Net wor k Wor ki ng Group A. Rousskov
Request for Comments: 4037 The Measurenent Factory
Cat egory: Standards Track Mar ch 2005

Open Pl uggabl e Edge Services (OPES) Callout Protocol (OCP) Core
Status of This Meno

This docunent specifies an Internet standards track protocol for the
Internet conmmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice
Copyright (C The Internet Society (2005).
Abstract

This docunent specifies the core of the Open Pluggabl e Edge Services
(OPES) Callout Protocol (OCP). OCP narshals application nessages
from ot her conmuni cation protocols: An OPES internediary sends
original application nmessages to a callout server; the callout server
sends adapted application messages back to the processor. QOCP is
designed with typical adaptation tasks in mnd (e.g., virus and spam
managenent, | anguage and fornat translation, nessage anonymi zation

or advertisenent nanipulation). As defined in this docunent, the OCP
Core consists of application-agnostic nechani sns essential for

ef ficient support of typical adaptations.

Tabl e of Contents

1. Introduction .

Scope . .

OPES Docurrent I\/ap

Ter m nol ogy

rall Operation

Initialization .

Oigi nal Datafl ow

Adapted Dataflow . . .

Mul tiple Application I\/Essages
Term nati on .
Message Exchange Patterns Ce e e
Timeouts00
Environment 011
sages e

=
[

QDONPURWNED N
QOOwooooo~N~NOOOTh~W

gD DONONNGE R

Rousskov St andards Track [Page 1]

RFC 4037 OPES Cal | out Protocol Core

3.1. Message For mat
3.2. Message Rendering
3.3. Message Exanples .
3.4. Message Nanes

4. Transactions .

5. Invalid Input

6. Negotiation .
6.1. Negotiation Phase .
6.2. Negotiation Exanples . .

7. 'Data Preservation’ Optimnization . G

8. ’'Premature Dataflow Term nation’ Optimnzations .
8.1 Oigi nal Datafl ow
8.2 Adapted Dataflow . . .
8.3. Cetting Qut of the Loop .

9. Protocol Element Type Declaration I\/herronl c (PETDM
9.1 Optional Paraneters

10. Message Paraneter Types
10.1 uri. .o
10. 2 uni .
10. 3 size .
10. 4. of f set
10. 5. per cent
10. 6 bool ean.
10.7 xid .
10.8 sg-id.
10. 9. nodp. .
10.10. result. .
10.11. feature .
10.12. features.
10. 13. service .
10. 14. services. . .
10. 15. Dat af | ow Speci aI i zatl ons

11. Message Definitionso
11.1. Connection Start (CS)
11. 2 Connection End (CE) .
11.3 Service Group Created (SGC) .
11. 4. Service Group Destroyed (SGD)
11. 5. Transaction Start (TS).
11. 6 Transaction End (TE). . .
11.7 Application Message Start (AI\/B)
11.8 Appl i cati on Message End (AI\/E)
11. 9. Data Use Mne (DUM
11.10. Data Use Yours (DUY). .
11.11. Data Preservation Inter est (DPI)
11.12. Want Stop Receiving Data (DWR)
11.13. Want Stop Sendi ng Data (DW5S)
11.14. Stop Sendi ng Data (DSS)
11.15. Want Data Paused (DWP).

Rousskov St andards Track

March 2005

12
13
14
15
15
16
16
17
18
20
21
22
23
24
25
27
28
28
28
29
29
29
30
30
30
30
30
32
32
32
33
33
33
34
35
35
36
36
36
37
37
38
39
39
40
41
41
42

[Page 2]

RFC 4037 OPES Cal | out Protocol Core March 2005

11.16. Paused Wy Data (DPM. 43
11.17. Want More Data (DWM. 43
11.18. Negotiation Ofer (NO. 44
11.19. Negotiation Response (NR) 45
11.20. Ability Query (AQ. 46
11.21. Ability Answer (AA) 46
11.22. Progress Query (PQ 47
11.23. Progress Answer (PA). 47
11.24. Progress Report (PR) e 1
12. 1 AB Considerations . . . e 3
13. Security Considerations A48
14. | ANA Considerations 5o
15. Conpliance . . e e e b0
15. 1. Extendlng CCP Cbre - ¥
A, Message Sunmary . b2
B. State Summary - XS
C. Acknow edgements b4
16. References . . . e oY
16.1. Nornmative References e e e b4
16.2. Informative References b4
Aut hor’ s Address. . . 19
Ful I Copyri ght Statenent e -1)
1. Introduction

The Open Pl uggabl e Edge Services (OPES) architecture [RFC3835]
enabl es cooperative application services (OPES services) between a
data provider, a data consuner, and zero or nore OPES processors
The application services under consideration analyze and possibly
transform application-level nessages exchanged between the data
provi der and the data consumer

The OPES processor can del egate the responsibility of service
execution by communicating with callout servers. As described in

[RFC3836], an OPES processor invokes and comuni cates with services
on a callout server by using an OPES callout protocol (OCP). This
docunent specifies the core of that protocol ("OCP Core").

The OCP Core specification documents general application-independent
prot ocol mechani sms. A separate series of docunents describes
application-specific aspects of OCP. For exanple, "HITP Adaptation
with OPES" [OPES-HTTP] describes, in part, how HITP nessages and HTTP
net a-i nformati on can be comuni cated over OCP

Section 1.2 provides a brief overview of the entire OPES docunent

col l ection, including docunments describing OPES use cases and
security threats.

Rousskov St andards Track [Page 3]

RFC 4037 OPES Cal | out Protocol Core March 2005

1.1. Scope

The OCP Core specification docunents the behavior of OCP agents and
the requirenents for OCP extensions. OCP Core does not contain
requi renents or mechani sns specific for application protocols being
adapt ed.

