Type: | Package |
Title: | Statistical Procedures for Agricultural Research |
Version: | 1.3-7 |
Date: | 2023-10-22 |
Author: | Felipe de Mendiburu |
Maintainer: | Felipe de Mendiburu <fmendiburu@lamolina.edu.pe> |
Imports: | MASS, nlme, cluster, AlgDesign, graphics |
Description: | Original idea was presented in the thesis "A statistical analysis tool for agricultural research" to obtain the degree of Master on science, National Engineering University (UNI), Lima-Peru. Some experimental data for the examples come from the CIP and others research. Agricolae offers extensive functionality on experimental design especially for agricultural and plant breeding experiments, which can also be useful for other purposes. It supports planning of lattice, Alpha, Cyclic, Complete Block, Latin Square, Graeco-Latin Squares, augmented block, factorial, split and strip plot designs. There are also various analysis facilities for experimental data, e.g. treatment comparison procedures and several non-parametric tests comparison, biodiversity indexes and consensus cluster. |
License: | GPL-2 | GPL-3 [expanded from: GPL] |
NeedsCompilation: | no |
Packaged: | 2023-10-22 20:25:25 UTC; felipe |
Depends: | R (≥ 2.10) |
Repository: | CRAN |
Date/Publication: | 2023-10-22 21:00:02 UTC |
Statistical Procedures for Agricultural Research
Description
This package contains functionality for the Statistical Analysis of experimental designs applied specially for field experiments in agriculture and plant breeding.
Details
Package: | agricolae |
Type: | Package |
Version: | 1.3-7 |
Date: | 2023-10-22 |
License: | GPL |
Planning of field experiments: lattice, factorial, RCBD, CRD, Latin Square, Youden, Graeco, BIB, Alpha design, Cyclic, augmented block, split and strip plot Designs. Comparison of multi-location trials: AMMI, Index AMMI Stability (biplot, triplot), comparison between treatments: LSD, Bonferroni and other p-adjust, HSD, Waller, Student Newman Keuls SNK, Duncan, REGW, Scheffe; Non parametric tests: Kruskal, Friedman, Durbin, Van Der Waerden, Median. Analysis of genetic experiments: North Carolina designs, LinexTester, Balanced Incomplete Block, Strip plot, Split-Plot, Partially Balanced Incomplete Block, analysis Mother and baby trials (see data RioChillon). Resampling and simulation: resampling.model, simulation.model, montecarlo, lateblight Simulator for potato. Ecology: Biodiversity Index, Path Analysis. Soil Uniformity: Smith's Index. Cluster Analysis: Consensus Cluster. Descriptive statistics utilities: *.freq
Author(s)
Felipe de Mendiburu Statistical Engineer Master in Systems Engineering Professor of Applied Statistics
Maintainer: Felipe de Mendiburu <fmendiburu@lamolina.edu.pe>
References
De Mendiburu, Felipe (2009). Una herramienta de analisis estadistico para la investigacion agricola. Tesis. Universidad Nacional de Ingenieria (UNI-PERU).
Universidad Nacional Agraria La Molina, Lima-PERU. Facultad de Economia y Planificacion Departamento Academico de Estadistica e Informatica
AMMI Analysis
Description
Additive Main Effects and Multiplicative Interaction Models (AMMI) are widely used to analyze main effects and genotype by environment (GEN, ENV) interactions in multilocation variety trials. Furthermore, this function generates data to biplot, triplot graphs and analysis.
Usage
AMMI(ENV, GEN, REP, Y, MSE = 0,console=FALSE,PC=FALSE)
Arguments
ENV |
Environment |
GEN |
Genotype |
REP |
Replication |
Y |
Response |
MSE |
Mean Square Error |
console |
ouput TRUE or FALSE |
PC |
Principal components ouput TRUE or FALSE |
Details
additional graphics see help(plot.AMMI).
Value
ANOVA |
analysis of variance general |
genXenv |
class by, genopyte and environment |
analysis |
analysis of variance principal components |
means |
average genotype and environment |
biplot |
data to produce graphics |
PC |
class princomp |
Author(s)
F. de Mendiburu
References
Crossa, J. 1990. Statistical analysis of multilocation trials. Advances in Agronomy 44:55-85
See Also
Examples
# Full replications
library(agricolae)
# Example 1
data(plrv)
model<- with(plrv,AMMI(Locality, Genotype, Rep, Yield, console=FALSE))
model$ANOVA
# see help(plot.AMMI)
# biplot
plot(model)
# biplot PC1 vs Yield
plot(model, first=0,second=1, number=TRUE)
# Example 2
data(CIC)
data1<-CIC$comas[,c(1,6,7,17,18)]
data2<-CIC$oxapampa[,c(1,6,7,19,20)]
cic <- rbind(data1,data2)
model<-with(cic,AMMI(Locality, Genotype, Rep, relative))
model$ANOVA
plot(model,0,1,angle=20,ecol="brown")
# Example 3
# Only means. Mean square error is well-known.
data(sinRepAmmi)
REP <- 3
MSerror <- 93.24224
#startgraph
model<-with(sinRepAmmi,AMMI(ENV, GEN, REP, YLD, MSerror,PC=TRUE))
# print anova
print(model$ANOVA,na.print = "")
# Biplot with the one restored observed.
plot(model,0,1)
# with principal components model$PC is class "princomp"
pc<- model$PC
pc$loadings
summary(pc)
biplot(pc)
# Principal components by means of the covariance similar AMMI
# It is to compare results with AMMI
cova<-cov(model$genXenv)
values<-eigen(cova)
total<-sum(values$values)
round(values$values*100/total,2)
# AMMI: 64.81 18.58 13.50 3.11 0.00
AMMI contour
Description
Draws a polygon or a circumference around the center of the Biplot with a proportional radio at the longest distance of the genotype.
Usage
AMMI.contour(model, distance, shape, ...)
Arguments
model |
Object |
distance |
Circumference radius >0 and <=1 |
shape |
Numerical, relating to the shape of the polygon outline. |
... |
Parameters corresponding to the R lines function |
Details
First, it is necessary to execute the AMMI function. It is only valid for the BIPLOT function but not for the TRIPLOT one.
Value
Genotypes within and outside the area.
distance |
Distance from genotype to origin (0,0) |
Note
Complement graphics AMMI
Author(s)
Felipe de Mendiburu
See Also
Examples
library(agricolae)
# see AMMI.
data(sinRepAmmi)
Environment <- sinRepAmmi$ENV
Genotype <- sinRepAmmi$GEN
Yield <- sinRepAmmi$YLD
REP <- 3
MSerror <- 93.24224
model<-AMMI(Environment, Genotype, REP, Yield, MSerror)
plot(model)
AMMI.contour(model,distance=0.7,shape=8,col="red",lwd=2,lty=5)
Finding the Variance Analysis of the Balanced Incomplete Block Design
Description
Analysis of variance BIB and comparison mean adjusted.
Usage
BIB.test(block, trt, y, test = c("lsd","tukey","duncan","waller","snk"),
alpha = 0.05, group = TRUE,console=FALSE)
Arguments
block |
blocks |
trt |
Treatment |
y |
Response |
test |
Comparison treatments |
alpha |
Significant test |
group |
logical |
console |
logical, print output |
Details
Test of comparison treatment. lsd: Least significant difference. tukey: Honestly significant differente. duncan: Duncan's new multiple range test waller: Waller-Duncan test. snk: Student-Newman-Keuls (SNK)
Value
parameters |
Design parameters |
statistics |
Statistics of the model |
comparison |
Comparison between treatments |
means |
Adjusted mean and statistics summary |
groups |
Grouping of treatments |
Author(s)
F. de Mendiburu
References
Design of Experiments. Robert O. Kuehl. 2nd ed., Duxbury, 2000 Linear Estimation and Design of Experiments. D.D. Joshi. WILEY EASTERN LIMITED 1987, New Delhi, India. Introduction to experimental statistics. Ching Chun Li McGraw - Hill Book Company, Inc. New York. 1964
See Also
DAU.test
, duncan.test
, durbin.test
,
friedman
, HSD.test
, kruskal
,
LSD.test
, Median.test
, PBIB.test
,
REGW.test
, scheffe.test
, SNK.test
,
waerden.test
, waller.test
, plot.group
Examples
library(agricolae)
# Example Design of Experiments. Robert O. Kuehl. 2da. Edicion. 2001
run<-gl(10,3)
psi<-c(250,325,475,250,475,550,325,400,550,400,475,550,325,475,550,
250,400,475,250,325,400,250,400,550,250,325,550,325,400,475)
monovinyl<-c(16,18,32,19,46,45,26,39,61,21,35,55,19,47,48,20,33,31,13,13,34,21,
30,52,24,10,50,24,31,37)
out<-BIB.test(run,psi,monovinyl,test="waller",group=FALSE)
print(out)
bar.err(out$means,variation="range",ylim=c(0,60),bar=FALSE,col=0)
out<-BIB.test(run,psi,monovinyl,test="waller",group=TRUE)
out<-BIB.test(run,psi,monovinyl,test="tukey",group=TRUE,console=TRUE)
out<-BIB.test(run,psi,monovinyl,test="tukey",group=FALSE,console=TRUE)
rm(run,psi,monovinyl,out)
# Example linear estimation and design of experiments. D.D. Joshi. 1987
# Professor of Statistics, Institute of Social Sciences Agra, India
# 6 varieties of wheat crop in a BIB whit 10 blocks of 3 plots each.
y <-c(69,77,72,63,70,54,65,65,57,59,50,45,68,75,59,38,60,60,62,
55,54,65,62,65,61,39,54,67,63,56)
varieties<-gl(6,5)
block <- c(1,2,3,4,5,1,2,6,7,8,1,3,6,9,10,2,4,7,9,10,3,5,7,8,9,4,5,6,8,10)
BIB.test(block, varieties, y)
# Example Introduction to experimental statistics. Ching Chun Li. 1964
# pag. 395 table. 27.2
# 7 trt, k=3 and b=7.
y <-c(10,15,11,4,12,15,5,14,10,14,19,19,8,10,17,6,11,12,5,14,21)
block<-gl(7,3)
trt <- c(1,2,4,2,3,5,3,4,6,4,5,7,1,5,6,2,6,7,1,3,7)
out<-BIB.test(block, trt, y, test="duncan")
bar.group(out$groups,col="blue",density=4,ylim=c(0,max(y)))
rm(y,block,trt,out)
Data for late blight of potatoes
Description
A study of Phytophthora infestans in the potato plant in the localities of Comas and Oxapampa in Peru, 2005.
Usage
data(CIC)
Format
The format is: List of 2 (comas, oxapampa)
Locality
a factor with levels
Comas
Oxapampa
Genotype
a factor
Rep
a numeric vector, replications
E9
a numeric vector, infestans percentaje to 9 days
AUDPC
a numeric vector: the area under the disease-progress curve
Relative
a numeric vector, relative area
Details
comas: temperature=59.9 Fahrenheit, relative humidity=83.3 oxapampa: temperature=64.8 Fahrenheit, relative humidity=86.2 AUDPC and relative see function audpc(). help(audpc) Exx: Evaluation in percentaje, xx is days. ORD1, ORD2, SBLK and row are references location of the plot in the field.
Source
Experimental field, 2004-2005. Data Kindly provided by Matilde Orrillo.
References
International Potato Center. CIP - Lima Peru.
Examples
library(agricolae)
data(CIC)
CIC$comas
CIC$oxapampa
Data amendment Carhuaz 2006
Description
Incidents and performance of healthy tubers and rotten potato field infested with naturally Ralstonia solanacearum Race 3/Bv 2A, after application of inorganic amendments and a rotation crop in Carhuaz Peru, 2006.
Usage
data(Chz2006)
Format
The format is: List of 2
amendment
a factor
crop
a factor
block
a numeric vector, replications
plant
a numeric vector, number plant
wilt_percent
a numeric vector, wilt percentage at 60 days
health
a numeric vector, kg/8m2
rot
a numeric vector, kg/8m2
Details
Application of inorganic amendment and crop rotation to control bacterial wilt of the potato (MBP).
Source
Experimental field, 2006. Data Kindly provided by Pedro Aley.
References
International Potato Center. CIP - Lima Peru.
Examples
library(agricolae)
data(Chz2006)
str(Chz2006)
wilt<-Chz2006$wilt
yield<-Chz2006$yield
means <- tapply.stat(wilt[,5],wilt[,1:3],function(x) mean(x,na.rm=TRUE))
names(means)[4]<-"wilt_percent"
model <- aov(wilt_percent ~ block + crop, means)
anova(model)
cv.model(model)
yield<-yield[order(paste(yield[,1],yield[,2],yield[,3])),]
correlation(means[,4],yield[,4],method="spearman")
Data AUDPC Comas - Oxapampa
Description
Fifty-three potato varieties developed by the breeding program of the International Potato Center and released in different countries around the world were evaluated for their resistance to late blight in two locations in Peru.
Usage
data(ComasOxapampa)
Format
A data frame with 168 observations on the following 4 variables.
cultivar
a factor with 56 levels
replication
a factor with 3 levels
comas
a numeric vector
oxapampa
a numeric vector
Details
The experimental design was a randomized complete block design with 3 replications of 15 apical stem cuttings in Oxapampa and 10 tubers in Mariscal Castilla. Plots were 11.9 x 18.5 m in size with 30 cm in-row and 0.9 m between-row spacings. Spreader rows around plots were used at each site. Mancozeb was applied weekly until 30 days after transplanting or planting, after which the plants were left to natural infection. Due to climatic conditions not conductive to the disease in Oxapampa, inoculum was enhanced with local isolate (POX 067, with virulence R1, 2, 3, 4, 5, 6, 7, 10, 11) at a concentration of 5000-sporangia/ ml at 49 days after planting. Percentage of foliar infection was estimated visually every 3 days for 8 times in Oxapampa and every 7 days for 12 times in Comas, then values were converted to the relative area under the diseases progress curve (rAUPDC). rAUDPC rankings were analyzed for phenotypic stability with nonparametric measures.
Source
Experimental field, 2002. Data Kindly provided by Wilmer Perez.
References
International Potato Center. CIP - Lima Peru.
Examples
library(agricolae)
data(ComasOxapampa)
# Oxapampa (10 35 31 S latitude, 75 23 0 E longitude, 1813 m.a.s.l )
# Comas, Mariscal Castilla (11 42 54 S latitude, 75 04 45 E longitude, 2800 m.a.s.l,)
# cultivars LBr-40 (resistant), Cruza 148 (moderately resistant) and Pimpernell (susceptible)
str(ComasOxapampa)
means <- tapply.stat(ComasOxapampa[,3:4],ComasOxapampa$cultivar,mean)
correlation(means$comas,means$oxapampa, method="kendall")
Finding the Variance Analysis of the Augmented block Design
Description
Analysis of variance Augmented block and comparison mean adjusted.
Usage
DAU.test(block, trt, y, method = c("lsd","tukey"),alpha=0.05,group=TRUE,console=FALSE)
Arguments
block |
blocks |
trt |
Treatment |
y |
Response |
method |
Comparison treatments |
alpha |
Significant test |
group |
TRUE or FALSE |
console |
logical, print output |
Details
Method of comparison treatment. lsd: Least significant difference. tukey: Honestly significant differente. The controls can have different repetitions, at least two, do not use missing data.
Value
means |
Statistical summary of the study variable |
parameters |
Design parameters |
statistics |
Statistics of the model |
comparison |
Comparison between treatments |
groups |
Formation of treatment groups |
SE.difference |
Standard error of: |
vartau |
Variance-covariance matrix of the difference in treatments |
Author(s)
F. de Mendiburu
References
Federer, W. T. (1956). Augmented (or hoonuiaku) designs. Hawaiian Planters, Record LV(2):191-208.
See Also
BIB.test
, duncan.test
, durbin.test
,
friedman
, HSD.test
, kruskal
,
LSD.test
, Median.test
, PBIB.test
,
REGW.test
, scheffe.test
, SNK.test
,
waerden.test
, waller.test
, plot.group
Examples
library(agricolae)
block<-c(rep("I",7),rep("II",6),rep("III",7))
trt<-c("A","B","C","D","g","k","l","A","B","C","D","e","i","A","B","C","D","f","h","j")
yield<-c(83,77,78,78,70,75,74,79,81,81,91,79,78,92,79,87,81,89,96,82)
out<- DAU.test(block,trt,yield,method="lsd", group=TRUE)
print(out$groups)
plot(out)
Data for the analysis of carolina genetic design
Description
Data for the analysis of carolina I, II and III genetic design
Usage
data(DC)
Details
DC is list, 3 data.frame: carolina1(72 obs, 6 var), carolina2(300 obs, 9 var) and carolina3(64 obs, 5 var).
Carolina1: Data for the analysis of Carolina I Genetic design. In this design F2 or any advanced generation maintained by random mating, produced from cross between two pure-lines, is taken as base population. From the population an individual is randomly selected and used as a male. A set of 4 randomly selected plans are used as females and are mated to the above male. Thus a set of 4 full-sib families are produced. This is denoted as a male group. Similarly, a large number of male groups are produced. No female is used for any second mating. four male groups (16 female groups) from a set.
Carolina2: Data for the analysis of Carolina II Genetic design. Both paternal and maternal half-sibs are produced in this design. From an F2 population, n1 males and n2 females are randomly selected and each male is crossed to each of the females. Thus n1 x n2 progenies are produced whitch are analysed in a suitably laid experiment.
Carolina3: Data for the analysis of Carolina III genetic design. The F2 population is produced by crossing two inbreds, say L1 and L2. The material for estimation of genetic parameters is produced by back crossing randomly selected F2 individuals (using as males) to each of the inbreds (used as females).
Source
Biometrical Methods in Quantitative Genetic Analysis, Singh, Chaudhary. 1979.
References
Biometrical Methods in Quantitative Genetic Analysis, Singh, Chaudhary. 1979.
Examples
data(DC)
names(DC)
str(DC$carolina1)
str(DC$carolina2)
str(DC$carolina3)
Data Glycoalkaloids
Description
A measurement of the Glycoalkaloids by two methods: HPLC and spectrophotometer.
Usage
data(Glycoalkaloids)
Format
A data frame with 25 observations on the following 2 variables.
HPLC
a numeric vector
spectrophotometer
a numeric vector
Source
International Potato Center. CIP - Lima Peru.
References
International Potato Center. CIP - Lima Peru.
Examples
library(agricolae)
data(Glycoalkaloids)
str(Glycoalkaloids)
Multiple comparisons: Tukey
Description
It makes multiple comparisons of treatments by means of Tukey. The level by alpha default is 0.05.
Usage
HSD.test(y, trt, DFerror, MSerror, alpha = 0.05, group=TRUE, main = NULL,
unbalanced=FALSE,console=FALSE)
Arguments
y |
model(aov or lm) or answer of the experimental unit |
trt |
Constant( only y=model) or vector treatment applied to each experimental unit |
DFerror |
Degree free |
MSerror |
Mean Square Error |
alpha |
Significant level |
group |
TRUE or FALSE |
main |
Title |
unbalanced |
TRUE or FALSE. not equal replication |
console |
logical, print output |
Details
It is necessary first makes a analysis of variance.
if y = model, then to apply the instruction:
HSD.test (model, "trt", alpha = 0.05, group = TRUE, main = NULL, unbalanced=FALSE, console=FALSE)
where the model class is aov or lm.
Value
statistics |
Statistics of the model |
parameters |
Design parameters |
means |
Statistical summary of the study variable |
comparison |
Comparison between treatments |
groups |
Formation of treatment groups |
Author(s)
Felipe de Mendiburu
References
1. Principles and procedures of statistics a biometrical approach
Steel & Torry & Dickey. Third Edition 1997
2. Multiple comparisons theory and methods. Departament of statistics
the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.
See Also
BIB.test
, DAU.test
, duncan.test
,
durbin.test
, friedman
, kruskal
,
LSD.test
, Median.test
, PBIB.test
,
REGW.test
, scheffe.test
, SNK.test
,
waerden.test
, waller.test
, plot.group
Examples
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus, data=sweetpotato)
out <- HSD.test(model,"virus", group=TRUE,console=TRUE,
main="Yield of sweetpotato\nDealt with different virus")
#stargraph
# Variation range: max and min
plot(out)
#endgraph
out<-HSD.test(model,"virus", group=FALSE)
print(out$comparison)
# Old version HSD.test()
df<-df.residual(model)
MSerror<-deviance(model)/df
with(sweetpotato,HSD.test(yield,virus,df,MSerror, group=TRUE,console=TRUE,
main="Yield of sweetpotato. Dealt with different virus"))
Data amendment Huanuco 2006
Description
Incidents and performance of healthy tubers and rotten potato field infested with naturally Ralstonia solanacearum Race 3/Bv 2A, after application of inorganic amendments and a rotation crop in Huanuco Peru, 2006.
Usage
data(Hco2006)
Format
The format is: List of 2
amendment
a factor
crop
a factor
block
a numeric vector, replications
plant
a numeric vector, number plant
wilt_percent
a numeric vector, wilt percentage at 60 days
health
a numeric vector, kg/8m2, 20 plants
rot
a numeric vector, kg/8m2, 20 plants
Details
Application of inorganic amendment and crop rotation to control bacterial wilt of the potato (MBP).
Source
Experimental field, 2006. Data Kindly provided by Pedro Aley.
References
International Potato Center. CIP - Lima Peru.
Examples
library(agricolae)
data(Hco2006)
str(Hco2006)
wilt<-Hco2006$wilt
yield<-Hco2006$yield
means <- tapply.stat(wilt[,5],wilt[,1:3],function(x) mean(x,na.rm=TRUE))
names(means)[4]<-"wilt_percent"
model <- aov(wilt_percent ~ block + crop, means)
anova(model)
cv.model(model)
yield<-yield[order(paste(yield[,1],yield[,2],yield[,3])),]
correlation(means[,4],yield[,4],method="spearman")
Multiple comparisons, "Least significant difference" and Adjust P-values
Description
Multiple comparisons of treatments by means of LSD and a grouping of treatments. The level by alpha default is 0.05. Returns p-values adjusted using one of several methods
Usage
LSD.test(y, trt, DFerror, MSerror, alpha = 0.05, p.adj=c("none","holm","hommel",
"hochberg", "bonferroni", "BH", "BY", "fdr"), group=TRUE, main = NULL,console=FALSE)
Arguments
y |
model(aov or lm) or answer of the experimental unit |
trt |
Constant( only y=model) or vector treatment applied to each experimental unit |
DFerror |
Degrees of freedom of the experimental error |
MSerror |
Means square error of the experimental |
alpha |
Level of risk for the test |
p.adj |
Method for adjusting p values (see p.adjust) |
group |
TRUE or FALSE |
main |
title of the study |
console |
logical, print output |
Details
For equal or different repetition.
