdir())

rota <- dat$rota

gdr_feature <- dat$gdr_feature

population_germany <- dat$population_germany

W_germany <- dat$W_germany

covariates <- list(population = population_germany,
gdr = TimeConstant(gdr_feature),
season_cos = SpatialConstant(cos(2 * pi / 52 * 1:1252)),
season_sin = SpatialConstant(sin(2 * pi / 52 * 1:1252)),
vaccine_west = (gdr_feature == @) %*% t(seq(ncol(rota)) >= 654),
vaccine_east = (gdr_feature > 0) %*% t(seq(ncol(rota)) >= 654))
fit <- glmstarma(rota, list(past_obs = rep(2, 4)), wlist = W_germany,
covariates = covariates, family = vpoisson("log"))


https://survstat.rki.de
https://www-genesis.destatis.de/datenbank/online/statistic/12411/table/12411-0015/table-toolbar
https://www-genesis.destatis.de/datenbank/online/statistic/12411/table/12411-0015/table-toolbar
https://ergebnisse.zensus2022.de/datenbank/online/statistic/1000A/table/1000A-0000
https://ergebnisse.zensus2022.de/datenbank/online/statistic/1000A/table/1000A-0000

40 SpatialConstant

mean_model <- list(past_obs = rep(2, 4))
dispersion_model <- list(past_obs = 2)
fit2 <- dglmstarma(rota, mean_model, dispersion_model, mean_covariates = covariates,
dispersion_covariates = covariates,
mean_family = vquasipoisson("log"),
dispersion_link = "log", W_germany)

SpatialConstant Creates a spatial constant covariate

Description

This function assigns a const attribute set to "space” to a numeric vector.

Usage
SpatialConstant(x)
Arguments
X (numeric vector) covariate values for each time-point. Values are used for each
location.
Details

A spatial-constant covariate has the form
Xt = Tt 1p7

i.e., it has the same value x; for all locations at time-point ¢.

Value

The input numeric vector with an additional attribute const set to "space”.

See Also

TimeConstant



Sst

41

sst

Sea Surface Temperature Anomalies in the Pacific

Description

Multivariate time series containing monthly sea surface temperature anomalies in the Pacific

Format

SST A matrix with monthly sea surface temperature anomalies (rows = spatial locations, columns
= time points).

W_directed A list of (sparse) matrices containing spatial weight matrices. See details

1.
2.
3.
4.
5.

Identity matrix.

north: weight matrix for northward direction
east: weight matrix for eastward direction
south: weight matrix for southward direction

west: weight matrix for westward direction

locations data.frame containing the latitude and longitude of each spatial location.

Details

This dataset contains monthly sea surface temperature anomalies (in degree Celsius) at 25 spatial
locations in the Pacific Ocean over a time period of 33 years (396 months) from January 1970 to
December 2002.

The neighborhood matrices in the list W_directed for orders 2, 3, 4, and 5 correspond to neighbors
with the location directly north, east, south, and west. Coefficients estimated using these matrices
then reflect directed dependencies. Not all neighbors always exist at boundary locations of the
observed area. In these cases, the corresponding rows of the weight matrices contain only zeros.
These matrices are stored as objects of class ’dgCMatrix’ from the "Matrix’ R package.

The dataset is not included directly in the package. Use load_data("sst") to download it.

Source

The data is a transformed subset of the SST_df-Dataset from the (archived) STRbook R package. It
is still available on GitHub (https://github.com/andrewzm/STRbook)

References

* Wikle, C.K., Zammit-Mangion, A., and Cressie, N. (2019). Spatio-Temporal Statistics with
R. Chapman & Hall/CRC, Boca Raton, FL.