As an application proxy, the OPES processor proxies a single
application protocol or converts from one application protocol to
another. At the sane time, OPES processor nay be an OCP client,
using OCP to facilitate adaptation of proxi ed nessages at call out
servers. It is therefore natural to assune that an OPES processor
takes application nmessages being proxied, marshals themover OCP to
cal l out servers, and then puts the adaptation results back on the
wire. However, this assunption inplies that OCP is applied directly
to application nessages that OPES processor is proxying, which may
not be the case.

OPES processor scope cal l out server scope
e e e oo + e e e oo +
| pre-processing | OCP scope |

| e |
| iteration | <== (application data) ==> | adaptation

| e |
| post-processing | |

e e e oo + e e e oo +

An OPES processor may preprocess (or postprocess) proxied application
messages before (or after) they are adapted at call out servers. For
exanpl e, a processor nay take an HITP response being proxi ed and pass
it as-is, along with netadata about the correspondi ng HTTP
connection. Another processor may take an HTTP response, extract its
body, and pass that body along with the content-encodi ng netadat a.
Moreover, to perform adaptation, the OPES processor nmay execute
several callout services, iterating over several callout servers

Such preprocessing, postprocessing, and iterations nake it inpossible
to rely on any specific relationship between application nessages
bei ng proxi ed and application messages being sent to a call out
service. Simlarly, specific adaptation actions at the call out
server are outside OCP Core scope

This specification does not define or require any specific

rel ati onshi p anong applicati on nessages being proxi ed by an OPES
processor and application nessages bei ng exchanged between an OPES
processor and a call out server via OCP. The OPES processor usually
provi des sonme mappi ng anong these applicati on nessages, but the
processor’s specific actions are beyond OCP scope. In other words,
this specification is not concerned with the OPES processor role as

Rousskov St andards Track [Page 4]

RFC 4037 OPES Cal | out Protocol Core March 2005

an application proxy or as an iterator of callout services. The
scope of OCP Core is conmunication between a single OPES processor
and a single callout server.

Furt hernore, an OPES processor may choose which proxied application
messages or information about themto send over OCP. Al proxied
messages on all proxied connections (if connections are defined for a
gi ven application protocol), everything on some connections, selected
proxi ed nmessages, or nothing night be sent over OCP to call out
servers. OPES processor and callout server state related to proxied
protocol s can be relayed over OCP as application nessage netadat a.

1.2. OPES Docunment Map

Thi s docunent belongs to a | arge set of OPES specifications produced
by the | ETF OPES Wrking Goup. Fanmiliarity with the overall OPES
approach and typical scenarios is often essential when one tries to
conprehend isol ated OPES docunents. This section provides an index
of OPES docunents to assist the reader with finding "mssing"

i nformation.

0 "OPES Use Cases and Depl oynment Scenarios" [RFC3752] describes a
set of services and applications that are considered in scope for
OPES and that have been used as a notivation and guidance in
designing the OPES architecture.

0 The OPES architecture and common termninology are described in "An
Architecture for Open Pluggabl e Edge Services (OPES)" [RFC3835].

0 "Policy, Authorization, and Enforcenent Requirenents of OPES"
[RFC3838] outlines requirenents and assunptions on the policy
framework, wi thout specifying concrete authorization and
enf orcenent net hods.

0 "Security Threats and Risks for OPES' [RFC3837] provides OPES risk
anal ysis, w thout recomrendi ng specific solutions.

0 "OPES Treatnent of | AB Considerations" [RFC3914] addresses al
architecture-1level considerations expressed by the | ETF | nternet
Architecture Board (1 AB) when the OPES WG was chartered.

0 At the core of the OPES architecture are the OPES processor and
the callout server, two network elenments that comunicate with
each other via an OPES Cal |l out Protocol (OCP). The requirenents
for this protocol are discussed in "Requirements for OPES Call out
Prot ocol s" [RFC3836].

Rousskov St andards Track [Page 5]

RFC 4037 OPES Cal | out Protocol Core March 2005

1

3.

o This docunent specifies an application agnostic protocol core to
be used for the comunicati on between an OPES processor and a
cal l out server.

0 "OPES Entities and End Poi nts Conmuni cations” [RFC3897] specifies
generic tracing and bypass nechani sns for OPES.

0 The OCP Core and conmuni cations docunents are independent fromthe
application protocol being adapted by OPES entities. Their
generi c mechani sms have to be conpl emented by application-specific
profiles. "HITP Adaptation with OPES" [OPES-HTTP] is such an
application profile for HTTP. It specifies how
appl i cation-agnosti c OPES nechani sns are to be used and augnent ed
in order to support adaptation of HTTP nessages.

o Finally, "P: Message Processing Language" [OPES-RULES] defines a
| anguage for specifying what OPES adaptations (e.g., translation)
nmust be applied to what application nessages (e.g., e-mail from
bob@xanpl e.com). P language is intended for configuring
application proxies (OPES processors).

Ter m nol ogy

In this docunent, the keywords "MJST", "MJST NOT", "REQUI RED",
"SHALL", "SHALL NOr", "SHOULD', "SHOULD NOT", "RECOMMENDED', " MAY",
and "OPTIONAL" in this docunent are to be interpreted as described in
[RFC2119]. When used with the normative neani ngs, these keywords
will be all uppercase. Occurrences of these words in | owercase
constitute normal prose usage, with no normative inplications.

The OPES processor works with nmessages from application protocols and
may relay infornmation about those application nessages to a call out

server. OCP is also an application protocol. Thus, protoco
el ements such as "nmessage", "connection", or "transaction" exist in
OCP and other application protocols. In this specification, al

references to elenents fromapplication protocols other than OCP are
used with an explicit "application" qualifier. References wthout
the "application" qualifier refer to OCP el ements.

OCP nessage: A basic unit of communicati on between an OPES processor
and a callout server. The nessage is a sequence of octets
formatted according to syntax rules (section 3.1). Message
semantics is defined in section 11.

application nessage: An entity defined by OPES processor and call out
server negotiation. Usually, the negotiated definition would
match the definition froman application protocol (e.g., [RFC2616]
definition of an HITP nessage).

