Version: | 1.0.1 |
Date: | 2025-03-27 |
Title: | Functions and Datasets for Forest Biometrics and Modelling |
Description: | A system of functions and data aiming to apply quantitative analyses to forest ecology, silviculture and decision-support systems. Besides, the package helps to carry out data management, exploratory analysis, and model assessment. |
License: | GPL-3 |
URL: | https://eljatib.com |
Depends: | R (≥ 3.5.0) |
Imports: | lattice, ggplot2, stats, graphics, datana |
Suggests: | foreign, gdata, car, agricolae, multcomp |
Encoding: | UTF-8 |
Language: | en-US |
RoxygenNote: | 7.3.2 |
BuildResaveData: | best |
LazyData: | true |
LazyDataCompression: | xz |
NeedsCompilation: | no |
Packaged: | 2025-03-31 05:50:30 UTC; christian |
Author: | Christian Salas-Eljatib
|
Maintainer: | Christian Salas-Eljatib <cseljatib@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-04-01 16:20:05 UTC |
Functions and Datasets for Forest Biometrics and Modelling
Description
The **biometrics** package aims to apply quantitative analyses to forest ecology, silviculture, and decision-support systems. Besides, the package helps to carry out data management, exploratory analysis, and model assessment.
The main goal of **biometrics** is to provide reliable mathematical procedures in a computing setting commonly used for quantitatively characterising trees and forests. As such, the package offers an array of functions that build summary description tables and graphs, such as stand tables and diameter distribution plots. Furthermore, the package has several data frames that help illustrate the application of the functions and teach topics related to forest ecology, silviculture, and forest biometrics. The package relies heavily on the work and teaching style of [Christian Salas-Eljatib](https://eljatib.com/).
Details
Notice that most of the available dataframes have a counterpart with column names in Spanish. For instance, the dataframe 'mortaforest' has column names in English, but 'mortaforest2' has column names in Spanish. Both data frames have the same data.
To see the preferable citation of the package, type citation("biometrics").
Author(s)
Christian Salas-Eljatib [aut, cre] (<https://orcid.org/0000-0002-8468-0829>), Pino Nicolas [ctb] (up to 2020), Riquelme Joaquin [ctb] (up to 2020)
Maintainer: Christian Salas-Eljatib <cseljatib@gmail.com>
Christian Salas-Eljatib is also indebted to several people who have contributed to individual data frames and functions: see credits in help pages.
References
- https://biometriaforestal.uchile.cl
- Salas-Eljatib C. 2021. Análisis de datos con el programa estadístico R: una introducción aplicada. Santiago, Chile: Ediciones Universidad Mayor. ISBN: 9789566086109. https://www.buscalibre.cl/libro-analisis-de-datos-con-el-programa-estadistico-r/9789566086109/p/53775485
Examples
##Scatter-plot and marginal histograms
data(popvol)
df <- popvol
hist(popvol$vol)
Mortality of lianas (vines) in tropical forests
Description
This study is part of the project "Diversity and dynamics of vascular epiphytes in Colombian Andes" supported by COLCIENCIAS (contract 2115-2013). The data corresponds to the first large-scale assessment of vascular epiphyte mortality in the neotropics. Based on two consecutive annual surveys, we followed the fate of 4247 epiphytes to estimate the epiphyte mortality rate on 116 host trees at nine sites. Additional variables were taken from the area of study in order to find relationships with epiphyte mortality.
Usage
data(deadlianas)
Format
The data frame contains four variables as follows:
- PlotSite
Municipality name of the 9 study sites
- Y.Plot
Latitude of the plot in decimal degrees
- X.Plot
Longitude of the plot in decimal degrees
- PhoroNo
ID number of the sampled host trees in each site
- EpiFam
Epiphyte taxonomic family
- EpiGen
Epiphyte taxonomic genus
- cf.aff
Abbreviations of Latin terms in the context of taxonomy. cf. "confer" meaning "compare with". aff.: "affinis" meaning "similar to".
- Species
Epiphyte (morpho) species name
- Author
Author of the scientific name
- EpiAzi
Azimuth of the epiphyte individual on each host tree
- BraAzi
Azimuth of the branch in which the epiphyte individual was found
- EpiDisTru
Distance in meters from the trunk to the epiphyte attachment site on a branch
- EpiSize
Estimated size of the epiphyte individual, in cm.
