
Writing R Extensions

Version 4.4.2 (2024-10-31)

R Core Team

This manual is for R, version 4.4.2 (2024-10-31).

Copyright © 1999–2024 R Core Team

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.

Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation
approved by the R Core Team.

Table of Contents

 	Acknowledgements

 	1 Creating R packages

 	1.1 Package structure

 	1.1.1 The DESCRIPTION file

 	1.1.2 Licensing

 	1.1.3 Package Dependencies

 	1.1.3.1 Suggested packages

 	1.1.4 The INDEX file

 	1.1.5 Package subdirectories

 	1.1.6 Data in packages

 	1.1.7 Non-R scripts in packages

 	1.1.8 Specifying URLs

 	1.2 Configure and cleanup

 	1.2.1 Using Makevars

 	1.2.1.1 OpenMP support

 	1.2.1.2 Using pthreads

 	1.2.1.3 Compiling in sub-directories

 	1.2.2 Configure example

 	1.2.3 Using modern Fortran code

 	1.2.4 Using C++ code

 	1.2.5 C standards

 	1.2.6 Using cmake

 	1.3 Checking and building packages

 	1.3.1 Checking packages

 	1.3.2 Building package tarballs

 	1.3.3 Building binary packages

 	1.4 Writing package vignettes

 	1.4.1 Encodings and vignettes

 	1.4.2 Non-Sweave vignettes

 	1.5 Package namespaces

 	1.5.1 Specifying imports and exports

 	1.5.2 Registering S3 methods

 	1.5.3 Load hooks

 	1.5.4 useDynLib

 	1.5.5 An example

 	1.5.6 Namespaces with S4 classes and methods

 	1.6 Writing portable packages

 	1.6.1 PDF size

 	1.6.2 Check timing

 	1.6.3 Encoding issues

 	1.6.4 Portable C and C++ code

 	1.6.4.1 Common symbols

 	1.6.4.2 C++17 issues

 	1.6.5 Portable Fortran code

 	1.6.6 Binary distribution

 	1.7 Diagnostic messages

 	1.8 Internationalization

 	1.8.1 C-level messages

 	1.8.2 R messages

 	1.8.3 Preparing translations

 	1.9 CITATION files

 	1.10 Package types

 	1.10.1 Frontend

 	1.11 Services

 	2 Writing R documentation files

 	2.1 Rd format

 	2.1.1 Documenting functions

 	2.1.2 Documenting data sets

 	2.1.3 Documenting S4 classes and methods

 	2.1.4 Documenting packages

 	2.2 Sectioning

 	2.3 Marking text

 	2.4 Lists and tables

 	2.5 Cross-references

 	2.6 Mathematics

 	2.7 Figures

 	2.8 Insertions

 	2.9 Indices

 	2.10 Platform-specific documentation

 	2.11 Conditional text

 	2.12 Dynamic pages

 	2.13 User-defined macros

 	2.14 Encoding

 	2.15 Processing documentation files

 	2.16 Editing Rd files

 	3 Tidying and profiling R code

 	3.1 Tidying R code

 	3.2 Profiling R code for speed

 	3.3 Profiling R code for memory use

 	3.3.1 Memory statistics from Rprof

 	3.3.2 Tracking memory allocations

 	3.3.3 Tracing copies of an object

 	3.4 Profiling compiled code

 	3.4.1 Profiling on Linux

 	3.4.1.1 perf

 	3.4.1.2 oprofile and operf

 	3.4.1.3 sprof

 	3.4.2 Profiling on macOS

 	3.4.3 Profiling on Windows

 	4 Debugging

 	4.1 Browsing

 	4.2 Debugging R code

 	4.3 Checking memory access

 	4.3.1 Using gctorture

 	4.3.2 Using Valgrind

 	4.3.3 Using the Address Sanitizer

 	4.3.3.1 Using the Leak Sanitizer

 	4.3.4 Using the Undefined Behaviour Sanitizer

 	4.3.5 Other analyses with ‘clang’

 	4.3.6 Other analyses with ‘gcc’

 	4.3.7 Using ‘Dr. Memory’

 	4.3.8 Fortran array bounds checking

 	4.4 Debugging compiled code

 	4.4.1 Finding entry points in dynamically loaded code

 	4.4.2 Inspecting R objects when debugging

 	4.4.3 Debugging on macOS

 	4.5 Using Link-time Optimization

 	5 System and foreign language interfaces

 	5.1 Operating system access

 	5.2 Interface functions .C and .Fortran

 	5.3 dyn.load and dyn.unload

 	5.4 Registering native routines

 	5.4.1 Speed considerations

 	5.4.2 Example: converting a package to use registration

 	5.4.3 Linking to native routines in other packages

 	5.5 Creating shared objects

 	5.6 Interfacing C++ code

 	5.6.1 External C++ code

 	5.7 Fortran I/O

 	5.8 Linking to other packages

 	5.8.1 Unix-alikes

 	5.8.2 Windows

 	5.9 Handling R objects in C

 	5.9.1 Handling the effects of garbage collection

 	5.9.2 Allocating storage

 	5.9.3 Details of R types

 	5.9.4 Attributes

 	5.9.5 Classes

 	5.9.6 Handling lists

 	5.9.7 Handling character data

 	5.9.8 Finding and setting variables

 	5.9.9 Some convenience functions

 	5.9.9.1 Semi-internal convenience functions

 	5.9.10 Named objects and copying

 	5.10 Interface functions .Call and .External

 	5.10.1 Calling .Call

 	5.10.2 Calling .External

 	5.10.3 Missing and special values

 	5.11 Evaluating R expressions from C

 	5.11.1 Zero-finding

 	5.11.2 Calculating numerical derivatives

 	5.12 Parsing R code from C

 	5.12.1 Accessing source references

 	5.13 External pointers and weak references

 	5.13.1 An example

 	5.14 Vector accessor functions

 	5.15 Character encoding issues

 	6 The R API: entry points for C code

 	6.1 Memory allocation

 	6.1.1 Transient storage allocation

 	6.1.2 User-controlled memory

 	6.2 Error signaling

 	6.2.1 Error signaling from Fortran

 	6.3 Random number generation

 	6.3.1 Random-number generation from Fortran

 	6.4 Missing and IEEE special values

 	6.5 Printing

 	6.5.1 Printing from Fortran

 	6.6 Calling C from Fortran and vice versa

 	6.6.1 Fortran character strings

 	6.6.2 Fortran LOGICAL

 	6.6.3 Passing functions

 	6.7 Numerical analysis subroutines

 	6.7.1 Distribution functions

 	6.7.2 Mathematical functions

 	6.7.3 Numerical Utilities

 	6.7.4 Mathematical constants

 	6.8 Optimization

 	6.9 Integration

 	6.10 Utility functions

 	6.11 Re-encoding

 	6.12 Condition handling and cleanup code

 	6.13 Allowing interrupts

 	6.14 Platform and version information

 	6.15 Inlining C functions

 	6.16 Controlling visibility

 	6.17 Using these functions in your own C code

 	6.18 Organization of header files

 	7 Generic functions and methods

 	7.1 Adding new generics

 	8 Linking GUIs and other front-ends to R

 	8.1 Embedding R under Unix-alikes

 	8.1.1 Compiling against the R library

 	8.1.2 Setting R callbacks

 	8.1.3 Registering symbols

 	8.1.4 Meshing event loops

 	8.1.5 Threading issues

 	8.2 Embedding R under Windows

 	8.2.1 Using (D)COM

 	8.2.2 Calling R.dll directly

 	8.2.3 Finding R_HOME

 	Function and variable index

 	Concept index

Acknowledgements

The contributions to early versions of this manual by Saikat DebRoy
(who wrote the first draft of a guide to using .Call and
.External) and Adrian Trapletti (who provided information on the
C++ interface) are gratefully acknowledged.

1 Creating R packages

Packages provide a mechanism for loading optional code, data and
documentation as needed. The R distribution itself includes about 30
packages.

In the following, we assume that you know the library() command,
including its lib.loc argument, and we also assume basic
knowledge of the R CMD INSTALL utility. Otherwise, please
look at R’s help pages on

?library
?INSTALL

before reading on.

For packages which contain code to be compiled, a computing environment
including a number of tools is assumed; the “R Installation and
Administration” manual describes what is needed for each OS.

Once a source package is created, it must be installed by
the command R CMD INSTALL.
See section ‘Add-on-packages’ in the ‘R Installation and Administration’
manual for more information.

Other types of extensions are supported (but rare): See Package types.

Some notes on terminology complete this introduction. These will help
with the reading of this manual, and also in describing concepts
accurately when asking for help.

A package is a directory of files which extend R, a
source package (the master files of a package), or a tarball
containing the files of a source package, or an installed
package, the result of running R CMD INSTALL on a source
package. On some platforms (notably macOS and ‘x86_64’ Windows)
there are also binary packages, a zip file or tarball containing
the files of an installed package which can be unpacked rather than
installing from sources.

A package is not1 a
library. The latter is used in two senses in R documentation.

	A directory into which packages are installed, e.g.
/usr/lib/R/library: in that sense it is sometimes referred to as
a library directory or library tree (since the library is
a directory which contains packages as directories, which themselves
contain directories).

	That used by the operating system, as a shared, dynamic or static
library or (especially on Windows) a DLL, where the second L stands for
‘library’. Installed packages may contain compiled code in what is
known on Unix-alikes as a shared object and on Windows as a DLL.
The concept of a shared library (dynamic library on macOS)
as a collection of compiled code to which a package might link is also
used, especially for R itself on some platforms. On most platforms
these concepts are interchangeable (shared objects and DLLs can both be
loaded into the R process and be linked against), but macOS
distinguishes between shared objects (extension .so) and dynamic
libraries (extension .dylib).

There are a number of well-defined operations on source packages.

	The most common is installation which takes a source package and
installs it in a library using R CMD INSTALL or
install.packages.

	Source packages can be built. This involves taking a source
directory and creating a tarball ready for distribution, including
cleaning it up and creating PDF/HTML documentation from any vignettes
it may contain. Source packages (and most often tarballs) can be
checked, when a test installation is done and tested (including
running its examples); also, the contents of the package are tested in
various ways for consistency and portability.

	Compilation is not a correct term for a package. Installing a
source package which contains C, C++ or Fortran code will involve
compiling that code. There is also the possibility of ‘byte’ compiling
the R code in a package (using the facilities of package
compiler): nowadays this is enabled by default for all
packages. So compiling a package may come to mean byte-compiling
its R code.

	It used to be unambiguous to talk about loading an installed
package using library(), but since the advent of package
namespaces this has been less clear: people now often talk about
loading the package’s namespace and then attaching the
package so it becomes visible on the search path. Function
library performs both steps, but a package’s namespace can be
loaded without the package being attached (for example by calls like
splines::ns).

The concept of lazy loading of code or data is mentioned at
several points. This is part of the installation, always selected for
R code but optional for data. When used the R objects of the
package are created at installation time and stored in a database in the
R directory of the installed package, being loaded into the
session at first use. This makes the R session start up faster and
use less (virtual) memory.
(For technical details,
see section ‘Lazy loading’ in the ‘R Internals’ manual.)

CRAN is a network of WWW sites holding the R distributions
and contributed code, especially R packages. Users of R are
encouraged to join in the collaborative project and to submit their own
packages to CRAN: current instructions are linked from
https://CRAN.R-project.org/banner.shtml#submitting.

1.1 Package structure

The sources of an R package consist of a subdirectory containing the
files DESCRIPTION and NAMESPACE, and the subdirectories
R, data, demo, exec, inst,
man, po, src, tests, tools and
vignettes (some of which can be missing, but which should not be
empty). The package subdirectory may also contain files INDEX,
configure, cleanup, LICENSE, LICENCE and
NEWS. Other files such as INSTALL (for non-standard
installation instructions), README/README.md2, or ChangeLog will be ignored by R, but may
be useful to end users. The utility R CMD build may add files
in a build directory (but this should not be used for other
purposes).

Except where specifically mentioned,3 packages should not contain
Unix-style ‘hidden’ files/directories (that is, those whose name starts
with a dot).

The DESCRIPTION and INDEX files are described in the
subsections below. The NAMESPACE file is described in the
section on Package namespaces.

The optional files configure and cleanup are (Bourne)
shell scripts which are, respectively, executed before and (if option
--clean was given) after installation on Unix-alikes, see
Configure and cleanup. The analogues on Windows are
configure.win and cleanup.win. Since R 4.2.0 on Windows,
configure.ucrt and cleanup.ucrt are supported and take
precedence over configure.win and cleanup.win. They can
hence be used to provide content specific to UCRT or Rtools42 and newer, if needed,
but the support for .ucrt files may be removed in future when
building packages from source on the older versions of R will no longer
be needed, and hence the files may be renamed back to .win.

For the conventions for files NEWS and ChangeLog in the
GNU project see
https://www.gnu.org/prep/standards/standards.html#Documentation.

The package subdirectory should be given the same name as the package.
Because some file systems (e.g., those on Windows and by default on
macOS) are not case-sensitive, to maintain portability it is strongly
recommended that case distinctions not be used to distinguish different
packages. For example, if you have a package named foo, do not
also create a package named Foo.

To ensure that file names are valid across file systems and supported
operating systems, the ASCII control characters as well as the
characters ‘"’, ‘*’, ‘:’, ‘/’, ‘<’, ‘>’,
‘?’, ‘\’, and ‘|’ are not allowed in file names. In
addition, files with names ‘con’, ‘prn’, ‘aux’,
‘clock$’, ‘nul’, ‘com1’ to ‘com9’, and ‘lpt1’
to ‘lpt9’ after conversion to lower case and stripping possible
“extensions” (e.g., ‘lpt5.foo.bar’), are disallowed. Also, file
names in the same directory must not differ only by case (see the
previous paragraph). In addition, the basenames of ‘.Rd’ files may
be used in URLs and so must be ASCII and not contain %.
For maximal portability filenames should only contain only
ASCII characters not excluded already (that is
A-Za-z0-9._!#$%&+,;=@^(){}'[] — we exclude space as many
utilities do not accept spaces in file paths): non-English alphabetic
characters cannot be guaranteed to be supported in all locales. It
would be good practice to avoid the shell metacharacters
(){}'[]$~: ~ is also used as part of ‘8.3’ filenames on
Windows. In addition, packages are normally distributed as tarballs,
and these have a limit on path lengths: for maximal portability 100
bytes.

A source package if possible should not contain binary executable files:
they are not portable, and a security risk if they are of the
appropriate architecture. R CMD check will warn about
them4 unless they are listed (one filepath per line) in a file
BinaryFiles at the top level of the package. Note that
CRAN will not accept submissions containing binary files
even if they are listed.

The R function package.skeleton can help to create the
structure for a new package: see its help page for details.

1.1.1 The DESCRIPTION file

The DESCRIPTION file contains basic information about the package
in the following format:

	

Package: pkgname
Version: 0.5-1
Date: 2015-01-01
Title: My First Collection of Functions
Authors@R: c(person("Joe", "Developer", role = c("aut", "cre"),
 email = "Joe.Developer@some.domain.net"),
 person("Pat", "Developer", role = "aut"),
 person("A.", "User", role = "ctb",
 email = "A.User@whereever.net"))
Author: Joe Developer [aut, cre],
 Pat Developer [aut],
 A. User [ctb]
Maintainer: Joe Developer <Joe.Developer@some.domain.net>
Depends: R (>= 3.1.0), nlme
Suggests: MASS
Description: A (one paragraph) description of what
 the package does and why it may be useful.
License: GPL (>= 2)
URL: https://www.r-project.org, http://www.another.url
BugReports: https://pkgname.bugtracker.url

The format is that of a version of a ‘Debian Control File’ (see the help
for ‘read.dcf’ and
https://www.debian.org/doc/debian-policy/ch-controlfields.html:
R does not require encoding in UTF-8 and does not support comments
starting with ‘#’). Fields start with an ASCII name
immediately followed by a colon: the value starts after the colon and a
space. Continuation lines (for example, for descriptions longer than
one line) start with a space or tab. Field names are case-sensitive:
all those used by R are capitalized.

For maximal portability, the DESCRIPTION file should be written
entirely in ASCII — if this is not possible it must contain
an ‘Encoding’ field (see below).

Several optional fields take logical values: these can be
specified as ‘yes’, ‘true’, ‘no’ or ‘false’:
capitalized values are also accepted.

The ‘Package’, ‘Version’, ‘License’, ‘Description’,
‘Title’, ‘Author’, and ‘Maintainer’ fields are mandatory,
all other fields are optional. Fields ‘Author’ and
‘Maintainer’ can be auto-generated from ‘Authors@R’, and may
be omitted if the latter is provided: however if they are not
ASCII we recommend that they are provided.

The mandatory ‘Package’ field gives the name of the package. This
should contain only (ASCII) letters, numbers and dot, have at
least two characters and start with a letter and not end in a dot. If
it needs explaining, this should be done in the ‘Description’ field
(and not the ‘Title’ field).

The mandatory ‘Version’ field gives the version of the package.
This is a sequence of at least two (and usually three)
non-negative integers separated by single ‘.’ or ‘-’
characters. The canonical form is as shown in the example, and a
version such as ‘0.01’ or ‘0.01.0’ will be handled as if it
were ‘0.1-0’. It is not a decimal number, so for example
0.9 < 0.75 since 9 < 75.

The mandatory ‘License’ field is discussed in the next subsection.

The mandatory ‘Title’ field should give a short description
of the package. Some package listings may truncate the title to 65
characters. It should use title case (that is, use capitals for
the principal words: tools::toTitleCase can help you with this),
not use any markup, not have any continuation lines, and not end in a
period (unless part of …). Do not repeat the package name: it is
often used prefixed by the name. Refer to other packages and external
software in single quotes, and to book titles (and similar) in double
quotes.

The mandatory ‘Description’ field should give a
comprehensive description of what the package does. One can use
several (complete) sentences, but only one paragraph. It should be
intelligible to all the intended readership (e.g. for a CRAN
package to all CRAN users). It is good practice not to start
with the package name, ‘This package’ or similar. As with the
‘Title’ field, double quotes should be used for quotations
(including titles of books and articles), and single quotes for
non-English usage, including names of other packages and external
software. This field should also be used for explaining the package
name if necessary. URLs should be enclosed in angle brackets, e.g.
‘<https://www.r-project.org>’: see also Specifying URLs.

The mandatory ‘Author’ field describes who wrote the
package. It is a plain text field intended for human readers, but not
for automatic processing (such as extracting the email addresses of all
listed contributors: for that use ‘Authors@R’). Note that all
significant contributors must be included: if you wrote an R wrapper
for the work of others included in the src directory, you are not
the sole (and maybe not even the main) author.

The mandatory ‘Maintainer’ field should give a single name
followed by a valid (RFC 2822) email address in angle brackets. It
should not end in a period or comma. This field is what is reported by
the maintainer function and used by bug.report. For a
CRAN package it should be a person, not a mailing list
and not a corporate entity: do ensure that it is valid and will remain
valid for the lifetime of the package.

Note that the display name (the part before the address in angle
brackets) should be enclosed in double quotes if it contains
non-alphanumeric characters such as comma or period. (The current
standard, RFC 5322, allows periods but RFC 2822 did not.)

Both ‘Author’ and ‘Maintainer’ fields can be omitted if a
suitable ‘Authors@R’ field is given. This field can be used to
provide a refined and machine-readable description of the package
“authors” (in particular specifying their precise roles),
via suitable R code. It should create an object of class
"person", by either a call to person or a series of calls
(one per “author”) concatenated by c(): see the example
DESCRIPTION file above. The roles can include ‘"aut"’
(author) for full authors, ‘"cre"’ (creator) for the package
maintainer, and ‘"ctb"’ (contributor) for other contributors,
‘"cph"’ (copyright holder, which should be the legal name for an
institution or corporate body), among others. See ?person for
more information. Note that no role is assumed by default.
Auto-generated package citation information takes advantage of this
specification. The ‘Author’ and ‘Maintainer’ fields are
auto-generated from it if needed when building5 or installing.

An optional ‘Copyright’ field can be used where the copyright
holder(s) are not the authors. If necessary, this can refer to an
installed file: the convention is to use file inst/COPYRIGHTS.

The optional ‘Date’ field gives the release date of the
current version of the package. It is strongly recommended6 to use the ‘yyyy-mm-dd’ format conforming to the ISO
8601 standard.

The ‘Depends’, ‘Imports’, ‘Suggests’, ‘Enhances’,
‘LinkingTo’ and ‘Additional_repositories’ fields are discussed
in a later subsection.

Dependencies external to the R system should be listed in the
‘SystemRequirements’ field, possibly amplified in a separate
README file. This includes specifying a non-default C++ standard
and the need for GNU make.

The ‘URL’ field may give a list of URLs
separated by commas or whitespace, for example the homepage of the
author or a page where additional material describing the software can
be found. These URLs are converted to active hyperlinks in
CRAN package listings. See Specifying URLs.

The ‘BugReports’ field may contain a single URL to which
bug reports about the package should be submitted. This URL
will be used by bug.report instead of sending an email to the
maintainer. A browser is opened for a ‘http://’ or ‘https://’
URL. To specify another email address for bug reports, use
‘Contact’ instead: however bug.report will try to extract an
email address (preferably from a ‘mailto:’ URL or enclosed in angle
brackets) from ‘BugReports’.

Base and recommended packages (i.e., packages contained in the R
source distribution or available from CRAN and recommended to
be included in every binary distribution of R) have a ‘Priority’
field with value ‘base’ or ‘recommended’, respectively. These
priorities must not be used by other packages.

A ‘Collate’ field can be used for controlling the collation order
for the R code files in a package when these are processed for
package installation. The default is to collate according to the
‘C’ locale. If present, the collate specification must list
all R code files in the package (taking possible OS-specific
subdirectories into account, see Package subdirectories) as a
whitespace separated list of file paths relative to the R
subdirectory.
Paths containing white space or quotes need to be quoted. An
OS-specific collation field (‘Collate.unix’ or
‘Collate.windows’) will be used in preference to ‘Collate’.

The ‘LazyData’ logical field controls whether the R datasets use
lazy-loading. A ‘LazyLoad’ field was used in versions prior to
2.14.0, but now is ignored.

The ‘KeepSource’ logical field controls if the package code is sourced
using keep.source = TRUE or FALSE: it might be needed
exceptionally for a package designed to always be used with
keep.source = TRUE.

The ‘ByteCompile’ logical field controls if the package R code is to
be byte-compiled on installation: the default is to byte-compile. This
can be overridden by installing with flag --no-byte-compile.

The ‘UseLTO’ logical field is used to indicate if source code in
the package7 is to be
compiled with Link-Time Optimization (see Using Link-time Optimization) if R was installed with --enable-lto (default
true) or --enable-lto=R (default false) (or on
Windows8 if
LTO_OPT is set in MkRules). This can be overridden by the
flags --use-LTO and --no-use-LTO. LTO is said to give
most size and performance improvements for large and complex (heavily
templated) C++ projects.

The ‘StagedInstall’ logical field controls if package installation
is ‘staged’, that is done to a temporary location and moved to the final
location when successfully completed. This field was introduced in R
3.6.0 and it true by default: it is considered to be a temporary measure
which may be withdrawn in future.

The ‘ZipData’ logical field has been ignored since R 2.13.0.

The ‘Biarch’ logical field is used on Windows to select the
INSTALL option --force-biarch for this package. Not
currently relevant.

The ‘BuildVignettes’ logical field can be set to a false value to
stop R CMD build from attempting to build the vignettes, as
well as preventing9 R CMD check from testing
this. This should only be used exceptionally, for example if the PDFs
include large figures which are not part of the package sources (and
hence only in packages which do not have an Open Source license).

The ‘VignetteBuilder’ field names (in a comma-separated list)
packages that provide an engine for building vignettes. These may
include the current package, or ones listed in ‘Depends’,
‘Suggests’ or ‘Imports’. The utils package is always
implicitly appended. See Non-Sweave vignettes for details. Note
that if, for example, a vignette has engine ‘knitr::rmarkdown’,
then knitr provides the engine but both knitr and
rmarkdown are needed for using it, so both these
packages need to be in the ‘VignetteBuilder’ field and at least
suggested (as rmarkdown is only suggested by knitr, and
hence not available automatically along with it). Many packages using
knitr also need the package formatR which it
suggests and so the user package needs to do so too and include this in
‘VignetteBuilder’.

If the DESCRIPTION file is not entirely in ASCII it
should contain an ‘Encoding’ field specifying an encoding. This is
used as the encoding of the DESCRIPTION file itself and of the
R and NAMESPACE files, and as the default encoding of
.Rd files. The examples are assumed to be in this encoding when
running R CMD check, and it is used for the encoding of the
CITATION file. Only encoding names latin1 and
and UTF-8 are known to be portable. (Do not specify an encoding
unless one is actually needed: doing so makes the package less
portable. If a package has a specified encoding, you should run
R CMD build etc in a locale using that encoding.)

The ‘NeedsCompilation’ field should be set to "yes" if the
package contains native code which needs to be compiled, otherwise "no" (when
the package could be installed from source on any platform without
additional tools). This is used by install.packages(type =
"both") in R >= 2.15.2 on platforms where binary packages are the
norm: it is normally set by R CMD build or the repository
assuming compilation is required if and only if the package has a
src directory.

The ‘OS_type’ field specifies the OS(es) for which the
package is intended. If present, it should be one of unix or
windows, and indicates that the package can only be installed
on a platform with ‘.Platform$OS.type’ having that value.

The ‘Type’ field specifies the type of the package:
see Package types.

One can add subject classifications for the content of the package using
the fields ‘Classification/ACM’ or ‘Classification/ACM-2012’
(using the Computing Classification System of the Association for
Computing Machinery, https://www.acm.org/publications/class-2012; the former refers
to the 1998 version), ‘Classification/JEL’ (the Journal of Economic
Literature Classification System,
https://www.aeaweb.org/econlit/jelCodes.php, or
‘Classification/MSC’ or ‘Classification/MSC-2010’ (the
Mathematics Subject Classification of the American Mathematical Society,
https://mathscinet.ams.org/msc/msc2010.html; the former refers to the 2000 version).
The subject classifications should be comma-separated lists of the
respective classification codes, e.g., ‘Classification/ACM: G.4,
H.2.8, I.5.1’.

A ‘Language’ field can be used to indicate if the package
documentation is not in English: this should be a comma-separated list
of standard (not private use or grandfathered) IETF language tags as
currently defined by RFC 5646
(https://www.rfc-editor.org/rfc/rfc5646, see also
https://en.wikipedia.org/wiki/IETF_language_tag), i.e., use
language subtags which in essence are 2-letter ISO 639-1
(https://en.wikipedia.org/wiki/ISO_639-1) or 3-letter ISO
639-3 (https://en.wikipedia.org/wiki/ISO_639-3) language
codes.

An ‘RdMacros’ field can be used to hold a comma-separated list of
packages from which the current package will import Rd macro
definitions. These package should also be listed in ‘Imports’
(or ‘Depends’). The macros in these packages will be
imported after the system macros, in the
order listed in the ‘RdMacros’ field, before any macro definitions
in the current package are loaded. Macro definitions in individual
.Rd files in the man directory are loaded last, and are
local to later parts of that file. In case of duplicates, the last
loaded definition will be used.10 Both R CMD
Rd2pdf and R CMD Rdconv have an optional flag
--RdMacros=pkglist. The option is also a comma-separated list
of package names, and has priority over the value given in
DESCRIPTION. Packages using Rd macros should depend on
R 3.2.0 or later.

Note: There should be no ‘Built’ or ‘Packaged’ fields, as these are
added by the package management tools.

There is no restriction on the use of other fields not mentioned here
(but using other capitalizations of these field names would cause
confusion). Fields Note, Contact (for contacting the
authors/developers11) and MailingList are in common
use. Some repositories (including CRAN and R-forge) add their
own fields.

1.1.2 Licensing

Licensing for a package which might be distributed is an important but
potentially complex subject.

It is very important that you include license information! Otherwise,
it may not even be legally correct for others to distribute copies of
the package, let alone use it.

The package management tools use the concept of
‘free or open source software’
(FOSS, e.g., https://en.wikipedia.org/wiki/FOSS)
licenses: the idea being that some users of R and its packages want
to restrict themselves to such software. Others need to ensure that
there are no restrictions stopping them using a package, e.g.
forbidding commercial or military use. It is a central tenet of FOSS
software that there are no restrictions on users nor usage.

Do not use the ‘License’ field for information on copyright
holders: if needed, use a ‘Copyright’ field.

The mandatory ‘License’ field in the DESCRIPTION file should
specify the license of the package in a standardized form. Alternatives
are indicated via vertical bars. Individual specifications must
be one of

	One of the “standard” short specifications

GPL-2 GPL-3 LGPL-2 LGPL-2.1 LGPL-3 AGPL-3 Artistic-2.0
BSD_2_clause BSD_3_clause MIT

as made available via https://www.R-project.org/Licenses/ and
contained in subdirectory share/licenses of the R source or home
directory.

	The names or abbreviations of other licenses contained in the license
data base in file share/licenses/license.db in the R source or
home directory, possibly (for versioned licenses) followed by a version
restriction of the form ‘(op v)’ with ‘op’ one of
the comparison operators ‘<’, ‘<=’, ‘>’, ‘>=’,
‘==’, or ‘!=’ and ‘v’ a numeric version specification
(strings of non-negative integers separated by ‘.’), possibly
combined via ‘,’ (see below for an example). For versioned
licenses, one can also specify the name followed by the version, or
combine an existing abbreviation and the version with a ‘-’.

Abbreviations GPL and LGPL are ambiguous and
usually12 taken to mean any version of the license: but it is better
not to use them.

	One of the strings ‘file LICENSE’ or ‘file LICENCE’ referring
to a file named LICENSE or LICENCE in the package (source
and installation) top-level directory.

	The string ‘Unlimited’, meaning that there are no restrictions on
distribution or use other than those imposed by relevant laws (including
copyright laws).

Multiple licences can be specified separated by ‘|’ (surrounded by
spaces) in which case the user can choose any of the alternatives.

If a package license restricts a base license (where permitted,
e.g., using GPL-3 or AGPL-3 with an attribution clause), the additional
terms should be placed in file LICENSE (or LICENCE), and
the string ‘+ file LICENSE’ (or ‘+ file LICENCE’,
respectively) should be appended to the corresponding individual license
specification (preferably with the ‘+’ surrounded by spaces). Note
that several commonly used licenses do not permit restrictions: this
includes GPL-2 and hence any specification which includes it.

Examples of standardized specifications include

License: GPL-2
License: LGPL (>= 2.0, < 3) | Mozilla Public License
License: GPL-2 | file LICENCE
License: GPL (>= 2) | BSD_3_clause + file LICENSE
License: Artistic-2.0 | AGPL-3 + file LICENSE

Please note in particular that “Public domain” is not a valid license,
since it is not recognized in some jurisdictions.

Please ensure that the license you choose also covers any dependencies
(including system dependencies) of your package: it is particularly
important that any restrictions on the use of such dependencies are
evident to people reading your DESCRIPTION file.

Fields ‘License_is_FOSS’ and ‘License_restricts_use’ may be
added by repositories where information cannot be computed from the name
of the license. ‘License_is_FOSS: yes’ is used for licenses which
are known to be FOSS, and ‘License_restricts_use’ can have values
‘yes’ or ‘no’ if the LICENSE file is known to restrict
users or usage, or known not to. These are used by, e.g., the
available.packages filters.

The optional file LICENSE/LICENCE contains a copy of the
license of the package. To avoid any confusion only include such a file
if it is referred to in the ‘License’ field of the
DESCRIPTION file.

Whereas you should feel free to include a license file in your
source distribution, please do not arrange to install yet
another copy of the GNU COPYING or COPYING.LIB
files but refer to the copies on
https://www.R-project.org/Licenses/ and included in the R
distribution (in directory share/licenses). Since files named
LICENSE or LICENCE will be installed, do not use
these names for standard license files. To include comments about the
licensing rather than the body of a license, use a file named something
like LICENSE.note.

A few “standard” licenses are rather license templates which need
additional information to be completed via ‘+ file LICENSE’
(with the ‘+’ surrounded by spaces). Where the additional
information is ‘COPYRIGHT HOLDER’, this must give the actual legal
entities (not something vague like ‘Name-of-package authors’): if more
than one they should be listed in decreasing order of contribution.

1.1.3 Package Dependencies

The ‘Depends’ field gives a comma-separated list of package names
which this package depends on. Those packages will be attached before
the current package when library or require is called.
Each package name may be optionally followed by a comment in parentheses
specifying a version requirement. The comment should contain a
comparison operator, whitespace and a valid version number,
e.g. ‘MASS (>= 3.1-20)’.

The ‘Depends’ field can also specify a dependence on a certain
version of R — e.g., if the package works only with R version
4.0.0 or later, include ‘R (>= 4.0)’ in the ‘Depends’
field. (As here, trailing zeroes can be dropped and it is recommended
that they are.) You can also require a certain SVN revision for R-devel
or R-patched, e.g. ‘R (>= 2.14.0), R (>= r56550)’ requires a
version later than R-devel of late July 2011 (including released
versions of 2.14.0).

It makes no sense to declare a dependence on R without a version
specification, nor on the package base: this is an R package
and package base is always available.

A package or ‘R’ can appear more than once in the ‘Depends’
field, for example to give upper and lower bounds on acceptable
versions.

It is inadvisable to use a dependence on R with patch level (the third
digit) other than zero. Doing so with packages which others depend on
will cause the other packages to become unusable under earlier versions
in the series, and e.g. versions 4.x.1 are widely used throughout the
Northern Hemisphere academic year.

Both library and the R package checking facilities use this
field: hence it is an error to use improper syntax or misuse the
‘Depends’ field for comments on other software that might be
needed. The R INSTALL facilities check if the version of
R used is recent enough for the package being installed, and the list
of packages which is specified will be attached (after checking version
requirements) before the current package.

The ‘Imports’ field lists packages whose namespaces are imported
from (as specified in the NAMESPACE file) but which do not need
to be attached. Namespaces accessed by the ‘::’ and ‘:::’
operators must be listed here, or in ‘Suggests’ or ‘Enhances’
(see below). Ideally this field will include all the standard packages
that are used, and it is important to include S4-using packages (as
their class definitions can change and the DESCRIPTION file is
used to decide which packages to re-install when this happens).
Packages declared in the ‘Depends’ field should not also be in the
‘Imports’ field. Version requirements can be specified and are
checked when the namespace is loaded.

The ‘Suggests’ field uses the same syntax as ‘Depends’ and
lists packages that are not necessarily needed. This includes packages
used only in examples, tests or vignettes (see Writing package vignettes), and packages loaded in the body of functions. E.g.,
suppose an example13 from
package foo uses a dataset from package bar. Then it is not
necessary to have bar use foo unless one wants to execute
all the examples/tests/vignettes: it is useful to have bar, but
not necessary. Version requirements can be specified but should be
checked by the code which uses the package.

Finally, the ‘Enhances’ field lists packages “enhanced” by the
package at hand, e.g., by providing methods for classes from these
packages, or ways to handle objects from these packages (so several
packages have ‘Enhances: chron’ because they can handle datetime
objects from chron even though they prefer R’s native
datetime functions). Version requirements can be specified, but are
currently not used. Such packages cannot be required to check the
package: any tests which use them must be conditional on the presence
of the package. (If your tests use e.g. a dataset from another
package it should be in ‘Suggests’ and not ‘Enhances’.)

The general rules are

	A package should be listed in only one of these fields.

	Packages whose namespace only is needed to load the package using
library(pkgname) should be listed in the ‘Imports’ field
and not in the ‘Depends’ field. Packages listed in import
or importFrom directives in the NAMESPACE file should
almost always be in ‘Imports’ and not ‘Depends’.

	Packages that need to be attached to successfully load the package using
library(pkgname) must be listed in the ‘Depends’
field.

	All packages that are needed14 to successfully run R CMD check on the
package must be listed in one of ‘Depends’ or ‘Suggests’ or
‘Imports’. Packages used to run examples or tests conditionally
(e.g. via if(require(pkgname))) should be listed
in ‘Suggests’ or ‘Enhances’. (This allows checkers to ensure
that all the packages needed for a complete check are installed.)

	Packages needed to use datasets from the package should be in
‘Imports’: this includes those needed to define S4 classes used.

In particular, packages providing “only” data for examples or
vignettes should be listed in ‘Suggests’ rather than ‘Depends’
in order to make lean installations possible.

Version dependencies in the ‘Depends’ and ‘Imports’ fields are
used by library when it loads the package, and
install.packages checks versions for the ‘Depends’,
‘Imports’ and (for dependencies = TRUE) ‘Suggests’
fields.

It is important that the information in these fields is complete and
accurate: it is for example used to compute which packages depend on an
updated package and which packages can safely be installed in parallel.

This scheme was developed before all packages had namespaces (R
2.14.0 in October 2011), and good practice changed once that was in
place.

Field ‘Depends’ should nowadays be used rarely, only for packages
which are intended to be put on the search path to make their facilities
available to the end user (and not to the package itself): for example
it makes sense that a user of package latticeExtra would want
the functions of package lattice made available.

Almost always packages mentioned in ‘Depends’ should also be
imported from in the NAMESPACE file: this ensures that any needed
parts of those packages are available when some other package imports
the current package.

The ‘Imports’ field should not contain packages which are not
imported from (via the NAMESPACE file or :: or
::: operators), as all the packages listed in that field need to
be installed for the current package to be installed. (This is checked
by R CMD check.)

R code in the package should call library or require
only exceptionally. Such calls are never needed for packages listed in
‘Depends’ as they will already be on the search path. It used to
be common practice to use require calls for packages listed in
‘Suggests’ in functions which used their functionality, but
nowadays it is better to access such functionality via ::
calls.

A package that wishes to make use of header files in other packages to
compile its C/C++ code needs to declare them as a comma-separated list
in the field ‘LinkingTo’ in the DESCRIPTION file. For
example

LinkingTo: link1, link2

The ‘LinkingTo’ field can have a version requirement which is
checked at installation.

Specifying a package in ‘LinkingTo’ suffices if these are C/C++
headers containing source code or static linking is done at
installation: the packages do not need to be (and usually should not be)
listed in the ‘Depends’ or ‘Imports’ fields. This includes
CRAN package BH and almost all users of
RcppArmadillo and RcppEigen. Note that
‘LinkingTo’ applies only to installation: if a packages wishes to
use headers to compile code in tests or vignettes the package providing
them needs to be listed in ‘Suggests’ or perhaps ‘Depends’.

For another use of ‘LinkingTo’ see Linking to native routines in other packages.

The ‘Additional_repositories’ field is a comma-separated list of
repository URLs where the packages named in the other fields may be
found. It is currently used by R CMD check to check that the
packages can be found, at least as source packages (which can be
installed on any platform).

1.1.3.1 Suggested packages

Note that someone wanting to run the examples/tests/vignettes may not
have a suggested package available (and it may not even be possible to
install it for that platform). The recommendation used to be to make
their use conditional via if(require("pkgname")):
this is OK if that conditioning is done in examples/tests/vignettes,
although using if(requireNamespace("pkgname")) is
preferred, if possible.

However, using require for conditioning in package code is
not good practice as it alters the search path for the rest of the
session and relies on functions in that package not being masked by
other require or library calls. It is better practice to
use code like

 if (requireNamespace("rgl", quietly = TRUE)) {
 rgl::plot3d(...)
 } else {
 ## do something else not involving rgl.
 }

Note the use of rgl:: as that object would not necessarily be
visible (and if it is, it need not be the one from that namespace:
plot3d occurs in several other packages). If the intention is to
give an error if the suggested package is not available, simply use
e.g. rgl::plot3d.

If the conditional code produces print output, function
withAutoprint can be useful.

Note that the recommendation to use suggested packages conditionally in
tests does also apply to packages used to manage test suites: a
notorious example was testthat which in version 1.0.0 contained
illegal C++ code and hence could not be installed on standards-compliant
platforms.

Some people have assumed that a ‘recommended’ package in ‘Suggests’
can safely be used unconditionally, but this is not so. (R can be
installed without recommended packages, and which packages are
‘recommended’ may change.)

As noted above, packages in ‘Enhances’ must be used
conditionally and hence objects within them should always be accessed
via ::.

On most systems, R CMD check can be run with only those
packages declared in ‘Depends’ and ‘Imports’ by setting
environment variable _R_CHECK_DEPENDS_ONLY_=true, whereas setting
_R_CHECK_SUGGESTS_ONLY_=true also allows suggested packages, but
not those in ‘Enhances’ nor those not mentioned in the
DESCRIPTION file. It is recommended that a package is checked
with each of these set, as well as with neither.

WARNING: Be extremely careful if you do things which would be
run at installation time depending on whether suggested packages are
available or not—this includes top-level code in R code files,
.onLoad functions and the definitions of S4 classes and methods.
The problem is that once a namespace of a suggested package is loaded,
references to it may be captured in the installed package (most commonly
in S4 methods), but the suggested package may not be available when the
installed package is used (which especially for binary packages might be
on a different machine). Even worse, the problems might not be confined
to your package, for the namespaces of your suggested packages will also
be loaded whenever any package which imports yours is installed and so
may be captured there.

1.1.4 The INDEX file

The optional file INDEX contains a line for each sufficiently
interesting object in the package, giving its name and a description
(functions such as print methods not usually called explicitly might not
be included). Normally this file is missing and the corresponding
information is automatically generated from the documentation sources
(using tools::Rdindex()) when installing from source.

The file is part of the information given by library(help =
pkgname).

Rather than editing this file, it is preferable to put customized
information about the package into an overview help page
(see Documenting packages) and/or a vignette (see Writing package vignettes).

1.1.5 Package subdirectories

The R subdirectory contains R code files, only. The code
files to be installed must start with an ASCII (lower or upper
case) letter or digit and have one of the extensions15 .R,
.S, .q, .r, or .s. We recommend using
.R, as this extension seems to be not used by any other software.
It should be possible to read in the files using source(), so
R objects must be created by assignments. Note that there need be no
connection between the name of the file and the R objects created by
it. Ideally, the R code files should only directly assign R
objects and definitely should not call functions with side effects such
as require and options. If computations are required to
create objects these can use code ‘earlier’ in the package (see the
‘Collate’ field) plus functions in the ‘Depends’ packages
provided that the objects created do not depend on those packages except
via namespace imports.

Extreme care is needed if top-level computations are made to depend on
availability or not of other packages. In particular this applies to
setMethods and setClass calls. Nor should they depend on
the availability of external resources such as downloads.

Two exceptions are allowed: if the R subdirectory contains a file
sysdata.rda (a saved image of one or more R objects: please
use suitable compression as suggested by tools::resaveRdaFiles,
and see also the ‘SysDataCompression’ DESCRIPTION field.)
this will be lazy-loaded into the namespace environment – this is
intended for system datasets that are not intended to be user-accessible
via data. Also, files ending in ‘.in’ will be
allowed in the R directory to allow a configure script to
generate suitable files.

Only ASCII characters (and the control characters tab,
form feed, LF and CR) should be used in code files. Other characters are
accepted in comments16, but then the comments may not
be readable in e.g. a UTF-8 locale. Non-ASCII characters in
object names will normally17 fail when the package is installed. Any byte will
be allowed in a quoted character string but ‘\uxxxx’ escapes should
be used for non-ASCII characters. However,
non-ASCII character strings may not be usable in some locales
and may display incorrectly in others.

Various R functions in a package can be used to initialize and
clean up. See Load hooks.

The man subdirectory should contain (only) documentation files
for the objects in the package in R documentation (Rd) format.
The documentation filenames must start with an ASCII (lower or
upper case) letter or digit and have the extension .Rd (the
default) or .rd. Further, the names must be valid in
‘file://’ URLs, which means18
they must be entirely ASCII and not contain ‘%’.
See Writing R documentation files, for more information. Note that
all user-level objects in a package should be documented; if a package
pkg contains user-level objects which are for “internal” use
only, it should provide a file pkg-internal.Rd which
documents all such objects, and clearly states that these are not meant
to be called by the user. See e.g. the sources for package grid
in the R distribution. Note that packages which use internal objects
extensively should not export those objects from their namespace, when
they do not need to be documented (see Package namespaces).

Having a man directory containing no documentation files may give
an installation error.

The man subdirectory may contain a subdirectory named macros;
this will contain source for user-defined Rd macros.
(See User-defined macros.) These use the Rd format, but may
not contain anything but macro definitions, comments and whitespace.

The R and man subdirectories may contain OS-specific
subdirectories named unix or windows.

The sources and headers for the compiled code are in src, plus
optionally a file Makevars or Makefile (or for use on
Windows, with extension .win or .ucrt). When a package is
installed using R CMD INSTALL, make is used to control
compilation and linking into a shared object for loading into R.
There are default make variables and rules for this
(determined when R is configured and recorded in
R_HOME/etcR_ARCH/Makeconf), providing support for C,
C++, fixed- or free-form Fortran, Objective C and Objective
C++19 with associated extensions .c,
.cc or .cpp, .f, .f90 or
.f95,20
.m, and .mm, respectively. We recommend using .h
for headers, also for C++21 or Fortran include files. (Use of extension
.C for C++ is no longer supported.) Files in the src
directory should not be hidden (start with a dot), and hidden files will
under some versions of R be ignored.

It is not portable (and may not be possible at all) to mix all these
languages in a single package. Because R itself uses it, we know that
C and fixed-form Fortran can be used together, and mixing C, C++ and
Fortran usually work for the platform’s native compilers.

If your code needs to depend on the platform there are certain defines
which can used in C or C++. On all Windows builds (even 64-bit ones)
‘_WIN32’ will be defined: on 64-bit Windows builds also
‘_WIN64’. For Windows on ARM, test for ‘_M_ARM64’ or both
‘_WIN32’ and ‘__aarch64__’. On macOS ‘__APPLE__’ is
defined22; for an ‘Apple Silicon’ platform, test
for both ‘__APPLE__’ and ‘__arm64__’.

The default rules can be tweaked by setting macros23 in a file
src/Makevars (see Using Makevars). Note that this mechanism
should be general enough to eliminate the need for a package-specific
src/Makefile. If such a file is to be distributed, considerable
care is needed to make it general enough to work on all R platforms.
If it has any targets at all, it should have an appropriate first target
named ‘all’ and a (possibly empty) target ‘clean’ which
removes all files generated by running make (to be used by
‘R CMD INSTALL --clean’ and ‘R CMD INSTALL --preclean’).
There are platform-specific file names on Windows:
src/Makevars.win takes precedence over src/Makevars and
src/Makefile.win must be used. Since R 4.2.0,
src/Makevars.ucrt takes precedence over
src/Makevars.win and src/Makefile.ucrt takes precedence
over src/Makefile.win. src/Makevars.ucrt and
src/Makefile.ucrt will be ignored by earlier versions of R, and
hence can be used to provide content specific to UCRT or Rtools42 and newer,
but the support for .ucrt files may be removed in the future when
building packages from source on the older versions of R will no longer
be needed, and hence the files may be renamed back to .win.
Some make programs
require makefiles to have a complete final line, including a newline.

A few packages use the src directory for purposes other than
making a shared object (e.g. to create executables). Such packages
should have files src/Makefile and src/Makefile.win or
src/Makefile.ucrt (unless intended for only Unix-alikes or only
Windows). Note that on Unix such makefiles are included after
R_HOME/etc/R_ARCH/Makeconf so all the usual R
macros and make rules are available – for example C compilation will by
default use the C compiler and flags with which R was
configured. This also applies on Windows as from R 4.3.0: packages
intended to be used with earlier versions should include that file
themselves.

The order of inclusion of makefiles for a package which does
not have a src/Makefile file is

	Unix-alike	Windows

	src/Makevars	src/Makevars.ucrt,
src/Makevars.win

	R_HOME/etc/R_ARCH/Makeconf	R_HOME/etc/R_ARCH/Makeconf

	R_MAKEVARS_SITE, R_HOME/etc/R_ARCH/Makevars.site	R_MAKEVARS_SITE, R_HOME/etc/R_ARCH/Makevars.site

	R_HOME/share/make/shlib.mk	R_HOME/share/make/winshlib.mk

	R_MAKEVARS_USER, ~/.R/Makevars-platform,
 ~/.R/Makevars	R_MAKEVARS_USER, ~/.R/Makevars.ucrt,
 ~/.R/Makevars.win64, ~/.R/Makevars.win

For those which do, it is

	R_HOME/etc/R_ARCH/Makeconf	R_HOME/etc/R_ARCH/Makeconf

	R_MAKEVARS_SITE, R_HOME/etc/R_ARCH/Makevars.site	R_MAKEVARS_SITE, R_HOME/etc/R_ARCH/Makevars.site

	src/Makefile	src/Makefile.ucrt,
src/Makefile.win

	R_MAKEVARS_USER, ~/.R/Makevars-platform,
 ~/.R/Makevars	R_MAKEVARS_USER, ~/.R/Makevars.ucrt,
 ~/.R/Makevars.win64, ~/.R/Makevars.win

Items in capitals are environment variables: those separated by commas
are alternatives looked for in the order shown.

In very special cases packages may create binary files other than the
shared objects/DLLs in the src directory. Such files will not be
installed in a multi-architecture setting since R CMD INSTALL
--libs-only is used to merge multiple sub-architectures and it only
copies shared objects/DLLs. If a package wants to install other
binaries (for example executable programs), it should provide an R
script src/install.libs.R which will be run as part of the
installation in the src build directory instead of copying
the shared objects/DLLs. The script is run in a separate R
environment containing the following variables: R_PACKAGE_NAME
(the name of the package), R_PACKAGE_SOURCE (the path to the
source directory of the package), R_PACKAGE_DIR (the path of the
target installation directory of the package), R_ARCH (the
arch-dependent part of the path, often empty), SHLIB_EXT (the
extension of shared objects) and WINDOWS (TRUE on Windows,
FALSE elsewhere). Something close to the default behavior could
be replicated with the following src/install.libs.R file:

files <- Sys.glob(paste0("*", SHLIB_EXT))
dest <- file.path(R_PACKAGE_DIR, paste0('libs', R_ARCH))
dir.create(dest, recursive = TRUE, showWarnings = FALSE)
file.copy(files, dest, overwrite = TRUE)
if(file.exists("symbols.rds"))
 file.copy("symbols.rds", dest, overwrite = TRUE)

On the other hand, executable programs could be installed along the
lines of

execs <- c("one", "two", "three")
if(WINDOWS) execs <- paste0(execs, ".exe")
if (any(file.exists(execs))) {
 dest <- file.path(R_PACKAGE_DIR, paste0('bin', R_ARCH))
 dir.create(dest, recursive = TRUE, showWarnings = FALSE)
 file.copy(execs, dest, overwrite = TRUE)
}

Note the use of architecture-specific subdirectories of bin where
needed. (Executables should installed under a bin directory and
not under libs. It is good practice to check that they can be
executed as part of the installation script, so a broken package is not
installed.)

The data subdirectory is for data files: See Data in packages.

The demo subdirectory is for R scripts (for running via
demo()) that demonstrate some of the functionality of the
package. Demos may be interactive and are not checked automatically, so
if testing is desired use code in the tests directory to achieve
this. The script files must start with a (lower or upper case) letter
and have one of the extensions .R or .r. If present, the
demo subdirectory should also have a 00Index file with one
line for each demo, giving its name and a description separated by a tab
or at least three spaces. (This index file is not generated
automatically.) Note that a demo does not have a specified encoding and
so should be an ASCII file (see Encoding issues). Function
demo() will use the package encoding if there is one, but this is
mainly useful for non-ASCII comments.

The contents of the inst subdirectory will be copied recursively
to the installation directory. Subdirectories of inst should not
interfere with those used by R (currently, R, data,
demo, exec, libs, man, help,
html and Meta, and earlier versions used latex,
R-ex). The copying of the inst happens after src
is built so its Makefile can create files to be installed. To
exclude files from being installed, one can specify a list of exclude
patterns in file .Rinstignore in the top-level source directory.
These patterns should be Perl-like regular expressions (see the help for
regexp in R for the precise details), one per line, to be
matched case-insensitively against the file and directory paths, e.g.
doc/.*[.]png$ will exclude all PNG files in inst/doc based
on the extension.

Note that with the exceptions of INDEX,
LICENSE/LICENCE and NEWS, information files at the
top level of the package will not be installed and so not be
known to users of Windows and macOS compiled packages (and not seen
by those who use R CMD INSTALL or install.packages()
on the tarball). So any information files you wish an end user to see
should be included in inst. Note that if the named exceptions
also occur in inst, the version in inst will be that seen
in the installed package.

Things you might like to add to inst are a CITATION file
for use by the citation function, and a NEWS.Rd file for
use by the news function. See its help page for the specific
format restrictions of the NEWS.Rd file.

Another file sometimes needed in inst is AUTHORS or
COPYRIGHTS to specify the authors or copyright holders when this
is too complex to put in the DESCRIPTION file.

Subdirectory tests is for additional package-specific test code,
similar to the specific tests that come with the R distribution.
Test code can either be provided directly in a .R (or .r
as from R 3.4.0) file, or via a .Rin file containing
code which in turn creates the corresponding .R file (e.g., by
collecting all function objects in the package and then calling them
with the strangest arguments). The results of running a .R file
are written to a .Rout file. If there is a
corresponding24 .Rout.save file, these two are
compared, with differences being reported but not causing an error. The
directory tests is copied to the check area, and the tests are
run with the copy as the working directory and with R_LIBS set to
ensure that the copy of the package installed during testing will be
found by library(pkg_name). Note that the package-specific
tests are run in a vanilla R session without setting the
random-number seed, so tests which use random numbers will need to set
the seed to obtain reproducible results (and it can be helpful to do so
in all cases, to avoid occasional failures when tests are run).

If directory tests has a subdirectory Examples containing
a file pkg-Ex.Rout.save, this is compared to the output
file for running the examples when the latter are checked. Reference
output should be produced without having the --timings option
set (and note that --as-cran sets it).

If reference output is included for examples, tests or vignettes do make
sure that it is fully reproducible, as it will be compared verbatim to
that produced in a check run, unless the ‘IGNORE_RDIFF’ markup is
used. Things which trip up maintainers include displayed version
numbers from loading other packages, printing numerical results to an
unreproducibly high precision and printing timings. Another trap is
small values which are in fact rounding error from zero: consider using
zapsmall.

Subdirectory exec could contain additional executable scripts the
package needs, typically scripts for interpreters such as the shell,
Perl, or Tcl. NB: only files (and not directories) under exec
are installed (and those with names starting with a dot are ignored),
and they are all marked as executable (mode 755, moderated by
‘umask’) on POSIX platforms. Note too that this is not suitable
for executable programs since some platforms support multiple
architectures using the same installed package directory.

Subdirectory po is used for files related to localization:
see Internationalization.

Subdirectory tools is the preferred place for auxiliary files
needed during configuration, and also for sources need to re-create
scripts (e.g. M4 files for autoconf: some prefer to put
those in a subdirectory m4 of tools).

1.1.6 Data in packages

The data subdirectory is for data files, either to be made
available via lazy-loading or for loading using data().
(The choice is made by the ‘LazyData’ field in the
DESCRIPTION file: the default is not to do so.) It should not be
used for other data files needed by the package, and the convention has
grown up to use directory inst/extdata for such files.

Data files can have one of three types as indicated by their extension:
plain R code (.R or .r), tables (.tab,
.txt, or .csv, see ?data for the file formats, and
note that .csv is not the standard25 CSV format), or
save() images (.RData or .rda). The files should
not be hidden (have names starting with a dot). Note that R code
should be if possible “self-sufficient” and not make use of extra
functionality provided by the package, so that the data file can also be
used without having to load the package or its namespace: it should run
as silently as possible and not change the search() path by
attaching packages or other environments.

Images (extensions .RData26 or .rda) can contain
references to the namespaces of packages that were used to create them.
Preferably there should be no such references in data files, and in any
case they should only be to packages listed in the Depends and
Imports fields, as otherwise it may be impossible to install the
package. To check for such references, load all the images into a
vanilla R session, run str() on all the datasets, and look at
the output of loadedNamespaces().

Particular care is needed where a dataset or one of its components is of
an S4 class, especially if the class is defined in a different package.
First, the package containing the class definition has to be available
to do useful things with the dataset, so that package must be listed in
Imports or Depends (even if this gives a check warning
about unused imports). Second, the definition of an S4 class can
change, and often is unnoticed when in a package with a different
author. So it may be wiser to use the .R form and use that to
create the dataset object when needed (loading package namespaces but
not attaching them by using requireNamespace(pkg, quietly =
TRUE) and using pkg:: to refer to objects in the
namespace).

If you are not using ‘LazyData’ and either your data files are large
or e.g., you use data/foo.R scripts to produce your data, loading
your namespace, you
can speed up installation by providing a file datalist in the
data subdirectory. This should have one line per topic that
data() will find, in the format ‘foo’ if data(foo)
provides ‘foo’, or ‘foo: bar bah’ if data(foo) provides
‘bar’ and ‘bah’. R CMD build will automatically add
a datalist file to data directories of over 1Mb, using the
function tools::add_datalist.

Tables (.tab, .txt, or .csv files) can be
compressed by gzip, bzip2 or xz,
optionally with additional extension .gz, .bz2 or
.xz.

If your package is to be distributed, do consider the resource
implications of large datasets for your users: they can make packages
very slow to download and use up unwelcome amounts of storage space, as
well as taking many seconds to load. It is normally best to distribute
large datasets as .rda images prepared by save(, compress =
TRUE) (the default). Using bzip2 or xz compression
will usually reduce the size of both the package tarball and the
installed package, in some cases by a factor of two or more.

Package tools has a couple of functions to help with data images:
checkRdaFiles reports on the way the image was saved, and
resaveRdaFiles will re-save with a different type of compression,
including choosing the best type for that particular image.

Many packages using ‘LazyData’ will benefit from using a form of
compression other than gzip in the installed lazy-loading
database. This can be selected by the --data-compress option
to R CMD INSTALL or by using the ‘LazyDataCompression’
field in the DESCRIPTION file. Useful values are bzip2,
xz and the default, gzip: value none is also
accepted. The only way to discover which is best is to try them all and
look at the size of the pkgname/data/Rdata.rdb file. A
function to do that (quoting sizes in KB) is

CheckLazyDataCompression <- function(pkg)
{
 pkg_name <- sub("_.*", "", pkg)
 lib <- tempfile(); dir.create(lib)
 zs <- c("gzip", "bzip2", "xz")
 res <- integer(3); names(res) <- zs
 for (z in zs) {
 opts <- c(paste0("--data-compress=", z),
 "--no-libs", "--no-help", "--no-demo", "--no-exec", "--no-test-load")
 install.packages(pkg, lib, INSTALL_opts = opts, repos = NULL, quiet = TRUE)
 res[z] <- file.size(file.path(lib, pkg_name, "data", "Rdata.rdb"))
 }
 ceiling(res/1024)
}

(applied to a source package without any ‘LazyDataCompression’
field). R CMD check will warn if it finds a
pkgname/data/Rdata.rdb file of more than 5MB without
‘LazyDataCompression’ being set. If you see that, run
CheckLazyDataCompression() and set the field – to gzip in
the unlikely event27 that is the best choice.

The analogue for sysdata.rda is field ‘SysDataCompression’:
the default is xz for files bigger than 1MB otherwise
gzip.

Lazy-loading is not supported for very large datasets (those which when
serialized exceed 2GB, the limit for the format on 32-bit platforms).

1.1.7 Non-R scripts in packages

Code which needs to be compiled (C, C++, Fortran …)
is included in the src subdirectory and discussed elsewhere in
this document.

Subdirectory exec could be used for scripts for interpreters such
as the shell, BUGS, JavaScript, Matlab, Perl, PHP (amap),
Python or Tcl (Simile), or even R. However, it seems more
common to use the inst directory, for example
WriteXLS/inst/Perl, NMF/inst/m-files,
RnavGraph/inst/tcl, RProtoBuf/inst/python and
emdbook/inst/BUGS and gridSVG/inst/js.

Java code is a special case: except for very small programs,
.java files should be byte-compiled (to a .class file) and
distributed as part of a .jar file: the conventional location for
the .jar file(s) is inst/java. It is desirable (and
required under an Open Source license) to make the Java source files
available: this is best done in a top-level java directory in the
package—the source files should not be installed.

If your package requires one of these interpreters or an extension then
this should be declared in the ‘SystemRequirements’ field of its
DESCRIPTION file. (Users of Java most often do so via
rJava, when depending on/importing that suffices unless there
is a version requirement on Java code in the package.)

Windows and Mac users should be aware that the Tcl extensions
‘BWidget’ and ‘Tktable’ (which have sometimes been included in
the Windows28 and macOS R installers)
are extensions and do need to be declared (and that
‘Tktable’ is less widely available than it used to be, including
not in the main repositories for major Linux distributions).
‘BWidget’ needs to be installed by the user on other OSes. This is
fairly easy to do: first find the Tcl search path:

library(tcltk)
strsplit(tclvalue('auto_path'), " ")[[1]]

then download the sources from
https://sourceforge.net/projects/tcllib/files/BWidget/
and in a terminal run something like

tar xf bwidget-1.9.14.tar.gz
sudo mv bwidget-1.9.14 /usr/local/lib

substituting a location on the Tcl search path for /usr/local/lib if
needed. (If no location on that search path is writeable, you will need
to add one each time ‘BWidget’ is to be used with tcltk::addTclPath().)

To (silently) test for the presence of ‘Tktable’ one can use

library(tcltk)
have_tktable <- !isFALSE(suppressWarnings(tclRequire('Tktable')))

Installing ‘Tktable’ needs a C compiler and the Tk headers (not
necessarily installed with Tcl/Tk). At the time of writing the latest
sources (from 2008) were available from
https://sourceforge.net/projects/tktable/files/tktable/2.10/Tktable2.10.tar.gz/download,
but needed patching for current Tk (8.6.11, but not 8.6.10) – a patch
can be found at https://www.stats.ox.ac.uk/pub/bdr/Tktable/. For
a system installation of Tk you may need to install ‘Tktable’ as
‘root’ as on e.g. Fedora all the locations on auto_path
are owned by ‘root’.

1.1.8 Specifying URLs

URLs in many places in the package documentation will be converted to
clickable hyperlinks in at least some of their renderings. So care is
needed that their forms are correct and portable.

The full URL should be given, including the scheme (often ‘http://’
or ‘https://’) and a final ‘/’ for references to directories.

Spaces in URLs are not portable and how they are handled does vary by
HTTP server and by client. There should be no space in the host part of
an ‘http://’ URL, and spaces in the remainder should be encoded,
with each space replaced by ‘%20’.

Other characters may benefit from being encoded: see the help on
URLencode().

The canonical URL for a CRAN package is

https://cran.r-project.org/package=pkgname

and not a version starting
‘https://cran.r-project.org/web/packages/pkgname’.

1.2 Configure and cleanup

Note that most of this section is specific to Unix-alikes: see the
comments later on about the Windows port of R.

If your package needs some system-dependent configuration before
installation you can include an executable (Bourne29 shell script configure
in your package which (if present) is executed by R CMD INSTALL
before any other action is performed. This can be a script created by
the Autoconf mechanism, but may also be a script written by yourself.
Use this to detect if any nonstandard libraries are present such that
corresponding code in the package can be disabled at install time rather
than giving error messages when the package is compiled or used. To
summarize, the full power of Autoconf is available for your extension
package (including variable substitution, searching for libraries,
etc.). Background and useful tips on Autoconf and related tools
(including pkg-config described below) can be found at
https://autotools.info/.

A configure script is run in an environment which has all the
environment variables set for an R session (see
R_HOME/etc/Renviron) plus R_PACKAGE_NAME (the name of
the package), R_PACKAGE_DIR (the path of the target installation
directory of the package, a temporary location for staged installs) and
R_ARCH (the arch-dependent part of the path, often empty).

Under a Unix-alike only, an executable (Bourne shell) script
cleanup is executed as the last thing by R CMD INSTALL if
option --clean was given, and by R CMD build when
preparing the package for building from its source.

As an example consider we want to use functionality provided by a (C or
Fortran) library foo. Using Autoconf, we can create a configure
script which checks for the library, sets variable HAVE_FOO to
TRUE if it was found and to FALSE otherwise, and then
substitutes this value into output files (by replacing instances of
‘@HAVE_FOO@’ in input files with the value of HAVE_FOO).
For example, if a function named bar is to be made available by
linking against library foo (i.e., using -lfoo), one
could use

AC_CHECK_LIB(foo, fun, [HAVE_FOO=TRUE], [HAVE_FOO=FALSE])
AC_SUBST(HAVE_FOO)
......
AC_CONFIG_FILES([foo.R])
AC_OUTPUT

in configure.ac (assuming Autoconf 2.50 or later).

The definition of the respective R function in foo.R.in could be

foo <- function(x) {
 if(!@HAVE_FOO@)
 stop("Sorry, library 'foo' is not available")
 ...

From this file configure creates the actual R source file
foo.R looking like

foo <- function(x) {
 if(!FALSE)
 stop("Sorry, library 'foo' is not available")
 ...

if library foo was not found (with the desired functionality).
In this case, the above R code effectively disables the function.

One could also use different file fragments for available and missing
functionality, respectively.

You will very likely need to ensure that the same C compiler and
compiler flags are used in the configure tests as when compiling
R or your package. Under a Unix-alike, you can achieve this by
including the following fragment early in configure.ac
(before calling AC_PROG_CC or anything which calls it)

: ${R_HOME=`R RHOME`}
if test -z "${R_HOME}"; then
 echo "could not determine R_HOME"
 exit 1
fi
CC=`"${R_HOME}/bin/R" CMD config CC`
CFLAGS=`"${R_HOME}/bin/R" CMD config CFLAGS`
CPPFLAGS=`"${R_HOME}/bin/R" CMD config CPPFLAGS`

(Using ‘${R_HOME}/bin/R’ rather than just ‘R’ is necessary
in order to use the correct version of R when running the script as
part of R CMD INSTALL, and the quotes since ‘${R_HOME}’
might contain spaces.)

If your code does load checks (for example, to check for an entry point in
a library or to run code) then you will also need

LDFLAGS=`"${R_HOME}/bin/R" CMD config LDFLAGS`

Packages written with C++ need to pick up the details for the C++
compiler and switch the current language to C++ by something like

CXX=`"${R_HOME}/bin/R" CMD config CXX`
if test -z "$CXX"; then
 AC_MSG_ERROR([No C++ compiler is available])
fi
CXXFLAGS=`"${R_HOME}/bin/R" CMD config CXXFLAGS`
CPPFLAGS=`"${R_HOME}/bin/R" CMD config CPPFLAGS`
AC_LANG(C++)

The latter is important, as for example C headers may not be available
to C++ programs or may not be written to avoid C++ name-mangling. Note
that an R installation is not required to have a C++ compiler so
‘CXX’ may be empty. If the package specifies a non-default C++
standard, use the config variable names (such as CXX17)
appropriate to the standard, but still set CXX and
CXXFLAGS.

You can use R CMD config to get the value of the basic
configuration variables, and also the header and library flags necessary
for linking a front-end executable program against R, see R CMD
config --help for details. If you do, it is essential that you use
both the command and the appropriate flags, so that for example
‘CC’ must always be used with ‘CFLAGS’ and (for code to be
linked into a shared library) ‘CPICFLAGS’. For Fortran, be careful
to use ‘FC FFLAGS FPICFLAGS’ for fixed-form Fortran and
‘FC FCFLAGS FPICFLAGS’ for free-form Fortran.

As from R 4.3.0, variables

CC CFLAGS CXX CXXFLAGS CPPFLAGS LDFLAGS FC FCFLAGS

are set in the environment (if not already set) when configure
is called from R CMD INSTALL, in case the script forgets to
set them as described above. This includes making use of the selected C
standard (but not the C++ standard as that is selected at a later stage
by R CMD SHLIB).

To check for an external BLAS library using the AX_BLAS macro
from the official Autoconf Macro
Archive30, one
can use

FC=`"${R_HOME}/bin/R" CMD config FC`
FCLAGS=`"${R_HOME}/bin/R" CMD config FFLAGS`
AC_PROG_FC
FLIBS=`"${R_HOME}/bin/R" CMD config FLIBS`
AX_BLAS([], AC_MSG_ERROR([could not find your BLAS library], 1))

Note that FLIBS as determined by R must be used to ensure that
Fortran code works on all R platforms.

N.B.: If the configure script creates files, e.g.
src/Makevars, you do need a cleanup script to remove
them. Otherwise R CMD build may ship the files that are
created. For example, package RODBC has

#!/bin/sh

rm -f config.* src/Makevars src/config.h

As this example shows, configure often creates working files
such as config.log. If you use a hand-crafted script
rather than one created by autoconf, it is highly recommended
that you log its actions to file config.log.

If your configure script needs auxiliary files, it is recommended that
you ship them in a tools directory (as R itself does).

You should bear in mind that the configure script will not be used on
Windows systems. If your package is to be made publicly available,
please give enough information for a user on a non-Unix-alike platform
to configure it manually, or provide a configure.win script (or
configure.ucrt) to be used on that platform. (Optionally, there
can be a cleanup.win script (or cleanup.ucrt). Both
should be shell scripts to be executed by ash, which is a
minimal version of Bourne-style sh. As from R 4.2.0,
bash is used. When configure.win (or
configure.ucrt) is run the environment variables R_HOME
(which uses ‘/’ as the file separator), R_ARCH and
R_ARCH_BIN will be set. Use R_ARCH to decide if this is a
64-bit build for Intel (its value there is ‘/x64’) and to install DLLs to the
correct place (${R_HOME}/libs${R_ARCH}). Use
R_ARCH_BIN to find the correct place under the bin
directory, e.g. ${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe. If
a configure.win script does compilation (including calling
R CMD SHLIB), most of the considerations above apply.

As the scripts on Windows are executed as sh ./configure.win
and similar, any ’shebang’ first line (such as #! /bin/bash) is
treated as a comment.

In some rare circumstances, the configuration and cleanup scripts need
to know the location into which the package is being installed. An
example of this is a package that uses C code and creates two shared
object/DLLs. Usually, the object that is dynamically loaded by R
is linked against the second, dependent, object. On some systems, we
can add the location of this dependent object to the object that is
dynamically loaded by R. This means that each user does not have to
set the value of the LD_LIBRARY_PATH (or equivalent) environment
variable, but that the secondary object is automatically resolved.
Another example is when a package installs support files that are
required at run time, and their location is substituted into an R
data structure at installation time.

The names of the top-level library directory (i.e., specifiable
via the ‘-l’ argument) and the directory of the package
itself are made available to the installation scripts via the two
shell/environment variables R_LIBRARY_DIR and R_PACKAGE_DIR.
Additionally, the name of the package (e.g. ‘survival’ or
‘MASS’) being installed is available from the environment variable
R_PACKAGE_NAME. (Currently the value of R_PACKAGE_DIR is
always ${R_LIBRARY_DIR}/${R_PACKAGE_NAME}, but this used not to
be the case when versioned installs were allowed. Its main use is in
configure.win (or configure.ucrt) scripts for the installation path of external
software’s DLLs.) Note that the value of R_PACKAGE_DIR may
contain spaces and other shell-unfriendly characters, and so should be
quoted in makefiles and configure scripts.