Rousskov St andards Track [Page 6]

RFC 4037 OPES Cal | out Protocol Core March 2005

application nessage data: An opaque sequence of octets representing a
conplete or partial application nmessage. OCP Core does not
di stingui sh application message structures (if there are any).
Appl i cation nmessage data may be enpty.

data: Sane as application nessage data.

original: Referring to an application nessage flowing fromthe OPES
processor to a callout server.

adapted: Referring to an application nmessage flowi ng froman OPES
cal l out server to the OPES processor

adaptation: Any kind of access by a callout server, including
nodi fication, generation, and copying. For exanple, translating
or logging an SMIP nmessage is adaptation of that application
nessage.

agent: The actor for a given communication protocol. The OPES
processor and callout server are OCP agents. An agent can be
referred to as a sender or receiver, depending on its actions in a
particul ar context.

i medi ate: Performng the specified action before reacting to new
i ncom ng nessages or sending any new nessages unrelated to the
specified action.

OCP extension: A specification extending or adjusting this docunent
for adaptation of an application protocol (a.k.a., application
profile; e.g., [OPES-HITP]), new OCP functionality (e.qg.
transport encryption and aut hentication), and/or new OCP Core
ver si on.

2. Overall Operation

The OPES processor nay use the OPES call out protocol (OCP) to
communi cate with callout servers. Adaptation using callout services
is sonetimes called "bunp in the wire" architecture.

2. 1. Initialization

The OPES processor establishes transport connections with callout
servers to exchange application nessages with the callout server(s)
by using OCP. After a transport-layer connection (usually TCP/IP) is
est abl i shed, communi cati ng OCP agents exchange Connection Start (CS)
messages. Next, OCP features can be negotiated between the processor
and the callout server (see section 6). For exanple, OCP agents may
negotiate transport encryption and application nessage definition

Rousskov St andards Track [Page 7]

RFC 4037 OPES Cal | out Protocol Core March 2005

When enough settings are negotiated, OCP agents nay start exchanging
appl i cation nessages.

OCP Core provides negotiation and other nechanisns for agents to
encrypt OCP connections and authenticate each other. OCP Core does
not require OCP connection encryption or agent authentication
Application profiles and other OCP extensions nay docunent and/or
require these and other security nechanisns. OCP is expected to be
used, in part, in closed environnents where trust and privacy are
est abli shed by nmeans external to OCP. |Inplenentations are expected
to demand necessary security features via the OCP Core negotiation
mechani sm dependi ng on agent configuration and environnent.

2.2. Oiginal Dataflow

When t he OPES processor wants to adapt an application nmessage, it
sends a Transaction Start (TS) message to initiate an OCP transaction
dedicated to that application nessage. The processor then sends an
Application Message Start (AMS) nessage to prepare the callout server
for application data that will follow. Once the application nessage
scope is established, application data can be sent to the call out
server by using Data Use Mne (DUM and related OCP nessage(s). All
of these nessages correspond to the original dataflow

2.3. Adapted Datafl ow

The cal l out server receives data and netadata sent by the OPES
processor (original dataflow). The callout server anal yses netadata
and adapts data as it comes in. The server usually builds its
versi on of netadata and responds to the OPES processor with an
Application Message Start (AMS) nessage. Adapted application nessage
data can be sent next, using Data Use M ne (DUM OCP nessage(s). The
application nessage is then announced to be "conpleted" or "cl osed"
by using an Application Message End (AME) nmessage. The transaction
may be cl osed by using a Transaction End (TE) nessage, as well. All

t hese nessages correspond to adapted data fl ow

| OPES | == (original data flow) ==> |callout|
| pr ocessor | <== (adapted data flow) === |server

The OPES processor receives the adapted application nessage sent by
the callout server. Oher OPES processor actions specific to the
application nessage received are outside scope of this specification

Rousskov St andards Track [Page 8]

RFC 4037 OPES Cal | out Protocol Core March 2005

2.4. Miltiple Application Messages

OCP Core specifies a transactions interface dedicated to exchanging a
single original application nmessage and a single adapted application
message. Sone application protocols may require nultiple adapted
versions for a single original application nessage or even nultiple
original nessages to be exchanged as a part of a single OCP
transaction. For exanple, a single original e-mail nessage may need
to be transforned into several e-mail nessages, with one custom
nmessage for each recipient.

OCP ext ensi ons MAY docunent nechani sns for exchanging nultiple
original and/or multiple adapted application nessages within a single
OCP transacti on.

2.5. Ternination

Ei ther OCP agent can terninate application nessage delivery,
transaction, or connection by sending an appropriate OCP nessage.
Usual |y, the callout server term nates adapted application nessage
delivery and the transaction. Prenmature and abnornal terminations at
arbitrary tinmes are supported. The termination nessage includes a
result description.

2.6. Message Exchange Patterns

In addition to nessages carrying application data, OCP agents may

al so exchange nessages related to their configuration, state,
transport connections, application connections, etc. A callout
server may renove itself fromthe application nessage processing

| oop. A single OPES processor can conmuni cate with nany cal |l out
servers and vice versa. Though many OCP exchange patterns do not
follow a classic client-server nodel, it is possible to think of an
OPES processor as an "OCP client" and of a callout server as an "OCP
server". The OPES architecture docunment [RFC3835] describes
configuration possibilities.

The following informal rules illustrate rel ationships between
connections, transactions, OCP nmessages, and application nessages:

0 An OCP agent may conmunicate with nultiple OCP agents. This is
out side the scope of this specification

0 An OPES processor may have nultiple concurrent OCP connections to

a callout server. Comunication over nultiple OCP connections is
out side the scope of this specification

Rousskov St andards Track [Page 9]

RFC 4037 OPES Cal | out Protocol Core March 2005

0 A connection may carry nultiple concurrent transactions. A
transaction is always associated with a single connection (i.e., a
transacti on cannot span nultiple concurrent connections).

0 A connection may carry at nost one nessage at a time, including
control nessages and transaction-rel ated nessages. A nessage is
al ways associated with a single connection (i.e., a nmessage cannot
span mul tiple concurrent connections).