- EpiAttHei
Epiphyte attachment height in meters
- Date0
Date of the first census
- Date1
Date of the final census
- Location
Section (roots, trunks, branches) of the host tree in which theepiphyte individual was found
- Mortality
Dichotomous variable. 0 if the epiphyte individual was dead in the final census and 1 if otherwise
- MorCat
Mechanical or non-mechanical cause of mortality
- Elevation
Elevation (m a.s.l.) of the plot
- AP_bio12
Annual precipitation in the plot (mm yr-1)
- PDM_bio14
Precipitation of driest month in the plot (mm)
- PS_bio15
Precipitation seasonality in the plot (coefficient of variation)
- MDT_bio2
Mean Diurnal Range (Mean of monthly (max temp - min temp)) in the plot (oC*10)
- TS_bio4
Temperature seasonality in the plot (standard deviation*100)
- ATR_bio7
Annual temperature range in the plot (10 celsius degrees)
- AET
Actual evapotranspiration in the plot (mm yr-1)
- BasAre
Basal area of trees with DBH major or equal to 5 cm (AB) in the plot (m
^{2}
/ha)- BasAre5_10
Basal area of trees with greater or equal than 5 DBH and less than 10 cm in the plot (m
^{2}
/ha)- BasAre10
Basal area of trees with greater or equal than 10 cm DBH in the plot (m
^{2}
/ha)- Ind10
Number of canopy trees (with greater or equal than 10 cm DBH ) in the plot
- Ind5
Number of understory trees (with greater or equal than 5 DBH and less than 10 cm) in the plot
- Ind5_10
Number of trees with greater or equal than 5 DBH and less than 10 cm in the plot
- Ind10_15
Number of trees with greater or equal than 10 DBH and less than 15 cm in the plot
- Ind15_20
Number of trees with greater or equal than 15 DBH and less than 20 cm in the plot
- Ind20_25
Number of trees with greater or equal than 20 DBH and less than 25 cm in the plot
- Ind25_30
Number of trees with greater or equal than 25 DBH and less than 30 cm in the plot
- Ind30
Number of trees with DBH major or equal to 30 cm in the plot
- TreeHei
Total tree height in meters
- MedHei
Median height of trees in each plot
- MaxHei
Maximum height of trees in each plot
- BranchNumb
Number of branches of the host tree
- Obs
Observations and notes in Spanish
Source
Data were retrieved from the DRYAD repository at doi:10.5061/dryad.g5510.
References
Zuleta D, Benavides AM, Lopez-Rios V, Duque A. 2016. Local and regional determinants of vascular epiphyte mortality in the Andean mountains of Colombia. Journal of Ecology 104(3): 841-843. doi:10.1111/1365-2745.12563
Examples
data(deadlianas)
head(deadlianas)
Datos de mortalidad de lianas en árboles tropicales
Description
Los datos provienen de un estudio que fue parte del proyecto "Diversidad y dinámica de epífitas vasculares en los Andes colombianos". apoyado por COLCIENCIAS (contrato 2115-2013). Este conjunto de datos tiene 43 columnas y 4247 filas. Cada fila corresponde a un individuo epifito ubicado en secciones confiables de los árboles hospedantes Los datos corresponden a la primera gran escala evaluación de la mortalidad de epífitas vasculares en los neotrópicos. Basado en dos encuestas anuales consecutivas, Seguimos el destino de 4247 epífitas para estimar la tasa de mortalidad de epífitas en 116 árboles hospedantes. en nueve sitios. Se tomaron variables adicionales del area de estudio para encontrar relaciones con mortalidad de epifitas.
Usage
data(deadlianas2)
Format
Variables se describen a continuación::
- PlotSite
Nombre del municipio de los 9 sitios de estudio.
- Y.Plot
Latitud del grafico en grados decimales.
- X.Plot
Longitud de la grafica en grados decimales.
- PhoroNo
número de identificacion de los árboles hospedantes muestreados en cada sitio
- EpiFam
Familia taxonomica de epifitas.
- EpiGen
Genero taxonomico de epifitas.
- cf.aff
Abreviaturas de terminos latinos en el contexto de la taxonomia. cf. "conferir" que significa "comparar con". aff .: "affinis" que significa "similar a".
- Species
Nombre de la especie epifita (morfo)
- Author
Autor del nombre científico.
- EpiAzi
Azimut del individuo epifito en cada árbol huesped.
- BraAzi
Azimut de la rama en la que se encontro el individuo epifito.
- EpiDisTru
Distancia en metros desde el tronco hasta el sitio de union de la epifita en una rama.
- EpiSize
Tamaño estimado del individuo epifito en centimetros.
- EpiAttHei
Altura del accesorio de la epifita en metros.
- Date0
Fecha del primer censo.
- Date1
Fecha del censo final.
- Location
Seccion (raices, troncos, ramas) del árbol anfitrion en el que se encontro el individuo epifito.
- Mortality
Variable dicotomica. 0 si el individuo epifito estaba muerto en el censo final y 1 si no.
- MorCat
Causa de mortalidad mecanica o no mecánica.
- Elevation
Elevacion (msnm) de la parcela.
- AP_bio12
Precipitación anual en la parcela, en mm.
- PDM_bio14
Precipitación del mes más seco en la parcela, en mm.
- PS_bio15
Estacionalidad de la precipitacion en la parcela (coeficiente de variacion)
- MDT_bio2
Rango diurno medio (Media mensual (temperatura maxima - temperatura minima)) en la grafica (10 grados celsius)
- TS_bio4
Estacionalidad de la temperatura en la grafica (desviacion estandar * 100)
- ATR_bio7
Rango de temperatura anual en la parcela (10 grados centigrados)
- AET
Evapotranspiración anual en la parcela, en mm.