One of the more tricky tasks can be to find the headers and libraries of
external software. One tool which is increasingly available on
Unix-alikes (but not by default31 on macOS) to
do this is pkg-config. The configure script will need
to test for the presence of the command itself32
(see for example package tiff), and if present it can be
asked if the software is installed, of a suitable version and for
compilation/linking flags by e.g.

$ pkg-config --exists 'libtiff-4 >= 4.1.0' --print-errors # check the status
$ pkg-config --modversion libtiff-4
4.3.0
$ pkg-config --cflags libtiff-4
-I/usr/local/include
$ pkg-config --libs libtiff-4
-L/usr/local/lib -ltiff
$ pkg-config --static --libs libtiff-4
-L/usr/local/lib -ltiff -lwebp -llzma -ljpeg -lz

Note that pkg-config --libs gives the information required to
link against the default version33 of that library (usually the dynamic one), and
pkg-config --static --libs may be needed if the static library is
to be used.

Static libraries are commonly used on macOS and Windows to facilitate
bundling external software with binary distributions of packages. This
means that portable (source) packages need to allow for this. It is
not safe to just use pkg-config --static --libs, as
that will often include further libraries that are not necessarily
installed on the user’s system (or maybe only the versioned library such
as libjbig.so.2.1 is installed and not libjbig.so which
would be needed to use -ljbig sometimes included in
pkg-config --static --libs libtiff-4).

Another issue is that pkg-config --exists may not be reliable.
It checks not only that the ‘module’ is available but all of the
dependencies, including those in principle needed for static linking.
(XQuartz 2.8.x only distributed dynamic libraries and not some of the
.pc files needed for --exists.)

Sometimes the name by which the software is known to
pkg-config is not what one might expect (e.g.
‘libxml-2.0’ even for 2.9.x). To get a complete list use

pkg-config --list-all | sort

Some external software provides a -config command to do a similar
job to pkg-config, including

curl-config freetype-config gdal-config geos-config
gsl-config iodbc-config libpng-config nc-config
pcre-config pcre2-config xml2-config xslt-config

(curl-config is for libcurl not curl.
nc-config is for netcdf.) Most have an option to use
static libraries.

N.B. These commands indicate what header paths and
libraries are needed, but they do not obviate the need to check that the
recipes they give actually work. (This is especially necessary for
platforms which use static linking.)

If using Autoconf it is good practice to include all the Autoconf
sources in the package (and required for an Open Source package and
tested by R CMD check --as-cran). This will include the file
configure.ac34 in the top-level directory of the package. If
extensions written in m4 are needed, these should be included
under the directory tools and included from configure.ac
via e.g.,

m4_include([tools/ax_pthread.m4])

Alternatively, Autoconf can be asked to search all .m4 files in a
directory by including something like35

AC_CONFIG_MACRO_DIR([tools/m4])

One source of such extensions is the ‘Autoconf Archive’
(https://www.gnu.org/software/autoconf-archive/. It is not
safe to assume this is installed on users’ machines, so the extension
should be shipped with the package (taking care to comply with its
licence).

1.2.1 Using Makevars

Sometimes writing your own configure script can be avoided by
supplying a file Makevars: also one of the most common uses of a
configure script is to make Makevars from
Makevars.in.

A Makevars file is a makefile and is used as one of several
makefiles by R CMD SHLIB (which is called by R CMD
INSTALL to compile code in the src directory). It should be
written if at all possible in a portable style, in particular (except
for Makevars.win and Makevars.ucrt) without the use of GNU
extensions.

The most common use of a Makevars file is to set additional
preprocessor options (for example include paths and definitions) for
C/C++ files via PKG_CPPFLAGS, and additional compiler
flags by setting PKG_CFLAGS, PKG_CXXFLAGS or
PKG_FFLAGS, for C, C++ or Fortran respectively (see Creating shared objects).

N.B.: Include paths are preprocessor options, not compiler
options, and must be set in PKG_CPPFLAGS as otherwise
platform-specific paths (e.g. ‘-I/usr/local/include’) will take
precedence. PKG_CPPFLAGS should contain ‘-I’, ‘-D’,
‘-U’ and (where supported) ‘-include’ and ‘-pthread’
options: everything else should be a compiler flag. The order of flags
matters, and using ‘-I’ in PKG_CFLAGS or PKG_CXXFLAGS
has led to hard-to-debug platform-specific errors.

Makevars can also be used to set flags for the linker, for
example ‘-L’ and ‘-l’ options, via PKG_LIBS.

When writing a Makevars file for a package you intend to
distribute, take care to ensure that it is not specific to your
compiler: flags such as -O2 -Wall -pedantic (and all other
-W flags: for the Oracle compilers these were used to pass
arguments to compiler phases) are all specific to GCC (and compilers such
as clang which aim to be options-compatible with it).

Also, do not set variables such as CPPFLAGS, CFLAGS etc.:
these should be settable by users (sites) through appropriate personal
(site-wide) Makevars files.
See section ‘Customizing package compilation’ in the ‘R Installation and
Administration’ manual for more information.

There are some macros36 which are set whilst configuring the
building of R itself and are stored in
R_HOME/etcR_ARCH/Makeconf. That makefile is included
as a Makefile after Makevars[.win], and the macros
it defines can be used in macro assignments and make command lines in
the latter. These include

	FLIBS

	A macro containing the set of libraries need to link Fortran code. This
may need to be included in PKG_LIBS: it will normally be included
automatically if the package contains Fortran source files in the
src directory.

	BLAS_LIBS

	A macro containing the BLAS libraries used when building R. This may
need to be included in PKG_LIBS. Beware that if it is empty then
the R executable will contain all the double-precision and
double-complex BLAS routines, but no single-precision nor complex
routines. If BLAS_LIBS is included, then FLIBS also needs
to be37 included following it, as most BLAS
libraries are written at least partially in Fortran. However, it can
be omitted if the package contains Fortran source code as that will add
FLIBS to the link line.

	LAPACK_LIBS

	A macro containing the LAPACK libraries (and paths where appropriate)
used when building R. This may need to be included in
PKG_LIBS. It may point to a dynamic library libRlapack
which contains the main double-precision LAPACK routines as well as
those double-complex LAPACK routines needed to build R, or it may
point to an external LAPACK library, or may be empty if an external BLAS
library also contains LAPACK.

[libRlapack includes all the double-precision LAPACK routines
which were current in 2003 and a few more recent ones: a list of which
routines are included is in file src/modules/lapack/README. Note
that an external LAPACK/BLAS library need not do so, as some were
‘deprecated’ (and not compiled by default) in LAPACK 3.6.0 in late
2015.]

For portability, the macros BLAS_LIBS and FLIBS should
always be included after LAPACK_LIBS (and in that order).

	SAFE_FFLAGS

	A macro containing flags which are needed to circumvent
over-optimization of FORTRAN code: it is might be ‘-g -O2
-ffloat-store’ or ‘-g -O2 -msse2 -mfpmath=sse’ on ‘ix86’
platforms using gfortran. Note that this is not an
additional flag to be used as part of PKG_FFLAGS, but a
replacement for FFLAGS. See the example later in this section.

Setting certain macros in Makevars will prevent R CMD
SHLIB setting them: in particular if Makevars sets
‘OBJECTS’ it will not be set on the make command line.
This can be useful in conjunction with implicit rules to allow other
types of source code to be compiled and included in the shared object.
It can also be used to control the set of files which are compiled,
either by excluding some files in src or including some files in
subdirectories. For example

OBJECTS = 4dfp/endianio.o 4dfp/Getifh.o R4dfp-object.o

Note that Makevars should not normally contain targets, as it is
included before the default makefile and make will call the
first target, intended to be all in the default makefile. If you
really need to circumvent that, use a suitable (phony) target all
before any actual targets in Makevars.[win]: for example package
fastICA used to have

PKG_LIBS = @BLAS_LIBS@

SLAMC_FFLAGS=$(R_XTRA_FFLAGS) $(FPICFLAGS) $(SHLIB_FFLAGS) $(SAFE_FFLAGS)

all: $(SHLIB)

slamc.o: slamc.f
 $(FC) $(SLAMC_FFLAGS) -c -o slamc.o slamc.f

needed to ensure that the LAPACK routines find some constants without
infinite looping. The Windows equivalent was

all: $(SHLIB)

slamc.o: slamc.f
 $(FC) $(SAFE_FFLAGS) -c -o slamc.o slamc.f

(since the other macros are all empty on that platform, and R’s
internal BLAS was not used). Note that the first target in
Makevars will be called, but for back-compatibility it is best
named all.

If you want to create and then link to a library, say using code in a
subdirectory, use something like

.PHONY: all mylibs

all: $(SHLIB)
$(SHLIB): mylibs

mylibs:
 (cd subdir; $(MAKE))

Be careful to create all the necessary dependencies, as there is no
guarantee that the dependencies of all will be run in a
particular order (and some of the CRAN build machines use
multiple CPUs and parallel makes). In particular,

all: mylibs

does not suffice. GNU make does allow the construct

.NOTPARALLEL: all
all: mylibs $(SHLIB)

but that is not portable. dmake and pmake allow the
similar .NO_PARALLEL, also not portable: some variants of
pmake accept .NOTPARALLEL as an alias for
.NO_PARALLEL.

Note that on Windows it is required that Makevars[.win, .ucrt] does
create a DLL: this is needed as it is the only reliable way to ensure
that building a DLL succeeded. If you want to use the src
directory for some purpose other than building a DLL, use a
Makefile.win or Makefile.ucrt file.

It is sometimes useful to have a target ‘clean’ in Makevars,
Makevars.win or Makevars.ucrt:
this will be used by R CMD build to
clean up (a copy of) the package sources. When it is run by
build it will have fewer macros set, in particular not
$(SHLIB), nor $(OBJECTS) unless set in the file itself.
It would also be possible to add tasks to the target ‘shlib-clean’
which is run by R CMD INSTALL and R CMD SHLIB with
options --clean and --preclean.

Avoid the use of default (also known as ‘implicit’ rules) in makefiles,
as these are make-specific. Even when mandated by POSIX –
GNU make does not comply and this has broken package
installation.

An unfortunately common error is to have

all: $(SHLIB) clean

which asks make to clean in parallel with compiling the code.
Not only does this lead to hard-to-debug installation errors, it wipes
out all the evidence of any error (from a parallel make or not). It is
much better to leave cleaning to the end user using the facilities in
the previous paragraph.

If you want to run R code in Makevars, e.g. to find
configuration information, please do ensure that you use the correct
copy of R or Rscript: there might not be one in the path
at all, or it might be the wrong version or architecture. The correct
way to do this is via

"$(R_HOME)/bin$(R_ARCH_BIN)/Rscript" filename
"$(R_HOME)/bin$(R_ARCH_BIN)/Rscript" -e 'R expression'

where $(R_ARCH_BIN) is only needed currently on Windows.

Environment or make variables can be used to select different macros for
Intel 64-bit code or code for other architectures, for example
(GNU make syntax, allowed on Windows)

ifeq "$(WIN)" "64"
PKG_LIBS = value for 64-bit Intel Windows
else
PKG_LIBS = value for unknown Windows architectures
endif

On Windows there is normally a choice between linking to an import
library or directly to a DLL. Where possible, the latter is much more
reliable: import libraries are tied to a specific toolchain, and in
particular on 64-bit Windows two different conventions have been
commonly used. So for example instead of

PKG_LIBS = -L$(XML_DIR)/lib -lxml2

one can use

PKG_LIBS = -L$(XML_DIR)/bin -lxml2

since on Windows -lxxx will look in turn for

libxxx.dll.a
xxx.dll.a
libxxx.a
xxx.lib
libxxx.dll
xxx.dll

where the first and second are conventionally import libraries, the
third and fourth often static libraries (with .lib intended for
Visual C++), but might be import libraries. See for example
https://sourceware.org/binutils/docs-2.20/ld/WIN32.html#WIN32.

The fly in the ointment is that the DLL might not be named
libxxx.dll, and in fact on 32-bit Windows there was a
libxml2.dll whereas on one build for 64-bit Windows the DLL is
called libxml2-2.dll. Using import libraries can cover over
these differences but can cause equal difficulties.

If static libraries are available they can save a lot of problems with
run-time finding of DLLs, especially when binary packages are to be
distributed and even more when these support both architectures. Where
using DLLs is unavoidable we normally arrange (via
configure.win or configure.ucrt) to ship them in the same directory as the package
DLL.

1.2.1.1 OpenMP support

There is some support for packages which wish to use
OpenMP38. The
make macros

SHLIB_OPENMP_CFLAGS
SHLIB_OPENMP_CXXFLAGS
SHLIB_OPENMP_FFLAGS

are available for use in src/Makevars, src/Makevars.win or
Makevars.ucrt. Include the appropriate macro in
PKG_CFLAGS, PKG_CXXFLAGS and so on, and also in
PKG_LIBS (but see below for Fortran). C/C++ code that needs to
be conditioned on the use of OpenMP can be used inside #ifdef
_OPENMP: note that some toolchains used for R (including Apple’s for
macOS39 and some others using
clang40) have no OpenMP support at all, not even
omp.h.

For example, a package with C code written for OpenMP should have in
src/Makevars the lines

PKG_CFLAGS = $(SHLIB_OPENMP_CFLAGS)
PKG_LIBS = $(SHLIB_OPENMP_CFLAGS)

Note that the macro SHLIB_OPENMP_CXXFLAGS applies to the default
C++ compiler and not necessarily to the C++17/20/23 compiler: users of the
latter should do their own configure checks. If you do use
your own checks, make sure that OpenMP support is complete by compiling
and linking an OpenMP-using program: on some platforms the runtime
library is optional and on others that library depends on other optional
libraries.

Some care is needed when compilers are from different families which may
use different OpenMP runtimes (e.g. clang vs GCC
including gfortran, although it is often possible to use the
clang runtime with GCC but not vice versa: however
gfortran >= 9 may generate calls not in the clang
runtime). For a package with Fortran code using OpenMP the appropriate
lines are

PKG_FFLAGS = $(SHLIB_OPENMP_FFLAGS)
PKG_LIBS = $(SHLIB_OPENMP_CFLAGS)

as the C compiler will be used to link the package code. There are
platforms on which this does not work for some OpenMP-using code
and installation will fail. Since R >= 3.6.2 the best alternative
for a package with only Fortran sources using OpenMP is to use

USE_FC_TO_LINK =
PKG_FFLAGS = $(SHLIB_OPENMP_FFLAGS)
PKG_LIBS = $(SHLIB_OPENMP_FFLAGS)

in src/Makevars, src/Makevars.win or Makevars.ucrt.
Note however, that
when this is used $(FLIBS) should not be included in
PKG_LIBS since it is for linking Fortran-compiled code by the C
compiler.

Common platforms may inline all OpenMP calls and so tolerate the
omission of the OpenMP flag from PKG_LIBS, but this usually
results in an installation failure with a different compiler or
compilation flags. So cross-check that e.g. -fopenmp appears
in the linking line in the installation logs.

It is not portable to use OpenMP with more than one of C, C++ and
Fortran in a single package since it is not uncommon that the compilers
are of different families.

For portability, any C/C++ code using the omp_* functions should
include the omp.h header: some compilers (but not all) include it
when OpenMP mode is switched on (e.g. via flag
-fopenmp).

There is nothing41 to say what
version of OpenMP is supported: version 4.0 (and much of 4.5 or 5.0) is
supported by recent versions of the Linux and Windows platforms, but
portable packages cannot assume that end users have recent versions.
Apple clang on macOS has no OpenMP support.
https://www.openmp.org/resources/openmp-compilers-tools/ gives
some idea of what compilers support what versions. Note that support
for Fortran compilers is often less up-to-date and that page suggests it
is unwise to rely on a version later than 3.1. Which introduced a
Fortran OpenMP module, so Fortran users of OpenMP should include

use omp_lib

Rarely, using OpenMP with clang on Linux generates calls in
libatomic, resulting in loading messages like

 undefined symbol: __atomic_compare_exchange
 undefined symbol: __atomic_load

The workaround is to link with -latomic (having checked it exists).

The performance of OpenMP varies substantially between platforms. The
Windows implementation has substantial overheads, so is only beneficial
if quite substantial tasks are run in parallel. Also, on Windows new
threads are started with the default42 FPU control word, so computations done on OpenMP
threads will not make use of extended-precision arithmetic which is the
default for the main process.

Do not include these macros unless your code does make use of OpenMP
(possibly for C++ via included external headers): this can result in the
OpenMP runtime being linked in, threads being started, ….

Calling any of the R API from threaded code is ‘for experts only’ and
strongly discouraged. Many functions in the R API modify internal
R data structures and might corrupt these data structures if called
simultaneously from multiple threads. Most R API functions can
signal errors, which must only happen on the R main thread. Also,
external libraries (e.g. LAPACK) may not be thread-safe.

Packages are not standard-alone programs, and an R process could
contain more than one OpenMP-enabled package as well as other components
(for example, an optimized BLAS) making use of OpenMP. So careful
consideration needs to be given to resource usage. OpenMP works with
parallel regions, and for most implementations the default is to use as
many threads as ‘CPUs’ for such regions. Parallel regions can be
nested, although it is common to use only a single thread below the
first level. The correctness of the detected number of ‘CPUs’ and the
assumption that the R process is entitled to use them all are both
dubious assumptions. One way to limit resources is to limit the overall
number of threads available to OpenMP in the R process: this can be
done via environment variable OMP_THREAD_LIMIT, where
implemented.43 Alternatively, the number of threads per
region can be limited by the environment variable OMP_NUM_THREADS
or API call omp_set_num_threads, or, better, for the regions in
your code as part of their specification. E.g. R uses44

#pragma omp parallel for num_threads(nthreads) ...

That way you only control your own code and not that of other OpenMP users.

Note that setting environment variables to control OpenMP is
implementation-dependent and may need to be done outside the R
process or before any use of OpenMP (which might be by another process
or R itself). Also, implementation-specific variables such as
KMP_THREAD_LIMIT might take precedence.

1.2.1.2 Using pthreads

There is no direct support for the POSIX threads (more commonly known as
pthreads): by the time we considered adding it several packages
were using it unconditionally so it seems that nowadays it is
universally available on POSIX operating systems.

For reasonably recent versions of gcc and clang the
correct specification is

PKG_CPPFLAGS = -pthread
PKG_LIBS = -pthread

(and the plural version is also accepted on some systems/versions). For
other platforms the specification is

PKG_CPPFLAGS = -D_REENTRANT
PKG_LIBS = -lpthread

(and note that the library name is singular). This is what
-pthread does on all known current platforms (although earlier
versions of OpenBSD used a different library name).

For a tutorial see
https://hpc-tutorials.llnl.gov/posix/.

POSIX threads are not normally used on Windows which has its own native
concepts of threads: however, recent toolchains do provide the
pthreads header and library.

The presence of a working pthreads implementation cannot be
unambiguously determined without testing for yourself: however, that
‘_REENTRANT’ is defined in C/C++ code is a good indication.

Note that not all pthreads implementations are equivalent as parts
are optional (see
https://pubs.opengroup.org/onlinepubs/009695399/basedefs/pthread.h.html):
for example, macOS lacks the ‘Barriers’ option.

See also the comments on thread-safety and performance under OpenMP: on
all known R platforms OpenMP is implemented via
pthreads and the known performance issues are in the latter.

1.2.1.3 Compiling in sub-directories

Package authors fairly often want to organize code in sub-directories of
src, for example if they are including a separate piece of
external software to which this is an R interface.

One simple way is simply to set OBJECTS to be all the objects
that need to be compiled, including in sub-directories. For example,
CRAN package RSiena has

SOURCES = $(wildcard data/*.cpp network/*.cpp utils/*.cpp model/*.cpp model/*/*.cpp model/*/*/*.cpp)

OBJECTS = siena07utilities.o siena07internals.o siena07setup.o siena07models.o $(SOURCES:.cpp=.o)

One problem with that approach is that unless GNU make extensions are
used, the source files need to be listed and kept up-to-date. As in the
following from CRAN package lossDev:

OBJECTS.samplers = samplers/ExpandableArray.o samplers/Knots.o \
 samplers/RJumpSpline.o samplers/RJumpSplineFactory.o \
 samplers/RealSlicerOV.o samplers/SliceFactoryOV.o samplers/MNorm.o
OBJECTS.distributions = distributions/DSpline.o \
 distributions/DChisqrOV.o distributions/DTOV.o \
 distributions/DNormOV.o distributions/DUnifOV.o distributions/RScalarDist.o
OBJECTS.root = RJump.o

OBJECTS = $(OBJECTS.samplers) $(OBJECTS.distributions) $(OBJECTS.root)

Where the subdirectory is self-contained code with a suitable makefile,
the best approach is something like

PKG_LIBS = -LCsdp/lib -lsdp $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)

$(SHLIB): Csdp/lib/libsdp.a

Csdp/lib/libsdp.a:
 @(cd Csdp/lib && $(MAKE) libsdp.a \
 CC="$(CC)" CFLAGS="$(CFLAGS) $(CPICFLAGS)" AR="$(AR)" RANLIB="$(RANLIB)")

Note the quotes: the macros can contain spaces, e.g. CC = "gcc
-m64 -std=gnu99". Several authors have forgotten about parallel makes:
the static library in the subdirectory must be made before the shared
object ($(SHLIB)) and so the latter must depend on the former.
Others forget the need45 for
position-independent code.

We really do not recommend using src/Makefile instead of
src/Makevars, and as the example above shows, it is not
necessary.

1.2.2 Configure example

It may be helpful to give an extended example of using a
configure script to create a src/Makevars file: this is
based on that in the RODBC package.

The configure.ac file follows: configure is created from
this by running autoconf in the top-level package directory
(containing configure.ac).

AC_INIT([RODBC], 1.1.8) dnl package name, version

dnl A user-specifiable option
odbc_mgr=""
AC_ARG_WITH([odbc-manager],
 AC_HELP_STRING([--with-odbc-manager=MGR],
 [specify the ODBC manager, e.g. odbc or iodbc]),
 [odbc_mgr=$withval])

if test "$odbc_mgr" = "odbc" ; then
 AC_PATH_PROGS(ODBC_CONFIG, odbc_config)
fi

dnl Select an optional include path, from a configure option
dnl or from an environment variable.
AC_ARG_WITH([odbc-include],
 AC_HELP_STRING([--with-odbc-include=INCLUDE_PATH],
 [the location of ODBC header files]),
 [odbc_include_path=$withval])
RODBC_CPPFLAGS="-I."
if test [-n "$odbc_include_path"] ; then
 RODBC_CPPFLAGS="-I. -I${odbc_include_path}"
else
 if test [-n "${ODBC_INCLUDE}"] ; then
 RODBC_CPPFLAGS="-I. -I${ODBC_INCLUDE}"
 fi
fi

dnl ditto for a library path
AC_ARG_WITH([odbc-lib],
 AC_HELP_STRING([--with-odbc-lib=LIB_PATH],
 [the location of ODBC libraries]),
 [odbc_lib_path=$withval])
if test [-n "$odbc_lib_path"] ; then
 LIBS="-L$odbc_lib_path ${LIBS}"
else
 if test [-n "${ODBC_LIBS}"] ; then
 LIBS="-L${ODBC_LIBS} ${LIBS}"
 else
 if test -n "${ODBC_CONFIG}"; then
 odbc_lib_path=`odbc_config --libs | sed s/-lodbc//`
 LIBS="${odbc_lib_path} ${LIBS}"
 fi
 fi
fi

dnl Now find the compiler and compiler flags to use
: ${R_HOME=`R RHOME`}
if test -z "${R_HOME}"; then
 echo "could not determine R_HOME"
 exit 1
fi
CC=`"${R_HOME}/bin/R" CMD config CC`
CFLAGS=`"${R_HOME}/bin/R" CMD config CFLAGS`
CPPFLAGS=`"${R_HOME}/bin/R" CMD config CPPFLAGS`

if test -n "${ODBC_CONFIG}"; then
 RODBC_CPPFLAGS=`odbc_config --cflags`
fi
CPPFLAGS="${CPPFLAGS} ${RODBC_CPPFLAGS}"

dnl Check the headers can be found
AC_CHECK_HEADERS(sql.h sqlext.h)
if test "${ac_cv_header_sql_h}" = no ||
 test "${ac_cv_header_sqlext_h}" = no; then
 AC_MSG_ERROR("ODBC headers sql.h and sqlext.h not found")
fi

dnl search for a library containing an ODBC function
if test [-n "${odbc_mgr}"] ; then
 AC_SEARCH_LIBS(SQLTables, ${odbc_mgr}, ,
 AC_MSG_ERROR("ODBC driver manager ${odbc_mgr} not found"))
else
 AC_SEARCH_LIBS(SQLTables, odbc odbc32 iodbc, ,
 AC_MSG_ERROR("no ODBC driver manager found"))
fi

dnl for 64-bit ODBC need SQL[U]LEN, and it is unclear where they are defined.
AC_CHECK_TYPES([SQLLEN, SQLULEN], , , [# include <sql.h>])
dnl for unixODBC header
AC_CHECK_SIZEOF(long, 4)

dnl substitute RODBC_CPPFLAGS and LIBS
AC_SUBST(RODBC_CPPFLAGS)
AC_SUBST(LIBS)
AC_CONFIG_HEADERS([src/config.h])
dnl and do substitution in the src/Makevars.in and src/config.h
AC_CONFIG_FILES([src/Makevars])
AC_OUTPUT

where src/Makevars.in would be simply

PKG_CPPFLAGS = @RODBC_CPPFLAGS@
PKG_LIBS = @LIBS@

A user can then be advised to specify the location of the ODBC
driver manager files by options like (lines broken for easier reading)

R CMD INSTALL \
 --configure-args='--with-odbc-include=/opt/local/include \
 --with-odbc-lib=/opt/local/lib --with-odbc-manager=iodbc' \
 RODBC

or by setting the environment variables ODBC_INCLUDE and
ODBC_LIBS.

1.2.3 Using modern Fortran code

R assumes that source files with extension .f are fixed-form
Fortran 90 (which includes Fortran 77), and passes them to the compiler
specified by macro ‘FC’. The Fortran compiler will also accept
free-form Fortran 90/95 code with extension .f90 or
(most46) .f95.

The same compiler is used for both fixed-form and free-form Fortran code
(with different file extensions and possibly different flags). Macro
PKG_FFLAGS can be used for package-specific flags: for the
un-encountered case that both are included in a single package and that
different flags are needed for the two forms, macro PKG_FCFLAGS
is also available for free-form Fortran.

The code used to build R allows a ‘Fortran 90’ compiler to be
selected as ‘FC’, so platforms might be encountered which only
support Fortran 90. However, Fortran 95 is supported on all known
platforms.

Most compilers specified by ‘FC’ will accept most Fortran 2003, 2008 or
2018 code: such code should still use file extension .f90. Most
current platforms use gfortran where you might need to include
-std=f2003, -std=f2008 or (from version 8)
-std=f2018 in PKG_FFLAGS or PKG_FCFLAGS: the
default is ‘GNU Fortran’, currently Fortran 2018 (but Fortran 95 prior
to gfortran 8) with non-standard extensions. The other
compilers in current use (LLVM’s flang-new and Intel’s
ifx) default to Fortran 201847.

It is good practice to describe a Fortran version requirement in
DESCRIPTION’s ‘SystemRequirements’ field. Note that this is
purely for information: the package also needs a configure
script to determine the compiler and set appropriate option(s) and test
that the features needed from the standard are actually supported.

The Fortran 2023 released in Nov 2023: as usual compiler vendors are
introducing support incrementally.
For Intel’s ifx see
https://www.intel.com/content/www/us/en/developer/articles/technical/fortran-language-and-openmp-features-in-ifx.html#Fortran%20Standards.
For LLVM’s flang-new see
https://flang.llvm.org/docs/F202X.html.
gfortran does not have complete support even for the 2008 and
2018 standards, but the option -std=f2023 is supported from
version 14.1.

Modern versions of Fortran support modules, whereby compiling one source
file creates a module file which is then included in others. (Module
files typically have a .mod extension: they do depend on the
compiler used and so should never be included in a package.) This
creates a dependence which make will not know about and often
causes installation with a parallel make to fail. Thus it is necessary
to add explicit dependencies to src/Makevars to tell
make the constraints on the order of compilation. For
example, if file iface.f90 creates a module ‘iface’ used by
files cmi.f90 and dmi.f90 then src/Makevars needs
to contain something like

cmi.o dmi.o: iface.o

Some maintainers have found it difficult to find all the module
dependencies which leads to hard-to-reproduce installation failures.
There are tools available to find these, including the Intel compiler’s
flag -gen-dep and makedepf90.

Note that it is not portable (although some platforms do accept it) to
define a module of the same name in multiple source files.

1.2.4 Using C++ code

R can be built without a C++ compiler although one is available (but
not necessarily installed) on all known R platforms. As from R
4.0.0 a C++ compiler will be selected only if it conforms to the 2011
standard (‘C++11’). A minor update48 (‘C++14’) was published in
December 2014 and was used by default as from R 4.1.0 if
supported. Further revisions ‘C++17’ (in December 2017) and ‘C++20’
(with many new features in December 2020) have been published since.
The next revision, ‘C++23’, is expected in 2024 and several compilers
already have extensive partial support for the final draft.

The default standard for compiling R packages was changed to C++17 in
R 4.3.0 if supported, and from R 4.4.0 only a C++17 compiler will
be selected as the default C++ compiler.

What standard a C++ compiler aims to support can be hard to determine:
the value49 of __cplusplus may help but
some compilers use it to denote a standard which is partially supported
and some the latest standard which is (almost) fully supported. On a
Unix-alike configure will try to identify a compiler and flags
for each of the standards: this relies heavily on the reported values of
__cplusplus.

The webpage
https://en.cppreference.com/w/cpp/compiler_support gives
some information on which compilers are known to support recent C++
features.

C++ standards have deprecated and later removed features. Be aware that
some current compilers still accept removed features in C++17 mode,
such as std::unary_function (deprecated in C++11, removed in C++17).

Different versions of R have used different default C++ standards, so
for maximal portability a package should specify the standard it
requires. In order to specify C++14 code in a package with a
Makevars file (or Makevars.win or Makevars.ucrt on
Windows) should include the line

CXX_STD = CXX14

Compilation and linking will then be done with the C++14 compiler (if
any). Analogously for other standards (details below). On the other
hand, specifying C++1150
when the code is valid under C++14 or C++17 reduces future portability.

Packages without a src/Makevars or src/Makefile file may
specify a C++ standard for code in the src directory by including
something like ‘C++14’ in the ‘SystemRequirements’ field of
the DESCRIPTION file, e.g.

SystemRequirements: C++14

If a package does have a src/Makevars[.win] file then also
setting the make variable ‘CXX_STD’ there is recommended, as it
allows R CMD SHLIB to work correctly in the package’s
src directory.

A requirement of C++17 or later should always be declared in the
‘SystemRequirements’ field (as well as in src/Makevars or
src/Makefile) so this is shown on the package’s summary pages on
CRAN or similar. This is also good practice for a requirement
of C++14. Note that support of C++14 or C++17 is only available from
R 3.4.0, so if the package has an R version requirement it needs to
take that into account.

Essentially complete C++14 support is available from GCC 5, LLVM
clang 3.4 and currently-used versions of Apple
clang.

Code needing C++14 features can check for their presence via
‘SD-6 feature tests’51. Such a check could be

#include <memory> // header where this is defined
#if defined(__cpp_lib_make_unique) && (__cpp_lib_make_unique >= 201304)
using std::make_unique;
#else
// your emulation
#endif

C++17 (as from R 3.4.0), C++20 (as from R 4.0.0) and C++23 (as
from R 4.3.0) can be specified in an analogous way (replacing
14 by 17, 20 or 23) but compiler/OS support
is platform-dependent. Some C++17 and C++20 support is available with
the default builds of R on macOS and Windows as from R 4.0.0.
Much of g++’s support for C++17 needs version 7 or later: that
is more recent than some still-current Linux distributions but often
packages for later compilers are available: for RHEL/Centos 7 look for
‘devtoolset’.

Note that C++17 or later ‘support’ does not mean complete support: use
feature tests as well as resources such as
https://en.cppreference.com/w/cpp/compiler_support,
https://gcc.gnu.org/projects/cxx-status.html and
https://clang.llvm.org/cxx_status.html to see if the features you
want to use are widely implemented. In particular, for C++23 R’s
configure script only checks for a compiler claiming to be
later than C++20.52

Attempts to specify an unknown C++ standard are silently ignored: recent
versions of R throw an error for C++98 and for known standards for
which no compiler+flags has been detected.

If a package using C++ has a configure script it is essential
that the script selects the correct C++ compiler and standard,
via something like

CXX17=`"${R_HOME}/bin/R" CMD config CXX17`
if test -z "$CXX17"; then
 AC_MSG_ERROR([No C++17 compiler is available])
fi
CXX17STD=`"${R_HOME}/bin/R" CMD config CXX17STD`
CXX="${CXX17} ${CXX17STD}"
CXXFLAGS=`"${R_HOME}/bin/R" CMD config CXX17FLAGS`
for an configure.ac file
AC_LANG(C++)

if C++17 was specified, but using

CXX=`"${R_HOME}/bin/R" CMD config CXX`
CXXFLAGS=`"${R_HOME}/bin/R" CMD config CXXFLAGS`
for an configure.ac file
AC_LANG(C++)

if no standard was specified.

If you want to compile C++ code in a subdirectory, make sure you pass
down the macros to specify the appropriate compiler, e.g. in
src/Makevars

sublibs:
 @(cd libs && $(MAKE) \
 CXX="$(CXX17) $(CXX17STD)" CXXFLAGS="$(CXX17FLAGS) $(CXX17PICFLAGS)")

The discussion above is about the standard R ways of compiling C++:
it will not apply to packages using src/Makefile or building in a
subdirectory that do not set the C++ standard. And compilers’ default
C++ standards varies widely and gets changed frequently by vendors –
for example Apple clang up to at least 16 defaults to C++98, LLVM
clang 14–15 to C++14, LLVM clang 16–18 to C++17 and g++
11–14 to C++17.

For a package with a src/Makefile (or a Windows analogue),
a non-default C++ compiler can be selected by including something like

CXX14 = `"${R_HOME}/bin/R" CMD config CXX14`
CXX14STD = `"${R_HOME}/bin/R" CMD config CXX14STD`
CXX = ${CXX14} ${CXX14STD}
CXXFLAGS = `"${R_HOME}/bin/R" CMD config CXX14FLAGS`
CXXPICFLAGS = `"${R_HOME}/bin/R" CMD config CXX14PICFLAGS`
SHLIB_LD = "${R_HOME}/bin/R" CMD config SHLIB_CXX14LD`
SHLIB_LDFLAGS = "${R_HOME}/bin/R" CMD config SHLIB_CXX14LDFLAGS`

and ensuring these values are used in relevant compilations, after
checking they are non-empty. A common use of src/Makefile is to
compile an executable, when likely something like (for example for
C++14)

CXX14 = `"${R_HOME}/bin/R" CMD config CXX14`
CXX14STD = `"${R_HOME}/bin/R" CMD config CXX14STD`
CXX = ${CXX14} ${CXX14STD}
CXXFLAGS = `"${R_HOME}/bin/R" CMD config CXX14FLAGS`

suffices. On Unix (and on Windows from R 4.3.0) this can be simplified
to

CXX = ${CXX14} ${CXX14STD}
CXXFLAGS = ${CXX14FLAGS}

On a Unix-alike C++ compilation defaulted to C++11 from R 3.6.0, to
C++14 from R 4.1.0 and to C++17 from R 4.3.0. However, only ‘if
available’, so platforms using very old OSes might have used the
previous default. Even older versions of R defaulted to the
compiler’s default, almost certainly C++98 for compilers of comparable
vintage.

On Windows the default was changed from C++98 to C++11 in R 3.6.2, to
C++14 in R 4.2.3 and to C++17 in R 4.3.0.

The C++11 standard could be specified as from R 3.1.0 and C++14 or
C++17 as from R 3.4.0, for C++20 from R 4.0.0 and for C++23 from
R 4.3.0 (although they may not be supported by the compilers
in use). C++11 support became mandatory in R 4.0.0 and C++17 support
in R 4.4.0.

The .so/.dll in a package may need to be linked by the
C++ compiler if it or any library it links to contains compiled C++
code. Dynamic linking usually brings in the C++ runtime library
(commonly libstdc++ but can be, for example, libc++) but
static linking (as used for external libraries on Windows and macOS)
will not. R CMD INSTALL will link with the C++ compiler if
there are any top-level C++ files in src, but not if these are
all in subdirectories. The simplest way to force linking by the C++
compiler is to include an empty C++ file in src..

1.2.5 C standards

C has had standards C89/C90, C99, C11, C17 (also known as C18), and C23
is in final draft and expected to be published in 2024. C11 was a
minor change to C99 which introduced some new features and made others
optional, and C17 is a ‘bug-fix’ update to C11. On the other hand, C23
makes extensive changes, including making bool, true and
false reserved words, finally disallowing K&R-style function
declarations and clarifying the formerly deprecated meaning of function
declarations with an empty parameter list to mean zero
parameters. (There are many other additions: see for example
https://en.cppreference.com/w/c/23.)

The configure script in recent versions of R aims to choose
a C compiler which supports C11: as the default in recent versions of
gcc, LLVM clang and Apple clang is C17,
that is what is likely to be chosen. On the other hand, until R 4.3.0
the makefiles for the Windows build specified C99. They now use the
compiler default which for the recommended compiler is C17.

Packages may want to either avoid or embrace the changes in C23, and can
do so via specifying ‘USE_Cnn’ for 17, 23, 90 or 99 in the
‘SystemRequirements’ field of their DESCRIPTION file of a
package depending on ‘R (>= 4.3.0)’. Those using a
configure script should set the corresponding compiler and
flags, for example using

CC=`"${R_HOME}/bin/R" CMD config CC23`
CFLAGS=`"${R_HOME}/bin/R" CMD config C23FLAGS`
CPPFLAGS=`"${R_HOME}/bin/R" CMD config CPPFLAGS`
LDFLAGS=`"${R_HOME}/bin/R" CMD config LDFLAGS`

The (claimed) C standard in use can be checked by the macro
__STDC_VERSION__. This is undefined in C89/C90 and should have
values 199901L, 201112L and 201710L for C99, C11
and C17. As C23 is not yet published there is as yet no definitive
value: compilers are currently using 202000L.
C23 has macros similar to C++ ‘feature tests’ for many of its changes,
for example __STDC_VERSION_LIMITS_H__.

However, note the ‘claimed’ as no compiler had 100% conformance, and it
is better to use configure to test for the feature you want to
use than to condition on the value of __STDC_VERSION__. In
particular, C11 alignment functionality such as _Alignas and
aligned_alloc is not implemented on Windows.

End users can specify a standard by something like R CMD
INSTALL --use-C17. This overrides the ‘SystemRequirements’ field,
but not for any configure file.

1.2.6 Using cmake

Packages often wish to include the sources of other software and compile
that for inclusion in their .so or .dll, which is normally
done by including (or unpacking) the sources in a subdirectory of
src, as considered above.

Further issues arise when the external software uses another build
system such as cmake, principally to ensure that
all the settings for compilers, include and load paths etc
are made. This section has already mentioned the need to set
at least some of

CC CFLAGS CXX CXXFLAGS CPPFLAGS LDFLAGS

CFLAGS and CXXFLAGS will need to include CPICFLAGS
and CXXPICFLAGS respectively unless (as below) cmake is
asked to generate PIC code.

Setting these (and more) as environment variables controls the behaviour
of cmake
(https://cmake.org/cmake/help/latest/manual/cmake-env-variables.7.html#manual:cmake-env-variables(7)),
but it may be desirable to translate these into native settings such as

CMAKE_C_COMPILER
CMAKE_C_FLAGS
CMAKE_CXX_COMPILER
CMAKE_CXX_FLAGS
CMAKE_INCLUDE_PATH
CMAKE_LIBRARY_PATH
CMAKE_SHARED_LINKER_FLAGS_INIT
CMAKE_OSX_DEPLOYMENT_TARGET

and it is often necessary to ensure a static library of PIC code is built by

-DBUILD_SHARED_LIBS:bool=OFF
-DCMAKE_POSITION_INDEPENDENT_CODE:bool=ON

If R is to be detected or used, this must be the build being used for
package installation – "${R_HOME}"/bin/R.

To fix ideas, consider a package with sources for a library myLib
under src/libs. Two approaches have been used. It is often most
convenient to build the external software in a directory other than its
sources (particularly during development when the build directory can be
removed between builds rather than attempting to clean the sources) –
this is illustrated in the first approach.

	 Use the package’s configure script to create a static library
src/build/libmyLib.a. This can then be treated in the same way
as external software, for example having in src/Makevars

PKG_CPPFLAGS = -Ilibs/include
PKG_LIBS = build/libmyLib.a

(-Lbuild -lmyLib could also be used but this explicit
specification avoids any confusion with dynamic libraries of the same
name.)

The configure script will need to contain something like (for C
code)

: ${R_HOME=`R RHOME`}
if test -z "${R_HOME}"; then
 echo "could not determine R_HOME"
 exit 1
fi
CC=`"${R_HOME}/bin/R" CMD config CC`
CFLAGS=`"${R_HOME}/bin/R" CMD config CFLAGS`
CPPFLAGS=`"${R_HOME}/bin/R" CMD config CPPFLAGS`
LDFLAGS=`"${R_HOME}/bin/R" CMD config LDFLAGS`

cd src
mkdir build && cd build
cmake -S ../libs \
 -DCMAKE_BUILD_TYPE=Release \
 -DBUILD_SHARED_LIBS:bool=OFF \
 -DCMAKE_POSITION_INDEPENDENT_CODE:bool=ON
${MAKE}

	 Use src/Makevars (or src/Makevars.win or Makevars.ucrt) to build within the
subdirectory. This could be something like (for C code)

PKG_CPPFLAGS = -Ilibs/include
PKG_LIBS = libs/libmyLib.a

$(SHLIB): mylibs

mylibs:
 (cd libs; \
 CC="$(CC)" CFLAGS="$(CFLAGS)" \
 CPPFLAGS="$(CPPFLAGS)" LDFLAGS="$(LDFLAGS)" \
	 cmake . \
	 -DCMAKE_BUILD_TYPE=Release \
	 -DBUILD_SHARED_LIBS:bool=OFF \
	 -DCMAKE_POSITION_INDEPENDENT_CODE:bool=ON; \
	 $(MAKE))

the compiler and other settings having been set as Make variables by an
R makefile included by INSTALL before src/Makevars.

A complication is that on macOS cmake (where installed) is
commonly not on the path but at
/Applications/CMake.app/Contents/bin/cmake. One way to work
around this is for the package’s configure script to include

if test -z "$CMAKE"; then CMAKE="`which cmake`"; fi
if test -z "$CMAKE"; then CMAKE=/Applications/CMake.app/Contents/bin/cmake; fi
if test -f "$CMAKE"; then echo "no 'cmake' command found"; exit 1; fi

and for the second approach to substitute CMAKE into
src/Makevars. This also applies to the ancillary command
ctest, if used.

1.3 Checking and building packages

Before using these tools, please check that your package can be
installed. R CMD check will inter alia do this, but you
may get more detailed error messages doing the install directly.

If your package specifies an encoding in its DESCRIPTION file,
you should run these tools in a locale which makes use of that encoding:
they may not work at all or may work incorrectly in other locales
(although UTF-8 locales will most likely work).

Note: R CMD check and R CMD build run R processes with
--vanilla in which none of the user’s startup files are read.
If you need R_LIBS set (to find packages in a non-standard
library) you can set it in the environment: also you can use the check
and build environment files (as specified by the environment variables
R_CHECK_ENVIRON and R_BUILD_ENVIRON; if unset,
files53 ~/.R/check.Renviron and
~/.R/build.Renviron are used) to set environment variables when
using these utilities.

Note to Windows users: R CMD build may make use of the Windows toolset (see the “R
Installation and Administration” manual) if present and in your path,
and it is required for packages which need it to install (including
those with configure.win, cleanup.win, configure.ucrt
or cleanup.ucrt scripts or a
src directory) and e.g. need vignettes built.

You may need to set the environment variable TMPDIR to point to a
suitable writable directory with a path not containing spaces – use
forward slashes for the separators. Also, the directory needs to be on
a case-honouring file system (some network-mounted file systems are
not).

1.3.1 Checking packages

Using R CMD check, the R package checker, one can test whether
source R packages work correctly. It can be run on one or
more directories, or compressed package tar archives with
extension .tar.gz, .tgz, .tar.bz2 or
.tar.xz.

It is strongly recommended that the final checks are run on a
tar archive prepared by R CMD build.

This runs a series of checks, including

	 The package is installed. This will warn about missing cross-references
and duplicate aliases in help files.

	 The file names are checked to be valid across file systems and supported
operating system platforms.

	 The files and directories are checked for sufficient permissions
(Unix-alikes only).

	 The files are checked for binary executables, using a suitable version
of file if available54. (There may be
rare false positives.)

	 The DESCRIPTION file is checked for completeness, and some of its
entries for correctness. Unless installation tests are skipped,
checking is aborted if the package dependencies cannot be resolved at
run time. (You may need to set R_LIBS in the environment if
dependent packages are in a separate library tree.) One check is that
the package name is not that of a standard package, nor one of the
defunct standard packages (‘ctest’, ‘eda’, ‘lqs’,
‘mle’, ‘modreg’, ‘mva’, ‘nls’, ‘stepfun’ and
‘ts’). Another check is that all packages mentioned in
library or requires or from which the NAMESPACE
file imports or are called via :: or ::: are listed
(in ‘Depends’, ‘Imports’, ‘Suggests’): this is not an
exhaustive check of the actual imports.

	 Available index information (in particular, for demos and vignettes) is
checked for completeness.

	 The package subdirectories are checked for suitable file names and for
not being empty. The checks on file names are controlled by the option
--check-subdirs=value. This defaults to ‘default’,
which runs the checks only if checking a tarball: the default can be
overridden by specifying the value as ‘yes’ or ‘no’. Further,
the check on the src directory is only run if the package
does not contain a configure script (which corresponds to the
value ‘yes-maybe’) and there is no src/Makefile or
src/Makefile.in.

To allow a configure script to generate suitable files, files
ending in ‘.in’ will be allowed in the R directory.

A warning is given for directory names that look like R package check
directories – many packages have been submitted to CRAN
containing these.

	 The R files are checked for syntax errors. Bytes which are
non-ASCII are reported as warnings, but these should be
regarded as errors unless it is known that the package will always be
used in the same locale.

	 It is checked that the package can be loaded, first with the usual
default packages and then only with package base already
loaded. It is checked that the namespace can be loaded in an empty
session with only the base namespace loaded. (Namespaces and
packages can be loaded very early in the session, before the default
packages are available, so packages should work then.)

	 The R files are checked for correct calls to library.dynam.
Package startup functions are checked for correct argument lists and
(incorrect) calls to functions which modify the search path or
inappropriately generate messages. The R code is checked for
possible problems using codetools. In addition, it is checked
whether S3 methods have all the arguments of the corresponding generic, and
whether the final argument of replacement functions is called
‘value’. All foreign function calls (.C, .Fortran,
.Call and .External calls) are tested to see if they have
a PACKAGE argument, and if not, whether the appropriate DLL might
be deduced from the namespace of the package. Any other calls are
reported. (The check is generous, and users may want to supplement this
by examining the output of tools::checkFF("mypkg", verbose=TRUE),
especially if the intention were to always use a PACKAGE
argument)

	 The Rd files are checked for correct syntax and metadata,
including the presence of the mandatory fields (\name, \alias,
\title and \description). The Rd name and
title are checked for being non-empty, and there is a check for missing
cross-references (links).

	 A check is made for missing documentation entries, such as undocumented
user-level objects in the package.

	 Documentation for functions, data sets, and S4 classes is checked for
consistency with the corresponding code.

	 It is checked whether all function arguments given in \usage
sections of Rd files are documented in the corresponding
\arguments section.

	 The data directory is checked for non-ASCII characters
and for the use of reasonable levels of compression.

	 C, C++ and Fortran source and header files55 are
tested for portable (LF-only) line endings. If there is a
Makefile or Makefile.in or Makevars or
Makevars.in file under the src directory, it is checked
for portable line endings and the correct use of ‘$(BLAS_LIBS)’ and
‘$(LAPACK_LIBS)’

Compiled code is checked for symbols corresponding to functions which
might terminate R or write to stdout/stderr instead of
the console. Note that the latter might give false positives in that
the symbols might be pulled in with external libraries and could never
be called. Windows56 users
should note that the Fortran and C++ runtime libraries are examples of
such external libraries.

	 Some checks are made of the contents of the inst/doc directory.
These always include checking for files that look like leftovers, and if
suitable tools (such as qpdf) are available, checking that the
PDF documentation is of minimal size.

	 The examples provided by the package’s documentation are run.
(see Writing R documentation files, for information on using
\examples to create executable example code.) If there is a file
tests/Examples/pkg-Ex.Rout.save, the output of running the
examples is compared to that file.

Of course, released packages should be able to run at least their own
examples. Each example is run in a ‘clean’ environment (so earlier
examples cannot be assumed to have been run), and with the variables
T and F redefined to generate an error unless they are set
in the example:
See section ‘Logical vectors’ in the ‘An Introduction to R’ manual for
more information.

	 If the package sources contain a tests directory then the tests
specified in that directory are run. (Typically they will consist of a
set of .R source files and target output files
.Rout.save.) Please note that the comparison will be done in the
end user’s locale, so the target output files should be ASCII
if at all possible. (The command line option --test-dir=foo may
be used to specify tests in a non-standard location. For example,
unusually slow tests could be placed in inst/slowTests and then
R CMD check --test-dir=inst/slowTests would be used to run them.
Other names that have been suggested are, for example,
inst/testWithOracle for tests that require Oracle to be installed,
inst/randomTests for tests which use random values and may
occasionally fail by chance, etc.)

	 The R code in package vignettes (see Writing package vignettes) is
executed, and the vignettes re-made from their sources as a check of
completeness of the sources (unless there is a ‘BuildVignettes’
field in the package’s DESCRIPTION file with a false value). If
there is a target output file .Rout.save in the vignette source
directory, the output from running the code in that vignette is compared
with the target output file and any differences are reported (but not
recorded in the log file). (If the vignette sources are in the
deprecated location inst/doc, do mark such target output files to
not be installed in .Rinstignore.)

If there is an error57 in executing the R code in vignette foo.ext, a log
file foo.ext.log is created in the check directory. The
vignettes are re-made in a copy of the package sources in the
vign_test subdirectory of the check directory, so for further
information on errors look in directory
pkgname/vign_test/vignettes. (It is only retained if there
are errors or if environment variable _R_CHECK_CLEAN_VIGN_TEST_ is
set to a false value.)

	 The PDF version of the package’s manual is created (to check that the
Rd files can be converted successfully). This needs LaTeX and
suitable fonts and LaTeX packages to be installed.
See the section ‘Making the manuals’ in the ‘R Installation and
Administration’ manual’ for further details.

	 Optionally (including by R CMD check --as-cran) the HTML
version of the manual is created and checked for compliance with the
HTML5 standard. This requires a recent version58 of ‘HTML
Tidy’, either on the path or at a location specified by environment
variable R_TIDYCMD. Up-to-date versions can be installed from
http://binaries.html-tidy.org/.

All these tests are run with collation set to the C locale, and
for the examples and tests with environment variable LANGUAGE=en:
this is to minimize differences between platforms.

Use R CMD check --help to obtain more information about the usage
of the R package checker. A subset of the checking steps can be
selected by adding command-line options. It also allows customization by
setting environment variables _R_CHECK_*_ as described in
section ‘Tools’ in the ‘R Internals’ manual:
a set of these customizations similar to those used by CRAN
can be selected by the option --as-cran (which works best if
Internet access is available). Some Windows users may
need to set environment variable R_WIN_NO_JUNCTIONS to a non-empty
value. The test of cyclic declarations59in DESCRIPTION files needs
repositories (including CRAN) set: do this in
~/.Rprofile, by e.g.

options(repos = c(CRAN="https://cran.r-project.org"))

One check customization which can be revealing is

_R_CHECK_CODETOOLS_PROFILE_="suppressLocalUnused=FALSE"

which reports unused local assignments. Not only does this point out
computations which are unnecessary because their results are unused, it
also can uncover errors. (Two such are to intend to update an object by
assigning a value but mistype its name or assign in the wrong scope,
for example using <- where <<- was intended.) This can
give false positives, most commonly because of non-standard evaluation
for formulae and because the intention is to return objects in the
environment of a function for later use.

Complete checking of a package which contains a file README.md
needs a reasonably current version of pandoc installed: see
https://pandoc.org/installing.html.

You do need to ensure that the package is checked in a suitable locale
if it contains non-ASCII characters. Such packages are likely
to fail some of the checks in a C locale, and R CMD
check will warn if it spots the problem. You should be able to check
any package in a UTF-8 locale (if one is available). Beware that
although a C locale is rarely used at a console, it may be the
default if logging in remotely or for batch jobs.

Often R CMD check will need to consult a CRAN repository to
check details of uninstalled packages. Normally this defaults to the
CRAN main site, but a mirror can be specified by setting environment
variables R_CRAN_WEB and (rarely needed) R_CRAN_SRC to the
URL of a CRAN mirror.

It is possible to install a package and then check the installed
package. To do so first install the package and keep a log of the
installation:

R CMD INSTALL -l libdir pkg > pkg.log 2>&1

and then use

Rdev CMD check -l libdir --install=check:pkg.log pkg

(Specifying the library is required: it ensures that the just-installed
package is the one checked. If you know for sure only one copy is
installed you can use --install=skip: this is used for R
installation’s make check-recommended.)

1.3.2 Building package tarballs

Packages may be distributed in source form as “tarballs”
(.tar.gz files) or in binary form. The source form can be
installed on all platforms with suitable tools and is the usual form for
Unix-like systems; the binary form is platform-specific, and is the more
common distribution form for the macOS and ‘x86_64’ Windows platforms.

Using R CMD build, the R package builder, one can build
R package tarballs from their sources (for example, for subsequent
release). It is recommended that packages are built for release by the
current release version of R or ‘r-patched’, to avoid
inadvertently picking up new features of a development version of R.

Prior to actually building the package in the standard gzipped tar file
format, a few diagnostic checks and cleanups are performed. In
particular, it is tested whether object indices exist and can be assumed
to be up-to-date, and C, C++ and Fortran source files and relevant
makefiles in a src directory are tested and converted to LF
line-endings if necessary.

Run-time checks whether the package works correctly should be performed
using R CMD check prior to invoking the final build procedure.

To exclude files from being put into the package, one can specify a list
of exclude patterns in file .Rbuildignore in the top-level source
directory. These patterns should be Perl-like regular expressions (see
the help for regexp in R for the precise details), one per
line, to be matched case-insensitively against the file and directory
names relative to the top-level package source directory. In addition,
directories from source control systems60 or from
eclipse61, directories with
names check, chm, or ending .Rcheck or Old
or old and files
GNUMakefile62, Read-and-delete-me or with base names
starting with ‘.#’, or starting and ending with ‘#’, or ending
in ‘~’, ‘.bak’ or ‘.swp’, are excluded by
default63. In addition,
same-package tarballs (from previous builds) and their binary forms will
be excluded from the top-level directory, as well as
those files in the R, demo and man
directories which are flagged by R CMD check as having invalid
names.

Use R CMD build --help to obtain more information about the usage
of the R package builder.

Unless R CMD build is invoked with the
--no-build-vignettes option (or the package’s
DESCRIPTION contains ‘BuildVignettes: no’ or similar), it
will attempt to (re)build the vignettes (see Writing package vignettes) in the package. To do so it installs the current package
into a temporary library tree, but any dependent packages need to be
installed in an available library tree (see the Note: at the top of this
section).

Similarly, if the .Rd documentation files contain any
\Sexpr macros (see Dynamic pages), the package will be
temporarily installed to execute them. Post-execution binary copies of
those pages containing build-time macros will be saved in
build/partial.rdb. If there are any install-time or render-time
macros, a .pdf version of the package manual will be built and
installed in the build subdirectory. (This allows
CRAN or other repositories to display the manual even if they
are unable to install the package.) This can be suppressed by the
option --no-manual or if package’s DESCRIPTION contains
‘BuildManual: no’ or similar.

One of the checks that R CMD build runs is for empty source
directories. These are in most (but not all) cases unintentional, if
they are intentional use the option --keep-empty-dirs (or set
the environment variable _R_BUILD_KEEP_EMPTY_DIRS_ to ‘TRUE’,
or have a ‘BuildKeepEmpty’ field with a true value in the
DESCRIPTION file).

The --resave-data option allows saved images (.rda and
.RData files) in the data directory to be optimized for
size. It will also compress tabular files and convert .R files
to saved images. It can take values no, gzip (the default
if this option is not supplied, which can be changed by setting the
environment variable _R_BUILD_RESAVE_DATA_) and best
(equivalent to giving it without a value), which chooses the most
effective compression. Using best adds a dependence on R
(>= 2.10) to the DESCRIPTION file if bzip2 or
xz compression is selected for any of the files. If this is
thought undesirable, --resave-data=gzip (which is the default
if that option is not supplied) will do what compression it can with
gzip. A package can control how its data is resaved by
supplying a ‘BuildResaveData’ field (with one of the values given
earlier in this paragraph) in its DESCRIPTION file.

The --compact-vignettes option will run
tools::compactPDF over the PDF files in inst/doc (and its
subdirectories) to losslessly compress them. This is not enabled by
default (it can be selected by environment variable
_R_BUILD_COMPACT_VIGNETTES_) and needs qpdf
(https://qpdf.sourceforge.io/) to be available.

It can be useful to run R CMD check --check-subdirs=yes on the
built tarball as a final check on the contents.

Where a non-POSIX file system is in use which does not utilize execute
permissions, some care is needed with permissions. This applies on
Windows and to e.g. FAT-formatted drives and SMB-mounted file systems
on other OSes. The ‘mode’ of the file recorded in the tarball will be
whatever file.info() returns. On Windows this will record only
directories as having execute permission and on other OSes it is likely
that all files have reported ‘mode’ 0777. A particular issue is
packages being built on Windows which are intended to contain executable
scripts such as configure and cleanup: R CMD
build ensures those two are recorded with execute permission.

Directory build of the package sources is reserved for use by
R CMD build: it contains information which may not easily be
created when the package is installed, including index information on
the vignettes and, rarely, information on the help pages and perhaps a
copy of the PDF reference manual (see above).

1.3.3 Building binary packages

Binary packages are compressed copies of installed versions of
packages. They contain compiled shared libraries rather than C, C++ or
Fortran source code, and the R functions are included in their installed
form. The format and filename are platform-specific; for example, a
binary package for Windows is usually supplied as a .zip file,
and for the macOS platform the default binary package file extension is
.tgz.

The recommended method of building binary packages is to use

R CMD INSTALL --build pkg

where pkg is either the name of a source tarball (in the usual
.tar.gz format) or the location of the directory of the package
source to be built. This operates by first installing the package and
then packing the installed binaries into the appropriate binary package
file for the particular platform.

By default, R CMD INSTALL --build will attempt to install the
package into the default library tree for the local installation of
R. This has two implications:

	If the installation is successful, it will overwrite any existing installation
of the same package.

	The default library tree must have write permission; if not, the package will
not install and the binary will not be created.

To prevent changes to the present working installation or to provide an
install location with write access, create a suitably located directory
with write access and use the -l option to build the package
in the chosen location. The usage is then

R CMD INSTALL -l location --build pkg

where location is the chosen directory with write access. The package
will be installed as a subdirectory of location, and the package binary
will be created in the current directory.

Other options for R CMD INSTALL can be found using R
CMD INSTALL --help, and platform-specific details for special cases are
discussed in the platform-specific FAQs.

Finally, at least one web-based service is available for building binary
packages from (checked) source code: WinBuilder (see
https://win-builder.R-project.org/) is able to build
‘x86_64’ Windows binaries. Note that this is intended for
developers on other platforms who do not have access to Windows but wish
to provide binaries for the Windows platform.

1.4 Writing package vignettes

In addition to the help files in Rd format, R packages allow
the inclusion of documents in arbitrary other formats. The standard
location for these is subdirectory inst/doc of a source package,
the contents will be copied to subdirectory doc when the package
is installed. Pointers from package help indices to the installed
documents are automatically created. Documents in inst/doc can
be in arbitrary format, however we strongly recommend providing them in
PDF format, so users on almost all platforms can easily read them. To
ensure that they can be accessed from a browser (as an HTML index is
provided), the file names should start with an ASCII letter
and be comprised entirely of ASCII letters or digits or hyphen
or underscore.

A special case is package vignettes. Vignettes are documents in
PDF or HTML format obtained from plain-text literate source files
from which R knows how to extract R code and create output (in
PDF/HTML or intermediate LaTeX). Vignette engines do this work,
using “tangle” and “weave” functions respectively. Sweave, provided
by the R distribution, is the default engine. Other vignette engines
besides Sweave are supported; see Non-Sweave vignettes.

Package vignettes have their sources in subdirectory vignettes of
the package sources. Note that the location of the vignette sources
only affects R CMD build and R CMD check: the
tarball built by R CMD build includes in inst/doc the
components intended to be installed.

Sweave vignette sources are normally given the file extension
.Rnw or .Rtex, but for historical reasons
extensions64 .Snw and
.Stex are also recognized. Sweave allows the integration of
LaTeX documents: see the Sweave help page in R and the
Sweave vignette in package utils for details on the
source document format.

Package vignettes are tested by R CMD check by executing all R
code chunks they contain (except those marked for non-evaluation, e.g.,
with option eval=FALSE for Sweave). The R working directory
for all vignette tests in R CMD check is a copy of the
vignette source directory. Make sure all files needed to run the R
code in the vignette (data sets, …) are accessible by either
placing them in the inst/doc hierarchy of the source package or
by using calls to system.file(). All other files needed to
re-make the vignettes (such as LaTeX style files, BibTeX input
files and files for any figures not created by running the code in the
vignette) must be in the vignette source directory. R CMD check
will check that vignette production has succeeded by comparing
modification times of output files in inst/doc with
the source in vignettes.

R CMD build will automatically65 create the
(PDF or HTML versions of the) vignettes in inst/doc for
distribution with the package sources. By including the vignette
outputs in the package sources it is not necessary that these can be
re-built at install time, i.e., the package author can use private R
packages, screen snapshots and LaTeX extensions which are only
available on their machine.66

By default R CMD build will run Sweave on all Sweave
vignette source files in vignettes. If Makefile is found
in the vignette source directory, then R CMD build will try to
run make after the Sweave runs, otherwise
texi2pdf is run on each .tex file produced.

The first target in the Makefile should take care of both
creation of PDF/HTML files and cleaning up afterwards (including
after Sweave), i.e., delete all files that shall not appear in
the final package archive. Note that if the make step runs R
it needs to be careful to respect the environment values of R_LIBS
and R_HOME67.
Finally, if there is a Makefile and it has a ‘clean:’
target, make clean is run.

All the usual caveats about including a Makefile apply.
It must be portable (no GNU extensions), use LF line endings
and must work correctly with a parallel make: too many authors
have written things like

BAD EXAMPLE
all: pdf clean

pdf: ABC-intro.pdf ABC-details.pdf

%.pdf: %.tex
 texi2dvi --pdf $*

clean:
 rm *.tex ABC-details-*.pdf

which will start removing the source files whilst pdflatex is
working.

Metadata lines can be placed in the source file, preferably in LaTeX
comments in the preamble. One such is a \VignetteIndexEntry of
the form

%\VignetteIndexEntry{Using Animal}

Others you may see are \VignettePackage (currently ignored),
\VignetteDepends (a comma-separated list of package names)
and \VignetteKeyword (which replaced
\VignetteKeywords). These are processed at package installation
time to create the saved data frame Meta/vignette.rds.
The \VignetteEngine statement
is described in Non-Sweave vignettes.
Vignette metadata can be extracted from a source file using
tools::vignetteInfo.

At install time an HTML index for all vignettes in the package is
automatically created from the \VignetteIndexEntry statements
unless a file index.html exists in directory
inst/doc. This index is linked from the HTML help index for
the package. If you do supply a inst/doc/index.html file it
should contain relative links only to files under the installed
doc directory, or perhaps (not really an index) to HTML help
files or to the DESCRIPTION file, and be valid HTML as
confirmed via the W3C Markup
Validation Service or Validator.nu.

Sweave/Stangle allows the document to specify the split=TRUE
option to create a single R file for each code chunk: this will not
work for vignettes where it is assumed that each vignette source
generates a single file with the vignette extension replaced by
.R.

Do watch that PDFs are not too large – one in a CRAN package
was 72MB! This is usually caused by the inclusion of overly detailed
figures, which will not render well in PDF viewers. Sometimes it is
much better to generate fairly high resolution bitmap (PNG, JPEG)
figures and include those in the PDF document.

When R CMD build builds the vignettes, it copies these and
the vignette sources from directory vignettes to inst/doc.
To install any other files from the vignettes directory, include
a file vignettes/.install_extras which specifies these as
Perl-like regular expressions on one or more lines. (See the
description of the .Rinstignore file for full details.)

1.4.1 Encodings and vignettes

Vignettes will in general include descriptive text, R input, R
output and figures, LaTeX include files and bibliographic references.
As any of these may contain non-ASCII characters, the handling
of encodings can become very complicated.

The vignette source file should be written in ASCII or contain
a declaration of the encoding (see below). This applies even to
comments within the source file, since vignette engines process comments
to look for options and metadata lines. When an engine’s weave and
tangle functions are called on the vignette source, it will be converted
to the encoding of the current R session.

Stangle() will produce an R code file in the current locale’s
encoding: for a non-ASCII vignette what that is is recorded in a
comment at the top of the file.

Sweave() will produce a .tex file in the current
encoding, or in UTF-8 if that is declared. Non-ASCII encodings
need to be declared to LaTeX via a line like

\usepackage[utf8]{inputenc}

(It is also possible to use the more recent ‘inputenx’ LaTeX
package.) For files where this line is not needed (e.g. chapters
included within the body of a larger document, or non-Sweave
vignettes), the encoding may be declared using a comment like

%\VignetteEncoding{UTF-8}

If the encoding is UTF-8, this can also be declared using
the declaration

%\SweaveUTF8

If no declaration is given in the vignette, it will be assumed to be
in the encoding declared for the package. If there is no encoding
declared in either place, then it is an error to use non-ASCII
characters in the vignette.

In any case, be aware that LaTeX may require the ‘usepackage’
declaration.

Sweave() will also parse and evaluate the R code in each
chunk. The R output will also be in the current locale (or UTF-8
if so declared), and should
be covered by the ‘inputenc’ declaration. One thing people often
forget is that the R output may not be ASCII even for
ASCII R sources, for many possible reasons. One common one
is the use of ‘fancy’ quotes: see the R help on sQuote: note
carefully that it is not portable to declare UTF-8 or CP1252 to cover
such quotes, as their encoding will depend on the locale used to run
Sweave(): this can be circumvented by setting
options(useFancyQuotes="UTF-8") in the vignette.

The final issue is the encoding of figures – this applies only to PDF
figures and not PNG etc. The PDF figures will contain declarations for
their encoding, but the Sweave option pdf.encoding may need to be
set appropriately: see the help for the pdf() graphics device.

As a real example of the complexities, consider the fortunes
package version ‘1.4-0’. That package did not have a declared
encoding, and its vignette was in ASCII. However, the data it
displays are read from a UTF-8 CSV file and will be assumed to be in the
current encoding, so fortunes.tex will be in UTF-8 in any locale.
Had read.table been told the data were UTF-8, fortunes.tex
would have been in the locale’s encoding.

1.4.2 Non-Sweave vignettes

Vignettes in formats other than Sweave are supported via
“vignette engines”. For example knitr version 1.1 or later
can create .tex files from a variation on Sweave format, and
.html files from a variation on “markdown” format. These
engines replace the Sweave() function with other functions to
convert vignette source files into LaTeX files for processing into
.pdf, or directly into .pdf or .html files. The
Stangle() function is replaced with a function that extracts the
R source from a vignette.

R recognizes non-Sweave vignettes using filename extensions specified
by the engine. For example, the knitr package supports
the extension .Rmd (standing for
“R markdown”). The user indicates the vignette engine
within the vignette source using a \VignetteEngine line, for example

%\VignetteEngine{knitr::knitr}

This specifies the name of a package and an engine to use in place of
Sweave in processing the vignette. As Sweave is the only engine
supplied with the R distribution, the package providing any other
engine must be specified in the ‘VignetteBuilder’ field of the
package DESCRIPTION file, and also specified in the
‘Suggests’, ‘Imports’ or ‘Depends’ field (since its
namespace must be available to build or check your package). If more
than one package is specified as a builder, they will be searched in the
order given there. The utils package is always implicitly
appended to the list of builder packages, but may be included earlier
to change the search order.

Note that a package with non-Sweave vignettes should always have a
‘VignetteBuilder’ field in the DESCRIPTION file, since this
is how R CMD check recognizes that there are vignettes to be
checked: packages listed there are required when the package is checked.

The vignette engine can produce .tex, .pdf, or .html
files as output. If it produces .tex files, R will
call texi2pdf to convert them to .pdf for display
to the user (unless there is a Makefile in the vignettes
directory).

Package writers who would like to supply vignette engines need
to register those engines in the package .onLoad function.
For example, that function could make the call

tools::vignetteEngine("knitr", weave = vweave, tangle = vtangle,
 pattern = "[.]Rmd$", package = "knitr")

(The actual registration in knitr is more complicated, because
it supports other input formats.) See the ?tools::vignetteEngine
help topic for details on engine registration.

1.5 Package namespaces

R has a namespace management system for code in packages. This
system allows the package writer to specify which variables in the
package should be exported to make them available to package
users, and which variables should be imported from other
packages.

The namespace for a package is specified by the
NAMESPACE file in the top level package directory. This file
contains namespace directives describing the imports and exports
of the namespace. Additional directives register any shared objects to
be loaded and any S3-style methods that are provided. Note that
although the file looks like R code (and often has R-style
comments) it is not processed as R code. Only very simple
conditional processing of if statements is implemented.

Packages are loaded and attached to the search path by calling
library or require. Only the exported variables are
placed in the attached frame. Loading a package that imports variables
from other packages will cause these other packages to be loaded as well
(unless they have already been loaded), but they will not be
placed on the search path by these implicit loads. Thus code in the
package can only depend on objects in its own namespace and its imports
(including the base namespace) being visible68.

Namespaces are sealed once they are loaded. Sealing means that
imports and exports cannot be changed and that internal variable
bindings cannot be changed. Sealing allows a simpler implementation
strategy for the namespace mechanism and allows code analysis and
compilation tools to accurately identify the definition corresponding to
a global variable reference in a function body.