For the adjustment methods, see the function p.adjusted.
p-adj ="none" is t-student.
It is necessary first makes a analysis of variance.
if model=y, then to apply the instruction:
LSD.test(model, "trt", alpha = 0.05, p.adj=c("none","holm","hommel",
"hochberg", "bonferroni", "BH", "BY", "fdr"), group=TRUE, main = NULL,console=FALSE)
where the model class is aov or lm.
Value
statistics |
Statistics of the model |
parameters |
Design parameters |
means |
Statistical summary of the study variable |
comparison |
Comparison between treatments |
groups |
Formation of treatment groups |
Author(s)
Felipe de Mendiburu
References
Steel, R.; Torri,J; Dickey, D.(1997) Principles and Procedures of Statistics A Biometrical Approach. pp178.
See Also
BIB.test
, DAU.test
, duncan.test
,
durbin.test
, friedman
, HSD.test
,
kruskal
, Median.test
, PBIB.test
,
REGW.test
, scheffe.test
, SNK.test
,
waerden.test
, waller.test
, plot.group
Examples
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus, data=sweetpotato)
out <- LSD.test(model,"virus", p.adj="bonferroni")
#stargraph
# Variation range: max and min
plot(out)
#endgraph
# Old version LSD.test()
df<-df.residual(model)
MSerror<-deviance(model)/df
out <- with(sweetpotato,LSD.test(yield,virus,df,MSerror))
#stargraph
# Variation interquartil range: Q75 and Q25
plot(out,variation="IQR")
#endgraph
out<-LSD.test(model,"virus",p.adj="hommel",console=TRUE)
plot(out,variation="SD") # variation standard deviation
Data Line by tester
Description
Data frame with yield by line x tester.
Usage
data(LxT)
Format
A data frame with 92 observations on the following 4 variables.
- replication
a numeric vector
- line
a numeric vector
- tester
a numeric vector
- yield
a numeric vector
Source
Biometrical Methods in Quantitative Genetic Analysis, Singh, Chaudhary. 1979
Median test. Multiple comparisons
Description
A nonparametric test for several independent samples. The median test is designed to examine whether several samples came from populations having the same median.
Usage
Median.test(y,trt,alpha=0.05,correct=TRUE,simulate.p.value = FALSE, group = TRUE,
main = NULL,console=TRUE)
Arguments
y |
Variable response |
trt |
Treatments |
alpha |
error type I |
correct |
a logical indicating whether to apply continuity correction when computing the test statistic for 2 groups. The correction will not be bigger than the differences themselves. No correction is done if simulate.p.value = TRUE. |
simulate.p.value |
a logical indicating whether to compute p-values by Monte Carlo simulation |
group |
TRUE or FALSE |
main |
Title |
console |
logical, print output |
Details
The data consist of k samples of possibly unequal sample size.
Greater: is the number of values that exceed the median of all data and
LessEqual: is the number less than or equal to the median of all data.
Value
statistics |
Statistics of the model |
parameters |
Design parameters |
medians |
Statistical summary of the study variable |
comparison |
Comparison between treatments |
groups |
Formation of treatment groups |
Author(s)
Felipe de Mendiburu
References
Practical Nonparametrics Statistics. W.J. Conover, 1999
See Also
BIB.test
, DAU.test
, duncan.test
,
durbin.test
, friedman
, HSD.test
,
kruskal
, LSD.test
, PBIB.test
,
REGW.test
, scheffe.test
, SNK.test
,
waerden.test
, waller.test
, plot.group
Examples
library(agricolae)
# example 1
data(corn)
out<-with(corn,Median.test(observation,method,console=FALSE))
z<-bar.err(out$medians,variation = "range",ylim=c(0,120),
space=2,border=4,col=3,density=10,angle=45)
# example 2
out<-with(corn,Median.test(observation,method,console=FALSE,group=FALSE))
print(out$comparison)
Analysis of the Partially Balanced Incomplete Block Design
Description
Analysis of variance PBIB and comparison mean adjusted. Applied to resoluble designs: Lattices and alpha design.
Usage
PBIB.test(block,trt,replication,y,k, method=c("REML","ML","VC"),
test = c("lsd","tukey"), alpha=0.05, console=FALSE, group=TRUE)
Arguments
block |
blocks |
trt |
Treatment |
replication |
Replication |
y |
Response |
k |
Block size |
method |
Estimation method: REML, ML and VC |
test |
Comparison treatments |
alpha |
Significant test |
console |
logical, print output |
group |
logical, groups |
Details
Method of comparison treatment.
lsd: least significant difference.
tukey: Honestly significant difference.
Estimate: specifies the estimation method for the covariance parameters.
The REML is the default method. The REML specification performs residual (restricted) maximum likelihood, and
The ML specification performs maximum likelihood, and
the VC specifications apply only to variance component models.
The PBIB.test() function can be called inside a function (improvement by Nelson Nazzicari, Ph.D. Bioinformatician)
Value
ANOVA |
Analysis of variance |
method |
Estimation method: REML, ML and VC |
parameters |
Design parameters |
statistics |
Statistics of the model |
model |
Object: estimation model |
Fstat |
Criterion AIC and BIC |
comparison |
Comparison between treatments |
means |
Statistical summary of the study variable |
groups |
Formation of treatment groups |
vartau |
Variance-Covariance Matrix |
Author(s)
F. de Mendiburu
References
1. Iterative Analysis of Generalizad Lattice Designs. E.R. Williams (1977) Austral J. Statistics 19(1) 39-42.
2. Experimental design. Cochran and Cox. Second edition. Wiley Classics Library Edition published 1992
See Also
BIB.test
, DAU.test
, duncan.test
,
durbin.test
, friedman
, HSD.test
,
kruskal
, LSD.test
, Median.test
,
REGW.test
, scheffe.test
, SNK.test
,
waerden.test
, waller.test
, plot.group
Examples
require(agricolae)
# alpha design
Genotype<-c(paste("gen0",1:9,sep=""),paste("gen",10:30,sep=""))
ntr<-length(Genotype)
r<-2
k<-3
s<-10
obs<-ntr*r
b <- s*r
book<-design.alpha(Genotype,k,r,seed=5)
book$book[,3]<- gl(20,3)
dbook<-book$book
# dataset
yield<-c(5,2,7,6,4,9,7,6,7,9,6,2,1,1,3,2,4,6,7,9,8,7,6,4,3,2,2,1,1,2,
1,1,2,4,5,6,7,8,6,5,4,3,1,1,2,5,4,2,7,6,6,5,6,4,5,7,6,5,5,4)
rm(Genotype)
# not run
# analysis
# require(nlme) # method = REML or LM in PBIB.test and require(MASS) method=VC
model <- with(dbook,PBIB.test(block, Genotype, replication, yield, k=3, method="VC"))
# model$ANOVA
# plot(model,las=2)
Ryan, Einot and Gabriel and Welsch multiple range test
Description
Multiple range tests for all pairwise comparisons, to obtain a confident inequalities multiple range tests.
Usage
REGW.test(y, trt, DFerror, MSerror, alpha = 0.05, group=TRUE, main = NULL,console=FALSE)
Arguments
y |
model(aov or lm) or answer of the experimental unit |
trt |
Constant( only y=model) or vector treatment applied to each experimental unit |
DFerror |
Degree free |
MSerror |
Mean Square Error |
alpha |
Significant level |
group |
TRUE or FALSE |
main |
Title |
console |
logical, print output |
Details
It is necessary first makes a analysis of variance.
if y = model, then to apply the instruction:
REGW.test (model, "trt", alpha = 0.05, group = TRUE, main = NULL, console = FALSE)
where the model class is aov or lm.
Value
statistics |
Statistics of the model |
parameters |
Design parameters |
regw |
Critical Range Table |
means |
Statistical summary of the study variable |
comparison |
Comparison between treatments |
groups |
Formation of treatment groups |
Author(s)
Felipe de Mendiburu
References
Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC
See Also
BIB.test
, DAU.test
, duncan.test
,
durbin.test
, friedman
, HSD.test
,
kruskal
, LSD.test
, Median.test
,
PBIB.test
, scheffe.test
, SNK.test
,
waerden.test
, waller.test
, plot.group
Examples
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus,data=sweetpotato)
out<- REGW.test(model,"virus",
main="Yield of sweetpotato. Dealt with different virus")
print(out)
REGW.test(model,"virus",alpha=0.05,console=TRUE,group=FALSE)
Data and analysis Mother and baby trials
Description
Mother/Baby Trials allow farmers and researchers to test best-bet technologies or new cultivars. Evaluation of advanced Clones of potato in the Valley of Rio Chillon - PERU (2004)
Usage
data(RioChillon)
Format
The format is list of 2:
1. mother: data.frame: 30 obs. of 3 variables:
- block (3 levels)
- clon (10 levels)
- yield (kg.)
2. babies: data.frame: 90 obs. of 3 variables:
- farmer (9 levels)
- clon (10 levels)
- yield (kg.)
Details
1. Replicated researcher-managed "mother trials" with typically 10 treatments
evaluated in small plots.
2. Unreplicated "baby trials" with 10 treatments evaluated in large plots.
3. The "baby trials" with a subset of the treatments in the mother trial.
Source
Experimental field.
References
International Potato Center. CIP - Lima Peru.
Examples
# Analisys the Mother/Baby Trial Design
library(agricolae)
data(RioChillon)
# First analysis the Mother Trial Design.
model<-aov(yield ~ block + clon, RioChillon$mother)
anova(model)
cv.model(model)
comparison<-with(RioChillon$mother,LSD.test(yield,clon, 18, 4.922, group=TRUE))
# Second analysis the babies Trial.
comparison<-with(RioChillon$babies,friedman(farmer,clon, yield, group=TRUE))
# Third
# The researcher makes use of data from both mother and baby trials and thereby obtains
# information on suitability of new technologies or cultivars
# for different agro-ecologies and acceptability to farmers.
Student-Newman-Keuls (SNK)
Description
SNK is derived from Tukey, but it is less conservative (finds more differences). Tukey controls the error for all comparisons, where SNK only controls for comparisons under consideration. The level by alpha default is 0.05.
Usage
SNK.test(y, trt, DFerror, MSerror, alpha = 0.05, group=TRUE, main = NULL,console=FALSE)
Arguments
y |
model(aov or lm) or answer of the experimental unit |
trt |
Constant( only y=model) or vector treatment applied to each experimental unit |
DFerror |
Degree free |
MSerror |
Mean Square Error |
alpha |
Significant level |
group |
TRUE or FALSE |
main |
Title |
console |
logical, print output |
Details
It is necessary first makes a analysis of variance.
if y = model, then to apply the instruction:
SNK.test (model, "trt", alpha = 0.05, group = TRUE, main = NULL, console = FALSE)
where the model class is aov or lm.
Value
statistics |
Statistics of the model |
parameters |
Design parameters |
snk |
Critical Range Table |
means |
Statistical summary of the study variable |
comparison |
Comparison between treatments |
groups |
Formation of treatment groups |
Author(s)
Felipe de Mendiburu
References
1. Principles and procedures of statistics a biometrical approach
Steel & Torry & Dickey. Third Edition 1997
2. Multiple comparisons theory and methods. Departament of statistics
the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.
See Also
BIB.test
, DAU.test
, duncan.test
,
durbin.test
, friedman
, HSD.test
,
kruskal
, LSD.test
, Median.test
,
PBIB.test
, REGW.test
, scheffe.test
,
waerden.test
, waller.test
, plot.group
Examples
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus,data=sweetpotato)
out <- SNK.test(model,"virus", console=TRUE,
main="Yield of sweetpotato. Dealt with different virus")
print(SNK.test(model,"virus", group=FALSE))
# version old SNK.test()
df<-df.residual(model)
MSerror<-deviance(model)/df
out <- with(sweetpotato,SNK.test(yield,virus,df,MSerror, group=TRUE))
print(out$groups)
Calculating the absolute or relative value of the AUDPC
Description
Area Under Disease Progress Curve. The AUDPC measures the disease throughout a period. The AUDPC is the area that is determined by the sum of trapezes under the curve.
Usage
audpc(evaluation, dates, type = "absolute")
Arguments
evaluation |
Table of data of the evaluations: Data frame |
dates |
Vector of dates corresponding to each evaluation |
type |
relative, absolute |
Details
AUDPC. For the illustration one considers three evaluations (14, 21 and 28 days) and percentage of damage in the plant 40, 80 and 90 (interval between dates of evaluation 7 days). AUDPC = 1045. The evaluations can be at different interval.
Value
Vector with relative or absolute audpc.
Author(s)
Felipe de Mendiburu
References
Campbell, C. L., L. V. Madden. (1990): Introduction to Plant Disease Epidemiology. John Wiley & Sons, New York City.
Examples
library(agricolae)
dates<-c(14,21,28) # days
# example 1: evaluation - vector
evaluation<-c(40,80,90)
audpc(evaluation,dates)
# example 2: evaluation: dataframe nrow=1
evaluation<-data.frame(E1=40,E2=80,E3=90) # percentages
plot(dates,evaluation,type="h",ylim=c(0,100),col="red",axes=FALSE)
title(cex.main=0.8,main="Absolute or Relative AUDPC\nTotal area = 100*(28-14)=1400")
lines(dates,evaluation,col="red")
text(dates,evaluation+5,evaluation)
text(18,20,"A = (21-14)*(80+40)/2")
text(25,60,"B = (28-21)*(90+80)/2")
text(25,40,"audpc = A+B = 1015")
text(24.5,33,"relative = audpc/area = 0.725")
abline(h=0)
axis(1,dates)
axis(2,seq(0,100,5),las=2)
lines(rbind(c(14,40),c(14,100)),lty=8,col="green")
lines(rbind(c(14,100),c(28,100)),lty=8,col="green")
lines(rbind(c(28,90),c(28,100)),lty=8,col="green")
# It calculates audpc absolute
absolute<-audpc(evaluation,dates,type="absolute")
print(absolute)
rm(evaluation, dates, absolute)
# example 3: evaluation dataframe nrow>1
data(disease)
dates<-c(1,2,3) # week
evaluation<-disease[,c(4,5,6)]
# It calculates audpc relative
index <-audpc(evaluation, dates, type = "relative")
# Correlation between the yield and audpc
correlation(disease$yield, index, method="kendall")
# example 4: days infile
data(CIC)
comas <- CIC$comas
oxapampa <- CIC$oxapampa
dcomas <- names(comas)[9:16]
days<- as.numeric(substr(dcomas,2,3))
AUDPC<- audpc(comas[,9:16],days)
relative<-audpc(comas[,9:16],days,type = "relative")
h1<-graph.freq(AUDPC,border="red",density=4,col="blue")
table.freq(h1)
h2<-graph.freq(relative,border="red",density=4,col="blue",
frequency=2, ylab="relative frequency")
The Area Under the Disease Progress Stairs
Description
A better estimate of disease progress is the area under the disease progress stairs (AUDPS). The AUDPS approach improves the estimation of disease progress by giving a weight closer to optimal to the first and last observations.
Usage
audps(evaluation, dates, type = "absolute")
Arguments
evaluation |
Table of data of the evaluations: Data frame |
dates |
Vector of dates corresponding to each evaluation |
type |
relative, absolute |
Details
AUDPS. For the illustration one considers three evaluations (14, 21 and 28 days) and percentage of damage in the plant 40, 80 and 90 (interval between dates of evaluation 7 days). AUDPS = 1470. The evaluations can be at different interval. AUDPS= sum( rectangle area by interval in times evaluation ) see example.
Value
Vector with relative or absolute audps.
Author(s)
Felipe de Mendiburu
References
Ivan Simko, and Hans-Peter Piepho, (2012). The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology 102:381- 389.
Examples
library(agricolae)
dates<-c(14,21,28) # days
# example 1: evaluation - vector
evaluation<-c(40,80,90)
audps(evaluation,dates)
audps(evaluation,dates,"relative")
x<-seq(10.5,31.5,7)
y<-c(40,80,90,90)
plot(x,y,"s",ylim=c(0,100),xlim=c(10,32),axes=FALSE,col="red" ,ylab="",xlab="")
title(cex.main=0.8,main="Absolute or Relative AUDPS\nTotal area=(31.5-10.5)*100=2100",
ylab="evaluation",xlab="dates" )
points(x,y,type="h")
z<-c(14,21,28)
points(z,y[-3],col="blue",lty=2,pch=19)
points(z,y[-3],col="blue",lty=2,pch=19)
axis(1,x,pos=0)
axis(2,c(0,40,80,90,100),las=2)
text(dates,evaluation+5,dates,col="blue")
text(14,20,"A = (17.5-10.5)*40",cex=0.8)
text(21,40,"B = (24.5-17.5)*80",cex=0.8)
text(28,60,"C = (31.5-24.5)*90",cex=0.8)
text(14,95,"audps = A+B+C = 1470")
text(14,90,"relative = audps/area = 0.7")
# It calculates audpc absolute
absolute<-audps(evaluation,dates,type="absolute")
print(absolute)
rm(evaluation, dates, absolute)
Plotting the standard error or standard deviance of a multiple comparison of means
Description
It plots bars of the averages of treatments and standard error or standard deviance. It uses the objects generated by a procedure of comparison like LSD, HSD, Kruskal and Waller-Duncan.
Usage
bar.err(x,variation=c("SE","SD","range","IQR"),horiz=FALSE, bar=TRUE,...)
Arguments
x |
object means of the comparisons the LSD.test, HSD.test,...,etc |
variation |
SE=standard error, range=Max-Min or IQR=interquartil range |
horiz |
Horizontal or vertical bars |
bar |
paint bar |
... |
Parameters of the function barplot() |
Details
x: data frame formed by 5 columns: name of the bars, height, level out: LSD.test, HSD, waller.test, scheffe.test, duncan.test, SNK.test, friedman, kruskal, waerden.test and Median.test.
Value
A list with numeric vectors giving the coordinates of all the bar midpoints drawn.
x |
eje-1 coordinate |
height |
eje-2 coordinate by group |
Author(s)
Felipe de Mendiburu
See Also
LSD.test
, HSD.test
,
waller.test
, kruskal
, bar.group
Examples
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus,data=sweetpotato)
out <- waller.test(model,"virus", console=TRUE,
main="Yield of sweetpotato\ndealt with different virus")
oldpar<-par(mfrow=c(2,2),cex=1)
bar.err(out$means,variation="range",horiz=TRUE,xlim=c(0,45),angle=125,density=6,
main="range")
bar.err(out$means,variation="SD",ylim=c(0,45),col=colors()[30],
main="Standard deviation",density=8)
bar.err(out$means,variation="SE",horiz=TRUE,xlim=c(0,45),density=8,
col="brown",main="Standard error")
bar.err(out$means,variation="range",ylim=c(0,45),bar=FALSE,col="green",
main="range")
par(oldpar)
oldpar<-par(mfrow=c(1,2),cex=1)
bar.err(out$means,variation="range",ylim=c(0,45),bar=FALSE,col=0)
abline(h=0)
# horiz = TRUE
bar.err(out$means,variation="SE",horiz=TRUE,xlim=c(0,45),bar=FALSE,col=0)
#startgraph
par(oldpar)
#endgraph
Plotting the multiple comparison of means
Description
It plots bars of the averages of treatments to compare. It uses the objects generated by a procedure of comparison like LSD, HSD, Kruskall, Waller-Duncan, Friedman or Durbin. It can also display the 'average' value over each bar in a bar chart.
Usage
bar.group(x,horiz=FALSE, decreasing=TRUE, ...)
Arguments
x |
Object created by a test of comparison |
horiz |
Horizontal or vertical bars |
decreasing |
Logical, decreasing order of the mean |
... |
Parameters of the function barplot() |
Details
x: data frame formed by 5 columns: name of the bars, height and level of the bar.
Value
A list with numeric vectors giving the coordinates of all the bar midpoints drawn.
x |
eje-1 coordinate |
height |
eje-2 coordinate by group |
Author(s)
Felipe de Meniburu
See Also
LSD.test
, HSD.test
, kruskal
, friedman
, durbin.test
, waller.test
, plot.group
Examples
# Example 1
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus,data=sweetpotato)
comparison<- LSD.test(model,"virus",alpha=0.01,group=TRUE)
print(comparison$groups)
oldpar<-par(cex=1.5)
bar.group(comparison$groups,horiz=TRUE,density=8,col="blue",border="red", xlim=c(0,50),las=1)
title(cex.main=0.8,main="Comparison between\ntreatment means",xlab="Yield",ylab="Virus")
# Example 2
library(agricolae)
x <- 1:4
y <- c(0.29, 0.44, 0.09, 0.49)
xy <- data.frame(x,y,y)
par(oldpar)
oldpar<-par(cex=1.5)
bar.group(xy,density=30,angle=90,col="brown",border=FALSE,ylim=c(0,0.6),lwd=2,las=1)
par(oldpar)
North Carolina Designs I, II and III
Description
Statistic analysis of the Carolina I, II and III genetic designs.
Usage
carolina(model,data)
Arguments
model |
Constant |
data |
Data frame |
Details
model = 1,2 and 3 is I, II and III see carolina1,2 and 3.
Value
model |
model analysis (I, II or III) of caroline design |
and variance and additive variance of male, female and male.female interaction.
Author(s)
Felipe de Mendiburu
References
Biometrical Methods in Quantitative Genetic Analysis, Singh, Chaudhary. 1979
See Also
Examples
library(agricolae)
data(DC)
carolina1 <- DC$carolina1
# str(carolina1)
output<-carolina(model=1,carolina1)
output[][-1]
carolina2 <- DC$carolina2
# str(carolina2)
majes<-subset(carolina2,carolina2[,1]==1)
majes<-majes[,c(2,5,4,3,6:8)]
output<-carolina(model=2,majes[,c(1:4,6)])
output[][-1]
carolina3 <- DC$carolina3
# str(carolina3)
output<-carolina(model=3,carolina3)
output[][-1]
Data of Ralstonia population in clay soil
Description
An evaluation over a time period.
Usage
data(clay)
Format
A data frame with 69 observations on the following 3 variables.
per.clay
a numeric vector
days
a numeric vector
ralstonia
a numeric vector
Source
Experimental field.
References
International Potato Center. CIP - Lima Peru.
Examples
library(agricolae)
data(clay)
str(clay)
consensus of clusters
Description
The criterion of the consensus is to produce many trees by means of boostrap and to such calculate the relative frequency with members of the clusters.
