
RFC 9393

Concise Software Identification Tags

Abstract

ISO/IEC 19770-2:2015 Software Identification (SWID) tags provide an extensible XML-based

structure to identify and describe individual software components, patches, and installation

bundles. SWID tag representations can be too large for devices with network and storage

constraints. This document defines a concise representation of SWID tags: Concise SWID

(CoSWID) tags. CoSWID supports a set of semantics and features that are similar to those for

SWID tags, as well as new semantics that allow CoSWIDs to describe additional types of

information, all in a more memory-efficient format.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9393

Standards Track

June 2023

2070-1721

H. Birkholz

Fraunhofer SIT

J. Fitzgerald-McKay

National Security Agency

C. Schmidt

The MITRE Corporation

D. Waltermire

NIST

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9393

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Birkholz, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9393
https://www.rfc-editor.org/info/rfc9393
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. The SWID and CoSWID Tag Lifecycle

1.2. Concise SWID Format

1.3. Requirements Notation

2. Concise SWID Data Definition

2.1. Character Encoding

2.2. Concise SWID Extensions

2.3. The concise-swid-tag Map

2.4. concise-swid-tag Co-constraints

2.5. The global-attributes Group

2.6. The entity-entry Map

2.7. The link-entry Map

2.8. The software-meta-entry Map

2.9. The Resource Collection Definition

2.9.1. The hash-entry Array

2.9.2. The resource-collection Group

2.9.3. The payload-entry Map

2.9.4. The evidence-entry Map

2.10. Full CDDL Specification

3. Determining the Type of CoSWID

4. CoSWID Indexed Label Values

4.1. Version Scheme

4.2. Entity Role Values

4.3. Link Ownership Values

4.4. Link Rel Values

4.5. Link Use Values

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 2

5. "swid" and "swidpath" Expressions

5.1. "swid" Expressions

5.2. "swidpath" Expressions

6. IANA Considerations

6.1. CoSWID Items Registry

6.2. Registries for Software ID Values

6.2.1. Registration Procedures

6.2.2. Private Use of Index and Name Values

6.2.3. Expert Review Criteria

6.2.4. Software ID Version Scheme Values Registry

6.2.5. Software ID Entity Role Values Registry

6.2.6. Software ID Link Ownership Values Registry

6.2.7. Software ID Link Relationship Values Registry

6.2.8. Software ID Link Use Values Registry

6.3. swid+cbor Media Type Registration

6.4. CoAP Content-Format Registration

6.5. CBOR Tag Registration

6.6. URI Scheme Registrations

6.6.1. URI Scheme "swid"

6.6.2. URI Scheme "swidpath"

6.7. CoSWID Model for Use in SWIMA Registration

7. Signed CoSWID Tags

8. CBOR-Tagged CoSWID Tags

9. Security Considerations

10. Privacy Considerations

11. References

11.1. Normative References

11.2. Informative References

Acknowledgments

Contributors

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 3

Authors' Addresses

1. Introduction

SWID tags, as defined in ISO-19770-2:2015 , provide a standardized XML-based record

format that identifies and describes a specific release of software, a patch, or an installation

bundle, which are referred to as software components in this document. Different software

components, and even different releases of a particular software component, each have a

different SWID tag record associated with them. SWID tags are meant to be flexible and able to

express a broad set of metadata about a software component.

SWID tags are used to support a number of processes, including but not limited to:

Software Inventory Management, representing a part of a Software Asset Management

process , which requires an accurate list of discernible deployed software components.

Vulnerability Assessment, which requires a semantic link between standardized

vulnerability descriptions and software components installed on IT assets .

Remote Attestation, which requires a link between Reference Integrity Manifests (RIMs) and

Attester-produced event logs that complement attestation evidence .

While there are very few required fields in SWID tags, there are many optional fields that

support different uses. A SWID tag consisting of only required fields might be a few hundred

bytes in size; however, a tag containing many of the optional fields can be many orders of

magnitude larger. Thus, real-world instances of SWID tags can be fairly large, and the

communication of SWID tags in usage scenarios, such as those described earlier, can cause a

large amount of data to be transported. This can be larger than acceptable for constrained

devices and networks. Concise SWID (CoSWID) tags significantly reduce the amount of data

transported as compared to a typical SWID tag through the use of the Concise Binary Object

Representation (CBOR) .

Size comparisons between XML SWID and CoSWID mainly depend on domain-specific

applications and the complexity of attributes used in instances. While the values stored in

CoSWID are often unchanged and therefore not reduced in size compared to an XML SWID, the

scaffolding that the CoSWID encoding represents is significantly smaller by taking up 10 percent

or less in size. This effect is visible in representation sizes, which in early experiments benefited

from a 50 percent to 85 percent reduction in generic usage scenarios. Additional size reduction is

enabled with respect to the memory footprint of XML parsing/validation.

In a CoSWID, the human-readable labels of SWID data items are replaced with more concise

integer labels (indices). This approach allows SWID and CoSWID to share a common implicit

information model, with CoSWID providing an alternate data model . While SWID and

CoSWID are intended to share the same implicit information model, this specification does not

define this information model or a mapping between the two data formats. While an attempt to

[SWID]

•

[SAM]

•

[X.1520]

•

[RFC9334]

[RFC8949]

[RFC3444]

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 4

align SWID and CoSWID tags has been made here, future revisions of ISO/IEC 19770-2:2015 or

this specification might cause this implicit information model to diverge, since these

specifications are maintained by different standards groups.

The use of CBOR to express SWID information in CoSWID tags allows both CoSWID and SWID

tags to be part of an enterprise security solution for a wider range of endpoints and

environments.

Primary Tag:

Patch Tag:

Corpus Tag:

Supplemental Tag:

1.1. The SWID and CoSWID Tag Lifecycle

In addition to defining the format of a SWID tag record, ISO/IEC 19770-2:2015 defines

requirements concerning the SWID tag lifecycle. Specifically, when a software component is

installed on an endpoint, that software component's SWID tag is also installed. Likewise, when

the software component is uninstalled or replaced, the SWID tag is deleted or replaced, as

appropriate. As a result, ISO/IEC 19770-2:2015 describes a system wherein there is a

correspondence between the set of installed software components on an endpoint and the

presence of the corresponding SWID tags for these components on that endpoint. CoSWIDs share

the same lifecycle requirements as a SWID tag.

The SWID specification and supporting guidance provided in NIST Internal Report (NISTIR) 8060

("Guidelines for the Creation of Interoperable Software Identification (SWID) Tags")

 define four types of SWID tags: primary, patch, corpus, and supplemental. The

following text is paraphrased from these sources.

A SWID or CoSWID tag that identifies and describes an installed software

component on an endpoint. A primary tag is intended to be installed on an endpoint along

with the corresponding software component.

A SWID or CoSWID tag that identifies and describes an installed patch that has made

incremental changes to a software component installed on an endpoint. A patch tag is

intended to be installed on an endpoint along with the corresponding software component

patch.

A SWID or CoSWID tag that identifies and describes an installable software

component in its pre-installation state. A corpus tag can be used to represent metadata about

an installation package or installer for a software component, a software update, or a patch.

A SWID or CoSWID tag that allows additional information to be associated

with a referenced SWID tag. This allows tools and users to record their own metadata about a

software component without modifying CoSWID primary or patch tags created by a software

provider.

The type of a tag is determined by specific data elements, which are discussed in Section 3.

Section 3 also provides normative language for CoSWID semantics that implement this lifecycle.

The following information helps to explain how these semantics apply to the use of a CoSWID

tag.

[SWID-

GUIDANCE]

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 5

Software Deployment:

Software Installation:

Corpus, primary, and patch tags have similar functions in that they describe the existence and/or

presence of different types of software components (e.g., software installers, software

installations, software patches) and, potentially, different states of these software components.

Supplemental tags have the same structure as other tags but are used to provide information not

contained in the referenced corpus, primary, and patch tags. All four tag types come into play at

various points in the software lifecycle and support software management processes that depend

on the ability to accurately determine where each software component is in its lifecycle.

Figure 1 illustrates the steps in the software lifecycle and the relationships among those lifecycle

events supported by the four types of SWID and CoSWID tags. A detailed description of the four

tag types is provided in Section 2.3. The figure identifies the types of tags that are used in each

lifecycle event.

There are many ways in which software tags might be managed for the host the software is

installed on. For example, software tags could be made available on the host or to an external

software manager when storage is limited on the host.

In these cases, the host or external software manager is responsible for management of the tags,

including deployment and removal of the tags as indicated by the above lifecycle. Tags are

deployed, and previously deployed tags are typically removed (indicated by an "x" prefix) at each

lifecycle stage as follows:

Before the software component is installed (i.e., pre-installation),

and while the product is being deployed, a corpus tag provides information about the

installation files and distribution media (e.g., CD/DVD, distribution package).

Corpus tags are not actually deployed on the target system but are intended to support

deployment procedures and their dependencies at install time, such as to verify the installation

media.

A primary tag will be installed with the software component (or

subsequently created) to uniquely identify and describe the software component.

Supplemental tags are created to augment primary tags with additional site-specific or

Figure 1: Use of Tag Types in the Software Lifecycle

 +------------+

 v |

Software Software Software Software Software

Deployment -> Installation -> Patching -> Upgrading -> Removal

Corpus Primary Primary xPrimary xPrimary

Supplemental Supplemental Supplemental xSupplemental xSupplemental

 Patch xPatch

 Primary

 Supplemental

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 6

Software Patching:

Software Upgrading:

Software Removal:

extended information. While not illustrated in the figure, patch tags can also be installed

during software installation to provide information about software fixes deployed along

with the base software installation.

When a patch is applied to the software component, a new patch tag is

provided, supplying details about the patch and its dependencies. While not illustrated in

the figure, a corpus tag can also provide information about the patch installer and

patching dependencies that need to be installed before the patch.

As a software component is upgraded to a new version, new primary

and supplemental tags replace existing tags, enabling timely and accurate tracking of

updates to software inventory. While not illustrated in the figure, a corpus tag can also

provide information about the upgrade installer and dependencies that need to be

installed before the upgrade.

Note: In the context of software tagging, software patching and updating

differ in an important way. When installing a patch, a set of file

modifications are made to pre-installed software; these modifications do not

alter the version number or the descriptive metadata of an installed

software component. An update can also make a set of file modifications; in

that case, the version number or the descriptive metadata of an installed

software component is changed.

Upon removal of the software component, relevant SWID tags are

removed. This removal event can trigger timely updates to software inventory reflecting

the removal of the product and any associated patch or supplemental tags.

As illustrated in the figure, supplemental tags can be associated with any corpus, primary, or

patch tag to provide additional metadata about an installer, installed software, or installed patch,

respectively.

Understanding the use of CoSWIDs in the software lifecycle provides a basis for understanding

the information provided in a CoSWID and the associated semantics of this information. Each

different SWID and CoSWID tag type provides different sets of information. For example, a

"corpus tag" is used to describe a software component's installation image on an installation

medium, while a "patch tag" is meant to describe a patch that modifies some other software

component.

1.2. Concise SWID Format

This document defines the CoSWID tag format, which is based on CBOR. CBOR-based CoSWID

tags offer a more concise representation of SWID information as compared to the XML-based

SWID tag representation in ISO-19770-2:2015. The structure of a CoSWID is described via the

Concise Data Definition Language (CDDL) . The resulting CoSWID data definition is

aligned with the information able to be expressed with the XML Schema definition of

[RFC8610]

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 7

ISO-19770-2:2015 . This alignment allows both SWID and CoSWID tags to represent a

common set of software component information and allows CoSWID tags to support the same

uses as a SWID tag.

The vocabulary (i.e., the CDDL names of the types and members used in the CoSWID CDDL

specification) is mapped to more concise labels represented as small integer values (indices). The

names used in the CDDL specification and the mapping to the CBOR representation using integer

indices are based on the vocabulary of the XML attribute and element names defined in ISO/IEC

19770-2:2015.