The namespace controls the search strategy for variables used by
functions in the package. If not found locally, R searches the
package namespace first, then the imports, then the base namespace and
then the normal search path (so the base namespace precedes the normal
search rather than being at the end of it).

1.5.1 Specifying imports and exports

Exports are specified using the export directive in the
NAMESPACE file. A directive of the form

export(f, g)

specifies that the variables f and g are to be exported.
(Note that variable names may be quoted, and reserved words and
non-standard names such as [<-.fractions must be.)

For packages with many variables to export it may be more convenient to
specify the names to export with a regular expression using
exportPattern. The directive

exportPattern("^[^.]")

exports all variables that do not start with a period. However, such
broad patterns are not recommended for production code: it is better to
list all exports or use narrowly-defined groups. (This pattern applies
to S4 classes.) Beware of patterns which include names starting with a
period: some of these are internal-only variables and should never be
exported, e.g. ‘.__S3MethodsTable__.’ (and loading excludes known
cases).

Packages implicitly import the base namespace.
Variables exported from other packages with namespaces need to be
imported explicitly using the directives import and
importFrom. The import directive imports all exported
variables from the specified package(s). Thus the directives

import(foo, bar)

specifies that all exported variables in the packages foo and
bar are to be imported. If only some of the exported variables
from a package are needed, then they can be imported using
importFrom. The directive

importFrom(foo, f, g)

specifies that the exported variables f and g of the
package foo are to be imported. Using importFrom
selectively rather than import is good practice and recommended
notably when importing from packages with more than a dozen exports and
especially from those written by others (so what they export can change
in future).

To import every symbol from a package but for a few exceptions,
pass the except argument to import. The directive

import(foo, except=c(bar, baz))

imports every symbol from foo except bar and
baz. The value of except should evaluate to something
coercible to a character vector, after substituting each symbol for
its corresponding string.

It is possible to export variables from a namespace which it has
imported from other namespaces: this has to be done explicitly and not
via exportPattern.

If a package only needs a few objects from another package it can use a
fully qualified variable reference in the code instead of a formal
import. A fully-qualified reference to the function f in package
foo is of the form foo::f. This is slightly less efficient
than a formal import and also loses the advantage of recording all
dependencies in the NAMESPACE file (but they still need to be
recorded in the DESCRIPTION file). Evaluating foo::f will
cause package foo to be loaded, but not attached, if it was not
loaded already—this can be an advantage in delaying the loading of a
rarely used package. However, if foo is listed only in
‘Suggests’ or ‘Enhances’ this also delays the check that it is
installed: it is good practice to use such imports conditionally (e.g.
via requireNamespace("foo", quietly = TRUE)).

Using the foo::f form will be necessary when a package needs to
use a function of the same name from more than one namespace.

Using foo:::f instead of foo::f allows access to
unexported objects. This is generally not recommended, as the existence
or semantics of unexported objects may be changed by the package author
in routine maintenance.

1.5.2 Registering S3 methods

The standard method for S3-style UseMethod dispatching might fail
to locate methods defined in a package that is imported but not attached
to the search path. To ensure that these methods are available the
packages defining the methods should ensure that the generics are
imported and register the methods using S3method directives. If
a package defines a function print.foo intended to be used as a
print method for class foo, then the directive

S3method(print, foo)

ensures that the method is registered and available for UseMethod
dispatch, and the function print.foo does not need to be exported.
Since the generic print is defined in base it does not need
to be imported explicitly.

(Note that function and class names may be quoted, and reserved words
and non-standard names such as [<- and function must
be.)

It is possible to specify a third argument to S3method, the function to
be used as the method, for example

S3method(print, check_so_symbols, .print.via.format)

when print.check_so_symbols is not needed.

As from R 3.6.0 one can also use S3method() directives to
perform delayed registration. With

if(getRversion() >= "3.6.0") {
 S3method(pkg::gen, cls)
}

function gen.cls will get registered as an S3 method for class
cls and generic gen from package pkg only when the
namespace of pkg is loaded. This can be employed to deal with
situations where the method is not “immediately” needed, and having to
pre-load the namespace of pkg (and all its strong dependencies)
in order to perform immediate registration is considered too onerous.

1.5.3 Load hooks

There are a number of hooks called as packages are loaded, attached,
detached, and unloaded. See help(".onLoad") for more details.

Since loading and attaching are distinct operations, separate hooks are
provided for each. These hook functions are called .onLoad and
.onAttach. They both take arguments69 libname and
pkgname; they should be defined in the namespace but not
exported.

Packages can use a .onDetach or .Last.lib function
(provided the latter is exported from the namespace) when detach
is called on the package. It is called with a single argument, the full
path to the installed package. There is also a hook .onUnload
which is called when the namespace is unloaded (via a call to
unloadNamespace, perhaps called by detach(unload = TRUE))
with argument the full path to the installed package’s directory.
Functions .onUnload and .onDetach should be defined in the
namespace and not exported, but .Last.lib does need to be
exported.

Packages are not likely to need .onAttach (except perhaps for a
start-up banner); code to set options and load shared objects should be
placed in a .onLoad function, or use made of the useDynLib
directive described next.

User-level hooks are also available: see the help on function
setHook.

These hooks are often used incorrectly. People forget to export
.Last.lib. Compiled code should be loaded in .onLoad (or
via a useDynLb directive: see below) and unloaded in
.onUnload. Do remember that a package’s namespace can be loaded
without the namespace being attached (e.g. by pkgname::fun) and
that a package can be detached and re-attached whilst its namespace
remains loaded.

It is good practice for these functions to be quiet. Any messages
should use packageStartupMessage so users (include check scripts)
can suppress them if desired.

1.5.4 useDynLib

A NAMESPACE file can contain one or more useDynLib
directives which allows shared objects that need to be
loaded.70 The directive

useDynLib(foo)

registers the shared object foo71 for loading with library.dynam.
Loading of registered object(s) occurs after the package code has been
loaded and before running the load hook function. Packages that would
only need a load hook function to load a shared object can use the
useDynLib directive instead.

The useDynLib directive also accepts the names of the native
routines that are to be used in R via the .C, .Call,
.Fortran and .External interface functions. These are given as
additional arguments to the directive, for example,

useDynLib(foo, myRoutine, myOtherRoutine)

By specifying these names in the useDynLib directive, the native
symbols are resolved when the package is loaded and R variables
identifying these symbols are added to the package’s namespace with
these names. These can be used in the .C, .Call,
.Fortran and .External calls in place of the name of the
routine and the PACKAGE argument. For instance, we can call the
routine myRoutine from R with the code

 .Call(myRoutine, x, y)

rather than

 .Call("myRoutine", x, y, PACKAGE = "foo")

There are at least two benefits to this approach. Firstly, the symbol
lookup is done just once for each symbol rather than each time the
routine is invoked. Secondly, this removes any ambiguity in resolving
symbols that might be present in more than one DLL. However, this
approach is nowadays deprecated in favour of supplying registration
information (see below).

In some circumstances, there will already be an R variable in the
package with the same name as a native symbol. For example, we may have
an R function in the package named myRoutine. In this case,
it is necessary to map the native symbol to a different R variable
name. This can be done in the useDynLib directive by using named
arguments. For instance, to map the native symbol name myRoutine
to the R variable myRoutine_sym, we would use

useDynLib(foo, myRoutine_sym = myRoutine, myOtherRoutine)

We could then call that routine from R using the command

 .Call(myRoutine_sym, x, y)

Symbols without explicit names are assigned to the R variable with
that name.

In some cases, it may be preferable not to create R variables in the
package’s namespace that identify the native routines. It may be too
costly to compute these for many routines when the package is loaded
if many of these routines are not likely to be used. In this case,
one can still perform the symbol resolution correctly using the DLL,
but do this each time the routine is called. Given a reference to the
DLL as an R variable, say dll, we can call the routine
myRoutine using the expression

 .Call(dll$myRoutine, x, y)

The $ operator resolves the routine with the given name in the
DLL using a call to getNativeSymbol. This is the same
computation as above where we resolve the symbol when the package is
loaded. The only difference is that this is done each time in the case
of dll$myRoutine.

In order to use this dynamic approach (e.g., dll$myRoutine), one
needs the reference to the DLL as an R variable in the package. The
DLL can be assigned to a variable by using the variable =
dllName format used above for mapping symbols to R variables. For
example, if we wanted to assign the DLL reference for the DLL
foo in the example above to the variable myDLL, we would
use the following directive in the NAMESPACE file:

myDLL = useDynLib(foo, myRoutine_sym = myRoutine, myOtherRoutine)

Then, the R variable myDLL is in the package’s namespace and
available for calls such as myDLL$dynRoutine to access routines
that are not explicitly resolved at load time.

If the package has registration information (see Registering native routines), then we can use that directly rather than specifying the
list of symbols again in the useDynLib directive in the
NAMESPACE file. Each routine in the registration information is
specified by giving a name by which the routine is to be specified along
with the address of the routine and any information about the number and
type of the parameters. Using the .registration argument of
useDynLib, we can instruct the namespace mechanism to create
R variables for these symbols. For example, suppose we have the
following registration information for a DLL named myDLL:

static R_NativePrimitiveArgType foo_t[] = {
 REALSXP, INTSXP, STRSXP, LGLSXP
};

static const R_CMethodDef cMethods[] = {
 {"foo", (DL_FUNC) &foo, 4, foo_t},
 {"bar_sym", (DL_FUNC) &bar, 0},
 {NULL, NULL, 0, NULL}
};

static const R_CallMethodDef callMethods[] = {
 {"R_call_sym", (DL_FUNC) &R_call, 4},
 {"R_version_sym", (DL_FUNC) &R_version, 0},
 {NULL, NULL, 0}
};

Then, the directive in the NAMESPACE file

useDynLib(myDLL, .registration = TRUE)

causes the DLL to be loaded and also for the R variables foo,
bar_sym, R_call_sym and R_version_sym to be
defined in the package’s namespace.

Note that the names for the R variables are taken from the entry in
the registration information and do not need to be the same as the name
of the native routine. This allows the creator of the registration
information to map the native symbols to non-conflicting variable names
in R, e.g. R_version to R_version_sym for use in an
R function such as

R_version <- function()
{
 .Call(R_version_sym)
}

Using argument .fixes allows an automatic prefix to be added to
the registered symbols, which can be useful when working with an
existing package. For example, package KernSmooth has

useDynLib(KernSmooth, .registration = TRUE, .fixes = "F_")

which makes the R variables corresponding to the Fortran symbols
F_bkde and so on, and so avoid clashes with R code in the
namespace.

NB: Using these arguments for a package which does not register
native symbols merely slows down the package loading (although many
CRAN packages have done so). Once symbols are registered,
check that the corresponding R variables are not accidentally
exported by a pattern in the NAMESPACE file.

1.5.5 An example

As an example consider two packages named foo and bar. The
R code for package foo in file foo.R is

	

x <- 1
f <- function(y) c(x,y)
foo <- function(x) .Call("foo", x, PACKAGE="foo")
print.foo <- function(x, ...) cat("<a foo>\n")

Some C code defines a C function compiled into DLL foo (with an
appropriate extension). The NAMESPACE file for this package is

	

useDynLib(foo)
export(f, foo)
S3method(print, foo)

The second package bar has code file bar.R

	

c <- function(...) sum(...)
g <- function(y) f(c(y, 7))
h <- function(y) y+9

and NAMESPACE file

	

import(foo)
export(g, h)

Calling library(bar) loads bar and attaches its exports to
the search path. Package foo is also loaded but not attached to
the search path. A call to g produces

> g(6)
[1] 1 13

This is consistent with the definitions of c in the two settings:
in bar the function c is defined to be equivalent to
sum, but in foo the variable c refers to the
standard function c in base.

1.5.6 Namespaces with S4 classes and methods

Some additional steps are needed for packages which make use of formal
(S4-style) classes and methods (unless these are purely used
internally). The package should have
Depends: methods72 in its DESCRIPTION and import(methods) or
importFrom(methods, ...) plus any classes and methods which are
to be exported need to be declared in the NAMESPACE file. For
example, the stats4 package has

export(mle) # exporting methods implicitly exports the generic
importFrom("stats", approx, optim, pchisq, predict, qchisq, qnorm, spline)
For these, we define methods or (AIC, BIC, nobs) an implicit generic:
importFrom("stats", AIC, BIC, coef, confint, logLik, nobs, profile,
 update, vcov)
exportClasses(mle, profile.mle, summary.mle)
All methods for imported generics:
exportMethods(coef, confint, logLik, plot, profile, summary,
 show, update, vcov)
implicit generics which do not have any methods here
export(AIC, BIC, nobs)

All S4 classes to be used outside the package need to be listed in an
exportClasses directive. Alternatively, they can be specified
using exportClassPattern73 in the same style as
for exportPattern. To export methods for generics from other
packages an exportMethods directive can be used.

Note that exporting methods on a generic in the namespace will also
export the generic, and exporting a generic in the namespace will also
export its methods. If the generic function is not local to this
package, either because it was imported as a generic function or because
the non-generic version has been made generic solely to add S4 methods
to it (as for functions such as coef in the example above), it
can be declared via either or both of export or
exportMethods, but the latter is clearer (and is used in the
stats4 example above). In particular, for primitive functions
there is no generic function, so export would export the
primitive, which makes no sense. On the other hand, if the generic is
local to this package, it is more natural to export the function itself
using export(), and this must be done if an implicit
generic is created without setting any methods for it (as is the case
for AIC in stats4).

A non-local generic function is only exported to ensure that calls to
the function will dispatch the methods from this package (and that is
not done or required when the methods are for primitive functions). For
this reason, you do not need to document such implicitly created generic
functions, and undoc in package tools will not report them.

If a package uses S4 classes and methods exported from another package,
but does not import the entire namespace of the other
package74, it needs
to import the classes and methods explicitly, with directives

importClassesFrom(package, ...)
importMethodsFrom(package, ...)

listing the classes and functions with methods respectively. Suppose we
had two small packages A and B with B using A.
Then they could have NAMESPACE files

	

export(f1, ng1)
exportMethods("[")
exportClasses(c1)

and

	

importFrom(A, ng1)
importClassesFrom(A, c1)
importMethodsFrom(A, f1)
export(f4, f5)
exportMethods(f6, "[")
exportClasses(c1, c2)

respectively.

Note that importMethodsFrom will also import any generics defined
in the namespace on those methods.

It is important if you export S4 methods that the corresponding generics
are available. You may for example need to import coef from
stats to make visible a function to be converted into its
implicit generic. But it is better practice to make use of the generics
exported by stats4 as this enables multiple packages to
unambiguously set methods on those generics.

1.6 Writing portable packages

This section contains advice on writing packages to be used on multiple
platforms or for distribution (for example to be submitted to a package
repository such as CRAN).

Portable packages should have simple file names: use only alphanumeric
ASCII characters and period (.), and avoid those names
not allowed under Windows (see Package structure).

Many of the graphics devices are platform-specific: even X11()
(aka x11()) which although emulated on Windows may not be
available on a Unix-alike (and is not the preferred screen device on OS
X). It is rarely necessary for package code or examples to open a new
device, but if essential,75 use dev.new().

Use R CMD build to make the release .tar.gz file.

R CMD check provides a basic set of checks, but often further
problems emerge when people try to install and use packages submitted to
CRAN – many of these involve compiled code. Here are some
further checks that you can do to make your package more portable.

	If your package has a configure script, provide a
configure.win or configure.ucrt script to be used on Windows (an
empty configure.win file if no actions are needed).

	If your package has a Makevars or Makefile file, make sure
that you use only portable make features. Such files should be
LF-terminated76 (including the final
line of the file) and not make use of GNU extensions. (The POSIX
specification is available at
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/make.html;
anything not documented there should be regarded as an extension to be
avoided. Further advice can be found at
https://www.gnu.org/software/autoconf/manual/autoconf.html#Portable-Make.)
Commonly misused GNU extensions are conditional inclusions (ifeq
and the like), ${shell ...}, ${wildcard ...} and
similar, and the use of +=77 and :=. Also, the use of $< other
than in implicit rules is a GNU extension, as is the $^ macro.
As is the use of .PHONY (some other makes ignore it).
Unfortunately makefiles which use GNU extensions often run on other
platforms but do not have the intended results.

Note that the -C flag for make is not included in the
POSIX specification and is not implemented by some of the
makes which have been used with R. However, it is more
commonly implemented (e.g. by FreeBSD make) than the GNU-specific
--directory=.

You should not rely on built-in/default make rules, even when
specified by POSIX, as some makes do not have the POSIX ones
and others have altered them.

The use of ${shell ...} can be avoided by using backticks, e.g.

PKG_CPPFLAGS = `gsl-config --cflags`

which works in all versions of make known78 to be
used with R.

If you really must require GNU make, declare it in the DESCRIPTION
file by

SystemRequirements: GNU make

and ensure that you use the value of environment variable MAKE
(and not just make) in your scripts. (On some platforms GNU
make is available under a name such as gmake, and there
SystemRequirements is used to set MAKE.) Your
configure script (or similar) does need to check that the
executable pointed to by MAKE is indeed GNU make.

If you only need GNU make for parts of the package which are rarely
needed (for example to create bibliography files under
vignettes), use a file called GNUmakefile rather than
Makefile as GNU make (only) will use the former.

macOS has used GNU make for many years (it previously used BSD make),
but the version has been frozen at 3.81 (from 2006).

Since the only viable make for Windows is GNU make, it is permissible to
use GNU extensions in files Makevars.win, Makevars.ucrt,
Makefile.win or Makefile.ucrt.

	If you use src/Makevars to compile code in a subdirectory,
ensure that you have followed all the advice above. In particular

	Anticipate a parallel make. See Using Makevars.

	Pass macros down to the makefile in the subdirectory, including
all the needed compiler flags (including PIC and visibility
flags). If they are used (even by a default rule) in the subdirectory’s
Makefile, this includes macros ‘AR’ and ‘RANLIB’.
See Compiling in sub-directories, which has a C example. A C++
example:

pkg/libpkg.a:
 (cd pkg && $(MAKE) -f make_pkg libpkg.a \
 CXX="$(CXX)" CXXFLAGS="$(CXXFLAGS) $(CXXPICFLAGS) $(C_VISIBILITY)" \
 AR="$(AR)" RANLIB="$(RANLIB)")

	Ensure that cleanup will be performed by R CMD build, for
example in a cleanup script or a ‘clean’ target.

	If your package uses a src/Makefile file to compile code to be
linked into R, ensure that it uses exactly the same compiler and flag
settings that R uses when compiling such code: people often forget
‘PIC’ flags. If R CMD config is used, this needs something
like (for C++)

RBIN = `"${R_HOME}/bin/R"`
CXX = `"${RBIN}" CMD config CXX`
CXXFLAGS = `"${RBIN}" CMD config CXXFLAGS` `"${RBIN}" CMD config CXXPICFLAGS`

	Names of source files including = (such as
src/complex_Sig=gen.c) will confuse some make programs
and should be avoided.

	Bash extensions also need to be avoided in shell scripts, including
expressions in Makefiles (which are passed to the shell for processing).
Some R platforms use strict79
Bourne shells: an earlier R toolset on Windows80 and some Unix-alike OSes use
ash (https://en.wikipedia.org/wiki/Almquist_shell,
a ‘lightweight shell with few builtins) or derivatives such as dash.
Beware of assuming that all the POSIX command-line utilities are
available, especially on Windows where only a subset (which has changed
by version of Rtools) is provided for use with R. One
particular issue is the use of echo, for which two behaviours
are allowed
(https://pubs.opengroup.org/onlinepubs/9699919799/utilities/echo.html)
and both have occurred as defaults on R platforms: portable
applications should use neither -n (as the first argument) nor
escape sequences. The recommended replacement for echo -n is
the command printf. Another common issue is the construction

export FOO=value

which is bash-specific (first set the variable then export it
by name).

Using test -e (or [-e]) in shell scripts is not fully
portable81: -f is normally what is intended. Flags
-a and -o are nowadays declared obsolescent by POSIX
and should not be used.

Use of ‘brace expansion’, e.g.,

rm -f src/*.{o,so,d}

is not portable.

The -o flag for set in shell scripts is optional in
POSIX and not supported on all the platforms R is used on.

The variable ‘OSTYPE’ is shell-specific and its values are
rather unpredictable and may include a version such as
‘darwin19.0’: `uname` is often what is intended (with
common values ‘Darwin’, ‘Linux’ and ‘SunOS’).

On macOS which shell /bin/sh invokes is user- and
platform-dependent: it might be bash version 3.2,
dash or zsh (for new accounts it is zsh,
for accounts ported from Mojave or earlier it is usually
bash).

	R is not built by default as a shared library on non-Windows
platforms (although it commonly is on macOS to support the GUI), so
there need not be a file libR.so nor libR.dylib. Users of
cmake or rust have all too frequently assumed
otherwise, so do ensure your package is checked under a vanilla R build.
See the section ‘Configuration options’ in the ‘R Installation and
Administration’ manual for more information.

	Make use of the abilities of your compilers to check the
standards-conformance of your code. For example, gcc,
clang and
gfortran82 can be used with options -Wall -pedantic to alert
you to potential problems. This is particularly important for C++,
where g++ -Wall -pedantic will alert you to the use of some of
the GNU extensions which fail to compile on most other C++ compilers. If
R was not configured accordingly, one can achieve this via
personal Makevars files.
See section ‘Customizing package compilation’ in the ‘R Installation and
Administration’ manual for more information.

Portable C++ code needs to follow all of the 2011, 2014 and 2017
standards (including not using deprecated/removed features) or to
specify C+11/14/17/20/23 where available (which is not the case on all
R platforms). Currently C++20 support is patchy across R
platforms.

If using Fortran with the GNU compiler, use the flags -std=f95
-Wall -pedantic which reject most GNU extensions and features from
later standards. (Although R only requires Fortran 90,
gfortran does not have a way to specify that standard.) Also
consider -std=f2008 as some recent compilers have Fortran 2008
or even 2018 as the minimum supported standard.

As from macOS 11 (late 2020), its C compiler sets the flag
-Werror=implicit-function-declaration by default which forces
stricter conformance to C99. This can be used on other platforms with
gcc or clang. If your package has a
(autoconf-generated) configure script, try
installing it whilst using this flag, and read through the
config.log file — compilation warnings and errors can lead to
features which are present not being detected. (If possible do this on
several platforms.)

	R CMD check performs some checks for non-portable
compiler/linker flags in src/Makevars. However, it cannot check
the meaning of such flags, and some are commonly accepted but with
compiler-specific meanings. There are other non-portable flags which
are not checked, nor are src/Makefile files and makefiles in
sub-directories. As a comment in the code says

It is hard to think of anything apart from -I* and -D*
that is safe for general use …

although -pthread is pretty close to portable. (Option
-U is portable but little use on the command line as it will
only cancel built-in defines (not portable) and those defined earlier on
the command line (R does not use any).)

The GNU option -pipe used to be widely accepted by
C/C++/Fortran compilers, but has been removed in
flang-new 18. In any case, it should not be used in
distributed code as it may lead to excessive memory use.

People have used configure to customize src/Makevars,
including for specific compilers. This is unsafe for several reasons.
First, unintended compilers might meet the check—for example, several
compilers other than GCC identify themselves as ‘GCC’ whilst being only
partially conformant. Second, future versions of compilers may behave
differently (including updates to quite old series) so for example
-Werror (and specializations) can make a package
non-installable under a future version. Third, using flags to suppress
diagnostic messages can hide important information for debugging on a
platform not tested by the package maintainer. (R CMD check
can optionally report on unsafe flags which were used.)

Avoid the use of -march and especially -march=native.
This allows the compiler to generate code that will only run on a
particular class of CPUs (that of the compiling machine for
‘native’). People assume this is a ‘minimum’ CPU specification,
but that is not how it is documented for gcc (it is accepted
by clang but apparently it is undocumented what precisely it
does, and it can be accepted and may be ignored for other compilers).
(For personal use -mtune is safer, but still not portable
enough to be used in a public package.) Not even gcc supports
‘native’ for all CPUs, and it can do surprising things if it finds
a CPU released later than its version.

	Do be very careful with passing arguments between R, C and Fortran
code. In particular, long in C will be 32-bit on some R
platforms (including 64-bit Windows), but 64-bit on most modern Unix and
Linux platforms. It is rather unlikely that the use of long in C
code has been thought through: if you need a longer type than int
you should use a configure test for a C99/C++11 type such as
int_fast64_t (and failing that, long long) and typedef
your own type, or use another suitable type (such as size_t, but
beware that is unsigned and ssize_t is not portable).

It is not safe to assume that long and pointer types are the same
size, and they are not on 64-bit Windows. If you need to convert
pointers to and from integers use the C99/C++11 integer types
intptr_t and uintptr_t (in the headers <stdint.h>
and <cstdint>: they are not required to be implemented by the
standards but are used in C code by R itself).

Note that integer in Fortran corresponds to int in C on
all R platforms. There is no such guarantee for Fortran
logical, and recent gfortran maps it to
int_least32_t on most platforms.

	Under no circumstances should your compiled code ever call abort
or exit83: these terminate the user’s R process, quite possibly
losing all unsaved work. One usage that could call abort is the
assert macro in C or C++ functions, which should never be active
in production code. The normal way to ensure that is to define the
macro NDEBUG, and R CMD INSTALL does so as part of the
compilation flags. Beware of including headers (including from other
packages) which could undefine it, now or in future versions. If you
wish to use assert during development. you can include
-UNDEBUG in PKG_CPPFLAGS or #undef it in your
headers or code files. Note that your own src/Makefile or
makefiles in sub-directories may also need to define NDEBUG.

This applies not only to your own code but to any external software you
compile in or link to.

Nor should Fortran code call STOP nor EXIT (a GNU extension).

	Compiled code should not write to stdout or stderr and C++
and Fortran I/O should not be used. As with the previous item such
calls may come from external software and may never be called, but
package authors are often mistaken about that.

	Compiled code should not call the system random number generators such
as rand, drand48 and random84, but rather use the
interfaces to R’s RNGs described in Random number generation. In
particular, if more than one package initializes a system RNG (e.g.
via srand), they will interfere with each other. This
applies also to Fortran 90’s random_number and
random_seed, and Fortran 2018’s random_init. And to GNU
Fortran’s rand, irand and srand. Except for
drand48, what PRNG these functions use is
implementation-dependent.

Nor should the C++11 random number library be used nor any other
third-party random number generators such as those in GSL.

	Use of sprintf and vsprintf is regarded as a potential
security risk and warned about on some platforms.85 R CMD check reports if any calls
are found.

	Errors in memory allocation and reading/writing outside arrays are very
common causes of crashes (e.g., segfaults) on some machines.
See Checking memory access for tools which can be used to look for this.

	Many platforms will allow unsatisfied entry points in compiled code, but
will crash the application (here R) if they are ever used. Some
(notably Windows) will not. Looking at the output of

nm -pg mypkg.so

and checking if any of the symbols marked U is unexpected is a
good way to avoid this.

	Linkers have a lot of freedom in how to resolve entry points in
dynamically-loaded code, so the results may differ by platform. One
area that has caused grief is packages including copies of standard
system software such as libz (especially those already linked
into R). In the case in point, entry point gzgets was
sometimes resolved against the old version compiled into the package,
sometimes against the copy compiled into R and sometimes against the
system dynamic library. The only safe solution is to rename the entry
points in the copy in the package. We have even seen problems with
entry point name myprintf, which is a system entry
point86 on some Linux systems.

A related issue is the naming of libraries built as part of the package
installation. macOS and Windows have case-insensitive file systems, so
using

-L. -lLZ4

in PKG_LIBS will match liblz4. And -L. only
appends to the list of searched locations, and liblz4 might be
found in an earlier-searched location (and has been). The only safe way
is to give an explicit path, for example

./libLZ4.a

	Conflicts between symbols in DLLs are handled in very platform-specific
ways. Good ways to avoid trouble are to make as many symbols as
possible static (check with nm -pg), and to use names which are
clearly tied to your package (which also helps users if anything does go
wrong). Note that symbol names starting with R_ are regarded as
part of R’s namespace and should not be used in packages.

	It is good practice for DLLs to register their symbols
(see Registering native routines), restrict visibility
(see Controlling visibility) and not allow symbol search
(see Registering native routines). It should be possible for a DLL
to have only one visible symbol, R_init_pkgname, on
suitable platforms87,
which would completely avoid symbol conflicts.

	It is not portable to call compiled code in R or other packages
via .Internal, .C, .Fortran, .Call or
.External, since such interfaces are subject to change without
notice and will probably result in your code terminating the R
process.

	Do not use (hard or symbolic) file links in your package sources.
Where possible R CMD build will replace them by copies.

	If you do not yourself have a Windows system, consider submitting your
source package to WinBuilder (https://win-builder.r-project.org/)
before distribution. If you need to check on an M1 Mac, there is a
check service at
https://mac.r-project.org/macbuilder/submit.html.

	It is bad practice for package code to alter the search path using
library, require or attach and this often does not
work as intended. For alternatives, see Suggested packages and
with().

	Examples can be run interactively via example as well as
in batch mode when checking. So they should behave appropriately in
both scenarios, conditioning by interactive() the parts which
need an operator or observer. For instance, progress
bars88 are only appropriate in
interactive use, as is displaying help pages or calling View()
(see below).

	Be careful with the order of entries in macros such as PKG_LIBS.
Some linkers will re-order the entries, and behaviour can differ between
dynamic and static libraries. Generally -L options should
precede89 the libraries (typically
specified by -l options) to be found from those directories,
and libraries are searched once in the order they are specified. Not
all linkers allow a space after -L .

	Care is needed with the use of LinkingTo. This puts one or more
directories on the include search path ahead of system headers but
(prior to R 3.4.0) after those specified in the CPPFLAGS macro
of the R build (which normally includes -I/usr/local/include,
but most platforms ignore that and include it with the system headers).

Any confusion would be avoided by having LinkingTo headers in a
directory named after the package. In any case, name conflicts of
headers and directories under package include directories should
be avoided, both between packages and between a package and system and
third-party software.

	The ar utility is often used in makefiles to make static
libraries. Its modifier u is defined by POSIX but is disabled in
GNU ar on some Linux distributions which use
‘deterministic mode’. The safest way to make a static library is to first
remove any existing file of that name then use $(AR) -cr and then
$(RANLIB) if needed (which is system-dependent: on most
systems90 ar always
maintains a symbol table). The POSIX standard says options should be
preceded by a hyphen (as in -cr), although most OSes accept
them without.
Note that on some systems ar -cr must have at least one file
specified.

The s modifier (to replace a separate call to ranlib)
is required by X/OPEN but not POSIX, so ar -crs is not
portable.

For portability the AR and RANLIB macros should always be
used – some builds require wrappers such as gcc-ar or extra
arguments to specify plugins.

	The strip utility is platform-specific (and CRAN
prohibits removing debug symbols). For example the options
--strip-debug and --strip-unneeded of the GNU version
are not supported on macOS: the POSIX standard for strip
does not mention any options, and what calling it without options does
is platform-dependent. Stripping a .so file could even prevent
it being dynamically loaded into R on an untested platform.

ld -S invokes strip --strip-debug for GNU
ld (and similarly on macOS) but is not portable: in particular
on Solaris it did something completely different and took an argument.

	Some people have a need to set a locale. Locale names are not portable,
and e.g. ‘fr_FR.utf8’ is commonly used on Linux but not accepted
on macOS. ‘fr_FR.UTF-8’ is more portable, being accepted on recent
Linux, AIX, FreeBSD, macOS and Solaris (at least). However, some Linux
distributions micro-package, so locales defined by glibc
(including these examples) may not be installed.

	Avoid spaces in file names, not least as they can cause difficulties for
external tools. An example was a package with a knitr
vignette that used spaces in plot names: this caused some older versions
of pandoc to fail with a baffling error message.

Non-ASCII filenames can also cause problems (particularly in non-UTF-8
locales).

	Take care in naming LaTeX macros (also known as ‘commands’) in
vignette sources: if these are also defined in a future version of one
of the LaTeX packages used there will be a fatal error. One instance
in 2021 was package ‘hyperref’ newly defining ‘\C’, ‘\F’,
‘\G’, ‘\U’ and ‘\textapprox’. If you are confident that
your definitions will be the only ones relevant you can use
‘\renewcommand’ but it is better to use names clearly associated
with your package.

	Make sure that any version requirement for Java code is both declared in
the ‘SystemRequirements’ field91 and tested at
runtime (not least as the Java installation when the package is
installed might not be the same as when the package is run and will not
be for binary packages).

When specifying a minimum Java version please use the official version
names, which are (confusingly)

1.1 1.2 1.3 1.4 5.0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

and as from 2018 a year.month scheme such as ‘18.9’ is also in
use. Fortunately only the integer values are likely to be relevant.
If at all possible, use one of the LTS versions (8, 11, 17, 21 …)
as the minimum version. The preferred form of version specification is

SystemRequirements: Java (>= 11)

A suitable test for Java at least version 8 for packages using
rJava would be something like

.jinit()
jv <- .jcall("java/lang/System", "S", "getProperty", "java.runtime.version")
if(substr(jv, 1L, 2L) == "1.") {
 jvn <- as.numeric(paste0(strsplit(jv, "[.]")[[1L]][1:2], collapse = "."))
 if(jvn < 1.8) stop("Java >= 8 is needed for this package but not available")
}

Java 9 changed the format of this string (which used to be something
like ‘1.8.0_292-b10’); Java 11 gave jv as ‘11+28’
whereas Java 11.0.11 gave ‘11.0.11+9’.
(https://openjdk.org:443/jeps/322 details the current scheme.
Note that it is necessary to allow for pre-releases like
‘11-ea+22’.)

Note too that the compiler used to produce a jar can impose a minimum
Java version, often resulting in an arcane message like

java.lang.UnsupportedClassVersionError: ... Unsupported major.minor version 52.0

(Where https://en.wikipedia.org/wiki/Java_class_file maps
class-file version numbers to Java versions.) Compile with something
like javac -target 11 to ensure this is avoided. Note this
also applies to packages distributing (or even downloading) compiled
Java code produced by others, so their requirements need to be checked
(they are often not documented accurately) and accounted for. It should
be possible to check the class-file version via command-line
utility javap, if necessary after extracting the .class
files from a .jar archive. For example,

jar xvf some.jar
javap -verbose path/to/some.class | grep major

Some packages have stated a requirement on a particular JDK, but a
package should only be requiring a JRE unless providing its own Java
interface.

Java 8 is still in widespread use (and may remain so because of licence
changes and support on older OSes: OpenJDK has security support until
March 2026). On the other hand, newer platforms may only have support
for recent versions of Java: for ‘arm64’ macOS the first
officially supported version was 17.

	A package with a hard-to-satisfy system requirement is by definition not
portable, annoyingly so if this is not declared in the
‘SystemRequirements’ field. The most common example is the use of
pandoc, which is only available for a very limited range of
platforms (and has onerous requirements to install from source) and has
capabilities92 that vary by build but are not documented. Several recent
versions of pandoc for macOS did not work on R’s then
target of High Sierra (and this too was undocumented). Another example
is the Rust compilation system (cargo and rustc).

Usage of external commands should always be conditional on a test for
presence (perhaps using Sys.which), as well as declared in the
‘SystemRequirements’ field. A package should pass its checks
without warnings nor errors without the external command being present.

An external command can be a (possibly optional) requirement for an
imported or suggested package but needed for examples, tests or
vignettes in the package itself. Such usages should always be declared
and conditional.

Interpreters for scripting languages such as Perl, Python and Ruby need
to be declared as system requirements and used conditionally: for
example macOS 10.16 was announced not to have them (but released as
macOS 11 with them); later it was announced that macOS 12.3 does not
have Python 2 and only a minimal install of Python 3 is included.
Python 2 has passed end-of-life and been removed from many major
distributions. Support for Rust or Go cannot be assumed.

Command cmake is not commonly installed, and where it is, it
might not be on the path. In particular, the most common location on
macOS is /Applications/CMake.app/Contents/bin/cmake and that
should be looked for if cmake is not found on the path.

	Be sure to use portable encoding names: none of utf8, mac
and macroman is portable. See the help for file for more
details.

	Do not invoke R by plain R, Rscript or (on
Windows) Rterm in your examples, tests, vignettes, makefiles
or other scripts. As pointed out in several places earlier in this
manual, use something like

"$(R_HOME)/bin/Rscript"
"$(R_HOME)/bin$(R_ARCH_BIN)/Rterm"

with appropriate quotes (as, although not recommended, R_HOME can
contain spaces).

	Do not use R_HOME in makefiles except when passing them to the shell.
Specifically, do not use R_HOME in the argument to include,
as R_HOME can contain spaces. Quoting the argument to include
does not help. A portable and the recommended way to avoid the problem of spaces in
${R_HOME} is using option -f of make. This is
easy to do with recursive invocation of make, which is also the
only usual situation when R_HOME is needed in the argument for
include.

$(MAKE) -f "${R_HOME}/etc${R_ARCH}/Makeconf" -f Makefile.inner

	If distributing datasets involving date-times, consider if a time zone
needs to be specified. The most portable way to distribute date-times is
as objects of class "POSIXct" and as these record the time in
UTC, the time represented is independent of the time zone: but how it is
printed may not be. Objects of class "POSIXlt" should have a
"tzone" attribute. Dates (e.g, birthdays) are conventionally
considered independently of time zone.

	If at all possible avoid any Internet access during package
installation. Installation and use may well be on different
machines/accounts and those allowed to install software may have no
Internet access, and being self-contained helps ensure long-term
reproducibility.

Do be careful in what your tests (and examples) actually test. Bad
practice seen in distributed packages include:

	It is not reasonable to test the time taken by a command: you cannot
know how fast or how heavily loaded an R platform might be. At best
you can test a ratio of times, and even that is fraught with
difficulties and not advisable: for example, the garbage collector may
trigger at unpredictable times following heuristics that may change
without notice.

	Do not test the exact format of R messages (from R itself or from
other packages): They change, and they can be translated.

Packages have even tested the exact format of system error messages,
which are platform-dependent and perhaps locale-dependent. For example,
in late 2021 libcurl changed its warning/error messages,
including when URLs are not found.

	Do not test for the absence of warnings (something users of
testthat are fond of). Future changes in either R or
packages you make use of can create new warnings, and your tests should
not make these into errors. (Some deprecation notices may be intended
to remain as warnings for a long time.)

	If you use functions such as View, remember that in testing there
is no one to look at the output. It is better to use something like one of

if(interactive()) View(obj) else print(head(obj))
if(interactive()) View(obj) else str(obj)

	Be careful when comparing file paths. There can be multiple paths to a
single file, and some of these can be very long character strings. If
possible canonicalize paths before comparisons, but study
?normalizePath to be aware of the pitfalls.

	Only test the accuracy of results if you have done a formal error
analysis. Things such as checking that probabilities numerically sum to
one are silly: numerical tests should always have a tolerance. That the
tests on your platform achieve a particular tolerance says little about
other platforms. R is configured by default to make use of long
doubles where available, but they may not be available or be too slow
for routine use. Most R platforms use ‘ix86’ or
‘x86_64’ CPUs: these may use extended precision registers on
some but not all of their FPU instructions. Thus the achieved precision
can depend on the compiler version and optimization flags—our
experience is that 32-bit builds tend to be less precise than 64-bit
ones. But not all platforms use those CPUs, and not all93 which use them configure them to allow the use of extended
precision. In particular, current ARM CPUs do not have extended
precision nor long doubles, and clang currently has long
double the same as double on all ARM CPUs. On the other hand some CPUs
have higher-precision modes which may be used for long double,
notably 64-bit PowerPC and Sparc.

If you must try to establish a tolerance empirically, configure and
build R with --disable-long-double and use appropriate
compiler flags (such as -ffloat-store and
-fexcess-precision=standard for gcc, depending on the
CPU type94) to
mitigate the effects of extended-precision calculations. The platform
most often seen to give different numerical results is ‘arm64’ macOS,
so be sure to include that in any empirical determination.

Tests which involve random inputs or non-deterministic algorithms should
normally set a seed or be tested for many seeds.

	Tests should use options(warn = 1) as reporting

There were 22 warnings (use warnings() to see them)

is pointless, especially for automated checking systems.

	If your package uses dates/times, ensure that it works in all timezones,
especially those near boundaries (problems have most often be seen in
‘Europe/London’ (zero offset in Winter) and
‘Pacific/Auckland’, near enough the International Date line) and
with offsets not in whole hours (Adelaide, Chatham Islands, …).
More extreme examples are ‘Africa/Conakry’ (permanent UTC),
‘Asia/Calcutta’ (no DST, permanent half-hour offset)
and ‘Pacific/Kiritimati’(no DST, more than 12 hours ahead of UTC).

1.6.1 PDF size

There are a several tools available to reduce the size of PDF files:
often the size can be reduced substantially with no or minimal loss in
quality. Not only do large files take up space: they can stress the PDF
viewer and take many minutes to print (if they can be printed at all).

qpdf (https://qpdf.sourceforge.io/) can compress
losslessly. It is fairly readily available (e.g. it is included in
rtools, has packages in Debian/Ubuntu/Fedora, and is
installed as part of the CRAN macOS distribution of R).
R CMD build has an option to run qpdf over PDF files
under inst/doc and replace them if at least 10Kb and 10% is
saved. The full path to the qpdf command can be supplied as
environment variable R_QPDF (and is on the CRAN binary
of R for macOS). It seems MiKTeX does not use PDF object
compression and so qpdf can reduce considerably the sizes of
files it outputs: MiKTeX’s defaults can be overridden by code in the
preamble of an Sweave or LaTeX file — see how this is done for the
R reference manual at
https://svn.r-project.org/R/trunk/doc/manual/refman.top.

Other tools can reduce the size of PDFs containing bitmap images at
excessively high resolution. These are often best re-generated (for
example Sweave defaults to 300 ppi, and 100–150 is more
appropriate for a package manual). These tools include Adobe Acrobat
(not Reader), Apple’s Preview95 and Ghostscript (which
converts PDF to PDF by

ps2pdf options -dAutoRotatePages=/None -dPrinted=false in.pdf out.pdf

and suitable options might be

-dPDFSETTINGS=/ebook
-dPDFSETTINGS=/screen

See https://ghostscript.readthedocs.io/en/latest/VectorDevices.html for
more such and consider all the options for image downsampling). There
have been examples in CRAN packages for which current versions
of Ghostscript produced much bigger reductions than earlier ones (e.g.
at the upgrades from 9.50 to 9.52, from 9.55 to
9.56 and then to 10.00.0).

We come across occasionally large PDF files containing excessively
complicated figures using PDF vector graphics: such figures are often
best redesigned or failing that, output as PNG files.

Option --compact-vignettes to R CMD build defaults to
value ‘qpdf’: use ‘both’ to try harder to reduce the size,
provided you have Ghostscript available (see the help for
tools::compactPDF).

1.6.2 Check timing

There are several ways to find out where time is being spent in the
check process. Start by setting the environment variable
_R_CHECK_TIMINGS_ to ‘0’. This will report the total CPU
times (not Windows) and elapsed times for installation and running
examples, tests and vignettes, under each sub-architecture if
appropriate. For tests and vignettes, it reports the time for each as
well as the total.

Setting _R_CHECK_TIMINGS_ to a positive value sets a threshold (in
seconds elapsed time) for reporting timings.

If you need to look in more detail at the timings for examples, use
option --timings to R CMD check (this is set by
--as-cran). This adds a summary to the check output for all
the examples with CPU or elapsed time of more than 5 seconds. It
produces a file mypkg.Rcheck/mypkg-Ex.timings
containing timings for each help file: it is a tab-delimited file which
can be read into R for further analysis.

Timings for the tests and vignette runs are given at the bottom of the
corresponding log file: note that log files for successful vignette runs
are only retained if environment variable
_R_CHECK_ALWAYS_LOG_VIGNETTE_OUTPUT_ is set to a true value.

1.6.3 Encoding issues

The issues in this subsection have been much alleviated by the change in
R 4.2.0 to running the Windows port of R in a UTF-8 locale where
available. However, Windows users might be running an earlier version
of R on an earlier version of Windows which does not support UTF-8
locales.

Care is needed if your package contains non-ASCII text, and in
particular if it is intended to be used in more than one locale. It is
possible to mark the encoding used in the DESCRIPTION file and in
.Rd files, as discussed elsewhere in this manual.

First, consider carefully if you really need non-ASCII text.
Some users of R will only be able to view correctly text in their
native language group (e.g. Western European, Eastern European,
Simplified Chinese) and ASCII.96. Other characters may not be rendered at all,
rendered incorrectly, or cause your R code to give an error. For
.Rd documentation, marking the encoding and including
ASCII transliterations is likely to do a reasonable job. The
set of characters which is commonly supported is wider than it used to
be around 2000, but non-Latin alphabets (Greek, Russian, Georgian,
…) are still often problematic and those with double-width
characters (Chinese, Japanese, Korean, emoji) often need specialist
fonts to render correctly.

Several CRAN packages have messages in their R code in French (and a
few in German). A better way to tackle this is to use the
internationalization facilities discussed elsewhere in this manual.

Function showNonASCIIfile in package tools can help in
finding non-ASCII bytes in files.

There is a portable way to have arbitrary text in character strings
(only) in your R code, which is to supply them in Unicode as
‘\uxxxx’ escapes (or, rarely needed except for emojis,
‘\Uxxxxxxxx’ escapes). If there are any characters not in the
current encoding the parser will encode the character string as UTF-8
and mark it as such. This applies also to character strings in
datasets: they can be prepared using ‘\uxxxx’ escapes or encoded in
UTF-8 in a UTF-8 locale, or even converted to UTF-8 via
iconv(). If you do this, make sure you have ‘R (>= 2.10)’
(or later) in the ‘Depends’ field of the DESCRIPTION file.

R sessions running in non-UTF-8 locales will if possible re-encode
such strings for display (and this is done by RGui on older
versions of Windows, for example). Suitable fonts will need to be
selected or made available97 both for the console/terminal and graphics devices
such as ‘X11()’ and ‘windows()’. Using ‘postscript’ or
‘pdf’ will choose a default 8-bit encoding depending on the
language of the UTF-8 locale, and your users would need to be told how
to select the ‘encoding’ argument.

Note that the previous two paragraphs only apply to character strings in
R code. Non-ASCII characters are particularly prevalent in comments
(in the R code of the package, in examples, tests, vignettes and even
in the NAMESPACE file) but should be avoided there. Most commonly
people use the Windows extensions to Latin-1 (often directional single
and double quotes, ellipsis, bullet and en and em dashes) which are not
supported in strict Latin-1 locales nor in CJK locales on Windows. A
surprisingly common misuse is to use a right quote in ‘don't’
instead of the correct apostrophe.

Datasets can include marked UTF-8 or Latin-1 character strings. As R
is nowadays unlikely to be run in a Latin-1 or Windows’ CP1252 locale,
for performance reasons these should be converted to UTF-8.

If you want to run R CMD check on a Unix-alike over a package
that sets a package encoding in its DESCRIPTION file and do
not use a UTF-8 locale you may need to specify a suitable locale
via environment variable R_ENCODING_LOCALES. The default
is equivalent to the value

"latin1=en_US:latin2=pl_PL:UTF-8=en_US.UTF-8:latin9=fr_FR.iso885915@euro"

(which is appropriate for a system based on glibc: macOS requires
latin9=fr_FR.ISO8859-15) except that if the current locale is
UTF-8 then the package code is translated to UTF-8 for syntax checking,
so it is strongly recommended to check in a UTF-8 locale.

1.6.4 Portable C and C++ code

Writing portable C and C++ code is mainly a matter of observing the
standards (C99, C++14 or where declared C++11/17/20) and testing that
extensions (such as POSIX functions) are supported. Do make maximal use
of your compiler diagnostics — this typically means using flags
-Wall and -pedantic for both C and C++ and additionally
-Werror=implicit-function-declaration and
-Wstrict-prototypes for C (on some platforms and compiler
versions) these are part of -Wall or -pedantic).

C++ standards: From version 3.6.0 (3.6.2 on Windows), R
defaulted to C++11 where available98; from R 4.1.0 to C++14
and from R 4.3.0 to C++17 (where available). However, in earlier
versions the default standard was that of the compiler used, often C++98
or C++14, and the default is likely to change in future. For maximal
portability a package should either specify a standard (see Using C++ code) or be tested under all of C++11, C++98, C++14 and C++17.
(Specifying C++14 or later will limit portability.)

Note that the ‘TR1’ C++ extensions are not part of any of these
standards and the <tr1/name> headers are not supplied by some of
the compilers used for R, including on macOS. (Use the C++11
versions instead.)

A common error is to assume recent versions of compilers or OSes. In
production environments ‘long term support’ versions of OSes may be in
use for many years,99 and their compilers may not
be updated during that time. For example, GCC 4.8 was still in use in
2022 and could be (in RHEL 7) until 2028: that supports neither C++14
nor C++17.

The POSIX standards only require recently-defined functions to be
declared if certain macros are defined with large enough values, and on
some compiler/OS combinations100 they are not declared otherwise. So you may
need to include something like one of

#define _XOPEN_SOURCE 600

or

#ifdef __GLIBC__
define _POSIX_C_SOURCE 200809L
#endif

before any headers. (strdup, strncasecmp and
strnlen are such functions – there were several older platforms
which did not have the POSIX 2008 function strnlen.)

However, some common errors are worth pointing out here. It can be
helpful to look up functions at
https://cplusplus.com/reference/ or
https://en.cppreference.com/w/ and compare what is defined in the
various standards.

More care is needed for functions such as mallinfo which are not
specified by any of these standards—hopefully the man page
on your system will tell you so. Searching online for such pages for
various OSes (preferably at least Linux and macOS, and the FreeBSD
manual pages at https://man.freebsd.org/cgi/man.cgi allow you to
select many OSes) should reveal useful information but a
configure script is likely to be needed to check availability and
functionality.

Both the compiler and OS (via system header files, which may
differ by architecture even for nominally the same OS) affect the
compilability of C/C++ code. Compilers from the GCC, LLVM
(clang and flang) Intel and Oracle Developer Studio
suites have been used with R, and both LLVM clang and
Oracle have more than one implementation of C++ headers and library.
The range of possibilities makes comprehensive empirical checking
impossible, and regrettably compilers are patchy at best on warning
about non-standard code.

	Mathematical functions such as sqrt are defined in C++11 for
floating-point arguments: float, double, long
double and possibly more. The standard specifies what happens with an
argument of integer type but this is not always implemented, resulting
in a report of ‘overloading ambiguity’: this was commonly seen on
Solaris, but for pow also seen on macOS and other platforms
using clang++.

A not-uncommonly-seen problem is to mistakenly call floor(x/y) or
ceil(x/y) for int arguments x and y. Since
x/y does integer division, the result is of type int and
‘overloading ambiguity’ may be reported. Some people have (pointlessly)
called floor and ceil on arguments of integer type, which
may have an ‘overloading ambiguity’.

A surprising common misuse is things like pow(10, -3): this
should be the constant 1e-3. Note that there are constants such
as M_SQRT2 defined via Rmath.h101 for sqrt(2.0), frequently mis-coded as
sqrt(2).

	Function fabs is defined only for floating-point types, except in
C++11 and later which have overloads for std::fabs in
<cmath> for integer types. Function abs is defined in
C99’s <stdlib.h> for int and in C++’s <cstdlib> for
integer types, overloaded in <cmath> for floating-point types.
C++11 has additional overloads for std::abs in <cmath> for
integer types. The effect of calling abs with a floating-point
type is implementation-specific: it may truncate to an integer. For
clarity and to avoid compiler warnings, use abs for integer types
and fabs for double values, and when using C++ include
<cmath> and use the std:: prefix.

	It is an error (and make little sense, although has been seen) to call
macros/functions isnan, isinf and isfinite for
integer arguments: a few compilers give a compilation error. Function
finite is obsolete, and some compilers will warn about its
use102.

	The GNU C/C++ compilers support a large number of non-portable
extensions. For example, INFINITY (which is a float value
in C99 and C++11), for which R provides the portable double value
R_PosInf (and R_NegInf for -INFINITY). And
NAN103 is just one NaN
float value: for use with R, NA_REAL is often what is
intended, but R_NaN is also available.

Some (but not all) extensions are listed at
https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html and
https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Extensions.html.

Other GNU extensions which have bitten package writers are the use of
non-portable characters such as ‘$’ in identifiers and use of C++
headers under ext.

item
Including C-style headers in C++ code is not portable. Including the
legacy header104 math.h in C++ code may conflict with cmath which
may be included by other headers. In C++11, functions like sqrt
and isnan are defined for double arguments in
math.h and for a range of types including double in
cmath. Similar issues have been seen for stdlib.h and
cstdlib. Including the C++ header first used to be a sufficient
workaround but for some 2016 compilers only one could be included.

	Be careful to include the headers which define the functions you use.
Some compilers/OSes include other system headers in their headers which
are not required by the standards, and so code may compile on such
systems and not on others. (A prominent example is the C++ header
<random> which is indirectly included by <algorithm> by
g++. Another issue is the C header <time.h> which is
included by other headers on Linux and Windows but not macOS.)
g++ 11 often needs explicit inclusion of the C++ headers
<limits> (for numeric_limits) or <exception> (for
set_terminate and similar), whereas earlier versions included
these in other headers. g++ 13 requires the
explicit inclusion of <cstdint> for types such as uint32_t
which was previously included implicitly. (For more such, see
https://gcc.gnu.org/gcc-13/porting_to.html.)

Note that malloc, calloc, realloc and free
are defined by C99 in the header stdlib.h and (in the
std:: namespace) by C++ header cstdlib. Some earlier
implementations used a header malloc.h, but that is not portable
and does not exist on macOS.

This also applies to types such as ssize_t. The POSIX standards
say that is declared in headers unistd.h and sys/types.h,
and the latter is often included indirectly by other headers on some
but not all systems.

Similarly for constants: for example SIZE_MAX is defined in
stdint.h alongside size_t.

	Some headers are not portable: we have just mentioned malloc.h
and often CRAN submissions attempt to use endian.h.
The latter is a glibc extension: some OSes have
machine/endian.h or sys/endian.h but some have neither.

	Use #include "my.h" not #include <my.h> for headers in
your package. The second form is intended for system headers and the
search order for such headers is platform-dependent (and may not include
the current directory). For extra safety, name headers in a way that
cannot be confused with a system header so not, for example,
types.h.

	For C++ code, be careful to specify namespaces where needed. Many
functions are defined by the standards to be in the std
namespace, but g++ puts many such also in the C++ main
namespace. One way to do so is to use declarations such as

using std::floor;

but it is usually preferable to use explicit namespace prefixes in the code.

Examples seen in CRAN packages include

abs acos atan bind calloc ceil div exp fabs floor fmod free log malloc
memcpy memset pow printf qsort round sin sprintf sqrt strcmp strcpy
strerror strlen strncmp strtol tan trunc

This problem is less common than it used to be, but in 2019
LLVM clang did not have bind in the main namespace. Also
seen has been type size_t defined only in the std namespace.

NB: These functions are only guaranteed to be in the
std namespace if the correct C++ header is included, e.g.
<cmath> rather than <math.h>.

If you define functions in C++ which are inspired by later standards, put
them in a namespace and refer to them using the namespace. We have seen
conflicts with std::make_unique from C++14 and std::byte,
std::data, std::sample and std::size from C++17.

	In C++ code

using namespace std;

is not good practice, and has caused platform-dependent errors if
included before headers, especially system headers (which may be
included by other headers). The best practice is to use explicit
std:: prefixes for all functions declared by the C++ standard to
be in that namespace. It is an error to use using namespace
std before including any C++ headers, and some recent compilers will
warn if this is done.

	Some C++ compilers refuse to compile constructs such as

 if(ptr > 0) {}

which compares a pointer to the integer 0. This could just use
if(ptr) (pointer addresses cannot be negative) but if needed
pointers can be tested against nullptr (C++11) or NULL.

	Macros defined by the compiler/OS can cause problems. Identifiers
starting with an underscore followed by an upper-case letter or another
underscore are reserved for system macros and should not be used in
portable code (including not as guards in C/C++ headers). Other macros,
typically upper-case, may be defined by the compiler or system headers
and can cause problems.
Some of these can be avoided by defining _POSIX_C_SOURCE
before including any system headers, but it is better to only use
all-upper-case names which have a unique prefix such as the package
name.

	typedefs in OS headers can conflict with those in the package:
examples have included ulong, index_t, single and
thread. (Note that these may conflict with other uses as
identifiers, e.g. defining a C++ function called single.)
The POSIX standard reserves (in §2.2.2) all identifiers ending in
_t.

	Some compilers do not allow a space between -D and the macro to
be defined. Similarly for -U.

	If you use OpenMP, check carefully that you have followed the advice in
the subsection on OpenMP support. In particular, any use of
OpenMP in C/C++ code will need to use

#ifdef _OPENMP
include <omp.h>
#endif

Any use of OpenMP functions, e.g. omp_set_num_threads, also
needs to be conditioned. To avoid incessant warnings such as

warning: ignoring #pragma omp parallel [-Wunknown-pragmas]

uses of such pragmas should also be conditioned (or commented out if
they are used in code in a package not enabling OpenMP on any platform).

Do not hardcode -lgomp: not only is that specific to the
GCC family of compilers, using the correct linker flag often sets up the
run-time path to the library.

	Package authors commonly assume things are part of C/C++ when they are
not: the most common example is POSIX105 function
strdup. The most common C library on Linux, glibc, will
hide the declarations of such extensions unless a ‘feature-test macro’
is defined before (almost) any system header is included. So
for strdup you need

#define _POSIX_C_SOURCE 200809L
...
#include <string.h>
...
strdup call(s)

where the appropriate value can be found by man strdup on
Linux. (Use of strncasecmp is similar.)

However, modes of gcc with ‘GNU EXTENSIONS’ (which are the
default, either -std=gnu99 or -std=gnu11) declare
enough macros to ensure that missing declarations are rarely seen.

This applies also to constants such as M_PI and M_LN2,
which are part of the X/Open standard: to use these define
_XOPEN_SOURCE before including any headers, or include the R
header Rmath.h.

	Using alloca portably is tricky: it is neither an ISO C/C++ nor a
POSIX function. An adequately portable preamble is

#ifdef __GNUC__
/* Includes GCC, clang and Intel compilers */
undef alloca
define alloca(x) __builtin_alloca((x))
#elif defined(__sun) || defined(_AIX)
/* this was necessary (and sufficient) for Solaris 10 and AIX 6: */
include <alloca.h>
#endif

	Compiler writers feel free to implement features from later standards
than the one specified, so for example they may implement or warn on
C++14/17/20 features when C++11 is specified. Portable code will not
use such features – it can be hard to know what they are but the most
common warnings are

'register' storage class specifier is deprecated and incompatible with C++17

ISO C++11 does not allow conversion from string literal to 'char *'

(where conversion should be to const char *). Keyword
register was not mentioned in C++98, deprecated in C++11 and
removed in C++17.

There are quite a lot of other C++98 features deprecated in C++11 and
removed in C++17, and LLVM clang 9 and later warn about them
(and as from version 16 they have been removed). Examples include
bind1st/bind2nd (use std::bind or
lambdas106)
std::auto_ptr (replaced by std::unique_ptr),
std::mem_fun_ref and std::ptr_fun.

	Later versions of standards may add reserved words: for example
bool, false and true became keywords in C23 and are
no longer available as variable names. As noted above, C++17 uses
byte, data, sample and size.

So avoid common words and keywords from other programming languages.

	Be careful about including C headers in C++ code. Issues include

	Use of the register storage class specifier (see the previous but
one item).

	The C99 keyword restrict is not part of107 any C++ standard and is rejected by some
C++ compilers.

	Inclusion by such headers of C-style headers such as math.h (see above).

The most portable way to interface to other software with a C API is to
use C code (which can normally be mixed with C++ code in a package).

	Include only what is essential in extern "C" {} blocks in C++
code. In particular it is not portable to include R headers in such
blocks (although they are themselves C code, they may include C++ system
headers and the public ones already enclose their declarations in such a
block). And maintainers have include R headers from other headers
included in such a block.

	reinterpret_cast in C++ is not safe for pointers: for example the types
may have different alignment requirements. Use memcpy to copy
the contents to a fresh variable of the destination type.

	Avoid platform-specific code if at all possible, but if you need to test
for a platform ensure that all platforms are covered. For example,
__unix__ is not defined on all Unix-alikes, in particular not on
macOS. A reasonably portable way to condition code for a Unix-alike is

#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#endif

but

#ifdef _WIN32
// Windows-specific code
if defined(_M_ARM64) || defined(__aarch64__)
// for ARM
else
// for Intel
endif
#else
// Unix-alike code
#endif

would be better. For a Unix-alike it is much better to use
configure to test for the functionality needed than make
assumptions about OSes (and people all too frequently forget R is
used on platforms other than Linux, Windows and macOS — and some
forget macOS).

	Headers in subdirectories are often not portable. For C++, this
includes bits/, tr1/ and tr2/, none of which exist
on macOS (and ext/ exists there but with different content from
g++-based platforms). Header bits/stdc++.h is both not
portable and not recommended for end-user code even on platforms which
include it.

	Be careful if using malloc or calloc. First, their return
value must always be checked to see if the allocation succeeded – it is
almost always easier to use R’s R_Calloc, which does check.
Second, the first argument is of type size_t108 and some recent compilers
warn about passing int (signed) arguments (which could get
promoted to ridiculously large values).

	For C code, consider using the flag -Wstrict-prototypes which
is supported by gcc and LLVM and Apple clang.
This has found quite a number of errors where functions have been
declared without arguments and is likely to become the default in future
compilers. (It already is for Apple clang and for LLVM
clang in C23 mode.) Note that using f() for a function
without any parameters was deprecated in C99 and C11, but it expected to
be non-deprecated in C23. However, f(void) is supported by all
standards and avoids any uncertainty.

LLVM clang has a separate warning
-Wdeprecated-non-prototype which is enabled by
-Wstrict-prototypes. This warns on K&R-style usage, which will
not be accepted in C23.

	Several C entry points are warned against in their man pages
on most systems, often in very strong terms such as ’Do not use
these functions’. macOS has started to warn109 if these are used
for sprintf, vsprintf, gets, mktemp,
tempmam and tmpnam. It is highly recommended that you use
safer alternatives (on any platform) but the warning can be avoided by
defining ‘_POSIX_C_SOURCE’ to for example ‘200809L’ before
including the (C or C++) header which defines them. (However, this may
hide other extensions.)

	Compilers may interpret comments in source code, so it is necessary to
remove any intended for a compiler to interpret. The main example has
been comments for Visual Fortran (as the Intel Fortran compiler has been
known on Windows110) like

!DEC$ ATTRIBUTES DLLEXPORT,C,REFERENCE,ALIAS:'kdenestmlcvb' :: kdenestmlcvb

which are interpreted by Intel Fortran on all platforms (and are
inappropriate for use with R on Windows). gfortran has
similar forms starting with !GCC$.

	The C++ new operator takes argument std::size_t size,
which is unsigned. Using a signed integer type such as int may
lead to compiler warnings such as

warning: argument 1 value '18446744073709551615' exceeds maximum object
 size 9223372036854775807 [-Walloc-size-larger-than=]

(especially if LTO is used). So don’t do that!

	Some authors feel the need to print (using Rprintf or
similar) vector lengths or indices which are of type R_xlen_t.
That may be a 32-bit or (most commonly) 64-bit type but which integer
type it is mapped to is platform-specific. The safest way is to cast
the length to double and use a double format. So one could use
something like

 SEXP Robj; R_xlen_t nelem;
 error("Actual: %0.f; Expected %0.f\n", (double) XLENGTH(Robj), (double) nelem);

(This could print to full precision, lengths well beyond the address space
limits of current OSes, let alone practical limits.)

If you do want to use an integer format, be aware that R_xlen_t
is implemented by the int, long or long long type
on current platforms and even on 64-bit ones need not be the same type
as int64_t.
So the values will need to be cast to the type assumed by the format
(and %lld was not supported on Windows until R 4.2.0).

Some additional information for C++ is available at
https://journal.r-project.org/archive/2011-2/RJournal_2011-2_Plummer.pdf
by Martyn Plummer.

1.6.4.1 Common symbols

Most OSes (including all those commonly used for R) have the concept
of ‘tentative definitions’ where global C variables are defined without
an initializer. Traditionally the linker resolves all tentative
definitions of the same variable in different object files to the same
object, or to a non-tentative definition. However,
gcc 10111 and
LLVM clang 11112
changed their default so that tentative definitions cannot be
merged and the linker will give an error if the same variable is defined
in more than one object file. To avoid this, all but one of the C
source files should declare the variable extern — which means
that any such variables included in header files need to be declared
extern. A commonly used idiom (including by R itself) is to
define all global variables as extern in a header, say
globals.h (and nowhere else), and then in one (and one only)
source file use

#define extern
include "globals.h"
#undef extern

A cleaner approach is not to have global variables at all, but to place
in a single file common variables (declared static) followed by
all the functions which make use of them: this may result in more
efficient code.

The ‘modern’ behaviour can be seen113 by using
compiler flag -fno-common as part of ‘CFLAGS’ in earlier
versions of gcc and clang.

-fno-common is said to be particularly beneficial for ARM CPUs.

This is not pertinent to C++ which does not permit tentative definitions.

1.6.4.2 C++17 issues

R 4.3.0 and later default to C++17 when compiling C++, and that
finally removed many C++98 features which were deprecated as long ago as
C++11. Compiler/runtime authors have been slow to remove these, but
LLVM clang with its libc++ runtime library finally
started to do so in 2023 – some others warn but some do not.

The principal offender is the ‘Boost’ collection of C++ headers and
libraries. There are two little-documented ways to work around aspects
of its outdated code. One is to add

-D_HAS_AUTO_PTR_ETC=0

to PKG_CPPLAGS in src/Makevars, src/Makevars.win
and src/Makevars.ucrt. This covers
the removal of

std::auto_ptr
std::unary_function
std::binary_function
std::random_shuffle
std::binder1st
std::binder2nd

with most issues seen with code that includes boost/functional.hpp,
usually indirectly.

A rarer issue is the use of illegal values for enum types,
usually negative ones such as

BOOST_MPL_AUX_STATIC_CAST(AUX_WRAPPER_VALUE_TYPE, (value - 1));

in boost/mpl/aux_/integral_wrapper.hpp. Adding

 -Wno-error=enum-constexpr-conversion

to PKG_CXXFLAGS will allow this, but that flag is only accepted
by recent versions of LLVM clang (and will not be in future)
so needs a configure test.

Pre=built versions of current clang/libc++ are
usually available from
https://github.com/llvm/llvm-project/releases for a wide range of
platforms (but the Windows builds there are not compatible with
Rtools and the macOS ones are unsigned). To select
libc++ add -stdlib=libc++ to CXX, for example
by having

CXX="/path/to/clang/clang++ -std=gnu++17 -stdlib=libc++"

in ~/.R/Makevars.

Another build for Windows which may be sufficiently compatible with
Rtools can be found at
https://github.com/mstorsjo/llvm-mingw: this uses libc++.

1.6.5 Portable Fortran code

For many years almost all known R platforms used gfortran
as their Fortran compiler, but now there are LLVM and ‘classic’
flang and the Intel compilers
ifort114 and ifx are now
free-of-change.

There is still a lot of Fortran code in CRAN packages which
predates Fortran 77. Modern Fortran compilers are being written to
target a minimum standard of Fortran 2018. and it is desirable that
Fortran code in packages complies with that standard. For
gfortran this can be checked by adding -std=f2018 to
FFLAGS. The most commonly seen issues are

	The use of DFLOAT, which was superseded by DBLE in Fortran
77. Also, use of DCMPLX, DCONJG, DIMAG and
similar.

	Use of what gfprtran calls ‘Fortran 2018 deleted features’,
although most were ‘deleted’ in earlier standards: those itemized here
were deleted in Fortran 2008. (In the Fortran standards ‘deleted’ means
features that compilers are not required to implement.) These include

	Aritmmetic IF statements.

	DO loops which are not terminated with a END DO or
CONTINUE statement. (Unlabelled DO loops terminated by
END DO are preferred for readability.)

	Labelled DO loops sharing a terminating CONTINUE statement.

	The use of GNU Fortran extensions. Some are listed at
https://gcc.gnu.org/onlinedocs/gfortran/Extensions-implemented-in-GNU-Fortran.html.
Others which have caused problems include etime, getpid,
isnan115 and sizeof.

One that frequently catches package writers is that it allows
out-of-order declarations: in standard-conformant Fortran variables must
be declared (explicitly or implicitly) before use in other declarations
such as dimensions.

Unfortunately this flags extensions such as DOUBLE COMPLEX and
COMPLEX*16. R has tested that DOUBLE COMPLEX works and
so is preferred to COMPLEX*16. (One can also use something like
COMPLEX(KIND=KIND(0.0D0)).)

GNU Fortran 10 and later give a compilation error for the previously
widespread practice of passing a Fortran array element where an array is
expected, or a scalar instead of a length-one array. See
https://gcc.gnu.org/gcc-10/porting_to.html. As do the Intel
Fortran compilers, and they can be stricter.

The use of IMPLICIT NONE is highly recommended – Intel compilers
with -warn will warn on variables without an explicit type.

Common non-portable constructions include

	The use of Fortran types such as REAL(KIND=8) is very far from
portable. According to the standards this merely enumerates different
supported types, so DOUBLE PRECISION might be REAL(KIND=3)
(and is on an actual compiler). Even if for a particular compiler the
value indicates the size in bytes, which values are supported is
platform-specific — for example gfortran supports values of 4
and 8 on all current platforms and 10 and 16 on a few (but not for
example on all ‘arm’ CPUs).

The same applies to INTEGER(KIND=4) and COMPLEX(KIND=16).

Many uses of integer and real variable in Fortran code in packages will
interwork with C (for example .Fortran is written in C), and R
has checked that INTEGER and DOUBLE PRECISION correspond to
the C types int and double. To make this explicit, from
Fortran 2003 one can use the named constants c_int,
c_double and c_double_complex from module
iso_c_binding.

	The Intel compilers only recognize the extensions .f (fixed-form)
and .f90 (free-form) and not .f95. R CMD INSTALL
works around this for packages without a src/Makefile.

	Use of extensions .F and .F90 to indicate source code to
be preprocessed: the preprocessor used is compiler-specific and may or
may not be cpp. Compilers may even preprocess files with
extension .f or .f90 (Intel does).

	Fixed form Fortran (with extension .f) should only use 72
columns, and free-form at most 132 columns. This includes trailing
comments. Over-long lines may be silently truncated or give a warning.

	Tabs are not part of the Fortran character set: compilers tend to accept
them but how they are interpreted is compiler-specific.

	Fortran-66-style Hollerith constants.