* Cressie, N, and Wikle, C.K. (2011). Statistics for Spatio-Temporal Data. John Wiley & Sons,
Incorporated.


https://github.com/andrewzm/STRbook

42 stfamily

Examples

# Note: Complete examples take around 4 minutes to run #
# Requires the 'Matrix' package
if(requireNamespace("Matrix")){

dat <- load_data("sst"”, directory = tempdir())

SST <- dat$SST

W_directed <- dat$W_directed

locations <- dat$locations

times <- seq(from = as.Date(”1970-01-01"), to = as.Date("2002-12-01"), by = "m")
times <- format(times, "%b %Y")
covariates <- list(trend = SpatialConstant(seq(times) / length(times)),
longitude = TimeConstant(locations$lon / 360),
season_cos = SpatialConstant(cos(2 * pi / 12 * seq(times))),
season_sin = SpatialConstant(sin(2 * pi / 12 * seq(times))),
abs_lat_inc = TimeConstant(pmin(abs(locations$lat), 6) / 90),
abs_lat_dec = TimeConstant(pmax(abs(locations$lat) - 6, @) / 90))

fit <- glmstarma(SST, model = list(past_obs = 4, past_mean = 4),
wlist = W_directed, wlist_past_mean = W_directed,
covariates = covariates, family = vnormal())

fit2 <- dglmstarma(SST, mean_model = list(past_obs = 4, past_mean = 4),
dispersion_model = list(past_obs = 4),
wlist = W_directed, mean_covariates = covariates,
dispersion_covariates = covariates, mean_family = vnormal())

stfamily Families for spatio-temporal GLMs

Description

These functions create family objects for various distributions used in spatio-temporal generalized
linear models (STGLMs). Each function returns an object of class "stfamily"” describing a (condi-
tional) marginal distribution, a link function, and optional dispersion values. The output is intended
only for use within this package and is processed internally in the functions of this package.

Usage
vpoisson(
link = c("log"”, "identity", "sqrt"”, "softplus"”),
const = 1,

copula = NULL,
copula_param = NULL,
sampling_method = c("inversion”, "poisson_process")



stfamily

vguasipoisson(
link = c("log"”, "identity", "sqrt"”, "softplus"”),
dispersion = NULL,
const =1,
copula = NULL,
copula_param = NULL,
sampling_method = c("build_up”, "chop_down"”, "branching"”, "negbin")

)

vnegative.binomial(
link = c("log"”, "identity", "sqrt", "softplus"”),
dispersion = NULL,
const = 1,
copula = NULL,
copula_param = NULL

)

vbinomial(
link = c("softclipping”, "identity"”, "logit"”, "probit"),
size = 1,
const = 1,

copula = NULL,
copula_param = NULL
)

vquasibinomial(
link = c("softclipping”, "identity”, "logit”, "probit"),
size = 1,
dispersion = NULL,
const =1,
copula = NULL,
copula_param = NULL
)

vgamma (
link = c("inverse"”, "log", "identity"),
dispersion = NULL,
copula = NULL,
copula_param = NULL
)

vinverse.gaussian(
link = c("1/mu*2", "inverse"”, "identity”, "log"),
dispersion = NULL,
copula = NULL,
copula_param = NULL
)

43



44 stfamily

vnormal (
link = c("identity"”, "log”, "inverse"),
dispersion = NULL,
copula = NULL,
copula_param = NULL

)
Arguments
link Character string specifying the link function. Options depend on the distribution
(see Details).
const Optional numeric constant used in some link functions.
copula Optional copula family to model dependence between responses. Has no effect

on parameter estimation, but only on situations in which data is generated with
this family.

copula_param Parameter for the copula. (Numeric scalar of length 1)

sampling_method
Sampling algorithm for Poisson and quasi-Poisson.

dispersion Optional dispersion parameter(s). Can be either a numerical scalar describing
a global, time-invariant dispersion parameter, a vector with (temporal) constant
dispersion parameters for each location, or a matrix with dispersion parameters
for each location and time. (Rows are locations, columns are time points) If
NULL, dispersion will be estimated as a scalar where applicable.

size Number of trials for binomial-type families.