[SWID]

1.3. Requirements Notation

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

2. Concise SWID Data Definition

The following describes the general rules and processes for encoding data using CDDL

representation. Prior familiarity with CBOR and CDDL concepts will be helpful in understanding

this CoSWID specification.

This section describes the conventions by which a CoSWID is represented in the CDDL structure.

The CamelCase notation used in the XML Schema definition is changed to a hyphen-

separated notation (e.g., "ResourceCollection" is named "resource-collection") in the

CoSWID CDDL specification. This deviation from the original notation used in the XML

representation reduces ambiguity when referencing certain attributes in corresponding textual

descriptions. An attribute referred to by its name in CamelCase notation explicitly relates to XML

SWID tags; an attribute referred to by its name in KebabCase notation explicitly relates to CBOR

CoSWID tags. This approach simplifies the composition of further work that will reference both

XML SWID and CBOR CoSWID documents.

In most cases, mapping attribute names between SWID and CoSWID can be done automatically

by converting between CamelCase and KebabCase attribute names. However, some CoSWID

CDDL attribute names show greater variation relative to their corresponding SWID XML Schema

attributes. This is done when the change improves clarity in the CoSWID specification. For

example, the "name" and "version" SWID fields correspond to the "software-name" and

"software-version" CoSWID fields, respectively. As such, it is not always possible to mechanically

translate between corresponding attribute names in the two formats. In such cases, a manual

mapping will need to be used. XPath expressions need to use SWID

names; see Section 5.2.

The 57 human-readable text labels of the CDDL-based CoSWID vocabulary are mapped to integer

indices via a block of rules at the bottom of the definition. This allows a more concise integer-

based form to be stored or transported, as compared to the less efficient text-based form of the

original vocabulary.

[CamelCase]

[KebabCase]

[W3C.REC-xpath20-20101214]

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 8

Through the use of CDDL-based integer labels, CoSWID allows for future expansion in

subsequent revisions of this specification and through extensions (see Section 2.2). New

constructs can be associated with a new integer index. A deprecated construct can be replaced by

a new construct with a new integer index. An implementation can use these integer indices to

identify the construct to parse. The "CoSWID Items" registry, defined in Section 6.1, is used to

ensure that new constructs are assigned a unique index value. This approach avoids the need to

have an explicit CoSWID version.

In a number of places, the value encoding admits both integer values and text strings. The

integer values are defined in a registry specific to the kind of value; the text values are not

intended for interchange and are exclusively meant for private use as defined in Section 6.2.2.

Encoders use string values based on the names registered in the registry, as these

values are less concise than their index value equivalent; a decoder , however, be prepared

to accept text strings that are not specified in this document (and ignore the construct if a string

is unknown). In the rest of this document, we call this an "integer label with text escape".

The root of the CDDL specification provided by this document is the rule coswid (as defined in

Section 8):

In CBOR, an array is encoded using bytes that identify the array, and the array's length or stop

point (see). To make items that support one or more values, the following CDDL

notation is used.

The CDDL rule above allows either a single data item or an array of two or more data values to

be provided. When a singleton data value is provided, the CBOR markers for the array, array

length, and stop point are not needed, saving bytes. When two or more data values are provided,

these values are encoded as an array. This modeling pattern is used frequently in the CoSWID

CDDL specification to allow for more efficient encoding of singleton values.

Usage of this construct can be simplified using

simplifying the above example to

The following subsections describe the different parts of the CoSWID model.

SHOULD NOT

MUST

start = coswid

[RFC8949]

name = (_label_ => _data_ / [2* _data_])

one-or-more<T> = T / [2* T]

name = (_label_ => one-or-more<_data_>)

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 9

2.1. Character Encoding

The CDDL "text" type is represented in CBOR as a major type 3, which represents a string of

Unicode characters that are encoded as UTF-8 (see). Thus,

both SWID and CoSWID use UTF-8 for the encoding of characters in text strings.

To ensure that UTF-8 character strings are able to be encoded/decoded and exchanged

interoperably, text strings in CoSWID be encoded in a way that is consistent with the Net-

Unicode definition provided in .

All names registered with IANA according to the requirements in Section 6.2 also be valid

according to the XML Schema NMTOKEN data type (see ,

Section 3.3.4) to ensure compatibility with the SWID specification where these names are used.

[RFC3629] Section 3.1 of [RFC8949]

MUST

[RFC5198]

MUST

[W3C.REC-xmlschema-2-20041028]

2.2. Concise SWID Extensions

The CoSWID specification contains two features that are not included in the SWID specification

on which it is based. These features are:

The explicit definition of types for some attributes in the ISO-19770-2:2015 XML

representation that are typically represented by the any-attribute item in the SWID model.

These are covered in Section 2.5.

The inclusion of extension points in the CoSWID specification using CDDL sockets (see

). The use of CDDL sockets allows for well-formed extensions to be

defined in supplementary CDDL descriptions that support additional uses of CoSWID tags

that go beyond the original scope of ISO-19770-2:2015 tags.

The following CDDL sockets (extension points) are defined in this document; they allow the

addition of new information structures to their respective CDDL groups.

•

•

Section 3.9 of [RFC8610]

Map Name CDDL Socket Defined in

concise-swid-tag $$coswid-extension Section 2.3

entity-entry $$entity-extension Section 2.6

link-entry $$link-extension Section 2.7

software-meta-entry $$software-meta-extension Section 2.8

resource-collection $$resource-collection-extension Section 2.9.2

file-entry $$file-extension Section 2.9.2

directory-entry $$directory-extension Section 2.9.2

process-entry $$process-extension Section 2.9.2

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc8949#section-3.1
https://www.rfc-editor.org/rfc/rfc8610#section-3.9

The "CoSWID Items" registry, defined in Section 6.1, provides a registration mechanism allowing

new items, and their associated index values, to be added to the CoSWID model through the use

of the CDDL sockets described in the table above. This registration mechanism provides for well-

known index values for data items in CoSWID extensions, allowing these index values to be

recognized by implementations supporting a given extension.

The following additional CDDL sockets are defined in this document to allow for adding new

values to corresponding type choices (i.e., to represent enumerations) via custom CDDL

specifications.

A number of IANA registries for CoSWID values are also defined in Section 6.2; these registries

allow new values to be registered with IANA for the enumerations above. This registration

mechanism supports the definition of new well-known index values and names for new

enumeration values used by CoSWID, which can also be used by other software tagging

specifications. This registration mechanism allows new standardized enumerated values to be

shared between multiple tagging specifications (and associated implementations) over time.

Map Name CDDL Socket Defined in

resource-entry $$resource-extension Section 2.9.2

payload-entry $$payload-extension Section 2.9.3

evidence-entry $$evidence-extension Section 2.9.4

Table 1: CoSWID CDDL Group Extension Points

Enumeration Name CDDL Socket Defined in

version-scheme $version-scheme Section 4.1

role $role Section 4.2

ownership $ownership Section 4.3

rel $rel Section 4.4

use $use Section 4.5

Table 2: CoSWID CDDL Enumeration Extension Points

2.3. The concise-swid-tag Map

The CDDL specification for the root concise-swid-tag map is as follows. This rule and its

constraints be followed when creating or validating a CoSWID tag:MUST

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 11

global-attributes:

The following list describes each member of the concise-swid-tag root map.

A list of items, including an optional language definition to support the

processing of text-string values and an unbounded set of any-attribute items. Described in

Section 2.5.

concise-swid-tag = {

 tag-id => text / bstr .size 16,

 tag-version => integer,

 ? corpus => bool,

 ? patch => bool,

 ? supplemental => bool,

 software-name => text,

 ? software-version => text,

 ? version-scheme => $version-scheme,

 ? media => text,

 ? software-meta => one-or-more<software-meta-entry>,

 entity => one-or-more<entity-entry>,

 ? link => one-or-more<link-entry>,

 ? payload-or-evidence,

 * $$coswid-extension,

 global-attributes,

}

payload-or-evidence //= (payload => payload-entry)

payload-or-evidence //= (evidence => evidence-entry)

tag-id = 0

software-name = 1

entity = 2

evidence = 3

link = 4

software-meta = 5

payload = 6

corpus = 8

patch = 9

media = 10

supplemental = 11

tag-version = 12

software-version = 13

version-scheme = 14

$version-scheme /= multipartnumeric

$version-scheme /= multipartnumeric-suffix

$version-scheme /= alphanumeric

$version-scheme /= decimal

$version-scheme /= semver

$version-scheme /= int / text

multipartnumeric = 1

multipartnumeric-suffix = 2

alphanumeric = 3

decimal = 4

semver = 16384

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 12

tag-id (index 0):

software-name (index 1):

entity (index 2):

evidence (index 3):

link (index 4):

software-meta (index 5):

payload (index 6):

A 16-byte binary string, or a textual identifier, uniquely referencing a software

component. The tag identifier be globally unique. Failure to ensure global uniqueness

can create ambiguity in tag use, since the tag-id serves as the global key for matching and

lookups. If represented as a 16-byte binary string, the identifier be a valid Universally

Unique Identifier (UUID) as defined by . There are no strict guidelines on how the

identifier is structured, but examples include a 16-byte Globally Unique Identifier (GUID) (e.g.,

class 4 UUID) , or a DNS domain name followed by a "/" and a text string, where the

domain name serves to ensure uniqueness across organizations. A textual tag-id value

 contain a sequence of two underscores ("__"). This is because a sequence of two

underscores is used to separate the TAG_CREATOR_REGID value and UNIQUE_ID value in a

Software Identifier and a sequence of two underscores in a tag-id value could create

ambiguity when parsing this identifier. See Section 6.7.

A textual item that provides the software component's name. This

name is likely the same name that would appear in a package management tool. This item

maps to '/SoftwareIdentity/@name' in .

Provides information about one or more organizations responsible for

producing the CoSWID tag, and producing or releasing the software component referenced by

this CoSWID tag. Described in Section 2.6.

Can be used to record the results of a software discovery process used to

identify untagged software on an endpoint or to represent indicators for why software is

believed to be installed on the endpoint. In either case, a CoSWID tag can be created by the

tool performing an analysis of the software components installed on the endpoint. This item is

mutually exclusive to payload, as evidence is always generated on the target device ad hoc.

Described in Section 2.9.4.

Provides a means to establish relationship arcs between the tag and another

item. A given link can be used to establish the relationship between tags or to reference

another resource that is related to the CoSWID tag, e.g., vulnerability database association,

Resource-Oriented Lightweight Information Exchange (ROLIE) Feed , Manufacturer

Usage Description (MUD) resource , software download location, etc.). This is

modeled after the HTML "link" element. Described in Section 2.7.

An open-ended map of key/value data pairs. A number of predefined

keys can be used within this item providing for common usage and semantics across the

industry. The use of this map allows any additional attribute to be included in the tag. It is

expected that industry groups will use a common set of attribute names to allow for

interoperability within their communities. Described in Section 2.8. This item maps to '/

SoftwareIdentity/Meta' in .

Represents a collection of software artifacts (described by child items) that

compose the target software. For example, these artifacts could be the files included with an

installer for a corpus tag or installed on an endpoint when the software component is

installed for a primary or patch tag. The artifacts listed in a payload may be a superset of the

software artifacts that are actually installed. Based on user selections at install time, an

MUST

MUST

[RFC4122]

[RFC4122]

MUST

NOT

[SWID]

[RFC8322]

[RFC8520]

[SWID]

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 13

corpus (index 8):

patch (index 9):

media (index 10):

supplemental (index 11):

tag-version (index 12):

software-version (index 13):

version-scheme (index 14):

installation might not include every artifact that could be created or executed on the endpoint

when the software component is installed or run. This item is mutually exclusive to evidence,

as payload can only be provided by an external entity. Described in Section 2.9.3.

