| sjmisc-package | Data and Variable Transformation Functions |
| %nin% | Value matching |
| add_case | Add variables or cases to data frames |
| add_columns | Add or replace data frame columns |
| add_id | Add or replace data frame columns |
| add_rows | Merge labelled data frames |
| add_variables | Add variables or cases to data frames |
| all_na | Check if vector only has NA values |
| big_mark | Format numbers |
| center | Standardize and center variables |
| center_if | Standardize and center variables |
| clean_values | Clean values of character vectors. |
| col_count | Count row or column indices |
| complete_cases | Check if variables or cases have missing / infinite values |
| complete_vars | Check if variables or cases have missing / infinite values |
| count_na | Frequency table of tagged NA values |
| descr | Basic descriptive statistics |
| de_mean | Compute group-meaned and de-meaned variables |
| dicho | Dichotomize variables |
| dicho_if | Dichotomize variables |
| efc | Sample dataset from the EUROFAMCARE project |
| empty_cols | Return or remove variables or observations that are completely missing |
| empty_rows | Return or remove variables or observations that are completely missing |
| find_in_data | Find variable by name or label |
| find_var | Find variable by name or label |
| flat_table | Flat (proportional) tables |
| frq | Frequency table of labelled variables |
| group_labels | Recode numeric variables into equal-ranged groups |
| group_labels_if | Recode numeric variables into equal-ranged groups |
| group_str | Group near elements of string vectors |
| group_var | Recode numeric variables into equal-ranged groups |
| group_var_if | Recode numeric variables into equal-ranged groups |
| has_na | Check if variables or cases have missing / infinite values |
| incomplete_cases | Check if variables or cases have missing / infinite values |
| incomplete_vars | Check if variables or cases have missing / infinite values |
| is_crossed | Check whether two factors are crossed or nested |
| is_cross_classified | Check whether two factors are crossed or nested |
| is_empty | Check whether string, list or vector is empty |
| is_even | Check whether value is even or odd |
| is_float | Check if a variable is of (non-integer) double type or a whole number |
| is_nested | Check whether two factors are crossed or nested |
| is_num_chr | Check whether a factor has numeric levels only |
| is_num_fac | Check whether a factor has numeric levels only |
| is_odd | Check whether value is even or odd |
| is_whole | Check if a variable is of (non-integer) double type or a whole number |
| merge_df | Merge labelled data frames |
| merge_imputations | Merges multiple imputed data frames into a single data frame |
| move_columns | Move columns to other positions in a data frame |
| numeric_to_factor | Convert numeric vectors into factors associated value labels |
| prcn | Format numbers |
| rec | Recode variables |
| recode_to | Recode variable categories into new values |
| recode_to_if | Recode variable categories into new values |
| rec_if | Recode variables |
| rec_pattern | Create recode pattern for 'rec' function |
| ref_lvl | Change reference level of (numeric) factors |
| remove_cols | Remove variables from a data frame |
| remove_empty_cols | Return or remove variables or observations that are completely missing |
| remove_empty_rows | Return or remove variables or observations that are completely missing |
| remove_var | Remove variables from a data frame |
| rename_columns | Rename variables |
| rename_variables | Rename variables |
| replace_columns | Add or replace data frame columns |
| replace_na | Replace NA with specific values |
| reshape_longer | Reshape data into long format |
| rotate_df | Rotate a data frame |
| round_num | Round numeric variables in a data frame |
| row_count | Count row or column indices |
| row_means | Row sums and means for data frames |
| row_means.default | Row sums and means for data frames |
| row_means.mids | Row sums and means for data frames |
| row_sums | Row sums and means for data frames |
| row_sums.default | Row sums and means for data frames |
| row_sums.mids | Row sums and means for data frames |
| seq_col | Sequence generation for column or row counts of data frames |
| seq_row | Sequence generation for column or row counts of data frames |
| set_na_if | Replace specific values in vector with NA |
| shorten_string | Shorten character strings |
| sjmisc | Data and Variable Transformation Functions |
| split_var | Split numeric variables into smaller groups |
| split_var_if | Split numeric variables into smaller groups |
| spread_coef | Spread model coefficients of list-variables into columns |
| std | Standardize and center variables |
| std_if | Standardize and center variables |
| str_contains | Check if string contains pattern |
| str_end | Find start and end index of pattern in string |
| str_find | Find partial matching and close distance elements in strings |
| str_start | Find start and end index of pattern in string |
| tidy_values | Clean values of character vectors. |
| total_mean | Row sums and means for data frames |
| to_dummy | Split (categorical) vectors into dummy variables |
| to_long | Convert wide data to long format |
| to_value | Convert factors to numeric variables |
| trim | Trim leading and trailing whitespaces from strings |
| typical_value | Return the typical value of a vector |
| var_rename | Rename variables |
| var_type | Determine variable type |
| word_wrap | Insert line breaks in long labels |
| zap_inf | Convert infiite or NaN values into regular NA |