As well as ‘deleted features’, Fortran standards have ‘obsolescent
features’. These are similar to ‘deprecated’ in other languages, but
the Fortran standards committee has said it will only move them to
‘deleted’ status when they are no longer much used. These include

	ENTTRY statements.

	FORALL statements.

	Labelled DO statements.

	COMMON and EQUIVALENCE statements, and BLOCK DATA
units.

	Computed GOTO statements, replaced by SELECT CASE.

	Statement functions.

	DATA statements after executable statements.

	Specific (rather than generic) names for intrinsic functions.

gfortran with option -std=f2018 will warn about these:
R will report only in the installation log.

1.6.6 Binary distribution

If you want to distribute a binary version of a package on Windows or
macOS, there are further checks you need to do to check it is portable:
it is all too easy to depend on external software on your own machine
that other users will not have.

For Windows, check what other DLLs your package’s DLL depends on
(‘imports’ from in the DLL tools’ parlance). A convenient GUI-based
tool to do so is ‘Dependency Walker’
(https://www.dependencywalker.com/) for both 32-bit and 64-bit
DLLs – note that this will report as missing links to R’s own DLLs
such as R.dll and Rblas.dll. The command-line tool
objdump in the appropriate toolchain will also reveal what
DLLs are imported from. If you use a toolchain other than one provided
by the R developers or use your own makefiles, watch out in
particular for dependencies on the toolchain’s runtime DLLs such as
libgfortran, libstdc++ and libgcc_s.

For macOS, using R CMD otool -L on the package’s shared object(s)
in the libs directory will show what they depend on: watch for
any dependencies in /usr/local/lib or
/usr/local/gfortran/lib, notably libgfortran.?.dylib and
libquadmath.0.dylib.
(For ways to fix these, see the section ‘Building binary packages’ in
the ‘R Installation and Administration’ manual’.)

Many people (including the CRAN package repository) will not
accept source packages containing binary files as the latter are a
security risk. If you want to distribute a source package which needs
external software on Windows or macOS, options include

	To arrange for installation of the package to download the additional
software from a URL, as e.g. package Cairo used to.

	To negotiate with Tomas Kalibera to include Windows software in
Rtools or with Simon Urbanek to include macOS software in his
‘recipes’ system.

	(For CRAN.)
To negotiate with Uwe Ligges to host the additional components on
WinBuilder, and write a configure.win file to install them.

Be aware that license requirements you may require you to supply the
sources for the additional components (and will if your package has a
GPL-like license).

1.7 Diagnostic messages

Diagnostic messages can be made available for translation, so it is
important to write them in a consistent style. Using the tools
described in the next section to extract all the messages can give a
useful overview of your consistency (or lack of it).
Some guidelines follow.

	Messages are sentence fragments, and not viewed in isolation. So it is
conventional not to capitalize the first word and not to end with a
period (or other punctuation).

	Try not to split up messages into small pieces. In C error messages use
a single format string containing all English words in the messages.

In R error messages do not construct a message with paste (such
messages will not be translated) but via multiple arguments to
stop or warning, or via gettextf.

	Do not use colloquialisms such as “can’t” and “don’t”.

	Conventionally single quotation marks are used for quotations such as

'ord' must be a positive integer, at most the number of knots

and double quotation marks when referring to an R character string or
a class, such as

'format' must be "normal" or "short" - using "normal"

Since ASCII does not contain directional quotation marks, it
is best to use ‘'’ and let the translator (including automatic
translation) use directional quotations where available. The range of
quotation styles is immense: unfortunately we cannot reproduce them in a
portable texinfo document. But as a taster, some languages use
‘up’ and ‘down’ (comma) quotes rather than left or right quotes, and
some use guillemets (and some use what Adobe calls ‘guillemotleft’ to
start and others use it to end).

In R messages it is also possible to use sQuote or dQuote as in

 stop(gettextf("object must be of class %s or %s",
 dQuote("manova"), dQuote("maov")),
 domain = NA)

	Occasionally messages need to be singular or plural (and in other
languages there may be no such concept or several plural forms –
Slovenian has four). So avoid constructions such as was once used in
library

if((length(nopkgs) > 0) && !missing(lib.loc)) {
 if(length(nopkgs) > 1)
 warning("libraries ",
 paste(sQuote(nopkgs), collapse = ", "),
 " contain no packages")
 else
 warning("library ", paste(sQuote(nopkgs)),
 " contains no package")
}

and was replaced by

if((length(nopkgs) > 0) && !missing(lib.loc)) {
 pkglist <- paste(sQuote(nopkgs), collapse = ", ")
 msg <- sprintf(ngettext(length(nopkgs),
 "library %s contains no packages",
 "libraries %s contain no packages",
 domain = "R-base"),
 pkglist)
 warning(msg, domain=NA)
}

Note that it is much better to have complete clauses as here, since
in another language one might need to say
‘There is no package in library %s’ or
‘There are no packages in libraries %s’.

1.8 Internationalization

There are mechanisms to translate the R- and C-level error and warning
messages. There are only available if R is compiled with NLS support
(which is requested by configure option --enable-nls,
the default).

The procedures make use of msgfmt and xgettext which are
part of GNU gettext and this will need to be installed:
‘x86_64’ Windows users can find pre-compiled binaries at
https://www.stats.ox.ac.uk/pub/Rtools/goodies/gettext-tools.zip.

1.8.1 C-level messages

The process of enabling translations is

	In a header file that will be included in all the C (or C++ or Objective
C/C++) files containing messages that should be translated, declare

#include <R.h> /* to include Rconfig.h */

#ifdef ENABLE_NLS
#include <libintl.h>
#define _(String) dgettext ("pkg", String)
/* replace pkg as appropriate */
#else
#define _(String) (String)
#endif

	For each message that should be translated, wrap it in _(...),
for example

error(_("'ord' must be a positive integer"));

If you want to use different messages for singular and plural forms, you
need to add

#ifndef ENABLE_NLS
#define dngettext(pkg, String, StringP, N) (N == 1 ? String : StringP)
#endif

and mark strings by

dngettext("pkg", <singular string>, <plural string>, n)

	In the package’s src directory run

xgettext --keyword=_ -o pkg.pot *.c

The file src/pkg.pot is the template file, and
conventionally this is shipped as po/pkg.pot.

1.8.2 R messages

Mechanisms are also available to support the automatic translation of
R stop, warning and message messages. They make
use of message catalogs in the same way as C-level messages, but using
domain R-pkg rather than pkg. Translation of
character strings inside stop, warning and message
calls is automatically enabled, as well as other messages enclosed in
calls to gettext or gettextf. (To suppress this, use
argument domain=NA.)

Tools to prepare the R-pkg.pot file are provided in package
tools: xgettext2pot will prepare a file from all strings
occurring inside gettext/gettextf, stop,
warning and message calls. Some of these are likely to be
spurious and so the file is likely to need manual editing.
xgettext extracts the actual calls and so is more useful when
tidying up error messages.

The R function ngettext provides an interface to the C
function of the same name: see example in the previous section. It is
safest to use domain="R-pkg" explicitly in calls to
ngettext, and necessary for earlier versions of R unless they
are calls directly from a function in the package.

1.8.3 Preparing translations

Once the template files have been created, translations can be made.
Conventional translations have file extension .po and are placed
in the po subdirectory of the package with a name that is either
‘ll.po’ or ‘R-ll.po’ for translations of the C and R
messages respectively to language with code ‘ll’.

See ‘Localization of messages’ in the ‘R Installation and
Administration’ manual for details of language codes.

There is an R function, update_pkg_po in package tools,
to automate much of the maintenance of message translations. See its
help for what it does in detail.

If this is called on a package with no existing translations, it creates
the directory pkgdir/po, creates a template file of R
messages, pkgdir/po/R-pkg.pot, within it, creates the
‘en@quot’ translation and installs that. (The ‘en@quot’
pseudo-language interprets quotes in their directional forms in suitable
(e.g. UTF-8) locales.)

If the package has C source files in its src directory
that are marked for translation, use

touch pkgdir/po/pkg.pot

to create a dummy template file, then call update_pkg_po again
(this can also be done before it is called for the first time).

When translations to new languages are added in the pkgdir/po
directory, running the same command will check and then
install the translations.

If the package sources are updated, the same command will update the
template files, merge the changes into the translation .po files
and then installed the updated translations. You will often see that
merging marks translations as ‘fuzzy’ and this is reported in the
coverage statistics. As fuzzy translations are not used, this is
an indication that the translation files need human attention.

The merged translations are run through tools::checkPofile to
check that C-style formats are used correctly: if not the mismatches are
reported and the broken translations are not installed.

This function needs the GNU gettext-tools installed and on the
path: see its help page.

1.9 CITATION files

An installed file named CITATION will be used by the
citation() function. (It should be in the inst
subdirectory of the package sources.)

The CITATION file is parsed as R code (in the package’s
declared encoding, or in ASCII if none is declared).
It will contain calls to function bibentry.
Here is that for nlme:

R package reference generated from DESCRIPTION metadata
citation(auto = meta)

NLME book
bibentry(bibtype = "Book",
 title = "Mixed-Effects Models in S and S-PLUS",
 author = c(person(c("José", "C."), "Pinheiro"),
 person(c("Douglas", "M."), "Bates")),
 year = "2000", publisher = "Springer", address = "New York",
 doi = "10.1007/b98882")

Note how the first call auto-generates citation information
from object meta, a parsed version of the DESCRIPTION file
– it is tempting to hardcode such information, but it normally then
gets outdated. How the first entry would look like as a bibentry
call can be seen from
print(citation("pkgname", auto = TRUE), style = "R")
for any installed package. Auto-generated information is
returned by default if no CITATION file is present.

See ?bibentry for further details of the
information which can be provided.
In case a bibentry contains LaTeX markup (e.g., for accented
characters or mathematical symbols), it may be necessary to provide a
text representation to be used for printing via the
textVersion argument to bibentry. E.g., earlier versions
of nlme additionally used something like

 textVersion =
 paste0("Jose Pinheiro, Douglas Bates, Saikat DebRoy, ",
 "Deepayan Sarkar and the R Core Team (",
 sub("-.*", "", meta$Date),
 "). nlme: Linear and Nonlinear Mixed Effects Models. ",
 sprintf("R package version %s", meta$Version), ".")

The CITATION file should itself produce no output when
source-d.

It is desirable (and essential for CRAN) that the
CITATION file does not contain calls to functions such as
packageDescription which assume the package is installed in a
library tree on the package search path.

1.10 Package types

The DESCRIPTION file has an optional field Type which if
missing is assumed to be ‘Package’, the sort of extension discussed
so far in this chapter. Currently one other type is recognized; there
used also to be a ‘Translation’ type.

1.10.1 Frontend

This is a rather general mechanism, designed for adding new front-ends
such as the former gnomeGUI package (see the Archive area on
CRAN). If a configure file is found in the top-level
directory of the package it is executed, and then if a Makefile
is found (often generated by configure), make is called.
If R CMD INSTALL --clean is used make clean is called. No
other action is taken.

R CMD build can package up this type of extension, but R
CMD check will check the type and skip it.

Many packages of this type need write permission for the R
installation directory.

1.11 Services

Several members of the R project have set up services to assist those
writing R packages, particularly those intended for public
distribution.

win-builder.r-project.org
offers the automated preparation of (‘x86_64’) Windows binaries from
well-tested source packages.

R-Forge (R-Forge.r-project.org) and
RForge (www.rforge.net) are similar
services with similar names. Both provide source-code management
through SVN, daily building and checking, mailing lists and a repository
that can be accessed via install.packages (they can be
selected by setRepositories and the GUI menus that use it).
Package developers have the opportunity to present their work on the
basis of project websites or news announcements. Mailing lists, forums
or wikis provide useRs with convenient instruments for discussions and
for exchanging information between developers and/or interested useRs.

Footnotes

(1)

although this is a persistent
mis-usage. It seems to stem from S, whose analogues of R’s packages
were officially known as library sections and later as
chapters, but almost always referred to as libraries.

(2)

This
seems to be commonly used for a file in ‘markdown’ format. Be aware
that most users of R will not know that, nor know how to view such a
file: platforms such as macOS and Windows do not have a default viewer
set in their file associations. The CRAN package web pages
render such files in HTML: the converter used expects the file to be
encoded in UTF-8.

(3)

currently, top-level files
.Rbuildignore and .Rinstignore, and
vignettes/.install_extras.

(4)

false positives are possible, but only a handful have been
seen so far.

(5)

at least if this
is done in a locale which matches the package encoding.

(6)

and
required by CRAN, so checked by R CMD check
--as-cran.

(7)

without a src/Makefile* file.

(8)

LTO is not currently supported by the toolchain
used on ‘aarch64’.

(9)

But it is checked for Open Source packages
by R CMD check --as-cran.

(10)

Duplicate definitions may
trigger a warning: see User-defined macros.

(11)

bug.report will try to extract an
email address from a Contact field if there is no
BugReports field.

(12)

CRAN expands them to e.g. GPL-2
| GPL-3.

(13)

even one wrapped in \donttest.

(14)

This includes all packages
directly called by library and require calls, as well as
data obtained via data(theirdata, package = "somepkg")
calls: R CMD check will warn about all of these. But there
are subtler uses which it may not detect: e.g. if package A uses
package B and makes use of functionality in package B which uses package
C which package B suggests or enhances, then package C needs to be in
the ‘Suggests’ list for package A. Nor will undeclared uses in
included files be reported, nor unconditional uses of packages listed
under ‘Enhances’. R CMD check --as-cran will detect more
of the subtler uses.

(15)

Extensions
.S and .s arise from code originally written for S(-PLUS),
but are commonly used for assembler code. Extension .q was used
for S, which at one time was tentatively called QPE.

(16)

but they should be in the encoding
declared in the DESCRIPTION file.

(17)

This is true for OSes which
implement the ‘C’ locale: Windows’ idea of the ‘C’ locale uses
the WinAnsi charset.

(18)

More precisely, they can
contain the English alphanumeric characters and the symbols
‘$ - _ . + ! ' () , ; = &’.

(19)

either or both of which may not be supported on particular
platforms. Their main use is on macOS, but unfortunately recent
versions of the macOS SDK have removed much of the support for Objective
C v1.0 and Objective C++.

(20)

This is not accepted by the Intel Fortran compiler.

(21)

Using .hpp is not guaranteed
to be portable.

(22)

There is also ‘__APPLE_CC__’, but that indicates a
compiler with Apple-specific features not the OS, although for
historical reasons is is defined by LLVM clang. It is
used in Rinlinedfuns.h.

(23)

the POSIX
terminology, called ‘make variables’ by GNU make.

(24)

The best way to generate such a file is to copy
the .Rout from a successful run of R CMD check. If you
want to generate it separately, do run R with options
--vanilla --no-echo and with environment variable
LANGUAGE=en set to get messages in English. Be careful not to use
output with the option --timings (and note that
--as-cran sets it).

(25)

e.g.
https://www.rfc-editor.org/rfc/rfc4180.

(26)

People who have trouble with
case are advised to use .rda as a common error is to refer to
abc.RData as abc.Rdata!

(27)

For all the CRAN packages tested,
either gz or bzip2 provided a very substantial reduction
in installed size.

(28)

‘BWidget’ still is on Windows but
‘Tktable’ was not in R 4.0.0.

(29)

The script
should only assume a POSIX-compliant /bin/sh – see
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html.
In particular bash extensions must not be used, and not all
R platforms have a bash command, let alone one at
/bin/bash. All known shells used with R support the use of
backticks, but not all support ‘$(cmd)’. However, real-world
shells are not fully POSIX-compliant and omissions and idiosyncrasies
need to be worked around—which Autoconf will do for you. Arithmetic
expansion is a known issue: see
https://www.gnu.org/software/autoconf/manual/autoconf.html#Portable-Shell
for this and others. Some checks can be done by the
checkbashisms Perl script at
https://sourceforge.net/projects/checkbaskisms/files, also
available in most Linux distributions in a package named either
‘devscripts’ or ‘devscripts-checkbashisms’: a later version
can be extracted from Debian sources such as the most recent
tar.xz in
https://deb.debian.org/debian/pool/main/d/devscripts/ and has
been needed for recent versions of Perl.

(30)

https://www.gnu.org/software/autoconf-archive/ax_blas.html. If
you include macros from that archive you need to arrange for them to be
included in the package sources for use by autoreconf.

(31)

but it is available on the
machines used to produce the CRAN binary packages: however as
Apple does not ship .pc files for its system libraries such as
expat, libcurl, libxml2, sqlite3 and
‘zlib’, it may well not find information on these. Some
substitutes are available from
https://github.com/R-macos/recipes/tree/master/stubs/pkgconfig-darwin
and are installed on the CRAN package builders.

(32)

It is not wise
to check the version of pkg-config as it is sometimes a link
to
pkgconf, a separate project with a different version series.

(33)

but not all projects get this
right when only a static library is installed, so it is often necessary
to try in turn pkg-config --libs and pkg-config
--static --libs.

(34)

a decade ago Autoconf used
configure.in: this is still accepted but should be renamed and
autoreconf as used by R CMD check --as-cran will
report as such.

(35)

For those using
autoconf 2.70 or later there is also
AC_CONFIG_MACRO_DIRS which allows multiple directories to be
specified.

(36)

in POSIX parlance: GNU make
calls these ‘make variables’.

(37)

at least on Unix-alikes: the Windows build currently
resolves such dependencies to a static Fortran library when
Rblas.dll is built.

(38)

https://www.openmp.org/,
https://en.wikipedia.org/wiki/OpenMP,
https://hpc-tutorials.llnl.gov/openmp/

(39)

There are somewhat fragile workarounds: see
https://mac.r-project.org/openmp/.

(40)

Default builds of LLVM clang 3.8.0
and later have support for OpenMP, but the libomp run-time
library may not be installed.

(41)

In most implementations the _OPENMP
macro has value a date which can be mapped to an OpenMP version: for
example, value 201307 is the date of version 4.0 (July
2013). However this may be used to denote the latest version which is
partially supported, not that which is fully implemented.

(42)

Windows default, not
MinGW-w64 default.

(43)

Which it was at the time of writing with GCC,
Intel and Clang compilers. The count may include the thread
running the main process.

(44)

Be
careful not to declare nthreads as const int: the Oracle
compiler required it to be ‘an lvalue’.

(45)

A few OSes (AIX, Windows) do not
need special flags for such code, but most do—although compilers will
often generate PIC code when not asked to do so.

(46)

Intel compilers do not by default but this is worked
around when using packages without a src/Makefile.

(47)

but was said to have
complete support only from version 2023.0.0.

(48)

Some changes are linked
from
https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations:
there were also additional deprecations.

(49)

Values 201103L, 201402L, 201703L
and 202002L are most commonly used for C++11, C++14, C++17 and
C++20 respectively, but some compilers set 1L. For C++23 all that
can currently be assumed is a value greater than that for C++20: for
example g++ 12 uses 202100L and clang++ (LLVM
15, Apple 14) uses 202101L.

(50)

Often historically used to mean ‘not C++98’

(51)

See
https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
or
https://en.cppreference.com/w/cpp/experimental/feature_test.
It seems a reasonable assumption that any compiler promising some C++14
conformance will provide these—e.g. g++ 4.9.x did but
4.8.5 did not.

(52)

The __cplusplus value for C++23 is not yet
finalized and all but some of the latest compilers use values from earlier
drafts.

(53)

On systems which use sub-architectures,
architecture-specific versions such as ~/.R/check.Renviron.x64
take precedence.

(54)

A suitable file.exe is
part of the Windows toolset: it checks for gfile if a suitable
file is not found: the latter is available in the OpenCSW
collection for Solaris at https://www.opencsw.org/. The source
repository is http://ftp.astron.com/pub/file/.

(55)

An exception is made
for subdirectories with names starting ‘win’ or ‘Win’.

(56)

on most other platforms such runtime
libraries are dynamic, but static libraries are currently used on
Windows because the toolchain is not a standard part of the OS.

(57)

or if option --use-valgrind is
used or environment variable _R_CHECK_ALWAYS_LOG_VIGNETTE_OUTPUT_
is set to a true value or if there are differences from a target output
file

(58)

for the most
comprehensive checking this should be 5.8.0 or later: any for which
tidy --version does not report a version number will be too
old – this includes the 2006 version shipped with macOS.

(59)

For example, in early
2014 gdata declared ‘Imports: gtools’ and gtools
declared ‘Imports: gdata’.

(60)

called CVS or
.svn or .arch-ids or .bzr or .git (but not
files called .git) or .hg.

(61)

called .metadata.

(62)

which is an error: GNU make uses
GNUmakefile.

(63)

see tools:::.hidden_file_exclusions and
tools:::get_exclude_patterns() for further
excluded files and file patterns, respectively.

(64)

and to avoid problems with case-insensitive file
systems, lower-case versions of all these extensions.

(65)

unless inhibited by using
‘BuildVignettes: no’ in the DESCRIPTION file.

(66)

provided the conditions of the
package’s license are met: many, including CRAN, see the
omission of source components as incompatible with an Open Source
license.

(67)

R_HOME/bin is prepended to the
PATH so that references to R or Rscript in the
Makefile do make use of the currently running version of R.

(68)

Note that
lazy-loaded datasets are not in the package’s namespace so need
to be accessed via ::, e.g.
survival::survexp.us.

(69)

they will be called
with two unnamed arguments, in that order.

(70)

NB: this will only be read in all versions of R if
the package contains R code in a R directory.

(71)

Note that this is the
basename of the shared object, and the appropriate extension (.so
or .dll) will be added.

(72)

Imports: methods may suffice,
but package code is little exercised without the methods package
on the search path and may not be fully robust to this scenario.

(73)

This defaults to the same
pattern as exportPattern: use something like
exportClassPattern("^$") to override this.

(74)

if it does, there will be opaque warnings about
replacing imports if the classes/methods are also imported.

(75)

People use dev.new() to open a
device at a particular size: that is not portable but using
dev.new(noRStudioGD = TRUE) helps.

(76)

Solaris make did not accept
CRLF-terminated Makefiles; Solaris warned about and some other
makes ignore incomplete final lines.

(77)

This was apparently
introduced in SunOS 4, and is available elsewhere provided it is
surrounded by spaces.

(78)

GNU make,
BSD make and other variants of pmake in FreeBSD, NetBSD and
formerly in macOS, and formerly AT&T make as implemented on Solaris and
‘Distributed Make’ (dmake), part of Oracle Developer Studio and
available in other versions including from Apache OpenOffice.

(79)

For example, test
options -a and -e are not portable, and not supported
in the AT&T Bourne shell used on Solaris 10/11, even though they are in
the POSIX standard. Nor did Solaris support ‘$(cmd)’.

(80)

as from
R 4.0.0 the default is bash.

(81)

it was not in the Bourne shell, and was not supported
by Solaris 10.

(82)

https://fortranwiki.org/fortran/show/Modernizing+Old+Fortran
may help explain some of the warnings from gfortran -Wall
-pedantic.

(83)

or where supported the variants _Exit and
_exit.

(84)

This and
srandom are in any case not portable. They are in POSIX but not
in the C99 standard, and not available on Windows.

(85)

including
macOS as from version 13.

(86)

in libselinux.

(87)

At least Linux and Windows, but not macOS.

(88)

except perhaps the simplest kind as used by
download.file() in non-interactive use.

(89)

Whereas the GNU linker reorders so -L options
are processed first, the Solaris one did not.

(90)

some versions of macOS did not.

(91)

If a Java interpreter is
required directly (not via rJava) this must be declared
and its presence tested like any other external command.

(92)

For example, the ability to handle ‘https://’
URLs.

(93)

Not
doing so is the default on Windows, overridden for the R
executables.

(94)

These are not needed for the default compiler settings
on ‘x86_64’ but are likely to be needed on ‘ix86’.

(95)

Select ‘Save as’, and select
‘Reduce file size’ from the ‘Quartz filter’ menu’: this can be accessed
in other ways, for example by Automator.

(96)

except perhaps some
special characters such as backslash and hash which may be taken over
for currency symbols.

(97)

Typically on a Unix-alike this is
done by telling fontconfig where to find suitable fonts to
select glyphs from.

(98)

which it is on all known
platforms, and is required as from R 4.0.0

(99)

Ubuntu provides 5 years of support (but
people were running 14.04 after 7 years) and RHEL provides 10 years full
support and up to 14 with extended support.

(100)

This is seen on Linux, Solaris
and FreeBSD, although each has other ways to turn on all extensions,
e.g. defining _GNU_SOURCE, __EXTENSIONS__ or
_BSD_SOURCE: the GCC compilers by default define
_GNU_SOURCE unless a strict standard such as -std=c99 is
used. On macOS extensions are declared unless one of these macros is
given too small a value.

(101)

often taken from
the toolchain’s headers.

(102)

at the time of writing ‘arm64’ macOS both warned
and did not supply a prototype in math.h which resulted in a
compilation error.

(103)

also part of C++11 and later.

(104)

which often is the same as the header included by
the C compiler, but some compilers have wrappers for some of the C
headers.

(105)

Although this is expected
to be part of C23, full support of that is years away.

(106)

https://stackoverflow.com/questions/32739018/a-replacement-for-stdbind2nd

(107)

it is allowed
but ignored in system headers.

(108)

an unsigned
64-bit integer type on recent R platforms.

(109)

when using the
macOS 13 SDK with a deployment target of macOS 13.

(110)

and at one time as DEC Fortran, hence the
DEC.

(111)

see
https://gcc.gnu.org/gcc-10/porting_to.html.

(112)

See
https://prereleases.llvm.org/11.0.0/rc2/tools/clang/docs/ReleaseNotes.html#modified-compiler-flags.

(113)

In principle this could
depend on the OS, but has been checked on Linux and macOS.

(114)

discontinued in 2023.

(115)

There is a portable way to do this in Fortran 2003
(ieee_is_nan() in module ieee_arithmetic), but that was
not supported in the versions 4.x of GNU Fortran. A pretty robust
alternative is to test if(my_var /= my_var).

2 Writing R documentation files

2.1 Rd format

R objects are documented in files written in “R documentation”
(Rd) format, a simple markup language much of which closely resembles
(La)TeX, which can be processed into a variety of formats,
including LaTeX, HTML and plain text. The translation is
carried out by functions in the tools package called by the
script Rdconv in R_HOME/bin and by the
installation scripts for packages.

The R distribution contains more than 1400 such files which can be
found in the src/library/pkg/man directories of the R
source tree, where pkg stands for one of the standard packages
which are included in the R distribution.

As an example, let us look at a simplified version of
src/library/base/man/load.Rd which documents the R function
load.

	

% File src/library/base/man/load.Rd
\name{load}
\alias{load}
\title{Reload Saved Datasets}
\description{
 Reload datasets written with the function \code{save}.
}
\usage{
load(file, envir = parent.frame(), verbose = FALSE)
}
\arguments{
 \item{file}{a (readable binary-mode) \link{connection}
 or a character string giving the name of the file to load
 (when \link{tilde expansion} is done).}
 \item{envir}{the environment where the data should be loaded.}
 \item{verbose}{should item names be printed during loading?}
}
\value{
 A character vector of the names of objects created, invisibly.
}
\seealso{
 \code{\link{save}}.
}
\examples{
save all data
save(list = ls(all.names = TRUE), file = "all.RData")

restore the saved values to the current environment
load("all.RData")
}
\keyword{file}

An Rd file consists of three parts. The header gives basic
information about the name of the file, the topics documented, a title,
a short textual description and R usage information for the objects
documented. The body gives further information (for example, on the
function’s arguments and return value, as in the above example).
Finally, there is an optional footer with keyword information. The
header is mandatory.

Information is given within a series of sections with standard
names (and user-defined sections are also allowed). Unless otherwise
specified116 these should occur only once in an Rd
file (in any order), and the processing software will retain only the
first occurrence of a standard section in the file, with a warning.

See “Guidelines for Rd
files” for guidelines for writing documentation in Rd format
which should be useful for package writers.

The R
generic function prompt is used to construct a bare-bones Rd
file ready for manual editing. Methods are defined for documenting
functions (which fill in the proper function and argument names) and
data frames. There are also functions promptData,
promptPackage, promptClass, and promptMethods for
other types of Rd files.

The general syntax of Rd files is summarized below. For a detailed
technical discussion of current Rd syntax, see
“Parsing Rd files”.

Rd files consist of four types of text input. The most common
is LaTeX-like, with the backslash used as a prefix on markup
(e.g. \alias), and braces used to indicate arguments
(e.g. {load}). The least common type of text is ‘verbatim’
text, where no markup other than the comment marker (%) is
processed. There is also a rare variant of ‘verbatim’ text
(used in \eqn, \deqn, \figure,
and \newcommand) where comment markers need not be escaped.
The final type is R-like, intended for R code, but allowing some
embedded macros. Quoted strings within R-like text are handled
specially: regular character escapes such as \n may be entered
as-is. Only markup starting with \l (e.g. \link) or
\v (e.g. \var) will be recognized within quoted strings.
The rarely used vertical tab \v must be entered as \\v.

Each macro defines the input type for its argument. For example, the
file initially uses LaTeX-like syntax, and this is also used in the
\description section, but the \usage section uses
R-like syntax, and the \alias macro uses ‘verbatim’ syntax.
Comments run from a percent symbol % to the end of the line in
all types of text except the rare ‘verbatim’ variant
(as on the first line of the load example).

Because backslashes, braces and percent symbols have special meaning, to
enter them into text sometimes requires escapes using a backslash. In
general balanced braces do not need to be escaped, but percent symbols
always do, except in the ‘verbatim’ variant.
For the complete list of macros and rules for escapes, see
“Parsing Rd files”.

2.1.1 Documenting functions

The basic markup commands used for documenting R objects (in
particular, functions) are given in this subsection.

	\name{name}

	name typically117 is the basename of
the Rd file containing the documentation. It is the “name” of
the Rd object represented by the file and has to be unique in a
package. To avoid problems with indexing the package manual, it may not
contain ‘!’ ‘|’ nor ‘@’.
(LaTeX special characters are allowed, but may not be collated
correctly in the index.) There can only be one \name entry in a
file, and it must not contain any markup and should only contain
printable ASCII characters. Entries in the package manual
will be in alphabetic118 order
of the \name entries.

	\alias{topic}

	The \alias sections specify all “topics” the file documents.
This information is collected into index data bases for lookup by the
on-line (plain text and HTML) help systems. The topic can
contain spaces, but (for historical reasons) leading and trailing spaces
will be stripped. Percent and left brace need to be escaped by
a backslash.

There may be several \alias entries. Quite often it is
convenient to document several R objects in one file. For example,
file Normal.Rd documents the density, distribution function,
quantile function and generation of random variates for the normal
distribution, and hence starts with

\name{Normal}
\alias{Normal}
\alias{dnorm}
\alias{pnorm}
\alias{qnorm}
\alias{rnorm}

Also, it is often convenient to have several different ways to refer to
an R object, and an \alias does not need to be the name of an
object.

Note that the \name is not necessarily a topic documented, and if
so desired it needs to have an explicit \alias entry (as in this
example).

	\title{Title}

	Title information for the Rd file. This should be capitalized
and not end in a period; try to limit its length to at most 65
characters for widest compatibility.

Markup is supported in the text, but use of characters other than
English text and punctuation (e.g., ‘<’) may limit portability.

There must be one (and only one) \title section in a help file.

	\description{…}

	A short description of what the function(s) do(es) (one paragraph, a few
lines only). (If a description is too long and cannot easily be
shortened, the file probably tries to document too much at once.)
This is mandatory except for package-overview files.

	\usage{fun(arg1, arg2, …)}

	One or more lines showing the synopsis of the function(s) and variables
documented in the file. These are set in typewriter font. This is an
R-like command.

The usage information specified should match the function definition
exactly (such that automatic checking for consistency between
code and documentation is possible).

To indicate that a function can be used in several different ways,
depending on the named arguments specified, use section \details.
E.g., abline.Rd contains

\details{
 Typical usages are
\preformatted{abline(a, b, ...)
......
}

Use \method{generic}{class} to indicate the name
of an S3 method for the generic function generic for objects
inheriting from class "class". In the printed versions,
this will come out as generic (reflecting the understanding that
methods should not be invoked directly but via method dispatch), but
codoc() and other QC tools always have access to the full name.

For example, print.ts.Rd contains

\usage{
\method{print}{ts}(x, calendar, \dots)
}

which will print as

Usage:

 ## S3 method for class 'ts':
 print(x, calendar, ...)

Usage for replacement functions should be given in the style of
dim(x) <- value rather than explicitly indicating the name of the
replacement function ("dim<-" in the above). Similarly, one
can use \method{generic}{class}(arglist) <-
value to indicate the usage of an S3 replacement method for the generic
replacement function "generic<-" for objects inheriting
from class "class".

Usage for S3 methods for extracting or replacing parts of an object, S3
methods for members of the Ops group, and S3 methods for user-defined
(binary) infix operators (‘%xxx%’) follows the above rules,
using the appropriate function names. E.g., Extract.factor.Rd
contains

\usage{
\method{[}{factor}(x, \dots, drop = FALSE)
\method{[[}{factor}(x, \dots)
\method{[}{factor}(x, \dots) <- value
}

which will print as

Usage:

 ## S3 method for class 'factor':
 x[..., drop = FALSE]
 ## S3 method for class 'factor':
 x[[...]]
 ## S3 replacement method for class 'factor':
 x[...] <- value

\S3method is accepted as an alternative to \method.

	\arguments{…}

	Description of the function’s arguments, using an entry of the form

\item{arg_i}{Description of arg_i.}

for each element of the argument list. (Note that there is
no whitespace between the three parts of the entry.) Arguments can also
be described jointly by separating their names with commas (and optional
whitespace) in the \item label. There may be
optional text outside the \item entries, for example to give
general information about groups of parameters.

	\details{…}

	A detailed if possible precise description of the functionality
provided, extending the basic information in the \description
slot.

	\value{…}

	Description of the function’s return value.

If a list with multiple values is returned, you can use entries of the
form

\item{comp_i}{Description of comp_i.}

for each component of the list returned. There may be
optional text outside the \item entries
(see for example the joint help for rle and inverse.rle,
or the sets of items in l10n_info). Note that \value
is implicitly a \describe environment, so that environment should
not be used for listing components, just individual \item{}{}
entries.119

	\references{…}

	A section with references to the literature. Use \url{} or
\href{}{} for web pointers, and \doi{} for DOIs
(this needs R >= 3.3, see User-defined macros for more info).

	\note{...}

	Use this for a special note you want to have pointed out. Multiple
\note sections are allowed, but might be confusing to the end users.

For example, pie.Rd contains

\note{
 Pie charts are a very bad way of displaying information.
 The eye is good at judging linear measures and bad at
 judging relative areas.

}

	\author{…}

	Information about the author(s) of the Rd file. Use
\email{} without extra delimiters (such as ‘()’ or
‘< >’) to specify email addresses, or \url{} or
\href{}{} for web pointers.

	\seealso{…}

	Pointers to related R objects, using \code{\link{...}} to
refer to them (\code is the correct markup for R object names,
and \link produces hyperlinks in output formats which support
this. See Marking text, and Cross-references).

	\examples{…}

	Examples of how to use the function. Code in this section is set
in typewriter font without reformatting and is run by
example() unless marked otherwise (see below).

Examples are not only useful for documentation purposes, but also
provide test code used for diagnostic checking of R code. By
default, text inside \examples{} will be displayed in the
output of the help page and run by example() and by R CMD
check. You can use \dontrun{}

for text that should only be shown, but not run, and
\dontshow{}

for extra commands for testing that should not be shown to users, but
will be run by example(). (Previously this was called
\testonly, and that is still accepted.)

Text inside \dontrun{} is ‘verbatim’, but the other parts
of the \examples section are R-like text.

For example,

x <- runif(10) # Shown and run.
\dontrun{plot(x)} # Only shown.
\dontshow{log(x)} # Only run.

Thus, example code not included in \dontrun must be executable!
In addition, it should not use any system-specific features or require
special facilities (such as Internet access or write permission to
specific directories). Text included in \dontrun is indicated by
comments in the processed help files: it need not be valid R code but
the escapes must still be used for %, \ and unpaired
braces as in other ‘verbatim’ text.

Example code must be capable of being run by example, which uses
source. This means that it should not access stdin,
e.g. to scan() data from the example file.

Data needed for making the examples executable can be obtained by random
number generation (for example, x <- rnorm(100)), or by using
standard data sets listed by data() (see ?data for more
info).

Finally, there is \donttest, used (at the beginning of a separate
line) to mark code that should be run by example() but not by
R CMD check (by default: the option --run-donttest can
be used). This should be needed only occasionally but can be used for
code which might fail in circumstances that are hard to test for, for
example in some locales. (Use e.g. capabilities() or
nzchar(Sys.which("someprogram")) to test for features needed in
the examples wherever possible, and you can also use try() or
tryCatch(). Use interactive() to condition examples which
need someone to interact with.) Note that code included in
\donttest must be correct R code, and any packages used should
be declared in the DESCRIPTION file. It is good practice to
include a comment in the \donttest section explaining why it is
needed.

Output from code marked with \dontdiff (requires R >= 4.4.0)
or between comment lines

IGNORE_RDIFF_BEGIN
IGNORE_RDIFF_END

is ignored when comparing check output to reference output (a
pkg-Ex.Rout.save file).
The comment-based markup can also be used for scripts under tests.

	\keyword{key}

	There can be zero or more \keyword sections per file.
Each \keyword section should specify a single keyword, preferably
one of the standard keywords as listed in file KEYWORDS in the
R documentation directory (default R_HOME/doc). Use
e.g. RShowDoc("KEYWORDS") to inspect the standard keywords from
within R. There can be more than one \keyword entry if the R
object being documented falls into more than one category, or none.

Do strongly consider using \concept (see Indices) instead of
\keyword if you are about to use more than very few non-standard
keywords.

The special keyword ‘internal’ marks a page of internal topics
(typically, objects that are not part of the package’s API).
If the help page for topic
foo has keyword ‘internal’, then help(foo) gives this
help page, but foo is excluded from several topic indices,
including the alphabetical list of topics in the HTML help system.

help.search() can search by keyword, including user-defined
values: however the ‘Search Engine & Keywords’ HTML page accessed
via help.start() provides single-click access only to a
pre-defined list of keywords.

2.1.2 Documenting data sets

The structure of Rd files which document R data sets is slightly
different. Sections such as \arguments and \value are not
needed but the format and source of the data should be explained.

As an example, let us look at src/library/datasets/man/rivers.Rd
which documents the standard R data set rivers.

	

\name{rivers}
\docType{data}
\alias{rivers}
\title{Lengths of Major North American Rivers}
\description{
 This data set gives the lengths (in miles) of 141 \dQuote{major}
 rivers in North America, as compiled by the US Geological
 Survey.
}
\usage{rivers}
\format{A vector containing 141 observations.}
\source{World Almanac and Book of Facts, 1975, page 406.}
\references{
 McNeil, D. R. (1977) \emph{Interactive Data Analysis}.
 New York: Wiley.
}
\keyword{datasets}

This uses the following additional markup commands.

	\docType{…}

	Indicates the “type” of the documentation object. Always ‘data’
for data sets, and ‘package’ for pkg-package.Rd
overview files. Documentation for S4 methods and classes uses
‘methods’ (from promptMethods()) and ‘class’ (from
promptClass()).

	\format{…}

	A description of the format of the data set (as a vector, matrix, data
frame, time series, …). For matrices and data frames this should
give a description of each column, preferably as a list or table.
See Lists and tables, for more information.

	\source{…}

	Details of the original source (a reference or URL,
see Specifying URLs). In addition, section \references could
give secondary sources and usages.

Note also that when documenting data set bar,

	The \usage entry is always bar or (for packages
which do not use lazy-loading of data) data(bar). (In
particular, only document a single data object per Rd file.)

	The \keyword entry should always be ‘datasets’.

If bar is a data frame, documenting it as a data set can
be initiated via prompt(bar). Otherwise, the promptData
function may be used.

2.1.3 Documenting S4 classes and methods

There are special ways to use the ‘?’ operator, namely
‘class?topic’ and ‘methods?topic’, to access
documentation for S4 classes and methods, respectively. This mechanism
depends on conventions for the topic names used in \alias
entries. The topic names for S4 classes and methods respectively are of
the form

class-class
generic,signature_list-method

where signature_list contains the names of the classes in the
signature of the method (without quotes) separated by ‘,’ (without
whitespace), with ‘ANY’ used for arguments without an explicit
specification. E.g., ‘genericFunction-class’ is the topic name for
documentation for the S4 class "genericFunction", and
‘coerce,ANY,NULL-method’ is the topic name for documentation for
the S4 method for coerce for signature c("ANY", "NULL").

Skeletons of documentation for S4 classes and methods can be generated
by using the functions promptClass() and promptMethods()
from package methods. If it is necessary or desired to provide an
explicit function declaration (in a \usage section) for an S4
method (e.g., if it has “surprising arguments” to be mentioned
explicitly), one can use the special markup

\S4method{generic}{signature_list}(argument_list)

(e.g., ‘\S4method{coerce}{ANY,NULL}(from, to)’).

To make full use of the potential of the on-line documentation system,
all user-visible S4 classes and methods in a package should at least
have a suitable \alias entry in one of the package’s Rd files.
If a package has methods for a function defined originally somewhere
else, and does not change the underlying default method for the
function, the package is responsible for documenting the methods it
creates, but not for the function itself or the default method.

An S4 replacement method is documented in the same way as an S3 one: see
the description of \method in Documenting functions.

See help("Documentation", package = "methods") for more
information on using and creating on-line documentation for S4 classes and
methods.

2.1.4 Documenting packages

Packages may have an overview help page with an \alias
pkgname-package, e.g. ‘utils-package’ for the
utils package, when package?pkgname will open that
help page. If a topic named pkgname does not exist in
another Rd file, it is helpful to use this as an additional
\alias.

Skeletons of documentation for a package can be generated using the
function promptPackage(). If the final = TRUE argument
is used, then the Rd file will be generated in final form, containing
only basic information from the DESCRIPTION file. Otherwise (the
default) comments will be inserted giving suggestions for content.

Apart from the mandatory \name and \title and the
pkgname-package alias, the only requirement for the package
overview page is that it include a \docType{package} statement.
All other content is optional. We suggest that it should be a short
overview, to give a reader unfamiliar with the package enough
information to get started. More extensive documentation is better
placed into a package vignette (see Writing package vignettes) and
referenced from this page, or into individual man pages for the
functions, datasets, or classes.

2.2 Sectioning

To begin a new paragraph or leave a blank line in an example, just
insert an empty line (as in (La)TeX). To break a line, use
\cr.

In addition to the predefined sections (such as \description{},
\value{}, etc.), you can “define” arbitrary ones by
\section{section_title}{…}.

For example

\section{Warning}{
 You must not call this function unless ...
}

For consistency with the pre-assigned sections, the section name (the
first argument to \section) should be capitalized (but not all
upper case) and not end in a period.
Whitespace between the first and second braced expressions
is not allowed. Markup (e.g. \code) within the section title
may cause problems with the latex conversion (depending on the version
of macro packages such as ‘hyperref’) and so should be avoided.

The \subsection macro takes arguments in the same format as
\section, but is used within a section, so it may be used to
nest subsections within sections or other subsections. There is no
predefined limit on the nesting level, but formatting is not designed
for more than 3 levels (i.e. subsections within subsections within
sections).

Note that additional named sections are always inserted at a fixed
position in the output (before \note, \seealso and the
examples), no matter where they appear in the input (but in the same
order amongst themselves as in the input).

2.3 Marking text

The following logical markup commands are available for emphasizing or
quoting text.

	\emph{text}

	

	\strong{text}

	Emphasize text using italic and bold font if
possible; \strong is regarded as stronger (more emphatic).

	\bold{text}

	Set text in bold font where possible.

	\sQuote{text}

	

	\dQuote{text}

	Portably single or double quote text (without hard-wiring the
characters used for quotation marks).

Each of the above commands takes LaTeX-like input, so other macros
may be used within text.

The following logical markup commands are available for indicating
specific kinds of text. Except as noted, these take ‘verbatim’ text
input, and so other macros may not be used within them. Some characters
will need to be escaped (see Insertions).

	\code{text}

	Indicate text that is a literal example of a piece of an R program,
e.g., a fragment of R code or the name of an R object. Text is
entered in R-like syntax, and displayed using typewriter font
where possible. Macros \var and \link are interpreted within
text.

	\preformatted{text}

	Indicate text that is a literal example of a piece of a program. Text
is displayed using typewriter font where possible. Formatting,
e.g. line breaks, is preserved. (Note that this includes a line break
after the initial {, so typically text should start on the same line as
the command.)

Due to limitations in LaTeX as of this writing, this macro may not be
nested within other markup macros other than \dQuote and
\sQuote, as errors or bad formatting may result.

	\kbd{keyboard-characters}

	Indicate keyboard input, using slanted typewriter font if
possible, so users can distinguish the characters they are supposed to
type from computer output. Text is entered ‘verbatim’.

	\samp{text}

	Indicate text that is a literal example of a sequence of characters,
entered ‘verbatim’, to be included within word-wrapped text. Displayed
within single quotation marks and
using typewriter font where possible.

	\verb{text}

	Indicate text that is a literal example of a sequence of characters,
entered ‘verbatim’. No wrapping or reformatting will occur. Displayed
using typewriter font where possible.

	\pkg{package_name}

	Indicate the name of an R package. LaTeX-like.

	\file{file_name}

	Indicate the name of a file. Text is LaTeX-like, so backslash needs
to be escaped. Displayed using a distinct font where possible.

	\email{email_address}

	Indicate an electronic mail address. LaTeX-like, will be rendered as
a hyperlink in HTML and PDF conversion. Displayed using
typewriter font where possible.

	\url{uniform_resource_locator}

	Indicate a uniform resource locator (URL) for the World Wide
Web. The argument is handled as ‘verbatim’ text (with percent and
braces escaped by backslash), and rendered as a hyperlink in HTML and
PDF conversion. Line feeds are removed, and leading and trailing
whitespace120 is
removed. See Specifying URLs.

Displayed using typewriter font where possible.

	\href{uniform_resource_locator}{text}

	Indicate a hyperlink to the World Wide Web. The first argument is
handled as ‘verbatim’ text (with percent and braces escaped by
backslash) and is used as the URL in the hyperlink, with the
second argument of LaTeX-like text displayed to the user. Line feeds
are removed from the first argument, and leading and trailing whitespace
is removed.

Note that RFC3986-encoded URLs (e.g. using ‘%28VS.85%29’ in
place of ‘(VS.85)’) may not work correctly in versions of R
before 3.1.3 and are best avoided—use URLdecode() to decode
them.

	\var{metasyntactic_variable}

	Indicate a metasyntactic variable. In most cases this will be rendered
distinctly, e.g. in italic (PDF/HTML) or wrapped in ‘<…>’ (text),
but not in all121. LaTeX-like.

	\env{environment_variable}

	Indicate an environment variable. ‘Verbatim’.
Displayed using typewriter font where possible

	\option{option}

	Indicate a command-line option. ‘Verbatim’.
Displayed using typewriter font where possible.

	\command{command_name}

	Indicate the name of a command. LaTeX-like, so \var is
interpreted. Displayed using typewriter font where possible.

	\dfn{term}

	Indicate the introductory or defining use of a term. LaTeX-like.

	\cite{reference}

	Indicate a reference without a direct cross-reference via \link
(see Cross-references), such as the name of a book. LaTeX-like.

	\acronym{acronym}

	Indicate an acronym (an abbreviation written in all capital letters),
such as GNU. LaTeX-like.

	\abbr{abbr}

	Indicates an abbreviation. LaTeX-like.

2.4 Lists and tables

The \itemize and \enumerate commands take a single
argument, within which there may be one or more \item commands.
The text following each \item is formatted as one or more
paragraphs, suitably indented and with the first paragraph marked with a
bullet point (\itemize) or a number (\enumerate).

Note that unlike argument lists, \item in these formats is
followed by a space and the text (not enclosed in braces). For example

 \enumerate{
 \item A database consists of one or more records, each with one or
 more named fields.
 \item Regular lines start with a non-whitespace character.
 \item Records are separated by one or more empty lines.
 }

\itemize and \enumerate commands may be nested.

The \describe command is similar to \itemize but allows
initial labels to be specified. Each \item takes two arguments,
the label and the body of the item, in exactly the same way as an
argument or value \item. \describe commands are mapped to
<DL> lists in HTML and \description lists in LaTeX.

Using these without any \items may cause problems with some
conversions and makes little sense.

The \tabular command takes two arguments. The first gives for
each of the columns the required alignment (‘l’ for
left-justification, ‘r’ for right-justification or ‘c’ for
centring.) The second argument consists of an arbitrary number of
lines separated by \cr, and with fields separated by \tab.
For example:

 \tabular{rlll}{
 [,1] \tab Ozone \tab numeric \tab Ozone (ppb)\cr
 [,2] \tab Solar.R \tab numeric \tab Solar R (lang)\cr
 [,3] \tab Wind \tab numeric \tab Wind (mph)\cr
 [,4] \tab Temp \tab numeric \tab Temperature (degrees F)\cr
 [,5] \tab Month \tab numeric \tab Month (1--12)\cr
 [,6] \tab Day \tab numeric \tab Day of month (1--31)
 }

There must be the same number of fields on each line as there are
alignments in the first argument, and they must be non-empty (but can
contain only spaces). (There is no whitespace between \tabular
and the first argument, nor between the two arguments.)

2.5 Cross-references

The markup \link{foo} (usually in the combination
\code{\link{foo}}) produces a hyperlink to the help for
foo. Here foo is a topic, that is the argument of
\alias markup in another Rd file (possibly in another package).
Hyperlinks are supported in some of the formats to which Rd files are
converted, for example HTML and PDF, but ignored in others, e.g.
the text format.

One main usage of \link is in the \seealso section of the
help page, see Rd format.

Note that whereas leading and trailing spaces are stripped when
extracting a topic from a \alias, they are not stripped when
looking up the topic of a \link.

You can specify a link to a different topic than its name by
\link[=dest]{name} which links to topic dest
with name name. This can be used to refer to the documentation
for S3/4 classes, for example \code{"\link[=abc-class]{abc}"}
would be a way to refer to the documentation of an S4 class "abc"
defined in your package, and
\code{"\link[=terms.object]{terms}"} to the S3 "terms"
class (in package stats). To make these easy to read in the
source file, \code{"\linkS4class{abc}"} expands to the form
given above.

There are two other forms with an optional ‘anchor’ argument, specified as
\link[pkg]{foo} and
\link[pkg:bar]{foo}, to link to topics
foo and bar respectively in the package
pkg. They are currently only used in HTML help (and
ignored for hyperlinks in LaTeX conversions of help pages). One
should be careful about topics containing special characters (such as
arithmetic operators) as they may result in unresolvable links, and
preferably use a safer alias in the same help page.

Historically (before R version 4.1.0), links of the form
\link[pkg]{foo} and
\link[pkg:bar]{foo} used to be interpreted as links
to files foo.html and bar.html in
package pkg, respectively. For this reason, the HTML help
system looks for file foo.html in package pkg
if it does not find topic foo, and then searches for the
topic in other installed packages. To test that links work both with
both old and new systems, the pre-4.1.0 behaviour can be restored by
setting the environment variable _R_HELP_LINKS_TO_TOPICS_=false.

Packages referred to by these ‘other forms’ should be declared in the
DESCRIPTION file, in the ‘Depends’, ‘Imports’,
‘Suggests’ or ‘Enhances’ fields.

2.6 Mathematics

Mathematical formulae should be set beautifully for printed
documentation and in KaTeX/MathJax-enhanced HTML help (as from
R 4.2.0) yet we still want something useful for plain-text (and
legacy HTML) help. To this end, the two commands
\eqn{latex}{ascii} and
\deqn{latex}{ascii} are used. Whereas \eqn
is used for “inline” formulae (corresponding to TeX’s
$…$), \deqn gives “displayed equations” (as in
LaTeX’s displaymath environment, or TeX’s
$$…$$). Both arguments are treated as ‘verbatim’ text.

Both commands can also be used as \eqn{latexascii} (only
one argument) which then is used for both latex and
ascii. No whitespace is allowed between command and the first
argument, nor between the first and second arguments.

The following example is from Poisson.Rd:

 \deqn{p(x) = \frac{\lambda^x e^{-\lambda}}{x!}}{%
 p(x) = \lambda^x exp(-\lambda)/x!}
 for \eqn{x = 0, 1, 2, \ldots}.

In plain-text help we get

	

 p(x) = lambda^x exp(-lambda)/x!

for x = 0, 1, 2,

In legacy HTML help, Greek letters (both cases) will be rendered if preceded by a
backslash, \dots and \ldots will be rendered as ellipses
and \sqrt, \ge and \le as mathematical symbols.

Note that only basic LaTeX can be used, there being no provision to
specify LaTeX style files, but AMS extensions are supported
as from R 4.2.2.

2.7 Figures

To include figures in help pages, use the \figure markup. There
are three forms.

The two commonly used simple forms are \figure{filename}
and \figure{filename}{alternate text}. This will
include a copy of the figure in either HTML or LaTeX output. In text
output, the alternate text will be displayed instead. (When the second
argument is omitted, the filename will be used.) Both the filename and
the alternate text will be parsed verbatim, and should not include
special characters that are significant in HTML or LaTeX.

The expert form is \figure{filename}{options:
string}. (The word ‘options:’ must be typed exactly as
shown and followed by at least one space.) In this form, the
string is copied into the HTML img tag as attributes
following the src attribute, or into the second argument of the
\Figure macro in LaTeX, which by default is used as options to
an \includegraphics call. As it is unlikely that any single
string would suffice for both display modes, the expert form would
normally be wrapped in conditionals. It is up to the author to make
sure that legal HTML/LaTeX is used. For example, to include a
logo in both HTML (using the simple form) and LaTeX (using the
expert form), the following could be used:

\if{html}{\figure{Rlogo.svg}{options: width=100 alt="R logo"}}
\if{latex}{\figure{Rlogo.pdf}{options: width=0.5in}}

The files containing the figures should be stored in the directory
man/figures. Files with extensions .jpg, .jpeg,
.pdf, .png and .svg from that directory will be
copied to the help/figures directory at install time. (Figures in
PDF format will not display in most HTML browsers, but might be the
best choice in reference manuals.) Specify the filename relative to
man/figures in the \figure directive.

2.8 Insertions

Use \R for the R system itself. The \dots

macro is a historical alternative to using literal ‘...’
for the dots in function argument lists; use
\ldots

for ellipsis dots in ordinary text.122 These macros can be followed by
{}, and should be unless followed by whitespace.

After an unescaped ‘%’, you can put your own comments regarding the
help text. The rest of the line (but not the newline at the end) will
be completely disregarded. Therefore, you can also use it to make part
of the “help” invisible.

You can produce a backslash (‘\’) by escaping it by another
backslash. (Note that \cr is used for generating line breaks.)

The “comment” character ‘%’ and unpaired braces123
almost always need to be escaped by ‘\’, and ‘\\’ can
be used for backslash and needs to be when there are two or more adjacent
backslashes. In R-like code quoted strings are handled slightly
differently; see “Parsing Rd files” for details – in particular braces should not be
escaped in quoted strings.

All of ‘% { } \’ should be escaped in LaTeX-like text.

Text which might need to be represented differently in different
encodings should be marked by \enc, e.g.
\enc{Jöreskog}{Joreskog} (with no whitespace between the
braces) where the first argument will be used where encodings are
allowed and the second should be ASCII (and is used for e.g.
the text conversion in locales that cannot represent the encoded form).
(This is intended to be used for individual words, not whole sentences
or paragraphs.)

2.9 Indices

The \alias command (see Documenting functions) is used to
specify the “topics” documented, which should include all R
objects in a package such as functions and variables, data sets, and S4
classes and methods (see Documenting S4 classes and methods). The
on-line help system searches the index data base consisting of all
alias topics.

In addition, it is possible to provide “concept index entries” using
\concept, which can be used for help.search() lookups.
E.g., file cor.test.Rd in the standard package stats
contains

\concept{Kendall correlation coefficient}
\concept{Pearson correlation coefficient}
\concept{Spearman correlation coefficient}

so that e.g. ??Spearman will succeed in finding the
help page for the test for association between paired samples using
Spearman’s rho.

(Note that help.search() only uses “sections” of documentation
objects with no additional markup.)

Each \concept entry should give a single index term (word
or phrase), and not use any Rd markup.

If you want to cross reference such items from other help files via
\link, you need to use \alias and not \concept.

2.10 Platform-specific documentation

Sometimes the documentation needs to differ by platform. Currently two
OS-specific options are available, ‘unix’ and ‘windows’, and
lines in the help source file can be enclosed in

#ifdef OS
 ...
#endif

or

#ifndef OS
 ...
#endif

for OS-specific inclusion or exclusion. Such blocks should not be
nested, and should be entirely within a block (that, is between the
opening and closing brace of a section or item), or at top-level contain
one or more complete sections.

If the differences between platforms are extensive or the R objects
documented are only relevant to one platform, platform-specific Rd files
can be put in a unix or windows subdirectory.

2.11 Conditional text

Occasionally the best content for one output format is different from
the best content for another. For this situation, the
\if{format}{text} or
\ifelse{format}{text}{alternate} markup
is used. Here format is a comma separated list of formats in
which the text should be rendered. The alternate will be
rendered if the format does not match. Both text and
alternate may be any sequence of text and markup.

Currently the following formats are recognized: example,
html, latex and text. These select output for
the corresponding targets. (Note that example refers to
extracted example code rather than the displayed example in some other
format.) Also accepted are TRUE (matching all formats) and
FALSE (matching no formats). These could be the output
of the \Sexpr macro (see Dynamic pages).

The \out{literal} macro would usually be used within
the text part of \if{format}{text}. It
causes the renderer to output the literal text exactly, with no
attempt to escape special characters. For example, use
the following to output the markup necessary to display the Greek letter in
LaTeX or HTML, and the text string alpha in other formats:

\ifelse{latex}{\out{α}}{\ifelse{html}{\out{α}}{alpha}}

2.12 Dynamic pages

Two macros supporting dynamically generated man pages are \Sexpr
and \RdOpts. These are modelled after Sweave, and are intended
to contain executable R expressions in the Rd file.

The main argument to \Sexpr must be valid R code that can be
executed. It may also take options in square brackets before the main
argument. Depending on the options, the code may be executed at
package build time, package install time, or man page rendering time.

The options follow the same format as in Sweave, but different options
are supported. Currently the allowed options and their defaults are:

	eval=TRUE
Whether the R code should be evaluated.

	echo=FALSE
Whether the R code should be echoed. If TRUE
and results=verbatim, a display will
be given in a preformatted block. For example,
\Sexpr[echo=TRUE,results=verbatim]{ x <- 1 } will be displayed as

> x <- 1

	keep.source=TRUE
Whether to keep the author’s formatting when displaying the
code, or throw it away and use a deparsed version.

	results=text
How should the results be displayed? The possibilities
are:

	results=text
Apply as.character() to the result of the code, and insert it
as a text element.

	results=verbatim
Print the results of the code just as if it was executed at the console,
and include the printed results verbatim. (Invisible results will not print.)

	results=rd
The result is assumed to be a character vector containing markup to be
passed to parse_Rd(), with the result inserted in place. This
could be used to insert computed aliases, for instance.
parse_Rd() is called first with fragment = FALSE to allow
a single Rd section macro to be inserted. If that fails, it is called
again with fragment = TRUE, the older behavior.

	results=hide
Insert no output.

	strip.white=true
Remove leading and trailing blank lines in verbatim
output if strip.white=true (or TRUE). With
strip.white=all, remove all blank lines.

	stage=install
Control when this macro is run. Possible values are

	stage=build
The macro is run when building a source tarball.

	stage=install
The macro is run when installing from source.

	stage=render
The macro is run when displaying the help page.

Conditionals such as #ifdef
(see Platform-specific documentation) are applied after the
build macros but before the install macros. In some
situations (e.g. installing directly from a source directory without a
tarball, or building a binary package) the above description is not
literally accurate, but authors can rely on the sequence being
build, #ifdef, install, render, with all
stages executed.

Code is only run once in each stage, so a \Sexpr[results=rd]
macro can output an \Sexpr macro designed for a later stage,
but not for the current one or any earlier stage.

	width, height, fig
These options are currently allowed but ignored.

The \RdOpts macro is used to set new defaults for options to apply
to following uses of \Sexpr.

For more details, see the online document
“Parsing Rd files”.

2.13 User-defined macros

The \newcommand and \renewcommand macros allow new macros
to be defined within an Rd file. These are similar but not identical to
the same-named LaTeX macros.

They each take two arguments which are parsed verbatim. The first is
the name of the new macro including the initial backslash, and the
second is the macro definition. As in LaTeX, \newcommand
requires that the new macro not have been previously defined, whereas
\renewcommand allows existing macros (including all built-in
ones) to be replaced. (This test is disabled by default, but may be
enabled by setting the environment variable
_R_WARN_DUPLICATE_RD_MACROS_ to a true value.)

Also as in LaTeX, the new macro may be defined to take arguments,
and numeric placeholders such as #1 are used in the macro
definition. However, unlike LaTeX, the number of arguments is
determined automatically from the highest placeholder number seen in
the macro definition. For example, a macro definition containing
#1 and #3 (but no other placeholders) will define a
three argument macro (whose second argument will be ignored). As in
LaTeX, at most 9 arguments may be defined. If the #
character is followed by a non-digit it will have no special
significance. All arguments to user-defined macros will be parsed as
verbatim text, and simple text-substitution will be used to replace
the place-holders, after which the replacement text will be parsed.

A number of macros are defined in the file
share/Rd/macros/system.Rd of the R source or home directory,
and these will normally be available in all .Rd files. For
example, that file contains the definition

\newcommand{\PR}{\Sexpr[results=rd]{tools:::Rd_expr_PR(#1)}}

which defines \PR to be a single argument macro; then code
(typically used in the NEWS.Rd file) like

\PR{1234}

will expand to

\Sexpr[results=rd]{tools:::Rd_expr_PR(1234)}

when parsed.

Some macros that might be of general use are:

	\CRANpkg{pkg}

	A package on CRAN

	\sspace

	A single space (used after a period that does not end a sentence).

	\doi{numbers}

	A digital object identifier (DOI).

See the system.Rd file in share/Rd/macros for more details
and macro definitions, including macros \packageTitle,
\packageDescription, \packageAuthor, \packageMaintainer,
\packageDESCRIPTION and \packageIndices.

Packages may also define their own common macros; these would be stored
in an .Rd file in man/macros in the package source and
will be installed into help/macros when the package is installed.
A package may also use the macros from a different package by listing
the other package in the ‘RdMacros’ field in the DESCRIPTION
file.

2.14 Encoding

Rd files are text files and so it is impossible to deduce the encoding
they are written in unless ASCII: files with 8-bit characters
could be UTF-8, Latin-1, Latin-9, KOI8-R, EUC-JP, etc. So an
\encoding{} section must be used to specify the encoding if it
is not ASCII. (The \encoding{} section must be on a
line by itself, and in particular one containing no non-ASCII
characters. The encoding declared in the DESCRIPTION file will
be used if none is declared in the file.) The Rd files are
converted to UTF-8 before parsing and so the preferred encoding for the
files themselves is now UTF-8.

Wherever possible, avoid non-ASCII chars in Rd files, and
even symbols such as ‘<’, ‘>’, ‘$’, ‘^’, ‘&’,
‘|’, ‘@’, ‘~’, and ‘*’ outside ‘verbatim’
environments (since they may disappear in fonts designed to render
text). (Function showNonASCIIfile in package tools can help
in finding non-ASCII bytes in the files.)

For convenience, encoding names ‘latin1’ and ‘latin2’ are
always recognized: these and ‘UTF-8’ are likely to work fairly
widely. However, this does not mean that all characters in UTF-8 will
be recognized, and the coverage of non-Latin characters124 is fairly low. Using LaTeX
inputenx (see ?Rd2pdf in R) will give greater coverage
of UTF-8.

The \enc command (see Insertions) can be used to provide
transliterations which will be used in conversions that do not support
the declared encoding.

The LaTeX conversion converts the file to UTF-8 from the declared
encoding, and includes a

\inputencoding{utf8}

command, and this needs to be matched by a suitable invocation of the
\usepackage{inputenc} command. The R utility R
CMD Rd2pdf looks at the converted code and includes the encodings used:
it might for example use

\usepackage[utf8]{inputenc}

(Use of utf8 as an encoding requires LaTeX dated 2003/12/01 or
later. Also, the use of Cyrillic characters in ‘UTF-8’ appears to
also need ‘\usepackage[T2A]{fontenc}’, and R CMD Rd2pdf
includes this conditionally on the file t2aenc.def being present
and environment variable _R_CYRILLIC_TEX_ being set.)

Note that this mechanism works best with Latin letters: the coverage of
UTF-8 in LaTeX is quite low.

2.15 Processing documentation files

There are several commands to process Rd files from the system command
line.

Using R CMD Rdconv one can convert R documentation format to
other formats, or extract the executable examples for run-time testing.
The currently supported conversions are to plain text, HTML and
LaTeX as well as extraction of the examples.

R CMD Rd2pdf generates PDF output from documentation in Rd
files, which can be specified either explicitly or by the path to a
directory with the sources of a package. In the latter case, a
reference manual for all documented objects in the package is created,
including the information in the DESCRIPTION files.

R CMD Sweave and R CMD Stangle process vignette-like
documentation files (e.g. Sweave vignettes with extension
‘.Snw’ or ‘.Rnw’, or other non-Sweave vignettes).
R CMD Stangle is used to extract the R code fragments.

The exact usage and a detailed list of available options for all of
these commands can be obtained by running R CMD command
--help, e.g., R CMD Rdconv --help. All available commands can be
listed using R --help (or Rcmd --help under Windows).

All of these work under Windows. You may need to have installed the
the tools to build packages from source as described in the “R
Installation and Administration” manual, although typically all that is
needed is a LaTeX installation.

2.16 Editing Rd files

It can be very helpful to prepare .Rd files using a editor which
knows about their syntax and will highlight commands, indent to show the
structure and detect mis-matched braces, and so on.

The system most commonly used for this is some version of
Emacs (including XEmacs) with the ESS
package (https://ESS.R-project.org/: it is often is installed with
Emacs but may need to be loaded, or even installed,
separately).

Another is the Eclipse IDE with the Stat-ET plugin
(https://projects.eclipse.org/projects/science.statet), and (on
Windows only) Tinn-R
(https://sourceforge.net/projects/tinn-r/).

People have also used LaTeX mode in a editor, as .Rd files are
rather similar to LaTeX files.

Some R front-ends provide editing support for .Rd files, for
example RStudio (https://posit.co/).

Footnotes

(116)

e.g. \alias, \keyword and
\note sections.

(117)

There can be exceptions: for example
Rd files are not allowed to start with a dot, and have to be
uniquely named on a case-insensitive file system.

(118)

in the current locale, and with special
treatment for LaTeX special characters and with any
‘pkgname-package’ topic moved to the top of the list.

(119)

\describe can still be used for more general
lists, including when \item labels need special markup such as
\var for metasyntactic variables, see Marking text.

(120)

as defined by the R function trimws.

(121)

Currently it is
rendered differently in HTML conversions, and in LaTeX and text conversion
outside ‘\usage’ and ‘\examples’ environments.

(122)

There is only a fine
distinction between \dots and \ldots. It is technically
incorrect to use \ldots in code blocks and tools::checkRd
will warn about this—on the other hand the current converters treat
them the same way in code blocks, and elsewhere apart from the small
distinction between the two in LaTeX.

(123)

See the
examples section in the file Paren.Rd for an example.

(124)

R
2.9.0 added support for UTF-8 Cyrillic characters in LaTeX, but on
some OSes this will need Cyrillic support added to LaTeX, so
environment variable _R_CYRILLIC_TEX_ may need to be set to a
non-empty value to enable this.

3 Tidying and profiling R code

R code which is worth preserving in a package and perhaps making
available for others to use is worth documenting, tidying up and perhaps
optimizing. The last two of these activities are the subject of this
chapter.

3.1 Tidying R code

R treats function code loaded from packages and code entered by users
differently. By default code entered by users has the source code stored
internally, and when the function is listed, the original source is
reproduced. Loading code from a package (by default) discards the
source code, and the function listing is re-created from the parse tree
of the function.

Normally keeping the source code is a good idea, and in particular it
avoids comments being removed from the source. However, we can make
use of the ability to re-create a function listing from its parse tree
to produce a tidy version of the function, for example with consistent
indentation and spaces around operators. If the original source
does not follow the standard format this tidied version can be much
easier to read.

We can subvert the keeping of source in two ways.

	 The option keep.source can be set to FALSE before the code
is loaded into R.

	 The stored source code can be removed by calling the removeSource()
function, for example by

myfun <- removeSource(myfun)

In each case if we then list the function we will get the standard
layout.

Suppose we have a file of functions myfuns.R that we want to
tidy up. Create a file tidy.R containing

source("myfuns.R", keep.source = FALSE)
dump(ls(all.names = TRUE), file = "new.myfuns.R")

and run R with this as the source file, for example by R
--vanilla < tidy.R or by pasting into an R session. Then the file
new.myfuns.R will contain the functions in alphabetical order in
the standard layout. Warning: comments in your functions will be lost.

The standard format provides a good starting point for further tidying.
Although the deparsing cannot do so, we recommend the consistent use of
the preferred assignment operator ‘<-’ (rather than ‘=’) for
assignment. Many package authors use a version of Emacs (on a
Unix-alike or Windows) to edit R code, using the ESS[S] mode of the
ESS Emacs package. See
section ‘R coding standards’ in the ‘R Internals’ manual
for style options within the ESS[S] mode recommended for the source code
of R itself.

3.2 Profiling R code for speed

It is possible to profile R code on Windows and most125 Unix-alike versions of
R.

The command Rprof is used to control profiling, and its help
page can be consulted for full details. Profiling works by recording at
fixed intervals126 (by default every
20 msecs) which line in which R function is being used, and recording
the results in a file (default Rprof.out in the working
directory). Then the function summaryRprof or the command-line
utility R CMD Rprof Rprof.out can be used to summarize the
activity.

As an example, consider the following code (from Venables & Ripley,
2002, pp. 225–6).

library(MASS); library(boot)
storm.fm <- nls(Time ~ b*Viscosity/(Wt - c), stormer,
 start = c(b=30.401, c=2.2183))
st <- cbind(stormer, fit=fitted(storm.fm))
storm.bf <- function(rs, i) {
 st$Time <- st$fit + rs[i]
 tmp <- nls(Time ~ (b * Viscosity)/(Wt - c), st,
 start = coef(storm.fm))
 tmpmgetAllPars()
}
rs <- scale(resid(storm.fm), scale = FALSE) # remove the mean
Rprof("boot.out")
storm.boot <- boot(rs, storm.bf, R = 4999) # slow enough to profile
Rprof(NULL)

Having run this we can summarize the results by

R CMD Rprof boot.out

Each sample represents 0.02 seconds.
Total run time: 22.52 seconds.