- BasAre
Area basal de árboles con DAP mayor o igual a 5 cm en la parcela, en m
^{2}
/ha.- BasAre5_10
Area basal de árboles con DAP mayor o igual a 5 y menor a 10 cm en la parcela (m
^{2}
/ha)- BasAre10
Area basal de árboles con DAP mayor o igual a 10 cm en la parcela (m
^{2}
/ha)- Ind10
Número de árboles del dosel (con un DAP superior o igual a 10 cm) en la parcela
- Ind5
Número de árboles de sotobosque (con DAP mayor o igual a 5 y menor a 10 cm) en la parcela
- Ind5_10
Número de árboles con un DAP mayor o igual a 5 y menos de 10 cm en la parcela
- Ind10_15
Número de árboles con un DAP mayor o igual a 10 y menos de 15 cm en la parcela
- Ind15_20
Número de árboles con un DAP mayor o igual a 15 y menos de 20 cm en la parcela
- Ind20_25
Número de árboles con un DAP mayor o igual a 20 y menos de 25 cm en la parcela
- Ind25_30
Número de árboles con un DAP mayor o igual a 25 y menos de 30 cm en la parcela
- Ind30
Número de árboles con DAP mayor o igual a 30 cm en la parcela
- TreeHei
Altura total del árbol en metros
- MedHei
Altura media de los árboles en cada parcela
- MaxHei
Altura maxima de los árboles en cada parcela
- BranchNumb
Número de ramas del árbol anfitrion
- Obs
Observaciones y notas en español
Source
Los datos fueron obtenidos desde el repositorio DRYAD doi:10.5061/dryad.g5510.
References
Zuleta D, Benavides AM, Lopez-Rios V, Duque A. 2016. Local and regional determinants of vascular epiphyte mortality in the Andean mountains of Colombia. Journal of Ecology 104(3): 841-843. doi:10.1111/1365-2745.12563
Examples
data(deadlianas2)
head(deadlianas2)
Function to compute the dominant stand-level variable based on a sample plot data.
Description
Computes the so-called dominant stand-level variable, corresponding to the average of a tree-level variable for the 100 largest sorting-tree-level diameter trees in 1-ha.
Usage
domvar(
data = data,
var.int = var.int,
var.sort = var.sort,
plot.area = plot.area
)
Arguments
data |
data frame having the tree list of a sample plot. |
var.int |
column name with the tree-level variable of interest (e.g., height). |
var.sort |
column name with the tree-level variable for defining the |
plot.area |
column name having the plot area, in square meters. |
Details
The original function was written by Dr Oscar García for computing top height, and the corresponding reference is provided. Nevertheless, several changes were applied, thus the current function provide a broader application. Regardless, the function aims to calculate a "dominant" stand-level variable by taking into account the plot area. Thus, requires having a dataframe having both the variable of interest (e.g., height) and the sorting variable used for the computation (e.g., diameter) for all trees in a sample plot, as well as, the plot area.
Value
The main output is the calculated dominant stand-variable for the given sample plot.
Author(s)
Christian Salas-Eljatib.
References
- Garcia O, Batho A. 2005. Top height estimation in lodgepole pine sample plots. Western Journal of Applied forestry 20(1):64-68.
Examples
##Creates a fake dataframe
set.seed(45)
x <- round(rnorm(20,mean=45,sd=10),1); y=round(1.3+35*(1-exp(-.07*x)),1)
df<-data.frame(dap=x,atot=y)
head(df)
datana::descstat(df)
##Using the domvar function
domvar(data=df,var.int="atot",var.sort="dap",plot.area=500)
Computes basal area of any given tree
Description
Computes basal area of any given tree. Actually provides the area for a given circle of radius x.
Usage
gtree(x, in.m2)
Arguments
x |
is the vector having tree diameter, in cm |
in.m2 |
is an indicator variable: 1 to obtain the result in m2 if x was measured in cm; and 0 to obtain the resulting area in the same units of x. |
Details
No details are given
Value
The value of basal area.
Author(s)
Christian Salas-Eljatib
Examples
#Creating an example dataframe
dbh<- round(rnorm(4,25,20),1);
#Using the function
in.m2=1
gtree(dbh,in.m2)
Linear interpolation for three data of x and y only works if the first y is missing.
Description
Linear interpolation
Usage
interp.a(xs, ys)
Arguments
xs |
Vector number of size 3 |
ys |
Vector number of size 3, with first position empty or NA |
Details
Linear interpolation for three data of x and y only works if the first y is missing.
Value
Output description (simple).
Author(s)
Christian Salas.
Examples
x<-c(1,2,3)
y<-c(NA,4,6)
interp.a(x,y)
Linear interpolation for three data of x and y only works if the second y is missing.
Description
Linear interpolation
Usage
interp.b(xs, ys)
Arguments
xs |
Vector number of size 3 |
ys |
Vector number of size 3, with second position empty or NA |
Details
Linear interpolation for three data of x and y only works if the second y is missing.
Value
Output description (simple).
Author(s)
Christian Salas.
Examples
x<-c(1,2,3)
y<-c(4,NA,6)
interp.b(x,y)
Tree spatial coordinates in a large sample plot in Fennoscandia
Description
Data from a large (8.8 ha) fully mapped plot in a Norway spruce (Picea abies) dominated old-growth forest in the subarctic region of Fennoscandia.
Usage
data(largeplot)
Format
Contains Cartesian position of trees and other variables in a large sample plot, as follows:
- tree
Tree ID.