0 A transaction is a sequence of nessages related to application of
a given set of callout services to a single application nessage.

A sequence of transaction nmessages from an OPES processor to a
callout server is called original flow A sequence of transaction
nmessages froma callout server to an OPES processor is called
adapted flow. The two flows may overlap in tine.

0o In OCP Core, a transaction is associated with a single origina
and a single adapted application nessage. OCP Core extensions nay
extend transacti on scope to nore application nessages.

0 An application nmessage (adapted or original) is transferred by
usi ng a sequence of OCP nessages.

2.7. Tineouts

OCP violations, resource limts, external dependencies, and other
factors may lead to states in which an OCP agent is not receiving
requi red messages fromthe other OCP agent. OCP Core defines no
messages to address such situations. In the absence of any extension
mechani sm OCP agents nust inplenent tinmeouts for OCP operations. An
OCP agent MUJST forcefully term nate any OCP connection, negotiation
transaction, etc. that is not making progress. This rule covers
bot h dead- and |ivel ock situations.

In their inplementation, OCP agents NMAY rely on transport-I|evel or
other external tineouts if such external tineouts are guaranteed to
happen for a given OCP operation. Depending on the OCP operation, an
agent may benefit from "pinging" the other side with a Progress Query
(PQ nessage before termi nating an OCP transaction or connection

The latter is especially useful for adaptations that nmay take a | ong
tine at the callout server before producing any adapted data.

Rousskov St andards Track [Page 10]

RFC 4037 OPES Cal | out Protocol Core March 2005

2.8. Environnent

OCP conmuni cation is assuned usually to take place over TCP/IP
connections on the Internet (though no default TCP port is assigned
to OCP in this specification). This does not preclude OCP from bei ng
i npl enented on top of other transport protocols, or on other

networks. High-level transport protocols such as BEEP [RFC3080] nay
be used. OCP Core requires a reliable and nessage- order-preserving
transport. Any protocol with these properties can be used; the
mappi ng of OCP nessage structures onto the transport data units of
the protocol in question is outside the scope of this specification

OCP Core is application agnostic. OCP nessages can carry
application-specific informati on as a payl oad or as
application-specific message paraneters.

OCP Core overhead in ternms of extra traffic on the wire is about 100
- 200 octets per snall application nessage. Pipelining, preview,
data preservation, and early term nation optim zations, as well as
as-is encapsul ation of application data, nmake fast exchange of
application nessages possible.

3. Messages

As defined in section 1.3, an OCP nessage is a basic unit of

communi cati on between an OPES processor and a callout server. A
nmessage i s a sequence of octets formatted according to syntax rules
(section 3.1). Message semantics is defined in section 11. Messages
are transmitted on top of OCP transport.

OCP nessages deal with transport, transaction nmanagenent, and
application data exchange between a single OPES processor and a
single callout server. Some nessages can be enitted only by an OPES
processor; sonme only by a callout server; and sonme by both OPES
processor and callout server. Sone nessages require responses (one
could call such nessages "requests"); sone can only be used in
response to other nessages ("responses"); sone nmay be sent without
solicitation; and some nay not require a response.

Rousskov St andards Track [Page 11]

RFC 4037 OPES Cal | out Protocol Core March 2005

3.1. Message For mat

An OCP nmessage consists of a nessage nanme foll owed by optional
paraneters and a payl oad. The exact nessage syntax is defined by the
foll owi ng Augrment ed Backus- Naur Form (ABNF) [RFC2234]:

message = nane [SP anonym par anet er s]
[CRLF named- par anet ers CRLF]
[CRLF payl oad CRLF]

";" CRLF
anonym paraneters = val ue *(SP val ue) ; space-separat ed
naned- paraneters = nanmed-val ue *(CRLF naned-val ue) ; CRLF-separated
list-itens = value *("," val ue) ; coma- separ at ed
payl oad = data
named-val ue = name ":" SP val ue

val ue = structure / list / atom

structure = "{" [anonym paraneters] [CRLF naned-paraneters CRLF] "}"
list ="(" [list-items] ")"

at om = bare-val ue / quot ed-val ue

nane = ALPHA *saf e- OCTET
bare-val ue = 1*saf e- OCTET

guot ed- val ue = DQUOTE dat a DQUOTE

data = size ":" *QOCTET ; exactly size octets

saf e-OCTET = ALPHA / DIGT / "-" ["_"

si ze = dec- nunber ; 0-2147483647

dec-nunber = 1*DIA T ; no |l eading zeros or signs

Several normative rul es acconpany the above ABNF:

o0 There is no "inplied linear space" (LW5) rule. LW5 rules are
common to M ME-based grammars but are not used here. The
whi t espace syntax is restricted to what is explicitly all owed by
t he above ABNF.

o All protocol elenents are case sensitive unless it is specified
otherwise. 1In particular, nessage nanes and paraneter nanes are
case sensitive.

0 Sizes are interpreted as deci mal val ues and cannot have | eadi ng
zeros.

0 Sizes do not exceed 2147483647.

Rousskov St andards Track [Page 12]

RFC 4037 OPES Cal | out Protocol Core March 2005

0 The size attribute in a quoted-val ue encodi ng specifies the exact
number of octets following the colum (':’) separator. |If size
octets are not followed by a quote ('"') character, the encoding
is syntactically invalid.

o Enpty quoted values are encoded as a 4-octet sequence "O:"

0 Any bare value can be encoded as a quoted value. A quoted val ue
is interpreted after the encoding is renoved. For exanple, nunber
1234 can be encoded as four octets 1234 or as eight octets
"4:1234", yielding exactly the sane neaning.

0 Unicode UTF-8 is the default encoding. Note that ASCIl is a UTF-8
subset, and that the syntax prohibits non-ASCI| characters outside
of the "data" el enent.

Messages violating formatting rules are, by definition, invalid. See
section 5 for rules governing processing of invalid nessages.

