CRAN Package Check Results for Package mlr3viz

Last updated on 2025-12-24 03:51:07 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.10.1 7.04 157.26 164.30 ERROR
r-devel-linux-x86_64-debian-gcc 0.10.1 4.75 105.65 110.40 ERROR
r-devel-linux-x86_64-fedora-clang 0.10.1 13.00 262.56 275.56 ERROR
r-devel-linux-x86_64-fedora-gcc 0.10.1 13.00 234.43 247.43 ERROR
r-devel-windows-x86_64 0.10.1 9.00 187.00 196.00 OK
r-patched-linux-x86_64 0.10.1 7.06 241.43 248.49 OK
r-release-linux-x86_64 0.10.1 7.40 244.33 251.73 OK
r-release-macos-arm64 0.10.1 OK
r-release-macos-x86_64 0.10.1 4.00 127.00 131.00 OK
r-release-windows-x86_64 0.10.1 10.00 187.00 197.00 OK
r-oldrel-macos-arm64 0.10.1 NOTE
r-oldrel-macos-x86_64 0.10.1 5.00 139.00 144.00 NOTE
r-oldrel-windows-x86_64 0.10.1 13.00 260.00 273.00 NOTE

Check Details

Version: 0.10.1
Check: examples
Result: ERROR Running examples in ‘mlr3viz-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: autoplot.BenchmarkResult > ### Title: Plots for Benchmark Results > ### Aliases: autoplot.BenchmarkResult > > ### ** Examples > > if (requireNamespace("mlr3")) { + library(mlr3) + library(mlr3viz) + + tasks = tsks(c("pima", "sonar")) + learner = lrns(c("classif.featureless", "classif.rpart"), + predict_type = "prob") + resampling = rsmps("cv") + object = benchmark(benchmark_grid(tasks, learner, resampling)) + + head(fortify(object)) + autoplot(object) + autoplot(object$clone(deep = TRUE)$filter(task_ids = "pima"), type = "roc") + } Loading required namespace: mlr3 INFO [04:35:40.215] [mlr3] Running benchmark with 40 resampling iterations INFO [04:35:40.412] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/10) INFO [04:35:40.480] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/10) INFO [04:35:40.511] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 3/10) INFO [04:35:40.543] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 4/10) INFO [04:35:40.582] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 5/10) INFO [04:35:40.611] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 6/10) INFO [04:35:40.641] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 7/10) INFO [04:35:40.728] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 8/10) INFO [04:35:40.759] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 9/10) INFO [04:35:40.791] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 10/10) INFO [04:35:40.824] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/10) INFO [04:35:40.890] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/10) INFO [04:35:40.928] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 3/10) INFO [04:35:40.976] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 4/10) INFO [04:35:41.016] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 5/10) INFO [04:35:41.055] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 6/10) INFO [04:35:41.103] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 7/10) INFO [04:35:41.143] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 8/10) INFO [04:35:41.353] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 9/10) INFO [04:35:41.394] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 10/10) INFO [04:35:41.435] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/10) INFO [04:35:41.476] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/10) INFO [04:35:41.517] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/10) INFO [04:35:41.551] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 4/10) INFO [04:35:41.584] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 5/10) INFO [04:35:41.627] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 6/10) INFO [04:35:41.660] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 7/10) INFO [04:35:41.693] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 8/10) INFO [04:35:41.733] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 9/10) INFO [04:35:41.770] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 10/10) INFO [04:35:41.805] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/10) INFO [04:35:41.862] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/10) INFO [04:35:41.921] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/10) INFO [04:35:41.971] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 4/10) INFO [04:35:42.024] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 5/10) INFO [04:35:42.077] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 6/10) INFO [04:35:42.130] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 7/10) INFO [04:35:42.184] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 8/10) INFO [04:35:42.239] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 9/10) INFO [04:35:42.301] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 10/10) INFO [04:35:42.369] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.10.1