Total seconds: time spent in function and callees.
Self seconds: time spent in function alone.

 % total % self
 total seconds self seconds name
 100.0 25.22 0.2 0.04 "boot"
 99.8 25.18 0.6 0.16 "statistic"
 96.3 24.30 4.0 1.02 "nls"
 33.9 8.56 2.2 0.56 "<Anonymous>"
 32.4 8.18 1.4 0.36 "eval"
 31.8 8.02 1.4 0.34 ".Call"
 28.6 7.22 0.0 0.00 "eval.parent"
 28.5 7.18 0.3 0.08 "model.frame"
 28.1 7.10 3.5 0.88 "model.frame.default"
 17.4 4.38 0.7 0.18 "sapply"
 15.0 3.78 3.2 0.80 "nlsModel"
 12.5 3.16 1.8 0.46 "lapply"
 12.3 3.10 2.7 0.68 "assign"
 ...

 % self % total
 self seconds total seconds name
 5.7 1.44 7.5 1.88 "inherits"
 4.0 1.02 96.3 24.30 "nls"
 3.6 0.92 3.6 0.92 "$"
 3.5 0.88 28.1 7.10 "model.frame.default"
 3.2 0.80 15.0 3.78 "nlsModel"
 2.8 0.70 9.8 2.46 "qr.coef"
 2.7 0.68 12.3 3.10 "assign"
 2.5 0.64 2.5 0.64 ".Fortran"
 2.5 0.62 7.1 1.80 "qr.default"
 2.2 0.56 33.9 8.56 "<Anonymous>"
 2.1 0.54 5.9 1.48 "unlist"
 2.1 0.52 7.9 2.00 "FUN"
 ...

This often produces
surprising results and can be used to identify bottlenecks or pieces of
R code that could benefit from being replaced by compiled code.

Two warnings: profiling does impose a small performance penalty, and the
output files can be very large if long runs are profiled at the default
sampling interval.

Profiling short runs can sometimes give misleading results. R from
time to time performs garbage collection to reclaim unused
memory, and this takes an appreciable amount of time which profiling
will charge to whichever function happens to provoke it. It may be
useful to compare profiling code immediately after a call to gc()
with a profiling run without a preceding call to gc.

More detailed analysis of the output can be achieved by the tools in the
CRAN packages proftools and profr: in
particular these allow call graphs to be studied.

3.3 Profiling R code for memory use

Measuring memory use in R code is useful either when the code takes
more memory than is conveniently available or when memory allocation and
copying of objects is responsible for slow code. There are three ways to
profile memory use over time in R code. The second and third require
R to have been compiled with --enable-memory-profiling,
which is not the default, but is currently used for the macOS and
Windows binary distributions. All can be misleading, for different
reasons.

In understanding the memory profiles it is useful to know a little more
about R’s memory allocation. Looking at the results of gc()
shows a division of memory into Vcells used to store the contents
of vectors and Ncells used to store everything else, including
all the administrative overhead for vectors such as type and length
information. In fact the vector contents are divided into two
pools. Memory for small vectors (by default 128 bytes or less) is
obtained in large chunks and then parcelled out by R; memory for
larger vectors is obtained directly from the operating system.

Some memory allocation is obvious in interpreted code, for example,

y <- x + 1

allocates memory for a new vector y. Other memory allocation is
less obvious and occurs because R is forced to make good on its
promise of ‘call-by-value’ argument passing. When an argument is
passed to a function it is not immediately copied. Copying occurs (if
necessary) only when the argument is modified. This can lead to
surprising memory use. For example, in the ‘survey’ package we have

print.svycoxph <- function (x, ...)
{
 print(x$survey.design, varnames = FALSE, design.summaries = FALSE, ...)
 x$call <- x$printcall
 NextMethod()
}

It may not be obvious that the assignment to x$call will cause
the entire object x to be copied. This copying to preserve the
call-by-value illusion is usually done by the internal C function
duplicate.

The main reason that memory-use profiling is difficult is garbage
collection. Memory is allocated at well-defined times in an R
program, but is freed whenever the garbage collector happens to run.

3.3.1 Memory statistics from Rprof

The sampling profiler Rprof described in the previous section can
be given the option memory.profiling=TRUE. It then writes out the
total R memory allocation in small vectors, large vectors, and cons
cells or nodes at each sampling interval. It also writes out the number
of calls to the internal function duplicate, which is called to
copy R objects. summaryRprof provides summaries of this
information. The main reason that this can be misleading is that the
memory use is attributed to the function running at the end of the
sampling interval. A second reason is that garbage collection can make
the amount of memory in use decrease, so a function appears to use
little memory. Running under gctorture helps with both problems:
it slows down the code to effectively increase the sampling frequency
and it makes each garbage collection release a smaller amount of memory.

3.3.2 Tracking memory allocations

The second method of memory profiling uses a memory-allocation
profiler, Rprofmem(), which writes out a stack trace to an
output file every time a large vector is allocated (with a
user-specified threshold for ‘large’) or a new page of memory is
allocated for the R heap. Summary functions for this output are still
being designed.

Running the example from the previous section with

> Rprofmem("boot.memprof",threshold=1000)
> storm.boot <- boot(rs, storm.bf, R = 4999)
> Rprofmem(NULL)

shows that apart from some initial and final work in boot there
are no vector allocations over 1000 bytes.

3.3.3 Tracing copies of an object

The third method of memory profiling involves tracing copies made of a
specific (presumably large) R object. Calling tracemem on an
object marks it so that a message is printed to standard output when
the object is copied via duplicate or coercion to another type,
or when a new object of the same size is created in arithmetic
operations. The main reason that this can be misleading is that
copying of subsets or components of an object is not tracked. It may
be helpful to use tracemem on these components.

In the example above we can run tracemem on the data frame
st

> tracemem(st)
[1] "<0x9abd5e0>"
> storm.boot <- boot(rs, storm.bf, R = 4)
memtrace[0x9abd5e0->0x92a6d08]: statistic boot
memtrace[0x92a6d08->0x92a6d80]: $<-.data.frame $<- statistic boot
memtrace[0x92a6d80->0x92a6df8]: $<-.data.frame $<- statistic boot
memtrace[0x9abd5e0->0x9271318]: statistic boot
memtrace[0x9271318->0x9271390]: $<-.data.frame $<- statistic boot
memtrace[0x9271390->0x9271408]: $<-.data.frame $<- statistic boot
memtrace[0x9abd5e0->0x914f558]: statistic boot
memtrace[0x914f558->0x914f5f8]: $<-.data.frame $<- statistic boot
memtrace[0x914f5f8->0x914f670]: $<-.data.frame $<- statistic boot
memtrace[0x9abd5e0->0x972cbf0]: statistic boot
memtrace[0x972cbf0->0x972cc68]: $<-.data.frame $<- statistic boot
memtrace[0x972cc68->0x972cd08]: $<-.data.frame $<- statistic boot
memtrace[0x9abd5e0->0x98ead98]: statistic boot
memtrace[0x98ead98->0x98eae10]: $<-.data.frame $<- statistic boot
memtrace[0x98eae10->0x98eae88]: $<-.data.frame $<- statistic boot

The object is duplicated fifteen times, three times for each of the
R+1 calls to storm.bf. This is surprising, since none of the duplications happen inside nls. Stepping through storm.bf in the debugger shows that all three happen in the line

st$Time <- st$fit + rs[i]

Data frames are slower than matrices and this is an example of why.
Using tracemem(st$Viscosity) does not reveal any additional
copying.

3.4 Profiling compiled code

Profiling compiled code is highly system-specific, but this section
contains some hints gleaned from various R users. Some methods need
to be different for a compiled executable and for dynamic/shared
libraries/objects as used by R packages.

This chapter is based on reports from users and the information may not
be current.

3.4.1 Profiling on Linux

Options include using sprof for a shared object, and
oprofile (see https://oprofile.sourceforge.io/news/)
and perf (see
https://perf.wiki.kernel.org/index.php/Tutorial) for any
executable or shared object. These seem less widely supplied than they
used to be. There is also ‘Google Performance Tools’, also known as
gperftools or google-perftools.

All of these work best when R and any packages have been built with
debugging symbols.

3.4.1.1 perf

This seems the most widely distributed tool.
Here is an example on x86_64 Linux using R 4.3.1 built with LTO.

At its simplest

perf record R -f tests/Examples/stats-Ex.R
perf report --sort=dso
perf report --sort=srcfile
rm perf.data*

The first report is

 75.67% R
 9.25% libc.so.6
 4.87% [unknown]
 3.75% libz.so.1.2.11
 3.37% stats.so
 1.17% libm.so.6
 0.63% libtirpc.so.3.0.0
 0.41% graphics.so
 0.30% grDevices.so
 0.20% libRblas.so
 0.09% libpcre2-8.so.0.11.0
 0.07% methods.so
 ...

which shows which shared libraries (DSOs) the time was spent in.

perf annotate can be used on an application built with GCC and
-ggdb: it interleaves disassembled and source code.

3.4.1.2 oprofile and operf

The oprofile project has two modes of operation. Since
version 0.9.8 (August 2012), the preferred mode is to use
operf, so we discuss only that.

Let us look at the boot example from §3.2 on x86_64 Linux
using R 4.3.1.

This can be run under operf and analysed by commands like

operf R -f boot.R
opreport
opreport -l /path/to/R_HOME/bin/exec/R
opreport -l /path/to/R_HOME/library/stats/src/stats.so
opannotate --source /path/to/R_HOME/bin/exec/R

The first line had to be done as root.

The first report shows in which library (etc) the time was spent:

	CPU_CLK_UNHALT...|
	 samples| %|

	 278341 91.9947 R
	 18290 6.0450 libc.so.6
	 2277 0.7526 kallsyms
	 1426 0.4713 stats.so
	 739 0.2442 libRblas.so
	 554 0.1831 libz.so.1.2.11
	 373 0.1233 libm.so.6
	 352 0.1163 libtirpc.so.3.0.0
	 153 0.0506 ld-linux-x86-64.so.2
	 12 0.0040 methods.so

(kallsyms is the kernel.)

The rest of the output is voluminous, and only extracts are shown.

Most of the time within R is spent in

samples % image name symbol name
52955 19.0574 R bcEval.lto_priv.0
16484 5.9322 R Rf_allocVector3
14224 5.1189 R Rf_findVarInFrame3
12581 4.5276 R CONS_NR
8289 2.9830 R Rf_matchArgs_NR
8034 2.8913 R Rf_cons
7114 2.5602 R R_gc_internal.lto_priv.0
6552 2.3579 R Rf_eval
5969 2.1481 R VECTOR_ELT
5684 2.0456 R Rf_applyClosure
5497 1.9783 R findVarLocInFrame.part.0.lto_priv.0
4827 1.7371 R Rf_mkPROMISE
4609 1.6587 R Rf_install
4317 1.5536 R Rf_findFun3
4035 1.4521 R getvar.lto_priv.0
3491 1.2563 R SETCAR
3179 1.1441 R Rf_defineVar
2892 1.0408 R duplicate1.lto_priv.0

and in stats.so

samples % image name symbol name
285 24.4845 stats.so termsform
284 24.3986 stats.so numeric_deriv
213 18.2990 stats.so modelframe
114 9.7938 stats.so nls_iter
55 4.7251 stats.so ExtractVars
47 4.0378 stats.so EncodeVars
37 3.1787 stats.so getListElement
32 2.7491 stats.so TrimRepeats
25 2.1478 stats.so InstallVar
20 1.7182 stats.so MatchVar
20 1.7182 stats.so isZeroOne
15 1.2887 stats.so ConvInfoMsg.isra.0

The profiling data is by default stored in sub-directory
oprofile_data of the current directory, which can be removed at
the end of the session.

3.4.1.3 sprof

You can select shared objects to be profiled with sprof by
setting the environment variable LD_PROFILE. For example

% setenv LD_PROFILE /path/to/R_HOME/library/stats/libs/stats.so
% R -f boot.R
% sprof /path/to/R_HOME/library/stats/libs/stats.so \
 /var/tmp/path/to/R_HOME/library/stats/libs/stats.so.profile

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls us/call us/call name
 76.19 0.32 0.32 0 0.00 numeric_deriv
 16.67 0.39 0.07 0 0.00 nls_iter
 7.14 0.42 0.03 0 0.00 getListElement

... to clean up ...
rm /var/tmp/path/to/R_HOME/library/stats/libs/stats.so.profile

It is possible that root access will be needed to create the directories
used for the profile data.

3.4.2 Profiling on macOS

Developers have recommended Instruments (part of Xcode,
see https://help.apple.com/instruments/mac/current/), This had a
command-line version prior to macOS 12.

3.4.3 Profiling on Windows

Very Sleepy
(https://github.com/VerySleepy/verysleepy) has been used on
‘x86_64’ Windows. There were
problems with accessing the debug information, but the best results which
included function names were obtained by attaching the profiler to an
existing Rterm process, either via GUI or using /a:
(PID obtained via Sys.getpid()).

Footnotes

(125)

R
has to be built to enable this, but the option
--enable-R-profiling is the default.

(126)

For Unix-alikes by default these are intervals
of CPU time, and for Windows of elapsed (‘wall-clock’) time. As from
R 4.4.0, elapsed time is optional on Unix-alikes

4 Debugging

This chapter covers the debugging of R extensions, starting with the
ways to get useful error information and moving on to how to deal with
errors that crash R.

4.1 Browsing

Most of the R-level debugging facilities are based around the
built-in browser. This can be used directly by inserting a call to
browser() into the code of a function (for example, using
fix(my_function)). When code execution reaches that point in
the function, control returns to the R console with a special prompt.
For example

> fix(summary.data.frame) ## insert browser() call after for() loop
> summary(women)
Called from: summary.data.frame(women)
Browse[1]> ls()
 [1] "digits" "i" "lbs" "lw" "maxsum" "ncw" "nm" "nr"
 [9] "nv" "object" "sms" "z"
Browse[1]> maxsum
[1] 7
Browse[1]> c
 height weight
 Min. :58.0 Min. :115.0
 1st Qu.:61.5 1st Qu.:124.5
 Median :65.0 Median :135.0
 Mean :65.0 Mean :136.7
 3rd Qu.:68.5 3rd Qu.:148.0
 Max. :72.0 Max. :164.0
> rm(summary.data.frame)

At the browser prompt one can enter any R expression, so for example
ls() lists the objects in the current frame, and entering the
name of an object will127 print it. The following commands are
also accepted

	n

Enter ‘step-through’ mode. In this mode, hitting return executes the
next line of code (more precisely one line and any continuation lines).
Typing c will continue to the end of the current context, e.g.
to the end of the current loop or function.

	c

In normal mode, this quits the browser and continues execution, and just
return works in the same way. cont is a synonym.

	where

This prints the call stack. For example

> summary(women)
Called from: summary.data.frame(women)
Browse[1]> where
where 1: summary.data.frame(women)
where 2: summary(women)

Browse[1]>

	Q

Quit both the browser and the current expression, and return to the
top-level prompt.

Errors in code executed at the browser prompt will normally return
control to the browser prompt. Objects can be altered by assignment,
and will keep their changed values when the browser is exited. If
really necessary, objects can be assigned to the workspace from the
browser prompt (by using <<- if the name is not already in
scope).

4.2 Debugging R code

Suppose your R program gives an error message. The first thing to
find out is what R was doing at the time of the error, and the most
useful tool is traceback(). We suggest that this is run whenever
the cause of the error is not immediately obvious. Errors are often
reported to the R mailing lists as being in some package when
traceback() would show that the error was being reported by some
other package or base R. Here is an example from the regression
suite.

> success <- c(13,12,11,14,14,11,13,11,12)
> failure <- c(0,0,0,0,0,0,0,2,2)
> resp <- cbind(success, failure)
> predictor <- c(0, 5^(0:7))
> glm(resp ~ 0+predictor, family = binomial(link="log"))
Error: no valid set of coefficients has been found: please supply starting values
> traceback()
3: stop("no valid set of coefficients has been found: please supply
 starting values", call. = FALSE)
2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart,
 mustart = mustart, offset = offset, family = family, control = control,
 intercept = attr(mt, "intercept") > 0)
1: glm(resp ~ 0 + predictor, family = binomial(link ="log"))

The calls to the active frames are given in reverse order (starting with
the innermost). So we see the error message comes from an explicit
check in glm.fit. (traceback() shows you all the lines of
the function calls, which can be limited by setting option
"deparse.max.lines".)

Sometimes the traceback will indicate that the error was detected inside
compiled code, for example (from ?nls)

Error in nls(y ~ a + b * x, start = list(a = 0.12345, b = 0.54321), trace = TRUE) :
 step factor 0.000488281 reduced below 'minFactor' of 0.000976563
> traceback()
2: .Call(R_nls_iter, m, ctrl, trace)
1: nls(y ~ a + b * x, start = list(a = 0.12345, b = 0.54321), trace = TRUE)

This will be the case if the innermost call is to .C,
.Fortran, .Call, .External or .Internal, but
as it is also possible for such code to evaluate R expressions, this
need not be the innermost call, as in

> traceback()
9: gm(a, b, x)
8: .Call(R_numeric_deriv, expr, theta, rho, dir)
7: numericDeriv(form[[3]], names(ind), env)
6: getRHS()
5: assign("rhs", getRHS(), envir = thisEnv)
4: assign("resid", .swts * (lhs - assign("rhs", getRHS(), envir = thisEnv)),
 envir = thisEnv)
3: function (newPars)
 {
 setPars(newPars)
 assign("resid", .swts * (lhs - assign("rhs", getRHS(), envir = thisEnv)),
 envir = thisEnv)
 assign("dev", sum(resid^2), envir = thisEnv)
 assign("QR", qr(.swts * attr(rhs, "gradient")), envir = thisEnv)
 return(QR$rank < min(dim(QR$qr)))
 }(c(-0.00760232418963883, 1.00119632515036))
2: .Call(R_nls_iter, m, ctrl, trace)
1: nls(yeps ~ gm(a, b, x), start = list(a = 0.12345, b = 0.54321))

Occasionally traceback() does not help, and this can be the case
if S4 method dispatch is involved. Consider the following example

> xyd <- new("xyloc", x=runif(20), y=runif(20))
Error in as.environment(pkg) : no item called "package:S4nswv"
on the search list
Error in initialize(value, ...) : S language method selection got
an error when called from internal dispatch for function 'initialize'
> traceback()
2: initialize(value, ...)
1: new("xyloc", x = runif(20), y = runif(20))

which does not help much, as there is no call to as.environment
in initialize (and the note “called from internal dispatch”
tells us so). In this case we searched the R sources for the quoted
call, which occurred in only one place,
methods:::.asEnvironmentPackage. So now we knew where the
error was occurring. (This was an unusually opaque example.)

The error message

evaluation nested too deeply: infinite recursion / options(expressions=)?

can be hard to handle with the default value (5000). Unless you know
that there actually is deep recursion going on, it can help to set
something like

options(expressions=500)

and re-run the example showing the error.

Sometimes there is warning that clearly is the precursor to some later
error, but it is not obvious where it is coming from. Setting
options(warn = 2) (which turns warnings into errors) can help here.

Once we have located the error, we have some choices. One way to proceed
is to find out more about what was happening at the time of the crash by
looking a post-mortem dump. To do so, set

options(error=dump.frames) and run the code again. Then invoke
debugger() and explore the dump. Continuing our example:

> options(error = dump.frames)
> glm(resp ~ 0 + predictor, family = binomial(link ="log"))
Error: no valid set of coefficients has been found: please supply starting values

which is the same as before, but an object called last.dump has
appeared in the workspace. (Such objects can be large, so remove it
when it is no longer needed.) We can examine this at a later time by
calling the function debugger.

> debugger()
Message: Error: no valid set of coefficients has been found: please supply starting values
Available environments had calls:
1: glm(resp ~ 0 + predictor, family = binomial(link = "log"))
2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart, mus
3: stop("no valid set of coefficients has been found: please supply starting values
Enter an environment number, or 0 to exit Selection:

which gives the same sequence of calls as traceback, but in
outer-first order and with only the first line of the call, truncated to
the current width. However, we can now examine in more detail what was
happening at the time of the error. Selecting an environment opens the
browser in that frame. So we select the function call which spawned the
error message, and explore some of the variables (and execute two
function calls).

Enter an environment number, or 0 to exit Selection: 2
Browsing in the environment with call:
 glm.fit(x = X, y = Y, weights = weights, start = start, etas
Called from: debugger.look(ind)
Browse[1]> ls()
 [1] "aic" "boundary" "coefold" "control" "conv"
 [6] "dev" "dev.resids" "devold" "EMPTY" "eta"
[11] "etastart" "family" "fit" "good" "intercept"
[16] "iter" "linkinv" "mu" "mu.eta" "mu.eta.val"
[21] "mustart" "n" "ngoodobs" "nobs" "nvars"
[26] "offset" "start" "valideta" "validmu" "variance"
[31] "varmu" "w" "weights" "x" "xnames"
[36] "y" "ynames" "z"
Browse[1]> eta
 1 2 3 4 5
 0.000000e+00 -2.235357e-06 -1.117679e-05 -5.588393e-05 -2.794197e-04
 6 7 8 9
-1.397098e-03 -6.985492e-03 -3.492746e-02 -1.746373e-01
Browse[1]> valideta(eta)
[1] TRUE
Browse[1]> mu
 1 2 3 4 5 6 7 8
1.0000000 0.9999978 0.9999888 0.9999441 0.9997206 0.9986039 0.9930389 0.9656755
 9
0.8397616
Browse[1]> validmu(mu)
[1] FALSE
Browse[1]> c
Available environments had calls:
1: glm(resp ~ 0 + predictor, family = binomial(link = "log"))
2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart
3: stop("no valid set of coefficients has been found: please supply starting v

Enter an environment number, or 0 to exit Selection: 0
> rm(last.dump)

Because last.dump can be looked at later or even in another R
session, post-mortem debugging is possible even for batch usage of R.
We do need to arrange for the dump to be saved: this can be done either
using the command-line flag --save to save the workspace at the
end of the run, or via a setting such as

> options(error = quote({dump.frames(to.file=TRUE); q()}))

See the help on dump.frames for further options and a worked
example.

An alternative error action is to use the function recover():

> options(error = recover)
> glm(resp ~ 0 + predictor, family = binomial(link = "log"))
Error: no valid set of coefficients has been found: please supply starting values

Enter a frame number, or 0 to exit

1: glm(resp ~ 0 + predictor, family = binomial(link = "log"))
2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart

Selection:

which is very similar to dump.frames. However, we can examine
the state of the program directly, without dumping and re-loading the
dump. As its help page says, recover can be routinely used as
the error action in place of dump.calls and dump.frames,
since it behaves like dump.frames in non-interactive use.

Post-mortem debugging is good for finding out exactly what went wrong,
but not necessarily why. An alternative approach is to take a closer
look at what was happening just before the error, and a good way to do
that is to use debug. This inserts a call to the browser
at the beginning of the function, starting in step-through mode. So in
our example we could use

> debug(glm.fit)
> glm(resp ~ 0 + predictor, family = binomial(link ="log"))
debugging in: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart,
 mustart = mustart, offset = offset, family = family, control = control,
 intercept = attr(mt, "intercept") > 0)
debug: {
lists the whole function
Browse[1]>
debug: x <- as.matrix(x)
...
Browse[1]> start
[1] -2.235357e-06
debug: eta <- drop(x %*% start)
Browse[1]> eta
 1 2 3 4 5
 0.000000e+00 -2.235357e-06 -1.117679e-05 -5.588393e-05 -2.794197e-04
 6 7 8 9
-1.397098e-03 -6.985492e-03 -3.492746e-02 -1.746373e-01
Browse[1]>
debug: mu <- linkinv(eta <- eta + offset)
Browse[1]> mu
 1 2 3 4 5 6 7 8
1.0000000 0.9999978 0.9999888 0.9999441 0.9997206 0.9986039 0.9930389 0.9656755
 9
0.8397616

(The prompt Browse[1]> indicates that this is the first level of
browsing: it is possible to step into another function that is itself
being debugged or contains a call to browser().)

debug can be used for hidden functions and S3 methods by
e.g. debug(stats:::predict.Arima). (It cannot be used for S4
methods, but an alternative is given on the help page for debug.)
Sometimes you want to debug a function defined inside another function,
e.g. the function arimafn defined inside arima. To do so,
set debug on the outer function (here arima) and
step through it until the inner function has been defined. Then
call debug on the inner function (and use c to get out of
step-through mode in the outer function).

To remove debugging of a function, call undebug with the argument
previously given to debug; debugging otherwise lasts for the rest
of the R session (or until the function is edited or otherwise
replaced).

trace can be used to temporarily insert debugging code into a
function, for example to insert a call to browser() just before
the point of the error. To return to our running example

first get a numbered listing of the expressions of the function
> page(as.list(body(glm.fit)), method="print")
> trace(glm.fit, browser, at=22)
Tracing function "glm.fit" in package "stats"
[1] "glm.fit"
> glm(resp ~ 0 + predictor, family = binomial(link ="log"))
Tracing glm.fit(x = X, y = Y, weights = weights, start = start,
 etastart = etastart, step 22
Called from: eval(expr, envir, enclos)
Browse[1]> n
and single-step from here.
> untrace(glm.fit)

For your own functions, it may be as easy to use fix to insert
temporary code, but trace can help with functions in a namespace
(as can fixInNamespace). Alternatively, use
trace(,edit=TRUE) to insert code visually.

4.3 Checking memory access

Errors in memory allocation and reading/writing outside arrays are very
common causes of crashes (e.g., segfaults) on some machines. Often
the crash appears long after the invalid memory access: in particular
damage to the structures which R itself has allocated may only become
apparent at the next garbage collection (or even at later garbage
collections after objects have been deleted).

Note that memory access errors may be seen with LAPACK, BLAS, OpenMP and
Java-using packages: some at least of these seem to be intentional, and
some are related to passing characters to Fortran.

Some of these tools can detect mismatched allocation and deallocation.
C++ programmers should note that memory allocated by new [] must
be freed by delete [], other uses of new by delete,
and memory allocated by malloc, calloc and realloc
by free. Some platforms will tolerate mismatches (perhaps with
memory leaks) but others will segfault.

4.3.1 Using gctorture

We can help to detect memory problems in R objects earlier by running
garbage collection as often as possible. This is achieved by
gctorture(TRUE), which as described on its help page

Provokes garbage collection on (nearly) every memory allocation.
Intended to ferret out memory protection bugs. Also makes R run
very slowly, unfortunately.

The reference to ‘memory protection’ is to missing C-level calls to
PROTECT/UNPROTECT (see Handling the effects of garbage collection) which if
missing allow R objects to be garbage-collected when they are still
in use. But it can also help with other memory-related errors.

Normally running under gctorture(TRUE) will just produce a crash
earlier in the R program, hopefully close to the actual cause. See
the next section for how to decipher such crashes.

It is possible to run all the examples, tests and vignettes covered by
R CMD check under gctorture(TRUE) by using the option
--use-gct.

The function gctorture2 provides more refined control over the GC
torture process. Its arguments step, wait and
inhibit_release are documented on its help page. Environment
variables can also be used at the start of the R session to turn on
GC torture: R_GCTORTURE corresponds to the step argument to
gctorture2, R_GCTORTURE_WAIT to wait, and
R_GCTORTURE_INHIBIT_RELEASE to inhibit_release.

If R is configured with --enable-strict-barrier then a
variety of tests for the integrity of the write barrier are enabled. In
addition tests to help detect protect issues are enabled:

	All GCs are full GCs.

	New nodes in small node pages are marked as NEWSXP on creation.

	After a GC all free nodes that are not of type NEWSXP are marked
as type FREESXP and their previous type is recorded.

	Most calls to accessor functions check their SEXP inputs and
SEXP outputs and signal an error if a FREESXP is found.
The address of the node and the old type are included in the error
message.

R CMD check --use-gct can be set to use
gctorture2(n) rather than gctorture(TRUE) by setting
environment variable _R_CHECK_GCT_N_ to a positive integer value
to be used as n.

Used with a debugger and with gctorture or gctorture2 this
mechanism can be helpful in isolating memory protect problems.

4.3.2 Using Valgrind

If you have access to Linux on a common CPU type or supported versions
of FreeBSD or Solaris128 you can use valgrind
(https://valgrind.org/, pronounced to rhyme with ‘tinned’) to
check for possible problems. To run some examples under valgrind
use something like

R -d valgrind --vanilla < mypkg-Ex.R
R -d "valgrind --tool=memcheck --leak-check=full" --vanilla < mypkg-Ex.R

where mypkg-Ex.R is a set of examples, e.g. the file created in
mypkg.Rcheck by R CMD check. Occasionally this reports
memory reads of ‘uninitialised values’ that are the result of compiler
optimization, so can be worth checking under an unoptimized compile: for
maximal information use a build with debugging symbols. We know there
will be some small memory leaks from readline and R itself —
these are memory areas that are in use right up to the end of the R
session. Expect this to run around 20x slower than without
valgrind, and in some cases much slower than that. Several
versions of valgrind were not happy with some optimized BLAS libraries
that use CPU-specific instructions so you may need to build a
version of R specifically to use with valgrind.

On platforms where valgrind and its headers129
are installed you can build a version of R with extra instrumentation
to help valgrind detect errors in the use of memory allocated
from the R heap. The configure option is
--with-valgrind-instrumentation=level, where level
is 0, 1 or 2. Level 0 is the default and does not add anything. Level
1 will detect some uses130 of uninitialised memory and has little impact on speed
(compared to level 0). Level 2 will detect many other memory-use
bugs131 but make R much slower when running under
valgrind. Using this in conjunction with gctorture can be
even more effective (and even slower).

An example of valgrind output is

==12539== Invalid read of size 4
==12539== at 0x1CDF6CBE: csc_compTr (Mutils.c:273)
==12539== by 0x1CE07E1E: tsc_transpose (dtCMatrix.c:25)
==12539== by 0x80A67A7: do_dotcall (dotcode.c:858)
==12539== by 0x80CACE2: Rf_eval (eval.c:400)
==12539== by 0x80CB5AF: R_execClosure (eval.c:658)
==12539== by 0x80CB98E: R_execMethod (eval.c:760)
==12539== by 0x1B93DEFA: R_standardGeneric (methods_list_dispatch.c:624)
==12539== by 0x810262E: do_standardGeneric (objects.c:1012)
==12539== by 0x80CAD23: Rf_eval (eval.c:403)
==12539== by 0x80CB2F0: Rf_applyClosure (eval.c:573)
==12539== by 0x80CADCC: Rf_eval (eval.c:414)
==12539== by 0x80CAA03: Rf_eval (eval.c:362)
==12539== Address 0x1C0D2EA8 is 280 bytes inside a block of size 1996 alloc'd
==12539== at 0x1B9008D1: malloc (vg_replace_malloc.c:149)
==12539== by 0x80F1B34: GetNewPage (memory.c:610)
==12539== by 0x80F7515: Rf_allocVector (memory.c:1915)
...

This example is from an instrumented version of R, while tracking
down a bug in the Matrix package in 2006. The first line
indicates that R has tried to read 4 bytes from a memory address that
it does not have access to. This is followed by a C stack trace showing
where the error occurred. Next is a description of the memory that was
accessed. It is inside a block allocated by malloc, called from
GetNewPage, that is, in the internal R heap. Since this
memory all belongs to R, valgrind would not (and did not)
detect the problem in an uninstrumented build of R. In this example
the stack trace was enough to isolate and fix the bug, which was in
tsc_transpose, and in this example running under
gctorture() did not provide any additional information.

valgrind is good at spotting the use of uninitialized values:
use option --track-origins=yes to show where these originated
from. What it cannot detect is the misuse of arrays allocated on the
stack: this includes C automatic variables and some132
Fortran arrays.

It is possible to run all the examples, tests and vignettes covered by
R CMD check under valgrind by using the option
--use-valgrind. If you do this you will need to select the
valgrind options some other way, for example by having a
~/.valgrindrc file containing

--leak-check=full
--track-origins=yes

or setting the environment variable VALGRIND_OPTS. As from R
4.2.0, --use-valgrind also uses valgrind when
re-building the vignettes.

This section has described the use of memtest, the default
(and most useful) of valgrind’s tools. There are others
described in its documentation: helgrind can be useful for
threaded programs.

4.3.3 Using the Address Sanitizer

AddressSanitizer (‘ASan’) is a tool with similar aims to the
memory checker in valgrind. It is available with suitable
builds133 of gcc and
clang on common Linux and macOS platforms. See
https://clang.llvm.org/docs/UsersManual.html#controlling-code-generation,
https://clang.llvm.org/docs/AddressSanitizer.html and
https://github.com/google/sanitizers.

More thorough checks of C++ code are done if the C++ library has been
‘annotated’: at the time of writing this applied to std::vector
in libc++ for use with clang and gives rise to
‘container-overflow’134
reports.

It requires code to have been compiled and linked with
-fsanitize=address and compiling with -fno-omit-frame-pointer
will give more legible reports. It has a runtime penalty of 2–3x,
extended compilation times and uses substantially more memory, often
1–2GB, at run time. On 64-bit platforms it reserves (but does not
allocate) 16–20TB of virtual memory: restrictive shell settings can
cause problems. It can be helpful to increase the stack size, for
example to 40MB.

By comparison with valgrind, ASan can
detect misuse of stack and global variables but not the use of
uninitialized memory.

Recent versions return symbolic addresses for the location of the error
provided llvm-symbolizer135 is on the path: if it is available but not
on the path or has been renamed136, one can use an environment variable, e.g.

ASAN_SYMBOLIZER_PATH=/path/to/llvm-symbolizer

An alternative is to pipe the output through
asan_symbolize.py137 and perhaps
then (for compiled C++ code) c++filt. (On macOS, you may need
to run dsymutil to get line-number reports.)

The simplest way to make use of this is to build a version of R with
something like

CC="gcc -std=gnu99 -fsanitize=address"
CFLAGS="-fno-omit-frame-pointer -g -O2 -Wall -pedantic -mtune=native"

which will ensure that the libasan run-time library is compiled
into the R executable. However this check can be enabled on a
per-package basis by using a ~/.R/Makevars file like

CC = gcc -std=gnu99 -fsanitize=address -fno-omit-frame-pointer
CXX = g++ -fsanitize=address -fno-omit-frame-pointer
FC = gfortran -fsanitize=address

(Note that -fsanitize=address has to be part of the compiler
specification to ensure it is used for linking. These settings will not
be honoured by packages which ignore ~/.R/Makevars.) It will
be necessary to build R with

MAIN_LDFLAGS = -fsanitize=address

to link the runtime libraries into the R executable if it was not
specified as part of ‘CC’ when R was built. (For some builds
without OpenMP, -pthread is also required.)

For options available via the environment variable
ASAN_OPTIONS see
https://github.com/google/sanitizers/wiki/AddressSanitizerFlags.
With gcc additional control is available via the
--param flag: see its man page.

For more detailed information on an error, R can be run under a
debugger with a breakpoint set before the address sanitizer report is
produced: for gdb or lldb you could use

break __asan_report_error

(See
https://github.com/google/sanitizers/wiki/AddressSanitizerAndDebugger.)

More recent versions138 added the flag
-fsanitize-address-use-after-scope: see
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterScope.

One of the checks done by ASan is that malloc/free and in C++
new/delete and new[]/delete[] are used consistently
(rather than say free being used to deallocate memory allocated by
new[]). This matters on some systems but not all: unfortunately
on some of those where it does not matter, system libraries139 are not consistent. The
check can be suppressed by including ‘alloc_dealloc_mismatch=0’ in
ASAN_OPTIONS.

ASan also checks system calls and sometimes reports can refer to
problems in the system software and not the package nor R. A couple
of reports have been of ‘heap-use-after-free’ errors in the X11
libraries called from Tcl/Tk.

4.3.3.1 Using the Leak Sanitizer

For x86_64 Linux there is a leak sanitizer, ‘LSan’: see
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer.
This is available on recent versions of gcc and clang, and
where available is compiled in as part of ASan.

One way to invoke this from an ASan-enabled build is by the environment
variable

ASAN_OPTIONS='detect_leaks=1'

However, this was made the default as from clang 3.5 and
gcc 5.1.0.

When LSan is enabled, leaks give the process a failure error status (by
default 23). For an R package this means the R process,
and as the parser retains some memory to the end of the process, if R
itself was built against ASan all runs will have a failure error status
(which may include running R as part of building R itself).

To disable this, allocation-mismatch checking and some strict C++
checking use

setenv ASAN_OPTIONS 'alloc_dealloc_mismatch=0:detect_leaks=0:detect_odr_violation=0'

LSan also has a ‘stand-alone’ mode where it is compiled in using
-fsanitize=leak and avoids the run-time overhead of ASan.

4.3.4 Using the Undefined Behaviour Sanitizer

‘Undefined behaviour’ is where the language standard does not require
particular behaviour from the compiler. Examples include division by
zero (where for doubles R requires the
ISO/IEC 60559 behaviour but C/C++ do not), use
of zero-length arrays, shifts too far for signed types (e.g. int
x, y; y = x << 31;), out-of-range coercion, invalid C++ casts and
mis-alignment. Not uncommon examples of out-of-range coercion in R
packages are attempts to coerce a NaN or infinity to type
int or NA_INTEGER to an unsigned type such as
size_t. Also common is y[x - 1] forgetting that x
might be NA_INTEGER.

‘UBSanitizer’ is a tool for C/C++ source code selected by
-fsanitize=undefined in suitable builds140 of clang and GCC. Its (main) runtime library is
linked into each package’s DLL, so it is less often needed to be
included in MAIN_LDFLAGS. Platforms supported by clang
are listed at
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#supported-platforms:
CRAN uses it for C/C++ with both GCC and clang on
‘x86_64’ Linux: the two toolchains often highlight different
things with more reports from clang than GCC.

This sanitizer may be combined with the Address Sanitizer by
-fsanitize=undefined,address (where both are supported, and we
have seen library conflicts for clang 17 and later).

Finer control of what is checked can be achieved by other options.

For clang see
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#ubsan-checks.
The current set is (on a single line):

-fsanitize=alignment,bool,bounds,builtin,enum,float-cast-overflow,
float-divide-by-zero,function,implicit-unsigned-integer-truncation,
implicit-signed-integer-truncation,implicit-integer-sign-change,
integer-divide-by-zero,nonnull-attribute,null,nullability-arg,
nullability-assign,nullability-return,object-size,
pointer-overflow,return,returns-nonnull-attribute,shift,
signed-integer-overflow,unreachable,unsigned-integer-overflow,
unsigned-shift-base,vla-bound,vptr

(plus the more specific versions array-bounsds,
local-bounds, shift-base and shift-exponent), or
use something like

-fsanitize=undefined -fno-sanitize=float-divide-by-zero

where in recent versions -fno-sanitize=float-divide-by-zero is the
default.

Options return and vptr apply only to C++: to
use vptr its run-time library needs to be linked into the main
R executable by building the latter with something like

MAIN_LD="clang++ -fsanitize=undefined"

Option float-divide-by-zero is undesirable for use with R
which allow such divisions as part of IEC 60559
arithmetic, and in versions of clang since June 2019 it is no
longer part of -fsanitize=undefined.

There are also groups of options implicit-integer-truncation,
mplicit-integer-arithmetic-value-change,
implicit-conversion, integer and nullability.

For GCC see
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
(or the manual for your version of GCC, installed or via
https://gcc.gnu.org/onlinedocs/: look for ‘Program
Instrumentation Options’) for the options supported by GCC: versions 13.x
supported

-fsanitize=alignment,bool,bounds,builtin,enum,integer-divide-by-zero,
nonnull-attribute,null,object-size,pointer-overflow,return,
returns-nonnull-attribute,shift,signed-integer-overflow,
unreachable,vla-bound,vptr

plus the more specific versions shift-base and
shift-exponent and non-default options

bounds-strict,float-cast-overflow,float-divide-by-zero

where float-divide-by-zero is not desirable for R uses and
bounds-strict is an extension of bounds.

Other useful flags include

-no-fsanitize-recover

which causes the first report to be fatal (it always is for the
unreachable and return suboptions). For more detailed
information on where the runtime error occurs, using

setenv UBSAN_OPTIONS 'print_stacktrace=1'

will include a traceback in the report. Beyond that, R can
be run under a debugger with a breakpoint set before the sanitizer
report is produced: for gdb or lldb you could use

break __ubsan_handle_float_cast_overflow
break __ubsan_handle_float_cast_overflow_abort

or similar (there are handlers for each type of undefined behaviour).

There are also the compiler flags -fcatch-undefined-behavior
and -ftrapv, said to be more reliable in clang than
gcc.

For more details on the topic see
https://blog.regehr.org/archives/213 and
https://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
(which has 3 parts).

It may or may not be possible to build R itself with
-fsanitize=undefined: problems have in the past been seen with
OpenMP-using code with gcc but there has been success
with clang up to version 16.. However, problems have been
seen with clang 17 and later, including missing entry points
and R builds hanging. What has succeeded is to use UBSAN just for
the package under test (and not in combination with ASAN). To do so,
check with an unaltered R, using a custom Makevars file
something like

CC = clang -fsanitize=undefined -fno-sanitize=float-divide-by-zero -fno-omit-frame-pointer
CXX = clang++ -fsanitize=undefined -fno-sanitize=float-divide-by-zero -fno-omit-frame-pointer -frtti

UBSAN_DIR = /path/to/LLVM18/lib/clang/18/lib/x86_64-unknown-linux-gnu
SAN_LIBS = $(UBSAN_DIR)/libclang_rt.ubsan_standalone.a $(UBSAN_DIR)/libclang_rt.ubsan_standalone_cxx.a

which links the UBSAN libraries statically into the package-under-test’s DSO.
It is also possible to use the dynamic library via

SAN_LIBS = -L$(UBSAN_DIR) -Wl,-rpath,$(UBSAN_DIR) -lclang_rt.ubsan_standalone

provided UBSAN_DIR is added to the runtime library path (as shown
or using LD_LIBRARY_PATH). N.B.: The details, especially
the paths used, have changed several times recently.

4.3.5 Other analyses with ‘clang’

Recent versions of clang on ‘x86_64’ Linux have
‘ThreadSanitizer’ (https://github.com/google/sanitizers/wiki#threadsanitizer),
a ‘data race detector for C/C++ programs’, and ‘MemorySanitizer’
(https://clang.llvm.org/docs/MemorySanitizer.html,
https://github.com/google/sanitizers)
for the detection of uninitialized memory. Both are based on and
provide similar functionality to tools in valgrind.

clang has a ‘Static Analyzer’ which can be run on the source
files during compilation: see https://clang-analyzer.llvm.org/.

4.3.6 Other analyses with ‘gcc’

GCC 10 introduced a new flag -fanalyzer which does static
analysis during compilation, currently for C code. It is regarded as
experimental and it may slow down computation considerably when
problems are found (and use many GB of resident memory). There is some
overlap with problems detected by the Undefined Behaviour sanitizer, but
some issues are only reported by this tool and as it is a static
analysis, it does not rely on code paths being exercised.

See
https://gcc.gnu.org/onlinedocs/gcc-10.1.0/gcc/Static-Analyzer-Options.html
(or the documentation for your version of gcc if later) and
https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10

4.3.7 Using ‘Dr. Memory’

‘Dr. Memory’ from https://drmemory.org/ is a memory checker for
(currently) Windows, Linux and macOS with similar aims to
valgrind. It works with unmodified executables141
and detects memory access errors, uninitialized reads and memory leaks.

4.3.8 Fortran array bounds checking

Most of the Fortran compilers used with R allow code to be compiled
with checking of array bounds: for example gfortran has option
-fbounds-check. This will give an error when the upper or
lower bound is exceeded, e.g.

At line 97 of file .../src/appl/dqrdc2.f
Fortran runtime error: Index '1' of dimension 1 of array 'x' above upper bound of 0

One does need to be aware that lazy programmers often specify Fortran
dimensions as 1 rather than * or a real bound and these
will be reported (as may * dimensions)

It is easy to arrange to use this check on just the code in your
package: add to ~/.R/Makevars something like (for
gfortran)

FFLAGS = -g -O2 -mtune=native -fbounds-check

when you run R CMD check.

This may report errors with the way that Fortran character variables are
passed, particularly when Fortran subroutines are called from C code and
character lengths are not passed (see Fortran character strings).

4.4 Debugging compiled code

Sooner or later programmers will be faced with the need to debug
compiled code loaded into R. This section is geared to platforms
using gdb with code compiled by gcc, but similar things
are possible with other debuggers such as lldb
(https://lldb.llvm.org/, used on macOS) and Sun’s dbx:
some debuggers have graphical front-ends available.

Consider first ‘crashes’, that is when R terminated unexpectedly with
an illegal memory access (a ‘segfault’ or ‘bus error’), illegal
instruction or similar. Unix-alike versions of R use a signal
handler which aims to give some basic information. For example

 *** caught segfault ***
address 0x20000028, cause 'memory not mapped'

Traceback:
 1: .identC(class1[[1]], class2)
 2: possibleExtends(class(sloti), classi, ClassDef2 = getClassDef(classi,
where = where))
 3: validObject(t(cu))
 4: stopifnot(validObject(cu <- as(tu, "dtCMatrix")), validObject(t(cu)),
validObject(t(tu)))

Possible actions:
1: abort (with core dump)
2: normal R exit
3: exit R without saving workspace
4: exit R saving workspace
Selection: 3

Since the R process may be damaged, the only really safe options are
the first or third. (Note that a core dump is only produced where
enabled: a common default in a shell is to limit its size to 0, thereby
disabling it.)

A fairly common cause of such crashes is a package which uses .C
or .Fortran and writes beyond (at either end) one of the
arguments it is passed. There is a good way to detect this: using
options(CBoundsCheck = TRUE) (which can be selected via
the environment variable R_C_BOUNDS_CHECK=yes) changes the way
.C and .Fortran work to check if the compiled code writes
in the 64 bytes at either end of an argument.

Another cause of a ‘crash’ is to overrun the C stack. R tries to
track that in its own code, but it may happen in third-party compiled
code. For modern POSIX-compliant OSes R can safely catch that and
return to the top-level prompt, so one gets something like

> .C("aaa")
Error: segfault from C stack overflow
>

However, C stack overflows are fatal under Windows and normally defeat
attempts at debugging on that platform. Further, the size of the stack
is set when R is compiled on Windows, whereas on POSIX OSes it can be
set in the shell from which R is launched.

If you have a crash which gives a core dump you can use something like

gdb /path/to/R/bin/exec/R core.12345

to examine the core dump. If core dumps are disabled or to catch errors
that do not generate a dump one can run R directly under a debugger
by for example

$ R -d gdb --vanilla
...
gdb> run

at which point R will run normally, and hopefully the debugger will
catch the error and return to its prompt. This can also be used to
catch infinite loops or interrupt very long-running code. For a simple
example

> for(i in 1:1e7) x <- rnorm(100)
[hit Ctrl-C]
Program received signal SIGINT, Interrupt.
0x00397682 in _int_free () from /lib/tls/libc.so.6
(gdb) where
#0 0x00397682 in _int_free () from /lib/tls/libc.so.6
#1 0x00397eba in free () from /lib/tls/libc.so.6
#2 0xb7cf2551 in R_gc_internal (size_needed=313)
 at /users/ripley/R/svn/R-devel/src/main/memory.c:743
#3 0xb7cf3617 in Rf_allocVector (type=13, length=626)
 at /users/ripley/R/svn/R-devel/src/main/memory.c:1906
#4 0xb7c3f6d3 in PutRNGstate ()
 at /users/ripley/R/svn/R-devel/src/main/RNG.c:351
#5 0xb7d6c0a5 in do_random2 (call=0x94bf7d4, op=0x92580e8, args=0x9698f98,
 rho=0x9698f28) at /users/ripley/R/svn/R-devel/src/main/random.c:183
...

In many cases it is possible to attach a debugger to a running process:
this is helpful if an alternative front-end is in use or to investigate
a task that seems to be taking far too long. This is done by something
like

gdb -p pid

where pid is the id of the R executable or front-end
process and can be found from within a running R process by calling
Sys.getpid() or from a process monitor. This stops the process
so its state can be examined: use continue to resume execution.

Some “tricks” worth knowing follow:

4.4.1 Finding entry points in dynamically loaded code

Under most compilation environments, compiled code dynamically loaded
into R cannot have breakpoints set within it until it is loaded. To
use a symbolic debugger on such dynamically loaded code under
Unix-alikes use

	Call the debugger on the R executable, for example by R -d gdb.

	Start R.

	At the R prompt, use dyn.load or library to load your
shared object.

	Send an interrupt signal. This will put you back to the debugger
prompt.

	Set the breakpoints in your code.

	Continue execution of R by typing signal 0RET.

Under Windows signals may not be able to be used, and if so the procedure is
more complicated. See the rw-FAQ.

4.4.2 Inspecting R objects when debugging

The key to inspecting R objects from compiled code is the function
PrintValue(SEXP s) which uses the normal R printing
mechanisms to print the R object pointed to by s, or the safer
version R_PV(SEXP s) which will only print ‘objects’.

One way to make use of PrintValue is to insert suitable calls
into the code to be debugged.

Another way is to call R_PV from the symbolic debugger.
(PrintValue is hidden as Rf_PrintValue.) For example,
from gdb we can use

(gdb) p R_PV(ab)

using the object ab from the convolution example, if we have
placed a suitable breakpoint in the convolution C code.

To examine an arbitrary R object we need to work a little harder.
For example, let

R> DF <- data.frame(a = 1:3, b = 4:6)

By setting a breakpoint at do_get and typing get("DF") at
the R prompt, one can find out the address in memory of DF, for
example

Value returned is $1 = (SEXPREC *) 0x40583e1c
(gdb) p *$1
$2 = {
 sxpinfo = {type = 19, obj = 1, named = 1, gp = 0,
 mark = 0, debug = 0, trace = 0, = 0},
 attrib = 0x40583e80,
 u = {
 vecsxp = {
 length = 2,
 type = {c = 0x40634700 "0>X@D>X@0>X@", i = 0x40634700,
 f = 0x40634700, z = 0x40634700, s = 0x40634700},
 truelength = 1075851272,
 },
 primsxp = {offset = 2},
 symsxp = {pname = 0x2, value = 0x40634700, internal = 0x40203008},
 listsxp = {carval = 0x2, cdrval = 0x40634700, tagval = 0x40203008},
 envsxp = {frame = 0x2, enclos = 0x40634700},
 closxp = {formals = 0x2, body = 0x40634700, env = 0x40203008},
 promsxp = {value = 0x2, expr = 0x40634700, env = 0x40203008}
 }
}

(Debugger output reformatted for better legibility).

Using R_PV() one can “inspect” the values of the various
elements of the SEXP, for example,

(gdb) p R_PV($1->attrib)
$names
[1] "a" "b"

$row.names
[1] "1" "2" "3"

$class
[1] "data.frame"

$3 = void

To find out where exactly the corresponding information is stored, one
needs to go “deeper”:

(gdb) set $a = $1->attrib
(gdb) p $a->u.listsxp.tagval->u.symsxp.pname->u.vecsxp.type.c
$4 = 0x405d40e8 "names"
(gdb) p $a->u.listsxp.carval->u.vecsxp.type.s[1]->u.vecsxp.type.c
$5 = 0x40634378 "b"
(gdb) p $1->u.vecsxp.type.s[0]->u.vecsxp.type.i[0]
$6 = 1
(gdb) p $1->u.vecsxp.type.s[1]->u.vecsxp.type.i[1]
$7 = 5

Another alternative is the R_inspect function which shows the
low-level structure of the objects recursively (addresses differ from
the above as this example is created on another machine):

(gdb) p R_inspect($1)
@100954d18 19 VECSXP g0c2 [OBJ,NAM(2),ATT] (len=2, tl=0)
 @100954d50 13 INTSXP g0c2 [NAM(2)] (len=3, tl=0) 1,2,3
 @100954d88 13 INTSXP g0c2 [NAM(2)] (len=3, tl=0) 4,5,6
ATTRIB:
 @102a70140 02 LISTSXP g0c0 []
 TAG: @10083c478 01 SYMSXP g0c0 [MARK,NAM(2),gp=0x4000] "names"
 @100954dc0 16 STRSXP g0c2 [NAM(2)] (len=2, tl=0)
 @10099df28 09 CHARSXP g0c1 [MARK,gp=0x21] "a"
 @10095e518 09 CHARSXP g0c1 [MARK,gp=0x21] "b"
 TAG: @100859e60 01 SYMSXP g0c0 [MARK,NAM(2),gp=0x4000] "row.names"
 @102a6f868 13 INTSXP g0c1 [NAM(2)] (len=2, tl=1) -2147483648,-3
 TAG: @10083c948 01 SYMSXP g0c0 [MARK,gp=0x4000] "class"
 @102a6f838 16 STRSXP g0c1 [NAM(2)] (len=1, tl=1)
 @1008c6d48 09 CHARSXP g0c2 [MARK,gp=0x21,ATT] "data.frame"

In general the representation of each object follows the format:

@<address> <type-nr> <type-name> <gc-info> [<flags>] ...

For a more fine-grained control over the depth of the recursion
and the output of vectors R_inspect3 takes additional two character()
parameters: maximum depth and the maximal number of elements that will
be printed for scalar vectors. The defaults in R_inspect are
currently -1 (no limit) and 5 respectively.

4.4.3 Debugging on macOS

To debug code in a package it is easiest to unpack it in a directory and
install it with

R CMD INSTALL --dsym pkgname

as macOS does not store debugging symbols in the .so file. (It
is not necessary to have R built with debugging symbols, although
compiling the package should be done including -g in
CFLAGS / CXXFLAGS / FFLAGS / FCFLAGS as
appropriate.)

Security measures may prevent running a CRAN binary
distribution of R under lldb or attaching this as a
debugger
(https://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html#I-cannot-attach-debugger-to-R),
although both were possible on High Sierra and are again from R
4.2.0. This can also affect locally compiled builds, where attaching to
an interactive R session under Big Sur or Monterey worked in 2022
after giving administrator permission via a popup-up. (To debug
in what Apple deems a non-interactive session, e.g. logged in remotely,
see man DevToolsSecurity.)

Debugging a local build of R on macOS can raise additional hurdles as
environment variables such as DYLD_FALLBACK_LIBRARY_PATH are not
usually passed through142 the lldb process, resulting in messages
like

R -d lldb
...
(lldb) run
Process 16828 launched: '/path/to/bin/exec/R' (x86_64)
dyld: Library not loaded: libR.dylib
 Referenced from: /path/to/bin/exec/R

A quick workaround is to symlink the dylibs under R_HOME/lib to
somewhere where they will be found such as the current working
directory. It would be possible to do as the distribution
does143 and
use install_name_tool, but that would have to be done for all
the dylibs including those in packages.

It may be simplest to attach the debugger to a running process (see
above). Specifically, run R and when it is at the prompt just before
a command that is to be debugged, at a terminal

ps -ef | grep exec/R
identify the PID pid for the next command: it is the second item
lldb -p pid
(lldb) continue

and then return to the R console.

For non-interactive use, one may need lldb --batch.

4.5 Using Link-time Optimization

Where supported, link time optimization provides a comprehensive
way to check the consistency of calls between Fortran files or between C
and Fortran. Use this via R CMD INSTALL --use-LTO (but
that does not apply if there is a src/Makefile file or a Windows
analogue).

To set up support on a Unix-alike, see
section ‘Link-Time Optimization’ in the ‘R Installation and
Administration’ manual.
On Linux using GCC without building R with LTO support,
it should suffice to set

LTO_OPT = -flto
LTO_FC_OPT = -flto
AR = gcc-ar
NM = gcc-nm

in a personal (or site) Makevars file:
See ‘Customizing package compilation’ in the ‘R Installation and
Administration’ manual for more information.

For Windows, first edit file etc/${R_ARCH}/Makeconf to give
LTO_OPT the value -flto or do so in a personal/site
Makevars file; see also file
src/gnuwin32/README.compilation in the sources.

For example:

boot.f:61: warning: type of 'ddot' does not match original declaration [-Wlto-type-mismatch]
 y(j,i)=ddot(p,x(j,1),n,b(1,j,i),1)
crq.f:1023: note: return value type mismatch

where the package author forgot to declare

 double precision ddot
 external ddot

in boot.f. That package had its own copy of ddot: to
detect misuse of the one in R’s BLAS library would have needed R
configured with --enable-lto=check.

Further examples:

rkpk2.f:77:5: warning: type of 'dstup' does not match original declaration [-Wlto-type-mismatch]
 *info, wk)
rkpk1.f:2565:5: note: type mismatch in parameter 14
 subroutine dstup (s, lds, nobs, nnull, qraux, jpvt, y, q, ldqr,
rkpk1.f:2565:5: note: 'dstup' was previously declared here

where the fourteenth argument dum was missing in the call.

reg.f:78:33: warning: type of 'dqrdc' does not match original declaration [-Wlto-type-mismatch]
 call dqrdc (sr, nobs, nobs, nnull, wk, dum, dum, 0)
dstup.f:20: note: 'dqrdc' was previously declared here
 call dqrdc (s, lds, nobs, nnull, qraux, jpvt, work, 1)

dqrdc is a LINPACK routine from R, jpvt is an integer
array and work is a double precision one so dum cannot
match both. (If --enable-lto=check had been used the
comparison would have been with the definition in R.)

For Fortran files all in the package, most inconsistencies can be
detected by concatenating the Fortran files and compiling the result,
sometimes with clearer diagnostics than provided by LTO. For our last
two examples this gives

all.f:2966:72:

 *info, work1)
 1
Warning: Missing actual argument for argument 'dum' at (1)

and

all.f:1663:72:

 *ipvtwk), wk(ikwk), wk(iwork1), wk(iwork2), info)
 1
Warning: Type mismatch in argument 'jpvt' at (1); passed REAL(8) to INTEGER(4)

On a Unix-alike for a package with a src/Makefile file, LTO can
be enabled by including suitable flags in that file, for example

LTO = $(LTO_OPT)
LTO_FC = $(LTO_FC_OPT)

and ensuring these are used for compilation, for example as part of
CFLAGS, CXXFLAGS or FCFLAGS. If R CMD
SHLIB is used for compilation, add --use-LTO to its call.

On Windows for a package with a src/Makefile.ucrt or
src/Makefile.win file which includes
‘"${R_HOME}/etc${R_ARCH}/Makeconf"’, include

LTO = $(LTO_OPT)

or to always use LTO however R was built,

LTO = -flto

Footnotes

(127)

With the exceptions of the commands
listed below: an object of such a name can be printed via an
explicit call to print.

(128)

The macOS support is for long-obsolete
versions.

(129)

in some
distributions packaged separately, for example as valgrind-devel.

(130)

Those in some numeric, logical,
integer, raw, complex vectors and in memory allocated by
R_alloc.

(131)

including using the data sections of R vectors after
they are freed.

(132)

small
fixed-size arrays by default in gfortran, for example.

(133)

currently on ‘x86_64’/‘ix86’ Linux and
FreeBSD, with some support for Intel macOS but not
with the toolchain normally used with R. (There is a faster variant,
HWASAN, for ‘aarch64’ only.) On some platforms the runtime
library, libasan, needs to be installed separately, and for
checking C++ you may also need libubsan.

(134)

see
https://llvm.org/devmtg/2014-04/PDFs/LightningTalks/EuroLLVM%202014%20--%20container%20overflow.pdf.

(135)

part of the LLVM project and
distributed in llvm RPMs and .debs on Linux. It is not
currently shipped by Apple.

(136)

as Ubuntu has been said to
do.

(137)

installed on some Linux systems as
asan_symbolize, and obtainable from
https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/asan/scripts/asan_symbolize.py:
it makes use of llvm-symbolizer if available.

(138)

including gcc 7.1 and
clang 4.0.0: for gcc it is implied by
-fsanitize=address.

(139)

for
example, X11/GL libraries on Linux, seen when checking package
rgl and some others using it—a workaround is to set
environment variable RGL_USE_NULL=true.

(140)

On some
platforms the runtime library, libubsan, needs to be installed
separately.

(141)

but
works better if inlining and frame pointer optimizations are disabled.

(142)

By default as a security measure: see
man dyld.

(143)

See
https://svn.r-project.org/R-dev-web/trunk/CRAN/QA/Simon/R-build/fixpathR:
‘@executable_path’ could be used rather than absolute paths.

5 System and foreign language interfaces

5.1 Operating system access

Access to operating system functions is via the R functions
system and system2.

The details will differ by platform (see the on-line help), and about
all that can safely be assumed is that the first argument will be a
string command that will be passed for execution (not necessarily
by a shell) and the second argument to system will be
internal which if true will collect the output of the command
into an R character vector.

On POSIX-compliant OSes these commands pass a command-line to a shell:
Windows is not POSIX-compliant and there is a separate function
shell to do so.

The function system.time

is available for timing. Timing on child processes is only available on
Unix-alikes, and may not be reliable there.

5.2 Interface functions .C and .Fortran

These two functions provide an interface to compiled code that has been
linked into R, either at build time or via dyn.load
(see dyn.load and dyn.unload). They are primarily intended for
compiled C and Fortran code respectively, but the .C function can
be used with other languages which can generate C interfaces, for
example C++ (see Interfacing C++ code).

The first argument to each function is a character string specifying the
symbol name as known144 to C or
Fortran, that is the function or subroutine name. (That the symbol is
loaded can be tested by, for example, is.loaded("cg"). Use the
name you pass to .C or .Fortran rather than the translated
symbol name.)

There can be up to 65 further arguments giving R objects to be passed
to compiled code. Normally these are copied before being passed in, and
copied again to an R list object when the compiled code returns. If
the arguments are given names, these are used as names for the
components in the returned list object (but not passed to the compiled
code).

The following table gives the mapping between the modes of R atomic
vectors and the types of arguments to a C function or Fortran
subroutine.

	R storage mode	C type	Fortran type

	logical	int *	INTEGER

	integer	int *	INTEGER

	double	double *	DOUBLE PRECISION

	complex	Rcomplex *	DOUBLE COMPLEX

	character	char **	CHARACTER(255)

	raw	unsigned char *	none

On all R platforms int and INTEGER are 32-bit. Code
ported from S-PLUS (which uses long * for logical and
integer) will not work on all 64-bit platforms (although it may
appear to work on some, including ‘x86_64’ Windows). Note also
that if your compiled code is a mixture of C functions and Fortran
subprograms the argument types must match as given in the table above.

C type Rcomplex is a structure with double members
r and i defined in the header file
R_ext/Complex.h.145 (On most platforms this is stored in a way compatible
with the C99 double complex type: however, it may not be possible
to pass Rcomplex to a C99 function expecting a double
complex argument. Nor need it be compatible with a C++ complex
type. Moreover, the compatibility can depend on the optimization level
set for the compiler.)

Only a single character string of fixed length can be passed to or from
Fortran (the length is not passed), and the success of this is
compiler-dependent: its use was formally deprecated in 2019. Other R
objects can be passed to .C, but it is much better to use one of
the other interfaces.

It is possible to pass numeric vectors of storage mode double to
C as float * or to Fortran as REAL by setting the
attribute Csingle, most conveniently by using the R functions
as.single, single or mode. This is intended only
to be used to aid interfacing existing C or Fortran code.

Logical values are sent as 0 (FALSE), 1
(TRUE) or INT_MIN = -2147483648 (NA, but only if
NAOK is true), and the compiled code should return one of these
three values. (Non-zero values other than INT_MIN are mapped to
TRUE.) Note that the use of int * for Fortran logical is
not guaranteed to be portable (although people have gotten away with it
for many years): it is better to pass integers and convert to/from
Fortran logical in a Fortran wrapper.

Unless formal argument NAOK is true, all the other arguments are
checked for missing values NA and for the IEEE special
values NaN, Inf and -Inf, and the presence of any
of these generates an error. If it is true, these values are passed
unchecked.

Argument PACKAGE confines the search for the symbol name to a
specific shared object (or use "base" for code compiled into
R). Its use is highly desirable, as there is no way to avoid two
package writers using the same symbol name, and such name clashes are
normally sufficient to cause R to crash. (If it is not present and
the call is from the body of a function defined in a package namespace,
the shared object loaded by the first (if any) useDynLib
directive will be used.)

Note that the compiled code should not return anything except through
its arguments: C functions should be of type void and Fortran
subprograms should be subroutines.

To fix ideas, let us consider a very simple example which convolves two
finite sequences. (This is hard to do fast in interpreted R code, but
easy in C code.) We could do this using .C by

void convolve(double *a, int *na, double *b, int *nb, double *ab)
{
 int nab = *na + *nb - 1;

 for(int i = 0; i < nab; i++)
 ab[i] = 0.0;
 for(int i = 0; i < *na; i++)
 for(int j = 0; j < *nb; j++)
 ab[i + j] += a[i] * b[j];
}

called from R by

conv <- function(a, b)
 .C("convolve",
 as.double(a),
 as.integer(length(a)),
 as.double(b),
 as.integer(length(b)),
 ab = double(length(a) + length(b) - 1))$ab

Note that we take care to coerce all the arguments to the correct R
storage mode before calling .C; mistakes in matching the types
can lead to wrong results or hard-to-catch errors.

Special care is needed in handling character vector arguments in
C (or C++). On entry the contents of the elements are duplicated and
assigned to the elements of a char ** array, and on exit the
elements of the C array are copied to create new elements of a character
vector. This means that the contents of the character strings of the
char ** array can be changed, including to \0 to shorten
the string, but the strings cannot be lengthened. It is
possible146 to allocate a new string via
R_alloc and replace an entry in the char ** array by the
new string. However, when character vectors are used other than in a
read-only way, the .Call interface is much to be preferred.

Passing character strings to Fortran code needs even more care, is
deprecated and should be avoided where possible. Only the first element
of the character vector is passed in, as a fixed-length (255) character
array. Up to 255 characters are passed back to a length-one character
vector. How well this works (or even if it works at all) depends on the
C and Fortran compilers on each platform (including on their options).
Often what is being passed to Fortran is one of a small set of possible
values (a factor in R terms) which could alternatively be passed as
an integer code: similarly Fortran code that wants to generate
diagnostic messages could pass an integer code to a C or R wrapper
which would convert it to a character string.

It is possible to pass some R objects other than atomic vectors via
.C, but this is only supported for historical compatibility: use
the .Call or .External interfaces for such objects. Any
C/C++ code that includes Rinternals.h should be called via
.Call or .External.

.Fortran is primarily intended for Fortran 77 code, and long
precedes any support for ‘modern’ Fortran. Nowadays implementations of
Fortran support the Fortran 2003 module iso_c_binding, a better
way to interface modern Fortran code to R is to use .C and
write a C interface using use iso_c_binding.

5.3 dyn.load and dyn.unload

Compiled code to be used with R is loaded as a shared object
(Unix-alikes including macOS, see Creating shared objects for more
information) or DLL (Windows).

The shared object/DLL is loaded by dyn.load and unloaded by
dyn.unload. Unloading is not normally necessary and is not safe
in general, but it is needed to allow the DLL to be re-built on some
platforms, including Windows. Unloading a DLL and then re-loading a DLL
of the same name may not work: Solaris used the first version loaded. A
DLL that registers C finalizers, but fails to unregister them when
unloaded, may cause R to crash after unloading.

The first argument to both functions is a character string giving the
path to the object. Programmers should not assume a specific file
extension for the object/DLL (such as .so) but use a construction
like

file.path(path1, path2, paste0("mylib", .Platform$dynlib.ext))

for platform independence. On Unix-alike systems the path supplied to
dyn.load can be an absolute path, one relative to the current
directory or, if it starts with ‘~’, relative to the user’s home
directory.

Loading is most often done automatically based on the useDynLib()
declaration in the NAMESPACE file, but may be done
explicitly via a call to library.dynam.

This has the form

library.dynam("libname", package, lib.loc)

where libname is the object/DLL name with the extension
omitted. Note that the first argument, chname, should
not be package since this will not work if the package
is installed under another name.

Under some Unix-alike systems there is a choice of how the symbols are
resolved when the object is loaded, governed by the arguments
local and now. Only use these if really necessary: in
particular using now=FALSE and then calling an unresolved symbol
will terminate R unceremoniously.

R provides a way of executing some code automatically when a object/DLL
is either loaded or unloaded. This can be used, for example, to
register native routines with R’s dynamic symbol mechanism, initialize
some data in the native code, or initialize a third party library. On
loading a DLL, R will look for a routine within that DLL named
R_init_lib where lib is the name of the DLL file with
the extension removed. For example, in the command

library.dynam("mylib", package, lib.loc)

R looks for the symbol named R_init_mylib. Similarly, when
unloading the object, R looks for a routine named
R_unload_lib, e.g., R_unload_mylib. In either case,
if the routine is present, R will invoke it and pass it a single
argument describing the DLL. This is a value of type DllInfo
which is defined in the Rdynload.h file in the R_ext
directory.

Note that there are some implicit restrictions on this mechanism as the
basename of the DLL needs to be both a valid file name and valid as part
of a C entry point (e.g. it cannot contain ‘.’): for portable
code it is best to confine DLL names to be ASCII alphanumeric
plus underscore. If entry point R_init_lib is not found it
is also looked for with ‘.’ replaced by ‘_’.

The following example shows templates for the initialization and
unload routines for the mylib DLL.

	

#include <R_ext/Rdynload.h>

void
R_init_mylib(DllInfo *info)
{
 /* Register routines,
 allocate resources. */
}

void
R_unload_mylib(DllInfo *info)
{
 /* Release resources. */
}

If a shared object/DLL is loaded more than once the most recent version
is used.147 More generally, if the same symbol name
appears in several shared objects, the most recently loaded occurrence
is used. The PACKAGE argument and registration (see the next
section) provide good ways to avoid any ambiguity in which occurrence is
meant.

On Unix-alikes the paths used to resolve dynamically linked dependent
libraries are fixed (for security reasons) when the process is launched,
so dyn.load will only look for such libraries in the locations
set by the R shell script (via etc/ldpaths) and in
the OS-specific defaults.

Windows allows more control (and less security) over where dependent
DLLs are looked for. On all versions this includes the PATH
environment variable, but with lowest priority: note that it does not
include the directory from which the DLL was loaded. It is possible to
add a single path with quite high priority via the DLLpath
argument to dyn.load. This is (by default) used by
library.dynam to include the package’s libs/x64 directory (on
Intel) in the DLL search path.

5.4 Registering native routines

By ‘native’ routine, we mean an entry point in compiled code.

In calls to .C, .Call, .Fortran and
.External, R must locate the specified native routine by
looking in the appropriate shared object/DLL. By default, R uses the
operating-system-specific dynamic loader to lookup the symbol in
all148 loaded DLLs and the R executable
or libraries it is linked to. Alternatively, the author of the DLL can
explicitly register routines with R and use a single,
platform-independent mechanism for finding the routines in the DLL. One
can use this registration mechanism to provide additional information
about a routine, including the number and type of the arguments, and
also make it available to R programmers under a different name.

Registering routines has two main advantages: it provides a
faster149 way to
find the address of the entry point via tables stored in the DLL
at compilation time, and it provides a run-time check that the entry
point is called with the right number of arguments and, optionally, the
right argument types.

