| basePlot | Plot a contour of the 2D Gaussian distribution with covariance matrix K. |
| boundedTransform | Constrains a parameter. |
| CGoptim | Optimise the given function using (scaled) conjugate gradients. |
| cgpdisimExpandParam | Update a model structure with new parameters or update the posterior processes. |
| cgpdisimExtractParam | Extract the parameters of a model. |
| cgpdisimGradient | Model log-likelihood/objective error function and its gradient. |
| cgpdisimLogLikeGradients | Model log-likelihood/objective error function and its gradient. |
| cgpdisimLogLikelihood | Model log-likelihood/objective error function and its gradient. |
| cgpdisimObjective | Model log-likelihood/objective error function and its gradient. |
| cgpdisimUpdateProcesses | Update a model structure with new parameters or update the posterior processes. |
| cgpsimExpandParam | Update a model structure with new parameters or update the posterior processes. |
| cgpsimExtractParam | Extract the parameters of a model. |
| cgpsimGradient | Model log-likelihood/objective error function and its gradient. |
| cgpsimLogLikeGradients | Model log-likelihood/objective error function and its gradient. |
| cgpsimLogLikelihood | Model log-likelihood/objective error function and its gradient. |
| cgpsimObjective | Model log-likelihood/objective error function and its gradient. |
| cgpsimOptimise | Optimise the given function using (scaled) conjugate gradients. |
| cgpsimUpdateProcesses | Update a model structure with new parameters or update the posterior processes. |
| cmpndKernCompute | Compute the kernel given the parameters and X. |
| cmpndKernDiagCompute | Compute the kernel given the parameters and X. |
| cmpndKernDiagGradX | Compute the gradient of the kernel wrt X. |
| cmpndKernDisplay | Display a model. |
| cmpndKernExpandParam | Update a model structure with new parameters or update the posterior processes. |
| cmpndKernExtractParam | Extract the parameters of a model. |
| cmpndKernGradient | Compute the gradient wrt the kernel parameters. |
| cmpndKernGradX | Compute the gradient of the kernel wrt X. |
| cmpndKernParamInit | CMPND kernel parameter initialisation. |
| cmpndNoiseParamInit | CMPND noise parameter initialisation. |
| demAutoOptimiseGp | Gaussian Process Optimisation Demo |
| demGpCov2D | Gaussian Process 2D Covariance Demo |
| demGpSample | Gaussian Process Sampling Demo |
| demInterpolation | Gaussian Process Interpolation Demo |
| demOptimiseGp | Gaussian Process Optimisation Demo |
| demRegression | Gaussian Process Regression Demo |
| disimKernCompute | Compute the kernel given the parameters and X. |
| disimKernDiagCompute | Compute the kernel given the parameters and X. |
| disimKernDisplay | Display a model. |
| disimKernExpandParam | Update a model structure with new parameters or update the posterior processes. |
| disimKernExtractParam | Extract the parameters of a model. |
| disimKernGradient | Compute the gradient wrt the kernel parameters. |
| disimXdisimKernCompute | Compute the kernel given the parameters and X. |
| disimXdisimKernGradient | Compute the gradient wrt the kernel parameters. |
| disimXrbfKernCompute | Compute the kernel given the parameters and X. |
| disimXrbfKernGradient | Compute the gradient wrt the kernel parameters. |
| disimXsimKernCompute | Compute the kernel given the parameters and X. |
| disimXsimKernGradient | Compute the gradient wrt the kernel parameters. |
| expTransform | Constrains a parameter. |
| gaussianNoiseOut | Compute the output of the GAUSSIAN noise given the input mean and variance. |
| gaussianNoiseParamInit | GAUSSIAN noise parameter initialisation. |
| gaussSamp | Sample from a Gaussian with a given covariance. |
| gpBlockIndices | Return indices of given block. |
| gpComputeAlpha | Update the vector 'alpha' for computing posterior mean quickly. |
| gpComputeM | Compute the matrix m given the model. |
| gpCovGrads | Sparse objective function gradients wrt Covariance functions for inducing variables. |
| gpCovGradsTest | Test the gradients of the likelihood wrt the covariance. |
| gpCreate | Create a GP model with inducing variables/pseudo-inputs. |