Check: tests
Result: ERROR Running ‘testthat.R’ [81s/43s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3viz") + test_check("mlr3viz") + } Starting 2 test processes. > test_EnsembleFSResult.R: Loading required namespace: vdiffr Saving _problems/test_BenchmarkResult-7.R > test_Filter.R: Loading required namespace: vdiffr Saving _problems/test_LearnerClassif-6.R > test_OptimInstanceSingleCrit.R: Loading required package: paradox > test_PredictionRegr.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. Saving _problems/test_ResampleResult-7.R > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. Saving _problems/test_plot_learner_prediction-8.R Saving _problems/test_plot_learner_prediction-41.R Saving _problems/test_plot_learner_prediction-51.R Saving _problems/test_TuningInstanceSingleCrit-24.R [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] ══ Skipped tests (20) ══════════════════════════════════════════════════════════ • On CRAN (20): 'test_Filter.R:3:1', 'test_LearnerClassif.R:11:1', 'test_EnsembleFSResult.R:4:1', 'test_LearnerClassifRpart.R:6:1', 'test_LearnerClassifCVGlmnet.R:8:1', 'test_LearnerClasssifGlmnet.R:8:1', 'test_LearnerClustHierarchical.R:7:3', 'test_LearnerRegrCVGlmnet.R:8:1', 'test_LearnerRegr.R:1:1', 'test_LearnerRegr.R:11:1', 'test_LearnerRegr.R:21:1', 'test_LearnerRegrGlmnet.R:7:1', 'test_LearnerRegrRpart.R:6:1', 'test_PredictionClassif.R:8:1', 'test_PredictionClust.R:8:3', 'test_PredictionRegr.R:3:1', 'test_OptimInstanceSingleCrit.R:35:1', 'test_TaskClust.R:4:1', 'test_TaskRegr.R:3:1', 'test_TaskClassif.R:3:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkResult.R:7:1'): (code run outside of `test_that()`) ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(mlr3::benchmark_grid(tasks, learner, resampling)) at test_BenchmarkResult.R:7:1 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_LearnerClassif.R:6:3'): autoplot.PredictionClassif decision boundary probability ── Error in ``[.data.table`(grid, , `:=`(".prob.response", .SD[, paste0("prob.", get("response")), with = FALSE]), by = "response")`: attempt access index 7/7 in VECTOR_ELT Backtrace: ▆ 1. ├─ggplot2::autoplot(learner, type = "prediction", task = task) at test_LearnerClassif.R:6:3 2. ├─mlr3viz:::autoplot.LearnerClassifRpart(...) 3. ├─base::NextMethod() 4. └─mlr3viz:::autoplot.LearnerClassif(...) 5. └─mlr3viz:::predict_grid(...) 6. ├─...[] 7. └─data.table:::`[.data.table`(...) ── Error ('test_ResampleResult.R:7:1'): (code run outside of `test_that()`) ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_ResampleResult.R:7:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:8:3'): plot_learner_prediction.LearnerClassif ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:8:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:41:3'): plot_learner_prediction.LearnerRegr 2d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:41:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:51:3'): plot_learner_prediction.LearnerRegr 1d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:51:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceSingleCrit.R:24:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] Deleting unused snapshots: 'BenchmarkResult/bmr-boxplot.svg', 'BenchmarkResult/bmr-holdout-ci.svg', 'BenchmarkResult/bmr-holdout-roc.svg', 'BenchmarkResult/bmr-prc.svg', 'BenchmarkResult/bmr-roc.svg', 'LearnerClassif/learner-classif-prob.svg', 'LearnerClustHierarchical/learner-clust-agnes.svg', 'LearnerClustHierarchical/learner-clust-hclust.svg', 'PredictionClust/predictionclust-pca.svg', 'PredictionClust/predictionclust-scatter.svg', 'PredictionClust/predictionclust-sil.svg', 'ResampleResult/resampleresult-boxplot.svg', 'ResampleResult/resampleresult-histogram.svg', 'ResampleResult/resampleresult-prc.svg', 'ResampleResult/resampleresult-roc.svg', 'TuningInstanceSingleCrit/tisc-incumbent.svg', 'TuningInstanceSingleCrit/tisc-marginal-01.svg', 'TuningInstanceSingleCrit/tisc-marginal-02.svg', …, 'plot_learner_prediction/learner-prediction-prob.svg', and 'plot_learner_prediction/learner-prediction-response.svg' Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.10.1
Check: examples