A boolean value that indicates if the tag identifies and describes an installable

software component in its pre-installation state. Installable software includes an installation

package or installer for a software component, a software update, or a patch. If the CoSWID

tag represents installable software, the corpus item be set to "true". If not provided, the

default value be considered "false".

A boolean value that indicates if the tag identifies and describes an installed

patch that has made incremental changes to a software component installed on an endpoint.

If a CoSWID tag is for a patch, the patch item be set to "true". If not provided, the default

value be considered "false". A patch item's value be set to "true" if the

installation of the associated software package changes the version of a software component.

A text value that provides a hint to the tag consumer to understand what

target platform this tag applies to. This item be formatted as a query as defined by the

W3C "Media Queries Level 3" Recommendation (see).

Support for media queries is included here for interoperability with , which does not

provide any further requirements for media query use. Thus, this specification does not

clarify how a media query is to be used for a CoSWID.

A boolean value that indicates if the tag is providing additional

information to be associated with another referenced SWID or CoSWID tag. This allows tools

and users to record their own metadata about a software component without modifying

SWID primary or patch tags created by a software provider. If a CoSWID tag is a supplemental

tag, the supplemental item be set to "true". If not provided, the default value be

considered "false".

An integer value that indicates the specific release revision of the tag.

Typically, the initial value of this field is set to 0 and the value is increased for subsequent tags

produced for the same software component release. This value allows a CoSWID tag producer

to correct an incorrect tag previously released without indicating a change to the underlying

software component the tag represents. For example, the tag-version could be changed to add

new metadata, to correct a broken link, to add a missing payload entry, etc. When producing a

revised tag, the new tag-version value be greater than the old tag-version value.

A textual value representing the specific release or development

version of the software component. This item maps to '/SoftwareIdentity/@version' in .

An integer or textual value representing the versioning scheme

used for the software-version item, as an integer label with text escape. For the "Version

Scheme" values, see Section 4.1. If an integer value is used, it be an index value in the

range -256 to 65535. Integer values in the range -256 to -1 are reserved for testing and use in

closed environments (see Section 6.2.2). Integer values in the range 0 to 65535 correspond to

registered entries in the IANA "Software ID Version Scheme Values" registry (see Section

6.2.4).

MUST

MUST

MUST

MUST MUST NOT

MUST

[W3C.REC-mediaqueries-3-20220405]

[SWID]

MUST MUST

MUST

[SWID]

MUST

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 14

$$coswid-extension: A CDDL socket that is used to add new information structures to the

concise-swid-tag root map. See Section 2.2.

2.4. concise-swid-tag Co-constraints

The following co-constraints apply to the information provided in the concise-swid-tag group.

The patch and supplemental items both be set to "true".

If the patch item is set to "true", the tag contain at least one link item (see Section 2.7)

with both the rel item value of "patches" and an href item specifying an association with the

software that was patched. Without at least one link item, the target of the patch cannot be

identified and the patch tag cannot be applied without external context.

If all of the corpus, patch, and supplemental items are "false" or if the corpus item is set to

"true", then a software-version item be included with a value set to the version of the

software component.

• MUST NOT

• MUST

•

MUST

lang (index 15):

any-attribute:

2.5. The global-attributes Group

The global-attributes group provides a list of items, including an optional language definition to

support the processing of text-string values, and an unbounded set of any-attribute items

allowing for additional items to be provided as a general point of extension in the model.

The CDDL for the global-attributes group follows:

The following list describes each child item of this group.

A textual language tag that conforms with the IANA "Language Subtag Registry"

. The context of the specified language applies to all sibling and descendant textual

values, unless a descendant object has defined a different language tag. Thus, a new context is

established when a descendant object redefines a new language tag. All textual values within

a given context be considered expressed in the specified language.

A sub-group that provides a means to include arbitrary information via label/

index ("key") value pairs. Labels can be either a single integer or text string. Values can be a

single integer, a text string, or an array of integers or text strings.

global-attributes = (

 ? lang => text,

 * any-attribute,

)

any-attribute = (

 label => one-or-more<text> / one-or-more<int>

)

label = text / int

[RFC5646]

MUST

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 15

global-attributes:

entity-name (index 31):

reg-id (index 32):

role (index 33):

2.6. The entity-entry Map

The CDDL for the entity-entry map follows:

The following list describes each child item of this group.

The global-attributes group as described in Section 2.5.

The textual name of the organizational entity claiming the roles

specified by the role item for the CoSWID tag. This item maps to '/SoftwareIdentity/Entity/

@name' in .

Registration ID. This value is intended to uniquely identify a naming authority

in a given scope (e.g., global, organization, vendor, customer, administrative domain, etc.) for

the referenced entity. The value of a registration ID be a URI as defined in ; it

is not intended to be dereferenced. The scope will usually be the scope of an organization.

An integer or textual value (integer label with text escape; see Section 2)

representing the relationship(s) between the entity and this tag or the referenced software

component. If an integer value is used, it be an index value in the range -256 to 255.

entity-entry = {

 entity-name => text,

 ? reg-id => any-uri,

 role => one-or-more<$role>,

 ? thumbprint => hash-entry,

 * $$entity-extension,

 global-attributes,

}

entity-name = 31

reg-id = 32

role = 33

thumbprint = 34

$role /= tag-creator

$role /= software-creator

$role /= aggregator

$role /= distributor

$role /= licensor

$role /= maintainer

$role /= int / text

tag-creator=1

software-creator=2

aggregator=3

distributor=4

licensor=5

maintainer=6

[SWID]

MUST [RFC3986]

MUST

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 16

thumbprint (index 34):

$$entity-extension:

Integer values in the range -256 to -1 are reserved for testing and use in closed environments

(see Section 6.2.2). Integer values in the range 0 to 255 correspond to registered entries in the

IANA "Software ID Entity Role Values" registry (see Section 6.2.5).

The following additional requirements exist for the use of the role item:

An entity item be provided with the role of "tag-creator" for every CoSWID tag. This

indicates the organization that created the CoSWID tag.

An entity item be provided with the role of "software-creator" for every CoSWID

tag, if this information is known to the tag creator. This indicates the organization that

created the referenced software component.

Value that provides a hash (i.e., the thumbprint) of the signing entity's

public key certificate. This item provides an indicator of which entity signed the CoSWID tag,

which will typically be the tag creator. See Section 2.9.1 for more details on the use of the

hash-entry data structure.

A CDDL socket that can be used to extend the entity-entry group model. See

Section 2.2.

• MUST

• SHOULD

2.7. The link-entry Map

The CDDL for the link-entry map follows:

link-entry = {

 ? artifact => text,

 href => any-uri,

 ? media => text,

 ? ownership => $ownership,

 rel => $rel,

 ? media-type => text,

 ? use => $use,

 * $$link-extension,

 global-attributes,

}

media = 10

artifact = 37

href = 38

ownership = 39

rel = 40

media-type = 41

use = 42

$ownership /= shared

$ownership /= private

$ownership /= abandon

$ownership /= int / text

abandon=1

private=2

shared=3

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 17

global-attributes:

media (index 10):

artifact (index 37):

The following list describes each member of this map.

The global-attributes group as described in Section 2.5.

A value that provides a hint to the consumer of the link so that the consumer

understands what target platform the link is applicable to. This item represents a query as

defined by the W3C "Media Queries Level 3" Recommendation (see

). As highlighted in the definition of the media item provided in

Section 2.3, support for media queries is included here for interoperability with ,

which does not provide any further requirements for media query use. Thus, this

specification does not clarify how a media query is to be used for a CoSWID.

To be used with rel="installationmedia". This item's value provides the

absolute filesystem path to the installer executable or script that can be run to launch the

referenced installation. Links with the same artifact name be considered mirrors of

each other, allowing the installation media to be acquired from any of the described sources.

$rel /= ancestor

$rel /= component

$rel /= feature

$rel /= installationmedia

$rel /= packageinstaller

$rel /= parent

$rel /= patches

$rel /= requires

$rel /= see-also

$rel /= supersedes

$rel /= supplemental

$rel /= -256..65536 / text

ancestor=1

component=2

feature=3

installationmedia=4

packageinstaller=5

parent=6

patches=7

requires=8

see-also=9

supersedes=10

supplemental=11

$use /= optional

$use /= required

$use /= recommended

$use /= int / text

optional=1

required=2

recommended=3

[W3C.REC-

mediaqueries-3-20220405]

[SWID]

MUST

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 18

href (index 38):

ownership (index 39):

rel (index 40):

A URI-reference for the referenced resource. The href item's value

can be, but is not limited to, the following (which is a slightly modified excerpt from):

If no URI scheme is provided, then the URI-reference is a relative reference to the base

URI of the CoSWID tag, i.e., the URI under which the CoSWID tag was provided -- for

example, "./folder/supplemental.coswid".

This item can be a physical resource location with any acceptable URI scheme (e.g., <file://

>, <http://>, <https://>, <ftp://>).

A URI-like expression with "swid:" as the scheme refers to another SWID or CoSWID by

the referenced tag's tag-id. This expression needs to be resolved in the context of the

endpoint by software that can look up other SWID or CoSWID tags. For example, "swid:

2df9de35-0aff-4a86-ace6-f7dddd1ade4c" references the tag with the tag-id value

"2df9de35-0aff-4a86-ace6-f7dddd1ade4c". See Section 5.1 for guidance on the "swid"

expressions.

This item can be a URI-like expression with "swidpath:" as the scheme, which refers to

another software tag via an XPath query that matches items

in that tag (Section 5.2). This scheme is provided for compatibility with . This

specification does not define how to resolve an XPath query in the context of CBOR. See

Section 5.2 for guidance on the "swidpath" expressions.

An integer or textual value (integer label with text escape; see Section 2).

See Section 4.3 for the list of values available for this item. This item is used when the href

item references another software component to indicate the degree of ownership between the

software component referenced by the CoSWID tag and the software component referenced

by the link. If an integer value is used, it be an index value in the range -256 to 255.

Integer values in the range -256 to -1 are reserved for testing and use in closed environments

(see Section 6.2.2). Integer values in the range 0 to 255 correspond to registered entries in the

"Software ID Link Ownership Values" registry.

An integer or textual value (integer label with text escape; see Section 2). See

Section 4.4 for the list of values available for this item. This item identifies the relationship

between this CoSWID and the target resource identified by the href item. If an integer value is

used, it be an index value in the range -256 to 65535. Integer values in the range -256 to

-1 are reserved for testing and use in closed environments (see Section 6.2.2). Integer values in

the range 0 to 65535 correspond to registered entries in the IANA "Software ID Link

Relationship Values" registry (see Section 6.2.7). If a string value is used, it be either a

private use name as defined in Section 6.2.2 or a "Relation Name" from the IANA "Link

Relation Types" registry (see) as defined

by . When a string value defined in the IANA "Software ID Link Relationship Values"

registry matches a Relation Name defined in the IANA "Link Relation Types" registry, the

index value in the IANA "Software ID Link Relationship Values" registry be used

instead, as this relationship has a specialized meaning in the context of a CoSWID tag. String

values correspond to registered entries in the "Software ID Link Relationship Values" registry.

[RFC3986]

[SWID]

•

•

•

•

[W3C.REC-xpath20-20101214]

[SWID]

MUST

MUST

MUST

<https://www.iana.org/assignments/link-relations/>

[RFC8288]

MUST

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 19

https://www.iana.org/assignments/link-relations/

media-type (index 41):

use (index 42):

$$link-extension:

Supplies the resource consumer with a hint regarding what type of

resource to expect. A link can point to arbitrary resources on the endpoint, local network, or

Internet using the href item. (This is a hint: there is no obligation for the server hosting the

target of the URI to use the indicated media type when the URI is dereferenced.) Media types

are identified by referencing a "Name" from the IANA "Media Types" registry (see

). This item maps to '/SoftwareIdentity/Link/@type'

in .