Usage
consensus(data,distance=c("binary","euclidean","maximum","manhattan",
"canberra", "minkowski", "gower","chisq"),method=c("complete","ward","single","average",
"mcquitty","median", "centroid"),nboot=500,duplicate=TRUE,cex.text=1,
col.text="red", ...)
Arguments
data |
data frame |
distance |
method distance, see dist() |
method |
method cluster, see hclust() |
nboot |
The number of bootstrap samples desired. |
duplicate |
control is TRUE other case is FALSE |
cex.text |
size text on percentage consensus |
col.text |
color text on percentage consensus |
... |
parameters of the plot dendrogram |
Details
distance: "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "gower", "chisq". Method: "ward", "single", "complete", "average", "mcquitty", "median", "centroid". see functions: dist(), hclust() and daisy() of cluster.
Value
table.dend |
The groups and consensus percentage |
dendrogram |
The class object is hclust, dendrogram plot |
duplicate |
Homonymous elements |
Author(s)
F. de Mendiburu
References
An Introduction to the Boostrap. Bradley Efron and Robert J. Tibshirani. 1993. Chapman and Hall/CRC
See Also
Examples
library(agricolae)
data(pamCIP)
# only code
rownames(pamCIP)<-substr(rownames(pamCIP),1,6)
output<-consensus( pamCIP,distance="binary", method="complete",nboot=5)
# Order consensus
Groups<-output$table.dend[,c(6,5)]
Groups<-Groups[order(Groups[,2],decreasing=TRUE),]
print(Groups)
## Identification of the codes with the numbers.
cbind(output$dendrogram$labels)
## To reproduce dendrogram
dend<-output$dendrogram
data<-output$table.dend
plot(dend)
text(data[,3],data[,4],data[,5])
# Other examples
# classical dendrogram
dend<-as.dendrogram(output$dendrogram)
plot(dend,type="r",edgePar = list(lty=1:2, col=2:1))
text(data[,3],data[,4],data[,5],col="blue",cex=1)
plot(dend,type="t",edgePar = list(lty=1:2, col=2:1))
text(data[,3],data[,4],data[,5],col="blue",cex=1)
## Without the control of duplicates
output<-consensus( pamCIP,duplicate=FALSE,nboot=5)
## using distance gower, require cluster package.
# output<-consensus( pamCIP,distance="gower", method="complete",nboot=5)
Data of corn
Description
Data from a completely randomized design where four different methods of growing corn resulted in various yields per acre on various plots of ground where the four methods were tried. Ordinarily, only one statistical analysis is used, but here we will use the kuskal-wallis test so that a rough comparison may be made with the mediasn test.
Usage
data(corn)
Format
A data frame with 34 observations on the following 3 variables.
method
a numeric vector
observation
a numeric vector
rx
a numeric vector
Details
The observations are ranked from the smallest, 77, of rank 1 to the largest 101, of rank N=34. Ties values receive the averarge rank.
Source
Book: Practical Nonparametric Statistics.
References
Practical Nonparametrics Statistics. W.J. Conover. Third Edition, 1999.
Examples
data(corn)
str(corn)
Correlation Coefficient
Description
An exact correlation for ties or without ties. Methods of Kendall, Spearman and Pearson.
Usage
correl(x, y, method = "pearson",alternative="two.sided")
Arguments
x |
Vector |
y |
Vector |
method |
"pearson", "kendall", "spearman" |
alternative |
"two.sided", "less", "greater" |
Value
The correlation of x,y vector with the statistical value and its probability
Author(s)
Felipe de Mendiburu
References
Numerical Recipes in C. Second Edition.
See Also
Examples
library(agricolae)
data(soil)
with(soil,correl(pH,clay,method="kendall"))
with(soil,correl(pH,clay,method="spearman"))
with(soil,correl(pH,clay,method="pearson"))
Correlation analysis. Methods of Pearson, Spearman, Kendall and Lin
Description
It obtains the coefficients of correlation and p-value between all the variables of a data table. The methods to apply are Pearson, Spearman , Kendall and lin's concordance index. In case of not specifying the method, the Pearson method will be used. The results are similar to SAS.
Usage
correlation(x,y=NULL, method = c("pearson", "kendall", "spearman", "lin")
,alternative="two.sided")
Arguments
x |
table, matrix or vector |
y |
table, matrix or vector |
method |
"pearson", "kendall", "spearman", "lin" |
alternative |
"two.sided", "less", "greater" |
Details
Parameters equal to function cor()
Value
The correlation matrix with its probability
Author(s)
Felipe de Mendiburu
References
Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989; 45, 255-268.
See Also
Examples
library(agricolae)
data(soil)
# example 1
analysis<-correlation(soil[,2:8],method="pearson")
analysis
# Example 2: correlation between pH, variable 2 and other elements from soil.
analysis<-with(soil,correlation(pH,soil[,3:8],method="pearson",alternative="less"))
analysis
# Example 3: correlation between pH and clay method kendall.
with(soil,correlation(pH,clay,method="kendall", alternative="two.sided"))
Data of cotton
Description
Data of cotton collected in experiments of two localities in Lima and Pisco, Peru.
Usage
data(cotton)
Format
A data frame with 96 observations on the following 5 variables.
site
a factor with levels
Lima
Pisco
block
a factor with levels
I
II
III
IV
V
VI
lineage
a numeric vector
epoca
a numeric vector
yield
a numeric vector
Source
Book spanish: Metodos estadisticos para la investigacion. Autor: Calzada Benza Universidad Nacional Agraria - La Molina - Peru..
References
Book spanish: Metodos estadisticos para la investigacion. Autor: Calzada Benza Universidad Nacional Agraria - La Molina - Peru.
Examples
library(agricolae)
data(cotton)
str(cotton)
Coefficient of the experiment variation
Description
It obtains the coefficient of variation of the experiment obtained by models lm() or aov()
Usage
cv.model(x)
Arguments
x |
object of model lm() or AOV() |
Details
sqrt(MSerror)*100/mean(x)
Value
Returns the coefficient of variation of the experiment according to the applied statistical model
Author(s)
Felipe de Mendiburu
See Also
LSD.test
, HSD.test
,
waller.test
Examples
# see examples from LSD , Waller-Duncan or HSD and complete with it:
library(agricolae)
# not run
# cv<-cv.model(model)
Coefficient of the similarity matrix variation
Description
This process consists of finding the coefficient of the distances of similarity of binary tables (1 and 0) as used for scoring molecular marker data for presence and absence of PCR amplification products.
Usage
cv.similarity(A)
Arguments
A |
matrix of binary data |
Value
Returns the coefficient of variation of the similarity model
Author(s)
Felipe de Mendiburu
See Also
Examples
# molecular markers.
library(agricolae)
data(markers)
cv<-cv.similarity(markers)
Omitting the rows or columns with missing observations of a matrix (NA)
Description
In many situations it is required to omit the rows or columns less or greater with NA of the matrix.
Usage
delete.na(x, alternative=c("less", "greater") )
Arguments
x |
matrix with NA |
alternative |
"less" or "greater" |
Value
x |
matrix |
Author(s)
Felipe de Mendiburu
Examples
library(agricolae)
x<-c(2,5,3,7,5,NA,8,0,4,3,NA,NA)
dim(x)<-c(4,3)
x
# [,1] [,2] [,3]
#[1,] 2 5 4
#[2,] 5 NA 3
#[3,] 3 8 NA
#[4,] 7 0 NA
delete.na(x,"less")
# [,1]
#[1,] 2
#[2,] 5
#[3,] 3
#[4,] 7
delete.na(x,"greater")
# [,1] [,2] [,3]
#[1,] 2 5 4
Design of experiments for a factorial
Description
It generates a design of blocks, randomize and latin square for combined n. factors uses the methods of number generation in R. The seed is by set.seed(seed, kinds).
Usage
design.ab(trt, r, serie = 2, design=c("rcbd","crd","lsd"),
seed = 0, kinds = "Super-Duper",first=TRUE,randomization=TRUE)
Arguments
trt |
n levels factors |
r |
Replications or Blocks |
serie |
number plot, 1: 11,12; 2: 101,102; 3: 1001,1002 |
design |
type |
seed |
Seed |
kinds |
Method for to randomize |
first |
TRUE or FALSE - randomize rep 1 |
randomization |
TRUE or FALSE - randomize |
Details
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default" )
Value
parameters |
Design parameters |
book |
Fieldbook |
Author(s)
Felipe de Mendiburu
References
Introduction to Experimental Statistics. Ching Chun Li. McGraw-Hill Book Company, INC, New. York, 1964
See Also
design.split
, design.alpha
,design.bib
,
design.crd
, design.cyclic
, design.dau
,
design.graeco
, design.lattice
, design.lsd
,
design.rcbd
, design.strip
Examples
# factorial 3 x 2 with 3 blocks
library(agricolae)
trt<-c(3,2) # factorial 3x2
outdesign <-design.ab(trt, r=3, serie=2)
book<-outdesign$book
head(book,10) # print of the field book
# factorial 2 x 2 x 2 with 5 replications in completely randomized design.
trt<-c(2,2,2)
outdesign<-design.ab(trt, r=5, serie=2,design="crd")
book<-outdesign$book
print(book)
# factorial 3 x 3 in latin square design.
trt <-c(3,3)
outdesign<-design.ab(trt, serie=2, design="lsd")
book<-outdesign$book
print(book)
Alpha design type (0,1)
Description
Generates an alpha designs starting from the alpha design fixing under the series formulated by Patterson and Williams. These designs are generated by the alpha arrangements. They are similar to the lattice designs, but the tables are rectangular s by k (with s blocks and k<s columns. The number of treatments should be equal to s*k and all the experimental units r*s*k (r replications).
Usage
design.alpha(trt, k, r, serie = 2, seed = 0, kinds = "Super-Duper",randomization=TRUE)
Arguments
trt |
Treatments |
k |
size block |
r |
Replications |
serie |
number plot, 1: 11,12; 2: 101,102; 3: 1001,1002 |
seed |
seed |
kinds |
method for to randomize |
randomization |
TRUE or FALSE - randomize |
Details
Parameters for the alpha design: I. r=2, k <= s; II. r=3, s odd, k <= s; III.r=3, s even, k <= s-1; IV. r=4, s odd but not a multiple of 3, k<=s
r= replications s=number of blocks k=size of block Number of treatment is equal to k*s
Value
parameters |
Design parameters |
statistics |
Design statistics |
sketch |
Design sketch |
book |
Fieldbook |
Author(s)
Felipe de Mendiburu
References
H.D. Patterson and E.R. Williams. Biometrika (1976) A new class of resolvable incomplete block designs. printed in Great Britain. Online: http://biomet.oxfordjournals.org/cgi/content/abstract/63/1/83
See Also
design.ab
, design.split
,design.bib
,
design.crd
, design.cyclic
, design.dau
,
design.graeco
, design.lattice
, design.lsd
,
design.rcbd
, design.strip
Examples
library(agricolae)
#Example one
trt<-1:30
t <- length(trt)
# size block k
k<-3
# Blocks s
s<-t/k
# replications r
r <- 2
outdesign<- design.alpha(trt,k,r,serie=2)
book<-outdesign$book
plots<-book[,1]
dim(plots)<-c(k,s,r)
for (i in 1:r) print(t(plots[,,i]))
outdesign$sketch
# Example two
trt<-letters[1:12]
t <- length(trt)
k<-3
r<-3
s<-t/k
outdesign<- design.alpha(trt,k,r,serie=2)
book<-outdesign$book
plots<-book[,1]
dim(plots)<-c(k,s,r)
for (i in 1:r) print(t(plots[,,i]))
outdesign$sketch
Randomized Balanced Incomplete Block Designs. BIB
Description
Creates Randomized Balanced Incomplete Block Design. "Random" uses the methods of number generation in R. The seed is by set.seed(seed, kinds).
Usage
design.bib(trt, k, r=NULL, serie = 2, seed = 0, kinds = "Super-Duper",
maxRep=20,randomization=TRUE)
Arguments
trt |
Treatments |
k |
size block |
r |
Replications |
serie |
number plot, 1: 11,12; 2: 101,102; 3: 1001,1002 |
seed |
seed |
kinds |
method for to randomize |
maxRep |
repetition maximum |
randomization |
TRUE or FALSE - randomize |
Details
The package AlgDesign is necessary.
if r = NULL, then it calculates the value of r smaller for k defined. In the case of r = value, then the possible values for "r" is calculated
K is the smallest integer number of treatments and both values are consistent in design.
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default" )
Value
parameters |
Design parameters |
statistics |
Design statistics |
sketch |
Design sketch |
book |
Fieldbook |
Author(s)
Felipe de Mendiburu
References
1. Experimental design. Cochran and Cox. Second edition. Wiley Classics Library Edition published 1992
2. Optimal Experimental Design with R. Dieter Rasch, Jurgen Pilz, Rob Verdooren and Albrecht Gebhardt. 2011 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor and Francis Group, an Informa business.
3. Design of Experiments. Robert O. Kuehl. 2nd ed., Duxbury, 2000.
See Also
design.ab
, design.alpha
,design.split
,
design.crd
, design.cyclic
, design.dau
,
design.graeco
, design.lattice
, design.lsd
,
design.rcbd
, design.strip
Examples
library(agricolae)
# 4 treatments and k=3 size block
trt<-c("A","B","C","D")
k<-3
outdesign<-design.bib(trt,k,serie=2,seed =41,kinds ="Super-Duper") # seed = 41
print(outdesign$parameters)
book<-outdesign$book
plots <-as.numeric(book[,1])
matrix(plots,byrow=TRUE,ncol=k)
print(outdesign$sketch)
# write in hard disk
# write.csv(book,"book.csv", row.names=FALSE)
# file.show("book.csv")
Completely Randomized Design
Description
It generates completely a randomized design with equal or different repetition. "Random" uses the methods of number generation in R. The seed is by set.seed(seed, kinds).
Usage
design.crd(trt, r, serie = 2, seed = 0, kinds = "Super-Duper",randomization=TRUE)
Arguments
trt |
Treatments |
r |
Replications |
serie |
number plot, 1: 11,12; 2: 101,102; 3: 1001,1002 |
seed |
seed |
kinds |
method for to randomize |
randomization |
TRUE or FALSE - randomize |
Details
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default" )
Value
parameters |
Design parameters |
book |
Fieldbook |
Author(s)
Felipe de Mendiburu
References
Introduction to Experimental Statistics. Ching Chun Li. McGraw-Hill Book Company, INC, New. York, 1964
See Also
design.ab
, design.alpha
,design.bib
,
design.split
, design.cyclic
, design.dau
,
design.graeco
, design.lattice
, design.lsd
,
design.rcbd
, design.strip
Examples
library(agricolae)
trt <-c("CIP-101","CIP-201","CIP-301","CIP-401","CIP-501")
r <-c(4,3,5,4,3)
# seed = 12543
outdesign1 <-design.crd(trt,r,serie=2,2543,"Mersenne-Twister")
book1<-outdesign1
# no seed
outdesign2 <-design.crd(trt,r,serie=3)
print(outdesign2$parameters)
book2<-outdesign2
# write to hard disk
# write.table(book1,"crd.txt", row.names=FALSE, sep="\t")
# file.show("crd.txt")
Cyclic designs
Description
The cyclic design is a incomplete blocks designs, it is generated from a incomplete block initial of the size k, the plan is generated and randomized. The efficient and robust cyclic designs for 6 to 30 treatments, replications <= 10.
Usage
design.cyclic(trt, k, r, serie = 2, rowcol = FALSE, seed = 0, kinds = "Super-Duper"
,randomization=TRUE)
Arguments
trt |
vector treatments |
k |
block size |
r |
Replications |
serie |
number plot, 1: 11,12; 2: 101,102; 3: 1001,1002 |
rowcol |
TRUE: row-column design |
seed |
init seed random |
kinds |
random method |
randomization |
TRUE or FALSE - randomize |
Details
Number o treatment 6 to 30. (r) Replication 2 to 10. (k) size of block 2 to 10. replication = i*k, "i" is value integer.
Value
parameters |
Design parameters |
sketch |
Design sketch |
book |
Fieldbook |
Author(s)
Felipe de Mendiburu
References
Kuehl, Robert(2000), Design of Experiments. 2nd ed., Duxbury. John, J.A. (1981) Efficient Cyclic Design. J. R. Statist. Soc. B, 43, No. 1, pp, 76-80.
See Also
design.ab
, design.alpha
,design.bib
,
design.crd
, design.split
, design.dau
,
design.graeco
, design.lattice
, design.lsd
,
design.rcbd
, design.strip
Examples
library(agricolae)
trt<-letters[1:8]
# block size = 2, replication = 6
outdesign1 <- design.cyclic(trt,k=2, r=6,serie=2)
names(outdesign1)
# groups 1,2,3
outdesign1$sketch[[1]]
outdesign1$sketch[[2]]
outdesign1$sketch[[3]]
outdesign1$book
# row-column design
outdesign2<- design.cyclic(trt,k=2, r=6, serie=2, rowcol=TRUE)
outdesign2$sketch
Augmented block design
Description
These are designs for two types of treatments: the control treatments (common) and the increased treatments. The common treatments are applied in complete randomized blocks, and the increased treatments, at random. Each treatment should be applied in any block once only. It is understood that the common treatments are of a greater interest; the standard error of the difference is much smaller than when between two increased ones in different blocks.
Usage
design.dau(trt1, trt2, r, serie = 2, seed = 0, kinds = "Super-Duper", name="trt"
,randomization=TRUE)
Arguments
trt1 |
checks |
trt2 |
new |
r |
Replications or blocks |
serie |
number plot, 1: 11,12; 2: 101,102; 3: 1001,1002 |
seed |
seed |
kinds |
method for to randomize |
name |
name of treatments |
randomization |
TRUE or FALSE - randomize |
Details
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default" )
Value
parameters |
Design parameters |
book |
Fieldbook |
Author(s)
Felipe de Mendiburu
References
1. Augmented (or Hoonuiaku) Design. Federer, W.T. (1956), Hawaii Plr. rec., 55: 191-208. 2. In Augmented Designs. Federer, W.T and Raghavarao, D. (1975). Bometrics, vol. 31, No. 1 (mar.., 1975), pp. 29-35
See Also
design.ab
, design.alpha
,design.bib
,
design.crd
, design.cyclic
, design.split
,
design.graeco
, design.lattice
, design.lsd
,
design.rcbd
, design.strip
Examples
library(agricolae)
# 4 treatments and 5 blocks
T1<-c("A","B","C","D")
T2<-letters[20:26]
outdesign <-design.dau(T1,T2, r=5,serie=2)
# field book
book<-outdesign$book
by(book,book[2],function(x) paste(x[,1],"-",as.character(x[,3])))
# write in hard disk
# write.table(book,"dau.txt", row.names=FALSE, sep="\t")
# file.show("dau.txt")
# Augmented designs in Completely Randomized Design
trt<-c(T1,T2)
r<-c(4,4,4,4,1,1,1,1,1,1,1)
outdesign <- design.crd(trt,r)
outdesign$book
Graeco - latin square design
Description
A graeco - latin square is a KxK pattern that permits the study of k treatments simultaneously with three different blocking variables, each at k levels.
The function is only for squares of the odd numbers and even numbers (4, 8, 10 and 12)
Usage
design.graeco(trt1, trt2, serie = 2, seed = 0, kinds = "Super-Duper",randomization=TRUE)
Arguments
trt1 |
Treatments |
trt2 |
Treatments |
serie |
number plot, 1: 11,12; 2: 101,102; 3: 1001,1002 |
seed |
seed |
kinds |
method for to randomize |
randomization |
TRUE or FALSE - randomize |
Details
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default" )
Value
parameters |
Design parameters |
book |
Fieldbook |
Author(s)
Felipe de Mendiburu
References
1. Statistics for Experimenters Design, Innovation, and Discovery Second Edition. George E. P. Box. Wiley-Interscience. 2005.
2. Experimental design. Cochran and Cox. Second edition. Wiley Classics Library Edition published 1992.
See Also
design.ab
, design.alpha
,design.bib
,
design.crd
, design.cyclic
, design.dau
,
design.split
, design.lattice
, design.lsd
,
design.rcbd
, design.strip
Examples
library(agricolae)
T1<-c("a","b","c","d")
T2<-c("v","w","x","y")
outdesign <- design.graeco(T1,T2,serie=1)
graeco<-outdesign$book
plots <-as.numeric(graeco[,1])
print(outdesign$sketch)
print(matrix(plots,byrow=TRUE,ncol=4))
# 10 x 10
T1 <- letters[1:10]
T2 <- 1:10
outdesign <- design.graeco(T1,T2,serie=2)
print(outdesign$sketch)
Lattice designs
Description
SIMPLE and TRIPLE lattice designs. It randomizes treatments in k x k lattice.
Usage
design.lattice(trt, r=3, serie = 2, seed = 0, kinds = "Super-Duper",randomization=TRUE)
Arguments
trt |
treatments |
r |
r=2(simple) or r=3(triple) lattice |
serie |
number plot, 1: 11,12; 2: 101,102; 3: 1001,1002 |
seed |
seed |
kinds |
method for to randomize |
randomization |
TRUE or FALSE - randomize |
Details
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default" )
Value
parameters |
Design parameters |
statistics |
Design statistics |
sketch |
Design sketch |
book |
Fieldbook |
Author(s)
Felipe de Mendiburu
References
FIELD PLOT TECHNIQUE. Erwin L. LeCLERG. 2nd ed., 1962, Burgess Publishing Company, Minnesota
See Also
design.ab
, design.alpha
,design.bib
,
design.crd
, design.cyclic
, design.dau
,
design.graeco
, design.split
, design.lsd
,
design.rcbd
, design.strip
Examples
library(agricolae)
# triple lattice
trt<-LETTERS[1:9]
outdesign<-design.lattice(trt,r=3,serie=2) # triple lattice design ( 9 trt)
# simple lattice
trt<-1:100
outdesign<-design.lattice(trt,r=2,serie=3) # simple lattice design, 10x10
Latin Square Design
Description
It generates Latin Square Design. "Random" uses the methods of number generation in R. The seed is by set.seed(seed, kinds).
