- (<&>) : Ring a =>
Matrix h1
w1
a ->
Matrix h2
w2
a ->
Matrix (h1 *
h2)
(w1 *
w2)
a
- Tensor multiply (⊗) for ring matrices - Fixity
- Left associative, precedence 7
 
- (</>) : Ring a =>
Matrix n
m
a ->
Vect m
a ->
Vect n
a
- Matrix times a column vector - Fixity
- Left associative, precedence 3
 
- (<:>) : Ring a =>
Vect n
a ->
Vect n
a ->
a
- Inner product of ring vectors - Fixity
- Left associative, precedence 2
 
- (<<>>) : Ring a =>
Matrix n
n
a ->
Matrix n
n
a ->
Matrix n
n
a
- Matrix commutator - Fixity
- Left associative, precedence 2
 
- (<>) : Ring a =>
Matrix n
k
a ->
Matrix k
m
a ->
Matrix n
m
a
- Matrix multiplication - Fixity
- Left associative, precedence 5
 
- (<\>) : Ring a =>
Vect n
a ->
Matrix n
m
a ->
Vect m
a
- Matrix times a row vector - Fixity
- Left associative, precedence 3
 
- (><) : Ring a =>
Vect n
a ->
Vect m
a ->
Matrix n
m
a
- Outer product between ring vectors - Fixity
- Left associative, precedence 2
 
- (>><<) : Ring a =>
Matrix n
n
a ->
Matrix n
n
a ->
Matrix n
n
a
- Matrix anti-commutator - Fixity
- Left associative, precedence 2
 
- Id : RingWithUnity a =>
Matrix d
d
a
- Identity matrix 
- (\&\) : Ring a =>
Vect n
a ->
Vect m
a ->
Vect (n *
m)
a
- Tensor multiply (⊗) ring vectors - Fixity
- Left associative, precedence 7
 
- altSum : Group a =>
Vect n
a ->
a
- Alternating sum 
- basis : RingWithUnity a =>
Fin d ->
Vect d
a
- Standard basis vector with one nonzero entry, ring data type and vector-length unfixed 
- blockDiag : Monoid a =>
Matrix n
n
a ->
Matrix m
m
a ->
Matrix (n +
m)
(n +
m)
a
- Combine two matrices to make a new matrix in block diagonal form 
- det : Ring a =>
Matrix (S (S n))
(S (S n))
a ->
a
- Determinant of a square matrix 
- det2 : Ring a =>
Matrix (fromInteger 2)
(fromInteger 2)
a ->
a
- Determinant of a 2-by-2 matrix 
- diag_ : Monoid a =>
Vect n
a ->
Matrix n
n
a
- Square matrix from diagonal elements