Result: ERROR Running examples in ‘mlr3viz-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: autoplot.BenchmarkResult > ### Title: Plots for Benchmark Results > ### Aliases: autoplot.BenchmarkResult > > ### ** Examples > > if (requireNamespace("mlr3")) { + library(mlr3) + library(mlr3viz) + + tasks = tsks(c("pima", "sonar")) + learner = lrns(c("classif.featureless", "classif.rpart"), + predict_type = "prob") + resampling = rsmps("cv") + object = benchmark(benchmark_grid(tasks, learner, resampling)) + + head(fortify(object)) + autoplot(object) + autoplot(object$clone(deep = TRUE)$filter(task_ids = "pima"), type = "roc") + } Loading required namespace: mlr3 INFO [17:15:47.006] [mlr3] Running benchmark with 40 resampling iterations INFO [17:15:47.132] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/10) INFO [17:15:47.229] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/10) INFO [17:15:47.284] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 3/10) INFO [17:15:47.371] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 4/10) INFO [17:15:47.511] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 5/10) INFO [17:15:47.556] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 6/10) INFO [17:15:47.632] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 7/10) INFO [17:15:47.801] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 8/10) INFO [17:15:47.895] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 9/10) INFO [17:15:47.972] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 10/10) INFO [17:15:48.047] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/10) INFO [17:15:48.104] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/10) INFO [17:15:48.139] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 3/10) INFO [17:15:48.222] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 4/10) INFO [17:15:48.293] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 5/10) INFO [17:15:48.342] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 6/10) INFO [17:15:48.431] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 7/10) INFO [17:15:48.482] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 8/10) INFO [17:15:48.678] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 9/10) INFO [17:15:48.703] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 10/10) INFO [17:15:48.729] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/10) INFO [17:15:48.754] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/10) INFO [17:15:48.793] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/10) INFO [17:15:48.834] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 4/10) INFO [17:15:48.905] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 5/10) INFO [17:15:48.977] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 6/10) INFO [17:15:49.048] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 7/10) INFO [17:15:49.125] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 8/10) INFO [17:15:49.204] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 9/10) INFO [17:15:49.267] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 10/10) INFO [17:15:49.311] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/10) INFO [17:15:49.357] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/10) INFO [17:15:49.415] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/10) INFO [17:15:49.498] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 4/10) INFO [17:15:49.582] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 5/10) INFO [17:15:49.673] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 6/10) INFO [17:15:49.722] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 7/10) INFO [17:15:49.764] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 8/10) INFO [17:15:49.815] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 9/10) INFO [17:15:49.875] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 10/10) INFO [17:15:49.938] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.10.1
Check: tests
Result: ERROR Running ‘testthat.R’ [52s/28s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3viz") + test_check("mlr3viz") + } Starting 2 test processes. > test_EnsembleFSResult.R: Loading required namespace: vdiffr Saving _problems/test_BenchmarkResult-7.R > test_Filter.R: Loading required namespace: vdiffr Saving _problems/test_LearnerClassif-6.R > test_OptimInstanceSingleCrit.R: Loading required package: paradox > test_PredictionRegr.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. Saving _problems/test_ResampleResult-7.R > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TuningInstanceSingleCrit.R: Loading required package: mlr3 Saving _problems/test_plot_learner_prediction-8.R Saving _problems/test_plot_learner_prediction-41.R Saving _problems/test_plot_learner_prediction-51.R Saving _problems/test_TuningInstanceSingleCrit-24.R [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] ══ Skipped tests (20) ══════════════════════════════════════════════════════════ • On CRAN (20): 'test_Filter.R:3:1', 'test_LearnerClassif.R:11:1', 'test_EnsembleFSResult.R:4:1', 'test_LearnerClassifRpart.R:6:1', 'test_LearnerClassifCVGlmnet.R:8:1', 'test_LearnerClasssifGlmnet.R:8:1', 'test_LearnerClustHierarchical.R:7:3', 'test_LearnerRegr.R:1:1', 'test_LearnerRegr.R:11:1', 'test_LearnerRegr.R:21:1', 'test_LearnerRegrCVGlmnet.R:8:1', 'test_LearnerRegrGlmnet.R:7:1', 'test_LearnerRegrRpart.R:6:1', 'test_PredictionClassif.R:8:1', 