- spp.code
Species code as follows: 1=Pinus sylvestris,2=Picea abies,3=Betula pubescens, 5=Salix caprea, 8: Sorbus aucuparia.
- x.coord
Cartesian position in the X-axis, in m.
- y.coord
Cartesian position in the Y-axis, in m.
- status
Measurement year.
- dbh
Diameter at breast-height, in cm.
- toth
Total height, in m.
Source
Data were retrieved from the paper cited below, where several details might be worth reading.
References
- Pouta P, Kulha N, Kuuluvainen T, Aakala T. 2022. Partitioning of space among trees in an old-growth spruce forest in subarctic Fennoscandia. Frontiers in Forests and Global Change 5: 817248. doi:10.3389/ffgc.2022.817248
Examples
data(largeplot)
head(largeplot)
df<-largeplot
pine <- df[df$spp.code==1,]
spruce <- df[df$spp.code==2,]
birch <- df[df$spp.code==3,]
plot(spruce$x.coord,spruce$y.coord,cex=(spruce$dbh)/30,col="blue")
points(birch$x.coord,birch$y.coord,cex=(birch$dbh)/30,col="green")
points(pine$x.coord,pine$y.coord,cex=(pine$dbh)/30,col="red")
Data contains climatic, forest structure and forest mortality variable
Description
The data file contains one row per unique 3.5km grid cell by year combination. The data frame covers all grid cells within the state of California where at least one Aerial Detection Survey (ADS) flight was taken between 2009 and 2015, so each grid cell position has between 1 and 7 years of data (reflected as 1 to 7 rows in the data file per grid cell position). The main response variables are mort.bin (presence of any mortality) and mort.tph (number of dead trees/ha within the given grid cell by year).
Usage
data(mortaforest)
Format
The data frame contains four variables as follows:
- live.bah
Live basal area from the GNN dataset
- live.tph
Live trees per hectare from the GNN dataset
- pos.x
rank-order x-position of the grid cell (position 1 is western-most)
- pos.y
rank-order y-position of the grid cell (position 1 is northern-most)
- alb.x
x-coordinate of the grid cell centroid in California Albers (EPSG 3310)
- alb.y
y-coordinate of the grid cell centroid in California Albers (EPSG 3310)
- mort.bin
1= dead trees observed in grid cell. 0= no dead trees observed
- mort.tph
Dead trees per hectare from the aggregated ADS dataset
- mort.tpa
Dead trees per acre from the aggregated ADS dataset
- year
Year of the ADS flight. Most flights occurred from May-August.
- Defnorm
Mean annual climatic water deficit for the grid cell, for Oct 1-Sept 31 water year, averaged from 1981-2015
- Def0
Climatic water deficit for the grid cell during the Oct-Sept water year overlapping the summer ADS flight of the given year
- Defz0
Z-score for climatic water deficit for the given grid cell/water year. Calculated as (Def0-Defnorm)/(standard deviation in deficit among all years 1981-2015 for the given grid cell)
- Defz1
Z-score for climatic water deficit for the given grid cell in the preceeding water year.
- Defz2
Z-score for climatic water deficit for the given grid cell two water years prior.
- Tz0
Z-score for temperature for the given grid cell/year.
- Pz0
Z-score for precipitation for the given grid cell/year.
- Defquant
FDCI variable. Quantile of Defnorm of the given grid cell, relative to the Defnorm of all other grid cells with a basal area within 2.5 m
^{2}
/ha of the given cell is basal area.
Source
The data were obtained from the DRYAD repository doi:10.5061/dryad.7vt36
References
- Young DJN, Stevens JS, Earles JM, Moore J, Ellis A, Jirka AM, Latimer ML. 2017. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecology Letters 20(1):78-86. doi:10.1111/ele.12711 -Salas-Eljatib C, Fuentes-Ramírez A, Gregoire TG, Altamirano A, Yaitul V. A study on the effects of unbalanced data when fitting logistic regression models in ecology. Ecological Indicators 85:502-508. doi:10.1016/j.ecolind.2017.10.030
Examples
data(mortaforest)
head(mortaforest)
Mortalidad en bosques, y variables climaticas y de estructura forestal en California (USA).
Description
El archivo de datos contiene una fila por combinacion unica de celda de cuadricula de 3,5 km por año. El marco de datos cubre todas las celdas de la cuadricula dentro del estado de California donde se tomo al menos un vuelo de la Encuesta de deteccion aerea (ADS) entre 2009 y 2015, por lo que cada posicion de celda de la cuadricula tiene entre 1 y 7 años de datos (reflejados como 1 a 7 filas en el archivo de datos por posicion de celda de cuadricula). Las principales variables de respuesta son mort.bin (presencia de alguna mortalidad) y mort.tph (número de árboles muertos /ha dentro de la celda de la cuadricula por año).