An integer or textual value (integer label with text escape; see Section 2). See

Section 4.5 for the list of values available for this item. This item is used to determine if the

referenced software component has to be installed before installing the software component

identified by the CoSWID tag. If an integer value is used, it be an index value in the

range -256 to 255. Integer values in the range -256 to -1 are reserved for testing and use in

closed environments (see Section 6.2.2). Integer values in the range 0 to 255 correspond to

registered entries in the IANA "Software ID Link Use Values" registry (see Section 6.2.8). If a

string value is used, it be a private use name as defined in Section 6.2.2. String values

correspond to registered entries in the "Software ID Link Use Values" registry.

A CDDL socket that can be used to extend the link-entry map model. See

Section 2.2.

<https://

www.iana.org/assignments/media-types/>

[SWID]

MUST

MUST

2.8. The software-meta-entry Map

The CDDL for the software-meta-entry map follows:

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 20

https://www.iana.org/assignments/media-types/
https://www.iana.org/assignments/media-types/

global-attributes:

activation-status (index 43):

channel-type (index 44):

The following list describes each child item of this group.

The global-attributes group as described in Section 2.5.

A textual value that identifies how the software component has

been activated, which might relate to specific terms and conditions for its use (e.g., trial,

serialized, licensed, unlicensed, etc.) and relate to an entitlement. This attribute is typically

used in supplemental tags, as it contains information that might be selected during a specific

install.

A textual value that identifies which sales, licensing, or marketing

channel the software component has been targeted for (e.g., volume, retail, original

equipment manufacturer (OEM), academic, etc.). This attribute is typically used in

supplemental tags, as it contains information that might be selected during a specific install.

software-meta-entry = {

 ? activation-status => text,

 ? channel-type => text,

 ? colloquial-version => text,

 ? description => text,

 ? edition => text,

 ? entitlement-data-required => bool,

 ? entitlement-key => text,

 ? generator => text / bstr .size 16,

 ? persistent-id => text,

 ? product => text,

 ? product-family => text,

 ? revision => text,

 ? summary => text,

 ? unspsc-code => text,

 ? unspsc-version => text,

 * $$software-meta-extension,

 global-attributes,

}

activation-status = 43

channel-type = 44

colloquial-version = 45

description = 46

edition = 47

entitlement-data-required = 48

entitlement-key = 49

generator = 50

persistent-id = 51

product = 52

product-family = 53

revision = 54

summary = 55

unspsc-code = 56

unspsc-version = 57

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 21

colloquial-version (index 45):

description (index 46):

edition (index 47):

entitlement-data-required (index 48):

entitlement-key (index 49):

generator (index 50):

persistent-id (index 51):

product (index 52):

product-family (index 53):

A textual value for the software component's informal or

colloquial version. Examples may include a year value, a major version number, or a similar

value used to identify a group of specific software component releases that are part of the

same release/support cycle. This version can be the same through multiple releases of a

software component, while the software-version specified in the concise-swid-tag group is

much more specific and will change for each software component release. This version is

intended to be used for string comparison (byte by byte) only and is not intended to be used to

determine if a specific value is earlier or later in a sequence.

A textual value that provides a detailed description of the software

component. This value be multiple paragraphs separated by CR LF characters as

described by .

A textual value indicating that the software component represents a

functional variation of the code base used to support multiple software components. For

example, this item can be used to differentiate enterprise, standard, or professional variants

of a software component.

A boolean value that can be used to determine if

accompanying proof of entitlement is needed when a software license reconciliation process

is performed.

A vendor-specific textual key that can be used to identify and

establish a relationship to an entitlement. Examples of an entitlement-key might include a

serial number, product key, or license key. For values that relate to a given software

component install (e.g., license key), a supplemental tag will typically contain this

information. In other cases, where a general-purpose key can be provided that applies to all

possible installs of the software component on different endpoints, a primary tag will

typically contain this information. Since CoSWID tags are not intended to contain confidential

information, tag authors are advised not to record unprotected, private software license keys

in this field.

The name (or tag-id) of the software component that created the CoSWID

tag. If the generating software component has a SWID or CoSWID tag, then the tag-id for the

generating software component be provided.

A globally unique identifier used to identify a set of software

components that are related. Software components sharing the same persistent-id can be

different versions. This item can be used to relate software components, released at different

points in time or through different release channels, that may not be able to be related

through the use of the link item.

A basic name for the software component that can be common across

multiple tagged software components (e.g., Apache HTTP daemon (HTTPD)).

A textual value indicating the software components' overall product

family. This should be used when multiple related software components form a larger

capability that is installed on multiple different endpoints. For example, some software

families may consist of a server, a client, and shared service components that are part of a

MAY

[RFC5198]

SHOULD

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 22

revision (index 54):

summary (index 55):

unspsc-code (index 56):

unspsc-version (index 57):

$$software-meta-extension:

larger capability. Email systems, enterprise applications, backup services, web conferencing,

and similar capabilities are examples of families. The use of this item is not intended to

represent groups of software that are bundled or installed together. The persistent-id or link

items be used to relate bundled software components.

A string value indicating an informal or colloquial release version of the

software. This value can provide a different version value as compared to the software-

version specified in the concise-swid-tag group. This is useful when one or more releases need

to have an informal version label that differs from the specific exact version value specified

by software-version. Examples can include SP1, RC1, Beta, etc.

A short description of the software component. This be a single

sentence suitable for display in a user interface.

An 8-digit United Nations Standard Products and Services Code

(UNSPSC) classification code for the software component as defined by the UNSPSC .

The UNSPSC version used to define the unspsc-code value.

A CDDL socket that can be used to extend the software-meta-entry

group model. See Section 2.2.

SHOULD

MUST

[UNSPSC]

2.9. The Resource Collection Definition

2.9.1. The hash-entry Array

CoSWID adds explicit support for the representation of hash entries using algorithms that are

registered in the IANA "Named Information Hash Algorithm Registry"

. This array is used by both the hash (index 7) and thumbprint (index 34) values.

This is the equivalent of the namespace qualified "hash" attribute in .

The number used as a value for hash-alg-id is an integer-based hash algorithm identifier whose

value refer to an ID in the IANA "Named Information Hash Algorithm Registry"

 with a Status of "current" (at the time the generator software was

built or later); other hash algorithms be used. If the hash-alg-id is not known, then the

integer value "0" be used. This allows for conversion from ISO SWID tags , which do

not allow an algorithm to be identified for this field.

The hash-value represent the raw hash value as a byte string (as opposed to, for example,

base64 encoded) generated from the representation of the resource using the hash algorithm

indicated by hash-alg-id.

[IANA.named-

information]

[SWID]

hash-entry = [

 hash-alg-id: int,

 hash-value: bytes,

]

MUST

[IANA.named-information]

MUST NOT

MUST [SWID]

MUST

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 23

2.9.2. The resource-collection Group

The resource-collection group provides a list of items used in both evidence (created by a

software discovery process) and payload (installed in an endpoint) content of a CoSWID tag

document to structure and differentiate the content of specific CoSWID tag types. Potential

content includes directories, files, processes, or resources.

The CDDL for the resource-collection group follows:

path-elements-group = (? directory => one-or-more<directory-entry>,

 ? file => one-or-more<file-entry>,

)

resource-collection = (

 path-elements-group,

 ? process => one-or-more<process-entry>,

 ? resource => one-or-more<resource-entry>,

 * $$resource-collection-extension,

)

filesystem-item = (

 ? key => bool,

 ? location => text,

 fs-name => text,

 ? root => text,

)

file-entry = {

 filesystem-item,

 ? size => uint,

 ? file-version => text,

 ? hash => hash-entry,

 * $$file-extension,

 global-attributes,

}

directory-entry = {

 filesystem-item,

 ? path-elements => { path-elements-group },

 * $$directory-extension,

 global-attributes,

}

process-entry = {

 process-name => text,

 ? pid => integer,

 * $$process-extension,

 global-attributes,

}

resource-entry = {

 type => text,

 * $$resource-extension,

 global-attributes,

}

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 24

filesystem-item:

global-attributes:

hash (index 7):

directory (index 16):

file (index 17):

process (index 18):

resource (index 19):

size (index 20):

file-version (index 21):

key (index 22):

The following list describes each member of the groups and maps illustrated above.

A list of common items used for representing the filesystem root, relative

location, name, and significance of a file or directory item.

The global-attributes group as described in Section 2.5.

Value that provides a hash of a file. This item provides an integrity

measurement with respect to a specific file. See Section 2.9.1 for more details on the use of the

hash-entry data structure.

Item that allows child directory and file items to be defined within a

directory hierarchy for the software component.

Item that allows details about a file to be provided for the software component.

Item that allows details to be provided about the runtime behavior of the

software component, such as information that will appear in a process listing on an endpoint.

Item that can be used to provide details about an artifact or capability

expected to be found on an endpoint or evidence collected related to the software component.

This can be used to represent concepts not addressed directly by the directory, file, or process

items. Examples include registry keys, bound ports, etc. The equivalent construct in is

currently underspecified. As a result, this item might be further defined through extensions in

the future.

The file's size in bytes.

The file's version as reported by querying information on the file from

the operating system (if available). This item maps to '/SoftwareIdentity/(Payload|Evidence)/

File/@version' in .

A boolean value indicating if a file or directory is significant or required for the

software component to execute or function properly. These are files or directories that can be

used to affirmatively determine if the software component is installed on an endpoint.

hash = 7

directory = 16

file = 17

process = 18

resource = 19

size = 20

file-version = 21

key = 22

location = 23

fs-name = 24

root = 25

path-elements = 26

process-name = 27

pid = 28

type = 29

[SWID]

[SWID]

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 25

location (index 23):

fs-name (index 24):

root (index 25):

path-elements (index 26):

process-name (index 27):

pid (index 28):

type (index 29):

$$resource-collection-extension:

$$file-extension:

$$directory-extension:

$$process-extension:

$$resource-extension:

The filesystem path where a file is expected to be located when installed or

copied. The location be either an absolute path, a path relative to the path value

included in the parent directory item (preferred), or a path relative to the location of the

CoSWID tag if no parent is defined. The location include a file's name, which is

provided by the fs-name item.

The name of the directory or file without any path information. This aligns

with a file "name" in . This item maps to '/SoftwareIdentity/(Payload|Evidence)/(File|

Directory)/@name' in .

A host-specific name for the root of the filesystem. The location item is

considered relative to this location if specified. If not provided, the value provided by the

location item is expected to be relative to its parent or the location of the CoSWID tag if no

parent is provided.

Group that allows a hierarchy of directory and file items to be

defined in payload or evidence items. This is a construction within the CDDL definition of

CoSWID to support shared syntax and does not appear in .

The software component's process name as it will appear in an

endpoint's process list. This aligns with a process "name" in . This item maps to '/

SoftwareIdentity/(Payload|Evidence)/Process/@name' in .

The process ID identified for a running instance of the software component in

the endpoint's process list. This is used as part of the evidence item.

A human-readable string indicating the type of resource.

A CDDL socket that can be used to extend the resource-

collection group model. This can be used to add new specialized types of resources. See

Section 2.2.

A CDDL socket that can be used to extend the file-entry group model. See

Section 2.2.

A CDDL socket that can be used to extend the directory-entry group

model. See Section 2.2.

A CDDL socket that can be used to extend the process-entry group model.

See Section 2.2.

A CDDL socket that can be used to extend the resource-entry group

model. See Section 2.2.

MUST

MUST NOT

[SWID]

[SWID]

[SWID]

[SWID]

[SWID]

2.9.3. The payload-entry Map

The CDDL for the payload-entry map follows:

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 26

global-attributes:

resource-collection:

$$payload-extension:

The following list describes each child item of this group.