'test_PredictionClust.R:8:3', 'test_PredictionRegr.R:3:1', 'test_OptimInstanceSingleCrit.R:35:1', 'test_TaskClust.R:4:1', 'test_TaskRegr.R:3:1', 'test_TaskClassif.R:3:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkResult.R:7:1'): (code run outside of `test_that()`) ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(mlr3::benchmark_grid(tasks, learner, resampling)) at test_BenchmarkResult.R:7:1 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_LearnerClassif.R:6:3'): autoplot.PredictionClassif decision boundary probability ── Error in ``[.data.table`(grid, , `:=`(".prob.response", .SD[, paste0("prob.", get("response")), with = FALSE]), by = "response")`: attempt access index 7/7 in VECTOR_ELT Backtrace: ▆ 1. ├─ggplot2::autoplot(learner, type = "prediction", task = task) at test_LearnerClassif.R:6:3 2. ├─mlr3viz:::autoplot.LearnerClassifRpart(...) 3. ├─base::NextMethod() 4. └─mlr3viz:::autoplot.LearnerClassif(...) 5. └─mlr3viz:::predict_grid(...) 6. ├─...[] 7. └─data.table:::`[.data.table`(...) ── Error ('test_ResampleResult.R:7:1'): (code run outside of `test_that()`) ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_ResampleResult.R:7:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:8:3'): plot_learner_prediction.LearnerClassif ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:8:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:41:3'): plot_learner_prediction.LearnerRegr 2d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:41:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:51:3'): plot_learner_prediction.LearnerRegr 1d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:51:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceSingleCrit.R:24:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] Deleting unused snapshots: 'BenchmarkResult/bmr-boxplot.svg', 'BenchmarkResult/bmr-holdout-ci.svg', 'BenchmarkResult/bmr-holdout-roc.svg', 'BenchmarkResult/bmr-prc.svg', 'BenchmarkResult/bmr-roc.svg', 'LearnerClassif/learner-classif-prob.svg', 'LearnerClustHierarchical/learner-clust-agnes.svg', 'LearnerClustHierarchical/learner-clust-hclust.svg', 'PredictionClust/predictionclust-pca.svg', 'PredictionClust/predictionclust-scatter.svg', 'PredictionClust/predictionclust-sil.svg', 'ResampleResult/resampleresult-boxplot.svg', 'ResampleResult/resampleresult-histogram.svg', 'ResampleResult/resampleresult-prc.svg', 'ResampleResult/resampleresult-roc.svg', 'TuningInstanceSingleCrit/tisc-incumbent.svg', 'TuningInstanceSingleCrit/tisc-marginal-01.svg', 'TuningInstanceSingleCrit/tisc-marginal-02.svg', …, 'plot_learner_prediction/learner-prediction-prob.svg', and 'plot_learner_prediction/learner-prediction-response.svg' Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.10.1
Check: examples
Result: ERROR Running examples in ‘mlr3viz-Ex.R’ failed The error most likely occurred in: > ### Name: autoplot.BenchmarkResult > ### Title: Plots for Benchmark Results > ### Aliases: autoplot.BenchmarkResult > > ### ** Examples > > if (requireNamespace("mlr3")) { + library(mlr3) + library(mlr3viz) + + tasks = tsks(c("pima", "sonar")) + learner = lrns(c("classif.featureless", "classif.rpart"), + predict_type = "prob") + resampling = rsmps("cv") + object = benchmark(benchmark_grid(tasks, learner, resampling)) + + head(fortify(object)) + autoplot(object) + autoplot(object$clone(deep = TRUE)$filter(task_ids = "pima"), type = "roc") + } Loading required namespace: mlr3 INFO [09:23:55.908] [mlr3] Running benchmark with 40 resampling iterations INFO [09:23:56.720] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/10) INFO [09:23:57.107] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/10) INFO [09:23:57.441] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 3/10) INFO [09:23:57.576] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 4/10) INFO [09:23:58.520] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 5/10) INFO [09:23:58.781] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 6/10) INFO [09:23:58.969] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 7/10) INFO [09:23:59.331] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 8/10) INFO [09:23:59.511] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 9/10) INFO [09:23:59.610] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 10/10) INFO [09:23:59.731] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/10) INFO [09:24:00.005] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/10) INFO [09:24:00.150] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 3/10) INFO [09:24:01.903] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 4/10) INFO [09:24:02.372] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 5/10) INFO [09:24:02.563] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 6/10) INFO [09:24:02.769] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 