Details

The 1ink argument specifies the link function to be used for the family. The available link functions
depend on the distribution:

non "non "non

* Poisson, Quasi-Poisson, Negative-Binomial: "log", "identity", "sqrt", "softplus"

non: "non

* Binomial, Quasi-Binomial: "softclipping", "identity", "logit", "probit"

"non:

* Gamma: "inverse", "log", "identity"

* Inverse Gaussian: "1/mu”2", "inverse", "identity", "log"

"non

* Gaussian/Normal: "identity", "log", "inverse"
The following families are available:

¢ vpoisson() — Poisson distribution

* vquasipoisson() — Quasi-Poisson, i.e. Poisson like, but dispersion can differ from 1

* vnegative.binomial () — Negative binomial distribution

e vbinomial () — Binomial distribution

e vquasibinomial() — Quasi-Binomial, i.e. Binomial like, but dispersion can differ from 1
e vgamma() — Gamma distribution

e vinverse.gaussian() — Inverse Gaussian distribution



stfamily 45

e vnormal () — Gaussian distribution
¢ vgarch() — GARCH distribution

The following copulas are available:

* "normal" — Gaussian copula
e "t" —tcopula

* "clayton" — Clayton copula

e "frank" — Frank copula

* "gumbel" — Gumbel copula

* "joe" — Joe copula

The data generating processes of each distribution rely on (sequences of) uniform marginals, which
are transformed to obtain the observed data. The copula specifies the dependence structure between
these uniform marginals. If no copula (copula =NULL) is specified, the uniform marginals are
generated independent.

For most distributions, the data generation is based on inversion of the cumulative distribution
function (CDF). For the Poisson distribution, two different sampling methods are implemented:
sampling_method = "inversion"” results in the inversion method using qpois and sampling_method
= "poisson_process” implements the Poisson process method described in Fokianos et al. (2020).
For a quasi-Poisson model, four different sampling methods are implemented: sampling_method =
"build_up", sampling_method = "chop_down", sampling_method = "branching” and sampling_method
= "negbin”. The first three methods generate data from a generalized Poisson distribution, see
Consul and Jain (1973) and are described in Demirtas (2017). The sampling_method = "negbin”
uses the Inversion method on properly parameterized negative binomial distribution to generate
the data. If the "branching" or "negbin" method is used, only overdispersion can be generated.
Dispersion values resulting in underdispersion will be set to 1, i.e. a standard Poisson case. For
Quasi-Binomial models, in case of overdispersion, the data is generated from a sequence of positive
correlated Bernoulli trials, see Ahn and Chen (1995) for a discussion. In case of underdispersion,
data is generated using a normal approximation. In case of the inverse Gaussian distribution, data

is generated using the Michael-Schucany-Haas method, see Michael et al. (1976).

Note that for the negative binomial family, the dispersion parameter corresponds to the shape pa-
rameter of the negative binomial distribution.

Value

An object of class "stfamily” containing elements such as link, distribution, variance,
dev.resids.

References

e Ahn, H., & Chen, J. J. (1995). Generation of Over-Dispersed and Under-Dispersed Bino-
mial Variates. Journal of Computational and Graphical Statistics, 4(1), 55-64. doi:10.1080/
10618600.1995.10474665

e Consul, P. C., & Jain, G. C. (1973). A Generalization of the Poisson Distribution. Technomet-
rics, 15(4), 791-799. doi:10.1080/00401706.1973.10489112


https://doi.org/10.1080/10618600.1995.10474665
https://doi.org/10.1080/10618600.1995.10474665
https://doi.org/10.1080/00401706.1973.10489112

46 summary.dglmstarma

e Demirtas, H. (2017). On accurate and precise generation of generalized Poisson variates.
Communications in Statistics - Simulation and Computation, 46(1), 489—-499. doi:10.1080/
03610918.2014.968725

* Fokianos, K., Stgve, B., Tjgstheim, D., & Doukhan, P. (2020). Multivariate count autoregres-
sion. Bernoulli, 26(1), 471-499. doi:10.3150/19BEJ1132

* Michael, J. R., Schucany, W. R., & Haas, R. W. (1976). Generating Random Variates Using
Transformations with Multiple Roots. The American Statistician, 30(2), 88-90. doi:10.1080/
00031305.1976.10479147

See Also

family
Examples

fam <- vpoisson(link = "log")

print(fam)

fam2 <- vbinomial(link = "logit"”, size = 10)

print(fam2)

summary.dglmstarma Summarize a dglmstarma Model

Description

This functions summarizes the model fit of a dglmstarma model.