To register routines with R, one calls the C routine
R_registerRoutines. This is typically done when the DLL is first
loaded within the initialization routine R_init_dll name
described in dyn.load and dyn.unload. R_registerRoutines
takes 5 arguments. The first is the DllInfo object passed by
R to the initialization routine. This is where R stores the
information about the methods. The remaining 4 arguments are arrays
describing the routines for each of the 4 different interfaces:
.C, .Call, .Fortran and .External. Each
argument is a NULL-terminated array of the element types given in
the following table:

	.C	R_CMethodDef

	.Call	R_CallMethodDef

	.Fortran	R_FortranMethodDef

	.External	R_ExternalMethodDef

Currently, the R_ExternalMethodDef type is the same as
R_CallMethodDef type and contains fields for the name of the
routine by which it can be accessed in R, a pointer to the actual
native symbol (i.e., the routine itself), and the number of arguments
the routine expects to be passed from R. For example, if we had a
routine named myCall defined as

SEXP myCall(SEXP a, SEXP b, SEXP c);

we would describe this as

static const R_CallMethodDef callMethods[] = {
 {"myCall", (DL_FUNC) &myCall, 3},
 {NULL, NULL, 0}
};

along with any other routines for the .Call interface. For
routines with a variable number of arguments invoked via the
.External interface, one specifies -1 for the number of
arguments which tells R not to check the actual number passed.

Routines for use with the .C and .Fortran interfaces are
described with similar data structures, which have one optional
additional field for describing the type of each argument. If
specified, this field should be an array with the SEXP types
describing the expected type of each argument of the routine.
(Technically, the elements of the types array are of type
R_NativePrimitiveArgType which is just an unsigned integer.)
The R types and corresponding type identifiers are provided in the
following table:

	numeric	REALSXP

	integer	INTSXP

	logical	LGLSXP

	single	SINGLESXP

	character	STRSXP

	list	VECSXP

Consider a C routine, myC, declared as

void myC(double *x, int *n, char **names, int *status);

We would register it as

static R_NativePrimitiveArgType myC_type[] = {
 REALSXP, INTSXP, STRSXP, LGLSXP
};

static const R_CMethodDef cMethods[] = {
 {"myC", (DL_FUNC) &myC, 4, myC_type},
 {NULL, NULL, 0, NULL}
};

If registering types, check carefully that the number of types matches
the number of arguments: as the type array (here myC_type) is
passed as a pointer in C, the registration mechanism cannot check this
for you.

Note that .Fortran entry points are mapped to lowercase, so
registration should use lowercase only.

Having created the arrays describing each routine, the last step is to
actually register them with R. We do this by calling
R_registerRoutines. For example, if we have the descriptions
above for the routines accessed by the .C and .Call
we would use the following code:

void
R_init_myLib(DllInfo *info)
{
 R_registerRoutines(info, cMethods, callMethods, NULL, NULL);
}

This routine will be invoked when R loads the shared object/DLL named
myLib. The last two arguments in the call to
R_registerRoutines are for the routines accessed by
.Fortran and .External interfaces. In our example, these
are given as NULL since we have no routines of these types.

When R unloads a shared object/DLL, its registrations are removed.
There is no other facility for unregistering a symbol.

Examples of registering routines can be found in the different packages
in the R source tree (e.g., stats and graphics). Also,
there is a brief, high-level introduction in R News (volume 1/3,
September 2001, pages 20–23,
https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf).

Once routines are registered, they can be referred to as R objects if
this is arranged in the useDynLib call in the package’s
NAMESPACE file (see useDynLib). So for example the
stats package has

Refer to all C/Fortran routines by their name prefixed by C_
useDynLib(stats, .registration = TRUE, .fixes = "C_")

in its NAMESPACE file, and then ansari.test’s default
methods can contain

 pansari <- function(q, m, n)
 .C(C_pansari, as.integer(length(q)), p = as.double(q),
 as.integer(m), as.integer(n))$p

This avoids the overhead of looking up an entry point each time it is
used, and ensures that the entry point in the package is the one used
(without a PACKAGE = "pkg" argument).

R_init_ routines are often of the form

void attribute_visible R_init_mypkg(DllInfo *dll)
{
 R_registerRoutines(dll, CEntries, CallEntries, FortEntries,
 ExternalEntries);
 R_useDynamicSymbols(dll, FALSE);
 R_forceSymbols(dll, TRUE);
...
}

The R_useDynamicSymbols call says the DLL is not to be searched
for entry points specified by character strings so .C etc calls
will only find registered symbols: the R_forceSymbols call only
allows .C etc calls which specify entry points by R objects
such as C_pansari (and not by character strings). Each provides
some protection against accidentally finding your entry points when
people supply a character string without a package, and avoids slowing
down such searches. (For the visibility attribute see Controlling visibility.)

In more detail, if a package mypkg contains entry points
reg and unreg and the first is registered as a 0-argument
.Call routine, we could use (from code in the package)

.Call("reg")
.Call("unreg")

Without or with registration, these will both work. If
R_init_mypkg calls R_useDynamicSymbols(dll, FALSE), only
the first will work. If in addition to registration the
NAMESPACE file contains

useDynLib(mypkg, .registration = TRUE, .fixes = "C_")

then we can call .Call(C_reg). Finally, if R_init_mypkg
also calls R_forceSymbols(dll, TRUE), only .Call(C_reg)
will work (and not .Call("reg")). This is usually what we want:
it ensures that all of our own .Call calls go directly to the
intended code in our package and that no one else accidentally finds our
entry points. (Should someone need to call our code from outside the
package, for example for debugging, they can use
.Call(mypkg:::C_reg).)

5.4.1 Speed considerations

Sometimes registering native routines or using a PACKAGE argument
can make a large difference. The results can depend quite markedly on
the OS (and even if it is 32- or 64-bit), on the version of R and
what else is loaded into R at the time.

To fix ideas, first consider x86_64 OS 10.7 and R 2.15.2. A
simple .Call function might be

foo <- function(x) .Call("foo", x)

with C code

#include <Rinternals.h>

SEXP foo(SEXP x)
{
 return x;
}

If we compile with by R CMD SHLIB foo.c, load the code by
dyn.load("foo.so") and run foo(pi) it took around 22
microseconds (us). Specifying the DLL by

foo2 <- function(x) .Call("foo", x, PACKAGE = "foo")

reduced the time to 1.7 us.

Now consider making these functions part of a package whose
NAMESPACE file uses useDynlib(foo). This immediately
reduces the running time as "foo" will be preferentially looked
for foo.dll. Without specifying PACKAGE it took about 5
us (it needs to fathom out the appropriate DLL each time it is invoked
but it does not need to search all DLLs), and with the PACKAGE
argument it is again about 1.7 us.

Next suppose the package has registered the native routine foo.
Then foo() still has to find the appropriate DLL but can get to
the entry point in the DLL faster, in about 4.2 us. And foo2()
now takes about 1 us. If we register the symbols in the
NAMESPACE file and use

foo3 <- function(x) .Call(C_foo, x)

then the address for the native routine is looked up just once when the
package is loaded, and foo3(pi) takes about 0.8 us.

Versions using .C() rather than .Call() took about 0.2 us
longer.

These are all quite small differences, but C routines are not uncommonly
invoked millions of times for run times of a few microseconds each, and
those doing such things may wish to be aware of the differences.

On Linux and Solaris there is a smaller overhead in looking up
symbols.

Symbol lookup on Windows used to be far slower, so R maintains a
small cache. If the cache is currently empty enough that the symbol can
be stored in the cache then the performance is similar to Linux and
Solaris: if not it may be slower. R’s own code always uses
registered symbols and so these never contribute to the cache: however
many other packages do rely on symbol lookup.

In more recent versions of R all the standard packages register
native symbols and do not allow symbol search, so in a new session
foo() can only look in foo.so and may be as fast as
foo2(). This will no longer apply when many contributed packages
are loaded, and generally those last loaded are searched first. For
example, consider R 3.3.2 on x86_64 Linux. In an empty R session,
both foo() and foo2() took about 0.75 us; however after
packages igraph and spatstat had been loaded (which
loaded another 12 DLLs), foo() took 3.6 us but foo2()
still took about 0.80 us. Using registration in a package reduced this
to 0.55 us and foo3() took 0.40 us, times which were unchanged
when further packages were loaded.

5.4.2 Example: converting a package to use registration

The splines package was converted to use symbol registration in
2001, but we can use it as an example150 of what needs to be done for a small package.

	Find the relevant entry points.
This is somewhat OS-specific, but something like the following should be
possible at the OS command-line

nm -g /path/to/splines.so | grep " T "
0000000000002670 T _spline_basis
0000000000001ec0 T _spline_value

This indicates that there are two relevant entry points. (They may or
may not have a leading underscore, as here. Fortran entry points will
have a trailing underscore.) Check in the R code that they are
called by the package and how: in this case they are used by
.Call.

Alternatively, examine the package’s R code for all .C,
.Fortran, .Call and .External calls.

	Construct the registration table. First write skeleton registration
code, conventionally in file src/init.c (or at the end of the
only C source file in the package: if included in a C++ file the
‘R_init’ function would need to be declared extern "C"):

#include <stdlib.h> // for NULL
#include <R_ext/Rdynload.h>

#define CALLDEF(name, n) {#name, (DL_FUNC) &name, n}

static const R_CallMethodDef R_CallDef[] = {
 CALLDEF(spline_basis, ?),
 CALLDEF(spline_value, ?),
 {NULL, NULL, 0}
};

void R_init_splines(DllInfo *dll)
{
 R_registerRoutines(dll, NULL, R_CallDef, NULL, NULL);
}

and then replace the ? in the skeleton with the actual numbers of
arguments. You will need to add declarations (also known as
‘prototypes’) of the functions unless appending to the only C source
file. Some packages will already have these in a header file, or you
could create one and include it in init.c, for example
splines.h containing

#include <Rinternals.h> // for SEXP
extern SEXP spline_basis(SEXP knots, SEXP order, SEXP xvals, SEXP derivs);
extern SEXP spline_value(SEXP knots, SEXP coeff, SEXP order, SEXP x, SEXP deriv);

Tools are available to extract declarations, at least for C and C++
code: see the help file for
package_native_routine_registration_skeleton in package
tools. Here we could have used

cproto -I/path/to/R/include -e splines.c

For examples of registering other types of calls, see packages
graphics and stats. In particular, when registering entry
points for .Fortran one needs declarations as if called from C,
such as

#include <R_ext/RS.h>
void F77_NAME(supsmu)(int *n, double *x, double *y,
 double *w, int *iper, double *span, double *alpha,
 double *smo, double *sc, double *edf);

gfortran 8.4, 9.2 and later can help generate such prototypes
with its flag -fc-prototypes-external (although one will need
to replace the hard-coded trailing underscore with the F77_NAME
macro).

One can get away with inaccurate argument lists in the declarations: it
is easy to specify the arguments for .Call (all SEXP) and
.External (one SEXP) and as the arguments for .C
and .Fortran are all pointers, specifying them as void *
suffices. (For most platforms one can omit all the arguments, although
link-time optimization will warn, as will compilers set up to warn on
strict prototypes – and C23 will require correct arguments.)

Using -fc-prototypes-external will give a prototype using
int_least32_t *lgl for Fortran LOGICAL LGL, but this is
not portable and traditionally it has been assumed that the C/C++
equivalent was int *lgl. If adding a declaration just to
register a .Fortran call, the most portable version is void
*lgl.

	(Optional but highly recommended.) Restrict .Call etc to use the
symbols you chose to register by editing src/init.c to contain

void R_init_splines(DllInfo *dll)
{
 R_registerRoutines(dll, NULL, R_CallDef, NULL, NULL);
 R_useDynamicSymbols(dll, FALSE);
}

A skeleton for the steps so far can be made using
package_native_routine_registration_skeleton in package
tools. This will optionally create declarations based on the
usage in the R code.

The remaining steps are optional but recommended.

	Edit the NAMESPACE file to create R objects for the registered
symbols:

useDynLib(splines, .registration = TRUE, .fixes = "C_")

	Find all the relevant calls in the R code and edit them to use the
R objects. This entailed changing the lines

temp <- .Call("spline_basis", knots, ord, x, derivs, PACKAGE = "splines")
y[accept] <- .Call("spline_value", knots, coeff, ord, x[accept], deriv, PACKAGE = "splines")
y = .Call("spline_value", knots, coef(object), ord, x, deriv, PACKAGE = "splines")

to

temp <- .Call(C_spline_basis, knots, ord, x, derivs)
y[accept] <- .Call(C_spline_value, knots, coeff, ord, x[accept], deriv)
y = .Call(C_spline_value, knots, coef(object), ord, x, deriv)

Check that there is no exportPattern directive which
unintentionally exports the newly created R objects.

	Restrict .Call to use the R symbols by editing
src/init.c to contain

void R_init_splines(DllInfo *dll)
{
 R_registerRoutines(dll, NULL, R_CallDef, NULL, NULL);
 R_useDynamicSymbols(dll, FALSE);
 R_forceSymbols(dll, TRUE);
}

	Consider visibility. On some OSes we can hide entry points from the
loader, which precludes any possible name clashes and calling them
accidentally (usually with incorrect arguments and crashing the R
process). If we repeat the first step we now see

nm -g /path/to/splines.so | grep " T "
0000000000002e00 T _R_init_splines
00000000000025e0 T _spline_basis
0000000000001e20 T _spline_value

If there were any entry points not intended to be used by the package we
should try to avoid exporting them, for example by making them
static. Now that the two relevant entry points are only accessed
via the registration table, we can hide them. There are two ways
to do so on some Unix-alikes. We can hide individual entry points
via

#include <R_ext/Visibility.h>

SEXP attribute_hidden
spline_basis(SEXP knots, SEXP order, SEXP xvals, SEXP derivs)
...

SEXP attribute_hidden
spline_value(SEXP knots, SEXP coeff, SEXP order, SEXP x, SEXP deriv)
...

Alternatively, we can change the default visibility for all C symbols by
including

PKG_CFLAGS = $(C_VISIBILITY)

in src/Makevars, and then we need to allow registration by
declaring R_init_splines to be visible:

#include <R_ext/Visibility.h>

void attribute_visible
R_init_splines(DllInfo *dll)
...

See Controlling visibility for more details, including using Fortran
code and ways to restrict visibility on Windows.

	We end up with a file src/init.c containing

	

#include <stdlib.h>
#include <R_ext/Rdynload.h>
#include <R_ext/Visibility.h> // optional

#include "splines.h"

#define CALLDEF(name, n) {#name, (DL_FUNC) &name, n}

static const R_CallMethodDef R_CallDef[] = {
 CALLDEF(spline_basis, 4),
 CALLDEF(spline_value, 5),
 {NULL, NULL, 0}
};

void
attribute_visible // optional
R_init_splines(DllInfo *dll)
{
 R_registerRoutines(dll, NULL, R_CallDef, NULL, NULL);
 R_useDynamicSymbols(dll, FALSE);
 R_forceSymbols(dll, TRUE);
}

5.4.3 Linking to native routines in other packages

In addition to registering C routines to be called by R, it can at
times be useful for one package to make some of its C routines available
to be called by C code in another package. The interface consists of
two routines declared in header R_ext/Rdynload.h as

void R_RegisterCCallable(const char *package, const char *name,
 DL_FUNC fptr);
DL_FUNC R_GetCCallable(const char *package, const char *name);

A package packA that wants to make a C routine myCfun
available to C code in other packages would include the call

R_RegisterCCallable("packA", "myCfun", myCfun);

in its initialization function R_init_packA. A package
packB that wants to use this routine would retrieve the function
pointer with a call of the form

p_myCfun = R_GetCCallable("packA", "myCfun");

As the type DL_FUNC is only appropriate for functions with no
arguments, other users will need to cast to an appropriate type. For
example

typedef SEXP (*na_omit_xts_func) (SEXP x);
...
 na_omit_xts_func fun = (na_omit_xts_func) R_GetCCallable("xts", "na_omit_xts");
 return fun(x);

The author of packB is responsible for ensuring that
p_myCfun has an appropriate declaration. In the future R may
provide some automated tools to simplify exporting larger numbers of
routines.

A package that wishes to make use of header files in other packages
needs to declare them as a comma-separated list in the field
‘LinkingTo’ in the DESCRIPTION file. This then arranges
for the include directories in the installed linked-to packages
to be added to the include paths for C and C++ code.

It must specify151
‘Imports’ or ‘Depends’ of those packages, for they have to be
loaded152 prior to this one
(so the path to their compiled code has been registered).

CRAN examples of the use of this mechanism include coxme
linking to bdsmatrix and xts linking to
zoo.

NB: this mechanism is fragile, as changes to the interface
provided by packA have to be recognised by packB. The
consequences of not doing so have included serious corruption to the
memory pool of the R session. Either packB has to depend on
the exact version of packA or there needs to be a mechanism for
packB to test at runtime the version of packA it is linked
to matches that it was compiled against.

5.5 Creating shared objects

Shared objects for loading into R can be created using R CMD
SHLIB. This accepts as arguments a list of files which must be object
files (with extension .o) or sources for C, C++, Fortran,
Objective C or Objective C++ (with extensions .c, .cc or
.cpp, .f (fixed-form Fortran), .f90 or .f95
(free-form), .m, and .mm or .M, respectively), or
commands to be passed to the linker. See R CMD SHLIB --help (or
the R help for SHLIB) for usage information. Note that files
intended for the Fortran pre-processor with extension .F are not
accepted.

If compiling the source files does not work “out of the box”, you can
specify additional flags by setting some of the variables

PKG_CPPFLAGS (for the C/C++ preprocessor, mainly ‘-I’,
‘-D’ and ‘-U’ flags),

PKG_CFLAGS, PKG_CXXFLAGS, PKG_FFLAGS,
PKG_OBJCFLAGS, and PKG_OBJCXXFLAGS
(for the C, C++, Fortran, Objective C, and Objective C++
compilers, respectively) in the file Makevars in the compilation
directory (or, of course, create the object files directly from the
command line).

Similarly, variable PKG_LIBS in Makevars can be used for
additional ‘-l’ and ‘-L’ flags to be passed to the linker when
building the shared object. (Supplying linker commands as arguments to
R CMD SHLIB will take precedence over PKG_LIBS in
Makevars.)

It is possible to arrange to include compiled code from other languages
by setting the macro ‘OBJECTS’ in file Makevars, together
with suitable rules to make the objects.

Flags that are already set (for example in file
etcR_ARCH/Makeconf) can be overridden by the environment
variable MAKEFLAGS (at least for systems using a POSIX-compliant
make), as in (Bourne shell syntax)

MAKEFLAGS="CFLAGS=-O3" R CMD SHLIB *.c

It is also possible to set such variables in personal Makevars
files, which are read after the local Makevars and the system
makefiles or in a site-wide Makevars.site file.
See ‘Customizing package compilation’ in the ‘R Installation and
Administration’ manual for more information.

Note that as R CMD SHLIB uses Make, it will not remake a shared
object just because the flags have changed, and if test.c and
test.f both exist in the current directory

R CMD SHLIB test.f

will compile test.c!

If the src subdirectory of an add-on package contains source code
with one of the extensions listed above or a file Makevars but
not a file Makefile, R CMD INSTALL creates a
shared object (for loading into R through useDynlib in the
NAMESPACE, or in the .onLoad function of the package)
using the R CMD SHLIB mechanism. If file Makevars
exists it is read first, then the system makefile and then any personal
Makevars files.

If the src subdirectory of package contains a file
Makefile, this is used by R CMD INSTALL in place of the
R CMD SHLIB mechanism. make is called with makefiles
R_HOME/etcR_ARCH/Makeconf, src/Makefile and
any personal Makevars files (in that order). The first target
found in src/Makefile is used.

It is better to make use of a Makevars file rather than a
Makefile: the latter should be needed only exceptionally.

Under Windows the same commands work, but Makevars.win will be
used in preference to Makevars, and only src/Makefile.win
will be used by R CMD INSTALL with src/Makefile being
ignored. Since R 4.2.0, Makevars.ucrt will be used in preference to
Makevars.win and src/Makefile.ucrt will be used in preference
to src/Makefile.win.
For past experiences of building DLLs with a variety of
compilers, see file ‘README.packages’.
Under Windows you can supply an exports definitions file called
dllname-win.def: otherwise all entry points in objects (but
not libraries) supplied to R CMD SHLIB will be exported from the
DLL. An example is stats-win.def for the stats package: a
CRAN example in package fastICA.

If you feel tempted to read the source code and subvert these
mechanisms, please resist. Far too much developer time has been wasted
in chasing down errors caused by failures to follow this documentation,
and even more by package authors demanding explanations as to why their
packages no longer work.
In particular, undocumented environment or make variables are
not for use by package writers and are subject to change without notice.

5.6 Interfacing C++ code

Suppose we have the following hypothetical C++ library, consisting of
the two files X.h and X.cpp, and implementing the two
classes X and Y which we want to use in R.

	

// X.h

class X {
public: X (); ~X ();
};

class Y {
public: Y (); ~Y ();
};

	

// X.cpp

#include <R.h>
#include "X.h"

static Y y;

X::X() { REprintf("constructor X\n"); }
X::~X() { REprintf("destructor X\n"); }
Y::Y() { REprintf("constructor Y\n"); }
Y::~Y() { REprintf("destructor Y\n"); }

To use with R, the only thing we have to do is writing a wrapper
function and ensuring that the function is enclosed in

extern "C" {

}

For example,

	

// X_main.cpp:

#include "X.h"

extern "C" {

void X_main () {
 X x;
}

} // extern "C"

Compiling and linking should be done with the C++ compiler-linker
(rather than the C compiler-linker or the linker itself); otherwise, the
C++ initialization code (and hence the constructor of the static
variable Y) are not called. On a properly configured system, one
can simply use

R CMD SHLIB X.cpp X_main.cpp

to create the shared object, typically X.so (the file name
extension may be different on your platform). Now starting R yields

R version 2.14.1 Patched (2012-01-16 r58124)
Copyright (C) 2012 The R Foundation for Statistical Computing
...
Type "q()" to quit R.

R> dyn.load(paste("X", .Platform$dynlib.ext, sep = ""))
constructor Y
R> .C("X_main")
constructor X
destructor X
list()
R> q()
Save workspace image? [y/n/c]: y
destructor Y

The R for Windows FAQ (rw-FAQ) contains details of how
to compile this example under Windows.

Earlier versions of this example used C++ iostreams: this is best
avoided. There is no guarantee that the output will appear in the R
console, and indeed it will not on the R for Windows console. Use
R code or the C entry points (see Printing) for all I/O if at all
possible. Examples have been seen where merely loading a DLL that
contained calls to C++ I/O upset R’s own C I/O (for example by
resetting buffers on open files).

Most R header files can be included within C++ programs but they
should not be included within an extern "C" block (as
they include system headers153).

5.6.1 External C++ code

Quite a lot of external C++ software is header-only (e.g. most of the
Boost ‘libraries’ including all those supplied by package BH,
and most of Armadillo as supplied by package RcppArmadillo)
and so is compiled when an R package which uses it is installed.
This causes few problems.

A small number of external libraries used in R packages have a C++
interface to a library of compiled code, e.g. packages sf
and rjags. This raises many more problems! The C++ interface
uses name-mangling and the
ABI154
may depend on the compiler, version and even C++ defines155,
so requires the package C++ code to be compiled in exactly the same way
as the library (and what that was is often undocumented).

Even fewer external libraries use C++ internally but present a C
interface, such as rgeos. These require the C++ runtime
library to be linked into the package’s shared object/DLL, and this is
best done by including a dummy C++ file in the package sources.

There is a trend to link to the C++ interfaces offered by C software
such as hdf5, pcre and ImageMagick. Their C
interfaces are much preferred for portability (and can be used from C++
code). Also, the C++ interfaces are often optional in the software
build or packaged separately and so users installing from package
sources are less likely to already have them installed.

5.7 Fortran I/O

We have already warned against the use of C++ iostreams not least
because output is not guaranteed to appear on the R console, and this
warning applies equally to Fortran output to units *
and 6. See Printing from Fortran, which describes workarounds.

In the past most Fortran compilers implemented I/O on top of the C I/O
system and so the two interworked successfully. This was true of
g77, but it is less true of gfortran as used in
gcc 4 and later. In particular, any package that makes use of
Fortran I/O will when compiled on Windows interfere with C I/O: when the
Fortran I/O support code is initialized (typically when the package is
loaded) the C stdout and stderr are switched to LF line
endings. (Function init in file
src/modules/lapack/init_win.c shows how to mitigate this. In a
package this would look something like

#ifdef _WIN32
include <fcntl.h>
#endif

void R_init_mypkgname(DllInfo *dll)
{
 // Native symbol registration calls

#ifdef _WIN32
 // gfortran I/O initialization sets these to _O_BINARY
 setmode(1, _O_TEXT); /* stdout */
 setmode(2, _O_TEXT); /* stderr */
#endif
}

in the file used for native symbol registration.)

5.8 Linking to other packages

It is not in general possible to link a DLL in package packA to a
DLL provided by package packB (for the security reasons mentioned
in dyn.load and dyn.unload, and also because some platforms
distinguish between shared objects and dynamic libraries), but it is on
Windows.

Note that there can be tricky versioning issues here, as package
packB could be re-installed after package packA — it is
desirable that the API provided by package packB remains
backwards-compatible.

Shipping a static library in package packB for other packages to
link to avoids most of the difficulties.

5.8.1 Unix-alikes

It is possible to link a shared object in package packA to a
library provided by package packB under limited circumstances
on a Unix-alike OS. There are severe portability issues, so this is not
recommended for a distributed package.

This is easiest if packB provides a static library
packB/lib/libpackB.a. (Note using directory lib rather
than libs is conventional, and architecture-specific
sub-directories may be needed and are assumed in the sample code
below. The code in the static library will need to be compiled with
PIC flags on platforms where it matters.) Then as the code from
package packB is incorporated when package packA is
installed, we only need to find the static library at install time for
package packA. The only issue is to find package packB, and
for that we can ask R by something like (long lines broken for
display here)

PKGB_PATH=`echo 'library(packB);
 cat(system.file("lib", package="packB", mustWork=TRUE))' \
 | "${R_HOME}/bin/R" --vanilla --no-echo`
PKG_LIBS="$(PKGB_PATH)$(R_ARCH)/libpackB.a"

For a dynamic library packB/lib/libpackB.so
(packB/lib/libpackB.dylib on macOS: note that you cannot link to
a shared object, .so, on that platform) we could use

PKGB_PATH=`echo 'library(packB);
 cat(system.file("lib", package="packB", mustWork=TRUE))' \
 | "${R_HOME}/bin/R" --vanilla --no-echo`
PKG_LIBS=-L"$(PKGB_PATH)$(R_ARCH)" -lpackB

This will work for installation, but very likely not when package
packB is loaded, as the path to package packB’s lib
directory is not in the ld.so156 search path. You can arrange to
put it there before R is launched by setting (on some
platforms) LD_RUN_PATH or LD_LIBRARY_PATH or adding to the
ld.so cache (see man ldconfig). On platforms that
support it, the path to the directory containing the dynamic library can
be hardcoded at install time (which assumes that the location of package
packB will not be changed nor the package updated to a changed
API). On systems with the gcc or clang and the
GNU linker (e.g. Linux) and some others this can be done by
e.g.

PKGB_PATH=`echo 'library(packB);
 cat(system.file("lib", package="packB", mustWork=TRUE)))' \
 | "${R_HOME}/bin/R" --vanilla --no-echo`
PKG_LIBS=-L"$(PKGB_PATH)$(R_ARCH)" -Wl,-rpath,"$(PKGB_PATH)$(R_ARCH)" -lpackB

Some other systems (e.g. Solaris with its native linker) use
-Rdir rather than -rpath,dir (and this is accepted by
the compiler as well as the linker).

It may be possible to figure out what is required semi-automatically
from the result of R CMD libtool --config (look for
‘hardcode’).

Making headers provided by package packB available to the code to
be compiled in package packA can be done by the LinkingTo
mechanism (see Registering native routines).

5.8.2 Windows

Suppose package packA wants to make use of compiled code provided
by packB in DLL packB/libs/exB.dll, possibly the package’s
DLL packB/libs/packB.dll. (This can be extended to linking to
more than one package in a similar way.) There are three issues to be
addressed:

	Making headers provided by package packB available to the code to
be compiled in package packA.

This is done by the LinkingTo mechanism (see Registering native routines).

	preparing packA.dll to link to packB/libs/exB.dll.

This needs an entry in Makevars.win or Makevars.ucrt of the form

PKG_LIBS= -L<something> -lexB

and one possibility is that <something> is the path to the
installed pkgB/libs directory. To find that we need to ask R
where it is by something like

PKGB_PATH=`echo 'library(packB);
 cat(system.file("libs", package="packB", mustWork=TRUE))' \
 | rterm --vanilla --no-echo`
PKG_LIBS= -L"$(PKGB_PATH)$(R_ARCH)" -lexB

Another possibility is to use an import library, shipping with package
packA an exports file exB.def. Then Makevars.win (or
Makevars.ucrt)
could contain

PKG_LIBS= -L. -lexB

all: $(SHLIB) before

before: libexB.dll.a
libexB.dll.a: exB.def

and then installing package packA will make and use the import
library for exB.dll. (One way to prepare the exports file is to
use pexports.exe.)

	loading packA.dll which depends on exB.dll.

If exB.dll was used by package packB (because it is in fact
packB.dll or packB.dll depends on it) and packB has
been loaded before packA, then nothing more needs to be done as
exB.dll will already be loaded into the R executable. (This
is the most common scenario.)

More generally, we can use the DLLpath argument to
library.dynam to ensure that exB.dll is found, for example
by setting

library.dynam("packA", pkg, lib,
 DLLpath = system.file("libs", package="packB"))

Note that DLLpath can only set one path, and so for linking to
two or more packages you would need to resort to setting environment
variable PATH.

5.9 Handling R objects in C

Using C code to speed up the execution of an R function is often very
fruitful. Traditionally this has been done via the .C
function in R. However, if a user wants to write C code using
internal R data structures, then that can be done using the
.Call and .External functions. The syntax for the calling
function in R in each case is similar to that of .C, but the
two functions have different C interfaces. Generally the .Call
interface is simpler to use, but .External is a little more
general.

A call to .Call is very similar to .C, for example

.Call("convolve2", a, b)

The first argument should be a character string giving a C symbol name
of code that has already been loaded into R. Up to 65 R objects
can passed as arguments. The C side of the interface is

#include <R.h>
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b)
 ...

A call to .External is almost identical

.External("convolveE", a, b)

but the C side of the interface is different, having only one argument

#include <R.h>
#include <Rinternals.h>

SEXP convolveE(SEXP args)
 ...

Here args is a LISTSXP, a Lisp-style pairlist from which
the arguments can be extracted.

In each case the R objects are available for manipulation via
a set of functions and macros defined in the header file
Rinternals.h or some S-compatibility macros157 See
Interface functions .Call and .External for details on
.Call and .External.

Before you decide to use .Call or .External, you should
look at other alternatives. First, consider working in interpreted R
code; if this is fast enough, this is normally the best option. You
should also see if using .C is enough. If the task to be
performed in C is simple enough involving only atomic vectors and
requiring no call to R, .C suffices. A great deal of useful
code was written using just .C before .Call and
.External were available. These interfaces allow much more
control, but they also impose much greater responsibilities so need to
be used with care. Neither .Call nor .External copy their
arguments: you should treat arguments you receive through these
interfaces as read-only.

To handle R objects from within C code we use the macros and functions
that have been used to implement the core parts of R. A
public158 subset of these is defined in the header file
Rinternals.h in the directory R_INCLUDE_DIR (default
R_HOME/include) that should be available on any R
installation.

A substantial amount of R, including the standard packages, is
implemented using the functions and macros described here, so the R
source code provides a rich source of examples and “how to do it”: do
make use of the source code for inspirational examples.

It is necessary to know something about how R objects are handled in
C code. All the R objects you will deal with will be handled with
the type SEXP159, which is a
pointer to a structure with typedef SEXPREC. Think of this
structure as a variant type that can handle all the usual types
of R objects, that is vectors of various modes, functions,
environments, language objects and so on. The details are given later
in this section and in
section ‘R Internal Structures’ in the ‘R Internals’ manual,
but for most
purposes the programmer does not need to know them. Think rather of a
model such as that used by Visual Basic, in which R objects are
handed around in C code (as they are in interpreted R code) as the
variant type, and the appropriate part is extracted for, for example,
numerical calculations, only when it is needed. As in interpreted R
code, much use is made of coercion to force the variant object to the
right type.

5.9.1 Handling the effects of garbage collection

We need to know a little about the way R handles memory allocation.
The memory allocated for R objects is not freed by the user; instead,
the memory is from time to time garbage collected. That is, some
or all of the allocated memory not being used is freed or marked as
re-usable.

The R object types are represented by a C structure defined by a
typedef SEXPREC in Rinternals.h. It contains several
things among which are pointers to data blocks and to other
SEXPRECs. A SEXP is simply a pointer to a SEXPREC.

If you create an R object in your C code, you must tell R that you
are using the object by using the PROTECT macro on a pointer to
the object. This tells R that the object is in use so it is not
destroyed during garbage collection. Notice that it is the object which
is protected, not the pointer variable. It is a common mistake to
believe that if you invoked PROTECT(p) at some point then
p is protected from then on, but that is not true once a new
object is assigned to p.

Protecting an R object automatically protects all the R objects
pointed to in the corresponding SEXPREC, for example all elements
of a protected list are automatically protected.

The programmer is solely responsible for housekeeping the calls to
PROTECT. There is a corresponding macro UNPROTECT that
takes as argument an int giving the number of objects to
unprotect when they are no longer needed. The protection mechanism is
stack-based, so UNPROTECT(n) unprotects the last n
objects which were protected. The calls to PROTECT and
UNPROTECT must balance when the user’s code returns and should
balance in all functions. R will warn about
"stack imbalance in .Call" (or .External) if the
housekeeping is wrong.

Here is a small example of creating an R numeric vector in C code:

#include <R.h>
#include <Rinternals.h>

 SEXP ab;

 ab = PROTECT(allocVector(REALSXP, 2));
 REAL(ab)[0] = 123.45;
 REAL(ab)[1] = 67.89;
 UNPROTECT(1);

Now, the reader may ask how the R object could possibly get removed
during those manipulations, as it is just our C code that is running.
As it happens, we can do without the protection in this example, but in
general we do not know (nor want to know) what is hiding behind the R
macros and functions we use, and any of them might cause memory to be
allocated, hence garbage collection and hence our object ab to be
removed. It is usually wise to err on the side of caution and assume
that any of the R macros and functions might remove the object.

In some cases it is necessary to keep better track of whether protection
is really needed. Be particularly aware of situations where a large
number of objects are generated. The pointer protection stack has a
fixed size (default 10,000) and can become full. It is not a good idea
then to just PROTECT everything in sight and UNPROTECT
several thousand objects at the end. It will almost invariably be
possible to either assign the objects as part of another object (which
automatically protects them) or unprotect them immediately after use.

There is a less-used macro UNPROTECT_PTR(s) that unprotects the
object pointed to by the SEXP s, even if it is not the top item
on the pointer protection stack. This macro was introduced for use in the
parser, where the code interfacing with the R heap is generated and the
generator cannot be configured to insert proper calls to PROTECT and
UNPROTECT. However, UNPROTECT_PTR is dangerous to use in
combination with UNPROTECT when the same object has been protected
multiple times. It has been superseded by multi-set based functions
R_PreserveInMSet and R_ReleaseFromMSet, which protect objects
in a multi-set created by R_NewPreciousMSet and typically itself
protected using PROTECT. These functions should not be needed
outside parsers.

Sometimes an object is changed (for example duplicated, coerced or
grown) yet the current value needs to be protected. For these cases
PROTECT_WITH_INDEX saves an index of the protection location that
can be used to replace the protected value using REPROTECT.

For example (from the internal code for optim)

 PROTECT_INDEX ipx;

 PROTECT_WITH_INDEX(s = eval(OS->R_fcall, OS->R_env), &ipx);
 REPROTECT(s = coerceVector(s, REALSXP), ipx);

Note that it is dangerous to mix UNPROTECT_PTR also with
PROTECT_WITH_INDEX, as the former changes the protection
locations of objects that were protected after the one being
unprotected.

There is another way to avoid the effects of garbage collection: a call
to R_PreserveObject adds an object to an internal list of objects
not to be collects, and a subsequent call to R_ReleaseObject
removes it from that list. This provides a way for objects which are
not returned as part of R objects to be protected across calls to
compiled code: on the other hand it becomes the user’s responsibility to
release them when they are no longer needed (and this often requires the
use of a finalizer). It is less efficient than the normal protection
mechanism, and should be used sparingly.

For functions from packages as well as R to safely co-operate in
protecting objects, certain rules have to be followed:

	Pointer-protection balance. Calls to PROTECT and UNPROTECT
should balance in each function. A function may only call UNPROTECT or
REPROTECT on objects it has itself protected. Note that the pointer
protection stack balance is restored automatically on non-local transfer of
control (See Condition handling and cleanup code.), as if a call to
UNPROTECT was invoked with the right argument.

	Caller protection. It is the responsibility of the caller that all
arguments passed to a function are protected and will stay protected for the
whole execution of the callee. Typically this is achieved by PROTECT
and UNPROTECT calls.

	Protecting return values. Any R objects returned from a function are
unprotected (the callee must maintain pointer-protection balance), and hence
should be protected immediately by the caller. To be safe against future
code changes, assume that any R object returned from any function may
need protection. Note that even when conceptually returning an existing
protected object, that object may be duplicated.

	All functions/macros allocate. To be safe against future code changes,
assume that any function or macro may allocate and hence garbage collector
may run and destroy unprotected objects.

It is always safe and recommended to follow those rules. In fact, several
R functions and macros protect their own arguments and some functions do
not allocate or do not allocate when used in a certain way, but that is
subject to change, so relying on that may be fragile. PROTECT and
PROTECT_WITH_INDEX can be safely called with unprotected arguments
and UNPROTECT does not allocate.

5.9.2 Allocating storage

For many purposes it is sufficient to allocate R objects and
manipulate those. There are quite a few allocXxx functions
defined in Rinternals.h—you may want to explore them.

One that is commonly used is allocVector, the C-level equivalent
of R-level vector() and its wrappers such as integer()
and character(). One distinction is that whereas the R
functions always initialize the elements of the vector,
allocVector only does so for lists, expressions and character
vectors (the cases where the elements are themselves R objects).

If storage is required for C objects during the calculations this is
best allocating by calling R_alloc; see Memory allocation.
All of these memory allocation routines do their own error-checking, so
the programmer may assume that they will raise an error and not return
if the memory cannot be allocated.

5.9.3 Details of R types

Users of the Rinternals.h macros will need to know how the R
types are known internally. The different R data types are
represented in C by SEXPTYPE. Some of these are familiar from
R and some are internal data types. The usual R object modes are
given in the table.

	SEXPTYPE	R equivalent

	REALSXP	numeric with storage mode double

	INTSXP	integer

	CPLXSXP	complex

	LGLSXP	logical

	STRSXP	character

	VECSXP	list (generic vector)

	LISTSXP	pairlist

	DOTSXP	a ‘…’ object

	NILSXP	NULL

	SYMSXP	name/symbol

	CLOSXP	function or function closure

	ENVSXP	environment

Among the important internal SEXPTYPEs are LANGSXP,
CHARSXP, PROMSXP, etc. (N.B.: although it is
possible to return objects of internal types, it is unsafe to do so as
assumptions are made about how they are handled which may be violated at
user-level evaluation.) More details are given in
section ‘R Internal Structures’ in the ‘R Internals’ manual.

Unless you are very sure about the type of the arguments, the code
should check the data types. Sometimes it may also be necessary to
check data types of objects created by evaluating an R expression in
the C code. You can use functions like isReal, isInteger
and isString to do type checking.

Other such functions declared in the header file Rinternals.h
include isNull, isSymbol, isLogical,
isComplex, isExpression, and isEnvironment.

All of these take a SEXP as argument and return 1 or 0 to
indicate TRUE or FALSE.

What happens if the SEXP is not of the correct type? Sometimes
you have no other option except to generate an error. You can use the
function Rf_error for this. It is usually better to coerce the
object to the correct type. For example, if you find that an
SEXP is of the type INTEGER, but you need a REAL
object, you can change the type by using

newSexp = PROTECT(coerceVector(oldSexp, REALSXP));

Protection is needed as a new object is created; the object
formerly pointed to by the SEXP is still protected but now
unused.160

All the coercion functions do their own error-checking, and generate
NAs with a warning or stop with an error as appropriate.

Note that these coercion functions are not the same as calling
as.numeric (and so on) in R code, as they do not dispatch on
the class of the object. Thus it is normally preferable to do the
coercion in the calling R code.

So far we have only seen how to create and coerce R objects from C
code, and how to extract the numeric data from numeric R vectors.
These can suffice to take us a long way in interfacing R objects to
numerical algorithms, but we may need to know a little more to create
useful return objects.

5.9.4 Attributes

Many R objects have attributes: some of the most useful are classes
and the dim and dimnames that mark objects as matrices or
arrays. It can also be helpful to work with the names attribute
of vectors.

To illustrate this, let us write code to take the outer product of two
vectors (which outer and %o% already do). As usual the
R code is simple

out <- function(x, y)
{
 storage.mode(x) <- storage.mode(y) <- "double"
 .Call("out", x, y)
}

where we expect x and y to be numeric vectors (possibly
integer), possibly with names. This time we do the coercion in the
calling R code.

C code to do the computations is

#include <R.h>
#include <Rinternals.h>

SEXP out(SEXP x, SEXP y)
{
 int nx = length(x), ny = length(y);
 SEXP ans = PROTECT(allocMatrix(REALSXP, nx, ny));
 double *rx = REAL(x), *ry = REAL(y), *rans = REAL(ans);
 for(int i = 0; i < nx; i++) {
 double tmp = rx[i];
 for(int j = 0; j < ny; j++)
 rans[i + nx*j] = tmp * ry[j];
 }
 UNPROTECT(1);
 return ans;
}

Note the way REAL is used: as it is a function call it can be
considerably faster to store the result and index that.

However, we would like to set the dimnames of the result. We can use

#include <R.h>
#include <Rinternals.h>

SEXP out(SEXP x, SEXP y)
{
 int nx = length(x), ny = length(y);
 SEXP ans = PROTECT(allocMatrix(REALSXP, nx, ny));
 double *rx = REAL(x), *ry = REAL(y), *rans = REAL(ans);

 for(int i = 0; i < nx; i++) {
 double tmp = rx[i];
 for(int j = 0; j < ny; j++)
 rans[i + nx*j] = tmp * ry[j];
 }

 SEXP dimnames = PROTECT(allocVector(VECSXP, 2));
 SET_VECTOR_ELT(dimnames, 0, getAttrib(x, R_NamesSymbol));
 SET_VECTOR_ELT(dimnames, 1, getAttrib(y, R_NamesSymbol));
 setAttrib(ans, R_DimNamesSymbol, dimnames);

 UNPROTECT(2);
 return ans;
}

This example introduces several new features. The getAttrib and
setAttrib

functions get and set individual attributes. Their second argument is a
SEXP defining the name in the symbol table of the attribute we
want; these and many such symbols are defined in the header file
Rinternals.h.

There are shortcuts here too: the functions namesgets,
dimgets and dimnamesgets are the internal versions of the
default methods of names<-, dim<- and dimnames<-
(for vectors and arrays), and there are functions such as
GetColNames, GetRowNames, GetMatrixDimnames and
GetArrayDimnames.

What happens if we want to add an attribute that is not pre-defined? We
need to add a symbol for it via a call to

install. Suppose for illustration we wanted to add an attribute
"version" with value 3.0. We could use

 SEXP version;
 version = PROTECT(allocVector(REALSXP, 1));
 REAL(version)[0] = 3.0;
 setAttrib(ans, install("version"), version);
 UNPROTECT(1);

Using install when it is not needed is harmless and provides a
simple way to retrieve the symbol from the symbol table if it is already
installed. However, the lookup takes a non-trivial amount of time, so
consider code such as

static SEXP VerSymbol = NULL;
...
 if (VerSymbol == NULL) VerSymbol = install("version");

if it is to be done frequently.

This example can be simplified by another convenience function:

 SEXP version = PROTECT(ScalarReal(3.0));
 setAttrib(ans, install("version"), version);
 UNPROTECT(1);

5.9.5 Classes

In R the class is just the attribute named "class" so it can
be handled as such, but there is a shortcut classgets. Suppose
we want to give the return value in our example the class "mat".
We can use

#include <R.h>
#include <Rinternals.h>

 SEXP ans, dim, dimnames, class;

 class = PROTECT(allocVector(STRSXP, 1));
 SET_STRING_ELT(class, 0, mkChar("mat"));
 classgets(ans, class);
 UNPROTECT(4);
 return ans;
}

As the value is a character vector, we have to know how to create that
from a C character array, which we do using the function
mkChar.

5.9.6 Handling lists

Some care is needed with lists, as R moved early on from using
LISP-like lists (now called “pairlists”) to S-like generic vectors.
As a result, the appropriate test for an object of mode list is
isNewList, and we need allocVector(VECSXP, n) and
not allocList(n).

List elements can be retrieved or set by direct access to the elements
of the generic vector. Suppose we have a list object

a <- list(f = 1, g = 2, h = 3)

Then we can access a$g as a[[2]] by

 double g;

 g = REAL(VECTOR_ELT(a, 1))[0];

This can rapidly become tedious, and the following function (based on
one in package stats) is very useful:

/* get the list element named str, or return NULL */

SEXP getListElement(SEXP list, const char *str)
{
 SEXP elmt = R_NilValue, names = getAttrib(list, R_NamesSymbol);

 for (int i = 0; i < length(list); i++)
 if(strcmp(CHAR(STRING_ELT(names, i)), str) == 0) {
 elmt = VECTOR_ELT(list, i);
 break;
 }
 return elmt;
}

and enables us to say

 double g;
 g = REAL(getListElement(a, "g"))[0];

5.9.7 Handling character data

R character vectors are stored as STRSXPs, a vector type like
VECSXP where every element is of type CHARSXP. The
CHARSXP elements of STRSXPs are accessed using
STRING_ELT and SET_STRING_ELT.

CHARSXPs are read-only objects and must never be modified. In
particular, the C-style string contained in a CHARSXP should be
treated as read-only and for this reason the CHAR function used
to access the character data of a CHARSXP returns (const
char *) (this also allows compilers to issue warnings about improper
use). Since CHARSXPs are immutable, the same CHARSXP can
be shared by any STRSXP needing an element representing the same
string. R maintains a global cache of CHARSXPs so that there
is only ever one CHARSXP representing a given string in memory.

You can obtain a CHARSXP by calling mkChar and providing a
NUL-terminated C-style string. This function will return a pre-existing
CHARSXP if one with a matching string already exists, otherwise
it will create a new one and add it to the cache before returning it to
you. The variant mkCharLen can be used to create a
CHARSXP from part of a buffer and will ensure null-termination.

Note that R character strings are restricted to 2^31 - 1
bytes, and hence so should the input to mkChar be (C allows
longer strings on 64-bit platforms).

5.9.8 Finding and setting variables

It will be usual that all the R objects needed in our C computations
are passed as arguments to .Call or .External, but it is
possible to find the values of R objects from within the C given
their names. The following code is the equivalent of get(name,
envir = rho).

SEXP getvar(SEXP name, SEXP rho)
{
 SEXP ans;

 if(!isString(name) || length(name) != 1)
 error("name is not a single string");
 if(!isEnvironment(rho))
 error("rho should be an environment");
 ans = findVar(installChar(STRING_ELT(name, 0)), rho);
 Rprintf("first value is %f\n", REAL(ans)[0]);
 return R_NilValue;
}

The main work is done by

findVar, but to use it we need to install name as a name
in the symbol table. As we wanted the value for internal use, we return
NULL.

Similar functions with syntax

void defineVar(SEXP symbol, SEXP value, SEXP rho)
void setVar(SEXP symbol, SEXP value, SEXP rho)

can be used to assign values to R variables. defineVar
creates a new binding or changes the value of an existing binding in the
specified environment frame; it is the analogue of assign(symbol,
value, envir = rho, inherits = FALSE), but unlike assign,
defineVar does not make a copy of the object
value.161 setVar searches for an existing
binding for symbol in rho or its enclosing environments.
If a binding is found, its value is changed to value. Otherwise,
a new binding with the specified value is created in the global
environment. This corresponds to assign(symbol, value, envir =
rho, inherits = TRUE).

At times it may also be useful to create a new environment frame in C code.
R_NewEnv is a C version of the R function new.env:

SEXP R_NewEnv(SEXP enclos, int hash, int size)

5.9.9 Some convenience functions

Some operations are done so frequently that there are convenience
functions to handle them. (All these are provided via the header
file Rinternals.h.)

Suppose we wanted to pass a single logical argument
ignore_quotes: we could use

 int ign = asLogical(ignore_quotes);
 if(ign == NA_LOGICAL) error("'ignore_quotes' must be TRUE or FALSE");

which will do any coercion needed (at least from a vector argument), and
return NA_LOGICAL if the value passed was NA or coercion
failed. There are also asInteger, asReal and
asComplex. The function asChar returns a CHARSXP.
All of these functions ignore any elements of an input vector after the
first.

To return a length-one real vector we can use

 double x;

 ...
 return ScalarReal(x);

and there are versions of this for all the atomic vector types (those for
a length-one character vector being ScalarString with argument a
CHARSXP and mkString with argument const char *).

SEXP ScalarReal(double);
SEXP ScalarInteger(int);
SEXP ScalarLogical(int)
SEXP ScalarRaw(Rbyte);
SEXP ScalarComplex(Rcomplex);
SEXP ScalarString(SEXP);
SEXP mkString(const char *);

Some of the isXXXX functions differ from their apparent
R-level counterparts: for example isVector is true for any
atomic vector type (isVectorAtomic) and for lists and expressions
(isVectorList) (with no check on attributes). isMatrix is
a test of a length-2 "dim" attribute.

Rboolean isVector(SEXP);
Rboolean isVectorAtomic(SEXP);
Rboolean isVectorList(SEXP);
Rboolean isMatrix(SEXP);
Rboolean isPairList(SEXP);
Rboolean isPrimitive(SEXP);
Rboolean isTs(SEXP);
Rboolean isNumeric(SEXP);
Rboolean isArray(SEXP);
Rboolean isFactor(SEXP);
Rboolean isObject(SEXP);
Rboolean isFunction(SEXP);
Rboolean isLanguage(SEXP);
Rboolean isNewList(SEXP);
Rboolean isList(SEXP);
Rboolean isOrdered(SEXP);
Rboolean isUnordered(SEXP);

There are a series of small macros/functions to help construct pairlists
and language objects (whose internal structures just differ by
SEXPTYPE). Function CONS(u, v) is the basic building
block: it constructs a pairlist from u followed by v
(which is a pairlist or R_NilValue). LCONS is a variant
that constructs a language object. Functions list1 to
list6 construct a pairlist from one to six items, and
lang1 to lang6 do the same for a language object (a
function to call plus zero to five arguments).

Functions elt and lastElt find the i-th element and
the last element of a pairlist, and nthcdr returns a pointer to
the n-th position in the pairlist (whose CAR is the
n-th item).

Functions str2type and type2str map R
length-one character strings to and from SEXPTYPE numbers, and
type2char maps numbers to C character strings.

5.9.9.1 Semi-internal convenience functions

There is quite a collection of functions that may be used in your C code
if you are willing to adapt to rare “API” changes.
These typically contain “workhorses” of their R counterparts.

Functions any_duplicated and any_duplicated3 are fast
versions of R’s any(duplicated(.)).

Function R_compute_identical corresponds to R’s identical function.

5.9.10 Named objects and copying

[The NAMED mechanism has been replaced by reference counting.]

When assignments are done in R such as

x <- 1:10
y <- x

the named object is not necessarily copied, so after those two
assignments y and x are bound to the same SEXPREC
(the structure a SEXP points to). This means that any code which
alters one of them has to make a copy before modifying the copy if the
usual R semantics are to apply. Note that whereas .C and
.Fortran do copy their arguments (unless the dangerous dup
= FALSE is used), .Call and .External do not. So
duplicate is commonly called on arguments to .Call before
modifying them.

However, at least some of this copying is unneeded. In the first
assignment shown, x <- 1:10, R first creates an object with
value 1:10 and then assigns it to x but if x is
modified no copy is necessary as the temporary object with value
1:10 cannot be referred to again. R distinguishes between
named and unnamed objects via a field in a SEXPREC that
can be accessed via the macros NAMED and SET_NAMED. This
can take values

	0

	The object is not bound to any symbol

	1

	The object has been bound to exactly one symbol

	>= 2

	The object has potentially been bound to two or more symbols, and one
should act as if another variable is currently bound to this value.
The maximal value is NAMEDMAX.

Note the past tenses: R does not do currently do full reference
counting and there may currently be fewer bindings.

It is safe to modify the value of any SEXP for which
NAMED(foo) is zero, and if NAMED(foo) is two or more, the
value should be duplicated (via a call to duplicate)
before any modification. Note that it is the responsibility of the
author of the code making the modification to do the duplication, even
if it is x whose value is being modified after y <- x.

The case NAMED(foo) == 1 allows some optimization, but it can be
ignored (and duplication done whenever NAMED(foo) > 0). (This
optimization is not currently usable in user code.) It is intended
for use within replacement functions. Suppose we used

x <- 1:10
foo(x) <- 3

which is computed as

x <- 1:10
x <- "foo<-"(x, 3)

Then inside "foo<-" the object pointing to the current value of
x will have NAMED(foo) as one, and it would be safe to
modify it as the only symbol bound to it is x and that will be
rebound immediately. (Provided the remaining code in "foo<-"
make no reference to x, and no one is going to attempt a direct
call such as y <- "foo<-"(x).)

This mechanism was replaced in R 4.0.0. To
support future changes, package code should use the macros
MAYBE_REFERENCED, MAYBE_SHARED, and
MARK_NOT_MUTABLE. These currently correspond to

	MAYBE_REFERENCED(x)

	NAMED(x) > 0

	MAYBE_SHARED(x)

	NAMED(x) > 1

	MARK_NOT_MUTABLE(x)

	SET_NAMED(x, NAMEDMAX)

5.10 Interface functions .Call and .External

In this section we consider the details of the R/C interfaces.

These two interfaces have almost the same functionality. .Call is
based on the interface of the same name in S version 4, and
.External is based on R’s .Internal. .External
is more complex but allows a variable number of arguments.

5.10.1 Calling .Call

Let us convert our finite convolution example to use .Call. The
calling function in R is

conv <- function(a, b) .Call("convolve2", a, b)

which could hardly be simpler, but as we shall see all the type
coercion is transferred to the C code, which is

#include <R.h>
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b)
{
 int na, nb, nab;
 double *xa, *xb, *xab;
 SEXP ab;

 a = PROTECT(coerceVector(a, REALSXP));
 b = PROTECT(coerceVector(b, REALSXP));
 na = length(a); nb = length(b); nab = na + nb - 1;
 ab = PROTECT(allocVector(REALSXP, nab));
 xa = REAL(a); xb = REAL(b); xab = REAL(ab);
 for(int i = 0; i < nab; i++) xab[i] = 0.0;
 for(int i = 0; i < na; i++)
 for(int j = 0; j < nb; j++) xab[i + j] += xa[i] * xb[j];
 UNPROTECT(3);
 return ab;
}

5.10.2 Calling .External

We can use the same example to illustrate .External. The R
code changes only by replacing .Call by .External

conv <- function(a, b) .External("convolveE", a, b)

but the main change is how the arguments are passed to the C code, this
time as a single SEXP. The only change to the C code is how we handle
the arguments.

#include <R.h>
#include <Rinternals.h>

SEXP convolveE(SEXP args)
{
 int i, j, na, nb, nab;
 double *xa, *xb, *xab;
 SEXP a, b, ab;

 a = PROTECT(coerceVector(CADR(args), REALSXP));
 b = PROTECT(coerceVector(CADDR(args), REALSXP));
 ...
}

Once again we do not need to protect the arguments, as in the R side
of the interface they are objects that are already in use. The macros

 first = CADR(args);
 second = CADDR(args);
 third = CADDDR(args);
 fourth = CAD4R(args);
 fifth = CAD5R(args);

provide convenient ways to access the first four arguments. More
generally we can use the

CDR and CAR macros as in

 args = CDR(args); a = CAR(args);
 args = CDR(args); b = CAR(args);

which clearly allows us to extract an unlimited number of arguments
(whereas .Call has a limit, albeit at 65 not a small one).

More usefully, the .External interface provides an easy way to
handle calls with a variable number of arguments, as length(args)
will give the number of arguments supplied (of which the first is
ignored). We may need to know the names (‘tags’) given to the actual
arguments, which we can by using the TAG macro and using
something like the following example, that prints the names and the first
value of its arguments if they are vector types.

SEXP showArgs(SEXP args)
{
 args = CDR(args); /* skip 'name' */
 for(int i = 0; args != R_NilValue; i++, args = CDR(args)) {
 const char *name =
 isNull(TAG(args)) ? "" : CHAR(PRINTNAME(TAG(args)));
 SEXP el = CAR(args);
 if (length(el) == 0) {
 Rprintf("[%d] '%s' R type, length 0\n", i+1, name);
 continue;
 }

 switch(TYPEOF(el)) {
 case REALSXP:
 Rprintf("[%d] '%s' %f\n", i+1, name, REAL(el)[0]);
 break;

 case LGLSXP:
 case INTSXP:
 Rprintf("[%d] '%s' %d\n", i+1, name, INTEGER(el)[0]);
 break;

 case CPLXSXP:
 {
 Rcomplex cpl = COMPLEX(el)[0];
 Rprintf("[%d] '%s' %f + %fi\n", i+1, name, cpl.r, cpl.i);
 }
 break;

 case STRSXP:
 Rprintf("[%d] '%s' %s\n", i+1, name,
 CHAR(STRING_ELT(el, 0)));
 break;

 default:
 Rprintf("[%d] '%s' R type\n", i+1, name);
 }
 }
 return R_NilValue;
}

This can be called by the wrapper function

showArgs <- function(...) invisible(.External("showArgs", ...))

Note that this style of programming is convenient but not necessary, as
an alternative style is

showArgs1 <- function(...) invisible(.Call("showArgs1", list(...)))

The (very similar) C code is in the scripts.

Additional functions for accessing pairlist components are CAAR,
CDAR, CDDR, and CDDDR.

These components can be modified with SETCAR, SETCDR,
SETCADR, SETCADDR, SETCADDDR, and SETCAD4R.

5.10.3 Missing and special values

One piece of error-checking the .C call does (unless NAOK
is true) is to check for missing (NA) and IEEE special
values (Inf, -Inf and NaN) and give an error if any
are found. With the .Call interface these will be passed to our
code. In this example the special values are no problem, as
IEC 60559 arithmetic will handle them correctly. In the current
implementation this is also true of NA as it is a type of
NaN, but it is unwise to rely on such details. Thus we will
re-write the code to handle NAs using macros defined in
R_ext/Arith.h included by R.h.

The code changes are the same in any of the versions of convolve2
or convolveE:

 ...
 for(int i = 0; i < na; i++)
 for(int j = 0; j < nb; j++)
 if(ISNA(xa[i]) || ISNA(xb[j]) || ISNA(xab[i + j]))
 xab[i + j] = NA_REAL;
 else
 xab[i + j] += xa[i] * xb[j];
 ...

Note that the ISNA macro, and the similar macros ISNAN
(which checks for NaN or NA) and R_FINITE (which is
false for NA and all the special values), only apply to numeric
values of type double. Missingness of integers, logicals and
character strings can be tested by equality to the constants
NA_INTEGER, NA_LOGICAL and NA_STRING. These and
NA_REAL can be used to set elements of R vectors to NA.

The constants R_NaN, R_PosInf and R_NegInf can be
used to set doubles to the special values.

5.11 Evaluating R expressions from C

The main function we will use is

SEXP eval(SEXP expr, SEXP rho);

the equivalent of the interpreted R code eval(expr, envir =
rho) (so rho must be an environment), although we can also make
use of findVar, defineVar and findFun (which
restricts the search to functions).

To see how this might be applied, here is a simplified internal version
of lapply for expressions, used as

a <- list(a = 1:5, b = rnorm(10), test = runif(100))
.Call("lapply", a, quote(sum(x)), new.env())

with C code

SEXP lapply(SEXP list, SEXP expr, SEXP rho)
{
 int n = length(list);
 SEXP ans;

 if(!isNewList(list)) error("'list' must be a list");
 if(!isEnvironment(rho)) error("'rho' should be an environment");
 ans = PROTECT(allocVector(VECSXP, n));
 for(int i = 0; i < n; i++) {
 defineVar(install("x"), VECTOR_ELT(list, i), rho);
 SET_VECTOR_ELT(ans, i, eval(expr, rho));
 }
 setAttrib(ans, R_NamesSymbol, getAttrib(list, R_NamesSymbol));
 UNPROTECT(1);
 return ans;
}

It would be closer to lapply if we could pass in a function
rather than an expression. One way to do this is via interpreted
R code as in the next example, but it is possible (if somewhat
obscure) to do this in C code. The following is based on the code in
src/main/optimize.c.

SEXP lapply2(SEXP list, SEXP fn, SEXP rho)
{
 int n = length(list);
 SEXP R_fcall, ans;

 if(!isNewList(list)) error("'list' must be a list");
 if(!isFunction(fn)) error("'fn' must be a function");
 if(!isEnvironment(rho)) error("'rho' should be an environment");
 R_fcall = PROTECT(lang2(fn, R_NilValue));
 ans = PROTECT(allocVector(VECSXP, n));
 for(int i = 0; i < n; i++) {
 SETCADR(R_fcall, VECTOR_ELT(list, i));
 SET_VECTOR_ELT(ans, i, eval(R_fcall, rho));
 }
 setAttrib(ans, R_NamesSymbol, getAttrib(list, R_NamesSymbol));
 UNPROTECT(2);
 return ans;
}

used by

.Call("lapply2", a, sum, new.env())

Function lang2 creates an executable pairlist of two elements, but
this will only be clear to those with a knowledge of a LISP-like
language.

As a more comprehensive example of constructing an R call in C code
and evaluating, consider the following fragment. Similar code appears in
the definition of do_docall in src/main/coerce.c.

 SEXP s, t;
 t = s = PROTECT(allocLang(3));
 SETCAR(t, install("print")); t = CDR(t);
 SETCAR(t, CAR(a)); t = CDR(t);
 SETCAR(t, ScalarInteger(digits));
 SET_TAG(t, install("digits"));
 eval(s, env);
 UNPROTECT(1);

The function allocLang is available as of R 4 4.1; for older
versions replace allocLang(3) with

LCONS(R_NilValue, allocList(2))

At this point CAR(a) is the R object to be printed, the
current attribute. There are three steps: the call is constructed as
a pairlist of length 3, the list is filled in, and the expression
represented by the pairlist is evaluated.

A pairlist is quite distinct from a generic vector list, the only
user-visible form of list in R. A pairlist is a linked list (with
CDR(t) computing the next entry), with items (accessed by
CAR(t)) and names or tags (set by SET_TAG). In this call
there are to be three items, a symbol (pointing to the function to be
called) and two argument values, the first unnamed and the second named.
Setting the type to LANGSXP makes this a call which can be evaluated.

Customarily, the evaluation environment is passed from the calling
R code (see rho above). In special cases it is possible that
the C code may need to obtain the current evaluation environment
which can be done via R_GetCurrentEnv() function.

5.11.1 Zero-finding

In this section we re-work the example of Becker, Chambers &
Wilks (1988, pp.~205–10) on finding a zero of a univariate
function. The R code and an example are

zero <- function(f, guesses, tol = 1e-7) {
 f.check <- function(x) {
 x <- f(x)
 if(!is.numeric(x)) stop("Need a numeric result")
 as.double(x)
 }
 .Call("zero", body(f.check), as.double(guesses), as.double(tol),
 new.env())
}

cube1 <- function(x) (x^2 + 1) * (x - 1.5)
zero(cube1, c(0, 5))

where this time we do the coercion and error-checking in the R code.
The C code is

SEXP mkans(double x)
{
 // no need for PROTECT() here, as REAL(.) does not allocate:
 SEXP ans = allocVector(REALSXP, 1);
 REAL(ans)[0] = x;
 return ans;
}

double feval(double x, SEXP f, SEXP rho)
{
 // a version with (too) much PROTECT()ion .. "better safe than sorry"
 SEXP symbol, value;
 PROTECT(symbol = install("x"));
 PROTECT(value = mkans(x));
 defineVar(symbol, value, rho);
 UNPROTECT(2);
 return(REAL(eval(f, rho))[0]);
}

SEXP zero(SEXP f, SEXP guesses, SEXP stol, SEXP rho)
{
 double x0 = REAL(guesses)[0], x1 = REAL(guesses)[1],
 tol = REAL(stol)[0];
 double f0, f1, fc, xc;

 if(tol <= 0.0) error("non-positive tol value");
 f0 = feval(x0, f, rho); f1 = feval(x1, f, rho);
 if(f0 == 0.0) return mkans(x0);
 if(f1 == 0.0) return mkans(x1);
 if(f0*f1 > 0.0) error("x[0] and x[1] have the same sign");

 for(;;) {
 xc = 0.5*(x0+x1);
 if(fabs(x0-x1) < tol) return mkans(xc);
 fc = feval(xc, f, rho);
 if(fc == 0) return mkans(xc);
 if(f0*fc > 0.0) {
 x0 = xc; f0 = fc;
 } else {
 x1 = xc; f1 = fc;
 }
 }
}

5.11.2 Calculating numerical derivatives

We will use a longer example (by Saikat DebRoy) to illustrate the use of
evaluation and .External. This calculates numerical derivatives,
something that could be done as effectively in interpreted R code but
may be needed as part of a larger C calculation.

An interpreted R version and an example are

numeric.deriv <- function(expr, theta, rho=sys.frame(sys.parent()))
{
 eps <- sqrt(.Machine$double.eps)
 ans <- eval(substitute(expr), rho)
 grad <- matrix(, length(ans), length(theta),
 dimnames=list(NULL, theta))
 for (i in seq_along(theta)) {
 old <- get(theta[i], envir=rho)
 delta <- eps * max(1, abs(old))
 assign(theta[i], old+delta, envir=rho)
 ans1 <- eval(substitute(expr), rho)
 assign(theta[i], old, envir=rho)
 grad[, i] <- (ans1 - ans)/delta
 }
 attr(ans, "gradient") <- grad
 ans
}
omega <- 1:5; x <- 1; y <- 2
numeric.deriv(sin(omega*x*y), c("x", "y"))

where expr is an expression, theta a character vector of
variable names and rho the environment to be used.

For the compiled version the call from R will be

.External("numeric_deriv", expr, theta, rho)

with example usage

.External("numeric_deriv", quote(sin(omega*x*y)),
 c("x", "y"), .GlobalEnv)

Note the need to quote the expression to stop it being evaluated in the
caller.

Here is the complete C code which we will explain section by section.

#include <R.h>
#include <Rinternals.h>
#include <float.h> /* for DBL_EPSILON */

SEXP numeric_deriv(SEXP args)
{
 SEXP theta, expr, rho, ans, ans1, gradient, par, dimnames;
 double tt, xx, delta, eps = sqrt(DBL_EPSILON), *rgr, *rans;
 int i, start;

 expr = CADR(args);
 if(!isString(theta = CADDR(args)))
 error("theta should be of type character");
 if(!isEnvironment(rho = CADDDR(args)))
 error("rho should be an environment");

 ans = PROTECT(coerceVector(eval(expr, rho), REALSXP));
 gradient = PROTECT(allocMatrix(REALSXP, LENGTH(ans), LENGTH(theta)));
 rgr = REAL(gradient); rans = REAL(ans);

 for(i = 0, start = 0; i < LENGTH(theta); i++, start += LENGTH(ans)) {
 par = PROTECT(findVar(installChar(STRING_ELT(theta, i)), rho));
 tt = REAL(par)[0];
 xx = fabs(tt);
 delta = (xx < 1) ? eps : xx*eps;
 REAL(par)[0] += delta;
 ans1 = PROTECT(coerceVector(eval(expr, rho), REALSXP));
 for(int j = 0; j < LENGTH(ans); j++)
 rgr[j + start] = (REAL(ans1)[j] - rans[j])/delta;
 REAL(par)[0] = tt;
 UNPROTECT(2); /* par, ans1 */
 }

 dimnames = PROTECT(allocVector(VECSXP, 2));
 SET_VECTOR_ELT(dimnames, 1, theta);
 dimnamesgets(gradient, dimnames);
 setAttrib(ans, install("gradient"), gradient);
 UNPROTECT(3); /* ans gradient dimnames */
 return ans;
}

The code to handle the arguments is

 expr = CADR(args);
 if(!isString(theta = CADDR(args)))
 error("theta should be of type character");
 if(!isEnvironment(rho = CADDDR(args)))
 error("rho should be an environment");

Note that we check for correct types of theta and rho but
do not check the type of expr. That is because eval can
handle many types of R objects other than EXPRSXP. There is
no useful coercion we can do, so we stop with an error message if the
arguments are not of the correct mode.

The first step in the code is to evaluate the expression in the
environment rho, by

 ans = PROTECT(coerceVector(eval(expr, rho), REALSXP));

We then allocate space for the calculated derivative by

 gradient = PROTECT(allocMatrix(REALSXP, LENGTH(ans), LENGTH(theta)));

The first argument to allocMatrix gives the SEXPTYPE of
the matrix: here we want it to be REALSXP. The other two
arguments are the numbers of rows and columns. (Note that LENGTH
is intended to be used for vectors: length is more generally
applicable.)

 for(i = 0, start = 0; i < LENGTH(theta); i++, start += LENGTH(ans)) {
 par = PROTECT(findVar(installChar(STRING_ELT(theta, i)), rho));

Here, we are entering a for loop. We loop through each of the
variables. In the for loop, we first create a symbol
corresponding to the i-th element of the STRSXP
theta. Here, STRING_ELT(theta, i) accesses the
i-th element of the STRSXP theta. Macro
CHAR() extracts the actual character
representation162 of it: it returns a pointer. We then
install the name and use findVar to find its value.

 tt = REAL(par)[0];
 xx = fabs(tt);
 delta = (xx < 1) ? eps : xx*eps;
 REAL(par)[0] += delta;
 ans1 = PROTECT(coerceVector(eval(expr, rho), REALSXP));

We first extract the real value of the parameter, then calculate
delta, the increment to be used for approximating the numerical
derivative. Then we change the value stored in par (in
environment rho) by delta and evaluate expr in
environment rho again. Because we are directly dealing with
original R memory locations here, R does the evaluation for the
changed parameter value.

 for(int j = 0; j < LENGTH(ans); j++)
 rgr[j + start] = (REAL(ans1)[j] - rans[j])/delta;
 REAL(par)[0] = tt;
 UNPROTECT(2);
 }

Now, we compute the i-th column of the gradient matrix. Note how
it is accessed: R stores matrices by column (like Fortran).

 dimnames = PROTECT(allocVector(VECSXP, 2));
 SET_VECTOR_ELT(dimnames, 1, theta);
 dimnamesgets(gradient, dimnames);
 setAttrib(ans, install("gradient"), gradient);
 UNPROTECT(3);
 return ans;
}

First we add column names to the gradient matrix. This is done by
allocating a list (a VECSXP) whose first element, the row names,
is NULL (the default) and the second element, the column names,
is set as theta. This list is then assigned as the attribute
having the symbol R_DimNamesSymbol. Finally we set the gradient
matrix as the gradient attribute of ans, unprotect the remaining
protected locations and return the answer ans.