3.2. Message Rendering

OCP nessage sanples in this specification and its extensions nay not
be typeset to depict mnor syntactical details of OCP nessage fornmat.
Specifically, SP and CRLF characters are not shown explicitly. No
rendering of an OCP nessage can be used to infer nessage format. The
nmessage format definition above is the only normative source for al

i mpl emrent ati ons.

On occasion, an OCP nessage |ine exceeds text width allowed by this
specification format. A backslash ("\"), a "soft line break"
character, is used to enphasize a protocol -violating
presentation-only |inebreak. Bare backsl ashes are prohibited by OCP
syntax. Simlarly, an "\r\n" string is sonmetines used to enphasi ze
the presence of a CRLF sequence, usually before OCP nessage payl oad.
Normal Iy, the visible end of line corresponds to the CRLF sequence on
the wire.

The next section (section 3.3) contains specific OCP nessage
exanpl es, some of which illustrate the above rendering techni ques.

Rousskov St andards Track [Page 13]

RFC 4037 OPES Cal | out Protocol Core March 2005

3.3. Message Exanpl es

OCP syntax provides for conpact representation of short contro
nmessages and required paraneters while allow ng for paraneter
extensi ons. Bel ow are exanples of short control messages. The
required CRLF sequence at the end of each line is not shown
explicitly (see section 3.2).

PQ

TS 1 2;

DWM 22

DWP 22 16;

x-doit "5:xyzzy";

The above exanpl es contain atom c anonynmous paraneter val ues, such as
nunber and string constants. OCP nmessages soneti nes use nore
conmpl i cated paraneters such as itemlists or structures w th naned
val ues. As both nessages below illustrate, structures and lists can
be nest ed:

NO ({"32: http://ww.iana. org/assi gnments/opes/ocp/tls"});

NO ({"54: http://wwmv. i ana. or g/ assi gnnment s/ opes/ ocp/ http/response”
Optional -Parts: (request-header)

},{"54: http://ww.iana.org/assi gnments/ opes/ocp/ http/response"
Optional -Parts: (request-header, request-body)
Transf er - Encodi ngs: (chunked)

1
Optional paraneters and extensions are possible with a naned
paraneters approach, as illustrated by the follow ng exanple. The

DWM (section 11.17) nessage in the exanple has two anonynous
paraneters (the | ast one being an extension) and two nanmed paraneters
(the last one being an extension).

DW 1 3
Si ze- Request: 16384
X-Need- I nfo: "26:twenty six octet extension";

Finally, any nessage nay have a payl oad part. For exanple, the Data
Use M ne (DUM nessage bel ow carries 8865 octets of raw data

DUM 1 13

Modp: 75

\r\n

8865:... 8865 octets of raw data ...

Rousskov St andards Track [Page 14]

RFC 4037 OPES Cal | out Protocol Core March 2005

3.4. Message Nanes

Most OCP nessages defined in this specification have short nanes,
fornmed by abbreviating or conpressing a | onger but human-friendlier
message title. Short nanmes without a central registration system
(such as this specification or the I ANA registry) are likely to cause
conflicts. Informal protocol extensions should avoid short nanes.

To enphasi ze what is already defined by nessage synt ax,

i mpl enent ati ons cannot assune that all nessage nanes are very short.

4. Transactions

An OCP transaction is a |ogical sequence of OCP nessages processing a
single original application nessage. The result of the processing

may be zero or nore application nessages, adapted fromthe original

A typical transaction consists of two nmessage flows: a flow fromthe
OPES processor to the callout server (sending the origina

application nessage), and a flow fromthe callout server to the OPES
processor (sending adapted application nessages). The nunber of
application nessages produced by the callout server and whether the
call out server actually nodifies the original application nessage may
depend on the requested callout service and other factors. The OPES
processor or the callout server can terninate the transaction by
sendi ng a correspondi ng nessage to the other side.

An OCP transaction starts with a Transaction Start (TS) nmessage sent
by the OPES processor. A transaction ends with the first Transaction
End (TE) nmessage sent or received, explicit or inmplied. A TE nessage
can be sent by either side. Zero or nore OCP nessages associ ated
with the transaction can be exchanged in between. The figure bel ow
illustrates a possible nessage sequence (prefix "P" stands for the
OPES processor; prefix "S" stands for the callout server). Sone
nmessage details are onmitted

P: TS 10;
P: AMS 10 1;

... processor sending application data to the callout server
S: AMS 10 2;

... callout server sending application data to the processor
... processor sending application data to the callout server
AMVE 10 1 result;

AME 10 2 result;
TE 10 result;

RN

Rousskov St andards Track [Page 15]

RFC 4037 OPES Cal | out Protocol Core March 2005

5.

I nvalid I nput

This specification contains many criteria for valid OCP nessages and
their parts, including syntax rules, semantics requirenents, and
relationship to agents state. In this context, "Invalid input” means
nmessages or nessage parts that violate at |east one of the nornative
rules. A nessage with an invalid part is, by definition, invalid.

I f OCP agent resources are exhausted while parsing or interpreting a
nmessage, the agent MJST treat the correspondi ng OCP nessage as

i nvalid.

Unl ess explicitly allowed to do otherw se, an OCP agent MJST
termnate the transaction if it receives an invalid nessage with
transacti on scope and MJST term nate the connection if it receives an
invalid message with a connection scope. A term nating agent MJST
use the result status code of 400 and MAY specify term nation cause
information in the result status reason paraneter (see section
10.10). If an OCP agent is unable to determ ne the scope of an
invalid nmessage it received, the agent MJST treat the nessage as
havi ng connecti on scope.

OCP usually deals with optional but invasive application nmessage
mani pul ations for which correctness ought to be val ued above
robustness. For exanple, a failure to insert or renove certain
optional web page content is usually far |ess disturbing than
corrupting (making unusable) the host page while performning that
insertion or renopval. Mst OPES adaptations are high level in
nature, which makes it inpossible to assess correctness of the
adaptations automatically, especially if "robustness guesses"” are
i nvol ved.

