RobinCar2 provides robust covariate adjustment methods for estimating and inferring treatment effects through generalized linear models (glm) under different randomization schema.
A minimal call of robin_lm()
and
robin_glm()
, consisting of only formula, data arguments and
the randomization scheme, will produce an object of class
treatment_effect
.
library(RobinCar2)
#>
#> Attaching package: 'RobinCar2'
#> The following object is masked from 'package:base':
#>
#> table
head(glm_data)
#> id treatment s1 s2 covar y y_b
#> 1 1 pbo b c 0.5119022 -0.02761963 0
#> 2 2 pbo a c -0.7941720 0.49919508 0
#> 3 3 trt1 b d 0.8988804 0.48037375 0
#> 4 4 trt2 b c -0.4821317 0.67490126 1
#> 5 5 trt1 a d -0.2285514 0.55499267 0
#> 6 6 trt2 a c 0.2742069 2.39830584 1
In the glm_data
, we have the following columns:
id
is the patient identifier.treatment
is the treatment assignment.s1
is the first stratification factor.s2
is the second stratification factor.covar
is the continuous covariate.y
is the continuous outcome.y_b
is the binary outcome.For the continuous outcome y
, the linear model includes
covar
as a covariate, s1
as a stratification
factor. The randomization scheme is a permuted-block randomization
stratified by s1
. The model formula also includes the
treatment by stratification interaction as
y ~ treatment * s1 + covar
.
robin_lm(y ~ treatment * s1 + covar,
data = glm_data,
treatment = treatment ~ pb(s1)
)
#> Model : y ~ treatment * s1 + covar
#> Randomization: treatment ~ pb(s1) ( Permuted-Block )
#> Variance Type: vcovG
#> Marginal Mean:
#> Estimate Std.Err 2.5 % 97.5 %
#> pbo 0.200321 0.067690 0.067651 0.3330
#> trt1 0.763971 0.075929 0.615152 0.9128
#> trt2 0.971250 0.076543 0.821228 1.1213
#>
#> Contrast : h_diff
#> Estimate Std.Err Z Value Pr(>|z|)
#> trt1 v.s. pbo 0.56365 0.10074 5.5952 2.203e-08 ***
#> trt2 v.s. pbo 0.77093 0.10133 7.6082 2.779e-14 ***
#> trt2 v.s. trt1 0.20728 0.10683 1.9402 0.05235 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
We can also use the Huber-White variance estimator by setting
vcov = "vcovHC"
. Please note that in this case, the model
formula should not contain the treatment by stratification (covariate)
interaction.
robin_lm(y ~ treatment + s1 + covar,
data = glm_data,
treatment = treatment ~ pb(s1),
vcov = "vcovHC"
)
#> Model : y ~ treatment + s1 + covar
#> Randomization: treatment ~ pb(s1) ( Permuted-Block )
#> Variance Type: vcovG
#> Marginal Mean:
#> Estimate Std.Err 2.5 % 97.5 %
#> pbo 0.200449 0.067690 0.067779 0.3331
#> trt1 0.763978 0.075930 0.615158 0.9128
#> trt2 0.971285 0.076539 0.821271 1.1213
#>
#> Contrast : h_diff
#> Estimate Std.Err Z Value Pr(>|z|)
#> trt1 v.s. pbo 0.56353 0.10074 5.5941 2.218e-08 ***
#> trt2 v.s. pbo 0.77084 0.10133 7.6074 2.796e-14 ***
#> trt2 v.s. trt1 0.20731 0.10683 1.9405 0.05232 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Note that robin_glm
can also handle continuous outcomes
using the default family and the default link function
family = gaussian()
.
For binary outcomes, the logistic model includes covar
as a covariate, s1
as a stratification factor. The
randomization scheme is a permuted-block randomization stratified by
s1
. The model formula also includes the treatment by
stratification interaction as y_b ~ treatment * s1 + covar
.
Note here we need to specify family
to be
binomial(link = "logit")
.
robin_glm(y_b ~ treatment * s1 + covar,
data = glm_data,
treatment = treatment ~ pb(s1),
family = binomial(link = "logit")
)
#> Model : y_b ~ treatment * s1 + covar
#> Randomization: treatment ~ pb(s1) ( Permuted-Block )
#> Variance Type: vcovG
#> Marginal Mean:
#> Estimate Std.Err 2.5 % 97.5 %
#> pbo 0.356097 0.033599 0.290243 0.4219
#> trt1 0.580696 0.034418 0.513238 0.6482
#> trt2 0.621386 0.034019 0.554711 0.6881
#>
#> Contrast : difference
#> Estimate Std.Err Z Value Pr(>|z|)
#> trt1 v.s. pbo 0.224599 0.047711 4.7075 2.508e-06 ***
#> trt2 v.s. pbo 0.265290 0.047534 5.5810 2.391e-08 ***
#> trt2 v.s. trt1 0.040691 0.047941 0.8488 0.396
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
For counts, the log link model includes covar
as a
covariate, s1
as a stratification factor. The randomization
scheme is a permuted-block randomization stratified by s1
.
