Sensitivity Analysis for Irregular Assessment Times


[Up] [Top]

Documentation for package ‘SensIAT’ version 0.3.0

Help Pages

add_terminal_observations Add Terminal Observations to a Dataset
autoplot.SensIAT_fulldata_jackknife_results Plot for Estimated Treatment Effect for 'SensIAT_fulldata_jackknife_results' Objects
autoplot.SensIAT_fulldata_model Plot for Estimated Treatment Effect for 'SensIAT_fulldata_model' Objects
autoplot.SensIAT_withingroup_jackknife_results Plot Estimates at Given Times for 'SensIAT_withingroup_jackknife_results' Objects
autoplot.SensIAT_within_group_model Plot a 'SensIAT_within_group_model' Object
compute_influence_terms Compute Influence Terms
compute_influence_terms.default Compute Influence Terms
compute_influence_terms.SensIAT::Single-index-outcome-model Compute Influence Terms
compute_SensIAT_expected_values Compute Conditional Expected Values based on Outcome Model
compute_SensIAT_expected_values.glm Compute Conditional Expected Values based on Outcome Model
compute_SensIAT_expected_values.lm Compute Conditional Expected Values based on Outcome Model
compute_SensIAT_expected_values.negbin Compute Conditional Expected Values based on Outcome Model
fit_SensIAT_fulldata_model Produce fitted model for group (treatment or control)
fit_SensIAT_marginal_mean_model Fit the Marginal Means Model
fit_SensIAT_single_index_fixed_bandwidth_model Outcome Modeler for 'SensIAT' Single Index Model.
fit_SensIAT_single_index_fixed_coef_model Outcome Modeler for 'SensIAT' Single Index Model.
fit_SensIAT_single_index_norm1coef_model Single Index Model using MAVE and Optimizing Bandwidth.
fit_SensIAT_within_group_model Produce fitted model for group (treatment or control)
jackknife Perform Jackknife Resampling on an Object
jackknife.SensIAT_fulldata_model Perform Jackknife Resampling on an Object
jackknife.SensIAT_within_group_model Perform Jackknife Resampling on an Object
predict.SensIAT_fulldata_model Give the Marginal Mean Estimate and its Estimated Asymptotic Variance
predict.SensIAT_within_group_model Give the Marginal Mean Estimate and its Estimated Asymptotic Variance
prepare_SensIAT_data Prepare Data for Sensitivity Analysis with Irregular Assessment Times
SensIAT_example_data SensIAT Example Data
SensIAT_example_fulldata SensIAT Example Data