Usage

## S3 method for class 'dglmstarma'

summary(object, phi = 1, alternative = c("two.sided”, "less"”, "greater"), ...)
Arguments

object An object of class dglmstarma

phi Numeric value indicating the null hypothesis value for the dispersion parameter

test. Default is 1.

alternative Character string specifying the alternative hypothesis for the dispersion param-
eter test. Must be one of "two.sided" (default), "less" or "greater".

Additional arguments passed to specific methods.


https://doi.org/10.1080/03610918.2014.968725
https://doi.org/10.1080/03610918.2014.968725
https://doi.org/10.3150/19-BEJ1132
https://doi.org/10.1080/00031305.1976.10479147
https://doi.org/10.1080/00031305.1976.10479147

summary.dglmstarma 47

Details

Standard errors, z-values and p-values are computed assuming asymptotic normality of the param-
eter estimation. The variance estimation is based on the sandwich estimator to adjust for quasi-
maximum-likelihood estimation. If the model requires non-negative parameters, the p-values are
adjusted accordingly. Note that this adjustment is only valid for testing single parameters against
the null hypothesis of being zero. If multiple parameters are tested simultaneously, or a linear
combination of them, a different adjustment is necessary.

If the dispersion model is constant, i.e. it is only an intercept model, a test is performed to test
whether the estimated dispersion parameter is significantly different from the null hypothesis value
phi. The alternative hypothesis can be specified via the alternative argument. This can be useful
to test for overdispersion or underdispersion in the data.

Value
An object of class summary .dglmstarma which contains the following elements

e call: The function call to fit the model

* coefficients_mean: The estimated coefficients of the mean model with approximate standard
errors, z- and p-values. See details.

* coefficients_dispersion: The estimated coefficients of the dispersion model with approximate
standard errors, z- and p-values. See details.

* distribution: The marginal distribution of the conditional observations.

e link: The link-function used to connect the conditional mean with the linear process of the
mean model.

¢ dispersion_link: The link-function used to connect the dispersion with the linear process of
the dispersion model.

* dispersion_disp_parameter: The dispersion parameter of the dispersion family
¢ df mean: Number of estimated coefficients in the mean model
 df_dispersion: Number of estimated coefficients in the dispersion model

* log_likelihood: The quasi-log-likelihood of the estimated model. See details.

e aic: Akaike Information Criterion of the estimated model, see information_criteria with adjust
= TRUE.

* bic: Bayesian Information Criterion of the estimated model, see information_criteria with
adjust = TRUE.

* gic: Quasi Information Criterion of the estimated model, see QIC with adjust = TRUE.

See Also

dglmstarma, summary.glmstarma

Examples

dat <- load_data("chickenpox"”, directory = tempdir())
chickenpox <- dat$chickenpox
population_hungary <- dat$population_hungary



48 summary.glmstarma

W_hungary <- dat$W_hungary

mean_model <- list(past_obs = rep(1, 7))

dispersion_model <- list(past_obs = 1)

fit <- dglmstarma(chickenpox, mean_model, dispersion_model, mean_family = vquasipoisson("log"),
dispersion_link = "log", wlist = W_hungary,
mean_covariates = list(population = population_hungary))

summary (fit)

summary.glmstarma Summarize the results of a glmstarma model

Description

This functions summarizes the model fit of a glmstarma model

Usage
## S3 method for class 'glmstarma'
summary (object, ...)