Usage
data(mortaforest2)
Format
Las variables se describen a continuación::
- live.bah
Área basal viva del conjunto de datos GNN
- live.tph
Árboles vivos por hectarea del conjunto de datos GNN
- pos.x
Posición X del orden de clasificacion de la celda de la cuadricula (la posición 1 es la mas occidental)
- pos.y
Posición Y del orden de clasificacion de la celda de la cuadricula (la posición 1 es la mas al norte)
- alb.x
Coordenada X del centroide de la celda de la cuadricula en California Albers (EPSG 3310)
- alb.y
Coordenada Y del centroide de la celda de la cuadricula en California Albers (EPSG 3310)
- mort.bin
Codificación para identificar mortalidad. 1 = árboles muertos observados en la celda de la cuadricula. 0 = no se observaron árboles muertos
- mort.tph
Árboles muertos por hectarea del conjunto de datos ADS agregado
- mort.tpa
Árboles muertos por acre del conjunto de datos ADS agregado
- year
año del vuelo de ADS. La mayoría de los vuelos se realizaron entre mayo y agosto
- Defnorm
Deficit hidrico climatico anual medio para la celda de la cuadricula, para el año hidrico del 1 de octubre al 31 de septiembre, promediado de 1981 a 2015
- Def0
Deficit de agua climatica para la celda de la cuadricula durante el año hidrologico de octubre a septiembre que se superpone al vuelo ADS de verano del año dado
- Defz0
Puntaje Z para el deficit hidrico climatico para la celda de cuadricula / año hidrico dado. Calculado como (Def0-Defnorm) / (desviacion estandar en el deficit entre todos los años 1981-2015 para la celda de la cuadricula dada
- Defz1
Puntuacion Z para el deficit h?drico climatico para la celda de la cuadricula dada en el año hidrologico anterior.
- Defz2
Puntuacion Z para el deficit hidrico climatico para la celda de la cuadricula dada dos años antes.
- Tz0
Puntaje Z para la temperatura para la celda de cuadricula / año dado.
- Pz0
Puntaje Z para la precipitacion para la celda / año de la cuadricula dado.
- Defquant
Variable FDCI. Cuantil de Defnorm de la celda de la cuadricula dada, en relacion con la Defnorm de todas las demas celdas de la cuadricula con un area basal dentro de 2.5 m
^{2}
/ha de la celda dada
Source
Los datos fueron obtenidos desde el repositorio DRYAD en doi:10.5061/dryad.7vt36
References
- Young DJN, Stevens JS, Earles JM, Moore J, Ellis A, Jirka AM, Latimer ML. 2017. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecology Letters 20(1):78-86. doi:10.1111/ele.12711 - Salas-Eljatib C, Fuentes-Ramírez A, Gregoire TG, Altamirano A, and Yaitul V. 2018. A study on the effects of unbalanced data when fitting logistic regression models in ecology. Ecological Indicators 85:502-508. doi:10.1016/j.ecolind.2017.10.030
Examples
data(mortaforest2)
head(mortaforest2)
Extract the n-th element from a list
Description
Extract the n-th element from a list
Usage
nele.list(lst, n)
Arguments
lst |
is the list object |
n |
is the position of the element in the list to be retrieved |
Value
object with elements of each list
Author(s)
Christian Salas-Eljatib
Examples
x <- list(list("z","x","y"), list(3,4,99,23,45), list(1,67,5,6,89))
nele.list(x,1)
nele.list(x,2)
nele.list(x,3)
Maximum plant size in the Hawaiian archipelago.
Description
Maximum plant size of 58 tree species, shrub and tree fern species that occur in 530 forest plots across the Hawaiian archipelago.
Usage
data(plantshawaii)
Format
Contains six columns, as follows:
- species
Genus and epithet of the species.
- family
Family of each species.
- native.status
Categorical variable ('native', 'alien', 'uncertain') indicating alien status of each individual following Wagner et al. (2005).
- n
Number of individuals used to estimate maximum plant size.
- d95
Maximum plant size, estimated as D950.1 (King et al. 2006).
- dmax3
Maximum plant size, estimated as Dmax3 (King et al. 2006).
Source
The data were obtained from the DRYAD repository at doi:10.5061/dryad.1kk02qr.
References
- Craven D, Knight T, Barton K, Bialic-Murphy L, Cordell S, Giardina C, Gillespie T, Ostertag R, Sack L,Chase J. 2018. OpenNahele: the open Hawaiian forest plot database. Biodiversity Data Journal 6: e28406.
Examples
data(plantshawaii)
head(plantshawaii)
tapply(plantshawaii$d95,plantshawaii$native.status,summary)
Population of stand-volume for 400 elements.
Description
A list of elements containing stand-volume (in m^{3}
/ha) values measured
in sample plots. Thus, the population size is 400, and the random variable is
forest volume. The values were digitized from the book of Zohrer (1980).
Usage
data(popvol)
Format
Contains two variables, as follows:
- id
Plot number, or ID.
- vol
Stand volume, in m
^{3}
/ha
Source
Population data of forest volume. Each row represents a plot, and their respective measured standing trees volume. Data from Zhorer (1980).
References
- Zohrer F. 1980. Forstinventur. Ein Leitfaden fur Studium und Praxis. Pareys Studientexte Nr. 26. Parey. Berlin, Germany. 207
Examples
data(popvol)
sum(popvol$vol)
mean(popvol$vol)
hist(popvol$vol)
Computes the quadratic mean diameter of a sample plot.
Description
This function computes the quadratic mean diameter of a sample plot.