Usage
design.lsd(trt, serie = 2, seed = 0, kinds = "Super-Duper",first=TRUE,randomization=TRUE)
Arguments
trt |
Treatments |
serie |
number plot, 1: 11,12; 2: 101,102; 3: 1001,1002 |
seed |
seed |
kinds |
method for to randomize |
first |
TRUE or FALSE - randomize rep 1 |
randomization |
TRUE or FALSE - randomize |
Details
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default" )
Value
parameters |
Design parameters |
book |
Fieldbook |
Author(s)
Felipe de Mendiburu
References
Introduction to Experimental Statistics. Ching Chun Li. McGraw-Hill Book Company, INC, New. York, 1969
See Also
design.ab
, design.alpha
,design.bib
,
design.crd
, design.cyclic
, design.dau
,
design.graeco
, design.lattice
, design.split
,
design.rcbd
, design.strip
Examples
library(agricolae)
varieties<-c("perricholi","yungay","maria bonita","tomasa")
outdesign <-design.lsd(varieties,serie=2,seed=23)
lsd <- outdesign$book
print(outdesign$sketch)
print(lsd) # field book.
plots <-as.numeric(lsd[,1])
print(matrix(plots,byrow = TRUE, ncol = 4))
# Write on hard disk.
# write.table(lsd,"lsd.txt", row.names=FALSE, sep="\t")
# file.show("lsd.txt")
Experimental design matrix
Description
Generate the design matrix from the fieldbook generated by an experimental plan or a dataframe for analysis.
Usage
design.mat(book, locations)
Arguments
book |
data frame or matrix, field book |
locations |
numeric, column position of the field book |
Value
X is matrix design.
Author(s)
Felipe de Mendiburu
See Also
design.ab
, design.alpha
,design.bib
,
design.crd
, design.cyclic
, design.split
,
design.graeco
, design.lattice
, design.lsd
,
design.rcbd
, design.strip
, design.dau
Examples
# dataframe: data analysis
library(agricolae)
data(sweetpotato)
X<-design.mat(sweetpotato,1)
print(X)
# fieldbook: RCBD design
trt <- LETTERS[1:4]
r<-3
plan<-design.rcbd(trt,r,seed=11)
X<-design.mat(plan$book,2:3)
print(X)
Randomized Complete Block Design
Description
It generates Randomized Complete Block Design. "Random" uses the methods of number generation in R. The seed is by set.seed(seed, kinds).
Usage
design.rcbd(trt, r, serie = 2, seed = 0, kinds = "Super-Duper", first=TRUE,
continue=FALSE,randomization=TRUE )
Arguments
trt |
Treatments |
r |
Replications or blocks |
serie |
number plot, 1: 11,12; 2: 101,102; 3: 1001,1002 |
seed |
seed |
kinds |
method for to randomize |
first |
TRUE or FALSE - randomize rep 1 |
continue |
TRUE or FALSE, continuous numbering of plot |
randomization |
TRUE or FALSE - randomize |
Details
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default" )
Value
parameters |
Design parameters |
sketch |
Design sketch |
book |
Fieldbook |
Author(s)
Felipe de Mendiburu
References
Introduction to Experimental Statistics. Ching Chun Li. McGraw-Hill Book Company, INC, New. York, 1964
See Also
design.ab
, design.alpha
,design.bib
,
design.crd
, design.cyclic
, design.dau
,
design.graeco
, design.lattice
, design.lsd
,
design.split
, design.strip
Examples
library(agricolae)
# 5 treatments and 6 blocks
trt<-c("A","B","C","D","E")
outdesign <-design.rcbd(trt,6,serie=2,986,"Wichmann-Hill") # seed = 986
book <-outdesign$book # field book
# write in hard disk
# write.table(book,"rcbd.txt", row.names=FALSE, sep="\t")
# file.show("rcbd.txt")
# Plots in field model ZIGZAG
fieldbook <- zigzag(outdesign)
print(outdesign$sketch)
print(matrix(fieldbook[,1],byrow=TRUE,ncol=5))
# continuous numbering of plot
outdesign <-design.rcbd(trt,6,serie=0,continue=TRUE)
head(outdesign$book)
Split Plot Design
Description
It generates split plot design. "Random" uses the methods of number generation in R. The seed is by set.seed(seed, kinds).
Usage
design.split(trt1, trt2,r=NULL, design=c("rcbd","crd","lsd"),serie = 2,
seed = 0, kinds = "Super-Duper", first=TRUE,randomization=TRUE)
Arguments
trt1 |
Treatments in Plots |
trt2 |
Treatments in Subplots |
r |
Replications or blocks |
design |
Experimental design |
serie |
number plot, 1: 11,12; 2: 101,102; 3: 1001,1002 |
seed |
seed |
kinds |
method for to randomize |
first |
TRUE or FALSE - randomize rep 1 |
randomization |
TRUE or FALSE - randomize |
Details
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default" )
Value
parameters |
Design parameters |
book |
Fieldbook |
Author(s)
Felipe de Mendiburu
References
Statistical Procedures for Agricultural Research. Kwanchai A. Gomez, Arturo A. Gomez. John Wiley & Sons, new York, 1984
See Also
design.ab
, design.alpha
,design.bib
,
design.crd
, design.cyclic
, design.dau
,
design.graeco
, design.lattice
, design.lsd
,
design.rcbd
, design.strip
Examples
library(agricolae)
# 4 treatments and 5 blocks in split-plot
t1<-c("A","B","C","D")
t2<-c(1,2,3)
outdesign <-design.split(t1,t2,r=3,serie=2,seed=45,kinds ="Super-Duper")#seed=45
book<-outdesign$book# field book
# write in hard disk
# write.table(book,"book.txt", row.names=FALSE, sep="\t")
# file.show("book.txt")
Strip Plot Design
Description
It generates strip plot design. "Random" uses the methods of number generation in R. The seed is by set.seed(seed, kinds).
Usage
design.strip(trt1, trt2,r, serie = 2, seed = 0, kinds = "Super-Duper",randomization=TRUE)
Arguments
trt1 |
Row treatments |
trt2 |
column treatments |
r |
Replications |
serie |
number plot, 1: 11,12; 2: 101,102; 3: 1001,1002 |
seed |
seed |
kinds |
method for to randomize |
randomization |
TRUE or FALSE - randomize |
Details
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default" )
Value
parameters |
Design parameters |
book |
Fieldbook |
Author(s)
Felipe de Mendiburu
References
Statistical Procedures for Agricultural Research. Kwanchai A. Gomez, Arturo A. Gomez. John Wiley & Sons, new York, 1984
See Also
design.ab
, design.alpha
,design.bib
,
design.crd
, design.cyclic
, design.dau
,
design.graeco
, design.lattice
, design.lsd
,
design.rcbd
, design.split
Examples
library(agricolae)
# 4 and 3 treatments and 3 blocks in strip-plot
t1<-c("A","B","C","D")
t2<-c(1,2,3)
r<-3
outdesign <-design.strip(t1,t2,r, serie=2,seed=45,kinds ="Super-Duper") # seed = 45
book <-outdesign$book # field book
# write in hard disk
# write.table(book,"book.txt", row.names=FALSE, sep="\t")
# file.show("book.txt")
Incomplete Latin Square Design
Description
Such designs are referred to as Youden squares since they were introduced by Youden (1937) after Yates (1936) considered the special case of column equal to number treatment minus 1. "Random" uses the methods of number generation in R. The seed is by set.seed(seed, kinds).
Usage
design.youden(trt, r, serie = 2, seed = 0, kinds = "Super-Duper",first=TRUE
,randomization=TRUE)
Arguments
trt |
Treatments |
r |
Replications or number of columns |
serie |
number plot, 1: 11,12; 2: 101,102; 3: 1001,1002 |
seed |
seed |
kinds |
method for to randomize |
first |
TRUE or FALSE - randomize rep 1 |
randomization |
TRUE or FALSE - randomize |
Details
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default" )
Value
parameters |
Design parameters |
sketch |
Design sketch |
book |
Fieldbook |
Author(s)
Felipe de Mendiburu
References
Design and Analysis of experiment. Hinkelmann, Klaus and Kempthorne, Oscar. Wiley-Interscience. Copyright (2008) by John Wiley and Sons. Inc., Hoboken, new Yersy
See Also
design.ab
, design.alpha
,design.bib
,
design.crd
, design.cyclic
, design.dau
,
design.graeco
, design.lattice
, design.split
,
design.rcbd
, design.strip
, design.lsd
Examples
library(agricolae)
varieties<-c("perricholi","yungay","maria bonita","tomasa")
r<-3
outdesign <-design.youden(varieties,r,serie=2,seed=23)
youden <- outdesign$book
print(outdesign$sketch)
plots <-as.numeric(youden[,1])
print(matrix(plots,byrow=TRUE,ncol=r))
print(youden) # field book.
# Write on hard disk.
# write.table(youden,"youden.txt", row.names=FALSE, sep="\t")
# file.show("youden.txt")
Plotting the multiple comparison of means
Description
It plots bars of the averages of treatments to compare. It uses the objects generated by a procedure of comparison like LSD (Fisher), duncan, Tukey (HSD), Student Newman Keul (SNK), Scheffe, Ryan, Einot and Gabriel and Welsch (REGW), Kruskal Wallis, Friedman and Waerden.
Usage
diffograph(x, main=NULL,color1="red",color2="blue",color3="black",
cex.axis=0.8,las=1,pch=20,bty="l",cex=0.8,lwd=1,xlab="",ylab="",...)
Arguments
x |
Object created by a test of comparison, group=FALSE |
main |
The main title (on top) |
color1 |
non significant color |
color2 |
significant color |
color3 |
center line color |
cex.axis |
parameters of the plot() |
las |
parameters of the plot() |
pch |
parameters of the plot() |
bty |
parameters of the plot() |
cex |
parameters of the plot() |
lwd |
parameters of the plot() |
xlab |
parameters of the plot() |
ylab |
parameters of the plot() |
... |
Other parameters of the function plot() |
Details
The graph.diff function should be used for functions: LSD, duncan, SNK, scheffe, REGW, HSD, kruskal, friedman and waerden test.
Value
x |
list, object comparison test |
Author(s)
Felipe de Mendiburu
References
Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC
See Also
LSD.test
, HSD.test
, duncan.test
, SNK.test
,
scheffe.test
, REGW.test
, kruskal
,friedman
,
waerden.test
Examples
# Example 1
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus,data=sweetpotato)
x<- LSD.test(model,"virus",alpha=0.01,group=FALSE)
diffograph(x,cex.axis=0.8,xlab="Yield",ylab="")
# Example 2
x<- REGW.test(model,"virus",alpha=0.01,group=FALSE)
diffograph(x,cex.axis=0.6,xlab="Yield",ylab="",color1="brown",color2="green")
Data evaluation of the disease overtime
Description
Three evaluations over time and the potato yield when applying several treatments.
Usage
data(disease)
Format
A data frame with 21 observations on the following 7 variables.
plots
a numeric vector
rep
a numeric vector
trt
a factor with levels
T0
T1
T2
T3
T4
T5
T6
E2
a numeric vector
E5
a numeric vector
E7
a numeric vector
yield
a numeric vector
Source
Experimental data.
References
International Potato Center. CIP - Lima Peru.
Examples
library(agricolae)
data(disease)
str(disease)
Duncan's new multiple range test
Description
This test is adapted from the Newman-Keuls method. Duncan's test does not control family wise error rate at the specified alpha level. It has more power than the other post tests, but only because it doesn't control the error rate properly. The Experimentwise Error Rate at: 1-(1-alpha)^(a-1); where "a" is the number of means and is the Per-Comparison Error Rate. Duncan's procedure is only very slightly more conservative than LSD. The level by alpha default is 0.05.
Usage
duncan.test(y, trt, DFerror, MSerror, alpha = 0.05, group=TRUE, main = NULL,console=FALSE)
Arguments
y |
model(aov or lm) or answer of the experimental unit |
trt |
Constant( only y=model) or vector treatment applied to each experimental unit |
DFerror |
Degree free |
MSerror |
Mean Square Error |
alpha |
Significant level |
group |
TRUE or FALSE |
main |
Title |
console |
logical, print output |
Details
It is necessary first makes a analysis of variance.
if y = model, then to apply the instruction:
duncan.test(model, "trt", alpha = 0.05, group = TRUE, main = NULL, console = FALSE)
where the model class is aov or lm.
Value
statistics |
Statistics of the model |
parameters |
Design parameters |
duncan |
Critical Range Table |
means |
Statistical summary of the study variable |
comparison |
Comparison between treatments |
groups |
Formation of treatment groups |
Author(s)
Felipe de Mendiburu
References
1. Principles and procedures of statistics a biometrical approach
Steel & Torry & Dickey. Third Edition 1997
2. Multiple comparisons theory and methods. Departament of statistics
the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.
See Also
BIB.test
, DAU.test
, durbin.test
,
friedman
, HSD.test
, kruskal
,
LSD.test
, Median.test
, PBIB.test
,
REGW.test
, scheffe.test
, SNK.test
,
waerden.test
, waller.test
, plot.group
Examples
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus,data=sweetpotato)
out <- duncan.test(model,"virus",
main="Yield of sweetpotato. Dealt with different virus")
plot(out,variation="IQR")
duncan.test(model,"virus",alpha=0.01,console=TRUE)
# version old duncan.test()
df<-df.residual(model)
MSerror<-deviance(model)/df
out <- with(sweetpotato,duncan.test(yield,virus,df,MSerror, group=TRUE))
plot(out,horiz=TRUE,las=1)
print(out$groups)
Durbin test and multiple comparison of treatments
Description
A multiple comparison of the Durbin test for the balanced incomplete blocks for sensorial or categorical evaluation. It forms groups according to the demanded ones for level of significance (alpha); by default, 0.05.
Usage
durbin.test(judge, trt, evaluation, alpha = 0.05, group =TRUE,
main = NULL, console=FALSE)
Arguments
judge |
Identification of the judge in the evaluation |
trt |
Treatments |
evaluation |
variable |
alpha |
level of significant |
group |
TRUE or FALSE |
main |
Title |
console |
logical, print output |
Details
The post hoc test is using the criterium Fisher's least significant difference.
Value
statistics |
Statistics of the model |
parameters |
Design parameters |
means |
Statistical summary of the study variable |
rank |
rank table of the study variable |
comparison |
Comparison between treatments |
groups |
Formation of treatment groups |
Author(s)
Felipe de Mendiburu
References
Practical Nonparametrics Statistics. W.J. Conover, 1999 Nonparametric Statistical Methods. Myles Hollander and Douglas A. Wofe, 1999
See Also
BIB.test
, DAU.test
, duncan.test
,
friedman
, HSD.test
, kruskal
,
LSD.test
, Median.test
, PBIB.test
,
REGW.test
, scheffe.test
, SNK.test
,
waerden.test
, waller.test
, plot.group
Examples
library(agricolae)
# Example 1. Conover, pag 391
person<-gl(7,3)
variety<-c(1,2,4,2,3,5,3,4,6,4,5,7,1,5,6,2,6,7,1,3,7)
preference<-c(2,3,1,3,1,2,2,1,3,1,2,3,3,1,2,3,1,2,3,1,2)
out<-durbin.test(person,variety,preference,group=TRUE,console=TRUE,
main="Seven varieties of ice cream manufacturer")
#startgraph
bar.group(out$groups,horiz=TRUE,xlim=c(0,10),density=4,las=1)
#endgraph
# Example 2. Myles Hollander, pag 311
# Source: W. Moore and C.I. Bliss. 1942
day<-gl(7,3)
chemical<-c("A","B","D","A","C","E","C","D","G","A","F","G","B","C","F",
"B","E","G","D","E","F")
toxic<-c(0.465,0.343,0.396,0.602,0.873,0.634,0.875,0.325,0.330,0.423,0.987,
0.426,0.652,1.142,0.989,0.536,0.409,0.309,0.609,0.417,0.931)
out<-durbin.test(day,chemical,toxic,group=TRUE,console=TRUE,
main="Logarithm of Toxic Dosages")
plot(out)
Friedman test and multiple comparison of treatments
Description
The data consist of b-blocks mutually independent k-variate random variables Xij, i=1,..,b; j=1,..k. The random variable X is in block i and is associated with treatment j. It makes the multiple comparison of the Friedman test with or without ties. A first result is obtained by friedman.test of R.
Usage
friedman(judge,trt,evaluation,alpha=0.05,group=TRUE,main=NULL,console=FALSE)
Arguments
judge |
Identification of the judge in the evaluation |
trt |
Treatment |
evaluation |
Variable |
alpha |
Significant test |
group |
TRUE or FALSE |
main |
Title |
console |
logical, print output |
Details
The post hoc friedman test is using the criterium Fisher's least significant difference (LSD)
Value
statistics |
Statistics of the model |
parameters |
Design parameters |
means |
Statistical summary of the study variable |
comparison |
Comparison between treatments |
groups |
Formation of treatment groups |
Author(s)
Felipe de Mendiburu
References
Practical Nonparametrics Statistics. W.J. Conover, 1999
See Also
BIB.test
, DAU.test
, duncan.test
,
durbin.test
, HSD.test
, kruskal
,
LSD.test
, Median.test
, PBIB.test
,
REGW.test
, scheffe.test
, SNK.test
,
waerden.test
, waller.test
, plot.group
Examples
library(agricolae)
data(grass)
out<-with(grass,friedman(judge,trt, evaluation,alpha=0.05, group=TRUE,console=TRUE,
main="Data of the book of Conover"))
#startgraph
plot(out,variation="IQR")
#endgraph
Data of frijol
Description
Data of frijol under 4 technologies for the homogeneity of regression study. Yield of Frijol in kg/ha in clean and dry grain.
Tecnnologies: 20-40-20 kg/ha. N. P2O5 and K2O + 2 t/ha of gallinaza. 40-80-40 kg/ha. N. P2O5 and K2O + 2 t/ha of gallinaza. 60-120-60 kg/ha. N. P2O5 and K2O + 2 t/ha of gallinaza. 40-80-40 kg/ha. N. P2O5 and K2O + 4 t/ha of gallinaza.
Usage
data(frijol)
Format
A data frame with 84 observations on the following 3 variables.
technology
a factor with levels
a
b
c
d
production
a numeric vector
index
a numeric vector
References
Oriente antioqueno (1972) (ICA.- Orlando Martinez W.) Colombia.
Examples
library(agricolae)
data(frijol)
str(frijol)
Data of potato yield in a different environment
Description
50 genotypes and 5 environments.
Usage
data(genxenv)
Format
A data frame with 250 observations on the following 3 variables.
ENV
a numeric vector
GEN
a numeric vector
YLD
a numeric vector
Source
International Potato Center. CIP - Lima Peru.
References
International Potato Center. CIP - Lima Peru.
Examples
library(agricolae)
data(genxenv)
str(genxenv)
Histogram
Description
In many situations it has intervals of class defined with its respective frequencies. By means of this function, the graphic of frequency is obtained and it is possible to superpose the normal distribution, polygon of frequency, Ojiva and to construct the table of complete frequency.
Usage
graph.freq(x, breaks=NULL,counts=NULL,frequency=1, plot=TRUE, nclass=NULL,
xlab="",ylab="",axes = "",las=1,...)
Arguments
x |
a vector of values, a object hist(), graph.freq() |
counts |
frequency and x is class intervals |
breaks |
a vector giving the breakpoints between histogram cells |
frequency |
1=counts, 2=relative, 3=density |
plot |
logic |
nclass |
number of classes |
xlab |
x labels |
ylab |
y labels |
las |
values 0,1,2 and 3 are the axis styles. see plot() |
axes |
TRUE or FALSE |
... |
other parameters of plot |
Value
breaks |
a vector giving the breakpoints between histogram cells |
counts |
frequency and x is class intervals |
mids |
center point in class |
relative |
Relative frequency, height |
density |
Density frequency, height |
Author(s)
Felipe de Mendiburu
See Also
polygon.freq
, table.freq
,
stat.freq
,inter.freq
,sturges.freq
,
join.freq
,ogive.freq
, normal.freq
Examples
library(agricolae)
data(genxenv)
yield <- subset(genxenv$YLD,genxenv$ENV==2)
yield <- round(yield,1)
h<- graph.freq(yield,axes=FALSE, frequency=1, ylab="frequency",col="yellow")
axis(1,h$breaks)
axis(2,seq(0,20,0.1))
# To reproduce histogram.
h1 <- graph.freq(h, col="blue", frequency=2,border="red", density=8,axes=FALSE,
xlab="YIELD",ylab="relative")
axis(1,h$breaks)
axis(2,seq(0,.4,0.1))
# summary, only frecuency
limits <-seq(10,40,5)
frequencies <-c(2,6,8,7,3,4)
#startgraph
h<-graph.freq(limits,counts=frequencies,col="bisque",xlab="Classes")
polygon.freq(h,col="red")
title( main="Histogram and polygon of frequency",
ylab="frequency")
#endgraph
# Statistics
measures<-stat.freq(h)
print(measures)
# frequency table full
round(table.freq(h),2)
#startgraph
# ogive
ogive.freq(h,col="red",type="b",ylab="Accumulated relative frequency",
xlab="Variable")
# only .frequency polygon
h<-graph.freq(limits,counts=frequencies,border=FALSE,col=NULL,xlab=" ",ylab="")
title( main="Polygon of frequency",
xlab="Variable", ylab="Frecuency")
polygon.freq(h,col="blue")
grid(col="brown")
#endgraph
# Draw curve for Histogram
h<- graph.freq(yield,axes=FALSE, frequency=3, ylab="f(yield)",col="yellow")
axis(1,h$breaks)
axis(2,seq(0,0.18,0.03),las=2)
lines(density(yield), col = "red", lwd = 2)
title("Draw curve for Histogram")
Data for Friedman test
Description
Twelve homeowners are selected randomly to participate in an experiment with a plant nursery. Each homeowner is asked to select four fairly identical areas in his yard and to plant four different types of grasses, one in each area.
Usage
data(grass)
Format
A data frame with 48 observations on the following 3 variables.
judge
a numeric vector
trt
a factor with levels
t1
t2
t3
t4
evaluation
a numeric vector
Details
Each of the 12 blocks consists of four fairly identical plots of land, each receiving care of approximately the same degree of skill because the four plots are presumably cared for by the same homeowern.
Source
Book: Practical Nonparametrics Statistics, pag 372.
References
Practical Nonparametrics Statistics. W.J. Conover, 1999
Examples
data(grass)
str(grass)
Data in greenhouse
Description
Potato minituber production in greenhouse, three sets of data in potato varieties with different methods: hydroponics, Aeroponic, Pots and Plant beds, the unit is in grams and the number of tubers in units,
Usage
data(greenhouse)
Details
greenhouse is list, three tables: greenhouse1(480 obs, 5 var), yield for plant, unit is grams. greenhouse2(48 obs, 5 var), Yields of 10 plants by experimental unit(grams). planting date(April 24, 2004) and harvest date(July 16, 2004) and greenhouse3(480 obs, 5 var), Tubers by plants.
Source
International Potato Center(CIP). Lima-Peru. Data Kindly provided by Carlos Chuquillanqui.
