Load libraries that will be used.
library(HomomorphicEncryption)
#> Loading required package: polynom
library(polynom)Set some parameters.
d = 4
n = 2^d
p = (n/2)-1
q = 424242
pm = GenPolyMod(n)Set a working seed for random numbers
set.seed(123)Create the secret key and the polynomials a and e, which will go into the public key
# generate a secret key
s = GenSecretKey(n)
# generate a
a = GenA(n, q)
# generate the error
e = GenError(n)Generate the public key.
# generate the public key
pk0 = GenPubKey0(a, s, e, pm, q)
pk1 = GenPubKey1(a)Create polynomials for the encryption
# polynomials for encryption
e1 = GenError(n)
e2 = GenError(n)
u = GenU(n)Now create to messages to add.
m1 = polynomial(c(1, 1, 1))
m2 = polynomial(c(0, 1 ))Encrypt the messages.
m1_ct0 = EncryptPoly0(m1, pk0, u, e1, p, pm, q)
m1_ct1 = EncryptPoly1( pk1, u, e2, pm, q)
m2_ct0 = EncryptPoly0(m2, pk0, u, e1, p, pm, q)
m2_ct1 = EncryptPoly1( pk1, u, e2, pm, q)Sum the encrypted messages.
sum_ct0 = m1_ct0 + m2_ct0
sum_ct1 = m1_ct1 + m2_ct1
sum_ct0 = sum_ct0 %% pm
sum_ct0 = CoefMod(sum_ct0, q)
sum_ct1 = sum_ct1 %% pm
sum_ct1 = CoefMod(sum_ct1, q)Decrypt the sum
decrypt = (sum_ct1 * s) + sum_ct0
decrypt = decrypt %% pm
decrypt = CoefMod(decrypt, q)
# rescale
decrypt = decrypt * p/q
# round then mod p
decrypt = CoefMod(round(decrypt), p)
print(decrypt)
#> 1 + 2*x + x^2