The global-attributes group as described in Section 2.5.

The resource-collection group as described in Section 2.9.2.

A CDDL socket that can be used to extend the payload-entry group model.

See Section 2.2.

payload-entry = {

 resource-collection,

 * $$payload-extension,

 global-attributes,

}

global-attributes:

resource-collection:

location (index 23):

date (index 35):

device-id (index 36):

$$evidence-extension:

2.9.4. The evidence-entry Map

The CDDL for the evidence-entry map follows:

The following list describes each child item of this group.

The global-attributes group as described in Section 2.5.

The resource-collection group as described in Section 2.9.2.

The filesystem path of the location of the CoSWID tag generated as

evidence. This path is always an absolute file path (unlike the value of a location item found

within a filesystem-item as described in Section 2.9.2, which can be either a relative path or

an absolute path).

The date and time the information was collected pertaining to the evidence

item in epoch-based date/time format as specified in .

The endpoint's string identifier from which the evidence was collected.

A CDDL socket that can be used to extend the evidence-entry group

model. See Section 2.2.

evidence-entry = {

 resource-collection,

 ? date => integer-time,

 ? device-id => text,

 ? location => text,

 * $$evidence-extension,

 global-attributes,

}

date = 35

device-id = 36

Section 3.4.2 of [RFC8949]

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 27

https://www.rfc-editor.org/rfc/rfc8949#section-3.4.2

2.10. Full CDDL Specification

In order to create a valid CoSWID document, the structure of the corresponding CBOR message

 adhere to the following CDDL specification.MUST

<CODE BEGINS> file "concise-swid-tag.cddl"

concise-swid-tag = {

 tag-id => text / bstr .size 16,

 tag-version => integer,

 ? corpus => bool,

 ? patch => bool,

 ? supplemental => bool,

 software-name => text,

 ? software-version => text,

 ? version-scheme => $version-scheme,

 ? media => text,

 ? software-meta => one-or-more<software-meta-entry>,

 entity => one-or-more<entity-entry>,

 ? link => one-or-more<link-entry>,

 ? payload-or-evidence,

 * $$coswid-extension,

 global-attributes,

}

payload-or-evidence //= (payload => payload-entry)

payload-or-evidence //= (evidence => evidence-entry)

any-uri = uri

label = text / int

$version-scheme /= multipartnumeric

$version-scheme /= multipartnumeric-suffix

$version-scheme /= alphanumeric

$version-scheme /= decimal

$version-scheme /= semver

$version-scheme /= int / text

any-attribute = (

 label => one-or-more<text> / one-or-more<int>

)

one-or-more<T> = T / [2* T]

global-attributes = (

 ? lang => text,

 * any-attribute,

)

hash-entry = [

 hash-alg-id: int,

 hash-value: bytes,

]

entity-entry = {

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 28

 entity-name => text,

 ? reg-id => any-uri,

 role => one-or-more<$role>,

 ? thumbprint => hash-entry,

 * $$entity-extension,

 global-attributes,

}

$role /= tag-creator

$role /= software-creator

$role /= aggregator

$role /= distributor

$role /= licensor

$role /= maintainer

$role /= int / text

link-entry = {

 ? artifact => text,

 href => any-uri,

 ? media => text,

 ? ownership => $ownership,

 rel => $rel,

 ? media-type => text,

 ? use => $use,

 * $$link-extension,

 global-attributes,

}

$ownership /= shared

$ownership /= private

$ownership /= abandon

$ownership /= int / text

$rel /= ancestor

$rel /= component

$rel /= feature

$rel /= installationmedia

$rel /= packageinstaller

$rel /= parent

$rel /= patches

$rel /= requires

$rel /= see-also

$rel /= supersedes

$rel /= supplemental

$rel /= -256..65536 / text

$use /= optional

$use /= required

$use /= recommended

$use /= int / text

software-meta-entry = {

 ? activation-status => text,

 ? channel-type => text,

 ? colloquial-version => text,

 ? description => text,

 ? edition => text,

 ? entitlement-data-required => bool,

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 29

 ? entitlement-key => text,

 ? generator => text / bstr .size 16,

 ? persistent-id => text,

 ? product => text,

 ? product-family => text,

 ? revision => text,

 ? summary => text,

 ? unspsc-code => text,

 ? unspsc-version => text,

 * $$software-meta-extension,

 global-attributes,

}

path-elements-group = (? directory => one-or-more<directory-entry>,

 ? file => one-or-more<file-entry>,

)

resource-collection = (

 path-elements-group,

 ? process => one-or-more<process-entry>,

 ? resource => one-or-more<resource-entry>,

 * $$resource-collection-extension,

)

file-entry = {

 filesystem-item,

 ? size => uint,

 ? file-version => text,

 ? hash => hash-entry,

 * $$file-extension,

 global-attributes,

}

directory-entry = {

 filesystem-item,

 ? path-elements => { path-elements-group },

 * $$directory-extension,

 global-attributes,

}

process-entry = {

 process-name => text,

 ? pid => integer,

 * $$process-extension,

 global-attributes,

}

resource-entry = {

 type => text,

 * $$resource-extension,

 global-attributes,

}

filesystem-item = (

 ? key => bool,

 ? location => text,

 fs-name => text,

 ? root => text,

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 30

)

payload-entry = {

 resource-collection,

 * $$payload-extension,

 global-attributes,

}

evidence-entry = {

 resource-collection,

 ? date => integer-time,

 ? device-id => text,

 ? location => text,

 * $$evidence-extension,

 global-attributes,

}

integer-time = #6.1(int)

; "global map member" integer indices

tag-id = 0

software-name = 1

entity = 2

evidence = 3

link = 4

software-meta = 5

payload = 6

hash = 7

corpus = 8

patch = 9

media = 10

supplemental = 11

tag-version = 12

software-version = 13

version-scheme = 14

lang = 15

directory = 16

file = 17

process = 18

resource = 19

size = 20

file-version = 21

key = 22

location = 23

fs-name = 24

root = 25

path-elements = 26

process-name = 27

pid = 28

type = 29

entity-name = 31

reg-id = 32

role = 33

thumbprint = 34

date = 35

device-id = 36

artifact = 37

href = 38

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 31

ownership = 39

rel = 40

media-type = 41

use = 42

activation-status = 43

channel-type = 44

colloquial-version = 45

description = 46

edition = 47

entitlement-data-required = 48

entitlement-key = 49

generator = 50

persistent-id = 51

product = 52

product-family = 53

revision = 54

summary = 55

unspsc-code = 56

unspsc-version = 57

; "version-scheme" integer indices

multipartnumeric = 1

multipartnumeric-suffix = 2

alphanumeric = 3

decimal = 4

semver = 16384

; "role" integer indices

tag-creator=1

software-creator=2

aggregator=3

distributor=4

licensor=5

maintainer=6

; "ownership" integer indices

abandon=1

private=2

shared=3

; "rel" integer indices

ancestor=1

component=2

feature=3

installationmedia=4

packageinstaller=5

parent=6

patches=7

requires=8

see-also=9

supersedes=10

; supplemental=11 ; already defined

; "use" integer indices

optional=1

required=2

recommended=3

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 32

<CODE ENDS>

Primary Tag:

Supplemental Tag:

Corpus Tag:

Patch Tag:

3. Determining the Type of CoSWID

The operational model for SWID and CoSWID tags was introduced in Section 1.1, which described

four different CoSWID tag types. The following additional rules apply to the use of CoSWID tags

to ensure that created tags properly identify the tag type.

The first matching rule determine the type of the CoSWID tag.

A CoSWID tag be considered a primary tag if the corpus, patch, and

supplemental items are "false".

A CoSWID tag be considered a supplemental tag if the supplemental

item is set to "true".

A CoSWID tag be considered a corpus tag if the corpus item is "true".

A CoSWID tag be considered a patch tag if the patch item is "true".

Note: It is possible for some or all of the corpus, patch, and supplemental items to

simultaneously have values set as "true". The rules above provide a means to

determine the tag's type in such a case. For example, a SWID or CoSWID tag for a

patch installer might have both corpus and patch items set to "true". In such a case,

the tag is a "corpus tag". The tag installed by this installer would have only the patch

item set to "true", making the installed tag type a "patch tag".

MUST

MUST

MUST

MUST

MUST

4. CoSWID Indexed Label Values

This section defines multiple kinds of indexed label values that are maintained in several IANA

registries. See Section 6 for details. These values are represented as positive integers. In each

registry, the value 0 is marked as Reserved.

4.1. Version Scheme

The following table contains a set of values for use in the concise-swid-tag group's version-

scheme item. The "Index" value indicates the value to use as the version-scheme item's value.

Strings in the "Version Scheme Name" column provide human-readable text for the value and

match the version schemes defined in the ISO/IEC 19770-2:2015 specification . The

"Definition" column describes the syntax of allowed values for each entry.

[SWID]

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 33

"multipartnumeric" and the numbers part of "multipartnumeric+suffix" are interpreted as a

sequence of numbers and are sorted in lexicographical order by these numbers (i.e., not by the

digits in the numbers) and then the textual suffix (for "multipartnumeric+suffix").

"alphanumeric" strings are sorted lexicographically as character strings. "decimal" version

numbers are interpreted as single floating-point numbers (e.g., 1.25 is less than 1.3).

The values above are registered in the IANA "Software ID Version Scheme Values" registry,

defined in Section 6.2.4. Additional entries will likely be registered over time in this registry.

A CoSWID producer that is aware of the version scheme that has been used to select the version

value include the optional version-scheme item to avoid semantic ambiguity. If the

CoSWID producer does not have this information, it omit the version-scheme item. The

following heuristics can be used by a CoSWID consumer, based on the version schemes' partially

overlapping value spaces:

"decimal" and "multipartnumeric" partially overlap in their value space when a value

matches a decimal number. When a corresponding software-version item's value falls within

this overlapping value space, it is expected that the "decimal" version scheme is used.

"multipartnumeric" and "semver" partially overlap in their value space when a

"multipartnumeric" value matches the semantic versioning syntax. When a corresponding

software-version item's value falls within this overlapping value space, it is expected that the

"semver" version scheme is used.

"alphanumeric" and other version schemes might overlap in their value space. When a

corresponding software-version item's value falls within this overlapping value space, it is

expected that the other version scheme is used and "alphanumeric" is not used.

Note that these heuristics are imperfect and can guess wrong, which is the reason the version-

scheme item be included by the producer.

Index Version Scheme Name Definition

1 multipartnumeric Numbers separated by dots, where the numbers are

interpreted as decimal integers (e.g., 1.2.3, 1.2.3.4.5.6.7,

1.4.5, 1.21)

2 multipartnumeric+suffix Numbers separated by dots, where the numbers are

interpreted as decimal integers with an additional

textual suffix (e.g., 1.2.3a)

3 alphanumeric Strictly a string, no interpretation as number

4 decimal A single decimal floating-point number

16384 semver A semantic version as defined by . Also see the

 specification for more information

Table 3: Version Scheme Values

[SWID]

[SEMVER]

SHOULD

SHOULD

•

•

•

SHOULD

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 34

4.2. Entity Role Values

The following table indicates the index value to use for the entity-entry group's role item (see

Section 2.6). These values match the entity roles defined in the ISO/IEC 19770-2:2015 specification

. The "Index" value indicates the value to use as the role item's value. Items in the "Role

Name" column provide human-readable text for the value. The "Definition" column describes the

semantic meaning of each entry.

The values above are registered in the IANA "Software ID Entity Role Values" registry, defined in

Section 6.2.5. Additional values will likely be registered over time.

[SWID]

Index Role Name Definition

1 tagCreator The person or organization that created the containing SWID or

CoSWID tag.

2 softwareCreator The person or organization entity that created the software

component.