References
- Produccion de semila de papa por hidroponia tecnica de flujo continuo de una pelicula de solucion nutritiva (nft) Carlos Chuquillanqui(CIP), Jorge Tenorio(CIP) and L. F. Salazar(Agdia Inc). AGROENFOQUE Lima-Peru (2004) - Potato Minituber Production Using Aeroponics: Effect of Plant Density and Harvesting Intervals American Journal of Potato Research, Jan/Feb 2006 by Farran, Imma, Mingo-Castel, Angel M
Examples
library(agricolae)
data(greenhouse)
greenhouse1 <- greenhouse$greenhouse1
greenhouse2 <- greenhouse$greenhouse2
greenhouse3 <- greenhouse$greenhouse3
Data growth of trees
Description
Data growth of pijuayo trees in several localities.
Usage
data(growth)
Format
A data frame with 30 observations on the following 3 variables.
place
a factor with levels
L1
L2
slime
a numeric vector
height
a numeric vector
Source
Experimental data (Pucallpa - Peru)
References
ICRAF lima Peru.
Examples
library(agricolae)
data(growth)
str(growth)
Data of AUDPC for nonparametrical stability analysis
Description
Published data. Haynes. Mean area under the disease progress curve (AUDPC) for each of 16 potato clones evaluated at eight sites across the United States in 1996
Usage
data(haynes)
Format
A data frame with 16 observations on the following 9 variables.
clone
a factor with levels
A84118-3
AO80432-1
AO84275-3
AWN86514-2
B0692-4
B0718-3
B0749-2F
B0767-2
Bertita
Bzura
C0083008-1
Elba
Greta
Krantz
Libertas
Stobrawa
FL
a numeric vector
MI
a numeric vector
ME
a numeric vector
MN
a numeric vector
ND
a numeric vector
NY
a numeric vector
PA
a numeric vector
WI
a numeric vector
References
Haynes K G, Lambert D H, Christ B J, Weingartner D P, Douches D S, Backlund J E, Fry W and Stevenson W. 1998. Phenotypic stability of resistance to late blight in potato clones evaluated at eight sites in the United States American Journal Potato Research 75, pag 211-217.
Examples
library(agricolae)
data(haynes)
str(haynes)
Cut tree of consensus
Description
It shows dendrogram of a consensus of a tree generated by hclust.
Usage
hcut(consensus,h,group,col.text="blue",cex.text=1,...)
Arguments
consensus |
object consensus |
h |
numeric scalar or vector with heights where the tree should be cut. |
group |
an integer scalar with the desired number of group |
col.text |
color of number consensus |
cex.text |
size of number consensus |
... |
Other parameters of the function plot() in cut() |
Value
hcut Returns a data frame with group memberships and consensus tree.
Author(s)
F. de Mendiburu
See Also
Examples
library(agricolae)
data(pamCIP)
# only code
rownames(pamCIP)<-substr(rownames(pamCIP),1,6)
# groups of clusters
# output<-consensus(pamCIP,nboot=100)
# hcut(output,h=0.4,group=5,main="Group 5")
#
# hcut(output,h=0.4,group=8,type="t",edgePar=list(lty=1:2,col=2:1),main="group 8"
# ,col.text="blue",cex.text=1)
Data of potato, Heterosis
Description
Determination of heterosis, general combining ability (GCA) and specific combining ability in tuber dry matter, reducing sugars and agronomic characteristics in TPS families.
Usage
data(heterosis)
Format
A data frame with 216 observations on the following 11 variables.
Place
1: La Molina, 2=Huancayo
Replication
a numeric vector
Treatment
a numeric vector
Factor
a factor with levels
Control
progenie
progenitor
testigo
Female
a factor with levels
Achirana
LT-8
MF-I
MF-II
Serrana
TPS-2
TPS-25
TPS-7
Male
a factor with levels
TPS-13
TPS-67
TS-15
v1
Yield (Kg/plant)
v2
Reducing sugars (scale):1 low and 5=High
v3
Tuber dry matter (percentage)
v4
Tuber number/plant
v5
Average tuber weight (g)
Details
The study was conducted in 3 environments, La Molina-PERU to 240 masl. during autumn-winter and spring, and in Huancayo-PERU 3180 masl., during summer. The experimental material consisted of 24 families half brother in the form of tubers derived from TPS, obtained crossing between 8 female and 3 male parents. Design used was randomized complete block with three repetitions. The experimental unit was 30 plants in two rows at a distance of 30cm between plants and 90 cm between rows. Variables evaluated were Yield, Tubers number, Dry matter and content and reducing sugars. The analysis was conducted line x tester. The control variety was Desiree.
Source
International Potato Center(CIP). Lima-Peru. Data Kindly provided by of Rolando Cabello.
References
Tesis "Heterosis, habilidad combinatoria general y especifica para materia seca, azucares reductores y caracteres agronomicos en familias de tuberculos provenientes de semilla sexual de papa. Magister Scientiae Rodolfo Valdivia Lorente. Universidad Nacional Agraria La molina-Lima Peru, Escuela de Post Grado, Mejoramiento genetico de plantas, 2004". Poster: Congreso de la Sociedad Peruana de Genetica - Peru, 2008.
Examples
library(agricolae)
data(heterosis)
str(heterosis)
site1<-subset(heterosis,heterosis[,1]==1)
site2<-subset(heterosis,heterosis[,1]==2)
site3<-subset(heterosis,heterosis[,1]==3)
model1<-with(site1,lineXtester(Replication, Female, Male, v1))
DFe <- df.residual(model1)
CMe <- deviance(model1)/DFe
test1 <- with(site1,HSD.test(v1, Factor,DFe,CMe))
test2 <- with(site1,HSD.test(v1, Treatment,DFe,CMe))
model22<-with(site2,lineXtester(Replication, Female, Male, v3))
model3<-with(site3,lineXtester(Replication, Female, Male, v4))
groups of hclust
Description
Returns a vector with group memberships. This function is used by the function consensus of clusters.
Usage
hgroups(hmerge)
Arguments
hmerge |
The object is components of the hclust |
Value
The merge clusters is printed.
Author(s)
F. de Mendiburu
See Also
Examples
library(agricolae)
data(pamCIP)
# only code
rownames(pamCIP)<-substr(rownames(pamCIP),1,6)
distance <- dist(pamCIP,method="binary")
clusters<- hclust( distance, method="complete")
# groups of clusters
hgroups(clusters$merge)
Data: Rainfall thresholds as support for timing fungicide applications in the control of potato late blight in Peru
Description
Timing fungicide sprays based on accumulated rainfall thresholds can be a successful component of integrated management packages that include cultivars with moderate or high levels of resistance to late blight. The simplicity of measuring accumulated rainfall means that the technology can potentially be used by resource-poor farmers in developing countries.
Usage
data(huasahuasi)
Format
The format is: List of 2 ( AUDPC, YIELD )
block
a factor with levels
I
II
III
trt
a factor with levels
40mm
7-days
Non-application
clon
a factor with levels
C386209.10
C387164.4
Cruza148
Musuq
Yungay
y1da
a numeric vector, Kgr./plot
y2da
a numeric vector, Kgr./plot
y3ra
a numeric vector, Kgr./plot
d44
a numeric vector, 44 days
d51
a numeric vector, 51 days
d100
a numeric vector, 100 days
Details
The experimental unit was formed by 4 furrows of 1.8 m of length, with distance between furrows from 0.90 m and between plants of 0.30 m. In each furrow was installed 5 plants. The experiment had 3 repetitions. From the beginning of the experiment were fulfilled the following treatments Thresholds 40 mm: Apply the fungicide when 40 precipitation mm accumulates. The minimum interval between applications will be of 7 days. Schedule 7 days: The applications should be carried out every 7 days calendar. Without application: No fungicide application will be made. The evaluation of the severity of the late blight in each treatment started to emergency 80 percentage and then evaluations were made every 7 days until being observed a physiological maturation of the crop.
Source
Experimental field, 2003. Data Kindly provided by Wilmer Perez.
References
International Potato Center. CIP - Lima Peru.
Examples
library(agricolae)
data(huasahuasi)
names(huasahuasi)
str(huasahuasi$AUDPC)
str(huasahuasi$YIELD)
AMMI index and yield stability
Description
calculate AMMI stability value (ASV) and Yield stability index (YSI).
Usage
index.AMMI(model)
Arguments
model |
object AMMI |
Details
AMMI stability value (ASV) was calculated using the following formula, as suggested by Purchase (1997)
ASV = sqrt((SSpc1/SSpc2 * PC1i)^2+(PC2i)^2)
YSI = RASV + RY
RASV = rank(ASV) and RY = rank(Y across by environment)
Value
ASV |
AMMI stability value |
YSI |
Yield stability index |
rASV |
Rank of AMMI stability value |
rYSI |
Rank of yield stability index |
means |
average genotype by environment |
Author(s)
F. de Mendiburu
References
The use of an AMMI model and its parameters to analyse yield stability in multienvironment trials. N. SABAGHNIA, S.H. SABAGHPOUR AND H. DEHGHANI. Journal of Agricultural Science (2008), 146, 571-581. f 2008 Cambridge University Press 571 doi:10.1017/S0021859608007831 Printed in the United Kingdom
Parametric analysis to describe genotype x environment interaction and yield stability in winter wheat. PURCHASE, J. L. (1997). Ph.D. Thesis, Department of Agronomy, Faculty of Agriculture of the University of the Free State, Bloemfontein, South Africa.
See Also
Examples
library(agricolae)
# Index AMMI
data(plrv)
model<- with(plrv,AMMI(Locality, Genotype, Rep, Yield, console=FALSE))
Idx<-index.AMMI(model)
names(Idx)
# Crops with improved stability according AMMI.
print(Idx[order(Idx[,3]),])
# Crops with better response and improved stability according AMMI.
print(Idx[order(Idx[,4]),])
Biodiversity Index
Description
Scientists use a formula called the biodiversity index to describe the amount of species diversity in a given area.
Usage
index.bio(data, method = c("Margalef", "Simpson.Dom", "Simpson.Div",
"Berger.Parker", "McIntosh", "Shannon"), level=95, nboot=100, console=TRUE)
Arguments
data |
number of specimens |
method |
Describe method bio-diversity |
level |
Significant level |
nboot |
size bootstrap |
console |
output console TRUE |
Details
method bio-diversity. "Margalef" "Simpson.Dom" "Simpson.Div" "Berger.Parker" "McIntosh" "Shannon"
Value
Index and confidence intervals.
Author(s)
Felipe de Mendiburu
References
Magurran, A.E. (1988) Ecological diversity and its measurement. Princeton University Press Efron, B., Tibshirani, R. (1993) An Introduction to the Boostrap. Chapman and Hall/CRC
Examples
library(agricolae)
data(paracsho)
# date 22-06-05 and treatment CON = application with insecticide
specimens <- paracsho[1:10,6]
output1 <- index.bio(specimens,method="Simpson.Div",level=95,nboot=100)
output2 <- index.bio(specimens,method="Shannon",level=95,nboot=100)
rbind(output1, output2)
Uniformity soil. Smith's Index of Soil Heterogeneity
Description
Smith's index of soil heterogeneity is used primarily to derive optimum plot size. The index gives a single value as a quantitative measure of soil heterogeneity in an area. Graph CV for plot size and shape.
Usage
index.smith(data, PLOT=TRUE,...)
Arguments
data |
dataframe or matrix |
PLOT |
graphics, TRUE or FALSE |
... |
Parameters of the plot() |
Details
Vx=V(x)/x b
V(x) is the between-plot variance, Vx is the variance per unit area for plot size of x basic unit, and b is the Smith' index of soil heterogeneity.
Value
model |
function pattern of uniformity |
uniformity |
Table of the soil uniformity |
Author(s)
Felipe de Mendiburu
References
Statistical Procedures for Agriculture Research. Second Edition. Kwanchai A. Gomez and Arturo A. Gomez. 1976. USA
Examples
library(agricolae)
data(rice)
#startgraph
table<-index.smith(rice,
main="Relationship between CV per unit area and plot size",col="red")
#endgraph
uniformity <- data.frame(table$uniformity)
uniformity
# regression variance per unit area an plot size.
model <- lm(Vx ~ I(log(Size)),uniformity)
coeff <- coef(model)
x<-1:max(uniformity$Size)
Vx<- coeff[1]+coeff[2]*log(x)
#startgraph
plot(x,Vx, type="l", col="blue",
main="Relationship between variance per unit area and plot size")
points(uniformity$Size,uniformity$Vx)
#endgraph
Class intervals
Description
List class intervals.
Usage
inter.freq(x)
Arguments
x |
class graph.freq, histogram or numeric |
Value
It show interval classes.
Author(s)
Felipe de Mendiburu
See Also
polygon.freq
, table.freq
, stat.freq
,
graph.freq
, sturges.freq
, join.freq
,
ogive.freq
, normal.freq
Examples
library(agricolae)
# example 1
data(growth)
h<-hist(growth$height,plot=FALSE)
inter.freq(h)
# example 2
x<-seq(10,40,5)
y<-c(2,6,8,7,3,4)
inter.freq(x)
histogram <- graph.freq(x,counts=y)
Join class for histogram
Description
In many situations it is required to join classes because of the low .frequency in the intervals. In this process, it is required to join the intervals and ad the .frequencies of them.
Usage
join.freq(histogram, join)
Arguments
histogram |
Class graph.freq |
join |
vector |
Value
New histogram with union of classes.
Author(s)
Felipe de Mendiburu
See Also
polygon.freq
, table.freq
, stat.freq
,
inter.freq
, sturges.freq
, graph.freq
,
ogive.freq
, normal.freq
Examples
library(agricolae)
data(natives)
# histogram
h1<-graph.freq(natives$size,plot=FALSE)
round(table.freq(h1),4)
# Join classes 9, 10,11 and 12 with little frequency.
h2<-join.freq(h1,9:12)
# new table
plot(h2,col="bisque",xlab="Size")
round(summary(h2),4)
Correlation of Kendall
Description
Correlation of Kendall two set. Compute exact p-value with ties.
Usage
kendall(data1, data2)
Arguments
data1 |
vector |
data2 |
vector |
Value
The correlation of data1, data2 vector with the statistical value and its probability
Author(s)
Felipe de Mendiburu
References
Numerical Recipes in C. Second Edition. Pag 634
See Also
Examples
library(agricolae)
x <-c(1,1,1,4,2,2,3,1,3,2,1,1,2,3,2,1,1,2,1,2)
y <-c(1,1,2,3,4,4,2,1,2,3,1,1,3,4,2,1,1,3,1,2)
kendall(x,y)
Kruskal Wallis test and multiple comparison of treatments.
Description
It makes the multiple comparison with Kruskal-Wallis. The alpha parameter by default is 0.05. Post hoc test is using the criterium Fisher's least significant difference. The adjustment methods include the Bonferroni correction and others.
Usage
kruskal(y, trt, alpha = 0.05, p.adj=c("none","holm","hommel",
"hochberg", "bonferroni", "BH", "BY", "fdr"), group=TRUE, main = NULL,console=FALSE)
Arguments
y |
response |
trt |
treatment |
alpha |
level signification |
p.adj |
Method for adjusting p values (see p.adjust) |
group |
TRUE or FALSE |
main |
Title |
console |
logical, print output |
Details
For equal or different repetition.
For the adjustment methods, see the function p.adjusted.
p-adj = "none" is t-student.
Value
statistics |
Statistics of the model |
parameters |
Design parameters |
means |
Statistical summary of the study variable |
comparison |
Comparison between treatments |
groups |
Formation of treatment groups |
Author(s)
Felipe de Mendiburu
References
Practical Nonparametrics Statistics. W.J. Conover, 1999
See Also
BIB.test
, DAU.test
, duncan.test
,
durbin.test
, friedman
, HSD.test
,
LSD.test
, Median.test
, PBIB.test
,
REGW.test
, scheffe.test
, SNK.test
,
waerden.test
, waller.test
, plot.group
Examples
library(agricolae)
data(corn)
str(corn)
comparison<-with(corn,kruskal(observation,method,group=TRUE, main="corn"))
comparison<-with(corn,kruskal(observation,method,p.adj="bon",group=FALSE, main="corn"))
Finding the Kurtosis coefficient
Description
It obtains the value of the kurtosis for a normally distributed variable. The result is similar to SAS.
Usage
kurtosis(x)
Arguments
x |
a numeric vector |
Value
x |
The kurtosis of x |
See Also
Examples
library(agricolae)
x<-c(3,4,5,2,3,4,5,6,4,NA,7)
kurtosis(x)
# value is -0.1517996
Setting the last character of a chain
Description
A special function for the group of treatments in the multiple comparison tests. Use plot.group.
Usage
lastC(x)
Arguments
x |
letters |
Value
x |
Returns the last character of a string |
Author(s)
Felipe de Mendiburu
See Also
Examples
library(agricolae)
x<-c("a","ab","b","c","cd")
lastC(x)
# "a" "b" "b" "c" "d"
LATEBLIGHT - Simulator for potato late blight Version LB2004
Description
LATEBLIGHT is a mathematical model that simulates the effect of weather, host growth and resistance, and fungicide use on asexual development and growth of Phytophthora infestans on potato foliage.
Usage
lateblight(WS, Cultivar, ApplSys,InocDate, LGR, IniSpor, SR, IE, LP, InMicCol,
MatTime=c('EARLYSEASON','MIDSEASON','LATESEASON'),...)
Arguments
WS |
object weather-severity |
Cultivar |
chr |
ApplSys |
chr |
InocDate |
days |
LGR |
num, see example |
IniSpor |
num |
SR |
num, see example |
IE |
num, Initialization infection |
LP |
num, latent period |
InMicCol |
num |
MatTime |
chr |
... |
plot graphics parameters |
Details
LATEBLIGHT Version LB2004 was created in October 2004 (Andrade-Piedra et al., 2005a, b and c), based on the C-version written by B.E. Ticknor ('BET 21191 modification of cbm8d29.c'), reported by Doster et al. (1990) and described in detail by Fry et al. (1991) (This version is referred as LB1990 by Andrade-Piedra et al. [2005a]). The first version of LATEBLIGHT was developed by Bruhn and Fry (1981) and described in detail by Bruhn et al. (1980).
Value
Ofile |
"Date","nday","MicCol","SimSeverity",... |
Gfile |
"dates","nday","MeanSeverity","StDevSeverity" |
Note
All format data for date is yyyy-mm,dd, for example "2000-04-22". change with function as.Date()
Author(s)
Jorge L. Andrade-Piedra (1) (j.andrade@cgar.org), Gregory A. Forbes (1) (g.forbes@cgiar.org), Robert J. Hijmans (2) (rhijmans@ucdavis.edu), William E. Fry (3) (wef1@cornell.edu) Translation from C language into SAS language: G.A. Forbes Modifications: J.L. Andrade-Piedra and R.J. Hijmans Translation from SAS into R: Felipe de Mendiburu (1) (1) International Potato Center, P.O. Box 1558, Lima 12, Peru (2) University of California, One Shields Avenue, Davis, California 95616, USA (3) Cornell University, 351 Plant Science, Ithaca, NY 14853, USA
References
Andrade-Piedra, J. L., Hijmans, R. J., Forbes, G. A., Fry, W. E.,
and Nelson, R. J. 2005a. Simulation of potato late blight in the Andes.
I: Modification and parameterization of the LATEBLIGHT model. Phytopathology 95:1191-1199.
Andrade-Piedra, J. L., Hijmans, R. J., Juarez, H. S., Forbes,
G. A., Shtienberg, D., and Fry, W. E. 2005b. Simulation of potato late blight
in the Andes. II: Validation of the LATEBLIGHT model. Phytopathology 95:1200-1208.
Andrade-Piedra, J. L., Forbes, G. A., Shtienberg, D., Grunwald, N. J.,
Chacon, M. G., Taipe, M. V., Hijmans, R. J., and Fry, W. E. 2005c.
Qualification of a plant disease simulation model: Performance of the LATEBLIGHT
model across a broad range of environments. Phytopathology 95:1412-1422.
Bruhn, J.A., Bruck, R.I., Fry, W.E., Arneson, P.A., and Keokosky, E.V. 1980.
User's manual for LATEBLIGHT: a plant disease management game. Cornell University,
Department of Plant Pathology, Ithaca, NY, USA. Mimeo 80-1.
Bruhn, J.A., and Fry, W.E. 1981. Analysis of potato late blight epidemiology
by simulation modeling. Phytopathology 71:612-616.
Doster, M. A., Milgroom, M. G., and Fry, W. E. 1990. Quantification of factors
influencing potato late blight suppression and selection for metalaxyl resistance
in Phytophthora infestans - A simulation approach. Phytopathology 80:1190-1198.
Fry, W.E., Milgroom, M.G., Doster, M.A., Bruhn, J.A., and Bruck, R.I. 1991.
LATEBLIGHT: a plant disease management game - User Manual. Version 3.1.
Microsoft Windows Adaptation by B. E. Ticknor, and P. A. Arneson. Ithaca,
Cornell University, Department of Plant Pathology, Ithaca, NY, USA.
See Also
Examples
library(agricolae)
f <- system.file("external/weather.csv", package="agricolae")
weather <- read.csv(f,header=FALSE)
f <- system.file("external/severity.csv", package="agricolae")
severity <- read.csv(f)
weather[,1]<-as.Date(weather[,1],format = "%m/%d/%Y")
# Parameters dates
dates<-c("2000-03-25","2000-04-09","2000-04-12","2000-04-16","2000-04-22")
dates<-as.Date(dates)
EmergDate <- as.Date('2000/01/19')
EndEpidDate <- as.Date("2000-04-22")
dates<-as.Date(dates)
NoReadingsH<- 1
RHthreshold <- 90
WS<-weatherSeverity(weather,severity,dates,EmergDate,EndEpidDate,
NoReadingsH,RHthreshold)
# Parameters Lateblight
InocDate<-"2000-03-18"
LGR <- 0.00410
IniSpor <- 0
SR <- 292000000
IE <- 1.0
LP <- 2.82
InMicCol <- 9
Cultivar <- 'NICOLA'
ApplSys <- "NOFUNGICIDE"
main<-"Cultivar: NICOLA"
#--------------------------
model<-lateblight(WS, Cultivar,ApplSys, InocDate, LGR,IniSpor,SR,IE, LP,
MatTime='LATESEASON',InMicCol,main=main,type="l",xlim=c(65,95),lwd=1.5,
xlab="Time (days after emergence)", ylab="Severity (Percentage)")
# reproduce graph
x<- model$Ofile$nday
y<- model$Ofile$SimSeverity
w<- model$Gfile$nday
z<- model$Gfile$MeanSeverity
Min<-model$Gfile$MinObs
Max<-model$Gfile$MaxObs
plot(x,y,type="l",xlim=c(65,95),lwd=1.5,xlab="Time (days after emergence)",
ylab="Severity (Percentage)")
points(w,z,col="blue",cex=1,pch=19)
npoints <- length(w)
for ( i in 1:npoints){
segments(w[i],Min[i],w[i],Max[i],lwd=1.5,col="blue")
}
legend("topleft",c("Disease progress curves","Weather-Severity"),
title="Description",lty=1,pch=c(3,19),col=c("black","blue"))
Line x Tester Analysis
Description
It makes the Line x Tester Genetic Analysis. It also estimates the general and specific combinatory ability effects and the line and tester genetic contribution.