Negoti ati on

The negoti ati on nechani sm all ows OCP agents to agree on the nutually
acceptabl e set of features, including optional and
application-specific behavior and OCP extensions. For exanple,
transport encryption, data format, and support for a new nessage can
be negotiated. Negotiation inplies intent for a behavioral change.
For a related nmechani smallowi ng an agent to query capabilities of
its counterpart w thout changing the counterpart’s behavior, see the
Ability Query (AQ and Ability Answer (AA) message definitions.

Most negotiations require at |east one round trip tine delay. In
rare cases when the other side’s response is not required

i medi ately, negotiation delay can be elinm nated, with an inherent
risk of an overly optimstic assunption about the negotiation
response.

Rousskov St andards Track [Page 16]

RFC 4037 OPES Cal | out Protocol Core March 2005

A detected violation of negotiation rules |eads to OCP connection
term nation. This design reduces the nunmber of negotiation scenarios
resulting in a deadl ock when one of the agents is not conpliant.

Two core negotiation primtives are supported: negotiation offer and
negoti ati on response. A Negotiation Ofer (NO nessage all ows an
agent to specify a set of features fromwhich the responder has to
sel ect at nost one feature that it prefers. The selection is sent by

usi ng a Negoti ati on Response (NR) nessage. |If the response is
positive, both sides assune that the selected feature is in effect

i medi ately (see section 11.19 for details). |If the response is
negative, no behavioral changes are assunmed. In either case, further

of fers may foll ow.

Negoti ati ng OCP agents have to take into account prior negotiated
(i.e., already enabled) features. OCP agents MJST NOT make and MJST
reject offers that would lead to a conflict with already negoti ated
features. For exanple, an agent cannot offer an HTTP application
profile for a connection that already has an SMIP application profile
enabl ed, as there would be no way to resolve the conflict for a given
transaction. Similarly, once TLSvl connection encryption is

negoti ated, an agent must not offer and nust reject offers for SSLv2
connection encryption (unless a negotiated feature explicitly all ows
for changing an encryption schene on the fly).

Negotiation Offer (NO nessages nmay be sent by either agent. COCP
ext ensi ons docunenting negotiation MAY assign the initiator role to
one of the agents, depending on the feature being negotiated. For
exanpl e, negotiation of transport security feature should be
initiated by OPES processors to avoid situations where both agents
wait for the other to nake an offer

As either agent may make an offer, two "concurrent” offers may be
made at the same tinme, by the two conmunicating agents. Unnanaged
concurrent offers may lead to a negotiation deadl ock. By giving OPES
processor a priority, offer-handling rules (section 11.18) ensure
that only one offer per OCP connection is honored at a time, and that
the other concurrent offers are ignored by both agents.

6.1. Negotiation Phase

A Negotiation Phase is a nechani smensuring that both agents have a
chance to negotiate all features they require before proceeding
further. Negotiation Phases have OCP connection scope and do not
overlap. For each OCP agent, the Negotiation Phase starts with the
first Negotiation Offer (NO nessage received or the first

Negoti ati on Response (NR) nessage sent, provided the nmessage is not a
part of an existing Phase. For each OCP agent, Negotiation Phase

Rousskov St andards Track [Page 17]

RFC 4037 OPES Cal | out Protocol Core March 2005

ends with the first Negotiation Response (NR) nessage (sent or
received), after which the agent expects no nore negotiations. Agent
expectation rules are defined later in this section

During a Negotiation Phase, an OCP agent MJST NOT send nessages ot her
than the foll owing "Negotiation Phase nessages”: Negotiation Ofer
(NO), Negotiation Response (NR), Ability Query (AQ, Ability Answer
(AA), Progress Query (PQ, Progress Answer (PA), Progress Report
(PR), and Connection End (CE).

Mul tiple Negotiation Phases may happen during the Iifespan of a
single OCP connection. An agent nay attenpt to start a new
Negoti ati on Phase imedi ately after the old Phase is over, but it is
possi ble that the other agent will send nessages other than
"Negoti ati on Phase nessages" before receiving the new Negotiation
Ofer (NO. The agent that starts a Phase has to be prepared to
handl e those nessages while its offer is reaching the recipient.

An OPES processor MJST nmake a negotiation offer imediately after
sendi ng a Connection Start (CS) nessage. |f the OPES processor has
not hing to negotiate, the processor MJIST send a Negotiation Ofer
(NO nessage with an enpty features list. These two rules bootstrap
the first Negotiation Phase. Agents are expected to negotiate at

| east the application profile for OCP Core. Thus, these
boot st rappi ng requirements are unlikely to result in any extra work.

Once a Negotiation Phase starts, an agent MJST expect further
negotiations if and only if the last NO sent or the Iast NR received
contained a true "O fer-Pendi ng" paraneter value. Informally, an
agent can keep the phase open by sending true "O fer-Pendi ng"
paraneters with negotiation offers or responses. Moreover, if there
is a possibility that the agent nmay need to continue the Negotiation
Phase, the agent nust send a true "O fer-Pendi ng" paraneter

6.2. Negotiation Exanples

Bel ow i s an exanple of the sinplest negotiation possible. The OPES
processor is offering nothing and is predictably receiving a
rejection. Note that the NR nmessage terminates the Negotiati on Phase
in this case because neither of the nessages contains a true

"Of fer-Pendi ng" val ue:

P: NO ();
S: NR;
The next example illustrates how a call out server can force

negoti ation of a feature that an OPES processor has not negoti at ed.
Note that the server sets the "Ofer-Pendi ng" paraneter to true when

Rousskov St andards Track [Page 18]

RFC 4037 OPES Cal | out Protocol Core March 2005

responding to the processor Negotiation Ofer (NO nessage. The
processor chooses to accept the feature:

P: NO ();
S: NR
O fer-Pending: true

S: NO ({"22:0cp://feature/ exanple/"})
O fer-Pending: fal se

P: NR {"22: ocp://featurel/ exanple/"};