Usage
qmd(tph = tph, gha = gha)
Arguments
tph |
is tree density, in trees/ha; |
gha |
is basal area, in m2/ha |
Value
Returns the quadratic mean diameter (in cm) for a given plot.
Author(s)
Christian Salas-Eljatib.
Examples
#using the function
qmd(tph=1023, gha=50)
Tree locations within sample plots in an experimental forest in Austria
Description
The Austrian Research Center for Forests established a spacing experiment with Norway spruce (Picea abies) in the Vienna Woods. In the 'Hauersteig' experiment, several tree-level variables were measured within four sample plots over time. The current dataframe has only the measurements carried out in 1944.
Usage
data(spataustria)
Format
Contains cartesian position of trees, and covariates, in sample plots, as follows:
- plot
Plot number.
- tree
Tree number.
- species
Species code as follows: PCAB=Picea abies, LADC=Larix decidua, PNSY=Pinus sylvestris, FASY=Fagus Sylvatica, QCPE=Quercus petraea, BTPE=Betula pendula.
- x.coord
Cartesian position in the X-axis, in m.
- y.coord
Cartesian position in the Y-axis, in m.
- year
Measurement year.
- dbh
diameter at breast-height, in cm.
Source
Data were retrieved from the paper cited below, where several details
might be worth reading. For instance, plot size slightly varies among plots:
Plot No. 1=2509.7 m^{2}
, Plot No. 2=2474.8 m^{2}
,
Plot No. 3=2415.9 m^{2}
, and Plot 4=2482.8 m^{2}
.
References
- Kindermann G. Kristofel F, Neumann M, Rossler G, Ledermann T & Schueler. 2018. 109 years of forest growth measurements from individual Norway spruce trees. Sci. Data 5:180077 doi:10.1038/sdata.2018.77
Examples
data(spataustria)
head(spataustria)
df<-spataustria
oldpar<-par(mar=c(4,4,0,0))
bord<-data.frame(
x=c(min(df$x.coord),max(df$x.coord),min(df$x.coord),max(df$x.coord)),
y=c(min(df$y.coord),min(df$y.coord),max(df$y.coord),min(df$y.coord))
)
plot(bord,type="n", xlab="x (m)", ylab="y (m)", asp=1, bty='n')
points(df$x.coord,df$y.coord,col=df$plot,cex=0.5)
par(oldpar)
Temporal tree locations within a sample plot in the Vienna woods
Description
Spatial location of trees remeasured through time for a sample plot in an experimental forest in Austria. Other covariates are also available.
Usage
data(spatimepsp)
Format
Contains cartesian position of trees, and covariates, in a sample plot, as follows:
- plot
Plot number.
- tree
Tree number.
- species
Species code as follows: PCAB=Picea abies, LADC=Larix decidua, PNSY=Pinus sylvestris, FASY=Fagus Sylvatica, QCPE=Quercus petraea, BTPE=Betula pendula.
- x.coord
Cartesian position in the X-axis, in m.
- y.coord
Cartesian position in the Y-axis, in m.
- year
Measurement year.
- dbh
diameter at breast-height, in cm.
Source
The Austrian Research Center for Forests established a spacing experiment with Norway spruce (Picea abies) in the Vienna Woods. In the 'Hauersteig' experiment, several tree-level variables were measured within four sample plots over time. Data were retrieved from the paper cited below, where several details might be worth reading.
References
- Kindermann G. Kristofel F, Neumann M, Rossler G, Ledermann T & Schueler. 2018. 109 years of forest growth measurements from individual Norway spruce trees. Sci. Data 5:180077 doi:10.1038/sdata.2018.77
Examples
data(spatimepsp)
head(spatimepsp)
df<-spatimepsp
lattice::xyplot(y.coord~x.coord|as.factor(year),
data=df,as.table=TRUE)
Tree-level information of forest plots across the Hawaiian archipelago.
Description
Diameter at breast height (or occurrence) of individual trees, shrubs and tree ferns across 530 plots across the Hawaiian archipelago and includes native status and cultivated status of the 185 species.
Usage
data(trlhawaii)
Format
Contains 18 variables, as follows:
- island
Island name.
- plot.id
Unique numeric identifier for each plot.
- study
Brief name of study.
- plot.area
Plot area in m
^{2}
.- longitude
Longitude of plot in decimal degrees; WGS84 coordinate system.
- latitude
Latitude of plot in decimal degrees; WGS84 coordinate system.
- year
Year in which plot data was collected.
- census
Numeric identifier for each census.
- tree.id
Unique numeric identifier for each individual.
- scientific.name
Genus and species of each individual following TPL v. 1.1.
- family
Family of each individual following TPL v. 1.1.
- angiosperm
Binary variable (1 = yes, 0 = no) indicating whether an individual is classified as an angiosperm following APG III.
- monocot
Binary variable (1 = yes, 0 = no) indicating whether an individual is classified as a monocot following APG III.
- native.status
Categorical variable ("native", "alien", "uncertain") indicating alien status of each individual following Wagner et al. (2005).
- cultivated.status
Binary variable (1 = yes, 0 = no, NA = not applicable) indicating if species is cultivated following PIER.
- abundance
Number of individuals (all = 1).
- abundance.ha
Abundance of each individual on a per hectare basis.
