R package TSP - Infrastructure for the Traveling Salesperson Problem

Package on CRAN CRAN RStudio mirror downloads License r-universe status Anaconda.org

Introduction

The TSP package (Hahsler and Hornik 2007) provides the basic infrastructure and some algorithms for the traveling salesman problems (symmetric, asymmetric and Euclidean TSPs). The package provides some fast implementations of simple algorithms including:

The package can read and write the TSPLIB format (Reinelt 1991) and it can solve many of the problems in the TSPLIB95 problem library (local copy of the archive).

The following R packages use TSP: archetypes, cholera, condvis, CRTspat, ForagingOrg, ggEDA, isocir, jocre, MLCOPULA, nilde, nlnet, PairViz, pencopulaCond, SCORPIUS, sensitivity, seriation, sfnetworks, tspmeta, VineCopula

To cite package ‘TSP’ in publications use:

Hahsler M, Hornik K (2007). “TSP - Infrastructure for the traveling salesperson problem.” Journal of Statistical Software, 23(2), 1-21. ISSN 1548-7660, doi:10.18637/jss.v023.i02 https://doi.org/10.18637/jss.v023.i02.

@Article{,
  title = {TSP -- {I}nfrastructure for the traveling salesperson problem},
  author = {Michael Hahsler and Kurt Hornik},
  year = {2007},
  journal = {Journal of Statistical Software},
  volume = {23},
  number = {2},
  pages = {1--21},
  doi = {10.18637/jss.v023.i02},
  month = {December},
  issn = {1548-7660},
}

Installation

Stable CRAN version: Install from within R with

install.packages("TSP")

Current development version: Install from r-universe.

install.packages("TSP",
    repos = c("https://mhahsler.r-universe.dev",
              "https://cloud.r-project.org/"))

Usage

Load a data set with 312 cities (USA and Canada) and create a TSP object.

library("TSP")
data("USCA312")

tsp <- TSP(USCA312)
tsp
## object of class 'TSP' 
## 312 cities (distance 'euclidean')

Find a tour using the default heuristic.

tour <- solve_TSP(tsp)
tour
## object of class 'TOUR' 
## result of method 'arbitrary_insertion+two_opt' for 312 cities
## tour length: 41941

Show the first few cities in the tour.

head(tour, n = 10)
## Winston-Salem, NC     Charlotte, NC     Asheville, NC    Greenville, SC 
##               306                54                10               110 
##   Spartanburg, NC       Augusta, GA      Columbia, SC    Charleston, SC 
##               260                14                64                52 
##      Savannah, GA  Jacksonville, FL 
##               250               127

Visualize the complete tour.

library(maps)
data("USCA312_GPS")

plot((USCA312_GPS[, c("long", "lat")]), cex = 0.3)
map("world", col = "gray", add = TRUE)
polygon(USCA312_GPS[, c("long", "lat")][tour, ], border = "red")

An online example application of TSP can be found on shinyapps.

Help and Bug Reports

You can find Q&A’s and ask your own questions at https://stackoverflow.com/search?q=TSP+R

Please submit bug reports to https://github.com/mhahsler/TSP/issues

References

Applegate, David, Robert E. Bixby, Vasek Chvátal, and William Cook. 2000. “TSP Cuts Which Do Not Conform to the Template Paradigm.” In Computational Combinatorial Optimization, Optimal or Provably Near-Optimal Solutions, edited by M. Junger and D. Naddef, 2241:261–304. Lecture Notes in Computer Science. London, UK: Springer-Verlag. https://doi.org/10.1007/3-540-45586-8_7.
Applegate, David, Robert Bixby, Vasek Chvátal, and William Cook. 2006. Concorde TSP Solver. https://www.math.uwaterloo.ca/tsp/concorde.html.
Applegate, David, William Cook, and Andre Rohe. 2003. “Chained Lin-Kernighan for Large Traveling Salesman Problems.” INFORMS Journal on Computing 15 (1): 82–92. https://doi.org/10.1287/ijoc.15.1.82.15157.
Croes, G. A. 1958. “A Method for Solving Traveling-Salesman Problems.” Operations Research 6 (6): 791–812. https://doi.org/10.1287/opre.6.6.791.
Hahsler, Michael, and Kurt Hornik. 2007. “TSP – Infrastructure for the Traveling Salesperson Problem.” Journal of Statistical Software 23 (2): 1–21. https://doi.org/10.18637/jss.v023.i02.
Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi. 1983. “Optimization by Simulated Annealing.” Science 220 (4598): 671–80. https://doi.org/10.1126/science.220.4598.671.
Reinelt, Gerhard. 1991. “TSPLIB—a Traveling Salesman Problem Library.” ORSA Journal on Computing 3 (4): 376–84. https://doi.org/10.1287/ijoc.3.4.376.
Rosenkrantz, Daniel J., Richard E. Stearns, and II Philip M. Lewis. 1977. “An Analysis of Several Heuristics for the Traveling Salesman Problem.” SIAM Journal on Computing 6 (3): 563–81. https://doi.org/10.1007/978-1-4020-9688-4_3.