Usage
lineXtester(replications, lines, testers, y)
Arguments
replications |
Replications |
lines |
Lines |
testers |
Testers |
y |
Variable, response |
Details
ANOVA with parents and crosses
ANOVA for line X tester analysis
ANOVA for line X tester analysis including parents
GCA Effects: Lines Effects, Testers Effects and SCA Effects.
Standard Errors for Combining Ability Effects.
Genetic Components.
...
Proportional contribution of lines, testers and their interactions to total variance
Value
return anova(formula = Y ~ Replications + Treatments).
where the Treatments contains parents, crosses and crosses vs Parents.
The crosses contains Lines, Testers and its interaction .
Author(s)
Felipe de Mendiburu
References
Biometrical Methods in Quantitative Genetic Analysis, Singh, Chaudhary. 1979. Hierarchial and factorial mating designs for quantitative genetic analysis in tetrasomic potato. R. Ortis; A.Golmirzaie. Theor Appl Genet (2002) 104:675-679
See Also
Examples
# see structure line by testers
library(agricolae)
# example 1
data(heterosis)
site1<-subset(heterosis,heterosis[,1]==1)
output1<-with(site1,lineXtester(Replication, Female, Male, v2))
# example 2
data(LxT)
str(LxT)
output2<-with(LxT,lineXtester(replication, line, tester, yield))
Data of molecular markers
Description
A partial study on 27 molecular markers.
Usage
data(markers)
Format
A data frame with 23 observations on the following 27 variables.
marker1
a numeric vector
marker2
a numeric vector
marker3
a numeric vector
marker4
a numeric vector
marker5
a numeric vector
marker6
a numeric vector
marker7
a numeric vector
marker8
a numeric vector
marker9
a numeric vector
marker10
a numeric vector
marker11
a numeric vector
marker12
a numeric vector
marker13
a numeric vector
marker14
a numeric vector
marker15
a numeric vector
marker16
a numeric vector
marker17
a numeric vector
marker18
a numeric vector
marker19
a numeric vector
marker20
a numeric vector
marker21
a numeric vector
marker22
a numeric vector
marker23
a numeric vector
marker24
a numeric vector
marker25
a numeric vector
marker26
a numeric vector
marker27
a numeric vector
Source
International Potato Center Lima-Peru.
References
International Potato Center Lima-Peru.
Examples
library(agricolae)
data(markers)
str(markers)
Data of yield of melon in a Latin square experiment
Description
An irrigation system evaluation by exudation using four varieties of melon, under modality of sowing, SIMPLE ROW. The goal is to analyze the behavior of three hybrid melon varieties and one standard.
Usage
data(melon)
Format
A data frame with 16 observations on the following 4 variables.
row
a numeric vector
col
a numeric vector
variety
a factor with levels
V1
V2
V3
V4
yield
a numeric vector
Details
Varieties: Hibrido Mission (V1); Hibrido Mark (V2); Hibrido Topfligth (V3); Hibrido Hales Best Jumbo (V4).
Source
Tesis. "Evaluacion del sistema de riego por exudacion utilizando cuatro variedades de melon, bajo modalidad de siembra, SIMPLE HILERA". Alberto Angeles L. Universidad Agraria la Molina - Lima Peru.
References
Universidad Nacional Agraria la molina.
Examples
library(agricolae)
data(melon)
str(melon)
Random generation by Montecarlo
Description
Random generation form data, use function density and parameters
Usage
montecarlo(data, k, ...)
Arguments
data |
vector or object(hist, graph.freq) |
k |
number of simulations |
... |
Other parameters of the function density, only if data is vector |
Value
Generate random numbers with empirical distribution.
Author(s)
Felipe de Mendiburu
See Also
Examples
library(agricolae)
r<-rnorm(50, 10,2)
montecarlo(r, k=100, kernel="epanechnikov")
# other example
h<-hist(r,plot=FALSE)
montecarlo(h, k=100)
# other example
breaks<-c(0, 150, 200, 250, 300)
counts<-c(10, 20, 40, 30)
op<-par(mfrow=c(1,2),cex=0.8,mar=c(2,3,0,0))
h1<-graph.freq(x=breaks,counts=counts,plot=FALSE)
r<-montecarlo(h, k=1000)
plot(h1,frequency = 3,ylim=c(0,0.008))
text(90,0.006,"Population\n100 obs.")
h2<-graph.freq(r,breaks,frequency = 3,ylim=c(0,0.008))
lines(density(r),col="blue")
text(90,0.006,"Montecarlo\n1000 obs.")
par(op)
Data of native potato
Description
An evaluation of the number, weight and size of 24 native potatoes varieties.
Usage
data(natives)
Format
A data frame with 876 observations on the following 4 variables.
variety
a numeric vector
number
a numeric vector
weight
a numeric vector
size
a numeric vector
Source
International Potato Center. CIP - Lima Peru.
Examples
library(agricolae)
data(natives)
str(natives)
Nonadditivity model test
Description
The resistance for the transformable nonadditivity, due to J. W. Tukey, is based on the detection of a curvilinear relation between y-est(y) and est(y). A freedom degree for the transformable nonadditivity.
Usage
nonadditivity(y, factor1, factor2, df, MSerror)
Arguments
y |
Answer of the experimental unit |
factor1 |
Firts treatment applied to each experimental unit |
factor2 |
Second treatment applied to each experimental unit |
df |
Degrees of freedom of the experimental error |
MSerror |
Means square error of the experimental |
Details
Only two factor: Block and treatment or factor 1 and factor 2.
Value
P, Q and non-additivity analysis of variance
Author(s)
Felipe de Mendiburu
References
1. Steel, R.; Torri,J; Dickey, D.(1997) Principles and Procedures of Statistics A Biometrical Approach
2. George E.P. Box; J. Stuart Hunter and William G. Hunter. Statistics for experimenters. Wile Series in probability and statistics
Examples
library(agricolae)
data(potato )
potato[,1]<-as.factor(potato[,1])
model<-lm(cutting ~ date + variety,potato)
df<-df.residual(model)
MSerror<-deviance(model)/df
analysis<-with(potato,nonadditivity(cutting, date, variety, df, MSerror))
Normal curve on the histogram
Description
A normal distribution graph elaborated from the histogram previously constructed. The average and variance are obtained from the data grouped in the histogram.
Usage
normal.freq(histogram, frequency=1, ...)
Arguments
histogram |
object constructed by the function hist |
frequency |
1=counts, 2=relative, 3=density |
... |
Other parameters of the function hist |
Author(s)
Felipe de Mendiburu
See Also
polygon.freq
, table.freq
, stat.freq
,
inter.freq
, sturges.freq
, join.freq
,
ogive.freq
, graph.freq
Examples
library(agricolae)
data(growth)
#startgraph
h1<-with(growth,hist(height,col="green",xlim=c(6,14)))
normal.freq(h1,col="blue")
#endgraph
#startgraph
h2<-with(growth,graph.freq(height,col="yellow",xlim=c(6,14),frequency=2))
normal.freq(h2,frequency=2)
#endgraph
Plotting the ogive from a histogram
Description
It plots the cumulative relative .frequencies with the intervals of classes defined in the histogram.
Usage
ogive.freq(histogram,type="",xlab="",ylab="",axes="",las=1,...)
Arguments
histogram |
object created by the function hist() or graph.freq() |
type |
what type of plot should be drawn. See plot() |
xlab |
x labels |
ylab |
y labels |
axes |
TRUE or FALSE |
las |
values 0,1,2 and 3 are the axis styles. see plot() |
... |
Parameters of the plot() |
Value
Ogive points.
Author(s)
Felipe de Mendiburu
See Also
polygon.freq
, table.freq
, stat.freq
,
inter.freq
, sturges.freq
, join.freq
,
graph.freq
, normal.freq
Examples
library(agricolae)
data(growth)
h<-graph.freq(growth$height,plot=FALSE)
points<-ogive.freq(h,col="red",frame=FALSE,
xlab="Height", ylab="Accumulated relative frequency", main="ogive")
plot(points,type="b",pch=16,las=1,bty="l")
Ordering the treatments according to the multiple comparison
Description
This function allows us to compare the treatments averages or the adding of their ranges with the minimal significant difference which can vary from one comparison to another one.
Usage
order.group(trt, means, N, MSerror, Tprob, std.err, parameter=1, snk=0,
DFerror=NULL,alpha=NULL,sdtdif=NULL,vartau=NULL,console)
Arguments
trt |
Treatments |
means |
Means of treatment |
N |
Replications |
MSerror |
Mean square error |
Tprob |
minimum value for the comparison |
std.err |
standard error |
parameter |
Constante 1 (Sd), 0.5 (Sx) |
snk |
Constante = 1 (Student Newman Keuls) |
DFerror |
Degrees of freedom of the experimental error |
alpha |
Level of risk for the test |
sdtdif |
standard deviation of difference in BIB |
vartau |
matrix var-cov in PBIB |
console |
logical, print output |
Details
This function was changed by orderPvalue function that use agricolae. Now the grouping in agricolae is with the probability of the treatments differences and alpha level.
Value
The output is data frame.
trt |
Treatment Levels, Factor |
means |
height, Numeric |
M |
groups levels, Factor |
N |
replications, Numeric |
std.err |
Standard error, Numeric |
Note
It is considered 81 labels as maximum for the formation of groups, greater number will not have label.
Author(s)
Felipe de Mendiburu
See Also
Examples
library(agricolae)
treatments <- c("A","B","C","D","E","F")
means<-c(20,40,35,72,49,58)
std.err<-c(1.2, 2, 1.5, 2.4, 1, 3.1)
replications <- c(4,4,3,4,3,3)
MSerror <- 55.8
value.t <- 2.1314
groups<-order.group(treatments,means,replications,MSerror,value.t,std.err,console=FALSE)
print(groups)
Grouping the treatments averages in a comparison with a minimum value
Description
When there are treatments and their respective values, these can be compared with a minimal difference of meaning.
Usage
orderPvalue(treatment, means, alpha, pvalue, console)
Arguments
treatment |
treatment |
means |
means of treatment |
alpha |
Alpha value, significante value to comparison |
pvalue |
Matrix of probabilities to comparison |
console |
logical, print output |
Value
The means and groups for treatments.
Note
It is considered 81 labels as maximum for the formation of groups, greater number will not have label.
Author(s)
Felipe de Mendiburu
Examples
library(agricolae)
treatments <- c("A","B","C")
means<-c(2,5,3)
alpha <- 0.05
pvalue<-matrix(1,nrow=3,ncol=3)
pvalue[1,2]<-pvalue[2,1]<-0.03
pvalue[1,3]<-pvalue[3,1]<-0.10
pvalue[2,3]<-pvalue[3,2]<-0.06
out<-orderPvalue(treatments,means,alpha,pvalue,console=TRUE)
barplot(out[,1],names.arg = row.names(out),col=colors()[84:87])
legend("topright",as.character(out$groups),pch=15,col=colors()[84:87],box.col=0)
Data Potato Wild
Description
Potato Wild
Usage
data(pamCIP)
Format
A data frame with 43 observations on the following 107 variables. Rownames: code and genotype's name. column data: molecular markers.
Details
To study the molecular markers in Wild.
Source
Laboratory data.
References
International Potato Center Lima-Peru (CIP)
Examples
library(agricolae)
data(pamCIP)
str(pamCIP)
Data of Paracsho biodiversity
Description
A locality in Peru. A biodiversity.
Usage
data(paracsho)
Format
A data frame with 110 observations on the following 6 variables.
date
a factor with levels
15-12-05
17-11-05
18-10-05
20-09-05
22-06-05
23-08-05
28-07-05
plot
a factor with levels
PARACSHO
Treatment
a factor with levels
CON
SIN
Orden
a factor with levels
COLEOPTERA
DIPTERA
HEMIPTERA
HYMENOPTERA
LEPIDOPTERA
NEUROPTERA
NEUROPTERO
NOCTUIDAE
Family
a factor with levels
AGROMYZIDAE
ANTHOCORIDAE
ANTHOMYIIDAE
ANTHOMYLIDAE
BLEPHAROCERIDAE
BRACONIDAE
BROCONIDAE
CALUPHORIDAE
CECIDOMYIDAE
CHENEUMONIDAE
CHNEUMONIDAE
CHRYOMELIDAE
CICADELLIDAE
CULICIDAE
ERIOCPAMIDAE
HEMEROBIIDAE
ICHNEUMONIDAE
LOUCHAPIDAE
MIRIDAE
MUSCIDAE
MUSICADAE
MUSLIDAE
MYCETOPHILIDAE
MYCETOPHILIIDAE
NENPHALIDAE
NOCLUIDAE
NOCTERIDAE
NOCTUIDAE
PERALIDAE
PIPUNCULIDAE
PROCTOTRUPIDAE
PSYLLIDAE
PYRALIDAE
SARCOPHAGIDAE
SARCOPILAGIDAE
SCATOPHAGIDAE
SCATOPHOGIDAE
SCIARIDAE
SERSIDAE
SYRPHIDAE
TACHINIDAE
TIPULIDAE
Number.of.specimens
a numeric vector
Details
Country Peru, Deparment Junin, province Tarma, locality Huasahuasi.
Source
Entomology dataset.
References
International Potato Center.
Examples
library(agricolae)
data(paracsho)
str(paracsho)
Path Analysis
Description
If the cause and effect relationship is well defined, it is possible to represent the whole system of variables in a diagram form known as path-analysis. The function calculates the direct and indirect effects and uses the variables correlation or covariance.
Usage
path.analysis(corr.x, corr.y)
Arguments
corr.x |
Matrix of correlations of the independent variables |
corr.y |
vector of dependent correlations with each one of the independent ones |
Details
It is necessary first to calculate the correlations.
Value
Direct and indirect effects and residual Effect^2.
Author(s)
Felipe de Mendiburu
References
Biometrical Methods in Quantitative Genetic Analysis, Singh, Chaudhary. 1979
See Also
Examples
# Path analysis. Multivarial Analysis. Anderson. Prentice Hall, pag 616
library(agricolae)
# Example 1
corr.x<- matrix(c(1,0.5,0.5,1),c(2,2))
corr.y<- rbind(0.6,0.7)
names<-c("X1","X2")
dimnames(corr.x)<-list(names,names)
dimnames(corr.y)<-list(names,"Y")
path.analysis(corr.x,corr.y)
# Example 2
# data of the progress of the disease related bacterial wilt to the ground
# for the component CE Ca K2 Cu
data(wilt)
data(soil)
x<-soil[,c(3,12,14,20)]
y<-wilt[,14]
cor.y<-correlation(y,x)$correlation
cor.x<-correlation(x)$correlation
path.analysis(cor.x,cor.y)
PLOT AMMI
Description
Biplot AMMI.
Usage
## S3 method for class 'AMMI'
plot(x,first=1,second=2,third=3,number=FALSE,gcol=NULL,ecol=NULL,
angle=25,lwd=1.8,length=0.1,xlab=NULL,ylab=NULL,xlim=NULL,ylim=NULL,...)
Arguments
x |
object AMMI |
first |
position axis x, 0=Y-dependent, 1=PC1, 2=PC2, 3=PC3 |
second |
position axis y,0=Y-dependent, 1=PC1, 2=PC2, 3=PC3 |
third |
position axis z,0=Y-dependent, 1=PC1, 2=PC2, 3=PC3 |
number |
TRUE or FALSE names or number genotypes |
gcol |
genotype color |
ecol |
environment color |
angle |
angle from the shaft of the arrow to the edge of the arrow head |
lwd |
parameter line width in function arrow |
length |
parameter length in function arrow |
xlab |
x labels |
ylab |
y labels |
xlim |
x limites |
ylim |
y limites |
... |
other parameters of plot |
Details
Produce graphs biplot.
Author(s)
Felipe de Mendiburu
See Also
Examples
library(agricolae)
data(plrv)
model<- with(plrv,AMMI(Locality, Genotype, Rep, Yield))
# biplot PC2 vs PC1
plot(model)
## plot PC1 vs Yield
plot(model,0,1,gcol="blue",ecol="green")
Histogram
Description
In many situations it has intervals of class defined with its respective frequencies. By means of this function, the graphic of frequency is obtained and it is possible to superpose the normal distribution, polygon of frequency, Ojiva and to construct the table of complete frequency.
Usage
## S3 method for class 'graph.freq'
plot(x, breaks=NULL,counts=NULL,frequency=1,plot=TRUE,
nclass=NULL,xlab="",ylab="",axes = "",las=1,...)
Arguments
x |
a vector of values, a object hist(), graphFreq() |
counts |
frequency and x is class intervals |
breaks |
a vector giving the breakpoints between histogram cells |
frequency |
1=counts, 2=relative, 3=density |
plot |
logic |
nclass |
number of classes |
xlab |
x labels |
ylab |
y labels |
axes |
TRUE or FALSE |
las |
values 0,1,2 and 3 are the axis styles. see plot() |
... |
other parameters of plot |
Value
breaks |
a vector giving the breakpoints between histogram cells |
counts |
frequency and x is class intervals |
mids |
center point in class |
relative |
Relative frequency, height |
density |
Density frequency, height |
Author(s)
Felipe de Mendiburu
See Also
polygon.freq
, table.freq
,
stat.freq
,inter.freq
,sturges.freq
,
join.freq
,ogive.freq
, normal.freq
Examples
library(agricolae)
data(genxenv)
yield <- subset(genxenv$YLD,genxenv$ENV==2)
yield <- round(yield,1)
h<- graph.freq(yield,axes=FALSE, frequency=1, ylab="frequency",col="yellow")
axis(1,h$breaks)
axis(2,seq(0,20,0.1))
# To reproduce histogram.
h1 <- plot(h, col="blue", frequency=2,border="red", density=8,axes=FALSE,
xlab="YIELD",ylab="relative")
axis(1,h$breaks)
axis(2,seq(0,.4,0.1))
# summary, only frecuency
limits <-seq(10,40,5)
frequencies <-c(2,6,8,7,3,4)
#startgraph
h<-graph.freq(limits,counts=frequencies,col="bisque",xlab="Classes")
polygon.freq(h,col="red")
title( main="Histogram and polygon of frequency",
ylab=".frequency")
#endgraph
# Statistics
measures<-stat.freq(h)
print(measures)
# frequency table full
round(table.freq(h),2)
#startgraph
# ogive
ogive.freq(h,col="red",type="b",ylab="Accumulated relative frequency",
xlab="Variable")
# only frequency polygon
h<-graph.freq(limits,counts=frequencies,border=FALSE,col=NULL,xlab=" ",ylab="")
title( main="Polygon of frequency",
xlab="Variable", ylab="Frecuency")
polygon.freq(h,col="blue")
grid(col="brown")
#endgraph
# Draw curve for Histogram
h<- graph.freq(yield,axes=FALSE, frequency=3, ylab="f(yield)",col="yellow")
axis(1,h$breaks)
axis(2,seq(0,0.18,0.03),las=2)
lines(density(yield), col = "red", lwd = 2)
title("Draw curve for Histogram")
Plotting the multiple comparison of means
Description
It plots bars of the averages of treatments to compare. It uses the objects generated by a procedure of comparison like LSD, HSD, Kruskall, Waller-Duncan, Friedman or Durbin. It can also display the 'average' value over each bar in a bar chart.
Usage
## S3 method for class 'group'
plot(x,variation=c("range","IQR","SE","SD"), decreasing = TRUE,
horiz=FALSE,col=NULL,xlim=NULL,ylim=NULL,main=NULL,cex=NULL,hy=0,...)
Arguments
x |
Object created by a test of comparison |
variation |
in lines by range, IQR, standard deviation or error |
decreasing |
Logical, decreasing order of the mean |
horiz |
Horizontal or vertical image |
col |
line colors |
xlim |
optional, axis x limits |
ylim |
optional, axis y limits |
main |
optional, main title |
cex |
optional, group label size |
hy |
optional, default =0, sum group label position |
... |
Parameters of the function barplot() |
Details
The output is a vector that indicates the position of the treatments on the coordinate axes.
Author(s)
Felipe de Mendiburu
See Also
BIB.test
, DAU.test
, duncan.test
,
durbin.test
, friedman
, HSD.test
,
kruskal
, LSD.test
, Median.test
,
PBIB.test
, REGW.test
, scheffe.test
,
SNK.test
, waerden.test
, waller.test
Examples
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus,data=sweetpotato)
comparison<- LSD.test(model,"virus",alpha=0.01,group=TRUE)
#startgraph
op<-par(cex=1.5)
plot(comparison,horiz=TRUE,xlim=c(0,50),las=1)
title(cex.main=0.8,main="Comparison between\ntreatment means",xlab="Yield",ylab="Virus")
#endgraph
par(op)
Data for an analysis in split-plot
Description
Experimental data in blocks, factor A in plots and factor B in sub-plots.
Usage
data(plots)
Format
A data frame with 18 observations on the following 5 variables.
block
a numeric vector
plot
a factor with levels
p1
p2
p3
p4
p5
p6
A
a factor with levels
a1
a2
B
a factor with levels
b1
b2
b3
yield
a numeric vector
Source
International Potato Center. CIP
Examples
library(agricolae)
data(plots)
str(plots)
plots[,1] <-as.factor(plots[,1])
# split-plot analysis
model <- aov(yield ~ block + A + Error(plot)+ B + A:B, data=plots)
summary(model)
b<-nlevels(plots$B)
a<-nlevels(plots$A)
r<-nlevels(plots$block)
dfa <- df.residual(model$plot)
Ea <-deviance(model$plot)/dfa
dfb <- df.residual(model$Within)
Eb <-deviance(model$Within)/dfb
Eab <- (Ea +(b-1)*Eb)/(b*r)
# Satterthwaite
dfab<-(Ea +(b-1)*Eb)^2/(Ea^2/dfa +((b-1)*Eb)^2/dfb)
# Comparison A, A(b1), A(b2), A(b3)
comparison1 <-with(plots,LSD.test(yield,A,dfa,Ea))
comparison2 <-with(plots,LSD.test(yield[B=="b1"],A[B=="b1"],dfab,Eab))
comparison3 <-with(plots,LSD.test(yield[B=="b2"],A[B=="b2"],dfab,Eab))
comparison4 <-with(plots,LSD.test(yield[B=="b3"],A[B=="b3"],dfab,Eab))
# Comparison B, B(a1), B(a2)
comparison5 <-with(plots,LSD.test(yield,B,dfb,Eb))
comparison6 <-with(plots,LSD.test(yield[A=="a1"],B[A=="a1"],dfb,Eb))
comparison7 <-with(plots,LSD.test(yield[A=="a2"],B[A=="a2"],dfb,Eb))
Data clones from the PLRV population
Description
Six environments: Ayacucho, La Molina 02, San Ramon 02, Huancayo, La Molina 03, San Ramon 03.