Arguments
object An object of class glmstarma

Additional arguments passed to specific methods.

Details

Standard errors, z-values and p-values are computed assuming asymptotic normality of the param-
eter estimation. The variance estimation is based on the sandwich estimator to adjust for quasi-
maximum-likelihood estimation.

If the model requires non-negative parameters, the p-values are adjusted accordingly. Note that this
adjustment is only valid for testing single parameters against the null hypothesis of being zero. If
multiple parameters are tested simultaneously, or a linear combination of them, a different adjust-
ment is necessary.

Value
An object of class summary . glmstarma which contains the following elements

e call: The function call to fit the model

* coefficients: The estimated coefficients of the model with approximate standard errors, z- and
p-values. See details.

» distribution: The marginal distribution of the conditional observations.
¢ link: The link-function used to connect the conditional mean with the linear process.

* dispersion: The dispersion parameter of the conditional distribution



TimeConstant 49

* estimate_dispersion: logical value indicating whether dispersion was estimated (TRUE) or
fixed by the distribution or user (FALSE)

 df: Number of estimated coefficients in the model

* log_likelihood: The quasi-log-likelihood of the estimated model. See details.

e aic: Akaike Information Criterion of the estimated model, see information_criteria with adjust
= TRUE.

* bic: Bayesian Information Criterion of the estimated model, see information_criteria with
adjust = TRUE.

* gic: Quasi Information Criterion of the estimated model, see QIC with adjust = TRUE.

See Also
glmstarma, logLik, AIC, BIC, QIC, logLik.glmstarma, AIC.glmstarma, BIC.glmstarma

Examples

dat <- load_data("chickenpox"”, directory = tempdir())
chickenpox <- dat$chickenpox

population_hungary <- dat$population_hungary
W_hungary <- dat$W_hungary

model_autoregressive <- list(past_obs = rep(1, 7))

fit <- glmstarma(chickenpox, model_autoregressive, W_hungary, family = vpoisson("log"),
covariates = list(population = population_hungary))

summary (fit)

TimeConstant Creates a time constant covariate

Description

This functions assigns a const attribute set to "time"” to a numeric vector.

Usage
TimeConstant(x)
Arguments
X (numeric vector) covariate values for each location. Values are used for each
time-point.
Details

A time-constant covariate has the form
Xt = X,

for some fixed vector x = (x1,...,xp)’, .., it has the same value for all time-points ¢, where z; is
the value of the covariate at location <.



50 vcov.dglmstarma

Value

The input vector with an additional attribute const set to "time".

See Also

SpatialConstant

vcov.dglmstarma Variance-Covariance Matrix for glmstarma and dglmstarma objects

Description

Computes the variance-covariance matrix for glmstarma and dglmstarma objects.

Usage

## S3 method for class 'dglmstarma'
vcov(object, return_value = c("mean”, "dispersion”, "both"))

## S3 method for class 'glmstarma'
vcov(object)

Arguments

object An object of class glmstarma or dglmstarma for which the variance-covariance
matrix is to be computed.

return_value A character string specifying which variance-covariance matrix to return. Op-
tions are "mean", "dispersion", or "both". Default is "mean".

Details

The variance-covariance matrix is computed using a sandwich estimator approach, which accounts
for potential misspecification of the model. The sandwich variance estimation is defined as V' =
G~1HG™!, where G is the expected information matrix and H is the empirical covariance matrix
of the score functions. In case of dglmstarma objects, separated variance-covariance matrices are
computed for the mean and dispersion models because of the alternating estimation procedure.