If the server seeks to stop the above negotiations after sending a
true "Ofer-Pending" value, its only option would be send an enpty
negotiation offer (see the first exanple above). |If the server does
not hi ng i nstead, the OPES processor would wait for the server and
woul d eventually time out the connection

The followi ng exanpl e shows a dialog with a callout server that
insists on enabling two imaginary features: strong transport
encryption and volatile storage for responses. The server is
designed not to exchange sensitive nessages until both features are
enabled. Naturally, the volatile storage feature has to be

negoti ated securely. The OPES processor supports one of the strong
encryption nmechanisns but prefers not to offer (to vol unteer support
for) strong encryption, perhaps for performance reasons. The server
has to send a true "Ofer-Pendi ng" paraneter to get a chance to offer
strong encryption (which is successfully negotiated in this case).
Any messages sent by either agent after the (only) successful NR
response are encrypted with "strongB" encryption schene. The OPES
processor does not understand the volatile storage feature, and the
| ast negotiation fails (over a strongly encrypted transport

connecti on).

P: NO ({"29:ocp://exanpl e/ encryption/ weak"})

S NR
O fer-Pending: true

S NO ({"32:0cp://exanpl e/ encryption/strongA"},\
{"32: ocp://exanpl e/ encryption/strongB"})
O fer-Pending: true

P NR {"32: ocp://exanpl e/ encryption/strongB"}

all traffic belowis encrypted using strongB ..

Rousskov St andards Track [Page 19]

RFC 4037 OPES Cal | out Protocol Core March 2005

S: NO ({"31:ocp://exanpl e/storage/volatile"})
O fer-Pending: fal se

P R
Unknowns: ({"31:ocp://exanpl e/storage/volatile"})

S: bSE { 400 "33:lack of Vol Store protocol support" }

The followi ng exanple from [OPES-HTTP] illustrates successful HITP
application profile negotiation:

P: NO ({"54:http://ww.iana.org/assi gnments/opes/ocp/ http/response"”
Aux- Parts: (request-header, request-body)
1)
SG 5;
S NR {"54:http://ww.iana. org/assi gnments/opes/ocp/ http/response”
Aux-Parts: (request-header)
Pause- At - Body: 30
wWont - Send- Body: 2147483647
Cont ent - Encodi ngs: (9gzip)

}
SG 5;

7. 'Data Preservation’ Optimzation

Many adaptations do not require any data nodifications (e.g., nmessage
| oggi ng or blocking). Sone adaptations nodify only a small portion
of application nmessage content (e.g., HITP cookies filtering or ad
insertion). Yet, in many cases, the callout service has to see
conplete data. By default, unnodified data would first travel from
the OPES processor to the callout server and then back. The "data
preservation" optimization in OCP helps elinmnate the return trip if
both OCP agents cooperate. Such cooperation is optional: OCP agents
MAY support data preservation optim zation

To avoid sendi ng back unnodified data, a callout service has to know
that the OPES processor has a copy of the data. As data sizes can be
very large and the callout service may not know in advance whether it
will be able to use the processor copy, it is not possible to require
the processor to keep a copy of the entire original data. |nstead,

it is expected that a processor nay keep sone portion of the data,
dependi ng on processor settings and state.

When an OPES processor conmmits to keeping a data chunk, it announces
its decision and the chunk paraneters via a Kept paraneter of a Data
Use M ne (DUM nessage. The callout server MAY "use" the chunk by
sending a Data Use Yours (DUY) nessage referring to the preserved

Rousskov St andards Track [Page 20]

RFC 4037 OPES Cal | out Protocol Core March 2005

chunk. That OCP nessage does not have payl oad and, therefore, the
return trip is elimnated

As the mapping between original and adapted data is not known to the
processor, the processor MIST keep the announced- as-preserved chunk
until the end of the corresponding transaction, unless the callout
server explicitly tells the processor that the chunk is not needed.
As inplied by the above requirenment, the processor cannot assune that
a data chunk is no | onger needed just because the callout server sent
a Data Use Yours (DUY) nmessage or adapted data with, for instance,
the sane offset as the preserved chunk

For simplicity, preserved data is always a conti guous chunk of
original data, described by an (offset, size) pair using a "Kept"
paraneter of a Data Use Mne (DUM nessage. An OPES processor may
vol unteer to increase the size of the kept data. An OPES processor
may increase the offset if the callout server indicated that the kept
data is no | onger needed.

Both agents may benefit fromdata reuse. An OPES processor has to
all ocate storage to support this optimzation, but a callout server
does not. On the other hand, it is the callout server that is
responsible for relieving the processor fromdata preservation
conmitnents. There is no sinple way to resolve this conflict of

interest on a protocol level. Sone OPES processors nay allocate a
relatively small buffer for data preservati on purposes and stop
preserving data when the buffer beconmes full. This technique would

benefit callout services that can quickly reuse or discard kept data.
Anot her processor strategy would be to size the buffer based on
historical data reuse statistics. To inprove chances of beneficial
cooperation, callout servers are strongly encouraged to i mmedi ately
notify OPES processors of unwanted data. The callout server that
made a decision not to send Data Use Yours (DUY) nessages (for a
specific data ranges or at all) SHOULD i medi ately informthe OPES
processor of that decision with the corresponding Data Preservation
Interest (DPlI) nessage(s) or other nechani sns.