5.12 Parsing R code from C

Suppose an R extension want to accept an R expression from the
user and evaluate it. The previous section covered evaluation, but the
expression will be entered as text and needs to be parsed first. A
small part of R’s parse interface is declared in header file
R_ext/Parse.h163.

An example of the usage can be found in the (example) Windows package
windlgs included in the R source tree. The essential part is

#include <R.h>
#include <Rinternals.h>
#include <R_ext/Parse.h>

SEXP menu_ttest3()
{
 char cmd[256];
 SEXP cmdSexp, cmdexpr, ans = R_NilValue;
 ParseStatus status;
 ...
 if(done == 1) {
 cmdSexp = PROTECT(allocVector(STRSXP, 1));
 SET_STRING_ELT(cmdSexp, 0, mkChar(cmd));
 cmdexpr = PROTECT(R_ParseVector(cmdSexp, -1, &status, R_NilValue));
 if (status != PARSE_OK) {
 UNPROTECT(2);
 error("invalid call %s", cmd);
 }
 /* Loop is needed here as EXPSEXP will be of length > 1 */
 for(int i = 0; i < length(cmdexpr); i++)
 ans = eval(VECTOR_ELT(cmdexpr, i), R_GlobalEnv);
 UNPROTECT(2);
 }
 return ans;
}

Note that a single line of text may give rise to more than one R
expression.

R_ParseVector is essentially the code used to implement
parse(text=) at R level. The first argument is a character
vector (corresponding to text) and the second the maximal
number of expressions to parse (corresponding to n). The third
argument is a pointer to a variable of an enumeration type, and it is
normal (as parse does) to regard all values other than
PARSE_OK as an error. Other values which might be returned are
PARSE_INCOMPLETE (an incomplete expression was found) and
PARSE_ERROR (a syntax error), in both cases the value returned
being R_NilValue. The fourth argument is a length one character
vector to be used as a filename in error messages, a srcfile
object or the R NULL object (as in the example above). If a
srcfile object was used, a srcref attribute would be
attached to the result, containing a list of srcref objects of
the same length as the expression, to allow it to be echoed with its
original formatting.

5.12.1 Accessing source references

The source references added by the parser are recorded by R’s evaluator
as it evaluates code. Two functions
make these available to debuggers running C code:

SEXP R_GetCurrentSrcref(int skip);

This function checks R_Srcref and the current evaluation stack
for entries that contain source reference information. The
skip argument tells how many source references to skip before
returning the SEXP of the srcref object, counting from
the top of the stack. If skip < 0, abs(skip) locations
are counted up from the bottom of the stack. If too few or no source
references are found, NULL is returned.

SEXP R_GetSrcFilename(SEXP srcref);

This function extracts the filename from the source reference for
display, returning a length 1 character vector containing the
filename. If no name is found, "" is returned.

5.13 External pointers and weak references

The SEXPTYPEs EXTPTRSXP and WEAKREFSXP can be
encountered at R level, but are created in C code.

External pointer SEXPs are intended to handle references to C
structures such as ‘handles’, and are used for this purpose in package
RODBC for example. They are unusual in their copying semantics in
that when an R object is copied, the external pointer object is not
duplicated. (For this reason external pointers should only be used as
part of an object with normal semantics, for example an attribute or an
element of a list.)

An external pointer is created by

SEXP R_MakeExternalPtr(void *p, SEXP tag, SEXP prot);

where p is the pointer (and hence this cannot portably be a
function pointer), and tag and prot are references to
ordinary R objects which will remain in existence (be protected from
garbage collection) for the lifetime of the external pointer object. A
useful convention is to use the tag field for some form of type
identification and the prot field for protecting the memory that
the external pointer represents, if that memory is allocated from the
R heap. Both tag and prot can be R_NilValue,
and often are.

An alternative way to create an external pointer from a function pointer
is

typedef void * (*R_DL_FUNC)();
SEXP R_MakeExternalPtrFn(R_DL_FUNC p, SEXP tag, SEXP prot);

The elements of an external pointer can be accessed and set via

void *R_ExternalPtrAddr(SEXP s);
DL_FUNC R_ExternalPtrAddrFn(SEXP s);
SEXP R_ExternalPtrTag(SEXP s);
SEXP R_ExternalPtrProtected(SEXP s);
void R_ClearExternalPtr(SEXP s);
void R_SetExternalPtrAddr(SEXP s, void *p);
void R_SetExternalPtrTag(SEXP s, SEXP tag);
void R_SetExternalPtrProtected(SEXP s, SEXP p);

Clearing a pointer sets its value to the C NULL pointer.

An external pointer object can have a finalizer, a piece of code
to be run when the object is garbage collected. This can be R code
or C code, and the various interfaces are, respectively.

void R_RegisterFinalizer(SEXP s, SEXP fun);
void R_RegisterFinalizerEx(SEXP s, SEXP fun, Rboolean onexit);

typedef void (*R_CFinalizer_t)(SEXP);
void R_RegisterCFinalizer(SEXP s, R_CFinalizer_t fun);
void R_RegisterCFinalizerEx(SEXP s, R_CFinalizer_t fun, Rboolean onexit);

The R function indicated by fun should be a function of a
single argument, the object to be finalized. R does not perform a
garbage collection when shutting down, and the onexit argument of
the extended forms can be used to ask that the finalizer be run during a
normal shutdown of the R session. It is suggested that it is good
practice to clear the pointer on finalization.

The only R level function for interacting with external pointers is
reg.finalizer which can be used to set a finalizer.

It is probably not a good idea to allow an external pointer to be
saved and then reloaded, but if this happens the pointer will be
set to the C NULL pointer.

Finalizers can be run at many places in the code base and much of it,
including the R interpreter, is not re-entrant. So great care is
needed in choosing the code to be run in a finalizer. Finalizers are
marked to be run at garbage collection but only run at a somewhat safe
point thereafter.

Weak references are used to allow the programmer to maintain information
on entities without preventing the garbage collection of the entities
once they become unreachable.

A weak reference contains a key and a value. The value is reachable is
if it either reachable directly or via weak references with reachable
keys. Once a value is determined to be unreachable during garbage
collection, the key and value are set to R_NilValue and the
finalizer will be run later in the garbage collection.

Weak reference objects are created by one of

SEXP R_MakeWeakRef(SEXP key, SEXP val, SEXP fin, Rboolean onexit);
SEXP R_MakeWeakRefC(SEXP key, SEXP val, R_CFinalizer_t fin,
 Rboolean onexit);

where the R or C finalizer are specified in exactly the same way as
for an external pointer object (whose finalization interface is
implemented via weak references).

The parts can be accessed via

SEXP R_WeakRefKey(SEXP w);
SEXP R_WeakRefValue(SEXP w);
void R_RunWeakRefFinalizer(SEXP w);

A toy example of the use of weak references can be found at
https://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html,
but that is used to add finalizers to external pointers which can now be
done more directly. At the time of writing no CRAN or
Bioconductor package uses weak references.

5.13.1 An example

Package RODBC uses external pointers to maintain its
channels, connections to databases. There can be several
connections open at once, and the status information for each is stored
in a C structure (pointed to by thisHandle in the code extract
below) that is returned via an external pointer as part of the
RODBC
‘channel’ (as the "handle_ptr" attribute). The external pointer
is created by

 SEXP ans, ptr;
 ans = PROTECT(allocVector(INTSXP, 1));
 ptr = R_MakeExternalPtr(thisHandle, install("RODBC_channel"), R_NilValue);
 PROTECT(ptr);
 R_RegisterCFinalizerEx(ptr, chanFinalizer, TRUE);
 ...
 /* return the channel no */
 INTEGER(ans)[0] = nChannels;
 /* and the connection string as an attribute */
 setAttrib(ans, install("connection.string"), constr);
 setAttrib(ans, install("handle_ptr"), ptr);
 UNPROTECT(3);
 return ans;

Note the symbol given to identify the usage of the external pointer, and
the use of the finalizer. Since the final argument when registering the
finalizer is TRUE, the finalizer will be run at the end of the
R session (unless it crashes). This is used to close and clean up
the connection to the database. The finalizer code is simply

static void chanFinalizer(SEXP ptr)
{
 if(!R_ExternalPtrAddr(ptr)) return;
 inRODBCClose(R_ExternalPtrAddr(ptr));
 R_ClearExternalPtr(ptr); /* not really needed */
}

Clearing the pointer and checking for a NULL pointer avoids any
possibility of attempting to close an already-closed channel.

R’s connections provide another example of using external pointers,
in that case purely to be able to use a finalizer to close and destroy the
connection if it is no longer is use.

5.14 Vector accessor functions

The vector accessors like REAL, INTEGER, LOGICAL,
RAW, COMPLEX, and VECTOR_ELT are functions
when used in R extensions. (For efficiency they may be macros or
inline functions when used in the R source code, apart from
SET_STRING_ELT and SET_VECTOR_ELT which are always
functions.)

The accessor functions check that they are being used on an appropriate
type of SEXP.

Formerly it was possible for packages to obtain internal versions of
some accessors by defining ‘USE_RINTERNALS’ before including
Rinternals.h. This is no longer the case. Defining
‘USE_RINTERNALS’ now has no effect.

5.15 Character encoding issues

CHARSXPs can be marked as coming from a known encoding (Latin-1
or UTF-8). This is mainly intended for human-readable output, and most
packages can just treat such CHARSXPs as a whole. However, if
they need to be interpreted as characters or output at C level then it
would normally be correct to ensure that they are converted to the
encoding of the current locale: this can be done by accessing the data
in the CHARSXP by translateChar rather than by
CHAR. If re-encoding is needed this allocates memory with
R_alloc which thus persists to the end of the
.Call/.External call unless vmaxset is used
(see Transient storage allocation).

There is a similar function translateCharUTF8 which converts to
UTF-8: this has the advantage that a faithful translation is almost
always possible (whereas only a few languages can be represented in the
encoding of the current locale unless that is UTF-8).

Both translateChar and translateCharUTF8 will translate
any input, using escapes such as ‘<A9>’ and ‘<U+0093>’ to
represent untranslatable parts of the input.

There is a public interface to the encoding marked on CHARSXPs
via

typedef enum {CE_NATIVE, CE_UTF8, CE_LATIN1, CE_BYTES, CE_SYMBOL, CE_ANY} cetype_t;
cetype_t getCharCE(SEXP);
SEXP mkCharCE(const char *, cetype_t);

Only CE_UTF8 and CE_LATIN1 are marked on CHARSXPs
(and so Rf_getCharCE will only return one of the first three),
and these should only be used on non-ASCII strings. Value
CE_BYTES is used to make CHARSXPs which should be regarded
as a set of bytes and not translated. Value CE_SYMBOL is used
internally to indicate Adobe Symbol encoding. Value CE_ANY is
used to indicate a character string that will not need re-encoding –
this is used for character strings known to be in ASCII, and
can also be used as an input parameter where the intention is that the
string is treated as a series of bytes. (See the comments under
mkChar about the length of input allowed.)

Function

const char *reEnc(const char *x, cetype_t ce_in, cetype_t ce_out,
 int subst);

can be used to re-encode character strings: like translateChar it
returns a string allocated by R_alloc. This can translate from
CE_SYMBOL to CE_UTF8, but not conversely. Argument
subst controls what to do with untranslatable characters or
invalid input: this is done byte-by-byte with 1 indicates to
output hex of the form <a0>, and 2 to replace by .,
with any other value causing the byte to produce no output.

There is also

SEXP mkCharLenCE(const char *, int, cetype_t);

to create marked character strings of a given length.

Footnotes

(144)

possibly after some platform-specific
translation, e.g. adding leading or trailing underscores.

(145)

This is currently included by
R.h but may not be in future, so it should be included by code
needing the type.

(146)

Note that this is then not checked for over-runs by
option CBoundsCheck = TRUE.

(147)

Strictly this is OS-specific, but no exceptions have
been seen for many years.

(148)

For calls from within a namespace the search is confined to
the DLL loaded for that package.

(149)

For unregistered entry points the OS’s dlsym
routine is used to find addresses. Its performance varies considerably
by OS and even in the best case it will need to search a much larger
symbol table than, say, the table of .Call entry points.

(150)

Because it is a standard
package, one would need to rename it before attempting to reproduce the
account here.

(151)

whether or not ‘LinkingTo’ is used.

(152)

so there needs to be a corresponding import or
importFrom entry in the NAMESPACE file.

(153)

Even including C system headers in
such a block has caused compilation errors.

(154)

https://en.wikipedia.org/wiki/Application_binary_interface.

(155)

For
example, ‘_GLIBCXX_USE_CXX11_ABI’ in g++ 5.1 and later:
https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html.

(156)

dyld on macOS,
and DYLD_LIBRARY_PATHS below.

(157)

That is,
similar to those defined in S version 4 from the 1990s: these are
not kept up to date and are not recommended for new projects.

(158)

see The R API: entry points for C code: note that these are not all part of
the API.

(159)

SEXP is an acronym for Simple
EXPression, common in LISP-like language syntaxes.

(160)

If no coercion was required, coerceVector would
have passed the old object through unchanged.

(161)

You can assign a copy of the object in the
environment frame rho using defineVar(symbol,
duplicate(value), rho)).

(162)

see Character encoding issues for why this
might not be what is required.

(163)

This is only guaranteed to show the
current interface: it is liable to change.

6 The R API: entry points for C code

There are a large number of entry points in the R executable/DLL that
can be called from C code (and some that can be called from Fortran
code). Only those documented here are stable enough that they will only
be changed with considerable notice.

The recommended procedure to use these is to include the header file
R.h in your C code by

#include <R.h>

This will include several other header files from the directory
R_INCLUDE_DIR/R_ext, and there are other header files
there that can be included too, but many of the features they contain
should be regarded as undocumented and unstable.

Most of these header files, including all those included by R.h,
can be used from C++ code. (However, they cannot safely be included in
a extern "C" { } block as they may include C++ headers when
included from C++ code—and whether this succeeds is system-specific).

Note: Because R re-maps many of its external names to avoid clashes with
system or user code, it is essential to include the appropriate
header files when using these entry points.

This remapping can cause problems164,
and can be eliminated by defining R_NO_REMAP (before including
any R headers) and prepending ‘Rf_’ to all the function
names used from Rinternals.h and R_ext/Error.h. These
problems can usually be avoided by including other headers (such as
system headers and those for external software used by the package)
before any R headers. (Headers from other packages may include R
headers directly or via inclusion from further packages, and may
define R_NO_REMAP with or without including Rinternals.h.)

Some of these entry points are declared in header Rmath.h, most
of which are remapped there. That remapping can be eliminated by
defining R_NO_REMAP_RMATH (before including any R headers) and
prepending ‘Rf_’ to the function names used from that header except

exp_rand norm_rand unif_rand signrank_free wilcox_free

We can classify the entry points as

	API

	Entry points which are documented in this manual and declared in an
installed header file. These can be used in distributed packages and
will only be changed after deprecation.

	public

	Entry points declared in an installed header file that are exported
on all R platforms but are not documented and subject to change
without notice.

	private

	Entry points that are used when building R and exported on all R
platforms but are not declared in the installed header files.
Do not use these in distributed code.

	hidden

	Entry points that are where possible (Windows and some modern Unix-alike
compilers/loaders when using R as a shared library) not exported.

6.1 Memory allocation

There are two types of memory allocation available to the C programmer,
one in which R manages the clean-up and the other in which user
has full control (and responsibility).

These functions are declared in header R_ext/RS.h which is
included by R.h.

6.1.1 Transient storage allocation

Here R will reclaim the memory at the end of the call to .C,
.Call or .External. Use

char *R_alloc(size_t n, int size)

which allocates n units of size bytes each. A typical usage
(from package stats) is

x = (int *) R_alloc(nrows(merge)+2, sizeof(int));

(size_t is defined in stddef.h which the header defining
R_alloc includes.)

There is a similar call, S_alloc (named for compatibility with older
versions of S) which zeroes the memory allocated,

char *S_alloc(long n, int size)

and

char *S_realloc(char *p, long new, long old, int size)

which (for new > old) changes the allocation size
from old to new units, and zeroes the additional units. NB:
these calls are best avoided as long is insufficient for large
memory allocations on 64-bit Windows (where it is limited to 2^31-1
bytes).

This memory is taken from the heap, and released at the end of the
.C, .Call or .External call. Users can also manage
it, by noting the current position with a call to vmaxget and
subsequently clearing memory allocated by a call to vmaxset. An
example might be

void *vmax = vmaxget()
// a loop involving the use of R_alloc at each iteration
vmaxset(vmax)

This is only recommended for experts.

Note that this memory will be freed on error or user interrupt
(if allowed: see Allowing interrupts).

The memory returned is only guaranteed to be aligned as required for
double pointers: take precautions if casting to a pointer which
needs more. There is also

long double *R_allocLD(size_t n)

which is guaranteed to have the 16-byte alignment needed for long
double pointers on some platforms.

These functions should only be used in code called by .C etc,
never from front-ends. They are not thread-safe.

6.1.2 User-controlled memory

The other form of memory allocation is an interface to malloc,
the interface providing R error signaling. This memory lasts until
freed by the user and is additional to the memory allocated for the R
workspace.

The interface macros are

type* R_Calloc(size_t n, type)
type* R_Realloc(any *p, size_t n, type)
void R_Free(any *p)

providing analogues of calloc, realloc and free.
If there is an error during allocation it is handled by R, so if
these return the memory has been successfully allocated or freed.
R_Free will set the pointer p to NULL. (Some but not
all versions of S did so.)

Users should arrange to R_Free this memory when no longer needed,
including on error or user interrupt. This can often be done most
conveniently from an on.exit action in the calling R function
– see pwilcox for an example.

Do not assume that memory allocated by R_Calloc/R_Realloc
comes from the same pool as used by malloc:165 in particular do not use
free or strdup with it.

Memory obtained by these macros should be aligned in the same way as
malloc, that is ‘suitably aligned for any kind of variable’.

Historically the macros Calloc, Free and Realloc
were used, and these remain available unless STRICT_R_HEADERS
was defined prior to the inclusion of the header.

char * CallocCharBuf(size_t n)
void * Memcpy(q, p, n)
void * Memzero(p, n)

CallocCharBuf(n) is shorthand for R_Calloc(n+1, char) to allow
for the nul terminator. Memcpy and Memzero take
n items from array p and copy them to array q or
zero them respectively.

6.2 Error signaling

The basic error signaling routines are the equivalents of stop and
warning in R code, and use the same interface.

void error(const char * format, ...);
void warning(const char * format, ...);
void errorcall(SEXP call, const char * format, ...);
void warningcall(SEXP call, const char * format, ...);
void warningcall_immediate(SEXP call, const char * format, ...);

These have the same call sequences as calls to printf, but in the
simplest case can be called with a single character string argument
giving the error message. (Don’t do this if the string contains ‘%’
or might otherwise be interpreted as a format.)

These are defined in header R_ext/Error.h included by R.h.
NB: when R_NO_REMAP is defined (as is recommeneded for
C++ code), Rf_error etc must be used.

6.2.1 Error signaling from Fortran

There are two interface function provided to call Rf_error and
Rf_warning from Fortran code, in each case with a simple character
string argument. They are defined as

subroutine rexit(message)
subroutine rwarn(message)

Messages of more than 255 characters are truncated, with a warning.

6.3 Random number generation

The interface to R’s internal random number generation routines is

double unif_rand();
double norm_rand();
double exp_rand();
double R_unif_index(double);

giving one uniform, normal or exponential pseudo-random variate.
However, before these are used, the user must call

GetRNGstate();

and after all the required variates have been generated, call

PutRNGstate();

These essentially read in (or create) .Random.seed and write it
out after use.

These are defined in header R_ext/Random.h.

The random number generator is private to R; there is no way to
select the kind of RNG nor set the seed except by evaluating calls to the
R functions.

The C code behind R’s rxxx functions can be accessed by
including the header file Rmath.h; See Distribution functions.
Those calls should also be preceded and followed by calls to
GetRNGstate and PutRNGstate.

6.3.1 Random-number generation from Fortran

It was explained earlier that Fortran random-number generators should
not be used in R packages, not least as packages cannot safely
initialize them. Rather a package should call R’s built in
generators: one way to do so is to use C wrappers like

#include <R_ext/RS.h>
#include <R_ext/Random.h>

void F77_SUB(getRNGseed)(void) {
 GetRNGstate();
}
void F77_SUB(putRNGseed)(void) {
 PutRNGstate();
}
double F77_SUB(unifRand)(void) {
 return(unif_rand());
}

called from Fortran code like

 ...
 double precision X
 call getRNGseed()
 X = unifRand()
 ...
 call putRNGseed()

Alternatively one could use Fortran 2003’s iso_c_binding module
by something like (fixed-form Fortran 90 code):

 module rngfuncs
 use iso_c_binding
 interface
 double precision
 * function unifRand() bind(C, name = "unif_rand")
 end function unifRand

 subroutine getRNGseed() bind(C, name = "GetRNGstate")
 end subroutine getRNGseed

 subroutine putRNGseed() bind(C, name = "PutRNGstate")
 end subroutine putRNGseed
 end interface
 end module rngfuncs

 subroutine testit
 use rngfuncs
 double precision X
 call getRNGseed()
 X = unifRand()
 print *, X
 call putRNGSeed()
 end subroutine testit

6.4 Missing and IEEE special values

A set of functions is provided to test for NA, Inf,
-Inf and NaN. These functions are accessed via macros:

ISNA(x) True for R’s NA only
ISNAN(x) True for R’s NA and IEEE NaN
R_FINITE(x) False for Inf, -Inf, NA, NaN

and via function R_IsNaN which is true for NaN but not
NA.

Do use R_FINITE rather than isfinite or finite; the
latter is often mendacious and isfinite is only available on a
some platforms, on which R_FINITE is a macro expanding to
isfinite.

Currently in C code ISNAN is a macro calling isnan.
(Since this gives problems on some C++ systems, if the R headers is
called from C++ code a function call is used.)

You can check for Inf or -Inf by testing equality to
R_PosInf or R_NegInf, and set (but not test) an NA
as NA_REAL.

All of the above apply to double variables only. For integer
variables there is a variable accessed by the macro NA_INTEGER
which can used to set or test for missingness.

These are defined in header R_ext/Arith.h included by R.h.

6.5 Printing

The most useful function for printing from a C routine compiled into
R is Rprintf. This is used in exactly the same way as
printf, but is guaranteed to write to R’s output (which might
be a GUI console rather than a file, and can be re-directed by
sink). It is wise to write complete lines (including the
"\n") before returning to R. It is defined in
R_ext/Print.h.

The function REprintf is similar but writes on the error stream
(stderr) which may or may not be different from the standard
output stream.

Functions Rvprintf and REvprintf are analogues using the
vprintf interface. Because that is a C99166 interface, they are only defined by R_ext/Print.h in C++
code if the macro R_USE_C99_IN_CXX is defined before it is
included or (as from R 4.0.0) a C++11 compiler is used.

Another circumstance when it may be important to use these functions is
when using parallel computation on a cluster of computational nodes, as
their output will be re-directed/logged appropriately.

6.5.1 Printing from Fortran

On many systems Fortran write and print statements can be
used, but the output may not interleave well with that of C, and may be
invisible on GUI interfaces. They are not portable and best
avoided.

Some subroutines are provided to ease the output of information from
Fortran code.

subroutine dblepr(label, nchar, data, ndata)
subroutine realpr(label, nchar, data, ndata)
subroutine intpr (label, nchar, data, ndata)

and from R 4.0.0,

subroutine labelpr(label, nchar)
subroutine dblepr1(label, nchar, var)
subroutine realpr1(label, nchar, var)
subroutine intpr1 (label, nchar, var)

Here label is a character label of up to 255 characters,
nchar is its length (which can be -1 if the whole label is
to be used), data is an array of length at least ndata of
the appropriate type (double precision, real and
integer respectively) and var is a (scalar) variable.
These routines print the label on one line and then print data or
var as if it were an R vector on subsequent line(s). Note that
some compilers will give an error or warning unless data is an
array: others will accept a scalar when ndata has value one or
zero. NB: There is no check on the type of data or
var, so using real (including a real constant) instead of
double precision will give incorrect answers.

intpr works with zero ndata so can be used to print a
label in earlier versions of R.

6.6 Calling C from Fortran and vice versa

Naming conventions for symbols generated by Fortran differ by platform:
it is not safe to assume that Fortran names appear to C with a trailing
underscore. To help cover up the platform-specific differences there is
a set of macros167 that should be used.

	F77_SUB(name)

	to define a function in C to be called from Fortran

	F77_NAME(name)

	to declare a Fortran routine in C before use

	F77_CALL(name)

	to call a Fortran routine from C

On most current platforms these are all the same, but it is unwise to
rely on this. Note that names containing underscores were not legal in
Fortran 77, and are not portably handled by the above macros. (Also,
all Fortran names for use by R are lower case, but this is not
enforced by the macros.)

For example, suppose we want to call R’s normal random numbers from
Fortran. We need a C wrapper along the lines of

#include <R.h>

void F77_SUB(rndstart)(void) { GetRNGstate(); }
void F77_SUB(rndend)(void) { PutRNGstate(); }
double F77_SUB(normrnd)(void) { return norm_rand(); }

to be called from Fortran as in

 subroutine testit()
 double precision normrnd, x
 call rndstart()
 x = normrnd()
 call dblepr("X was", 5, x, 1)
 call rndend()
 end

Note that this is not guaranteed to be portable, for the return
conventions might not be compatible between the C and Fortran compilers
used. (Passing values via arguments is safer.)

The standard packages, for example stats, are a rich source of
further examples.

Where supported, link time optimization provides a reliable way
to check the consistency of calls to C from Fortran or vice
versa.
See Using Link-time Optimization.
One place where this occurs is the registration of .Fortran calls
in C code (see Registering native routines). For example

init.c:10:13: warning: type of 'vsom_' does not match original
 declaration [-Wlto-type-mismatch]
 extern void F77_NAME(vsom)(void *, void *, void *, void *,
 void *, void *, void *, void *, void *);
vsom.f90:20:33: note: type mismatch in parameter 9
 subroutine vsom(neurons,dt,dtrows,dtcols,xdim,ydim,alpha,train)
vsom.f90:20:33: note: 'vsom' was previously declared here

shows that a subroutine has been registered with 9 arguments (as that is
what the .Fortran call used) but only has 8.

6.6.1 Fortran character strings

Passing character strings from C to Fortran or vice versa is
not portable, but can be done with care. The internal representations
are different: a character array in C (or C++) is NUL-terminated so its
length can be computed by strlen. Fortran character arrays are
typically stored as an array of bytes and a length. This matters when
passing strings from C to Fortran or vice versa: in many cases
one has been able to get away with passing the string but not the
length. However, in 2019 this changed for gfortran, starting
with version 9 but backported to versions 7 and 8. Several months
later, gfortran 9.2 introduced an option

-ftail-call-workaround

and made it the current default but said it might be withdrawn in future.

Suppose we want a function to report a message from Fortran to R’s
console (one could use labelpr, or intpr with dummy data,
but this might be the basis of a custom reporting function). Suppose the
equivalent in Fortran would be

 subroutine rmsg(msg)
 character*(*) msg
 print *.msg
 end

in file rmsg.f. Using gfortran 9.2 and later we can
extract the C view by

gfortran -c -fc-prototypes-external rmsg.f

which gives

void rmsg_ (char *msg, size_t msg_len);

(where size_t applies to version 8 and later). We could re-write
that portably in C as

#ifndef USE_FC_LEN_T
define USE_FC_LEN_T
#endif
#include <Rconfig.h> // included by R.h, so define USE_FC_LEN_T early

void F77_NAME(rmsg)(char *msg, FC_LEN_T msg_len)
{
 char cmsg[msg_len+1];
 strncpy(cmsg, msg, msg_len);
 cmsg[msg_len] = '\0'; // nul-terminate the string, to be sure
 // do something with 'cmsg'
}

in code depending on R(>= 3.6.2). For earlier versions of R we
could just assume that msg is NUL-terminated (not guaranteed, but
people have been getting away with it for many years), so the complete C
side might be

#ifndef USE_FC_LEN_T
define USE_FC_LEN_T
#endif
#include <Rconfig.h>

#ifdef FC_LEN_T
void F77_NAME(rmsg)(char *msg, FC_LEN_T msg_len)
{
 char cmsg[msg_len+1];
 strncpy(cmsg, msg, msg_len);
 cmsg[msg_len] = '\0';
 // do something with 'cmsg'
}
#else
void F77_NAME(rmsg)(char *msg)
{
 // do something with 'msg'
}
#endif

(USE_FC_LEN_T is the default as from R 4.3.0.)

An alternative is to use Fortran 2003 features to set up the Fortran
routine to pass a C-compatible character string. We could use something
like

 module cfuncs
 use iso_c_binding, only: c_char, c_null_char
 interface
 subroutine cmsg(msg) bind(C, name = 'cmsg')
 use iso_c_binding, only: c_char
 character(kind = c_char):: msg(*)
 end subroutine cmsg
 end interface
 end module

 subroutine rmsg(msg)
 use cfuncs
 character(*) msg
 call cmsg(msg//c_null_char) ! need to concatenate a nul terminator
 end subroutine rmsg

where the C side is simply

void cmsg(const char *msg)
{
 // do something with nul-terminated string 'msg'
}

If you use bind to a C function as here, the only way to check
that the bound definition is correct is to compile the package with LTO
(which requires compatible C and Fortran compilers, usually
gcc and gfortran).

Passing a variable-length string from C to Fortran is trickier, but
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-0/bind-c.html
provides a recipe. However, all the uses in BLAS and LAPACK are of a
single character, and for these we can write a wrapper in Fortran
along the lines of

 subroutine c_dgemm(transa, transb, m, n, k, alpha,
 + a, lda, b, ldb, beta, c, ldc)
 + bind(C, name = 'Cdgemm')
 use iso_c_binding, only : c_char, c_int, c_double
 character(c_char), intent(in) :: transa, transb
 integer(c_int), intent(in) :: m, n, k, lda, ldb, ldc
 real(c_double), intent(in) :: alpha, beta, a(lda, *), b(ldb, *)
 real(c_double), intent(out) :: c(ldc, *)
 call dgemm(transa, transb, m, n, k, alpha,
 + a, lda, b, ldb, beta, c, ldc)
 end subroutine c_dgemm

which is then called from C with declaration

void
Cdgemm(const char *transa, const char *transb, const int *m,
 const int *n, const int *k, const double *alpha,
 const double *a, const int *lda, const double *b, const int *ldb,
 const double *beta, double *c, const int *ldc);

Alternatively, do as R does as from version 3.6.2 and pass
the character length(s) from C to Fortran. A portable way to do this is

// before any R headers, or define in PKG_CPPFLAGS
#ifndef USE_FC_LEN_T
define USE_FC_LEN_T
#endif
#include <Rconfig.h>
#include <R_ext/BLAS.h>
#ifndef FCONE
define FCONE
#endif
...
 F77_CALL(dgemm)("N", "T", &nrx, &ncy, &ncx, &one, x,
 &nrx, y, &nry, &zero, z, &nrx FCONE FCONE);

(Note there is no comma before or between the FCONE invocations.)
It is strongly recommended that packages which call from C/C++
BLAS/LAPACK routines with character arguments adopt this approach:
packages not using will fail to install as from R 4.3.0.

6.6.2 Fortran LOGICAL

Passing Fortran LOGICAL variables to/from C/C++ is potentially
compiler-dependent. Fortran compilers have long used a 32-bit integer
type so it is pretty portable to use int * on the C/C++ side.
However, recent versions of gfortran via the option
-fc-prototypes-external say the C equivalent is
int_least32_t *: ‘Link-Time Optimization’ will report int
* as a mismatch. It is possible to use iso_c_binding in Fortran
2003 to map LOGICAL variables to the C99 type _Bool, but it is
usually simpler to pass integers to and fro.

6.6.3 Passing functions

A number of packages call C functions passed as arguments to Fortran
code along the lines of

c subroutine fcn(m,n,x,fvec,iflag)
c integer m,n,iflag
c double precision x(n),fvec(m)
...
 subroutine lmdif(fcn, ...

where the C declaration and call are

void fcn_lmdif(int *m, int *n, double *par, double *fvec, int *iflag);

void F77_NAME(lmdif)(void (*fcn_lmdif)(int *m, int *n, double *par,
 double *fvec, int *iflag), ...

F77_CALL(lmdif)(&fcn_lmdif, ...

This works on most platforms but depends on the C and Fortran compilers
agreeing on calling conventions: this have been seen to fail. The most
portable solution seems to be to convert the Fortran code to C, perhaps
using f2c.

6.7 Numerical analysis subroutines

R contains a large number of mathematical functions for its own use,
for example numerical linear algebra computations and special functions.

The header files R_ext/BLAS.h, R_ext/Lapack.h and
R_ext/Linpack.h contains declarations of the BLAS, LAPACK and
LINPACK linear algebra functions included in R. These are expressed
as calls to Fortran subroutines, and they will also be usable from
users’ Fortran code. Although not part of the official API,
this set of subroutines is unlikely to change (but might be
supplemented).

The header file Rmath.h lists many other functions that are
available and documented in the following subsections. Many of these are
C interfaces to the code behind R functions, so the R function
documentation may give further details.

6.7.1 Distribution functions

The routines used to calculate densities, cumulative distribution
functions and quantile functions for the standard statistical
distributions are available as entry points.

The arguments for the entry points follow the pattern of those for the
normal distribution:

double dnorm(double x, double mu, double sigma, int give_log);
double pnorm(double x, double mu, double sigma, int lower_tail,
 int give_log);
double qnorm(double p, double mu, double sigma, int lower_tail,
 int log_p);
double rnorm(double mu, double sigma);

That is, the first argument gives the position for the density and CDF
and probability for the quantile function, followed by the
distribution’s parameters. Argument lower_tail should be
TRUE (or 1) for normal use, but can be FALSE (or
0) if the probability of the upper tail is desired or specified.

Finally, give_log should be non-zero if the result is required on
log scale, and log_p should be non-zero if p has been
specified on log scale.

Note that you directly get the cumulative (or “integrated”)
hazard function, H(t) = - log(1 -
F(t)), by using

- pdist(t, ..., /*lower_tail = */ FALSE, /* give_log = */ TRUE)

or shorter (and more cryptic) - pdist(t, ..., 0, 1).

The random-variate generation routine rnorm returns one normal
variate. See Random number generation, for the protocol in using the
random-variate routines.

Note that these argument sequences are (apart from the names and that
rnorm has no n) mainly the same as the corresponding R
functions of the same name, so the documentation of the R functions
can be used. Note that the exponential and gamma distributions are
parametrized by scale rather than rate.

For reference, the following table gives the basic name (to be prefixed
by ‘d’, ‘p’, ‘q’ or ‘r’ apart from the exceptions
noted) and distribution-specific arguments for the complete set of
distributions.

	beta	beta	a, b

	non-central beta	nbeta	a, b, ncp

	binomial	binom	n, p

	Cauchy	cauchy	location, scale

	chi-squared	chisq	df

	non-central chi-squared	nchisq	df, ncp

	exponential	exp	scale (and not rate)

	F	f	n1, n2

	non-central F	nf	n1, n2, ncp

	gamma	gamma	shape, scale

	geometric	geom	p

	hypergeometric	hyper	NR, NB, n

	logistic	logis	location, scale

	lognormal	lnorm	logmean, logsd

	negative binomial	nbinom	size, prob

	normal	norm	mu, sigma

	Poisson	pois	lambda

	Student’s t	t	n

	non-central t	nt	df, delta

	Studentized range	tukey (*)	rr, cc, df

	uniform	unif	a, b

	Weibull	weibull	shape, scale

	Wilcoxon rank sum	wilcox	m, n

	Wilcoxon signed rank	signrank	n

Entries marked with an asterisk only have ‘p’ and ‘q’
functions available, and none of the non-central distributions have
‘r’ functions.

(If remapping is suppressed, the Normal distribution names are
Rf_dnorm4, Rf_pnorm5 and Rf_qnorm5.)

Additionally, a multivariate RNG for the multinomial distribution is

void rmultinom(int n, double* prob, int K, int* rN)

where K = length(prob),
sum(prob[.]) == 1
and rN must point to a length-K integer vector
n1 n2 .. nK where each entry
nj=rN[j] is “filled” by a random binomial from
Bin(n; prob[j]),
constrained to sum(rN[.]) == n.

After calls to dwilcox, pwilcox or qwilcox the
function wilcox_free() should be called, and similarly
signrank_free() for the signed rank functions.

Since wilcox_free() and signrank_free() were only added to
Rmath.h in R 4.2.0, their use requires something like

#include "Rmath.h"
#include "Rversion.h"

#if R_VERSION < R_Version(4, 2, 0)
extern void wilcox_free(void);
extern void signrank_free(void);
#endif

For the negative binomial distribution (‘nbinom’), in addition to the
(size, prob) parametrization, the alternative (size, mu)
parametrization is provided as well by functions ‘[dpqr]nbinom_mu()’,
see ?NegBinomial in R.

Functions dpois_raw(x, *) and dbinom_raw(x, *) are versions of the
Poisson and binomial probability mass functions which work continuously in
x, whereas dbinom(x,*) and dpois(x,*) only return non
zero values for integer x.

double dbinom_raw(double x, double n, double p, double q, int give_log)
double dpois_raw (double x, double lambda, int give_log)

Note that dbinom_raw() returns both p and q = 1-p which may be advantageous when one of them is close to 1.

6.7.2 Mathematical functions

	Function: double gammafn (double x)

	Function: double lgammafn (double x)

	Function: double digamma (double x)

	Function: double trigamma (double x)

	Function: double tetragamma (double x)

	Function: double pentagamma (double x)

	Function: double psigamma (double x, double deriv)

	Function: void dpsifn (double x, int n, int kode, int m, double* ans, int* nz, int* ierr)

	The Gamma function, the natural logarithm of its absolute value and
first four derivatives and the n-th derivative of Psi, the digamma
function, which is the derivative of lgammafn. In other words,
digamma(x) is the same as psigamma(x,0),
trigamma(x) == psigamma(x,1), etc.
The underlying workhorse, dpsifn(), is useful, e.g., when several derivatives of
log Gamma=lgammafn are desired. It computes and
returns in ans[] the length-m sequence
(-1)^(k+1) / gamma(k+1) * psi(k;x) for
k = n ... n+m-1, where psi(k;x)
is the k-th derivative of Psi(x), i.e.,
psigamma(x,k). For more details, see the comments in
src/nmath/polygamma.c.

	Function: double beta (double a, double b)

	Function: double lbeta (double a, double b)

	The (complete) Beta function and its natural logarithm.

	Function: double choose (double n, double k)

	Function: double lchoose (double n, double k)

	The number of combinations of k items chosen from n and
the natural logarithm of its absolute value, generalized to arbitrary real
n. k is rounded to the nearest integer (with a warning if
needed).

	Function: double bessel_i (double x, double nu, double expo)

	Function: double bessel_j (double x, double nu)

	Function: double bessel_k (double x, double nu, double expo)

	Function: double bessel_y (double x, double nu)

	Bessel functions of types I, J, K and Y with index nu. For
bessel_i and bessel_k there is the option to return
exp(-x) I(x; nu) or exp(x) K(x; nu) if expo is 2. (Use expo == 1 for unscaled
values.)

6.7.3 Numerical Utilities

There are a few other numerical utility functions available as entry points.

	Function: double R_pow (double x, double y)

	Function: double R_pow_di (double x, int i)

	Function: double pow1p (double x, double y)

	R_pow(x, y) and R_pow_di(x, i)
compute x^y and x^i, respectively
using R_FINITE checks and returning the proper result (the same
as R) for the cases where x, y or i are 0 or
missing or infinite or NaN.

pow1p(x, y) computes (1 + x)^y, accurately
even for small x, i.e., |x| << 1.

	Function: double log1p (double x)

	Computes log(1 + x) (log 1 plus x), accurately
even for small x, i.e., |x| << 1.

This should be provided by your platform, in which case it is not
included in Rmath.h, but is (probably) in math.h which
Rmath.h includes (except under C++, so it may not be declared for
C++98).

	Function: double log1pmx (double x)

	Computes log(1 + x) - x (log 1 plus x minus x),
accurately even for small x, i.e., |x| << 1.

	Function: double log1pexp (double x)

	Computes log(1 + exp(x)) (log 1 plus exp),
accurately, notably for large x, e.g., x > 720.

	Function: double log1mexp (double x)

	Computes log(1 - exp(-x)) (log 1 minus exp),
accurately, carefully for two regions of x, optimally cutting
off at log 2 (= 0.693147..), using
((-x) > -M_LN2 ? log(-expm1(-x)) : log1p(-exp(-x))).

	Function: double expm1 (double x)

	Computes exp(x) - 1 (exp x minus 1), accurately
even for small x, i.e., |x| << 1.

This should be provided by your platform, in which case it is not
included in Rmath.h, but is (probably) in math.h which
Rmath.h includes (except under C++, so it may not be declared for
C++98).

	Function: double lgamma1p (double x)

	Computes log(gamma(x + 1)) (log(gamma(1 plus x))),
accurately even for small x, i.e., 0 < x < 0.5.

	Function: double cospi (double x)

	Computes cos(pi * x) (where pi is 3.14159...),
accurately, notably for half integer x.

This might be provided by your platform168, in which case it is not included in Rmath.h, but is
in math.h which Rmath.h includes. (Ensure that
neither math.h nor cmath is included before
Rmath.h or define

#define __STDC_WANT_IEC_60559_FUNCS_EXT__ 1

before the first inclusion.)

	Function: double sinpi (double x)

	Computes sin(pi * x) accurately, notably for (half) integer x.

This might be provided by your platform, in which case it is not
included in Rmath.h, but is in math.h which Rmath.h
includes (but see the comments for cospi).

	Function: double Rtanpi (double x)

	Computes tan(pi * x) accurately, notably for integer x, giving
NaN for half integer x and exactly +1 or -1 for (non half)
quarter integers.

	Function: double tanpi (double x)

	Computes tan(pi * x) accurately for integer x with possibly
platform dependent behavior for half (and quarter) integers.
This might be provided by your platform, in which case it is not included
in Rmath.h, but is in math.h which Rmath.h includes
(but see the comments for cospi).

	Function: double logspace_add (double logx, double logy)

	Function: double logspace_sub (double logx, double logy)

	Function: double logspace_sum (const double* logx, int n)

	Compute the log of a sum or difference from logs of terms, i.e., “x +
y” as log (exp(logx) + exp(logy)) and “x - y” as
log (exp(logx) - exp(logy)),
and “sum_i x[i]” as log (sum[i = 1:n exp(logx[i])])
without causing unnecessary overflows or throwing away too much accuracy.

	Function: int imax2 (int x, int y)

	Function: int imin2 (int x, int y)

	Function: double fmax2 (double x, double y)

	Function: double fmin2 (double x, double y)

	Return the larger (max) or smaller (min) of two integer or
double numbers, respectively. Note that fmax2 and fmin2
differ from C99/C++11’s fmax and fmin when one of the
arguments is a NaN: these versions return NaN.

	Function: double sign (double x)

	Compute the signum function, where sign(x) is 1, 0, or
-1, when x is positive, 0, or negative, respectively, and
NaN if x is a NaN.

	Function: double fsign (double x, double y)

	Performs “transfer of sign” and is defined as |x| * sign(y).

	Function: double fprec (double x, double digits)

	Returns the value of x rounded to digits significant
decimal digits.

This is the function used by R’s signif().

	Function: double fround (double x, double digits)

	Returns the value of x rounded to digits decimal digits
(after the decimal point).

This is the function used by R’s round(). (Note that C99/C++11
provide a round function but C++98 need not.)

	Function: double ftrunc (double x)

	Returns the value of x truncated (to an integer value) towards
zero.

6.7.4 Mathematical constants

R has a set of commonly used mathematical constants encompassing
constants defined by POSIX and usually found in headers math.h
and cmath, as well as further ones that are used in statistical
computations. These are defined to (at least) 30 digits accuracy in
Rmath.h. The following definitions use ln(x) for the
natural logarithm (log(x) in R).

	Name	Definition (ln = log)	round(value, 7)

	M_E	e	2.7182818

	M_LOG2E	log2(e)	1.4426950

	M_LOG10E	log10(e)	0.4342945

	M_LN2	ln(2)	0.6931472

	M_LN10	ln(10)	2.3025851

	M_PI	pi	3.1415927

	M_PI_2	pi/2	1.5707963

	M_PI_4	pi/4	0.7853982

	M_1_PI	1/pi	0.3183099

	M_2_PI	2/pi	0.6366198

	M_2_SQRTPI	2/sqrt(pi)	1.1283792

	M_SQRT2	sqrt(2)	1.4142136

	M_SQRT1_2	1/sqrt(2)	0.7071068

	M_SQRT_3	sqrt(3)	1.7320508

	M_SQRT_32	sqrt(32)	5.6568542

	M_LOG10_2	log10(2)	0.3010300

	M_2PI	2*pi	6.2831853

	M_SQRT_PI	sqrt(pi)	1.7724539

	M_1_SQRT_2PI	1/sqrt(2*pi)	0.3989423

	M_SQRT_2dPI	sqrt(2/pi)	0.7978846

	M_LN_SQRT_PI	ln(sqrt(pi))	0.5723649

	M_LN_SQRT_2PI	ln(sqrt(2*pi))	0.9189385

	M_LN_SQRT_PId2	ln(sqrt(pi/2))	0.2257914

For compatibility with S this file defines the constant PI
(unless STRICT_R_HEADERS is defined): this is deprecated and
should be replaced by M_PI. Constants.h includes either C
header float.h or C++ header cfloat, which provide
constants such as DBL_MAX.

Further, the included header R_ext/Boolean.h has enumeration
constants TRUE and FALSE of type Rboolean in
order to provide a way of using “logical” variables in C consistently.
This can conflict with other software: for example it conflicts with the
headers in IJG’s jpeg-9 (but not earlier versions).

6.8 Optimization

The C code underlying optim can be accessed directly. The user
needs to supply a function to compute the function to be minimized, of
the type

typedef double optimfn(int n, double *par, void *ex);

where the first argument is the number of parameters in the second
argument. The third argument is a pointer passed down from the calling
routine, normally used to carry auxiliary information.

Some of the methods also require a gradient function

typedef void optimgr(int n, double *par, double *gr, void *ex);

which passes back the gradient in the gr argument. No function
is provided for finite-differencing, nor for approximating the Hessian
at the result.

The interfaces (defined in header R_ext/Applic.h) are

	Nelder Mead:

void nmmin(int n, double *xin, double *x, double *Fmin, optimfn fn,
 int *fail, double abstol, double intol, void *ex,
 double alpha, double beta, double gamma, int trace,
 int *fncount, int maxit);

	BFGS:

void vmmin(int n, double *x, double *Fmin,
 optimfn fn, optimgr gr, int maxit, int trace,
 int *mask, double abstol, double reltol, int nREPORT,
 void *ex, int *fncount, int *grcount, int *fail);

	Conjugate gradients:

void cgmin(int n, double *xin, double *x, double *Fmin,
 optimfn fn, optimgr gr, int *fail, double abstol,
 double intol, void *ex, int type, int trace,
 int *fncount, int *grcount, int maxit);

	Limited-memory BFGS with bounds:

void lbfgsb(int n, int lmm, double *x, double *lower,
 double *upper, int *nbd, double *Fmin, optimfn fn,
 optimgr gr, int *fail, void *ex, double factr,
 double pgtol, int *fncount, int *grcount,
 int maxit, char *msg, int trace, int nREPORT);

	Simulated annealing:

void samin(int n, double *x, double *Fmin, optimfn fn, int maxit,
 int tmax, double temp, int trace, void *ex);

Many of the arguments are common to the various methods. n is
the number of parameters, x or xin is the starting
parameters on entry and x the final parameters on exit, with
final value returned in Fmin. Most of the other parameters can
be found from the help page for optim: see the source code
src/appl/lbfgsb.c for the values of nbd, which
specifies which bounds are to be used.

6.9 Integration

The C code underlying integrate can be accessed directly. The
user needs to supply a vectorizing C function to compute the
function to be integrated, of the type

typedef void integr_fn(double *x, int n, void *ex);

where x[] is both input and output and has length n, i.e.,
a C function, say fn, of type integr_fn must basically do
for(i in 1:n) x[i] := f(x[i], ex). The vectorization requirement
can be used to speed up the integrand instead of calling it n
times. Note that in the current implementation built on QUADPACK,
n will be either 15 or 21. The ex argument is a pointer
passed down from the calling routine, normally used to carry auxiliary
information.

There are interfaces (defined in header R_ext/Applic.h) for
integrals over finite and infinite intervals (or “ranges” or
“integration boundaries”).

	Finite:

void Rdqags(integr_fn f, void *ex, double *a, double *b,
 double *epsabs, double *epsrel,
 double *result, double *abserr, int *neval, int *ier,
 int *limit, int *lenw, int *last,
 int *iwork, double *work);

	Infinite:

void Rdqagi(integr_fn f, void *ex, double *bound, int *inf,
 double *epsabs, double *epsrel,
 double *result, double *abserr, int *neval, int *ier,
 int *limit, int *lenw, int *last,
 int *iwork, double *work);

Only the 3rd and 4th argument differ for the two integrators; for the
finite range integral using Rdqags, a and b are the
integration interval bounds, whereas for an infinite range integral using
Rdqagi, bound is the finite bound of the integration (if
the integral is not doubly-infinite) and inf is a code indicating
the kind of integration range,

	inf = 1

	corresponds to (bound, +Inf),

	inf = -1

	corresponds to (-Inf, bound),

	inf = 2

	corresponds to (-Inf, +Inf),

f and ex define the integrand function, see above;
epsabs and epsrel specify the absolute and relative
accuracy requested, result, abserr and last are the
output components value, abs.err and subdivisions
of the R function integrate, where neval gives the number of
integrand function evaluations, and the error code ier is
translated to R’s integrate() $ message, look at that function
definition. limit corresponds to integrate(...,
subdivisions = *). It seems you should always define the two work
arrays and the length of the second one as

 lenw = 4 * limit;
 iwork = (int *) R_alloc(limit, sizeof(int));
 work = (double *) R_alloc(lenw, sizeof(double));

The comments in the source code in src/appl/integrate.c give
more details, particularly about reasons for failure (ier >= 1).

6.10 Utility functions

R has a fairly comprehensive set of sort routines which are made
available to users’ C code.
The following is declared in header file Rinternals.h.

	Function: void R_orderVector (int* indx, int n, SEXP arglist, Rboolean nalast, Rboolean decreasing)

	Function: void R_orderVector1 (int* indx, int n, SEXP x, Rboolean nalast, Rboolean decreasing)

	
R_orderVector() corresponds to R’s order(..., na.last, decreasing).
More specifically, indx <- order(x, y, na.last, decreasing) corresponds to
R_orderVector(indx, n, Rf_lang2(x, y), nalast, decreasing) and for
three vectors, Rf_lang3(x,y,z) is used as arglist.

Both R_orderVector and R_orderVector1 assume the vector
indx to be allocated to length >= n. On return,
indx[] contains a permutation of 0:(n-1), i.e., 0-based C
indices (and not 1-based R indices, as R’s order()).

When ordering only one vector, R_orderVector1 is faster and
corresponds (but is 0-based) to R’s indx <- order(x, na.last,
decreasing). It was added in R 3.3.0.

All other sort routines are declared in header file
R_ext/Utils.h (included by R.h) and include the following.

	Function: void R_isort (int* x, int n)

	Function: void R_rsort (double* x, int n)

	Function: void R_csort (Rcomplex* x, int n)

	Function: void rsort_with_index (double* x, int* index, int n)

	The first three sort integer, real (double) and complex data
respectively. (Complex numbers are sorted by the real part first then
the imaginary part.) NAs are sorted last.

rsort_with_index sorts on x, and applies the same
permutation to index. NAs are sorted last.

	Function: void revsort (double* x, int* index, int n)

	Is similar to rsort_with_index but sorts into decreasing order,
and NAs are not handled.

	Function: void iPsort (int* x, int n, int k)

	Function: void rPsort (double* x, int n, int k)

	Function: void cPsort (Rcomplex* x, int n, int k)

	These all provide (very) partial sorting: they permute x so that
x[k] is in the correct place with smaller values to
the left, larger ones to the right.

	Function: void R_qsort (double *v, size_t i, size_t j)

	Function: void R_qsort_I (double *v, int *I, int i, int j)

	Function: void R_qsort_int (int *iv, size_t i, size_t j)

	Function: void R_qsort_int_I (int *iv, int *I, int i, int j)

	

These routines sort v[i:j] or
iv[i:j] (using 1-indexing, i.e.,
v[1] is the first element) calling the quicksort algorithm
as used by R’s sort(v, method = "quick") and documented on the
help page for the R function sort. The ..._I()
versions also return the sort.index() vector in I. Note
that the ordering is not stable, so tied values may be permuted.

Note that NAs are not handled (explicitly) and you should
use different sorting functions if NAs can be present.

	Function: subroutine qsort4 (double precision v, integer indx, integer ii, integer jj)

	Function: subroutine qsort3 (double precision v, integer ii, integer jj)

	
The Fortran interface routines for sorting double precision vectors are
qsort3 and qsort4, equivalent to R_qsort and
R_qsort_I, respectively.

	Function: void R_max_col (double* matrix, int* nr, int* nc, int* maxes, int* ties_meth)

	Given the nr by nc matrix matrix in column-major
(“Fortran”)
order, R_max_col() returns in maxes[i-1] the
column number of the maximal element in the i-th row (the same as
R’s max.col() function). In the case of ties (multiple maxima),
*ties_meth is an integer code in 1:3 determining the method:
1 = “random”, 2 = “first” and 3 = “last”.
See R’s help page ?max.col.

	Function: int findInterval (double* xt, int n, double x, Rboolean rightmost_closed, Rboolean all_inside, int ilo, int* mflag)

	Function: int findInterval2(double* xt, int n, double x, Rboolean rightmost_closed, Rboolean all_inside, Rboolean left_open, int ilo, int* mflag)

	Given the ordered vector xt of length n, return the interval
or index of x in xt[], typically max(i; 1 <= i <= n & xt[i] <=
x) where we use 1-indexing as in R and Fortran (but not C). If
rightmost_closed is true, also returns n-1 if x
equals xt[n]. If all_inside is not 0, the
result is coerced to lie in 1:(n-1) even when x is
outside the xt[] range. On return, *mflag equals
-1 if x < xt[1], +1 if x >=
xt[n], and 0 otherwise.

The algorithm is particularly fast when ilo is set to the last
result of findInterval() and x is a value of a sequence which
is increasing or decreasing for subsequent calls.

findInterval2() is a generalization of findInterval(),
with an extra Rboolean argument left_open. Setting
left_open = TRUE basically replaces all left-closed right-open
intervals t) by left-open ones t], see the help page
of R function findInterval for details.

There is also an F77_CALL(interv)() version of
findInterval() with the same arguments, but all pointers.

A system-independent interface to produce the name of a temporary
file is provided as

	Function: char * R_tmpnam (const char *prefix, const char *tmpdir)

	Function: char * R_tmpnam2 (const char *prefix, const char *tmpdir, const char *fileext)

	Function: void R_free_tmpnam (char *name)

	Return a pathname for a temporary file with name beginning with
prefix and ending with fileext in directory tmpdir.
A NULL prefix or extension is replaced by "". Note that
the return value is dynamically allocated and should be freed using
R_free_tmpnam when no longer needed (unlike the
system call tmpnam). Freeing the result using free is no
longer recommended.

	Function: void R_atof (const char* str)

	Function: void R_strtod (const char* str, char ** end)

	Implementations of the C99/POSIX functions atof and strtod
which guarantee platform-dependent behaviour, including always using the
period as the decimal point aka ‘radix character’ and converting
"NA" to R’s NA_REAL_ .

There is also the internal function used to expand file names in several
R functions, and called directly by path.expand.

	Function: const char * R_ExpandFileName (const char *fn)

	Expand a path name fn by replacing a leading tilde by the user’s
home directory (if defined). The precise meaning is platform-specific;
it will usually be taken from the environment variable HOME if
this is defined.

For historical reasons there are Fortran interfaces to functions
D1MACH and I1MACH. These can be called from C code as
e.g. F77_CALL(d1mach)(4). Note that these are emulations of
the original functions by Fox, Hall and Schryer on Netlib at
https://netlib.org/slatec/src/ for IEC 60559 arithmetic
(required by R).

6.11 Re-encoding

R has its own C-level interface to the encoding conversion
capabilities provided by iconv because there are
incompatibilities between the declarations in different implementations
of iconv.

These are declared in header file R_ext/Riconv.h.

	Function: void * Riconv_open (const char *to, const char *from)

	Set up a pointer to an encoding object to be used to convert between two
encodings: "" indicates the current locale.

	Function: size_t Riconv (void *cd, const char **inbuf, size_t *inbytesleft, char **outbuf, size_t *outbytesleft)

	Convert as much as possible of inbuf to outbuf. Initially
the size_t variables indicate the number of bytes available in the
buffers, and they are updated (and the char pointers are updated
to point to the next free byte in the buffer). The return value is the
number of characters converted, or (size_t)-1 (beware:
size_t is usually an unsigned type). It should be safe to assume
that an error condition sets errno to one of E2BIG (the
output buffer is full), EILSEQ (the input cannot be converted,
and might be invalid in the encoding specified) or EINVAL (the
input does not end with a complete multi-byte character).

	Function: int Riconv_close (void * cd)

	Free the resources of an encoding object.

6.12 Condition handling and cleanup code

Three functions are available for establishing condition handlers from
within C code:

#include <Rinternals.h>

SEXP R_tryCatchError(SEXP (*fun)(void *data), void *data,
		 SEXP (*hndlr)(SEXP cond, void *hdata), void *hdata);

SEXP R_tryCatch(SEXP (*fun)(void *data), void *data,
		SEXP,
		SEXP (*hndlr)(SEXP cond, void *hdata), void *hdata,
		void (*clean)(void *cdata), void *cdata);
SEXP R_withCallingErrorHandler(SEXP (*fun)(void *data), void *data,
			 SEXP (*hndlr)(SEXP cond, void *hdata), void *hdata)

R_tryCatchError establishes an exiting handler for conditions
inheriting form class error.

R_tryCatch can be used to establish a handler for other
conditions and to register a cleanup action. The conditions to be
handled are specified as a character vector (STRSXP).
A NULL pointer can be passed as fun or clean
if condition handling or cleanup are not needed.

These are currently implemented using the R-level tryCatch
mechanism so are subject to some overhead.

R_withCallingErrorHandler establishes a calling handler for
conditions inheriting from class error. It establishes the
handler without calling back into R and will therefore be more
efficient.

The function R_UnwindProtect can be used to ensure that a cleanup
action takes place on ordinary return as well as on a non-local transfer
of control, which R implements as a longjmp.

SEXP R_UnwindProtect(SEXP (*fun)(void *data), void *data,
 void (*clean)(void *data, Rboolean jump), void *cdata,
 SEXP cont);

R_UnwindProtect can be used in two ways. The simper usage,
suitable for use in C code, passes NULL for the cont
argument. R_UnwindProtect will call fun(data). If
fun returns a value, then R_UnwindProtect calls
clean(cleandata, FALSE) before returning the value returned by
fun. If fun executes a non-local transfer of control, then
clean(cleandata, TRUE) is called, and the non-local transfer of
control is resumed.

The second use pattern, suitable to support C++ stack unwinding, uses
two additional functions:

SEXP R_MakeUnwindCont();
NORET void R_ContinueUnwind(SEXP cont);

R_MakeUnwindCont allocates a continuation token
cont to pass to R_UnwindProtect. This token should be
protected with PROTECT before calling
R_UnwindProtect. When the clean function is called with
jump == TRUE, indicating that R is executing a non-local transfer
of control, it can throw a C++ exception to a C++ catch outside
the C++ code to be unwound, and then use the continuation token in the a
call R_ContinueUnwind(cont) to resume the non-local transfer of
control within R.

6.13 Allowing interrupts

No part of R can be interrupted whilst running long computations in
compiled code, so programmers should make provision for the code to be
interrupted at suitable points by calling from C

#include <R_ext/Utils.h>

void R_CheckUserInterrupt(void);

and from Fortran

subroutine rchkusr()

These check if the user has requested an interrupt, and if so branch to
R’s error signaling functions.

Note that it is possible that the code behind one of the entry points
defined here if called from your C or Fortran code could be interruptible
or generate an error and so not return to your code.

6.14 Platform and version information

The header files define USING_R, which can be used to test if
the code is indeed being used with R.

Header file Rconfig.h (included by R.h) is used to define
platform-specific macros that are mainly for use in other header files.
The macro WORDS_BIGENDIAN is defined on
big-endian169
systems (e.g. most OSes on Sparc and PowerPC hardware) and not on
little-endian systems (nowadays all the commoner R platforms). It
can be useful when manipulating binary files. NB: these macros apply
only to the C compiler used to build R, not necessarily to another C
or C++ compiler.

Header file Rversion.h (not included by R.h)
defines a macro R_VERSION giving the version number encoded as an
integer, plus a macro R_Version to do the encoding. This can be
used to test if the version of R is late enough, or to include
back-compatibility features. For protection against very old versions
of R which did not have this macro, use a construction such as

#if defined(R_VERSION) && R_VERSION >= R_Version(3, 1, 0)
 ...
#endif

More detailed information is available in the macros R_MAJOR,
R_MINOR, R_YEAR, R_MONTH and R_DAY: see the
header file Rversion.h for their format. Note that the minor
version includes the patch level (as in ‘2.2’).

Packages which use alloca need to ensure it is defined: as it is
part of neither C nor POSIX there is no standard way to do so. One can
use

#include <Rconfig.h> // for HAVE_ALLOCA_H
#ifdef __GNUC__
// this covers gcc, clang, icc
undef alloca
define alloca(x) __builtin_alloca((x))
#elif defined(HAVE_ALLOCA_H)
// needed for native compilers on Solaris and AIX
include <alloca.h>
#endif

(and this should be included before standard C headers such as
stdlib.h, since on some platforms these include malloc.h
which may have a conflicting definition), which suffices for known R
platforms.

6.15 Inlining C functions

The C99 keyword inline should be recognized by all compilers
nowadays used to build R. Portable code which might be used with
earlier versions of R can be written using the macro R_INLINE
(defined in file Rconfig.h included by R.h), as for
example from package cluster

#include <R.h>

static R_INLINE int ind_2(int l, int j)
{
...
}

Be aware that using inlining with functions in more than one compilation
unit is almost impossible to do portably, see
https://www.greenend.org.uk/rjk/tech/inline.html, so this usage
is for static functions as in the example. All the R
configure code has checked is that R_INLINE can be used in a
single C file with the compiler used to build R. We recommend that
packages making extensive use of inlining include their own configure
code.

6.16 Controlling visibility

Header R_ext/Visibility.h has some definitions for controlling the
visibility of entry points. These are only effective when
‘HAVE_VISIBILITY_ATTRIBUTE’ is defined – this is checked when R
is configured and recorded in header Rconfig.h (included by
R_ext/Visibility.h). It is often defined on modern Unix-alikes
with a recent compiler170, but not
supported on macOS nor Windows. Minimizing the visibility of symbols in
a shared library will both speed up its loading (unlikely to be
significant) and reduce the possibility of linking to other entry points
of the same name.

C/C++ entry points prefixed by attribute_hidden will not be
visible in the shared object. There is no comparable mechanism for
Fortran entry points, but there is a more comprehensive scheme used by,
for example package stats. Most compilers which allow control of
visibility will allow control of visibility for all symbols via a
flag, and where known the flag is encapsulated in the macros
‘C_VISIBILITY’, ‘CXX_VISIBILITY’171 and ‘F_VISIBILITY’ for C, C++ and
Fortran compilers.172 These are defined in etc/Makeconf and so
available for normal compilation of package code. For example,
src/Makevars could include some of

PKG_CFLAGS=$(C_VISIBILITY)
PKG_CXXFLAGS=$(CXX_VISIBILITY)
PKG_FFLAGS=$(F_VISIBILITY)

This would end up with no visible entry points, which would be
pointless. However, the effect of the flags can be overridden by using
the attribute_visible prefix. A shared object which registers
its entry points needs only for have one visible entry point, its
initializer, so for example package stats has

void attribute_visible R_init_stats(DllInfo *dll)
{
 R_registerRoutines(dll, CEntries, CallEntries, FortEntries, NULL);
 R_useDynamicSymbols(dll, FALSE);
...
}

Because the ‘C_VISIBILITY’ mechanism is only useful in conjunction
with attribute_visible, it is not enabled unless
‘HAVE_VISIBILITY_ATTRIBUTE’ is defined. The usual visibility flag
is -fvisibility=hidden: some compilers also support
-fvisibility-inlines-hidden which can be used by overriding
‘C_VISIBILITY’ and ‘CXX_VISIBILITY’ in config.site when
building R, or editing etc/Makeconf in the R installation.

Note that configure only checks that visibility attributes and
flags are accepted, not that they actually hide symbols.

The visibility mechanism is not available on Windows, but there is an
equally effective way to control which entry points are visible, by
supplying a definitions file
pkgnme/src/pkgname-win.def: only entry points
listed in that file will be visible. Again using stats as an
example, it has

LIBRARY stats.dll
EXPORTS
 R_init_stats

6.17 Using these functions in your own C code

It is possible to build Mathlib, the R set of mathematical
functions documented in Rmath.h, as a standalone library
libRmath under both Unix-alikes and Windows. (This includes the
functions documented in Numerical analysis subroutines as from
that header file.)

The library is not built automatically when R is installed, but can
be built in the directory src/nmath/standalone in the R
sources: see the file README there. To use the code in your own
C program include

#define MATHLIB_STANDALONE
#include <Rmath.h>

and link against ‘-lRmath’ (and perhaps ‘-lm’). There is an
example file test.c.

A little care is needed to use the random-number routines. You will
need to supply the uniform random number generator

double unif_rand(void)

or use the one supplied (and with a dynamic library or DLL you will have
to use the one supplied, which is the Marsaglia-multicarry with an entry
points

set_seed(unsigned int, unsigned int)

to set its seeds and

get_seed(unsigned int *, unsigned int *)

to read the seeds).

6.18 Organization of header files

The header files which R installs are in directory
R_INCLUDE_DIR (default R_HOME/include). This
currently includes

	R.h	includes many other files

	Rinternals.h	definitions for using R’s internal
structures

	Rdefines.h	macros for an S-like interface to the
above (no longer maintained)

	Rmath.h	standalone math library

	Rversion.h	R version information

	Rinterface.h	for add-on front-ends (Unix-alikes only)

	Rembedded.h	for add-on front-ends

	R_ext/Applic.h	optimization and integration

	R_ext/BLAS.h	C definitions for BLAS routines

	R_ext/Callbacks.h	C (and R function) top-level task
handlers

	R_ext/GetX11Image.h	X11Image interface used by package
trkplot

	R_ext/Lapack.h	C definitions for some LAPACK routines

	R_ext/Linpack.h	C definitions for some LINPACK
routines, not all of which are included in R

	R_ext/Parse.h	a small part of R’s parse interface:
not part of the stable API.

	R_ext/RStartup.h	for add-on front-ends

	R_ext/Rdynload.h	needed to register compiled code in
packages

	R_ext/Riconv.h	interface to iconv

	R_ext/Visibility.h	definitions controlling visibility

	R_ext/eventloop.h	for add-on front-ends and for
packages that need to share in the R event loops (not Windows)

The following headers are included by R.h:

	Rconfig.h	configuration info that is made available

	R_ext/Arith.h	handling for NAs, NaNs,
Inf/-Inf

	R_ext/Boolean.h	TRUE/FALSE type

	R_ext/Complex.h	C typedefs for R’s complex

	R_ext/Constants.h	constants

	R_ext/Error.h	error signaling

	R_ext/Memory.h	memory allocation

	R_ext/Print.h	Rprintf and variations.

	R_ext/RS.h	definitions common to R.h and the former
S.h, including F77_CALL etc.

	R_ext/Random.h	random number generation

	R_ext/Utils.h	sorting and other utilities

	R_ext/libextern.h	definitions for exports from
R.dll on Windows.

The graphics systems are exposed in headers
R_ext/GraphicsEngine.h, R_ext/GraphicsDevice.h (which it
includes) and R_ext/QuartzDevice.h. Facilities for defining
custom connection implementations are provided in
R_ext/Connections.h, but make sure you consult the file before
use.

Let us re-iterate the advice to include in C++ code system headers
before the R header files, especially Rinternals.h (included
by Rdefines.h) and Rmath.h, which redefine names which may
be used in system headers, or (preferably) to define R_NO_REMAP.
Setting the environment variable _R_CXX_USE_NO_REMAP_ to a true
value allows the need for this to be tested, as it causes R CMD
INSTALL to compile C++ code defining R_NO_REMAP. This is
planned to become the default in future.

Footnotes

(164)

Known problems have been
defining LENGTH, error, length, match,
vector and warning: whether these matter depends on the OS
and toolchain, with many problem reports involving clang++.

(165)

That was not
the case on Windows prior to R 4.2.0.

(166)

also part of
C++11.

(167)

The ‘F77_’ in the names is historical and
dates back to usage in S.

(168)

It is an optional C11
extension.

(169)

https://en.wikipedia.org/wiki/Endianness.

(170)

It is defined by the Intel compilers,
but also hides unsatisfied references and so cannot be used with R.
It was not supported by the AIX nor Solaris compilers.

(171)

This applies to the
compiler for the default C++ dialect (currently C++11) and not
necessarily to other dialects.

(172)

In some cases Fortran compilers accept the
flag but do not actually hide their symbols: at the time of writing that
was true of gfortran, flang-new and Intel’s
ifx.

7 Generic functions and methods

R programmers will often want to add methods for existing generic
functions, and may want to add new generic functions or make existing
functions generic. In this chapter we give guidelines for doing so,
with examples of the problems caused by not adhering to them.

This chapter only covers the ‘informal’ class system copied from S3,
and not with the S4 (formal) methods of package methods.