7/10) INFO [09:24:02.931] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 8/10) INFO [09:24:03.736] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 9/10) INFO [09:24:03.963] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 10/10) INFO [09:24:04.197] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/10) INFO [09:24:04.382] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/10) INFO [09:24:04.535] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/10) INFO [09:24:04.704] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 4/10) INFO [09:24:04.872] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 5/10) INFO [09:24:05.074] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 6/10) INFO [09:24:05.267] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 7/10) INFO [09:24:05.444] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 8/10) INFO [09:24:05.625] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 9/10) INFO [09:24:05.740] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 10/10) INFO [09:24:05.959] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/10) INFO [09:24:06.066] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/10) INFO [09:24:06.169] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/10) INFO [09:24:06.826] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 4/10) INFO [09:24:06.915] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 5/10) INFO [09:24:07.003] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 6/10) INFO [09:24:07.506] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 7/10) INFO [09:24:07.794] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 8/10) INFO [09:24:08.003] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 9/10) INFO [09:24:08.188] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 10/10) INFO [09:24:08.496] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.10.1
Check: tests
Result: ERROR Running ‘testthat.R’ [138s/221s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3viz") + test_check("mlr3viz") + } Starting 2 test processes. > test_EnsembleFSResult.R: Loading required namespace: vdiffr Saving _problems/test_BenchmarkResult-7.R > test_Filter.R: Loading required namespace: vdiffr Saving _problems/test_LearnerClassif-6.R > test_OptimInstanceSingleCrit.R: Loading required package: paradox > test_PredictionRegr.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. Saving _problems/test_ResampleResult-7.R > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. Saving _problems/test_TuningInstanceSingleCrit-24.R Saving _problems/test_plot_learner_prediction-8.R Saving _problems/test_plot_learner_prediction-41.R Saving _problems/test_plot_learner_prediction-51.R [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] ══ Skipped tests (20) ══════════════════════════════════════════════════════════ • On CRAN (20): 'test_Filter.R:3:1', 'test_LearnerClassif.R:11:1', 'test_EnsembleFSResult.R:4:1', 'test_LearnerClassifRpart.R:6:1', 'test_LearnerClassifCVGlmnet.R:8:1', 'test_LearnerClustHierarchical.R:7:3', 'test_LearnerClasssifGlmnet.R:8:1', 'test_LearnerRegrCVGlmnet.R:8:1', 'test_LearnerRegrGlmnet.R:7:1', 'test_LearnerRegr.R:1:1', 'test_LearnerRegr.R:11:1', 'test_LearnerRegr.R:21:1', 'test_LearnerRegrRpart.R:6:1', 'test_PredictionClassif.R:8:1', 'test_PredictionClust.R:8:3', 'test_PredictionRegr.R:3:1', 'test_OptimInstanceSingleCrit.R:35:1', 'test_TaskClust.R:4:1', 'test_TaskRegr.R:3:1', 'test_TaskClassif.R:3:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkResult.R:7:1'): (code run outside of `test_that()`) ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(mlr3::benchmark_grid(tasks, learner, resampling)) at test_BenchmarkResult.R:7:1 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_LearnerClassif.R:6:3'): autoplot.PredictionClassif decision boundary probability ── Error in ``[.data.table`(grid, , `:=`(".prob.response", .SD[, paste0("prob.", get("response")), with = FALSE]), by = "response")`: attempt access index 7/7 in VECTOR_ELT Backtrace: ▆ 1. ├─ggplot2::autoplot(learner, type = "prediction", task = task) at test_LearnerClassif.R:6:3 2. ├─mlr3viz:::autoplot.LearnerClassifRpart(...) 3. ├─base::NextMethod() 4. └─mlr3viz:::autoplot.LearnerClassif(...) 5. └─mlr3viz:::predict_grid(...) 6. ├─...