3 aggregator From , "An organization or system that encapsulates

software from their own and/or other organizations into a

different distribution process (as in the case of virtualization), or

as a completed system to accomplish a specific task (as in the

case of a value added reseller)."

4 distributor From , "An entity that furthers the marketing, selling and/

or distribution of software from the original place of

manufacture to the ultimate user without modifying the

software, its packaging or its labelling."

5 licensor From , as a "software licensor", a "person or organization

who owns or holds the rights to issue a software license for a

specific software [component]."

6 maintainer The person or organization that is responsible for coordinating

and making updates to the source code for the software

component. This be used when the "maintainer" is a

different person or organization than the original

"softwareCreator".

Table 4: Entity Role Values

[SWID]

[SWID]

[SAM]

SHOULD

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 35

4.3. Link Ownership Values

The following table indicates the index value to use for the link-entry group's ownership item

(see Section 2.7). These values match the link ownership values defined in the ISO/IEC

19770-2:2015 specification . The "Index" value indicates the value to use as the link-entry

group ownership item's value. Items in the "Ownership Type" column provide human-readable

text for the value. The "Definition" column describes the semantic meaning of each entry.

The values above are registered in the IANA "Software ID Link Ownership Values" registry,

defined in Section 6.2.6. Additional values will likely be registered over time.

[SWID]

Index Ownership

Type

Definition

1 abandon If the software component referenced by the CoSWID tag is

uninstalled, then the referenced software be

uninstalled.

2 private If the software component referenced by the CoSWID tag is

uninstalled, then the referenced software be uninstalled as

well.

3 shared If the software component referenced by the CoSWID tag is

uninstalled, then the referenced software be uninstalled if

no other components are sharing the software.

Table 5: Link Ownership Values

SHOULD NOT

SHOULD

SHOULD

4.4. Link Rel Values

The following table indicates the index value to use for the link-entry group's rel item (see

Section 2.7). These values match the link rel values defined in the ISO/IEC 19770-2:2015

specification . The "Index" value indicates the value to use as the link-entry group

ownership item's value. Items in the "Relationship Type" column provide human-readable text

for the value. The "Definition" column describes the semantic meaning of each entry.

[SWID]

Index Relationship

Type

Definition

1 ancestor The link references a software tag for a previous release of this

software. This can be useful to define an upgrade path.

2 component The link references a software tag for a separate component of

this software.

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 36

The values above are registered in the IANA "Software ID Link Relationship Values" registry,

defined in Section 6.2.7. Additional values will likely be registered over time.

Index Relationship

Type

Definition

3 feature The link references a configurable feature of this software that

can be enabled or disabled without changing the installed files.

4 installationmedia The link references the installation package that can be used to

install this software.

5 packageinstaller The link references the installation software needed to install

this software.

6 parent The link references a software tag that is the parent of the

referencing tag. This relationship can be used when multiple

software components are part of a software bundle, where the

"parent" is the software tag for the bundle and each child is a

"component". In such a case, each child component can provide

a "parent" link relationship to the bundle's software tag, and

the bundle can provide a "component" link relationship to each

child software component.

7 patches The link references a software tag that the referencing

software patches. Typically only used for patch tags (see

Section 1.1).

8 requires The link references a prerequisite for installing this software. A

patch tag (see Section 1.1) can use this to represent base

software or another patch that needs to be installed first.

9 see-also The link references other software that may be of interest that

relates to this software.

10 supersedes The link references other software (e.g., an older software

version) that this software replaces. A patch tag (see Section

1.1) can use this to represent another patch that this patch

incorporates or replaces.

11 supplemental The link references a software tag that the referencing tag

supplements. Used on supplemental tags (see Section 1.1).

Table 6: Link Relationship Values

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 37

4.5. Link Use Values

The following table indicates the index value to use for the link-entry group's use item (see

Section 2.7). These values match the link use values defined in the ISO/IEC 19770-2:2015

specification . The "Index" value indicates the value to use as the link-entry group use

item's value. Items in the "Use Type" column provide human-readable text for the value. The

"Definition" column describes the semantic meaning of each entry.

The values above are registered in the IANA "Software ID Link Use Values" registry, defined in

Section 6.2.8. Additional values will likely be registered over time.

[SWID]

Index Use Type Definition

1 optional From , "Not absolutely required; the [Link]'d software is

installed only when specified."

2 required From , "The [Link]'d software is absolutely required for an

operation software installation."

3 recommended From , "Not absolutely required; the [Link]'d software is

installed unless specified otherwise."

Table 7: Link Use Values

[SWID]

[SWID]

[SWID]

5. "swid" and "swidpath" Expressions

This specification defines the following scheme names for use in CoSWID and to provide

interoperability with scheme names used in . Because both the "swid" and "swidpath"

scheme names are to be interpreted within a local (rather than a global) context, neither of these

are technically URI scheme names as defined in . For this reason, the "swid" and

"swidpath" scheme names are registered with IANA as provisional, rather than permanent,

scheme names. However, registering these scheme names as provisional ensures that the scheme

names are reserved and that they are properly defined going forward.

The swid and swidpath expressions conform to all rules for URI syntax. All uses of these

expressions encountered within a CoSWID are to be interpreted as described in this section.

[SWID]

[RFC3986]

5.1. "swid" Expressions

Expressions specifying the "swid" scheme are used to reference a software tag by its tag-id. A tag-

id referenced in this way can be used to identify the tag resource in the context of where it is

referenced from. For example, when a tag is installed on a given device, that tag can reference

related tags on the same device using expressions with this scheme.

For expressions that use the "swid" scheme, the scheme-specific part consist of a

referenced software tag's tag-id. This tag-id be URI encoded according to

.

MUST

MUST Section 2.1 of

[RFC3986]

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 38

https://www.rfc-editor.org/rfc/rfc3986#section-2.1

The following expression is a valid example:

swid:2df9de35-0aff-4a86-ace6-f7dddd1ade4c

5.2. "swidpath" Expressions

Expressions specifying the "swidpath" scheme are used to filter tags out of a base collection, so

that matching tags are included in the identified tag collection. The XPath expression

 references the data that must be found in a given software tag out of the base

collection for that tag to be considered a matching tag. Tags to be evaluated (the base collection)

include all tags in the context of where the "swidpath" expression is referenced from. For

example, when a tag is installed on a given device, that tag can reference related tags on the

same device using an expression with this scheme.

For URIs that use the "swidpath" scheme, the following requirements apply:

The scheme-specific part be an XPath expression as defined by

. The included XPath expression will be URI encoded according to

.

This XPath is evaluated over SWID tags, or CoSWID tags transformed into SWID tags, found

on a system. A given tag be considered a match if the XPath evaluation result value has

an effective boolean value of "true" according to , Section 2.4.3.

[W3C.REC-

xpath20-20101214]

• MUST [W3C.REC-

xpath20-20101214] Section

2.1 of [RFC3986]

•

MUST

[W3C.REC-xpath20-20101214]

6. IANA Considerations

This document has a number of IANA considerations, as described in the following subsections.

In summary, six new registries are established by this document, with initial entries provided for

each registry. New values for five other registries are also defined.

6.1. CoSWID Items Registry

This document defines a new registry titled "CoSWID Items". This registry uses integer values as

index values in CBOR maps. Future registrations for this registry are to be made based on

 as follows:

All negative values are reserved for private use.

Initial registrations for the "CoSWID Items" registry are provided below. Assignments consist of

an integer index value, the item name, and a reference to the defining specification.

[BCP26]

Range Registration Procedures

0-32767 Standards Action with Expert Review

32768-4294967295 Specification Required

Table 8: CoSWID Items Registration Procedures

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 39

https://www.rfc-editor.org/rfc/rfc3986#section-2.1
https://www.rfc-editor.org/rfc/rfc3986#section-2.1

Index Item Name Reference

0 tag-id RFC 9393

1 software-name RFC 9393

2 entity RFC 9393

3 evidence RFC 9393

4 link RFC 9393

5 software-meta RFC 9393

6 payload RFC 9393

7 hash RFC 9393

8 corpus RFC 9393

9 patch RFC 9393

10 media RFC 9393

11 supplemental RFC 9393

12 tag-version RFC 9393

13 software-version RFC 9393

14 version-scheme RFC 9393

15 lang RFC 9393

16 directory RFC 9393

17 file RFC 9393

18 process RFC 9393

19 resource RFC 9393

20 size RFC 9393

21 file-version RFC 9393

22 key RFC 9393

23 location RFC 9393

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 40

Index Item Name Reference

24 fs-name RFC 9393

25 root RFC 9393

26 path-elements RFC 9393

27 process-name RFC 9393

28 pid RFC 9393

29 type RFC 9393

30 Unassigned

31 entity-name RFC 9393

32 reg-id RFC 9393

33 role RFC 9393

34 thumbprint RFC 9393

35 date RFC 9393

36 device-id RFC 9393

37 artifact RFC 9393

38 href RFC 9393

39 ownership RFC 9393

40 rel RFC 9393

41 media-type RFC 9393

42 use RFC 9393

43 activation-status RFC 9393

44 channel-type RFC 9393

45 colloquial-version RFC 9393

46 description RFC 9393

47 edition RFC 9393

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 41

Index Item Name Reference

48 entitlement-data-required RFC 9393

49 entitlement-key RFC 9393

50 generator RFC 9393

51 persistent-id RFC 9393

52 product RFC 9393

53 product-family RFC 9393

54 revision RFC 9393

55 summary RFC 9393

56 unspsc-code RFC 9393

57 unspsc-version RFC 9393

58-4294967295 Unassigned

Table 9: CoSWID Items Initial Registrations

6.2. Registries for Software ID Values

The following IANA registries provide a mechanism for new values to be added over time to

common enumerations used by SWID and CoSWID. While neither the CoSWID specification nor

the SWID specification is subordinate to the other and will evolve as their respective standards

group chooses, there is value in supporting alignment between the two standards. Shared use of

common code points, as spelled out in these registries, will facilitate this alignment -- hence the

intent for shared use of these registries and the decision to use "swidsoftware-id" (rather than

"swid" or "coswid") in registry names.

6.2.1. Registration Procedures

The following registries allow for the registration of index values and names. New registrations

will be permitted through either a Standards Action with Expert Review policy or a Specification

Required policy .

The following registries also reserve the integer-based index values in the range of -1 to -256 for

private use as defined by . This allows values -1 to -24 to be expressed as a

single uint8_t in CBOR and values -25 to -256 to be expressed using an additional uint8_t in CBOR.

[BCP26]

Section 4.1 of [BCP26]

6.2.2. Private Use of Index and Name Values

The integer-based index values in the private use range (-1 to -256) are intended for testing

purposes and closed environments; values in other ranges be assigned for testing.SHOULD NOT

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 42

https://www.rfc-editor.org/rfc/rfc8126#section-4.1

For names that correspond to private use index values, an Internationalized Domain Name

prefix be used to prevent name conflicts using the form

where both "domainprefix" and "name" each be either a Non-Reserved LDH (NR-LDH)

label or a U-label as defined by , and "name" also be a unique name within the

namespace defined by the "domainprefix". ("LDH" is an abbreviation for "letters, digits, hyphen".)

Using a prefix in this way allows for a name to be used in the private use range. This is consistent

with the guidance in .

MUST

domainprefix/name

MUST

[RFC5890] MUST

[BCP178]

6.2.3. Expert Review Criteria

Designated experts ensure that new registration requests meet the following additional

criteria:

The requesting specification provide a clear semantic definition for the new entry. This

definition clearly differentiate the requested entry from other previously registered

entries.

The requesting specification describe the intended use of the entry, including any co-

constraints that exist between (1) the use of the entry's index value or name and (2) other

values defined within the SWID/CoSWID model.