- dbh
Diameter at 1.3 m (in cm) for each individual; NA indicates that size was not measured, but was classified by size class.
Source
The data were obtained from the DRYAD repository at doi:10.5061/dryad.1kk02qr.
References
- Craven D, Knight T, Barton K, Bialic-Murphy L, Cordell S, Giardina C, Gillespie T, Ostertag R, Sack L,Chase J. 2018. OpenNahele: the open Hawaiian forest plot database. Biodiversity Data Journal 6: e28406.
Examples
data(trlhawaii)
table(trlhawaii$island,trlhawaii$study)
unique(trlhawaii$plot.id)
table(trlhawaii$plot.id)
tapply(trlhawaii$plot.area,trlhawaii$study,summary)
Long term tree-list data from permanent sample plots
Description
Temporal tree-level data within four sample plots
in an experimental forest in Austria. The dataframe contains several
tree-level variables. Plot sizes are 2500 m^{2}
(approx.)
and the current dataframe only keeps the measurement years having
a more reliable amount of records.
Usage
data(trlpsptime)
Format
Contains tree-level variables, as follows:
- plot
Plot number.
- tree
Tree identificator.
- species
Species code as follows: PCAB=Picea abies, LADC=Larix decidua, PNSY=Pinus sylvestris, FASY=Fagus Sylvatica, QCPE=Quercus petraea, BTPE=Betula pendula.
- year
Year of measurement.
- obs
Observation.
- dbh
Diameter at breast-height, in mm.
- dbh2
Orthogonal measured second diameter, in mm.
- hmk
Selection criteria to measure tree height. 1=systematic, 2=systematic and in the group of the 100 thickest, 3=belongs to the 100 thickest, 4=lying tree, 5:Standing tree with a ladder, 6=outlier, 7=from stem analysis.
- kh
Type of the height measurement. 0:tree height, 1:angle and distances.
- ho
Tree height in dm when kh=0. When kh=1 then distance to the tree in dm or in 1977 length of the base bar in cm.
- ka
Height to the crown base in dm when kh=0. When kh=1 then angle to the tree top in 1/10 degree.
- kb
Crown width in dm when kh=0. When kh=1 then angle to 1.3 m above tree base in 1/10 degree.
- wka
Angle to crown base in 1/10 degree.
- crown.cl
Crown class according to Kraft. 1=predominant, 2=dominant, 3=co-dominant, 4=dominated, 5=overtopped.
- crown
Crown quality. 0=normal, 1=broken in the crown region, 2=substituted tree top, 3=forked, 4=bushy, stork nest, witches' broom, 5=wizen tree top, 6=again broken tree top.
- stem
Stem quality. 0=typical, 1=crooked, 2=abiotic damaged, 3=biotic damaged, 4=forked stem without damage, 5=forked stem with damage, 6=up to 1/3 of the girth is peeled, 7=more than 1/3 of the girth is peeled, 8=broken stem, 9=other stem damages.
- defoliation
crown defoliation. 1=low, 2=medium, 3=much.
Source
The Austrian Research Center for Forests established a spacing experiment with Norway spruce (Picea abies) in the Vienna Woods. In the 'Hauersteig' experiment, several tree-level variables were measured within four sample plots over time. Data were retrieved from the paper cited below, where several details might be worth reading.
References
- Kindermann G. Kristofel F, Neumann M, Rossler G, Ledermann T & Schueler. 2018. 109 years of forest growth measurements from individual Norway spruce trees. Sci. Data 5:180077 doi:10.1038/sdata.2018.77
Examples
data(trlpsptime)
df<-trlpsptime
head(df)
tapply(df$dbh, list(df$year,df$plot), mean)
Tree-level remeasurements for a sample plot in a Pinus radiata plantation
Description
Temporal tree-level data from a sample plot established in a
Monterey pine (Pinus radiata) forestry plantation in Chile.
The plot size is 1600 m^{2}
, and the plantation was established
in 1990.
Usage
data(trlremeasu)
Format
Tree list data for a sample plot remeasured through time, and having the following columns
- plot.id
Plot code.
- tree
Tree number.
- x.coord
Cartesian position in the X-axis, in m.
- y.coord
Cartesian position in the Y-axis, in m.
- year
Measurement year.
- dead
Dead identificator, 0 means alive, and 1 otherwise.
- dbh
diameter at breast-height, in cm.
Source
Data were retrieved from the paper cited below, where several details might be worth reading.
References
- Pommerening A, Trincado G, Salas-Eljatib C, Burkhart H. 2023. Understanding and modelling the dynamics of data point clouds of relative growth rate and plant size. Forest Ecology and Management Volume 529:120652 doi:10.1016/j.foreco.2022.120652
Examples
data(trlremeasu)
head(trlremeasu)
df<-trlremeasu
df$fe<-10000/1600
df$garb.ha<- (pi/40000)*df$dbh^2*df$fe
gha.t<-tapply(df$garb.ha, df$year, sum)
nha.t<-tapply(df$fe, df$year, sum);
time<-as.numeric(rownames(gha.t))
plot(nha.t~time, type="b",las=1)
plot(gha.t~time, type="b",las=1)
Smoothed tree list data from permanent sample plots
Description
Temporal tree-level variables (smoothed-values) within four sample plots
in an experimental forest in Austria. The dataframe contains all
the variables for all trees, where observation gaps were
filled from monotone increasing predictive functions.