[] 7. └─data.table:::`[.data.table`(...) ── Error ('test_ResampleResult.R:7:1'): (code run outside of `test_that()`) ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_ResampleResult.R:7:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceSingleCrit.R:24:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:8:3'): plot_learner_prediction.LearnerClassif ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:8:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:41:3'): plot_learner_prediction.LearnerRegr 2d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:41:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:51:3'): plot_learner_prediction.LearnerRegr 1d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:51:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] Deleting unused snapshots: 'BenchmarkResult/bmr-boxplot.svg', 'BenchmarkResult/bmr-holdout-ci.svg', 'BenchmarkResult/bmr-holdout-roc.svg', 'BenchmarkResult/bmr-prc.svg', 'BenchmarkResult/bmr-roc.svg', 'LearnerClassif/learner-classif-prob.svg', 'LearnerClustHierarchical/learner-clust-agnes.svg', 'LearnerClustHierarchical/learner-clust-hclust.svg', 'PredictionClust/predictionclust-pca.svg', 'PredictionClust/predictionclust-scatter.svg', 'PredictionClust/predictionclust-sil.svg', 'ResampleResult/resampleresult-boxplot.svg', 'ResampleResult/resampleresult-histogram.svg', 'ResampleResult/resampleresult-prc.svg', 'ResampleResult/resampleresult-roc.svg', 'TuningInstanceSingleCrit/tisc-incumbent.svg', 'TuningInstanceSingleCrit/tisc-marginal-01.svg', 'TuningInstanceSingleCrit/tisc-marginal-02.svg', …, 'plot_learner_prediction/learner-prediction-prob.svg', and 'plot_learner_prediction/learner-prediction-response.svg' Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.10.1
Check: examples
Result: ERROR Running examples in ‘mlr3viz-Ex.R’ failed The error most likely occurred in: > ### Name: autoplot.BenchmarkResult > ### Title: Plots for Benchmark Results > ### Aliases: autoplot.BenchmarkResult > > ### ** Examples > > if (requireNamespace("mlr3")) { + library(mlr3) + library(mlr3viz) + + tasks = tsks(c("pima", "sonar")) + learner = lrns(c("classif.featureless", "classif.rpart"), + predict_type = "prob") + resampling = rsmps("cv") + object = benchmark(benchmark_grid(tasks, learner, resampling)) + + head(fortify(object)) + autoplot(object) + autoplot(object$clone(deep = TRUE)$filter(task_ids = "pima"), type = "roc") + } Loading required namespace: mlr3 INFO [02:08:29.650] [mlr3] Running benchmark with 40 resampling iterations INFO [02:08:30.020] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/10) INFO [02:08:30.149] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/10) INFO [02:08:30.247] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 3/10) INFO [02:08:30.326] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 4/10) INFO [02:08:30.398] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 5/10) INFO [02:08:30.471] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 6/10) INFO [02:08:30.547] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 7/10) INFO [02:08:30.636] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 8/10) INFO [02:08:30.743] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 9/10) INFO [02:08:30.789] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 10/10) INFO [02:08:30.906] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/10) INFO [02:08:31.001] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/10) INFO [02:08:31.063] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 3/10) INFO [02:08:31.136] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 4/10) INFO [02:08:31.198] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 5/10) INFO [02:08:31.262] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 6/10) INFO [02:08:31.326] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 7/10) INFO [02:08:31.402] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 8/10) INFO [02:08:31.465] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 9/10) INFO [02:08:31.531] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 10/10) INFO [02:08:31.599] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/10) INFO [02:08:31.653] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/10) INFO [02:08:31.703] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/10) INFO [02:08:31.747] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 4/10) INFO [02:08:31.840] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 5/10) INFO [02:08:31.916] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 6/10) INFO [02:08:31.994] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 7/10) INFO [02:08:32.077] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 8/10) INFO [02:08:32.134] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 9/10) INFO [02:08:32.188] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 10/10) INFO [02:08:32.278] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/10) INFO [02:08:32.380] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/10) INFO [02:08:32.507] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/10) INFO [02:08:32.593] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 4/10) INFO [02:08:32.710] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 5/10) INFO [02:08:32.814] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 6/10) INFO [02:08:32.894] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 7/10) INFO [02:08:32.972] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 8/10) INFO [02:08:33.053] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 9/10) INFO [02:08:33.137] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 10/10) INFO [02:08:33.267] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.10.1