8. ’'Premature Dataflow Term nation’ Optinizations

Many cal | out services adapt small portions of |arge nessages and
woul d preferably not to be in the | oop when that adaptation is over
Sonme cal l out services nmay not seek data nodification and woul d
preferably not send data back to the OPES processor, even if the OPES
processor is not supporting the data preservation optim zation
(Section 7). By OCP design, unilateral premature datafl ow

term nation by a callout server would lead to termination of an OCP
transaction with an error. Thus, the two agents nust cooperate to
allow for error-free premature termnation

Rousskov St andards Track [Page 21]

RFC 4037 OPES Cal | out Protocol Core March 2005

This section docunents two nechani sns for premature term nation of
original or adapted dataflow In conbination, the nechanisns all ow
the callout server to get out of the processing | oop altogether

8.1. Oiginal Datafl ow

There are scenarios where a callout server is not interested in the
remai ning original dataflow For exanple, a sinple access bl ocking
or "this site is tenporary down" callout service has to send an
adapt ed (generated) application message but would preferably not
receive original data fromthe OPES processor

OCP Core supports premature original dataflow term nation via the
Want Stop Receiving Data (DWBR) nessage. A callout server that does
not seek to receive additional original data (beyond a certain size)
sends a DWER nessage. The OPES processor receiving a DAWSR nessage
term nates original datafl ow by sending an Applicati on Message End
(AVE) nessage with a 206 (partial) status code

The following figure illustrates a typical sequence of events. The
downward |ines connecting the two dataflows illustrate the

transm ssion delay that allows for nore OCP nessages to be sent while
an agent waits for the opposing agent reaction

OPES Cal | out
Processor Server
DUM> <DUM
DUM> <DWBR <-- Server is ready to stop receiving
e /<DUM <-- Server continues as usua
DUM-__ / <DUM
AVE> . <-- Processor stops sending original data
_ <DUM
\ <DUM

<DUM <-- Server continues to send adapted data
<AME
The mechani sm described in this section has no effect on the adapted
datafl ow. Receiving an Application Message End (AME) nessage with
206 (partial) result status code fromthe OPES processor does not
i ntroduce any special requirements for the adapted datafl ow
termnation. However, it is not possible to term nate adapted

dataf |l ow prematurely after the original dataflow has been prematurely
term nated (see section 8.3).

Rousskov St andards Track [Page 22]

RFC 4037 OPES Cal | out Protocol Core March 2005

8.2. Adapted Datafl ow

There are scenarios where a callout service may want to stop sending
adapted data before a conplete applicati on nessage has been sent.

For exanple, a logging-only callout service has to receive al
application nessages but would preferably not send copies back to the
OPES processor.

OCP Core supports premature adapted dataflow term nation via a
conmbi nati on of Want Stop Sending Data (DW5S) and Stop Sendi ng Data
(DSS) nessages. A callout service that seeks to stop sending data
sends a DWSS nessage, soliciting an OPES processor permnission to
stop. Wiile waiting for the perm ssion, the server continues wth
its usual routine.

An OPES processor receiving a Want Stop Sendi ng Data nessage responds
with a Stop Sending Data (DSS) nessage. The processor may then pause
to wait for the callout server to term nate the adapted datafl ow or
may continue sending original data while naking a copy of it. Once
the server terninates the adapted dataflow, the processor is
responsi ble for using original data (sent or paused after sending
DSS) instead of the adapted data.

The cal | out server receiving a DSS nessage terninates the adapted
dat af | ow (see the Stop Sending Data (DSS) nessage definition for the
exact requirenments and corner cases).

The following figure illustrates a typical sequence of events,

i ncluding a possible pause in original datafl ow when the OPES
processor is waiting for the adapted dataflow to end. The downward

I ines connecting the two dataflows illustrate the transm ssion del ay
that allows for nmore OCP nessages to be sent while an agent waits for
t he opposi ng agent reaction

Rousskov St andards Track [Page 23]

RFC 4037 OPES Cal | out Protocol Core March 2005

OPES Cal | out
Processor Server
DUM> <DUM
DUM> <DWES <-- Server is ready to stop sending
e / <DUM <-- Server continues as usual
DUV / <DUM wai ting for DSS
DSS> C
_ <DUM
possi bl e \ <DUM
or g- dat af | ow <AME 206 <-- Server term nates adapted datafl ow
pause / upon receiving the DSS nessage
/
DUV> <-- Processor resunes original datafl ow
DUM> to the server and starts using
- original data without adapting it
AVE>

Premat ure adapted datafl ow preservation is not trivial, as the OPES
processor relies on the callout server to provide adapted data

(rmodi fied or not) to construct the adapted application nessage. |If
the call out server seeks to quit its job, special care nmust be taken
to ensure that the OPES processor can construct the conplete
application nessage. On a logical level, this nmechanismis

equi valent to switching fromone call out server to another

(non-nodi fying) callout server in the mddle of an OCP transaction

O her than a possible pause in the original dataflow, the nechanism
described in this section has no effect on the original dataflow.
Recei ving an Application Message End (AME) nmessage with 206 (partial)
result status code fromthe callout server does not introduce any
special requirenments for the original dataflow termination

8.3. Cetting Qut of the Loop

Some adaptation services work on application nmessage prefixes and do
not seek to be in the adaptation |oop once their work is done. For
exanple, an ad insertion service that did its job by nodifying the
first fragnment of a web "page" would not seek to receive nore
original data or to performfurther adaptations. The 'Getting Qut of
the Loop’ optinization allows a callout server to get conpletely out
of the application nessage processing | oop

The "Getting Qut of the Loop" optim zation is nade possible by
term nating the adapted datafl ow (section 8.2) and then by
term nating the original dataflow (section 8.1). The order of
termnation is very inportant.

Rousskov St andards Track [Page 24]

RFC 4037 OPES Cal | out Protocol Core March 2005

If the original dataflowis terminated first, the OPES processor
woul d not allow the adapted dataflow to be terninated prematurely, as
the processor would not be able to reconstruct the renaining portion
of the adapted application nessage. The processor would not know

whi ch suffix of the remaining original data has to follow the adapted
parts. The mappi ng between original and adapted octets is known only
to the callout service

An OPES processor that received a DWS nessage foll owed by a DWSR
message MJST NOT send an AME nmessage with a 206 (partial) status code
before sending a DSS nmessage. Informally, this rule nmeans that a
cal l out server that wants to get out of the | oop fast should send a
DWES nessage i nmmedi ately foll owed by a DWER nessage; the server does
not have to wait for the OPES processor’'s permnmission to termnate
adapt ed dat af |l ow before requesting that the OPES processor terni nate