Usage
data(plrv)
Format
A data frame with 504 observations on the following 6 variables.
Genotype
a factor with levels
102.18
104.22
121.31
141.28
157.26
163.9
221.19
233.11
235.6
241.2
255.7
314.12
317.6
319.20
320.16
342.15
346.2
351.26
364.21
402.7
405.2
406.12
427.7
450.3
506.2
Canchan
Desiree
Unica
Locality
a factor with levels
Ayac
Hyo-02
LM-02
LM-03
SR-02
SR-03
Rep
a numeric vector
WeightPlant
a numeric vector
WeightPlot
a numeric vector
Yield
a numeric vector
Source
International Potato Center Lima-Peru
References
International Potato Center Lima-Peru
Examples
library(agricolae)
data(plrv)
str(plrv)
The polygon of frequency on the histogram
Description
The polygon is constructed single or on a histogram. It is necessary to execute the function previously hist.
Usage
polygon.freq(histogram, frequency=1, ...)
Arguments
histogram |
Object constructed by the function hist |
frequency |
numeric, counts(1), relative(2) and density(3) |
... |
Other parameters of the function hist |
Author(s)
Felipe de Mendiburu Delgado
See Also
polygon.freq
, table.freq
, stat.freq
,
inter.freq
, sturges.freq
, join.freq
,
graph.freq
, normal.freq
Examples
library(agricolae)
data(growth)
#startgraph
h1<-with(growth,hist(height,border=FALSE,xlim=c(6,14)))
polygon.freq(h1,frequency=1,col="red")
#endgraph
#startgraph
h2<-with(growth,graph.freq(height,frequency=2,col="yellow",xlim=c(6,14)))
polygon.freq(h2,frequency=2,col="red")
#endgraph
Data of cutting
Description
A study on the yield of two potato varieties performed at the CIP experimental station.
Usage
data(potato)
Format
A data frame with 18 observations on the following 4 variables.
date
a numeric vector
variety
a factor with levels
Canchan
Unica
harvest
a numeric vector
cutting
a numeric vector
Source
Experimental data.
References
International Potato Center
Examples
library(agricolae)
data(potato)
str(potato)
Data of assessment of the population in the soil R.solanacearum
Description
The assessment of the population of R.solanacearum on the floor took place after 48 hours of infestation, during days 15, 29, 43, 58, and 133 days after the infestation soil. More information on soil data(soil).
Usage
data(ralstonia)
Format
A data frame with 13 observations on the following 8 variables.
place
a factor with levels
Chmar
Chz
Cnt1
Cnt2
Cnt3
Hco1
Hco2
Hco3
Hyo1
Hyo2
Namora
SR1
SR2
Day2
a numeric vector
Day15
a numeric vector
Day29
a numeric vector
Day43
a numeric vector
Day58
a numeric vector
Day73
a numeric vector
Day133
a numeric vector
Details
Logarithm average counts of colonies on plates containing half of M-SMSA 3 repetitions (3 plates by repetition) incubated at 30 degrees centigrade for 48 hours. log(1+UFC/g soil)
Source
Experimental field, 2004. Data Kindly provided by Dr. Sylvie Priou, Liliam Gutarra and Pedro Aley.
References
International Potato Center. CIP - Lima Peru.
Examples
library(agricolae)
data(ralstonia)
str(ralstonia)
Homologation of regressions
Description
It makes the regressions homogeneity test for a group of treatments where each observation presents a linearly dependent reply from another one. There is a linear function in every treatment. The objective is to find out if the linear models of each treatment come from the same population.
Usage
reg.homog(trt, x, y)
Arguments
trt |
treatment |
x |
independent variable |
y |
dependent variable |
Value
list objects:
Number regressions.
Residual.
Difference of regression.
DF.homgeneity (homogenity degree free).
DF.Residual (degree free error).
F.value. Test statitics.
P.value. P Value (Significant
Criterion. conclusion
Author(s)
Felipe de Mendiburu
References
Book in Spanish: Metodos estadisticos para la investigacion. Calzada Benza 1960
Examples
library(agricolae)
data(frijol)
evaluation<-with(frijol,reg.homog(technology,index,production))
# Example 2. Applied Regression Analysis a Research tools
# 1988. John O.Rawlings. Wadsworth & brooks/cole Advanced Books
# & Software. Pacific Grove. Califonia.
# Statistics/probability. Series
LineNumber<-c(rep("39","30"),rep("52","30"))
PlantingDate<-rep(c("16","20","21"),20)
HeadWt <- c(2.5,3.0,2.2,2.2,2.8,1.8,3.1,2.8,1.6,4.3,2.7,2.1,2.5,2.6,3.3,4.3,
2.8,3.8,3.8,2.6,3.2,4.3,2.6,3.6,1.7,2.6,4.2,3.1,3.5,1.6,2.0,4.0,1.5,2.4,2.8,
1.4,1.9,3.1,1.7,2.8,4.2,1.3,1.7,3.7,1.7,3.2,3.0,1.6,2.0,2.2,1.4,2.2,2.3,1.0,
2.2,3.8,1.5,2.2,2.0,1.6)
Ascorbic <-c(51,65,54,55,52,59,45,41,66,42,51,54,53,41,45,50,45,49,50,51,49,
52,45,55,56,61,49,49,42,68,58,52,78,55,70,75,67,57,70,61,58,84,67,47,71,68,
56,72,58,72,62,63,63,68,56,54,66,72,60,72)
trt<-paste(LineNumber,PlantingDate,sep="-")
output<-reg.homog(trt,HeadWt,Ascorbic)
Resampling to find the optimal number of markers
Description
This process finds the curve of CV for a different number of markers which allows us to determine the number of optimal markers for a given relative variability. A method of the curvature.
Usage
resampling.cv(A, size, npoints)
Arguments
A |
data frame or matrix of binary data |
size |
number of re-samplings |
npoints |
Number of points to consider the model |
Value
lm(formula = CV ~ I(1/marker))
Table with variation coefficient by number of markers
Author(s)
Felipe de Mendiburu
References
Efron, B., Tibshirani, R. (1993) An Introduction to the Boostrap. Chapman and Hall/CRC
See Also
Examples
library(agricolae)
#example table of molecular markers
data(markers)
study<-resampling.cv(markers,size=1,npoints=15)
#
# Results of the model
summary(study$model)
coef<-coef(study$model)
py<-predict(study$model)
Rsq<-summary(study$model)$"r.squared"
table.cv <- data.frame(study$table.cv,estimate=py)
print(table.cv)
# Plot CV
#startgraph
limy<-max(table.cv[,2])+10
plot(table.cv[,c(1,2)],col="red",frame=FALSE,xlab="number of markers",
ylim=c(10,limy), ylab="CV",cex.main=0.8,main="Estimation of the number of markers")
ty<-quantile(table.cv[,2],1)
tx<-median(table.cv[,1])
tz<-quantile(table.cv[,2],0.95)
text(tx,ty, cex=0.8,as.expression(substitute(CV == a + frac(b,markers),
list(a=round(coef[1],2),b=round(coef[2],2)))) )
text(tx,tz,cex=0.8,as.expression(substitute(R^2==r,list(r=round(Rsq,3)))))
# Plot CV = a + b/n.markers
fy<-function(x,a,b) a+b/x
x<-seq(2,max(table.cv[,1]),length=50)
y <- coef[1] + coef[2]/x
lines(x,y,col="blue")
#grid(col="brown")
rug(table.cv[,1])
#endgraph
Resampling for linear models
Description
This process consists of finding the values of P-value by means of a re-sampling (permutation) process along with the values obtained by variance analysis.
Usage
resampling.model(model,data,k,console=FALSE)
Arguments
model |
model in R |
data |
data for the study of the model |
k |
number of re-samplings |
console |
logical, print output |
Value
Model solution with resampling.
Author(s)
Felipe de Mendiburu
References
Efron, B., Tibshirani, R. (1993) An Introduction to the Boostrap. Chapman and Hall/CRC Phillip I. Good, (2001) Resampling Methods. Birkhauser. Boston . Basel . Berlin
See Also
Examples
#example 1 Simple linear regression
library(agricolae)
data(clay)
model<-"ralstonia ~ days"
analysis<-resampling.model(model,clay,k=2,console=TRUE)
#example 2 Analysis of variance: RCD
data(sweetpotato)
model<-"yield~virus"
analysis<-resampling.model(model,sweetpotato,k=2,console=TRUE)
#example 3 Simple linear regression
data(Glycoalkaloids)
model<-"HPLC ~ spectrophotometer"
analysis<-resampling.model(model,Glycoalkaloids,k=2,console=TRUE)
#example 4 Factorial in RCD
data(potato)
potato[,1]<-as.factor(potato[,1])
potato[,2]<-as.factor(potato[,2])
model<-"cutting~variety + date + variety:date"
analysis<-resampling.model(model,potato,k=2,console=TRUE)
Data of Grain yield of rice variety IR8
Description
The data correspond to the yield of rice variety IR8 (g/m2) for land uniformity studies. The growing area is 18x36 meters.
Usage
data(rice)
Format
A data frame with 36 observations on the following 18 variables.
V1
a numeric vector
V2
a numeric vector
V3
a numeric vector
V4
a numeric vector
V5
a numeric vector
V6
a numeric vector
V7
a numeric vector
V8
a numeric vector
V9
a numeric vector
V10
a numeric vector
V11
a numeric vector
V12
a numeric vector
V13
a numeric vector
V14
a numeric vector
V15
a numeric vector
V16
a numeric vector
V17
a numeric vector
V18
a numeric vector
Details
Table 12.1 Measuring Soil Heterogeneity
Source
Statistical Procedures for Agriculture Research. Second Edition. Kwanchai A. Gomez and Arturo A. Gomez. 1976. USA Pag. 481.
References
Statistical Procedures for Agriculture Research. Second Edition. Kwanchai A. Gomez and Arturo A. Gomez. 1976. USA
Examples
library(agricolae)
data(rice)
str(rice)
Multiple comparisons, scheffe
Description
Scheffe 1959, method is very general in that all possible contrasts can be tested for significance and confidence intervals can be constructed for the corresponding linear. The test is conservative.
Usage
scheffe.test(y, trt, DFerror, MSerror, Fc, alpha = 0.05, group=TRUE, main = NULL,
console=FALSE )
Arguments
y |
model(aov or lm) or answer of the experimental unit |
trt |
Constant( only y=model) or vector treatment applied to each experimental unit |
DFerror |
Degrees of freedom |
MSerror |
Mean Square Error |
Fc |
F Value |
alpha |
Significant level |
group |
TRUE or FALSE |
main |
Title |
console |
logical, print output |
Details
It is necessary first makes a analysis of variance.
if y = model, then to apply the instruction:
scheffe.test (model, "trt", alpha = 0.05, group = TRUE, main = NULL, console = FALSE)
where the model class is aov or lm.
Value
statistics |
Statistics of the model |
parameters |
Design parameters |
means |
Statistical summary of the study variable |
comparison |
Comparison between treatments |
groups |
Formation of treatment groups |
Author(s)
Felipe de Mendiburu
References
Robert O. Kuehl. 2nd ed. Design of experiments. Duxbury, copyright 2000.
Steel, R.; Torri,J; Dickey, D.(1997) Principles and Procedures of Statistics
A Biometrical Approach. pp189
See Also
BIB.test
, DAU.test
, duncan.test
,
durbin.test
, friedman
, HSD.test
,
kruskal
, LSD.test
, Median.test
,
PBIB.test
, REGW.test
, SNK.test
,
waerden.test
, waller.test
, plot.group
Examples
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus, data=sweetpotato)
comparison <- scheffe.test(model,"virus", group=TRUE,console=TRUE,
main="Yield of sweetpotato\nDealt with different virus")
# Old version scheffe.test()
df<-df.residual(model)
MSerror<-deviance(model)/df
Fc<-anova(model)["virus",4]
out <- with(sweetpotato,scheffe.test(yield, virus, df, MSerror, Fc))
print(out)
Matrix of similarity in binary data
Description
It finds the similarity matrix of binary tables (1 and 0).
Usage
similarity(A)
Arguments
A |
Matrix, data binary |
Value
Distance matrix. Class = dist.
Author(s)
Felipe de Mendiburu
See Also
Examples
#example table of molecular markers
library(agricolae)
data(markers)
distance<-similarity(markers)
#startgraph
tree<-hclust(distance,method="mcquitty")
plot(tree,col="blue")
#endgraph
Simulation of the linear model under normality
Description
This process consists of validating the variance analysis results using a simulation process of the experiment. The validation consists of comparing the calculated values of each source of variation of the simulated data with respect to the calculated values of the original data. If in more than 50 percent of the cases they are higher than the real one, then it is considered favorable and the probability reported by the ANOVA is accepted, since the P-Value is the probability of (F > F.value).
Usage
simulation.model(model,file, categorical = NULL,k,console=FALSE)
Arguments
model |
Model in R |
file |
Data for the study of the model |
categorical |
position of the columns of the data that correspond to categorical variables |
k |
Number of simulations |
console |
logical, print output |
Value
model |
ouput linear model, lm |
simulation |
anova simulation |
Author(s)
Felipe de Mendiburu
See Also
Examples
library(agricolae)
#example 1
data(clay)
model<-"ralstonia ~ days"
simulation.model(model,clay,k=15,console=TRUE)
#example 2
data(sweetpotato)
model<-"yield~virus"
simulation.model(model,sweetpotato,categorical=1,k=15,console=TRUE)
#example 3
data(Glycoalkaloids)
model<-"HPLC ~ spectrophotometer"
simulation.model(model,Glycoalkaloids,k=15,console=TRUE)
#example 4
data(potato)
model<-"cutting~date+variety"
simulation.model(model,potato,categorical=c(1,2,3),k=15,console=TRUE)
Data for AMMI without repetition
Description
Data frame for AMMI analysis with 50 genotypes in 5 environments.
Usage
data(sinRepAmmi)
Format
A data frame with 250 observations on the following 3 variables.
ENV
a factor with levels
A1
A2
A3
A4
A5
GEN
a numeric vector
YLD
a numeric vector
Source
Experimental data.
References
International Potato Center - Lima Peru.
Examples
library(agricolae)
data(sinRepAmmi)
str(sinRepAmmi)
Finding the skewness coefficient
Description
It returns the skewness of a distribution. It is similar to SAS.
Usage
skewness(x)
Arguments
x |
a numeric vector |
Value
The skewness of x.
See Also
Examples
library(agricolae)
x<-c(3,4,5,2,3,4,NA,5,6,4,7)
skewness(x)
# value is 0,3595431, is slightly asimetrica (positive) to the right
Data of soil analysis for 13 localities
Description
We analyzed the physical and chemical properties of different soils, as full characterization of soil and special analysis of micro-elements. These analyses were conducted in the laboratory analysis of soils, plants, water and fertilizers in the La Molina National Agrarian University (UNALM). To which the different soil samples were dried to the environment, screened (mesh 0.5xo, 5 mm) and sterilized by steam 4 to 5 hours with a Lindinger Steam aerator SA150 and SA700, with the possible aim of eliminating bacteria saprophytic or antagonists to prevent the growth of bacteria (R.solanacearum).
Usage
data(soil)
Format
A data frame with 13 observations on the following 23 variables.
place
a factor with levels
Chmar
Chz
Cnt1
Cnt2
Cnt3
Hco1
Hco2
Hco3
Hyo1
Hyo2
Namora
SR1
SR2
pH
a numeric vector
EC
a numeric vector, electrical conductivity
CaCO3
a numeric vector
MO
a numeric vector
CIC
a numeric vector
P
a numeric vector
K
a numeric vector
sand
a numeric vector
slime
a numeric vector
clay
a numeric vector
Ca
a numeric vector
Mg
a numeric vector
K2
a numeric vector
Na
a numeric vector
Al_H
a numeric vector
K_Mg
a numeric vector
Ca_Mg
a numeric vector
B
a numeric vector
Cu
a numeric vector
Fe
a numeric vector
Mn
a numeric vector
Zn
a numeric vector
Details
Cnt1= Canete, Cnt2=Valle Dulce(Canete), Cnt3=Valle Grande(Canete), Chz=Obraje-Carhuaz(Ancash), Chmar=Chucmar-Chota(Huanuco, Hco1= Mayobamba-Chinchao(Huanuco), Hco2=Nueva Independencia-Chinchao(Huanuco), Hco3=San Marcos-Umari(Huanuco), Hyo1=La Victoria-Huancayo(Junin), Hyo1=El Tambo-Huancayo(Junin), Namora=Namora(Cajamarca), SR1= El Milagro-San Ramon(Junin), Sr2=La Chinchana-San Ramon(Junin).
Source
Experimental field, 2004. Data Kindly provided by Dr. Sylvie Priou, Liliam Gutarra and Pedro Aley.
References
International Potato Center - Lima, PERU.
Examples
library(agricolae)
data(soil)
str(soil)
Splip-Plot analysis
Description
The variance analysis of a split plot design is divided into two parts: the plot-factor analysis and the sub-plot factor analysis.
Usage
sp.plot(block, pplot, splot, Y)
Arguments
block |
replications |
pplot |
main-plot Factor |
splot |
sub-plot Factor |
Y |
Variable, response |
Details
The split-plot design is specifically suited for a two-factor experiment on of the factors is assigned to main plot (main-plot factor), the second factor, called the subplot factor, is assigned into subplots. The model is mixed, the blocks are random and the study factors are fixed applied according to the design.
Value
ANOVA: Splip plot analysis
Author(s)
Felipe de Mendiburu
References
Statistical procedures for agricultural research. Kwanchai A. Gomez, Arturo A. Gomez. Second Edition. 1984.
See Also
ssp.plot
, strip.plot
, design.split
,
design.strip
Examples
library(agricolae)
data(plots)
model<-with(plots,sp.plot(block,A,B,yield))
# with aov
plots[,1]<-as.factor(plots[,1])
AOV <- aov(yield ~ block + A*B + Error(block/A),data=plots)
summary(AOV)
Split-split-Plot analysis
Description
The variance analysis of a split-split plot design is divided into three parts: the main-plot, subplot and sub-subplot analysis.
Usage
ssp.plot(block, pplot, splot, ssplot, Y)
Arguments
block |
replications |
pplot |
Factor main plot |
splot |
Factor subplot |
ssplot |
Factor sub-subplot |
Y |
Variable, response |
Details
The split-split-plot design is an extension of the split-plot design to accommodate a third factor: one factor in main-plot, other in subplot and the third factor in sub-subplot. The model is mixed, the blocks are random and the study factors are fixed applied according to the design.
Value
ANOVA: Splip Split plot analysis
Author(s)
Felipe de Mendiburu
References
Statistical procedures for agricultural research. Kwanchai A. Gomez, Arturo A. Gomez. Second Edition. 1984.
See Also
sp.plot
, strip.plot
, design.split
,
design.strip
Examples
# Statistical procedures for agricultural research, pag 143
# Grain Yields of Three Rice Varieties Grown under
#Three Management practices and Five Nitrogen levels; in a
#split-split-plot design with nitrogen as main-plot,
#management practice as subplot, and variety as sub-subplot
#factores, with three replications.
library(agricolae)
f <- system.file("external/ssp.csv", package="agricolae")
ssp<-read.csv(f)
model<-with(ssp,ssp.plot(block,nitrogen,management,variety,yield))
gla<-model$gl.a; glb<-model$gl.b; glc<-model$gl.c
Ea<-model$Ea; Eb<-model$Eb; Ec<-model$Ec
op<-par(mfrow=c(1,3),cex=0.6)
out1<-with(ssp,LSD.test(yield,nitrogen,gla,Ea,console=TRUE))
out2<-with(ssp,LSD.test(yield,management,glb,Eb,console=TRUE))
out3<-with(ssp,LSD.test(yield,variety,glc,Ec,console=TRUE))
plot(out1,xlab="Nitrogen",las=1,variation="IQR")
plot(out2,xlab="Management",variation="IQR")
plot(out3,xlab="Variety",variation="IQR")
# with aov
ssp$block<-factor(ssp$block)
ssp$nitrogen<-factor(ssp$nitrogen)
ssp$management<-factor(ssp$management)
ssp$variety<-factor(ssp$variety)
AOV<-aov(yield ~ block + nitrogen*management*variety + Error(block/nitrogen/management),data=ssp)
summary(AOV)
par(op)
Nonparametric stability analysis
Description
A method based on the statistical ranges of the study variable per environment for the stability analysis.
Usage
stability.nonpar(data, variable = NULL, ranking = FALSE, console=FALSE)
Arguments
data |
First column the genotypes following environment |
variable |
Name of variable |
ranking |
logical, print ranking |
console |
logical, print output |
Value
ranking |
data frame |
statistics |
Statistical analysis chi square test |
Author(s)
Felipe de Mendiburu
References
Haynes K G, Lambert D H, Christ B J, Weingartner D P, Douches D S, Backlund J E, Fry W and Stevenson W. 1998. Phenotypic stability of resistance to late blight in potato clones evaluated at eight sites in the United States American Journal Potato Research 75, pag 211-217.
See Also
Examples
library(agricolae)
data(haynes)
stability.nonpar(haynes,"AUDPC",ranking=TRUE,console=TRUE)
# Example 2
data(CIC)
data1<-CIC$comas[,c(1,6,7,17,18)]
data2<-CIC$oxapampa[,c(1,6,7,19,20)]
cic <- rbind(data1,data2)
means <- by(cic[,5], cic[,c(2,1)], function(x) mean(x,na.rm=TRUE))
means <-as.data.frame(means[,])
cic.mean<-data.frame(genotype=row.names(means),means)
cic.mean<-delete.na(cic.mean,"greater")
out<-stability.nonpar(cic.mean)
out$ranking
out$statistics
Stability analysis. SHUKLA'S STABILITY VARIANCE AND KANG'S
Description
This procedure calculates the stability variations as well as the statistics of selection for the yield and the stability. The averages of the genotype through the different environment repetitions are required for the calculations. The mean square error must be calculated from the joint variance analysis.