Check: tests
Result: ERROR Running ‘testthat.R’ [122s/90s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3viz") + test_check("mlr3viz") + } Starting 2 test processes. Saving _problems/test_BenchmarkResult-7.R > test_Filter.R: Loading required namespace: vdiffr > test_EnsembleFSResult.R: Loading required namespace: vdiffr Saving _problems/test_LearnerClassif-6.R > test_OptimInstanceSingleCrit.R: Loading required package: paradox > test_PredictionRegr.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. Saving _problems/test_ResampleResult-7.R > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TuningInstanceSingleCrit.R: Loading required package: paradox Saving _problems/test_TuningInstanceSingleCrit-24.R Saving _problems/test_plot_learner_prediction-8.R Saving _problems/test_plot_learner_prediction-41.R Saving _problems/test_plot_learner_prediction-51.R [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] ══ Skipped tests (20) ══════════════════════════════════════════════════════════ • On CRAN (20): 'test_Filter.R:3:1', 'test_LearnerClassif.R:11:1', 'test_LearnerClassifCVGlmnet.R:8:1', 'test_EnsembleFSResult.R:4:1', 'test_LearnerClassifRpart.R:6:1', 'test_LearnerClustHierarchical.R:7:3', 'test_LearnerClasssifGlmnet.R:8:1', 'test_LearnerRegr.R:1:1', 'test_LearnerRegr.R:11:1', 'test_LearnerRegr.R:21:1', 'test_LearnerRegrGlmnet.R:7:1', 'test_LearnerRegrCVGlmnet.R:8:1', 'test_LearnerRegrRpart.R:6:1', 'test_PredictionClassif.R:8:1', 'test_PredictionClust.R:8:3', 'test_PredictionRegr.R:3:1', 'test_OptimInstanceSingleCrit.R:35:1', 'test_TaskClassif.R:3:1', 'test_TaskRegr.R:3:1', 'test_TaskClust.R:4:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkResult.R:7:1'): (code run outside of `test_that()`) ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(mlr3::benchmark_grid(tasks, learner, resampling)) at test_BenchmarkResult.R:7:1 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_LearnerClassif.R:6:3'): autoplot.PredictionClassif decision boundary probability ── Error in ``[.data.table`(grid, , `:=`(".prob.response", .SD[, paste0("prob.", get("response")), with = FALSE]), by = "response")`: attempt access index 7/7 in VECTOR_ELT Backtrace: ▆ 1. ├─ggplot2::autoplot(learner, type = "prediction", task = task) at test_LearnerClassif.R:6:3 2. ├─mlr3viz:::autoplot.LearnerClassifRpart(...) 3. ├─base::NextMethod() 4. └─mlr3viz:::autoplot.LearnerClassif(...) 5. └─mlr3viz:::predict_grid(...) 6. ├─...[] 7. └─data.table:::`[.data.table`(...) ── Error ('test_ResampleResult.R:7:1'): (code run outside of `test_that()`) ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_ResampleResult.R:7:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceSingleCrit.R:24:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:8:3'): plot_learner_prediction.LearnerClassif ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:8:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:41:3'): plot_learner_prediction.LearnerRegr 2d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:41:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:51:3'): plot_learner_prediction.LearnerRegr 1d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:51:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] Deleting unused snapshots: 'BenchmarkResult/bmr-boxplot.svg', 'BenchmarkResult/bmr-holdout-ci.svg', 'BenchmarkResult/bmr-holdout-roc.svg', 'BenchmarkResult/bmr-prc.svg', 'BenchmarkResult/bmr-roc.svg', 'LearnerClassif/learner-classif-prob.svg', 'LearnerClustHierarchical/learner-clust-agnes.svg', 'LearnerClustHierarchical/learner-clust-hclust.svg', 'PredictionClust/predictionclust-pca.svg', 'PredictionClust/predictionclust-scatter.svg', 'PredictionClust/predictionclust-sil.svg', 'ResampleResult/resampleresult-boxplot.svg', 'ResampleResult/resampleresult-histogram.svg', 'ResampleResult/resampleresult-prc.svg', 'ResampleResult/resampleresult-roc.svg', 'TuningInstanceSingleCrit/tisc-incumbent.svg', 'TuningInstanceSingleCrit/tisc-marginal-01.svg', 'TuningInstanceSingleCrit/tisc-marginal-02.svg', …, 'plot_learner_prediction/learner-prediction-prob.svg', and 'plot_learner_prediction/learner-prediction-response.svg' Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.10.1
Check: package dependencies
Result: NOTE Package suggested but not available for checking: ‘mlr3proba’ Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64