The model formula also includes the treatment by stratification
interaction as y_count ~ treatment * s1 + covar
. Note here
we need to specify family
to be
poisson(link = "log")
to use the Poisson model or to be
MASS::negative.binomial(theta = NA)
to use the negative
binomial model. A fixed theta
could be provided if it is
known.
glm_data$y_count <- rpois(nrow(glm_data), lambda = 20)
robin_glm(
y_count ~ treatment * s1 + covar,
data = glm_data,
treatment = treatment ~ pb(s1),
family = MASS::negative.binomial(theta = 1)
)
#> Model : y_count ~ treatment * s1 + covar
#> Randomization: treatment ~ pb(s1) ( Permuted-Block )
#> Variance Type: vcovG
#> Marginal Mean:
#> Estimate Std.Err 2.5 % 97.5 %
#> pbo 19.66342 0.31706 19.04200 20.285
#> trt1 20.02967 0.32533 19.39204 20.667
#> trt2 19.89905 0.30686 19.29761 20.500
#>
#> Contrast : difference
#> Estimate Std.Err Z Value Pr(>|z|)
#> trt1 v.s. pbo 0.36625 0.45426 0.8063 0.4201
#> trt2 v.s. pbo 0.23563 0.44125 0.5340 0.5933
#> trt2 v.s. trt1 -0.13062 0.44698 -0.2922 0.7701
If the randomization schema is not permuted-block randomization, we
can use other randomization schema. Currently RobinCar2 supports
sp
for the simple randomization, pb
for the
permuted-block randomization, and ps
for the Pocock-Simon
randomization.
robin_glm(y_b ~ treatment * s1 + covar,
data = glm_data,
treatment = treatment ~ ps(s1),
family = binomial(link = "logit")
)
#> Model : y_b ~ treatment * s1 + covar
#> Randomization: treatment ~ ps(s1) ( Pocock-Simon )
#> Variance Type: vcovG
#> Marginal Mean:
#> Estimate Std.Err 2.5 % 97.5 %
#> pbo 0.356097 0.033599 0.290243 0.4219
#> trt1 0.580696 0.034418 0.513238 0.6482
#> trt2 0.621386 0.034019 0.554711 0.6881
#>
#> Contrast : difference
#> Estimate Std.Err Z Value Pr(>|z|)
#> trt1 v.s. pbo 0.224599 0.047711 4.7075 2.508e-06 ***
#> trt2 v.s. pbo 0.265290 0.047534 5.5810 2.391e-08 ***
#> trt2 v.s. trt1 0.040691 0.047941 0.8488 0.396
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
To obtain the confidence interval, we can use confint
function.
Given the following model
robin_res <- robin_glm(y_b ~ treatment * s1 + covar,
data = glm_data,
treatment = treatment ~ ps(s1),
family = binomial(link = "logit"),
contrast = "log_risk_ratio"
)
robin_res
#> Model : y_b ~ treatment * s1 + covar
#> Randomization: treatment ~ ps(s1) ( Pocock-Simon )
#> Variance Type: vcovG
#> Marginal Mean:
#> Estimate Std.Err 2.5 % 97.5 %
#> pbo 0.356097 0.033599 0.290243 0.4219
#> trt1 0.580696 0.034418 0.513238 0.6482
#> trt2 0.621386 0.034019 0.554711 0.6881
#>
#> Contrast : log_risk_ratio
#> Estimate Std.Err Z Value Pr(>|z|)
#> trt1 v.s. pbo 0.489025 0.110617 4.4209 9.83e-06 ***
#> trt2 v.s. pbo 0.556751 0.108532 5.1298 2.90e-07 ***
#> trt2 v.s. trt1 0.067726 0.079934 0.8473 0.3968
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
It is easy to obtain the confidence interval matrix for the marginal
mean, at specified level. If parm
is not provided, the
complete matrix (all treatment groups) will be provided.
confint(robin_res$marginal_mean, parm = 1:2, level = 0.7)
#> Estimate 15 % 85 %
#> pbo 0.3560965 0.3212733 0.3909198
#> trt1 0.5806957 0.5450238 0.6163677
confint(robin_res$marginal_mean, level = 0.7)
#> Estimate 15 % 85 %
#> pbo 0.3560965 0.3212733 0.3909198
#> trt1 0.5806957 0.5450238 0.6163677
#> trt2 0.6213865 0.5861284 0.6566445
Similarly for the contrast, however it has an additional argument
transform
to provide the confidence interval at transformed
level. Thus, standard error is removed because it does not make sense
anymore. By default, if the log_risk_ratio
or
log_odds_ratio
is used as contrast, the
confint
will transform it back using exponential function.
You can also specify the transform
to be
identity
to avoid the transformation.
confint(robin_res$contrast)
#> The confidence interval is transformed.
#> Estimate 2.5 % 97.5 %
#> trt1 v.s. pbo 1.630726 1.3128756 2.025528
#> trt2 v.s. pbo 1.744994 1.4106235 2.158624
#> trt2 v.s. trt1 1.070072 0.9148996 1.251563
confint(robin_res$contrast, transform = identity)
#> Estimate 2.5 % 97.5 %
#> trt1 v.s. pbo 0.48902507 0.2722198 0.7058303
#> trt2 v.s. pbo 0.55675135 0.3440318 0.7694709
#> trt2 v.s. trt1 0.06772628 -0.0889410 0.2243936