| gpDataIndices | Return indices of present data. |
| gpdisimDisplay | Display a model. |
| gpdisimExpandParam | Update a model structure with new parameters or update the posterior processes. |
| gpdisimExtractParam | Extract the parameters of a model. |
| gpdisimGradient | Model log-likelihood/objective error function and its gradient. |
| gpdisimLogLikeGradients | Model log-likelihood/objective error function and its gradient. |
| gpdisimLogLikelihood | Model log-likelihood/objective error function and its gradient. |
| gpdisimObjective | Model log-likelihood/objective error function and its gradient. |
| gpdisimUpdateProcesses | Update a model structure with new parameters or update the posterior processes. |
| gpExpandParam | Expand a parameter vector into a GP model. |
| gpExtractParam | Extract a parameter vector from a GP model. |
| gpGradient | Gradient wrapper for a GP model. |
| gpLogLikeGradients | Compute the gradients for the parameters and X. |
| gpLogLikelihood | Compute the log likelihood of a GP. |
| gpMeanFunctionGradient | Compute the log likelihood gradient wrt the scales. |
| gpObjective | Wrapper function for GP objective. |
| gpOptimise | Optimise the inducing variable based kernel. |
| gpOptions | Return default options for GP model. |
| gpOut | Evaluate the output of an Gaussian process model. |
| gpPlot | Gaussian Process Plotter |
| gpPosteriorMeanVar | Mean and variances of the posterior at points given by X. |
| gpPosteriorSample | Plot Samples from a GP Posterior. |
| gpSample | Plot Samples from a GP. |
| gpScaleBiasGradient | Compute the log likelihood gradient wrt the scales. |
| gpsimDisplay | Display a model. |
| gpsimExpandParam | Update a model structure with new parameters or update the posterior processes. |
| gpsimExtractParam | Extract the parameters of a model. |
| gpsimGradient | Model log-likelihood/objective error function and its gradient. |
| gpsimLogLikeGradients | Model log-likelihood/objective error function and its gradient. |
| gpsimLogLikelihood | Model log-likelihood/objective error function and its gradient. |
| gpsimObjective | Model log-likelihood/objective error function and its gradient. |
| gpsimUpdateProcesses | Update a model structure with new parameters or update the posterior processes. |
| gpTest | Test the gradients of the gpCovGrads function and the gp models. |
| gpUpdateAD | Update the representations of A and D associated with the model. |
| gpUpdateKernels | Update the kernels that are needed. |
| kernCompute | Compute the kernel given the parameters and X. |
| kernCreate | Initialise a kernel structure. |
| kernDiagCompute | Compute the kernel given the parameters and X. |
| kernDiagGradient | Compute the gradient of the kernel's parameters for the diagonal. |
| kernDiagGradX | Compute the gradient of the kernel wrt X. |
| kernDisplay | Display a model. |
| kernExpandParam | Update a model structure with new parameters or update the posterior processes. |
| kernExtractParam | Extract the parameters of a model. |
| kernGradient | Compute the gradient wrt the kernel parameters. |
| kernGradX | Compute the gradient of the kernel wrt X. |
| kernParamInit | Kernel parameter initialisation. |
| kernTest | Run some tests on the specified kernel. |
| localCovarianceGradients | Compute the gradients for the parameters and X. |
| localSCovarianceGradients | Compute the gradients for the parameters and X. |
| mlpKernCompute | Compute the kernel given the parameters and X. |
| mlpKernDiagGradX | Compute the gradient of the kernel wrt X. |
| mlpKernExpandParam | Update a model structure with new parameters or update the posterior processes. |
| mlpKernExtractParam | Extract the parameters of a model. |
| mlpKernGradient | Compute the gradient wrt the kernel parameters. |
| mlpKernGradX | Compute the gradient of the kernel wrt X. |
| mlpOptions | Return default options for GP model. |
| modelDisplay | Display a model. |
| modelExpandParam | Update a model structure with new parameters or update the posterior processes. |
| modelExtractParam | Extract the parameters of a model. |
| modelGradient | Model log-likelihood/objective error function and its gradient. |