First, a caveat: a function named gen.cl will
be invoked by the generic gen for class cl, so
do not name functions in this style unless they are intended to be
methods.

The key function for methods is NextMethod, which dispatches the
next method. It is quite typical for a method function to make a few
changes to its arguments, dispatch to the next method, receive the
results and modify them a little. An example is

t.data.frame <- function(x)
{
 x <- as.matrix(x)
 NextMethod("t")
}

Note that the example above works because there is a next method,
the default method, not that a new method is selected when the class is
changed.

Any method a programmer writes may be invoked from another method
by NextMethod, with the arguments appropriate to the
previous method. Further, the programmer cannot predict which method
NextMethod will pick (it might be one not yet dreamt of), and the
end user calling the generic needs to be able to pass arguments to the
next method. For this to work

A method must have all the arguments of the generic, including
… if the generic does.

It is a grave misunderstanding to think that a method needs only to
accept the arguments it needs. The original S version of
predict.lm did not have a … argument, although
predict did. It soon became clear that predict.glm needed
an argument dispersion to handle over-dispersion. As
predict.lm had neither a dispersion nor a …
argument, NextMethod could no longer be used. (The legacy, two
direct calls to predict.lm, lives on in predict.glm in
R, which is based on the workaround for S3 written by Venables &
Ripley.)

Further, the user is entitled to use positional matching when calling
the generic, and the arguments to a method called by UseMethod
are those of the call to the generic. Thus

A method must have arguments in exactly the same order as the
generic.

To see the scale of this problem, consider the generic function
scale, defined as

scale <- function (x, center = TRUE, scale = TRUE)
 UseMethod("scale")

Suppose an unthinking package writer created methods such as

scale.foo <- function(x, scale = FALSE, ...) { }

Then for x of class "foo" the calls

scale(x, , TRUE)
scale(x, scale = TRUE)

would most likely do different things, to the justifiable
consternation of the end user.

To add a further twist, which default is used when a user calls
scale(x) in our example? What if

scale.bar <- function(x, center, scale = TRUE) NextMethod("scale")

and x has class c("bar", "foo")? It is the default
specified in the method that is used, but the default
specified in the generic may be the one the user sees.
This leads to the recommendation:

If the generic specifies defaults, all methods should use the same defaults.

An easy way to follow these recommendations is to always keep generics
simple, e.g.

scale <- function(x, ...) UseMethod("scale")

Only add parameters and defaults to the generic if they make sense in
all possible methods implementing it.

7.1 Adding new generics

When creating a new generic function, bear in mind that its argument
list will be the maximal set of arguments for methods, including those
written elsewhere years later. So choosing a good set of arguments may
well be an important design issue, and there need to be good arguments
not to include a … argument.

If a … argument is supplied, some thought should be given
to its position in the argument sequence. Arguments which follow
… must be named in calls to the function, and they must be
named in full (partial matching is suppressed after …).
Formal arguments before … can be partially matched, and so
may ‘swallow’ actual arguments intended for …. Although it
is commonplace to make the … argument the last one, that is
not always the right choice.

Sometimes package writers want to make generic a function in the base
package, and request a change in R. This may be justifiable, but
making a function generic with the old definition as the default method
does have a small performance cost. It is never necessary, as a package
can take over a function in the base package and make it generic by
something like

foo <- function(object, ...) UseMethod("foo")
foo.default <- function(object, ...) base::foo(object)

Earlier versions of this manual suggested assigning foo.default <-
base::foo. This is not a good idea, as it captures the base
function at the time of installation and it might be changed as R is
patched or updated.

The same idea can be applied for functions in other packages.

8 Linking GUIs and other front-ends to R

There are a number of ways to build front-ends to R: we take this to
mean a GUI or other application that has the ability to submit commands
to R and perhaps to receive results back (not necessarily in a text
format). There are other routes besides those described here, for
example the package Rserve (from CRAN, see also
https://www.rforge.net/Rserve/) and connections to Java in
‘JRI’ (part of the rJava package on CRAN).

Note that the APIs described in this chapter are only intended to be
used in an alternative front-end: they are not part of the API made
available for R packages and can be dangerous to use in a
conventional package (although packages may contain alternative
front-ends). Conversely some of the functions from the API (such as
R_alloc) should not be used in front-ends.

8.1 Embedding R under Unix-alikes

R can be built as a shared library173 if configured with --enable-R-shlib. This
shared library can be used to run R from alternative front-end
programs. We will assume this has been done for the rest of this
section. Also, it can be built as a static library if configured with
--enable-R-static-lib, and that can be used in a very similar
way (at least on Linux: on other platforms one needs to ensure that all
the symbols exported by libR.a are linked into the front-end).

The command-line R front-end, R_HOME/bin/exec/R, is one
such example, and the former GNOME (see package gnomeGUI
on CRAN’s ‘Archive’ area) and macOS consoles are others.
The source for R_HOME/bin/exec/R is in file
src/main/Rmain.c and is very simple

int Rf_initialize_R(int ac, char **av); /* in ../unix/system.c */
void Rf_mainloop(); /* in main.c */

extern int R_running_as_main_program; /* in ../unix/system.c */

int main(int ac, char **av)
{
 R_running_as_main_program = 1;
 Rf_initialize_R(ac, av);
 Rf_mainloop(); /* does not return */
 return 0;
}

indeed, misleadingly simple. Remember that
R_HOME/bin/exec/R is run from a shell script
R_HOME/bin/R which sets up the environment for the
executable, and this is used for

	Setting R_HOME and checking it is valid, as well as the path
R_SHARE_DIR and R_DOC_DIR to the installed share and
doc directory trees. Also setting R_ARCH if needed.

	Setting LD_LIBRARY_PATH to include the directories used in linking
R. This is recorded as the default setting of
R_LD_LIBRARY_PATH in the shell script
R_HOME/etcR_ARCH/ldpaths.

	Processing some of the arguments, for example to run R under a
debugger and to launch alternative front-ends to provide GUIs.

The first two of these can be achieved for your front-end by running it
via R CMD. So, for example

R CMD /usr/local/lib/R/bin/exec/R
R CMD exec/R

will both work in a standard R installation. (R CMD looks
first for executables in R_HOME/bin. These command-lines
need modification if a sub-architecture is in use.) If you do not want
to run your front-end in this way, you need to ensure that R_HOME
is set and LD_LIBRARY_PATH is suitable. (The latter might well
be, but modern Unix/Linux systems do not normally include
/usr/local/lib (/usr/local/lib64 on some architectures),
and R does look there for system components.)

The other senses in which this example is too simple are that all the
internal defaults are used and that control is handed over to the
R main loop. There are a number of small examples174 in the
tests/Embedding directory. These make use of
Rf_initEmbeddedR in src/main/Rembedded.c, and essentially
use

#include <Rembedded.h>

int main(int ac, char **av)
{
 /* do some setup */
 Rf_initEmbeddedR(argc, argv);
 /* do some more setup */

 /* submit some code to R, which is done interactively via
 run_Rmainloop();

 A possible substitute for a pseudo-console is

 R_ReplDLLinit();
 while(R_ReplDLLdo1() > 0) {
 /* add user actions here if desired */
 }

 */
 Rf_endEmbeddedR(0);
 /* final tidying up after R is shutdown */
 return 0;
}

If you do not want to pass R arguments, you can fake an argv
array, for example by

 char *argv[]= {"REmbeddedPostgres", "--silent"};
 Rf_initEmbeddedR(sizeof(argv)/sizeof(argv[0]), argv);

However, to make a GUI we usually do want to run run_Rmainloop
after setting up various parts of R to talk to our GUI, and arranging
for our GUI callbacks to be called during the R mainloop.

One issue to watch is that on some platforms Rf_initEmbeddedR and
Rf_endEmbeddedR change the settings of the FPU (e.g. to allow
errors to be trapped and to make use of extended precision registers).

The standard code sets up a session temporary directory in the usual
way, unless R_TempDir is set to a non-NULL value before
Rf_initEmbeddedR is called. In that case the value is assumed to
contain an existing writable directory, and it is not
cleaned up when R is shut down.

Rf_initEmbeddedR sets R to be in interactive mode: you can set
R_Interactive (defined in Rinterface.h) subsequently to
change this.

Note that R expects to be run with the locale category
‘LC_NUMERIC’ set to its default value of C, and so should
not be embedded into an application which changes that.

It is the user’s responsibility to attempt to initialize only once. To
protect the R interpreter, Rf_initialize_R will exit the
process if re-initialization is attempted.

8.1.1 Compiling against the R library

Suitable flags to compile and link against the R (shared or static)
library can be found by

R CMD config --cppflags
R CMD config --ldflags

(These apply only to an uninstalled copy or a standard install.)

If R is installed, pkg-config is available and neither
sub-architectures nor a macOS framework have been used, alternatives for
a shared R library are

pkg-config --cflags libR
pkg-config --libs libR

and for a static R library

pkg-config --cflags libR
pkg-config --static --libs libR

(This may work for an installed OS framework if pkg-config is
taught where to look for libR.pc: it is installed inside the
framework.)

However, a more comprehensive way is to set up a Makefile to
compile the front-end. Suppose file myfe.c is to be compiled to
myfe. A suitable Makefile might be

WARNING: does not work when ${R_HOME} contains spaces
include ${R_HOME}/etc${R_ARCH}/Makeconf
all: myfe

The following is not needed, but avoids PIC flags.
myfe.o: myfe.c
 $(CC) $(ALL_CPPFLAGS) $(CFLAGS) -c myfe.c -o $@

replace $(LIBR) $(LIBS) by $(STATIC_LIBR) if R was build with a static libR
myfe: myfe.o
 $(MAIN_LINK) -o $@ myfe.o $(LIBR) $(LIBS)

invoked as

R CMD make
R CMD myfe

Even though not recommended, ${R_HOME} may contain spaces. In
that case, it cannot be passed as an argument to include in the
makefile. Instead, one can instruct make using the -f
option to include Makeconf, for example via recursive
invocation of make, see Writing portable packages.

all:
 $(MAKE) -f "${R_HOME}/etc${R_ARCH}/Makeconf" -f Makefile.inner

Additional flags which $(MAIN_LINK) includes are, amongst others,
those to select OpenMP and --export-dynamic for the GNU linker
on some platforms. In principle $(LIBS) is not needed
when using a shared R library as libR is linked against
those libraries, but some platforms need the executable also linked
against them.

8.1.2 Setting R callbacks

For Unix-alikes there is a public header file Rinterface.h that
makes it possible to change the standard callbacks used by R in a
documented way. This defines pointers (if R_INTERFACE_PTRS is
defined)

extern void (*ptr_R_Suicide)(const char *);
extern void (*ptr_R_ShowMessage)(const char *);
extern int (*ptr_R_ReadConsole)(const char *, unsigned char *, int, int);
extern void (*ptr_R_WriteConsole)(const char *, int);
extern void (*ptr_R_WriteConsoleEx)(const char *, int, int);
extern void (*ptr_R_ResetConsole)();
extern void (*ptr_R_FlushConsole)();
extern void (*ptr_R_ClearerrConsole)();
extern void (*ptr_R_Busy)(int);
extern void (*ptr_R_CleanUp)(SA_TYPE, int, int);
extern int (*ptr_R_ShowFiles)(int, const char **, const char **,
 const char *, Rboolean, const char *);
extern int (*ptr_R_ChooseFile)(int, char *, int);
extern int (*ptr_R_EditFile)(const char *);
extern void (*ptr_R_loadhistory)(SEXP, SEXP, SEXP, SEXP);
extern void (*ptr_R_savehistory)(SEXP, SEXP, SEXP, SEXP);
extern void (*ptr_R_addhistory)(SEXP, SEXP, SEXP, SEXP);
extern int (*ptr_R_EditFiles)(int, const char **, const char **, const char *);
extern SEXP (*ptr_do_selectlist)(SEXP, SEXP, SEXP, SEXP);
extern SEXP (*ptr_do_dataentry)(SEXP, SEXP, SEXP, SEXP);
extern SEXP (*ptr_do_dataviewer)(SEXP, SEXP, SEXP, SEXP);
extern void (*ptr_R_ProcessEvents)();

which allow standard R callbacks to be redirected to your GUI. What
these do is generally documented in the file src/unix/system.txt.

	Function: void R_ShowMessage (char *message)

	This should display the message, which may have multiple lines: it
should be brought to the user’s attention immediately.

	Function: void R_Busy (int which)

	This function invokes actions (such as change of cursor) when R
embarks on an extended computation (which=1) and when such
a state terminates (which=0).

	Function: int R_ReadConsole (const char *prompt, unsigned char *buf, int buflen, int hist)

	Function: void R_WriteConsole (const char *buf, int buflen)

	Function: void R_WriteConsoleEx (const char *buf, int buflen, int otype)

	Function: void R_ResetConsole ()

	Function: void R_FlushConsole ()

	Function: void R_ClearerrConsole ()

	
These functions interact with a console.

R_ReadConsole prints the given prompt at the console and then
does a fgets(3)–like operation, transferring up to buflen
characters into the buffer buf. The last two bytes should be
set to ‘"\n\0"’ to preserve sanity. If hist is non-zero,
then the line should be added to any command history which is being
maintained. The return value is 0 is no input is available and >0
otherwise.

R_WriteConsoleEx writes the given buffer to the console,
otype specifies the output type (regular output or
warning/error). Call to R_WriteConsole(buf, buflen) is equivalent
to R_WriteConsoleEx(buf, buflen, 0). To ensure backward
compatibility of the callbacks, ptr_R_WriteConsoleEx is used only
if ptr_R_WriteConsole is set to NULL. To ensure that
stdout() and stderr() connections point to the console,
set the corresponding files to NULL via

 R_Outputfile = NULL;
 R_Consolefile = NULL;

R_ResetConsole is called when the system is reset after an error.
R_FlushConsole is called to flush any pending output to the
system console. R_ClearerrConsole clears any errors associated
with reading from the console.

	Function: int R_ShowFiles (int nfile, const char **file, const char **headers, const char *wtitle, Rboolean del, const char *pager)

	
This function is used to display the contents of files.

	Function: int R_ChooseFile (int new, char *buf, int len)

	
Choose a file and return its name in buf of length len.
Return value is 0 for success, > 0 otherwise.

	Function: int R_EditFile (const char *buf)

	Send a file to an editor window.

	Function: int R_EditFiles (int nfile, const char **file, const char **title, const char *editor)

	Send nfile files to an editor, with titles possibly to be used for
the editor window(s).

	Function: SEXP R_loadhistory (SEXP, SEXP, SEXP, SEXP);

	Function: SEXP R_savehistory (SEXP, SEXP, SEXP, SEXP);

	Function: SEXP R_addhistory (SEXP, SEXP, SEXP, SEXP);

	
.Internal functions for loadhistory, savehistory
and timestamp.

If the console has no history mechanism these can be as
simple as

SEXP R_loadhistory (SEXP call, SEXP op, SEXP args, SEXP env)
{
 errorcall(call, "loadhistory is not implemented");
 return R_NilValue;
}
SEXP R_savehistory (SEXP call, SEXP op , SEXP args, SEXP env)
{
 errorcall(call, "savehistory is not implemented");
 return R_NilValue;
}
SEXP R_addhistory (SEXP call, SEXP op , SEXP args, SEXP env)
{
 return R_NilValue;
}

The R_addhistory function should return silently if no history
mechanism is present, as a user may be calling timestamp purely
to write the time stamp to the console.

	Function: void R_Suicide (const char *message)

	This should abort R as rapidly as possible, displaying the message.
A possible implementation is

void R_Suicide (const char *message)
{
 char pp[1024];
 snprintf(pp, 1024, "Fatal error: %s\n", message);
 R_ShowMessage(pp);
 R_CleanUp(SA_SUICIDE, 2, 0);
}

	Function: void R_CleanUp (SA_TYPE saveact, int status, int RunLast)

	
This function invokes any actions which occur at system termination.
It needs to be quite complex:

#include <Rinterface.h>
#include <Rembedded.h> /* for Rf_KillAllDevices */

void R_CleanUp (SA_TYPE saveact, int status, int RunLast)
{
 if(saveact == SA_DEFAULT) saveact = SaveAction;
 if(saveact == SA_SAVEASK) {
 /* ask what to do and set saveact */
 }
 switch (saveact) {
 case SA_SAVE:
 if(runLast) R_dot_Last();
 if(R_DirtyImage) R_SaveGlobalEnv();
 /* save the console history in R_HistoryFile */
 break;
 case SA_NOSAVE:
 if(runLast) R_dot_Last();
 break;
 case SA_SUICIDE:
 default:
 break;
 }

 R_RunExitFinalizers();
 /* clean up after the editor e.g. CleanEd() */

 R_CleanTempDir();

 /* close all the graphics devices */
 if(saveact != SA_SUICIDE) Rf_KillAllDevices();
 fpu_setup(FALSE);

 exit(status);
}

These callbacks should never be changed in a running R session (and
hence cannot be called from an extension package).

	Function: SEXP R_dataentry (SEXP, SEXP, SEXP, SEXP);

	Function: SEXP R_dataviewer (SEXP, SEXP, SEXP, SEXP);

	Function: SEXP R_selectlist (SEXP, SEXP, SEXP, SEXP);

	
.External functions for dataentry (and edit on
matrices and data frames), View and select.list. These
can be changed if they are not currently in use.

8.1.3 Registering symbols

An application embedding R needs a different way of registering
symbols because it is not a dynamic library loaded by R as would be
the case with a package. Therefore R reserves a special
DllInfo entry for the embedding application such that it can
register symbols to be used with .C, .Call etc. This
entry can be obtained by calling getEmbeddingDllInfo, so a
typical use is

DllInfo *info = R_getEmbeddingDllInfo();
R_registerRoutines(info, cMethods, callMethods, NULL, NULL);

The native routines defined by cMethods and callMethods
should be present in the embedding application. See Registering native routines for details on registering symbols in general.

8.1.4 Meshing event loops

One of the most difficult issues in interfacing R to a front-end is
the handling of event loops, at least if a single thread is used. R
uses events and timers for

	Running X11 windows such as the graphics device and data editor, and
interacting with them (e.g., using locator()).

	Supporting Tcl/Tk events for the tcltk package (for at least the
X11 version of Tk).

	Preparing input.

	Timing operations, for example for profiling R code and
Sys.sleep().

	Interrupts, where permitted.

Specifically, the Unix-alike command-line version of R runs separate
event loops for

	Preparing input at the console command-line, in file
src/unix/sys-unix.c.

	Waiting for a response from a socket in the internal functions for
direct socket access in file
src/modules/internet/Rsock.c
and for the interface to libcurl.

	Mouse and window events when displaying the X11-based dataentry window,
in file src/modules/X11/dataentry.c. This is regarded as
modal, and no other events are serviced whilst it is active.

There is a protocol for adding event handlers to the first two types of
event loops, using types and functions declared in the header
R_ext/eventloop.h and described in comments in file
src/unix/sys-std.c. It is possible to add (or remove) an input
handler for events on a particular file descriptor, or to set a polling
interval (via R_wait_usec) and a function to be called
periodically via R_PolledEvents: the polling mechanism is used by
the tcltk package.

It is not intended that these facilities are used by packages, but if
they are needed exceptionally, the package should ensure that it cleans
up and removes its handlers when its namespace is unloaded. Note that
the header sys/select.h is needed175: users should check this is available and define
HAVE_SYS_SELECT_H before including R_ext/eventloop.h. (It
is often the case that another header will include sys/select.h
before eventloop.h is processed, but this should not be relied
on.)

An alternative front-end needs both to make provision for other R
events whilst waiting for input, and to ensure that it is not frozen out
during events of the second type. The ability to add a polled handler
as R_timeout_handler is used by the tcltk package.

8.1.5 Threading issues

Embedded R is designed to be run in the main thread, and all the
testing is done in that context. There is a potential issue with the
stack-checking mechanism where threads are involved. This uses two
variables declared in Rinterface.h (if CSTACK_DEFNS is
defined) as

extern uintptr_t R_CStackLimit; /* C stack limit */
extern uintptr_t R_CStackStart; /* Initial stack address */

Note that uintptr_t is an optional C99 type for which a
substitute is defined in R, so your code needs to define
HAVE_UINTPTR_T appropriately. To do so, test if the type is
defined in C header stdint.h or C++ header cstdint and if
so include the header and define HAVE_UINTPTR_T before including
Rinterface.h. (For C code one can simply include
Rconfig.h, possibly via R.h, and for C++11 code
Rinterface.h will include the header cstdint.)

These will be set176 when Rf_initialize_R is called, to values appropriate to
the main thread. Stack-checking can be disabled by setting
R_CStackLimit = (uintptr_t)-1 immediately after
Rf_initialize_R is called, but it is better to if possible set
appropriate values. (What these are and how to determine them are
OS-specific, and the stack size limit may differ for secondary threads.
If you have a choice of stack size, at least 10Mb is recommended.)

You may also want to consider how signals are handled: R sets signal
handlers for several signals, including SIGINT, SIGSEGV,
SIGPIPE, SIGUSR1 and SIGUSR2, but these can all be
suppressed by setting the variable R_SignalHandlers (declared in
Rinterface.h) to 0.

Note that these variables must not be changed by an R
package: a package should not call R internals which
makes use of the stack-checking mechanism on a secondary thread.

8.2 Embedding R under Windows

This section is only about ‘x86_64’ Windows.

All Windows interfaces to R call entry points in the DLL
R.dll, directly or indirectly. Simpler applications may find it
easier to use the indirect route via (D)COM.

8.2.1 Using (D)COM

(D)COM is a standard Windows mechanism used for communication
between Windows applications. One application (here R) is run as COM
server which offers services to clients, here the front-end calling
application. The services are described in a ‘Type Library’ and are
(more or less) language-independent, so the calling application can be
written in C or C++ or Visual Basic or Perl or Python and so on.
The ‘D’ in (D)COM refers to ‘distributed’, as the client and server can
be running on different machines.

The basic R distribution is not a (D)COM server, but two addons are
currently available that interface directly with R and provide a
(D)COM server:

	There is a (D)COM server called StatConnector written by
Thomas Baier available via https://www.autstat.com/,
which works with R packages to support transfer of data to and from
R and remote execution of R commands, as well as embedding of an
R graphics window.

Recent versions have usage restrictions.

8.2.2 Calling R.dll directly

The R DLL is mainly written in C and has _cdecl entry
points. Calling it directly will be tricky except from C code (or C++
with a little care).

There is a version of the Unix-alike interface calling

int Rf_initEmbeddedR(int ac, char **av);
void Rf_endEmbeddedR(int fatal);

which is an entry point in R.dll. Examples of its use (and a
suitable Makefile.win) can be found in the tests/Embedding
directory of the sources. You may need to ensure that
R_HOME/bin is in your PATH so the R DLLs are found.

Examples of calling R.dll directly are provided in the directory
src/gnuwin32/front-ends, including a simple command-line
front end rtest.c whose code is

#define Win32
#include <windows.h>
#include <stdio.h>
#include <Rversion.h>
#define LibExtern __declspec(dllimport) extern
#include <Rembedded.h>
#include <R_ext/RStartup.h>
/* for askok and askyesnocancel */
#include <graphapp.h>

/* for signal-handling code */
#include <psignal.h>

/* simple input, simple output */

/* This version blocks all events: a real one needs to call ProcessEvents
 frequently. See rterm.c and ../system.c for one approach using
 a separate thread for input.
*/
int myReadConsole(const char *prompt, unsigned char *buf, int len, int addtohistory)
{
 fputs(prompt, stdout);
 fflush(stdout);
 if(fgets((char *)buf, len, stdin)) return 1; else return 0;
}

void myWriteConsole(const char *buf, int len)
{
 printf("%s", buf);
}

void myCallBack(void)
{
 /* called during i/o, eval, graphics in ProcessEvents */
}

void myBusy(int which)
{
 /* set a busy cursor ... if which = 1, unset if which = 0 */
}

static void my_onintr(int sig) { UserBreak = 1; }

int main (int argc, char **argv)
{
 structRstart rp;
 Rstart Rp = &rp;
 char Rversion[25], *RHome, *RUser;

 sprintf(Rversion, "%s.%s", R_MAJOR, R_MINOR);
 if(strcmp(getDLLVersion(), Rversion) != 0) {
 fprintf(stderr, "Error: R.DLL version does not match\n");
 exit(1);
 }

 R_setStartTime();
 R_DefParamsEx(Rp, RSTART_VERSION);
 if((RHome = get_R_HOME()) == NULL) {
 fprintf(stderr, "R_HOME must be set in the environment or Registry\n");
 exit(1);
 }
 Rp->rhome = RHome;
 RUser = getRUser();
 Rp->home = RUser;
 Rp->CharacterMode = LinkDLL;
 Rp->EmitEmbeddedUTF8 = FALSE;
 Rp->ReadConsole = myReadConsole;
 Rp->WriteConsole = myWriteConsole;
 Rp->CallBack = myCallBack;
 Rp->ShowMessage = askok;
 Rp->YesNoCancel = askyesnocancel;
 Rp->Busy = myBusy;

 Rp->R_Quiet = TRUE; /* Default is FALSE */
 Rp->R_Interactive = FALSE; /* Default is TRUE */
 Rp->RestoreAction = SA_RESTORE;
 Rp->SaveAction = SA_NOSAVE;
 R_SetParams(Rp);
 freeRUser(RUser);
 free_R_HOME(RHome);
 R_set_command_line_arguments(argc, argv);

 FlushConsoleInputBuffer(GetStdHandle(STD_INPUT_HANDLE));

 signal(SIGBREAK, my_onintr);
 GA_initapp(0, 0);
 readconsolecfg();
 setup_Rmainloop();
#ifdef SIMPLE_CASE
 run_Rmainloop();
#else
 R_ReplDLLinit();
 while(R_ReplDLLdo1() > 0) {
/* add user actions here if desired */
 }
/* only get here on EOF (not q()) */
#endif
 Rf_endEmbeddedR(0);
 return 0;
}

The ideas are

	Check that the front-end and the linked R.dll match – other
front-ends may allow a looser match.

	Find and set the R home directory and the user’s home directory. The
former may be available from the Windows Registry: it will be in
HKEY_LOCAL_MACHINE\Software\R-core\R\InstallPath from an
administrative install and
HKEY_CURRENT_USER\Software\R-core\R\InstallPath otherwise, if
selected during installation (as it is by default).

	

Define startup conditions and callbacks via the Rstart structure.
R_DefParams sets the defaults, and R_SetParams sets
updated values. R_DefParamsEx takes an extra argument, the version
number of the Rstart structure provided (RSTART_VERSION refers
to the current version) and returns a non-zero status when that version is
not supported by R.

	Record the command-line arguments used by
R_set_command_line_arguments for use by the R function
commandArgs().

	Set up the signal handler and the basic user interface.

	Run the main R loop, possibly with our actions intermeshed.

	Arrange to clean up.

An underlying theme is the need to keep the GUI ‘alive’, and this has
not been done in this example. The R callback R_ProcessEvents
needs to be called frequently to ensure that Windows events in R
windows are handled expeditiously. Conversely, R needs to allow the
GUI code (which is running in the same process) to update itself as
needed – two ways are provided to allow this:

	R_ProcessEvents calls the callback registered by
Rp->callback. A version of this is used to run package Tcl/Tk
for tcltk under Windows, for the code is

void R_ProcessEvents(void)
{
 while (peekevent()) doevent(); /* Windows events for GraphApp */
 if (UserBreak) { UserBreak = FALSE; onintr(); }
 R_CallBackHook();
 if(R_tcldo) R_tcldo();
}

	The mainloop can be split up to allow the calling application to take
some action after each line of input has been dealt with: see the
alternative code below #ifdef SIMPLE_CASE.

It may be that no R GraphApp windows need to be considered, although
these include pagers, the windows() graphics device, the R
data and script editors and various popups such as choose.file()
and select.list(). It would be possible to replace all of these,
but it seems easier to allow GraphApp to handle most of them.

It is possible to run R in a GUI in a single thread (as
RGui.exe shows) but it will normally be easier177 to
use multiple threads.

Note that R’s own front ends use a stack size of 10Mb, whereas MinGW
executables default to 2Mb, and Visual C++ ones to 1Mb. The latter
stack sizes are too small for a number of R applications, so
general-purpose front-ends should use a larger stack size.

Applications embedding R 4.2.0 and newer should use UCRT as the C runtime
and opt in for UTF-8 as the active code page in their manifest, as all
frontends shipped with R do. This will allow the embedded R to use
UTF-8 as its native encoding on recent Windows systems.

8.2.3 Finding R_HOME

Both applications which embed R and those which use a system
call to invoke R (as Rscript.exe, Rterm.exe or
R.exe) need to be able to find the R bin directory.
The simplest way to do so is the ask the user to set an environment
variable R_HOME and use that, but naive users may be flummoxed as
to how to do so or what value to use.

The R for Windows installers have for a long time allowed the value
of R_HOME to be recorded in the Windows Registry: this is
optional but selected by default. Where it is recorded has
changed over the years to allow for multiple versions of R to be
installed at once, and to allow 32- and 64-bit versions of R to be
installed on the same machine. Only 64-bit versions are supported since R
4.2.

The basic Registry location is Software\R-core\R. For an
administrative install this is under HKEY_LOCAL_MACHINE and on a
64-bit OS HKEY_LOCAL_MACHINE\Software\R-core\R is by default
redirected for a 32-bit application, so a 32-bit application will see
the information for the last 32-bit install, and a 64-bit application
that for the last 64-bit install. For a personal install, the
information is under HKEY_CURRENT_USER\Software\R-core\R which is
seen by both 32-bit and 64-bit applications and so records the last
install of either architecture. To circumvent this, with Intel builds there
are locations Software\R-core\R32 and Software\R-core\R64
which always refer to one architecture.

When R is installed and recording is not disabled then two string
values are written at that location for keys InstallPath and
Current Version, and these keys are removed when R is
uninstalled. To allow information about other installed versions to be
retained, there is also a key named something like 3.0.0 or
3.0.0 patched or 3.1.0 Pre-release with a value for
InstallPath.

So a comprehensive algorithm to search for R_HOME is something
like

	Decide which of personal or administrative installs should have
precedence. There are arguments both ways: we find that with roaming
profiles that HKEY_CURRENT_USER\Software often gets reverted to
an earlier version. Do the following for one or both of
HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE.

	If the desired architecture is known, look in Software\R-core\R32
or Software\R-core\R64, and if that does not exist or the
architecture is immaterial, in Software\R-core\R.

	If key InstallPath exists then this is R_HOME (recorded
using backslashes). If it does not, look for version-specific keys like
2.11.0 alpha, pick the latest (which is of itself a complicated
algorithm as 2.11.0 patched > 2.11.0 > 2.11.0 alpha > 2.8.1) and
use its value for InstallPath.

Footnotes

(173)

In the parlance of macOS
this is a dynamic library, and is the normal way to build R on
that platform.

(174)

but these
are not part of the automated test procedures and so little tested.

(175)

At least according to
POSIX 2004 and later. Earlier standards prescribed sys/time.h:
R_ext/eventloop.h will include it if HAVE_SYS_TIME_H is
defined.

(176)

at least on platforms where the values are
available, that is having getrlimit and on Linux or having
sysctl supporting KERN_USRSTACK, including FreeBSD and
macOS.

(177)

An
attempt to use only threads in the late 1990s failed to work correctly
under Windows 95, the predominant version of Windows at that time.

Function and variable index

	Jump to: 	.

\

A

B

C

D

E

F

G

I

L

M

N

O

P

Q

R

S

T

U

V

W

		Index Entry	Section

	

	.

		.C	5.2 Interface functions .C and .Fortran

		.Call	5.9 Handling R objects in C

		.Call	5.10.1 Calling .Call

		.External	5.9 Handling R objects in C

		.External	5.10.2 Calling .External

		.Fortran	5.2 Interface functions .C and .Fortran

		.Last.lib	1.5.3 Load hooks

		.onAttach	1.5.3 Load hooks

		.onDetach	1.5.3 Load hooks

		.onLoad	1.5.3 Load hooks

		.onUnload	1.5.3 Load hooks

		.Random.seed	6.3 Random number generation

	

	\

		\abbr	2.3 Marking text

		\acronym	2.3 Marking text

		\alias	2.1.1 Documenting functions

		\arguments	2.1.1 Documenting functions

		\author	2.1.1 Documenting functions

		\bold	2.3 Marking text

		\cite	2.3 Marking text

		\code	2.3 Marking text

		\command	2.3 Marking text

		\concept	2.9 Indices

		\cr	2.2 Sectioning

		\CRANpkg{pkg}	2.13 User-defined macros

		\deqn	2.6 Mathematics

		\describe	2.4 Lists and tables

		\description	2.1.1 Documenting functions

		\details	2.1.1 Documenting functions

		\dfn	2.3 Marking text

		\doi{numbers}	2.13 User-defined macros

		\dontdiff	2.1.1 Documenting functions

		\dontrun	2.1.1 Documenting functions

		\dontshow	2.1.1 Documenting functions

		\donttest	2.1.1 Documenting functions

		\dots	2.8 Insertions

		\dQuote	2.3 Marking text

		\email	2.3 Marking text

		\emph	2.3 Marking text

		\enc	2.8 Insertions

		\enumerate	2.4 Lists and tables

		\env	2.3 Marking text

		\eqn	2.6 Mathematics

		\examples	2.1.1 Documenting functions

		\figure	2.7 Figures

		\file	2.3 Marking text

		\format	2.1.2 Documenting data sets

		\href	2.3 Marking text

		\if	2.11 Conditional text

		\ifelse	2.11 Conditional text

		\itemize	2.4 Lists and tables

		\kbd	2.3 Marking text

		\keyword	2.1.1 Documenting functions

		\ldots	2.8 Insertions

		\link	2.5 Cross-references

		\linkS4class	2.5 Cross-references

		\method	2.1.1 Documenting functions

		\name	2.1.1 Documenting functions

		\newcommand	2.13 User-defined macros

		\note	2.1.1 Documenting functions

		\option	2.3 Marking text

		\out	2.11 Conditional text

		\packageAuthor	2.13 User-defined macros

		\packageDescription	2.13 User-defined macros

		\packageDESCRIPTION	2.13 User-defined macros

		\packageIndices	2.13 User-defined macros

		\packageMaintainer	2.13 User-defined macros

		\packageTitle	2.13 User-defined macros

		\pkg	2.3 Marking text

		\preformatted	2.3 Marking text

		\R	2.8 Insertions

		\RdOpts	2.12 Dynamic pages

		\references	2.1.1 Documenting functions

		\renewcommand	2.13 User-defined macros

		\S3method	2.1.1 Documenting functions

		\samp	2.3 Marking text

		\section	2.2 Sectioning

		\seealso	2.1.1 Documenting functions

		\Sexpr	2.12 Dynamic pages

		\source	2.1.2 Documenting data sets

		\sQuote	2.3 Marking text

		\sspace	2.13 User-defined macros

		\strong	2.3 Marking text

		\tabular	2.4 Lists and tables

		\title	2.1.1 Documenting functions

		\url	2.3 Marking text

		\usage	2.1.1 Documenting functions

		\value	2.1.1 Documenting functions

		\var	2.3 Marking text

		\verb	2.3 Marking text

	

	A

		allocLang	5.11 Evaluating R expressions from C

		allocList	5.11 Evaluating R expressions from C

		allocMatrix	5.11.2 Calculating numerical derivatives

		allocVector	5.9.2 Allocating storage

		any_duplicated	5.9.9.1 Semi-internal convenience functions

		any_duplicated3	5.9.9.1 Semi-internal convenience functions

		asChar	5.9.9 Some convenience functions

		asComplex	5.9.9 Some convenience functions

		asInteger	5.9.9 Some convenience functions

		asLogical	5.9.9 Some convenience functions

		asReal	5.9.9 Some convenience functions

		AUTHORS	1.1.5 Package subdirectories

	

	B

		bessel_i	6.7.2 Mathematical functions

		bessel_j	6.7.2 Mathematical functions

		bessel_k	6.7.2 Mathematical functions

		bessel_y	6.7.2 Mathematical functions

		beta	6.7.2 Mathematical functions

		BLAS_LIBS	1.2.1 Using Makevars

		browser	4.1 Browsing

	

	C

		CAAR	5.10.2 Calling .External

		CAD4R	5.10.2 Calling .External

		CAD5R	5.10.2 Calling .External

		CADDDR	5.10.2 Calling .External

		CADDR	5.10.2 Calling .External

		CADR	5.10.2 Calling .External

		Calloc	6.1.2 User-controlled memory

		CallocCharBuf	6.1.2 User-controlled memory

		CAR	5.10.2 Calling .External

		CDAR	5.10.2 Calling .External

		CDDDR	5.10.2 Calling .External

		CDDR	5.10.2 Calling .External

		CDR	5.10.2 Calling .External

		cgmin	6.8 Optimization

		choose	6.7.2 Mathematical functions

		CITATION	1.1.5 Package subdirectories

		CITATION	1.8.3 Preparing translations

		classgets	5.9.5 Classes

		CleanEd	8.1.2 Setting R callbacks

		coerceVector	5.9.3 Details of R types

		COMPLEX	5.14 Vector accessor functions

		CONS	5.9.9 Some convenience functions

		cons	5.9.9 Some convenience functions

		COPYRIGHTS	1.1.1 The DESCRIPTION file

		COPYRIGHTS	1.1.5 Package subdirectories

		cospi	6.7.3 Numerical Utilities

		cPsort	6.10 Utility functions

	

	D

		dblepr	6.5.1 Printing from Fortran

		dblepr1	6.5.1 Printing from Fortran

		debug	4.2 Debugging R code

		debugger	4.2 Debugging R code

		defineVar	5.9.8 Finding and setting variables

		digamma	6.7.2 Mathematical functions

		dimgets	5.9.4 Attributes

		dimnamesgets	5.9.4 Attributes

		dpsifn	6.7.2 Mathematical functions

		dump.frames	4.2 Debugging R code

		duplicate	5.9.10 Named objects and copying

		dyn.load	5.3 dyn.load and dyn.unload

		dyn.unload	5.3 dyn.load and dyn.unload

	

	E

		elt	5.9.9 Some convenience functions

		error	6.2 Error signaling

		errorcall	6.2 Error signaling

		eval	5.11 Evaluating R expressions from C

		exp_rand	6.3 Random number generation

		expm1	6.7.3 Numerical Utilities

		export	1.5.1 Specifying imports and exports

		exportClasses	1.5.6 Namespaces with S4 classes and methods

		exportClassPattern	1.5.6 Namespaces with S4 classes and methods

		exportMethods	1.5.6 Namespaces with S4 classes and methods

		exportPattern	1.5.1 Specifying imports and exports

		exportPattern	1.5.6 Namespaces with S4 classes and methods

	

	F

		FALSE	6.7.4 Mathematical constants

		findFun	5.11 Evaluating R expressions from C

		findInterval	6.10 Utility functions

		findInterval2(double*	6.10 Utility functions

		findVar	5.9.8 Finding and setting variables

		FLIBS	1.2.1 Using Makevars

		fmax2	6.7.3 Numerical Utilities

		fmin2	6.7.3 Numerical Utilities

		fprec	6.7.3 Numerical Utilities

		fpu_setup	8.1.2 Setting R callbacks

		Free	6.1.2 User-controlled memory

		fround	6.7.3 Numerical Utilities

		fsign	6.7.3 Numerical Utilities

		ftrunc	6.7.3 Numerical Utilities

	

	G

		gammafn	6.7.2 Mathematical functions

		gctorture	4.3.1 Using gctorture

		GetArrayDimnames	5.9.4 Attributes

		getAttrib	5.9.4 Attributes

		getCharCE	5.15 Character encoding issues

		GetColNames	5.9.4 Attributes

		GetMatrixDimnames	5.9.4 Attributes

		GetRNGstate	6.3 Random number generation

		GetRowNames	5.9.4 Attributes

	

	I

		imax2	6.7.3 Numerical Utilities

		imin2	6.7.3 Numerical Utilities

		import	1.5.1 Specifying imports and exports

		importClassesFrom	1.5.6 Namespaces with S4 classes and methods

		importFrom	1.5.1 Specifying imports and exports

		importMethodsFrom	1.5.6 Namespaces with S4 classes and methods

		install	5.9.4 Attributes

		installChar	5.9.8 Finding and setting variables

		INTEGER	5.14 Vector accessor functions

		integr_fn	6.9 Integration

		intpr	6.5.1 Printing from Fortran

		intpr1	6.5.1 Printing from Fortran

		iPsort	6.10 Utility functions

		isArray	5.9.9 Some convenience functions

		isComplex	5.9.3 Details of R types

		isEnvironment	5.9.3 Details of R types

		isExpression	5.9.3 Details of R types

		isFactor	5.9.9 Some convenience functions

		isFunction	5.9.9 Some convenience functions

		isInteger	5.9.3 Details of R types

		isLanguage	5.9.9 Some convenience functions

		isList	5.9.9 Some convenience functions

		isLogical	5.9.3 Details of R types

		isMatrix	5.9.9 Some convenience functions

		ISNA	5.10.3 Missing and special values

		ISNA	6.4 Missing and IEEE special values

		ISNAN	5.10.3 Missing and special values

		ISNAN	6.4 Missing and IEEE special values

		isNewList	5.9.9 Some convenience functions

		isNull	5.9.3 Details of R types

		isNumeric	5.9.9 Some convenience functions

		isObject	5.9.9 Some convenience functions

		isOrdered	5.9.9 Some convenience functions

		isPairList	5.9.9 Some convenience functions

		isPrimitive	5.9.9 Some convenience functions

		isReal	5.9.3 Details of R types

		isString	5.9.3 Details of R types

		isSymbol	5.9.3 Details of R types

		isTs	5.9.9 Some convenience functions

		isUnordered	5.9.9 Some convenience functions

		isVector	5.9.9 Some convenience functions

		isVectorAtomic	5.9.9 Some convenience functions

		isVectorList	5.9.9 Some convenience functions

	

	L

		labelpr	6.5.1 Printing from Fortran

		lang1	5.9.9 Some convenience functions

		lang2	5.9.9 Some convenience functions

		lang3	5.9.9 Some convenience functions

		lang4	5.9.9 Some convenience functions

		lang5	5.9.9 Some convenience functions

		lang6	5.9.9 Some convenience functions

		LAPACK_LIBS	1.2.1 Using Makevars

		lastElt	5.9.9 Some convenience functions

		lbeta	6.7.2 Mathematical functions

		lbfgsb	6.8 Optimization

		lchoose	6.7.2 Mathematical functions

		LCONS	5.9.9 Some convenience functions

		lcons	5.9.9 Some convenience functions

		LCONS	5.11 Evaluating R expressions from C

		lgamma1p	6.7.3 Numerical Utilities

		lgammafn	6.7.2 Mathematical functions

		library.dynam	1.1.5 Package subdirectories

		library.dynam	5.3 dyn.load and dyn.unload

		list1	5.9.9 Some convenience functions

		list2	5.9.9 Some convenience functions

		list3	5.9.9 Some convenience functions

		list4	5.9.9 Some convenience functions

		list5	5.9.9 Some convenience functions

		list6	5.9.9 Some convenience functions

		log1mexp	6.7.3 Numerical Utilities

		log1p	6.7.3 Numerical Utilities

		log1pexp	6.7.3 Numerical Utilities

		log1pmx	6.7.3 Numerical Utilities

		LOGICAL	5.14 Vector accessor functions

		logspace_add	6.7.3 Numerical Utilities

		logspace_sub	6.7.3 Numerical Utilities

		logspace_sum	6.7.3 Numerical Utilities

	

	M

		M_E	6.7.4 Mathematical constants

		M_PI	6.7.4 Mathematical constants

		MARK_NOT_MUTABLE	5.9.10 Named objects and copying

		MAYBE_REFERENCED	5.9.10 Named objects and copying

		MAYBE_SHARED	5.9.10 Named objects and copying

		Memcpy	6.1.2 User-controlled memory

		Memzero	6.1.2 User-controlled memory

		mkChar	5.9.7 Handling character data

		mkCharCE	5.15 Character encoding issues

		mkCharLen	5.9.7 Handling character data

		mkCharLenCE	5.15 Character encoding issues

		mkString	5.9.9 Some convenience functions

	

	N

		NA_REAL	6.4 Missing and IEEE special values

		namesgets	5.9.4 Attributes

		NEWS.Rd	1.1.5 Package subdirectories

		nmmin	6.8 Optimization

		norm_rand	6.3 Random number generation

		nrows	6.1.1 Transient storage allocation

		nthcdr	5.9.9 Some convenience functions

	

	O

		OBJECTS	1.2.1 Using Makevars

		OBJECTS	5.5 Creating shared objects

		onintr	8.2.2 Calling R.dll directly

		optimfn	6.8 Optimization

		optimgr	6.8 Optimization

	

	P

		pentagamma	6.7.2 Mathematical functions

		PKG_CFLAGS	5.5 Creating shared objects

		PKG_CPPFLAGS	5.5 Creating shared objects

		PKG_CXXFLAGS	5.5 Creating shared objects

		PKG_FCFLAGS	1.2.3 Using modern Fortran code

		PKG_FFLAGS	5.5 Creating shared objects

		PKG_LIBS	5.5 Creating shared objects

		PKG_OBJCFLAGS	5.5 Creating shared objects

		PKG_OBJCXXFLAGS	5.5 Creating shared objects

		pow1p	6.7.3 Numerical Utilities

		PRINTNAME	5.10.2 Calling .External

		PrintValue	4.4.2 Inspecting R objects when debugging

		prompt	2.1 Rd format

		PROTECT	5.9.1 Handling the effects of garbage collection

		protect	5.9.1 Handling the effects of garbage collection

		PROTECT_WITH_INDEX	5.9.1 Handling the effects of garbage collection

		psigamma	6.7.2 Mathematical functions

		PutRNGstate	6.3 Random number generation

	

	Q

		qsort3	6.10 Utility functions

		qsort4	6.10 Utility functions

	

	R

		R CMD build	1.3.2 Building package tarballs

		R CMD check	1.3.1 Checking packages

		R CMD config	1.2 Configure and cleanup

		R CMD Rd2pdf	2.15 Processing documentation files

		R CMD Rdconv	2.15 Processing documentation files

		R CMD SHLIB	5.5 Creating shared objects

		R CMD Stangle	2.15 Processing documentation files

		R CMD Sweave	2.15 Processing documentation files

		R_addhistory	8.1.2 Setting R callbacks

		R_alloc	6.1.1 Transient storage allocation

		R_allocLD	6.1.1 Transient storage allocation

		R_atof	6.10 Utility functions

		R_Busy	8.1.2 Setting R callbacks

		R_Calloc	6.1.2 User-controlled memory

		R_CheckUserInterrupt	6.13 Allowing interrupts

		R_ChooseFile	8.1.2 Setting R callbacks

		R_CleanTempDir	8.1.2 Setting R callbacks

		R_CleanUp	8.1.2 Setting R callbacks

		R_ClearerrConsole	8.1.2 Setting R callbacks

		R_ClearExternalPtr	5.13 External pointers and weak references

		R_compute_identical	5.9.9.1 Semi-internal convenience functions

		R_ContinueUnwind	6.12 Condition handling and cleanup code

		R_csort	6.10 Utility functions

		R_dataentry	8.1.2 Setting R callbacks

		R_dataviewer	8.1.2 Setting R callbacks

		R_DefParams	8.2.2 Calling R.dll directly

		R_DefParamsEx	8.2.2 Calling R.dll directly

		R_dot_Last	8.1.2 Setting R callbacks

		R_EditFile	8.1.2 Setting R callbacks

		R_EditFiles	8.1.2 Setting R callbacks

		R_ExpandFileName	6.10 Utility functions

		R_ExternalPtrAddr	5.13 External pointers and weak references

		R_ExternalPtrAddrFn	5.13 External pointers and weak references

		R_ExternalPtrProtected	5.13 External pointers and weak references

		R_ExternalPtrTag	5.13 External pointers and weak references

		R_FINITE	6.4 Missing and IEEE special values

		R_FlushConsole	8.1.2 Setting R callbacks

		R_forceSymbols	5.4 Registering native routines

		R_Free	6.1.2 User-controlled memory

		R_free_tmpnam	6.10 Utility functions

		R_GetCCallable	5.4.3 Linking to native routines in other packages

		R_GetCurrentEnv	5.11 Evaluating R expressions from C

		R_GetCurrentSrcref	5.12.1 Accessing source references

		R_getEmbeddingDllInfo	8.1.3 Registering symbols

		R_GetSrcFilename	5.12.1 Accessing source references

		R_INLINE	6.15 Inlining C functions

		R_IsNaN	6.4 Missing and IEEE special values

		R_isort	6.10 Utility functions

		R_LIBRARY_DIR	1.2 Configure and cleanup

		R_loadhistory	8.1.2 Setting R callbacks

		R_MakeExternalPtr	5.13 External pointers and weak references

		R_MakeExternalPtrFn	5.13 External pointers and weak references

		R_MakeUnwindCont	6.12 Condition handling and cleanup code

		R_MakeWeakRef	5.13 External pointers and weak references

		R_MakeWeakRefC	5.13 External pointers and weak references

		R_max_col	6.10 Utility functions

		R_NegInf	6.4 Missing and IEEE special values

		R_NewEnv	5.9.8 Finding and setting variables

		R_NewPreciousMSet	5.9.1 Handling the effects of garbage collection

		R_orderVector	6.10 Utility functions

		R_orderVector1	6.10 Utility functions

		R_PACKAGE_DIR	1.2 Configure and cleanup

		R_PACKAGE_DIR	1.2 Configure and cleanup

		R_PACKAGE_NAME	1.2 Configure and cleanup

		R_PACKAGE_NAME	1.2 Configure and cleanup

		R_ParseVector	5.12 Parsing R code from C

		R_PolledEvents	8.1.4 Meshing event loops

		R_PosInf	6.4 Missing and IEEE special values

		R_pow	6.7.3 Numerical Utilities

		R_pow_di	6.7.3 Numerical Utilities

		R_PreserveInMSet	5.9.1 Handling the effects of garbage collection

		R_PreserveObject	5.9.1 Handling the effects of garbage collection

		R_ProcessEvents	8.2.2 Calling R.dll directly

		R_ProtectWithIndex	5.9.1 Handling the effects of garbage collection

		R_PV	4.4.2 Inspecting R objects when debugging

		R_qsort	6.10 Utility functions

		R_qsort_I	6.10 Utility functions

		R_qsort_int	6.10 Utility functions

		R_qsort_int_I	6.10 Utility functions

		R_ReadConsole	8.1.2 Setting R callbacks

		R_Realloc	6.1.2 User-controlled memory

		R_RegisterCCallable	5.4.3 Linking to native routines in other packages

		R_RegisterCFinalizer	5.13 External pointers and weak references

		R_RegisterCFinalizerEx	5.13 External pointers and weak references

		R_RegisterFinalizer	5.13 External pointers and weak references

		R_RegisterFinalizerEx	5.13 External pointers and weak references

		R_registerRoutines	5.4 Registering native routines

		R_ReleaseFromMSet	5.9.1 Handling the effects of garbage collection

		R_ReleaseObject	5.9.1 Handling the effects of garbage collection

		R_ReplDLLdo1	8.1 Embedding R under Unix-alikes

		R_ReplDLLinit	8.1 Embedding R under Unix-alikes

		R_Reprotect	5.9.1 Handling the effects of garbage collection

		R_ResetConsole	8.1.2 Setting R callbacks

		R_rsort	6.10 Utility functions

		R_RunExitFinalizers	8.1.2 Setting R callbacks

		R_RunWeakRefFinalizer	5.13 External pointers and weak references

		R_SaveGlobalEnv	8.1.2 Setting R callbacks

		R_savehistory	8.1.2 Setting R callbacks

		R_selectlist	8.1.2 Setting R callbacks

		R_set_command_line_arguments	8.2.2 Calling R.dll directly

		R_SetExternalPtrAddr	5.13 External pointers and weak references

		R_SetExternalPtrProtected	5.13 External pointers and weak references

		R_SetExternalPtrTag	5.13 External pointers and weak references

		R_SetParams	8.2.2 Calling R.dll directly

		R_setStartTime	8.2.2 Calling R.dll directly

		R_ShowFiles	8.1.2 Setting R callbacks

		R_ShowMessage	8.1.2 Setting R callbacks

		R_Srcref	5.12.1 Accessing source references

		R_strtod	6.10 Utility functions

		R_Suicide	8.1.2 Setting R callbacks

		R_tmpnam	6.10 Utility functions

		R_tmpnam2	6.10 Utility functions

		R_tryCatch	6.12 Condition handling and cleanup code

		R_tryCatchError	6.12 Condition handling and cleanup code

		R_unif_index	6.3 Random number generation

		R_UnwindProtect	6.12 Condition handling and cleanup code

		R_useDynamicSymbols	5.4 Registering native routines

		R_Version	6.14 Platform and version information

		R_wait_usec	8.1.4 Meshing event loops

		R_WeakRefKey	5.13 External pointers and weak references

		R_WeakRefValue	5.13 External pointers and weak references

		R_withCallingErrorHandler	6.12 Condition handling and cleanup code

		R_WriteConsole	8.1.2 Setting R callbacks

		R_WriteConsoleEx	8.1.2 Setting R callbacks

		RAW	5.14 Vector accessor functions

		rchkusr	6.13 Allowing interrupts

		Rdqagi	6.9 Integration

		Rdqags	6.9 Integration

		REAL	5.14 Vector accessor functions

		Realloc	6.1.2 User-controlled memory

		realpr	6.5.1 Printing from Fortran

		realpr1	6.5.1 Printing from Fortran

		recover	4.2 Debugging R code

		reEnc	5.15 Character encoding issues

		REprintf	6.5 Printing

		REPROTECT	5.9.1 Handling the effects of garbage collection

		REvprintf	6.5 Printing

		revsort	6.10 Utility functions

		Rf_endEmbeddedR	8.1 Embedding R under Unix-alikes

		Rf_initEmbeddedR	8.1 Embedding R under Unix-alikes

		Rf_initialize_R	8.1 Embedding R under Unix-alikes

		Rf_KillAllDevices	8.1.2 Setting R callbacks

		Rf_mainloop	8.1 Embedding R under Unix-alikes

		Riconv	6.11 Re-encoding

		Riconv_close	6.11 Re-encoding

		Riconv_open	6.11 Re-encoding

		Rprintf	6.5 Printing

		Rprof	3.2 Profiling R code for speed

		Rprof	3.3.1 Memory statistics from Rprof

		Rprofmem	3.3.2 Tracking memory allocations

		rPsort	6.10 Utility functions

		rsort_with_index	6.10 Utility functions

		Rtanpi	6.7.3 Numerical Utilities

		run_Rmainloop	8.1 Embedding R under Unix-alikes

		Rvprintf	6.5 Printing

	

	S

		S_alloc	6.1.1 Transient storage allocation

		S_realloc	6.1.1 Transient storage allocation

		S3method	1.5.2 Registering S3 methods

		SAFE_FFLAGS	1.2.1 Using Makevars

		samin	6.8 Optimization

		ScalarComplex	5.9.9 Some convenience functions

		ScalarInteger	5.9.9 Some convenience functions

		ScalarLogical	5.9.9 Some convenience functions

		ScalarRaw	5.9.9 Some convenience functions

		ScalarReal	5.9.9 Some convenience functions

		ScalarString	5.9.9 Some convenience functions

		SET_STRING_ELT	5.9.7 Handling character data

		SET_TAG	5.11 Evaluating R expressions from C

		SET_VECTOR_ELT	5.14 Vector accessor functions

		setAttrib	5.9.4 Attributes

		SETCAD4R	5.10.2 Calling .External

		SETCADDDR	5.10.2 Calling .External

		SETCADDR	5.10.2 Calling .External

		SETCADR	5.10.2 Calling .External

		SETCAR	5.10.2 Calling .External

		SETCDR	5.10.2 Calling .External

		setup_Rmainloop	8.2.2 Calling R.dll directly

		setVar	5.9.8 Finding and setting variables

		sign	6.7.3 Numerical Utilities

		signrank_free	6.7.1 Distribution functions

		sinpi	6.7.3 Numerical Utilities

		str2type	5.9.9 Some convenience functions

		STRING_ELT	5.9.7 Handling character data

		summaryRprof	3.3.1 Memory statistics from Rprof

		system	5.1 Operating system access

		system.time	5.1 Operating system access

		system2	5.1 Operating system access

	

	T

		TAG	5.10.2 Calling .External

		tanpi	6.7.3 Numerical Utilities

		tetragamma	6.7.2 Mathematical functions

		trace	4.2 Debugging R code

		traceback	4.2 Debugging R code

		tracemem	3.3.3 Tracing copies of an object

		translateChar	5.15 Character encoding issues

		translateCharUTF8	5.15 Character encoding issues

		trigamma	6.7.2 Mathematical functions

		TRUE	6.7.4 Mathematical constants

		type2char	5.9.9 Some convenience functions

		type2str	5.9.9 Some convenience functions

		TYPEOF	5.10.2 Calling .External

	

	U

		undebug	4.2 Debugging R code

		unif_rand	6.3 Random number generation

		UNPROTECT	5.9.1 Handling the effects of garbage collection

		unprotect	5.9.1 Handling the effects of garbage collection

		UNPROTECT_PTR	5.9.1 Handling the effects of garbage collection

		unprotect_ptr	5.9.1 Handling the effects of garbage collection

		untracemem	3.3.3 Tracing copies of an object

		useDynLib	1.5.4 useDynLib

	

	V

		VECTOR_ELT	5.14 Vector accessor functions

		vmaxget	6.1.1 Transient storage allocation

		vmaxset	6.1.1 Transient storage allocation

		vmmin	6.8 Optimization

	

	W

		warning	6.2 Error signaling

		warningcall	6.2 Error signaling

		warningcall_immediate	6.2 Error signaling

		wilcox_free	6.7.1 Distribution functions

	

	Jump to: 	.

\

A

B

C

D

E

F

G

I

L

M

N

O

P

Q

R

S

T

U

V

W

Concept index

	Jump to: 	.

A

B

C

D

E

F

G

H

I

L

M

N

O

P

R

S

T

U

V

W

Z

		Index Entry	Section

	

	.

		.install_extras file	1.4 Writing package vignettes

		.Rbuildignore file	1.3.2 Building package tarballs

		.Rinstignore file	1.1.5 Package subdirectories

	

	A

		Allocating storage	5.9.2 Allocating storage

		Attributes	5.9.4 Attributes

	

	B

		Bessel functions	6.7.2 Mathematical functions

		Beta function	6.7.2 Mathematical functions

		Building binary packages	1.3.3 Building binary packages

		Building source packages	1.3.2 Building package tarballs

	

	C

		C++ code, interfacing	5.6 Interfacing C++ code

		Calling C from Fortran and vice versa	6.6 Calling C from Fortran and vice versa

		Checking packages	1.3.1 Checking packages

		citation	1.1.5 Package subdirectories

		citation	1.8.3 Preparing translations

		Classes	5.9.5 Classes

		Cleanup code	6.12 Condition handling and cleanup code

		cleanup file	1.1 Package structure

		Condition handling	6.12 Condition handling and cleanup code

		conditionals	2.11 Conditional text

		configure file	1.1 Package structure

		Copying objects	5.9.10 Named objects and copying

		CRAN	1 Creating R packages

		Creating packages	1 Creating R packages

		Creating shared objects	5.5 Creating shared objects

		Cross-references in documentation	2.5 Cross-references

		cumulative hazard	6.7.1 Distribution functions

	

	D

		Debugging	4.4 Debugging compiled code

		DESCRIPTION file	1.1.1 The DESCRIPTION file

		Details of R types	5.9.3 Details of R types

		Distribution functions from C	6.7.1 Distribution functions

		Documentation, writing	2 Writing R documentation files

		Dynamic loading	5.3 dyn.load and dyn.unload

		dynamic pages	2.12 Dynamic pages

	

	E

		Editing Rd files	2.16 Editing Rd files

		encoding	2.14 Encoding

		Error handling	6.12 Condition handling and cleanup code

		Error signaling from C	6.2 Error signaling

		Error signaling from Fortran	6.2.1 Error signaling from Fortran

		Evaluating R expressions from C	5.11 Evaluating R expressions from C

		external pointer	5.13 External pointers and weak references

	

	F

		Figures in documentation	2.7 Figures

		finalizer	5.13 External pointers and weak references

		Finding variables	5.9.8 Finding and setting variables

	

	G

		Gamma function	6.7.2 Mathematical functions

		Garbage collection	5.9.1 Handling the effects of garbage collection

		Generic functions	7 Generic functions and methods

	

	H

		handling character data	5.9.7 Handling character data

		Handling lists	5.9.6 Handling lists

		Handling R objects in C	5.9 Handling R objects in C

	

	I

		IEEE special values	5.10.3 Missing and special values

		IEEE special values	6.4 Missing and IEEE special values

		INDEX file	1.1.4 The INDEX file

		Indices	2.9 Indices

		Inspecting R objects when debugging	4.4.2 Inspecting R objects when debugging

		integration	6.9 Integration

		Interfaces to compiled code	5.2 Interface functions .C and .Fortran

		Interfaces to compiled code	5.10 Interface functions .Call and .External

		Interfacing C++ code	5.6 Interfacing C++ code

		Interrupts	6.13 Allowing interrupts

	

	L

		LICENCE file	1.1.2 Licensing

		LICENSE file	1.1.2 Licensing

		Lists and tables in documentation	2.4 Lists and tables

	

	M

		Marking text in documentation	2.3 Marking text

		Mathematics in documentation	2.6 Mathematics

		Memory allocation from C	6.1 Memory allocation

		Memory use	3.3 Profiling R code for memory use

		Method functions	7 Generic functions and methods

		Missing values	5.10.3 Missing and special values

		Missing values	6.4 Missing and IEEE special values

	

	N

		namespaces	1.5 Package namespaces

		news	1.1.5 Package subdirectories

		Numerical analysis subroutines from C	6.7 Numerical analysis subroutines

		Numerical derivatives	5.11.2 Calculating numerical derivatives

	

	O

		OpenMP	1.2.1.1 OpenMP support

		OpenMP	6.14 Platform and version information

		Operating system access	5.1 Operating system access

		optimization	6.8 Optimization

	

	P

		Package builder	1.3.2 Building package tarballs

		Package structure	1.1 Package structure

		Package subdirectories	1.1.5 Package subdirectories

		Packages	1 Creating R packages

		Parsing R code from C	5.12 Parsing R code from C

		Platform-specific documentation	2.10 Platform-specific documentation

		Polygamma functions	6.7.2 Mathematical functions

		Printing from C	6.5 Printing

		Printing from Fortran	6.5.1 Printing from Fortran

		Processing Rd format	2.15 Processing documentation files

		Profiling	3.2 Profiling R code for speed

		Profiling	3.3 Profiling R code for memory use

		Profiling	3.4 Profiling compiled code

	

	R

		Random numbers in C	6.3 Random number generation

		Random numbers in C	6.7.1 Distribution functions

		Random numbers in Fortran	6.6 Calling C from Fortran and vice versa

		Registering native routines	5.4 Registering native routines

	

	S

		Setting variables	5.9.8 Finding and setting variables

		Sort functions from C	6.10 Utility functions

		Sweave	1.4 Writing package vignettes

	

	T

		tarballs	1.3.2 Building package tarballs

		Tidying R code	3.1 Tidying R code

	

	U

		user-defined macros	2.13 User-defined macros

	

	V

		Version information from C	6.14 Platform and version information

		vignettes	1.4 Writing package vignettes

		Visibility	6.16 Controlling visibility

	

	W

		weak reference	5.13 External pointers and weak references

	

	Z

		Zero-finding	5.11.1 Zero-finding

	

	Jump to: 	.

A

B

C

D

E

F

G

H

I

L

M

N

O

P

R

S

T

U

V

W

Z

EPUB/xhtml/nav_toc.xhtml

Table of contents

 		Writing R Extensions

 		Acknowledgements

 		1 Creating R packages

 		1.1 Package structure

 		1.1.1 The DESCRIPTION file

 		1.1.2 Licensing

 		1.1.3 Package Dependencies

 		1.1.3.1 Suggested packages

 		1.1.4 The INDEX file

 		1.1.5 Package subdirectories

 		1.1.6 Data in packages

 		1.1.7 Non-R scripts in packages

 		1.1.8 Specifying URLs

 		1.2 Configure and cleanup

 		1.2.1 Using Makevars

 		1.2.1.1 OpenMP support

 		1.2.1.2 Using pthreads

 		1.2.1.3 Compiling in sub-directories

 		1.2.2 Configure example

 		1.2.3 Using modern Fortran code

 		1.2.4 Using C++ code

 		1.2.5 C standards

 		1.2.6 Using cmake

 		1.3 Checking and building packages

 		1.3.1 Checking packages

 		1.3.2 Building package tarballs

 		1.3.3 Building binary packages

 		1.4 Writing package vignettes

 		1.4.1 Encodings and vignettes

 		1.4.2 Non-Sweave vignettes

 		1.5 Package namespaces

 		1.5.1 Specifying imports and exports

 		1.5.2 Registering S3 methods

 		1.5.3 Load hooks

 		1.5.4 useDynLib

 		1.5.5 An example

 		1.5.6 Namespaces with S4 classes and methods

 		1.6 Writing portable packages

 		1.6.1 PDF size

 		1.6.2 Check timing

 		1.6.3 Encoding issues

 		1.6.4 Portable C and C++ code

 		1.6.4.1 Common symbols

 		1.6.4.2 C++17 issues

 		1.6.5 Portable Fortran code

 		1.6.6 Binary distribution

 		1.7 Diagnostic messages

 		1.8 Internationalization

 		1.8.1 C-level messages

 		1.8.2 R messages

 		1.8.3 Preparing translations

 		1.9 CITATION files

 		1.10 Package types

 		1.10.1 Frontend

 		1.11 Services

 		2 Writing R documentation files

 		2.1 Rd format

 		2.1.1 Documenting functions

 		2.1.2 Documenting data sets

 		2.1.3 Documenting S4 classes and methods

 		2.1.4 Documenting packages

 		2.2 Sectioning

 		2.3 Marking text

 		2.4 Lists and tables

 		2.5 Cross-references

 		2.6 Mathematics

 		2.7 Figures

 		2.8 Insertions

 		2.9 Indices

 		2.10 Platform-specific documentation

 		2.11 Conditional text

 		2.12 Dynamic pages

 		2.13 User-defined macros

 		2.14 Encoding

 		2.15 Processing documentation files

 		2.16 Editing Rd files

 		3 Tidying and profiling R code

 		3.1 Tidying R code

 		3.2 Profiling R code for speed

 		3.3 Profiling R code for memory use

 		3.3.1 Memory statistics from Rprof

 		3.3.2 Tracking memory allocations

 		3.3.3 Tracing copies of an object

 		3.4 Profiling compiled code

 		3.4.1 Profiling on Linux

 		3.4.1.1 perf

 		3.4.1.2 oprofile and operf

 		3.4.1.3 sprof

 		3.4.2 Profiling on macOS

 		3.4.3 Profiling on Windows

 		4 Debugging

 		4.1 Browsing

 		4.2 Debugging R code

 		4.3 Checking memory access

 		4.3.1 Using gctorture

 		4.3.2 Using Valgrind

 		4.3.3 Using the Address Sanitizer

 		4.3.3.1 Using the Leak Sanitizer

 		4.3.4 Using the Undefined Behaviour Sanitizer

 		4.3.5 Other analyses with `clang'

 		4.3.6 Other analyses with `gcc'

 		4.3.7 Using `Dr. Memory'

 		4.3.8 Fortran array bounds checking

 		4.4 Debugging compiled code

 		4.4.1 Finding entry points in dynamically loaded code

 		4.4.2 Inspecting R objects when debugging

 		4.4.3 Debugging on macOS

 		4.5 Using Link-time Optimization

 		5 System and foreign language interfaces

 		5.1 Operating system access

 		5.2 Interface functions .C and .Fortran

 		5.3 dyn.load and dyn.unload

 		5.4 Registering native routines

 		5.4.1 Speed considerations

 		5.4.2 Example: converting a package to use registration

 		5.4.3 Linking to native routines in other packages

 		5.5 Creating shared objects

 		5.6 Interfacing C++ code

 		5.6.1 External C++ code

 		5.7 Fortran I/O

 		5.8 Linking to other packages

 		5.8.1 Unix-alikes

 		5.8.2 Windows

 		5.9 Handling R objects in C

 		5.9.1 Handling the effects of garbage collection

 		5.9.2 Allocating storage

 		5.9.3 Details of R types

 		5.9.4 Attributes

 		5.9.5 Classes

 		5.9.6 Handling lists

 		5.9.7 Handling character data

 		5.9.8 Finding and setting variables

 		5.9.9 Some convenience functions

 		5.9.9.1 Semi-internal convenience functions

 		5.9.10 Named objects and copying

 		5.10 Interface functions .Call and .External

 		5.10.1 Calling .Call

 		5.10.2 Calling .External

 		5.10.3 Missing and special values

 		5.11 Evaluating R expressions from C

 		5.11.1 Zero-finding

 		5.11.2 Calculating numerical derivatives

 		5.12 Parsing R code from C

 		5.12.1 Accessing source references

 		5.13 External pointers and weak references

 		5.13.1 An example

 		5.14 Vector accessor functions

 		5.15 Character encoding issues

 		6 The R API: entry points for C code

 		6.1 Memory allocation

 		6.1.1 Transient storage allocation

 		6.1.2 User-controlled memory

 		6.2 Error signaling

 		6.2.1 Error signaling from Fortran

 		6.3 Random number generation

 		6.3.1 Random-number generation from Fortran

 		6.4 Missing and IEEE special values

 		6.5 Printing

 		6.5.1 Printing from Fortran

 		6.6 Calling C from Fortran and vice versa

 		6.6.1 Fortran character strings

 		6.6.2 Fortran LOGICAL

 		6.6.3 Passing functions

 		6.7 Numerical analysis subroutines

 		6.7.1 Distribution functions

 		6.7.2 Mathematical functions

 		6.7.3 Numerical Utilities

 		6.7.4 Mathematical constants

 		6.8 Optimization

 		6.9 Integration

 		6.10 Utility functions

 		6.11 Re-encoding

 		6.12 Condition handling and cleanup code

 		6.13 Allowing interrupts

 		6.14 Platform and version information

 		6.15 Inlining C functions

 		6.16 Controlling visibility

 		6.17 Using these functions in your own C code

 		6.18 Organization of header files

 		7 Generic functions and methods

 		7.1 Adding new generics

 		8 Linking GUIs and other front-ends to R

 		8.1 Embedding R under Unix-alikes

 		8.1.1 Compiling against the R library

 		8.1.2 Setting R callbacks

 		8.1.3 Registering symbols

 		8.1.4 Meshing event loops

 		8.1.5 Threading issues

 		8.2 Embedding R under Windows

 		8.2.1 Using (D)COM

 		8.2.2 Calling R.dll directly

 		8.2.3 Finding R_HOME

 		Function and variable index

 		Concept index

