ebnm: Solve the Empirical Bayes Normal Means Problem
Provides simple, fast, and stable functions to fit the normal
means model using empirical Bayes. For available models and details, see
function ebnm(). Our JSS article,
Willwerscheid, Carbonetto, and Stephens (2025) <doi:10.18637/jss.v114.i03>,
provides a detailed introduction to the package.
Version: |
1.1-38 |
Depends: |
R (≥ 3.3.0) |
Imports: |
stats, ashr, mixsqp, truncnorm, trust, horseshoe, deconvolveR, magrittr, rlang, dplyr, ggplot2 |
Suggests: |
testthat, REBayes, knitr, rmarkdown, cowplot, mcmc, numDeriv |
Published: |
2025-09-05 |
DOI: |
10.32614/CRAN.package.ebnm |
Author: |
Jason Willwerscheid [aut],
Matthew Stephens [aut],
Peter Carbonetto [aut, cre],
Andrew Goldstein [ctb],
Yusha Liu [ctb] |
Maintainer: |
Peter Carbonetto <peter.carbonetto at gmail.com> |
BugReports: |
https://github.com/stephenslab/ebnm/issues |
License: |
GPL (≥ 3) |
URL: |
https://github.com/stephenslab/ebnm |
NeedsCompilation: |
no |
Citation: |
ebnm citation info |
Materials: |
README |
CRAN checks: |
ebnm results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=ebnm
to link to this page.