Usage
stability.par(data,rep,MSerror,alpha=0.1,main=NULL,cova = FALSE,name.cov=NULL,
file.cov=0,console=FALSE)
Arguments
data |
matrix of averages, by rows the genotypes and columns the environment |
rep |
Number of repetitions |
MSerror |
Mean Square Error |
alpha |
Label significant |
main |
Title |
cova |
Covariable |
name.cov |
Name covariable |
file.cov |
Data covariable |
console |
logical, print output |
Details
Stable (i) determines the contribution of each genotype to GE interaction by calculating var(i); (ii) assigns ranks to genotypes from highest to lowest yield receiving the rank of 1; (iii) calculates protected LSD for mean yield comparisons; (iv) adjusts yield rank according to LSD (the adjusted rank labeled Y); (v) determines significance of var(i) usign an aproximate F-test; (vi) assigns stability rating (S) as follows: -8, -4 and -2 for var(i) significant at the 0.01, 0.05 and 0.10 probability levels, and 0 for nonsignificant var(i) ( the higher the var(i), the less stable the genotype); (vii) sums adjusted yield rank, Y, and stability rating, S, for each genotype to determine YS(i) statistic; and (viii) calculates mean YS(i) and identifies genotypes (selection) with YS(i) > mean YS(i).
Value
analysis |
Analysis of variance |
statistics |
Statistics of the model |
stability |
summary stability analysis |
Author(s)
Felipe de Mendiburu
References
Kang, M. S. 1993. Simultaneous selection for yield and stability: Consequences for growers. Agron. J. 85:754-757. Manjit S. Kang and Robert Mangari. 1995. Stable: A basic program for calculating stability and yield-stability statistics. Agron. J. 87:276-277
See Also
Examples
library(agricolae)
# example 1
# Experimental data,
# replication rep= 4
# Mean square error, MSerror = 1.8
# 12 environment
# 17 genotype = 1,2,3,.., 17
# yield averages of 13 genotypes in localities
f <- system.file("external/dataStb.csv", package="agricolae")
dataStb<-read.csv(f)
stability.par(dataStb, rep=4, MSerror=1.8, alpha=0.1, main="Genotype",console=TRUE)
#example 2 covariable. precipitation
precipitation<- c(1000,1100,1200,1300,1400,1500,1600,1700,1800,1900,2000,2100)
stability.par(dataStb, rep=4, MSerror=1.8, alpha=0.1, main="Genotype",
cova=TRUE, name.cov="Precipitation", file.cov=precipitation,console=TRUE)
Descriptive measures of grouped data
Description
By this process the variance and central measures ar found: average, medium and mode of grouped data.
Usage
stat.freq(histogram)
Arguments
histogram |
Object create by function hist() |
Value
Statistics of grouped data.
Author(s)
Felipe de mendiburu
See Also
polygon.freq
, table.freq
, graph.freq
,
inter.freq
, sturges.freq
, join.freq
,
ogive.freq
, normal.freq
Examples
library(agricolae)
data(growth)
grouped<-with(growth,hist(height,plot=FALSE))
measures<-stat.freq(grouped)
print(measures)
Strip-Plot analysis
Description
The variance analysis of a strip-plot design is divided into three parts: the horizontal-factor analysis, the vertical-factor analysis, and the interaction analysis.
Usage
strip.plot(BLOCK, COL, ROW, Y)
Arguments
BLOCK |
replications |
COL |
Factor column |
ROW |
Factor row |
Y |
Variable, response |
Details
The strip-plot design is specifically suited for a two-factor experiment in which the desired precision for measuring the interaction effects between the two factors is higher than that for measuring the main efect two factors
Value
Data and analysis of the variance of the strip plot design.
Author(s)
Felipe de Mendiburu
References
Statistical procedures for agricultural research. Kwanchai A. Gomez, Arturo A. Gomez. Second Edition. 1984.
See Also
ssp.plot
, sp.plot
, design.split
,
design.strip
Examples
# Yield
library(agricolae)
data(huasahuasi)
YIELD<-huasahuasi$YIELD
market <- YIELD$y1da + YIELD$y2da
non_market <- YIELD$y3da
yield <- market + non_market
model<-with(YIELD,strip.plot(block, clon, trt, yield))
out1<-with(YIELD,LSD.test(yield,clon,model$gl.a,model$Ea))
oldpar<-par(mar=c(3,8,1,1),cex=0.8)
plot(out1,xlim=c(0,80),horiz=TRUE,las=1)
out2<-with(YIELD,LSD.test(yield,trt,model$gl.b,model$Eb))
plot(out2,xlim=c(0,80),horiz=TRUE,las=1)
par(oldpar)
Class intervals for a histogram, the rule of Sturges
Description
if k=0 then classes: k = 1 + log(n,2). if k > 0, fixed nclass.
Usage
sturges.freq(x,k=0)
Arguments
x |
vector |
k |
constant |
Value
Statistics of sturges for a histogram.
Author(s)
Felipe de mendiburu
References
Reza A. Hoshmand. 1988. Statistical Methods for Agricultural Sciences, Timber Press, Incorporated, pag 18-21.
See Also
polygon.freq
, table.freq
, stat.freq
,
inter.freq
, graph.freq
, join.freq
,
ogive.freq
, normal.freq
Examples
library(agricolae)
data(natives)
classes<-with(natives,sturges.freq(size))
# information of the classes
breaks <- classes$breaks
breaks
#startgraph
# Histogram with the established classes
h<-with(natives,graph.freq(size,breaks,frequency=1, col="yellow",axes=FALSE,
xlim=c(0,0.12),main="",xlab="",ylab=""))
axis(1,breaks,las=2)
axis(2,seq(0,400,50),las=2)
title(main="Histogram of frequency\nSize of the tubercule of the Oca",
xlab="Size of the oca", ylab="Frequency")
#endgraph
frequency Table of a Histogram
Description
It finds the absolute, relative and accumulated frequencies with the class intervals defined from a previously calculated histogram by the "hist" of R function.
Usage
## S3 method for class 'graph.freq'
summary(object,...)
Arguments
object |
Object by function graph.freq() |
... |
other parameters of graphic |
Value
Frequency table.
Lower |
Lower limit class |
Upper |
Upper limit class |
Main |
class point |
Frequency |
Frequency |
Percentage |
Percentage frequency |
CF |
Cumulative frequency |
CPF |
Cumulative Percentage frequency |
Author(s)
Felipe de Mendiburu
See Also
polygon.freq
, stat.freq
, graph.freq
,
inter.freq
, sturges.freq
, join.freq
,
ogive.freq
, normal.freq
Examples
library(agricolae)
data(growth)
h2<-with(growth,graph.freq(height,plot=FALSE))
print(summary(h2),row.names=FALSE)
Data of sweetpotato yield
Description
The data correspond to an experiment with costanero sweetpotato made at the locality of the Tacna department, southern Peru. The effect of two viruses (Spfmv and Spcsv) was studied. The treatments were the following: CC (Spcsv) = Sweetpotato chlorotic dwarf, FF (Spfmv) = Feathery mottle, FC (Spfmv y Spcsv) = Viral complex and OO (witness) healthy plants. In each plot, 50 sweetpotato plants were sown and 12 plots were employed. Each treatment was made with 3 repetitions and at the end of the experiment the total weight in kilograms was evaluated. The virus transmission was made in the cuttings and these were sown in the field.
Usage
data(sweetpotato)
Format
A data frame with 12 observations on the following 2 variables.
virus
a factor with levels
cc
fc
ff
oo
yield
a numeric vector
Source
Experimental field.
References
International Potato Center. CIP - Lima Peru
Examples
library(agricolae)
data(sweetpotato)
str(sweetpotato)
frequency Table of a Histogram
Description
It finds the absolute, relative and accumulated frequencies with the class intervals defined from a previously calculated histogram by the "hist" of R function.
Usage
table.freq(object)
Arguments
object |
Object by function graph.freq() |
Value
Frequency table.
Lower |
Lower limit class |
Upper |
Upper limit class |
Main |
class point |
Frequency |
Frequency |
Percentage |
Percentage frequency |
CF |
Cumulative frequency |
CPF |
Cumulative Percentage frequency |
Author(s)
Felipe de Mendiburu
See Also
polygon.freq
, stat.freq
, graph.freq
,
inter.freq
, sturges.freq
, join.freq
,
ogive.freq
, normal.freq
Examples
library(agricolae)
data(growth)
h2<-with(growth,graph.freq(height,plot=FALSE))
print(table.freq(h2),row.names=FALSE)
Statistics of data grouped by factors
Description
This process lies in finding statistics which consist of more than one variable, grouped or crossed by factors. The table must be organized by columns between variables and factors.
Usage
tapply.stat(y, x, stat = "mean")
Arguments
y |
data.frame variables |
x |
data.frame factors |
stat |
Method |
Value
Statistics of quantitative variables by categorical variables.
Author(s)
Felipe de Mendiburu
Examples
library(agricolae)
# case of 1 single factor
data(sweetpotato)
tapply.stat(sweetpotato[,2],sweetpotato[,1],mean)
with(sweetpotato,tapply.stat(yield,virus,sd))
with(sweetpotato,tapply.stat(yield,virus,function(x) max(x)-min(x)))
with(sweetpotato,tapply.stat(yield,virus,
function(x) quantile(x,0.75,6)-quantile(x,0.25,6)))
# other case
data(cotton)
with(cotton,tapply.stat(yield,cotton[,c(1,3,4)],mean))
with(cotton,tapply.stat(yield,cotton[,c(1,4)],max))
# Height of pijuayo
data(growth)
with(growth,tapply.stat(height, growth[,2:1], function(x) mean(x,na.rm=TRUE)))
Variance K, ties, Kendall
Description
The Kendall method in order to find the K variance.
Usage
vark(x, y)
Arguments
x |
Vector |
y |
vector |
Details
Script in C to R.
Value
variance of K for Kendall's tau
Author(s)
Felipe de Mendiburu
References
Numerical Recipes in C. Second Edition.
See Also
cor.matrix, cor.vector, cor.mv
Examples
library(agricolae)
x <-c(1,1,1,4,2,2,3,1,3,2,1,1,2,3,2,1,1,2,1,2)
y <-c(1,1,2,3,4,4,2,1,2,3,1,1,3,4,2,1,1,3,1,2)
vark(x,y)
Multiple comparisons. The van der Waerden (Normal Scores)
Description
A nonparametric test for several independent samples.
Usage
waerden.test(y, trt, alpha=0.05, group=TRUE, main=NULL,console=FALSE)
Arguments
y |
Variable response |
trt |
Treatments |
alpha |
Significant level |
group |
TRUE or FALSE |
main |
Title |
console |
logical, print output |
Details
The data consist of k samples of possibly unequal sample size.
The post hoc test is using the criterium Fisher's least
significant difference (LSD).
Value
statistics |
Statistics of the model |
parameters |
Design parameters |
means |
Statistical summary of the study variable |
comparison |
Comparison between treatments |
groups |
Formation of treatment groups |
Author(s)
Felipe de Mendiburu
References
Practical Nonparametrics Statistics. W.J. Conover, 1999
See Also
BIB.test
, DAU.test
, duncan.test
,
durbin.test
, friedman
, HSD.test
,
kruskal
, LSD.test
, Median.test
,
PBIB.test
, REGW.test
, scheffe.test
,
SNK.test
, waller.test
, plot.group
Examples
library(agricolae)
# example 1
data(corn)
out1<-with(corn,waerden.test(observation,method,group=TRUE))
print(out1$groups)
plot(out1)
out2<-with(corn,waerden.test(observation,method,group=FALSE))
print(out2$comparison)
# example 2
data(sweetpotato)
out<-with(sweetpotato,waerden.test(yield,virus,alpha=0.01,group=TRUE))
print(out)
Computations of Bayesian t-values for multiple comparisons
Description
A Bayes rule for the symmetric multiple comparisons problem.
Usage
waller(K, q, f, Fc)
Arguments
K |
Is the loss ratio between type I and type II error |
q |
Numerator Degrees of freedom |
f |
Denominator Degrees of freedom |
Fc |
F ratio from an analysis of variance |
Details
K-RATIO (K): value specifies the Type 1/Type 2 error seriousness ratio for the Waller-Duncan test. Reasonable values for KRATIO are 50, 100, and 500, which roughly correspond for the two-level case to ALPHA levels of 0.1, 0.05, and 0.01. By default, the procedure uses the default value of 100.
Value
Waller value for the Waller and Duncan test.
Author(s)
Felipe de Mendiburu
References
Waller, R. A. and Duncan, D. B. (1969). A Bayes Rule for the Symmetric Multiple Comparison Problem, Journal of the American Statistical Association 64, pages 1484-1504.
Waller, R. A. and Kemp, K. E. (1976) Computations of Bayesian t-Values for Multiple Comparisons, Journal of Statistical Computation and Simulation, 75, pages 169-172.
Principles and procedures of statistics a biometrical approach Steel & Torry & Dickey. Third Edition 1997.
See Also
Examples
# Table Duncan-Waller K=100, F=1.2 pag 649 Steel & Torry
library(agricolae)
K<-100
Fc<-1.2
q<-c(8,10,12,14,16,20,40,100)
f<-c(seq(4,20,2),24,30,40,60,120)
n<-length(q)
m<-length(f)
W.D <-rep(0,n*m)
dim(W.D)<-c(n,m)
for (i in 1:n) {
for (j in 1:m) {
W.D[i,j]<-waller(K, q[i], f[j], Fc)
}}
W.D<-round(W.D,2)
dimnames(W.D)<-list(q,f)
print(W.D)
Multiple comparisons, Waller-Duncan
Description
The Waller-Duncan k-ratio t test is performed on all main effect means in the MEANS statement. See the K-RATIO option for information on controlling details of the test.
Usage
waller.test(y, trt, DFerror, MSerror, Fc, K = 100, group=TRUE, main = NULL,
console=FALSE)
Arguments
y |
model(aov or lm) or answer of the experimental unit |
trt |
Constant( only y=model) or vector treatment applied to each unit |
DFerror |
Degrees of freedom |
MSerror |
Mean Square Error |
Fc |
F Value |
K |
K-RATIO |
group |
TRUE or FALSE |
main |
Title |
console |
logical, print output |
Details
It is necessary first makes a analysis of variance.
K-RATIO (K): value specifies the Type 1/Type 2 error seriousness ratio for
the Waller-Duncan test. Reasonable values for KRATIO are 50, 100, and 500,
which roughly correspond for the two-level case to ALPHA levels of 0.1, 0.05,
and 0.01. By default, the procedure uses the default value of 100.
if y = model, then to apply the instruction:
waller.test (model, "trt", alpha = 0.05, group = TRUE, main = NULL, console = FALSE)
where the model class is aov or lm.
Value
statistics |
Statistics of the model |
parameters |
Design parameters |
means |
Statistical summary of the study variable |
comparison |
Comparison between treatments |
groups |
Formation of treatment groups |
Author(s)
Felipe de Mendiburu
References
Waller, R. A. and Duncan, D. B. (1969).
A Bayes Rule for the Symmetric Multiple Comparison Problem,
Journal of the American Statistical Association 64, pages 1484-1504.
Waller, R. A. and Kemp, K. E. (1976)
Computations of Bayesian t-Values for Multiple Comparisons,
Journal of Statistical Computation and Simulation, 75, pages 169-172.
Steel & Torry & Dickey. Third Edition 1997 Principles and procedures of statistics a biometrical approach
See Also
BIB.test
, DAU.test
, duncan.test
,
durbin.test
, friedman
, HSD.test
,
kruskal
, LSD.test
, Median.test
,
PBIB.test
, REGW.test
, scheffe.test
,
SNK.test
, waerden.test
, plot.group
Examples
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus, data=sweetpotato)
out <- waller.test(model,"virus", group=TRUE)
#startgraph
oldpar<-par(mfrow=c(2,2))
# variation: SE is error standard
# variation: range is Max - Min
bar.err(out$means,variation="SD",horiz=TRUE,xlim=c(0,45),bar=FALSE,
col=colors()[25],space=2, main="Standard deviation",las=1)
bar.err(out$means,variation="SE",horiz=FALSE,ylim=c(0,45),bar=FALSE,
col=colors()[15],space=2,main="SE",las=1)
bar.err(out$means,variation="range",ylim=c(0,45),bar=FALSE,col="green",
space=3,main="Range = Max - Min",las=1)
bar.group(out$groups,horiz=FALSE,ylim=c(0,45),density=8,col="red",
main="Groups",las=1)
#endgraph
# Old version HSD.test()
df<-df.residual(model)
MSerror<-deviance(model)/df
Fc<-anova(model)["virus",4]
out <- with(sweetpotato,waller.test(yield, virus, df, MSerror, Fc, group=TRUE))
print(out)
par(oldpar)
Weather and Severity
Description
Weather and Severity
Usage
weatherSeverity(weather,severity,dates,EmergDate,EndEpidDate,NoReadingsH,
RHthreshold)
Arguments
weather |
object, see example |
severity |
object, see example |
dates |
vector dates |
EmergDate |
date |
EndEpidDate |
date |
NoReadingsH |
num, 1 |
RHthreshold |
num, percentage |
Details
Weather and severity
Value
Wfile |
"Date","Rainfall","Tmp","HumidHrs","humidtmp" |
Sfile |
"Cultivar","ApplSys","dates","nday","MeanSeverity","StDevSeverity" |
EmergDate |
date |
EndEpidDate |
date |
Note
All format data for date is yyyy-mm,dd, for example "2000-04-22". change with function as.Date()
See Also
Examples
library(agricolae)
f <- system.file("external/weather.csv", package="agricolae")
weather <- read.csv(f,header=FALSE)
f <- system.file("external/severity.csv", package="agricolae")
severity <- read.csv(f)
weather[,1]<-as.Date(weather[,1],format = "%m/%d/%Y")
# Parameters dates and threshold
dates<-c("2000-03-25","2000-04-09","2000-04-12","2000-04-16","2000-04-22")
dates<-as.Date(dates)
EmergDate <- as.Date('2000/01/19')
EndEpidDate <- as.Date("2000-04-22")
dates<-as.Date(dates)
NoReadingsH<- 1
RHthreshold <- 90
#--------------------------
WS<-weatherSeverity(weather,severity,dates,EmergDate,EndEpidDate,
NoReadingsH,RHthreshold)
Data of Bacterial Wilt (AUDPC) and soil
Description
Percentage of bacterial wilt and area under the curve of disease progression (AUDPC) relative tomato plants transplanted in different soil types artificially infested with R.solanacearum 133 days before.
Usage
data(wilt)
Format
A data frame with 13 observations on the following 15 variables.
place
a factor with levels
Chmar
Chz
Cnt1
Cnt2
Cnt3
Hco1
Hco2
Hco3
Hyo1
Hyo2
Namora
SR1
SR2
Day7
a numeric vector
Day11
a numeric vector
Day15
a numeric vector
Day19
a numeric vector
Day23
a numeric vector
Day27
a numeric vector
Day31
a numeric vector
Day35
a numeric vector
Day39
a numeric vector
Day43
a numeric vector
Day47
a numeric vector
Day51
a numeric vector
AUDPC
a numeric vector
relative
a numeric vector
Details
Percentajes bacterial wilt. Day7 = evaluated to 7 days, Days11 = evaluated to 11 days. see data(soil) and data(ralstonia)
Source
Experimental field, 2004. Data Kindly provided by Dr. Sylvie Priou, Liliam Gutarra and Pedro Aley.
References
International Potato Center. CIP - Lima Peru.
Examples
library(agricolae)
data(wilt)
days<-c(7,11,15,19,23,27,31,35,39,43,47,51)
AUDPC<-audpc(wilt[,-1],days)
relative<-audpc(wilt[,-1],days,type="relative")
Data Yacon
Description
The yacon (Smallanthus sonchifolius) is a plant native to the Andes, considered a traditional crop in Peru and natural source of FOS, which is a type of carbohydrate that can not be digested by the and the human body that have joined several beneficial properties in health, such as improve the absorption of calcium, reducing the level of triglycerides and cholesterol and stimulate better gastrointestinal function.
Usage
data(yacon)
Format
A data frame with 432 observations on the following 19 variables.
locality
a factor with levels, Cajamarca, Lima, Oxapampa in PERU
site
a numeric vector
dose
a factor with levels
F0
F150
F80
entry
a factor with levels
AKW5075
AMM5136
AMM5150
AMM5163
ARB5125
CLLUNC118
P1385
SAL136
replication
a numeric vector, replications
height
a numeric vector, plant height, centimeters
stalks
a numeric vector, number of stalks
wfr
a numeric vector, weight of fresh roots, grams
wff
a numeric vector, weight of fresh foliage, grams
wfk
a numeric vector, weight fresh kroner, grams
roots
a numeric vector, matter of dried roots, grams
FOS
a numeric vector, fructo-oligosaccharides, percentaje
glucose
a numeric vector, percentaje
fructose
a numeric vector, percentaje
sucrose
a numeric vector, percentaje
brix
a numeric vector, degrees Brix
foliage
a numeric vector, matter dry foliage, grams
dry
a numeric vector, dry matter kroner, grams
IH
a numeric vector, Index harvest, 0 to 1
Details
Proportion or fraction of the plant that is used (seeds, fruit, root) on dry basis. Part usable in a proportion of total mass dissected. Plant of frijol, weight = 100g and frijol = 50g then, IH = 50/100 = 0.5 or 50 percentaje. Degrees Brix is a measurement of the mass ratio of dissolved sugar to water in a liquid.
Source
CIP. Experimental field, 2003, Data Kindly provided by Ivan Manrique and Carolina Tasso.
References
International Potato Center. CIP - Lima Peru.
Examples
library(agricolae)
data(yacon)
str(yacon)
order plot in serpentine
Description
applied to designs: complete block, latin square, graeco, split plot, strip plot, lattice, alpha lattice, Augmented block, cyclic, Balanced Incomplete Block and factorial.
Usage
zigzag(outdesign)
Arguments
outdesign |
output design |
Value
fieldbook |
Remuneration of serpentine plots. |
Author(s)
Felipe de Mendiburu
See Also
design.ab
, design.alpha
,design.bib
,
design.split
, design.cyclic
, design.dau
,
design.graeco
, design.lattice
, design.lsd
,
design.rcbd
, design.strip
Examples
library(agricolae)
trt<-letters[1:5]
r<-4
outdesign <- design.rcbd(trt,r,seed=9)
fieldbook <- zigzag(outdesign)