| modelGradientCheck | Check gradients of given model. |
| modelLogLikelihood | Model log-likelihood/objective error function and its gradient. |
| modelObjective | Model log-likelihood/objective error function and its gradient. |
| modelOptimise | Optimise the given function using (scaled) conjugate gradients. |
| modelOut | Give the output of a model for given X. |
| modelOutputGrad | Compute derivatives with respect to params of model outputs. |
| modelUpdateProcesses | Update a model structure with new parameters or update the posterior processes. |
| multiKernCompute | Compute the kernel given the parameters and X. |
| multiKernDiagCompute | Compute the kernel given the parameters and X. |
| multiKernDisplay | Display a model. |
| multiKernExpandParam | Update a model structure with new parameters or update the posterior processes. |
| multiKernExtractParam | Extract the parameters of a model. |
| multiKernGradient | Compute the gradient wrt the kernel parameters. |
| multiKernParamInit | MULTI kernel parameter initialisation. |
| noiseCreate | Initialise a noise structure. |
| noiseOut | Give the output of the noise model given the mean and variance. |
| noiseParamInit | Noise model's parameter initialisation. |
| optimiDefaultConstraint | Returns function for parameter constraint. |
| optimiDefaultOptions | Optimise the given function using (scaled) conjugate gradients. |
| rbfKernCompute | Compute the kernel given the parameters and X. |
| rbfKernDiagCompute | Compute the kernel given the parameters and X. |
| rbfKernDiagGradX | Gradient of RBF kernel's diagonal with respect to X. |
| rbfKernDisplay | Display a model. |
| rbfKernExpandParam | Update a model structure with new parameters or update the posterior processes. |
| rbfKernExtractParam | Extract the parameters of a model. |
| rbfKernGradient | Compute the gradient wrt the kernel parameters. |
| rbfKernGradX | Gradient of RBF kernel with respect to input locations. |
| rbfKernGradXpoint | Gradient of RBF kernel with respect to input locations. |
| rbfKernParamInit | RBF kernel parameter initialisation. |
| SCGoptim | Optimise the given function using (scaled) conjugate gradients. |
| sigmoidTransform | Constrains a parameter. |
| simKernCompute | Compute the kernel given the parameters and X. |
| simKernDiagCompute | Compute the kernel given the parameters and X. |
| simKernDisplay | Display a model. |
| simKernExpandParam | Update a model structure with new parameters or update the posterior processes. |
| simKernExtractParam | Extract the parameters of a model. |
| simKernGradient | Compute the gradient wrt the kernel parameters. |
| simXrbfKernCompute | Compute the kernel given the parameters and X. |
| simXrbfKernGradient | Compute the gradient wrt the kernel parameters. |
| simXsimKernCompute | Compute the kernel given the parameters and X. |
| simXsimKernGradient | Compute the gradient wrt the kernel parameters. |
| translateKernCompute | Compute the kernel given the parameters and X. |
| translateKernDiagCompute | Compute the kernel given the parameters and X. |
| translateKernExpandParam | Update a model structure with new parameters or update the posterior processes. |
| translateKernExtractParam | Extract the parameters of a model. |
| translateKernGradient | Compute the gradient wrt the kernel parameters. |
| whiteKernCompute | Compute the kernel given the parameters and X. |
| whiteKernDiagCompute | Compute the kernel given the parameters and X. |
| whiteKernDiagGradX | Gradient of WHITE kernel's diagonal with respect to X. |
| whiteKernDisplay | Display a model. |
| whiteKernExpandParam | Update a model structure with new parameters or update the posterior processes. |
| whiteKernExtractParam | Extract the parameters of a model. |
| whiteKernGradient | Compute the gradient wrt the kernel parameters. |
| whiteKernGradX | Gradient of WHITE kernel with respect to input locations. |
| whiteKernParamInit | WHITE kernel parameter initialisation. |
| whiteXwhiteKernCompute | Compute the kernel given the parameters and X. |
| whiteXwhiteKernGradient | Compute the gradient wrt the kernel parameters. |
| zeroAxes | A function to move the axes crossing point to the origin. |