- interface Abs 
- Numbers for which the absolute value is defined should implement - Abs.
 - abs : Abs ty =>
ty ->
ty
- Absolute value 
 
- interface Eq 
- The Eq interface defines inequality and equality. - (==) : Eq ty =>
ty ->
ty ->
Bool
- Fixity
- Non-associative, precedence 6
 
- (/=) : Eq ty =>
ty ->
ty ->
Bool
- Fixity
- Non-associative, precedence 6
 
 
- interface Fractional 
- (/) : Fractional ty =>
ty ->
ty ->
ty
- Fixity
- Left associative, precedence 9
 
- recip : Fractional ty =>
ty ->
ty
 
- interface Integral 
- div : Integral ty =>
ty ->
ty ->
ty
- Fixity
- Left associative, precedence 9
 
- mod : Integral ty =>
ty ->
ty ->
ty
- Fixity
- Left associative, precedence 9
 
 
- interface MaxBound 
- maxBound : MaxBound b =>
b
- The upper bound for the type 
 
- interface MinBound 
- minBound : MinBound b =>
b
- The lower bound for the type 
 
- interface Neg 
- The - Neginterface defines operations on numbers which can be negative.
 - negate : Neg ty =>
ty ->
ty
- The underlying of unary minus. - -5desugars to- negate (fromInteger 5).
 
- (-) : Neg ty =>
ty ->
ty ->
ty
- Fixity
- Left associative, precedence 8
 
 
- interface Num 
- The Num interface defines basic numerical arithmetic. - (+) : Num ty =>
ty ->
ty ->
ty
- Fixity
- Left associative, precedence 8
 
- (*) : Num ty =>
ty ->
ty ->
ty
- Fixity
- Left associative, precedence 9
 
- fromInteger : Num ty =>
Integer ->
ty
- Conversion from Integer. 
 
- interface Ord 
- The Ord interface defines comparison operations on ordered data types. - compare : Ord ty =>
ty ->
ty ->
Ordering
- (<) : Ord ty =>
ty ->
ty ->
Bool
- Fixity
- Non-associative, precedence 6
 
- (>) : Ord ty =>
ty ->
ty ->
Bool
- Fixity
- Non-associative, precedence 6
 
- (<=) : Ord ty =>
ty ->
ty ->
Bool
- Fixity
- Non-associative, precedence 6
 
- (>=) : Ord ty =>
ty ->
ty ->
Bool
- Fixity
- Non-associative, precedence 6
 
- max : Ord ty =>
ty ->
ty ->
ty
- min : Ord ty =>
ty ->
ty ->
ty
 
- data Ordering : Type
- LT : Ordering
- EQ : Ordering
- GT : Ordering
 
- boolOp : (a ->
a ->
Int) ->
a ->
a ->
Bool
- default#/= : Eq ty =>
ty ->
ty ->
Bool
- default#< : Ord ty =>
ty ->
ty ->
Bool
- default#<= : Ord ty =>
ty ->
ty ->
Bool
- default#== : Eq ty =>
ty ->
ty ->
Bool
- default#> : Ord ty =>
ty ->
ty ->
Bool
- default#>= : Ord ty =>
ty ->
ty ->
Bool
- default#max : Ord ty =>
ty ->
ty ->
ty
- default#min : Ord ty =>
ty ->
ty ->
ty
- default#recip : Fractional ty =>
ty ->
ty
- divB16 : Bits16 ->
Bits16 ->
Bits16
- divB32 : Bits32 ->
Bits32 ->
Bits32
- divB64 : Bits64 ->
Bits64 ->
Bits64
- divB8 : Bits8 ->
Bits8 ->
Bits8
- divBigInt : Integer ->
Integer ->
Integer
- divInt : Int ->
Int ->
Int
- intToBool : Int ->
Bool
- modB16 : Bits16 ->
Bits16 ->
Bits16
- modB32 : Bits32 ->
Bits32 ->
Bits32
- modB64 : Bits64 ->
Bits64 ->
Bits64
- modB8 : Bits8 ->
Bits8 ->
Bits8
- modBigInt : Integer ->
Integer ->
Integer
- modInt : Int ->
Int ->
Int
- thenCompare : Ordering ->
Lazy Ordering ->
Ordering
- Compose two comparisons into the lexicographic product