Plot sizes are 2500 m^{2}
(approx.) and the current dataframe
only keeps the measurement years having a more reliable amount of records.
Usage
data(trlsmoopsp)
Format
Contains tree-level variables, as follows:
- plot
Plot number.
- tree
Tree identificator.
- year
Year of measurement.
- species
Species code as follows: PCAB=Picea abies, LADC=Larix decidua, PNSY=Pinus sylvestris, FASY=Fagus Sylvatica, QCPE=Quercus petraea, BTPE=Betula pendula.
- obs
Observation in this year.
- dbh
Diameter at breast-height, in cm.
- toth
Tree height, in m.
- hcb
Height to the crown base, in m.
Source
The Austrian Research Center for Forests established a spacing experiment with Norway spruce (Picea abies) in the Vienna Woods. In the 'Hauersteig' experiment, several tree-level variables were measured within four sample plots over time. Data were retrieved from the paper cited below, where several details might be worth reading.
References
- Kindermann G. Kristofel F, Neumann M, Rossler G, Ledermann T & Schueler. 2018. 109 years of forest growth measurements from individual Norway spruce trees. Sci. Data 5:180077 doi:10.1038/sdata.2018.77
Examples
data(trlsmoopsp)
df<-trlsmoopsp
head(df)
table(df$year,df$plot)
tapply(df$dbh, list(df$year,df$plot), length)
Function to compute the U-estimator for a variable from a sample plot
Description
Computes the U
-estimator for integer trees per-are (1 ha=100ares)
Usage
uestimator(y.by.sortx = y.by.sortx, nare = nare)
Arguments
y.by.sortx |
a vector having the tree-level variable of interest being already sorted by a sorting-variable. |
nare |
number of trees per are for the sample plot. Remember that 1 are=100 m2 or 1 ha=100 ares. "nare" it is an alternative to express stand density in trees/ha, here instead the unit is "trees/are". nare=length(y.by.sortx)/(plot.area.ares). If "nare" is not an integer, it is rounded to the nearest integer, with a warning. |
Details
The original function was written by Dr Oscar García, and the corresponding reference is provided. The current function has only some small changes.
Value
The main output is the U-estimator
Author(s)
Dr Oscar García.
References
- Garcia O, Batho A. 2005. Top height estimation in lodgepole pine sample plots. Western Journal of Applied forestry 20(1):64-68.
Examples
#Creates a fake dataframe
h <- c(29.1,28, 24.5, 26, 21,20.5,20.1);
trees.per.plot<-35; plot.area.m2<-500;
exp.factor.ha<-10000/plot.area.m2;exp.factor.ha
#Remember 1 are= 100 m2 o 1 ha= 100 ares
plot.area.ares<-plot.area.m2/100; plot.area.ares
plot.area.ha<-plot.area.m2/10000;plot.area.ha
n.ha<-trees.per.plot/plot.area.ha;n.ha #*(10000/plot.area.m2)
n.are<-trees.per.plot/plot.area.ares;n.are
#Using the domvar function
uestimator(y.by.sortx=h,nare=n.are)
Function to compute prediction statistics based on observed values
Description
Computes three prediction statistics as a way to compare observed
versus predicted values of a response variable of interest. The statistics are:
the aggregated difference (AD
),
the root mean square differences (RMSD
), and
the aggregated of the absolute value differences (AAD
).
All of them area based on
r_i = y_i - \hat{y}_i
where y_i
and \hat{y}_i
are the observed and the
predicted value of the response variable y
for
the i-th observation, respectively. Both the observed and predicted values
must be expressed in the same units.
Usage
valesta(y.obs = y.obs, y.pred = y.pred)
Arguments
y.obs |
observed values of the variable of interest |
y.pred |
predicted values of the variable of interest |
Details
The function computes the three aforementioned statistics expressed in (i) as the units of the response variable and (i) as a percentage. Notice that to represent each statistic in percentual terms, we divided them by the mean observed value of the response variable.
Value
The main output following six prediction statistics as a vector: (RMSD, RMSD.p, AD, AD.p, AAD, AAD.p); where RMSD.p stands for RMSD expressed as a percentage, and the same applies to AD.p and AAD.p.
Author(s)
Christian Salas-Eljatib.
References
- Salas C, Ene L, Gregoire TG, Nasset E, Gobakken T. 2010. Modelling tree diameter from airborne laser scanning derived variables: a comparison of spatial statistical models. Remote Sensing of Environment 114(6):1277-1285. doi:10.1016/j.rse.2010.01.020
- Salas C. 2002. Ajuste y validación de ecuaciones de volumen para un relicto del bosque de roble-laurel-lingue. Bosque 23(2):81–92. doi:10.4067/S0717-92002002000200009.
Examples
#Creates a fake dataframe
set.seed(1234)
df <- as.data.frame(cbind(Y=rnorm(30, 30,9), X=rnorm(30, 450,133)))
#fitting a candidate model
mod1 <- lm(Y~X, data=df)
#Using the valesta function
valesta(y.obs=df$Y,y.pred=fitted(mod1))