Index values and names outside the private use space be used without

registration. This is considered "squatting" and be avoided. Designated experts

ensure that reviewed specifications register all appropriate index values and names.

Standards Track documents include entries registered in the range reserved for entries

under the Specification Required policy. This can occur when a Standards Track document

provides further guidance on the use of index values and names that are in common use but

were not registered with IANA. This situation be avoided.

All registered names be valid according to the XML Schema NMTOKEN data type (see

, Section 3.3.4). This ensures that registered names are

compatible with the SWID format where they are used.

Registration of vanity names be discouraged. The requesting specification

provide a description of how a requested name will allow for use by multiple stakeholders.

MUST

• MUST

MUST

• MUST

• MUST NOT

MUST MUST

• MAY

SHOULD

• MUST

[W3C.REC-xmlschema-2-20041028]

[SWID]

• SHOULD MUST

6.2.4. Software ID Version Scheme Values Registry

This document establishes a new registry titled "Software ID Version Scheme Values". This

registry provides index values for use as version-scheme item values in this document and

Version Scheme Names for use in .

This registry uses the registration procedures defined in Section 6.2.1, with the following

associated ranges:

[SWID]

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 43

Assignments consist of an integer index value, the Version Scheme Name, and a reference

to the defining specification.

Initial registrations for the "Software ID Version Scheme Values" registry are provided below and

are derived from the textual Version Scheme Names defined in .

Registrations conform to the expert review criteria defined in Section 6.2.3.

Designated experts also ensure that newly requested entries define a value space for the

corresponding software-version item that is unique from other previously registered entries.

Note: The initial registrations violate this requirement but are included for

backwards compatibility with . See also Section 4.1.

Range Registration Procedures

0-16383 Standards Action with Expert Review

16384-65535 Specification Required

Table 10: Software ID Version Scheme Registration

Procedures

MUST

[SWID]

Index Version Scheme Name Reference

0 Reserved

1 multipartnumeric RFC 9393, Section 4.1

2 multipartnumeric+suffix RFC 9393, Section 4.1

3 alphanumeric RFC 9393, Section 4.1

4 decimal RFC 9393, Section 4.1

5-16383 Unassigned

16384 semver RFC 9393, Section 4.1

16385-65535 Unassigned

Table 11: Software ID Version Scheme Initial Registrations

MUST

MUST

[SWID]

6.2.5. Software ID Entity Role Values Registry

This document establishes a new registry titled "Software ID Entity Role Values". This registry

provides index values for use as entity-entry role item values in this document and entity role

names for use in .[SWID]

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 44

This registry uses the registration procedures defined in Section 6.2.1, with the following

associated ranges:

Assignments consist of an integer index value, a role name, and a reference to the defining

specification.

Initial registrations for the "Software ID Entity Role Values" registry are provided below and are

derived from the textual entity role names defined in .

Registrations conform to the expert review criteria defined in Section 6.2.3.

Range Registration Procedures

0-127 Standards Action with Expert Review

128-255 Specification Required

Table 12: Software ID Entity Role Registration

Procedures

[SWID]

Index Role Name Reference

0 Reserved

1 tagCreator RFC 9393, Section 4.2

2 softwareCreator RFC 9393, Section 4.2

3 aggregator RFC 9393, Section 4.2

4 distributor RFC 9393, Section 4.2

5 licensor RFC 9393, Section 4.2

6 maintainer RFC 9393, Section 4.2

7-255 Unassigned

Table 13: Software ID Entity Role Initial Registrations

MUST

6.2.6. Software ID Link Ownership Values Registry

This document establishes a new registry titled "Software ID Link Ownership Values". This

registry provides index values for use as link-entry ownership item values in this document and

link ownership names for use in .

This registry uses the registration procedures defined in Section 6.2.1, with the following

associated ranges:

[SWID]

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 45

Assignments consist of an integer index value, an ownership type name, and a reference to the

defining specification.

Initial registrations for the "Software ID Link Ownership Values" registry are provided below and

are derived from the textual entity role names defined in .

Registrations conform to the expert review criteria defined in Section 6.2.3.

Range Registration Procedures

0-127 Standards Action with Expert Review

128-255 Specification Required

Table 14: Software ID Link Ownership Registration

Procedures

[SWID]

Index Ownership Type Name Reference

0 Reserved

1 abandon RFC 9393, Section 4.3

2 private RFC 9393, Section 4.3

3 shared RFC 9393, Section 4.3

4-255 Unassigned

Table 15: Software ID Link Ownership Initial Registrations

MUST

6.2.7. Software ID Link Relationship Values Registry

This document establishes a new registry titled "Software ID Link Relationship Values". This

registry provides index values for use as link-entry rel item values in this document and link

ownership names for use in .

This registry uses the registration procedures defined in Section 6.2.1, with the following

associated ranges:

[SWID]

Range Registration Procedures

0-32767 Standards Action with Expert Review

32768-65535 Specification Required

Table 16: Software ID Link Relationship Registration

Procedures

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 46

Assignments consist of an integer index value, the relationship type name, and a reference to the

defining specification.

Initial registrations for the "Software ID Link Relationship Values" registry are provided below

and are derived from the link relationship values defined in .

Registrations conform to the expert review criteria defined in Section 6.2.3.

Designated experts also ensure that a newly requested entry documents the URI schemes

allowed to be used in an href associated with the link relationship and the expected resolution

behavior of these URI schemes. This will help to ensure that applications processing software

tags are able to interoperate when resolving resources referenced by a link of a given type.

[SWID]

Index Relationship Type Name Reference

0 Reserved

1 ancestor RFC 9393, Section 4.4

2 component RFC 9393, Section 4.4

3 feature RFC 9393, Section 4.4

4 installationmedia RFC 9393, Section 4.4

5 packageinstaller RFC 9393, Section 4.4

6 parent RFC 9393, Section 4.4

7 patches RFC 9393, Section 4.4

8 requires RFC 9393, Section 4.4

9 see-also RFC 9393, Section 4.4

10 supersedes RFC 9393, Section 4.4

11 supplemental RFC 9393, Section 4.4

12-65535 Unassigned

Table 17: Software ID Link Relationship Initial Registrations

MUST

MUST

6.2.8. Software ID Link Use Values Registry

This document establishes a new registry titled "Software ID Link Use Values". This registry

provides index values for use as link-entry use item values in this document and link use names

for use in .[SWID]

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 47

This registry uses the registration procedures defined in Section 6.2.1, with the following

associated ranges:

Assignments consist of an integer index value, the link use type name, and a reference to the

defining specification.

Initial registrations for the "Software ID Link Use Values" registry are provided below and are

derived from the link relationship values defined in .

Registrations conform to the expert review criteria defined in Section 6.2.3.

Range Registration Procedures

0-127 Standards Action with Expert Review

128-255 Specification Required

Table 18: Software ID Link Use Registration

Procedures

[SWID]

Index Link Use Type Name Reference

0 Reserved

1 optional RFC 9393, Section 4.5

2 required RFC 9393, Section 4.5

3 recommended RFC 9393, Section 4.5

4-255 Unassigned

Table 19: Software ID Link Use Initial Registrations

MUST

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

6.3. swid+cbor Media Type Registration

IANA has added the following to the "Media Types" registry .

application

swid+cbor

none

none

Binary (encoded as CBOR). See RFC 9393 for details.

See Section 9 of RFC 9393.

[IANA.media-types]

[RFC8949]

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 48

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment Identifier Considerations:

Magic number(s):

File extension(s):

Macintosh file type code(s):

Macintosh Universal Type Identifier code:

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Applications ignore any key value pairs that they do not

understand. This allows backwards-compatible extensions to this specification.

RFC 9393

The type is used by software asset management systems

and vulnerability assessment systems and is used in applications that use remote integrity

verification.

The syntax and semantics of fragment identifiers specified

for "application/swid+cbor" are as specified for "application/cbor". (At publication of RFC

9393, there is no fragment identification syntax defined for "application/cbor".)

Additional information:

If tagged, the first five bytes in hex: da 53 57 49 44 (see Section 8 of RFC

9393).

coswid

none

org.ietf.coswid conforms to public.data.

IESG <iesg@ietf.org>

COMMON

none

Henk Birkholz <henk.birkholz@sit.fraunhofer.de>

IESG

MAY

6.4. CoAP Content-Format Registration

IANA has assigned a CoAP Content-Format ID for the CoSWID media type in the "CoAP Content-

Formats" subregistry, from the "IETF Review or IESG Approval" space (256..999), within the

"CoRE Parameters" registry :[RFC7252] [IANA.core-parameters]

Content Type Content Coding ID Reference

application/swid+cbor - 258 RFC 9393

Table 20: CoAP Content-Format IDs

6.5. CBOR Tag Registration

IANA has allocated a tag in the "CBOR Tags" registry :[IANA.cbor-tags]

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 49

Tag Data Item Semantics Reference

1398229316 map Concise Software Identifier (CoSWID) RFC 9393

Table 21: CoSWID CBOR Tag

6.6. URI Scheme Registrations

The ISO 19770-2:2015 SWID specification describes the use of the "swid" and "swidpath"

URI schemes, which are currently in use in implementations. This document continues this use

for CoSWID. The following subsections provide registrations for these schemes to ensure that a

registration for these schemes exists that is suitable for use in the SWID and CoSWID

specifications.

URI schemes are registered within the "Uniform Resource Identifier (URI) Schemes" registry

maintained at .

[SWID]

[IANA.uri-schemes]

Scheme name:

Status:

Applications/protocols that use this scheme name:

Contact:

Change controller:

Reference:

6.6.1. URI Scheme "swid"

IANA has registered the URI scheme "swid". This registration complies with .

swid

Provisional

Applications that require Software IDs

(SWIDs) or Concise Software IDs (CoSWIDs); see Section 5.1 of RFC 9393.

IETF Chair <chair@ietf.org>

IESG <iesg@ietf.org>

Section 5.1 of RFC 9393

Note: This scheme has been documented by an IETF working group and is

mentioned in an IETF Standard specification. However, as it describes a locally

scoped, limited-purpose form of identification, it does not fully meet the

requirements for permanent registration.

As long as this specification (or any successors that describe this scheme) is a

current IETF specification, this scheme should be considered to be "in use" and not

considered for removal from the registry.

[RFC7595]

Scheme name:

Status:

6.6.2. URI Scheme "swidpath"

IANA has registered the URI scheme "swidpath". This registration complies with .

swidpath

Provisional

[RFC7595]

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 50

Applications/protocols that use this scheme name:

Contact:

Change controller:

Reference:

Applications that require Software IDs

(SWIDs) or Concise Software IDs (CoSWIDs); see Section 5.2 of RFC 9393.

IETF Chair <chair@ietf.org>

IESG <iesg@ietf.org>

Section 5.2 of RFC 9393

Note: This scheme has been documented by an IETF working group and is

mentioned in an IETF Standard specification. However, as it describes a locally

scoped, limited-purpose form of identification, it does not fully meet the

requirements for permanent registration.

As long as this specification (or any successors that describe this scheme) is a

current IETF specification, this scheme should be considered to be "in use" and not

considered for removal from the registry.

Pen:

Integer:

Name:

Reference:

Deriving Software Identifiers:

6.7. CoSWID Model for Use in SWIMA Registration

"Software Inventory Message and Attributes (SWIMA) for PA-TNC" defines a

standardized method for collecting an endpoint device's software inventory. A CoSWID can

provide evidence of software installation that can then be used and exchanged with SWIMA. This

registration adds a new entry to the IANA "Software Data Model Types" registry defined by

 and to support CoSWID use in SWIMA as follows:

0

2

Concise Software Identifier (CoSWID)

RFC 9393

A Software Identifier generated from a CoSWID tag is expressed

as a concatenation of the form used in as follows --

where TAG_CREATOR_REGID is the reg-id item value of the tag's entity item having the role

value of 1 (corresponding to "tag-creator"), and the UNIQUE_ID is the same tag's tag-id item. If

the tag-id item's value is expressed as a 16-byte binary string, the UNIQUE_ID be

represented using the UUID string representation defined in , including the

"urn:uuid:" prefix.