Value

For glmstarma objects, the function returns the variance-covariance matrix of the mean model
coefficients. For dglmstarma objects, the function return depends on the return_value argument:
mean Variance-covariance matrix for the mean model coefficients.

dispersion Variance-covariance matrix for the dispersion model coefficients.

both A list containing both variance-covariance matrices.



vcov.dglmstarma 51

See Also

vcov, glmstarma, dglmstarma

Examples

dat <- load_data("chickenpox", directory = tempdir())
chickenpox <- dat$chickenpox

population_hungary <- dat$population_hungary
W_hungary <- dat$W_hungary

model_autoregressive <- list(past_obs = rep(1, 7))

fit <- glmstarma(chickenpox, model_autoregressive, W_hungary, family = vpoisson("log"),
covariates = list(population = population_hungary))

veov (fit)

mean_model <- list(past_obs = rep(1, 7))

dispersion_model <- list(past_obs = 1)

fit2 <- dglmstarma(chickenpox, mean_model, dispersion_model, mean_family = vquasipoisson("”log"),
dispersion_link = "log",
wlist = W_hungary,
mean_covariates = list(population = population_hungary))

veov(fit2)

vcov(fit2, return_value = "dispersion”)

veov(fit2, return_value = "both")



Index

+ datasets
chickenpox, 4
rota, 38
sst, 41

AIC, 33, 36,49

AIC.dglmstarma (information_criteria),
32

AIC.glmstarma, 49

AIC.glmstarma (information_criteria), 32

BIC, 33, 36,49

BIC.dglmstarma (information_criteria),
32

BIC.glmstarma, 49

BIC.glmstarma (information_criteria), 32

chickenpox, 4, 7, 34
coef.dglmstarma (coef.glmstarma), 5
coef.glmstarma, 5

delete_glmSTARMA_data, 6, 34
dglmstarma, 2, 3,7, 11, 15, 16, 20, 25,47, 51
dglmstarma.control, 9, 11, I8
dglmstarma.sim, 3, 16

family, 46

fitted, 20, 25

fitted.dglmstarma (fitted.glmstarma), 19
fitted.glmstarma, 19

generateW, 20

g1mSTARMA (g1mSTARMA-package), 2
glmstarma, 2, 3, 10, 20, 22, 28, 29, 49, 51
g1lmSTARMA-package, 2
glmstarma.control, 11, 23-25, 26, 30, 32
glmstarma.sim, 3, 15, 28, 29, 32
glmstarma_sim.control, 31

information_criteria, /1, 24,32, 36,47, 49

52

load_data, 7, 34

loglLik, 33, 36, 49

loglik.dglmstarma
(information_criteria), 32

loglLik.glmstarma, 49

loglLik.glmstarma
(information_criteria), 32

nloptr, 15, 28
optim, 14, 15,27, 28
QIC, 11,24, 33,35,47,49

residuals.dglmstarma

(residuals.glmstarma), 37
residuals.glmstarma, 37
rota, 7, 34, 38

sandwich_variance, 35

sandwich_variance (vcov.dglmstarma), 50
SpatialConstant, 9, 11, 18, 23, 25, 30, 40, 50
sst, 7, 34, 41

stfamily, 8, 11, 23, 25,42
summary.dglmstarma, 46
summary.glmstarma, 47, 48

TimeConstant, 9, 11, 18, 23, 25, 30, 40, 49

vbinomial (stfamily), 42

vcov, 51

vcov.dglmstarma, 50
vcov.glmstarma (vcov.dglmstarma), 50
vgamma (stfamily), 42
vinverse.gaussian (stfamily), 42
vnegative.binomial (stfamily), 42
vhormal (stfamily), 42

vpoisson (stfamily), 42
vquasibinomial (stfamily), 42
vquasipoisson (stfamily), 42



	glmSTARMA-package
	chickenpox
	coef.glmstarma
	delete_glmSTARMA_data
	dglmstarma
	dglmstarma.control
	dglmstarma.sim
	fitted.glmstarma
	generateW
	glmstarma
	glmstarma.control
	glmstarma.sim
	glmstarma_sim.control
	information_criteria
	load_data
	QIC
	residuals.glmstarma
	rota
	SpatialConstant
	sst
	stfamily
	summary.dglmstarma
	summary.glmstarma
	TimeConstant
	vcov.dglmstarma
	Index