The TAG_CREATOR_REGID and the UNIQUE_ID are connected with a double underscore (_),

without any other connecting character or whitespace.

[RFC8412]

[RFC8412] [IANA.pa-tnc-parameters]

[RFC5234]

TAG_CREATOR_REGID "_" "_" UNIQUE_ID

MUST

[RFC4122]

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 51

7. Signed CoSWID Tags

SWID tags, as defined in the ISO-19770-2:2015 XML Schema, can include cryptographic signatures

to protect the integrity of the SWID tag. In general, tags are signed by the tag creator (typically,

although not exclusively, the vendor of the software component that the SWID tag identifies).

Cryptographic signatures can make any modification of the tag detectable, which is especially

important if the integrity of the tag is important, such as when the tag is providing RIMs for files.

The ISO-19770-2:2015 XML Schema uses XML Digital Signatures (XMLDSIG) to support

cryptographic signatures.

Signing CoSWID tags follows the procedures defined in CBOR Object Signing and Encryption

(COSE) . A CoSWID tag be wrapped in a COSE Signature structure, either

COSE_Sign1 or COSE_Sign. In the first case, a Single Signer Data Object (COSE_Sign1) contains a

single signature and be signed by the tag creator. The following CDDL specification defines

a restrictive subset of COSE header parameters that be used in the protected header in this

case.

The COSE_Sign structure allows for more than one signature, one of which be issued by the

tag creator, to be applied to a CoSWID tag and be used. The corresponding usage scenarios

are domain specific and require well-specified application guidance.

[RFC9052] MUST

MUST

MUST

<CODE BEGINS> file "sign1.cddl"

COSE_Sign1-coswid<payload> = [

 protected: bstr .cbor protected-signed-coswid-header,

 unprotected: unprotected-signed-coswid-header,

 payload: bstr .cbor payload,

 signature: bstr,

]

cose-label = int / tstr

cose-values = any

protected-signed-coswid-header = {

 1 => int, ; algorithm identifier

 3 => "application/swid+cbor",

 * cose-label => cose-values,

}

unprotected-signed-coswid-header = {

 * cose-label => cose-values,

}

<CODE ENDS>

MUST

MAY

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 52

Additionally, the COSE header countersignature be used as an attribute in the unprotected

header map of the COSE envelope of a CoSWID . The application of countersigning

enables second parties to provide a signature on a signature allowing for proof that a signature

existed at a given time (i.e., a timestamp).

A CoSWID be signed, using the above mechanism, to protect the integrity of the CoSWID

tag. See Section 9 ("Security Considerations") for more information on why a signed CoSWID is

valuable in most cases.

<CODE BEGINS> file "sign.cddl"

COSE_Sign-coswid<payload> = [

 protected: bstr .cbor protected-signed-coswid-header1,

 unprotected: unprotected-signed-coswid-header,

 payload: bstr .cbor payload,

 signature: [* COSE_Signature],

]

protected-signed-coswid-header1 = {

 3 => "application/swid+cbor",

 * cose-label => cose-values,

}

protected-signature-coswid-header = {

 1 => int, ; algorithm identifier

 * cose-label => cose-values,

}

unprotected-signed-coswid-header = {

 * cose-label => cose-values,

}

COSE_Signature = [

 protected: bstr .cbor protected-signature-coswid-header,

 unprotected: unprotected-signed-coswid-header,

 signature: bstr

]

<CODE ENDS>

MAY

[RFC9338]

MUST

8. CBOR-Tagged CoSWID Tags

This specification allows for tagged and untagged CBOR data items that are CoSWID tags.

Consequently, the CBOR tag defined by this document (Table 21) for CoSWID tags be

used in conjunction with CBOR data items that are CoSWID tags. Other CBOR tags be

used with a CBOR data item that is a CoSWID tag. If tagged, both signed and unsigned CoSWID

tags use the CoSWID CBOR tag. If a signed CoSWID is tagged, a CoSWID CBOR tag be

appended before the COSE envelope, whether it is a COSE_Untagged_Message or a

COSE_Tagged_Message. If an unsigned CoSWID is tagged, a CoSWID CBOR tag be appended

before the CBOR data item that is the CoSWID tag.

SHOULD

MUST NOT

MUST MUST

MUST

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 53

This specification allows for a CBOR-tagged CoSWID tag to reside in a COSE envelope that is also

tagged with a CoSWID CBOR tag. In cases where a tag creator is not a signer (e.g., hand-offs

between entities in a trusted portion of a supply chain), retaining CBOR tags attached to unsigned

CoSWID tags can be of great use. Nevertheless, redundant use of tags be avoided when

possible.

<CODE BEGINS> file "tags.cddl"

coswid = unsigned-coswid / signed-coswid

unsigned-coswid = concise-swid-tag / tagged-coswid<concise-swid-tag>

signed-coswid1 = signed-coswid-for<unsigned-coswid>

signed-coswid = signed-coswid1 / tagged-coswid<signed-coswid1>

tagged-coswid<T> = #6.1398229316(T)

signed-coswid-for<payload> = #6.18(COSE_Sign1-coswid<payload>)

 / #6.98(COSE_Sign-coswid<payload>)

<CODE ENDS>

SHOULD

9. Security Considerations

The following security considerations for the use of CoSWID tags focus on:

ensuring the integrity and authenticity of a CoSWID tag

the application of CoSWID tags to address security challenges related to unmanaged or

unpatched software

reducing the potential for unintended disclosure of a device's software load

A tag is considered "authoritative" if the CoSWID tag was created by the software provider. An

authoritative CoSWID tag contains information about a software component provided by the

supplier of the software component, who is expected to be an expert in their own software. Thus,

authoritative CoSWID tags can represent authoritative information about the software

component. The degree to which this information can be trusted depends on the tag's chain of

custody and the ability to verify a signature provided by the supplier if present in the CoSWID

tag. The provisioning and validation of CoSWID tags are handled by local policy and are outside

the scope of this document.

A signed CoSWID tag (see Section 7) whose signature has been validated can be relied upon to be

unchanged since the time at which it was signed. By contrast, the data contained in unsigned tags

can be altered by any user or process with write access to the tag. To support signature

validation, there is a need to associate the right key with the software provider or party

originating the signature in a secure way. This operation is application specific and needs to be

addressed by the application or a user of the application; a specific approach for this topic is out

of scope for this document.

•

•

•

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 54

When an authoritative tag is signed, the originator of the signature can be verified. A

trustworthy association between the signature and the originator of the signature can be

established via trust anchors. A certification path between a trust anchor and a certificate,

including a public key enabling the validation of a tag signature, can realize the assessment of

trustworthiness of an authoritative tag. Verifying that the software provider is the signer is a

different matter. This requires verifying that the party that signed the tag is the same party given

in the software-creator role of the tag's entity item. No mechanism is defined in this document to

make this association; therefore, this association will need to be handled by local policy. As

always, the validity of a signature does not imply the veracity of the signed statements: anyone

can sign assertions such that the software is from a specific software-creator or that a specific

persistent-id applies; policy needs to be applied to evaluate these statements and to determine

their suitability for a specific use.

Loss of control of signing credentials used to sign CoSWID tags would cast doubt on the

authenticity and integrity of any CoSWID tags signed using the compromised keys. In such cases,

the legitimate tag signer (namely, the software provider for an authoritative CoSWID tag) can

employ uncompromised signing credentials to create a new signature on the original tag. The

tag's version number would not be incremented, since the tag itself was not modified. Consumers

of CoSWID tags would need to validate the tag using the new credentials and would also need to

make use of revocation information available for the compromised credentials to avoid

validating tags signed with them. The process for doing this is beyond the scope of this

specification.

The CoSWID format allows the use of hash values without an accompanying hash algorithm

identifier. This exposes the tags to some risk of cross-algorithm attacks. We believe that this can

become a practical problem only if some implementations allow the use of insecure hash

algorithms. Since it may not become known immediately when an algorithm becomes insecure,

this leads to a strong recommendation to only include support for hash algorithms that are

generally considered secure, and not just marginally so.

CoSWID tags are intended to contain public information about software components and, as

such, the contents of a CoSWID tag (as opposed to the set of tags that apply to the endpoint; see

below) do not need to be protected against unintended disclosure on an endpoint. Conversely,

generators of CoSWID tags need to ensure that only public information is disclosed. The

entitlement-key item is an example of information for which particular care is required; tag

authors are advised not to record unprotected, private software license keys in this field.

CoSWID tags are intended to be easily discoverable by authorized applications and users on an

endpoint in order to make it easy to determine the tagged software load. Access to the collection

of an endpoint's CoSWID tags needs to be limited to authorized applications and users using an

appropriate access control mechanism.

Since the tag-id of a CoSWID tag can be used as a global index value, failure to ensure the tag-id's

uniqueness can cause collisions or ambiguity in CoSWID tags that are retrieved or processed

using this identifier. CoSWID is designed to not require a registry of identifiers. As a result,

CoSWID requires the tag creator to employ a method of generating a unique tag identifier.

Specific methods of generating a unique identifier are beyond the scope of this specification. A

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 55

collision in tag-ids may result in false positives/negatives in software integrity checks or

misidentification of installed software, undermining CoSWID use cases such as vulnerability

identification, software inventory, etc. If such a collision is detected, then the tag consumer may

want to contact the maintainer of the CoSWID to have them issue a correction addressing the

collision; however, this also discloses to the maintainer that the consumer has the other tag with

the given tag-id in their database. More generally speaking, a tag consumer needs to be robust

against such collisions lest the collision become a viable attack vector.

CoSWID tags are designed to be easily added and removed from an endpoint along with the

installation or removal of software components. On endpoints where the addition or removal of

software components is tightly controlled, the addition or removal of CoSWID tags can be

similarly controlled. On more open systems, where many users can manage the software

inventory, CoSWID tags can be easier to add or remove. On such systems, it can be possible to

add or remove CoSWID tags in a way that does not reflect the actual presence or absence of

corresponding software components. Similarly, not all software products automatically install

CoSWID tags, so products can be present on an endpoint without providing a corresponding

CoSWID tag. As such, any collection of CoSWID tags cannot automatically be assumed to

represent either a complete or fully accurate representation of the software inventory of the

endpoint. However, especially on endpoint devices that more strictly control the ability to add or

remove applications, CoSWID tags are an easy way to provide a preliminary understanding of

that endpoint's software inventory.

As CoSWID tags do not expire, inhibiting new CoSWID tags from reaching an intended consumer

would render that consumer stuck with outdated information, potentially leaving associated

vulnerabilities or weaknesses unmitigated. Therefore, a CoSWID tag consumer should actively

check for updated tag-versions via more than one means.

This specification makes use of relative paths (e.g., filesystem paths) in several places. A signed

CoSWID tag cannot make use of these to derive information that is considered to be covered

under the signature. Typically, relative filesystem paths will be used to identify targets for an

installation, not sources of tag information.

Any report of an endpoint's CoSWID tag collection provides information about the software

inventory of that endpoint. If such a report is exposed to an attacker, this can tell them which

software products and versions thereof are present on the endpoint. By examining this list, the

attacker might learn of the presence of applications that are vulnerable to certain types of

attacks. As noted earlier, CoSWID tags are designed to be easily discoverable by authorized

applications and users on an endpoint, but this does not present a significant risk, since an

attacker would already need to have access to the endpoint to view that information. However,

when the endpoint transmits its software inventory to another party or that inventory is stored

on a server for later analysis, this can potentially expose this information to attackers who do not

yet have access to the endpoint. For this reason, it is important to protect the confidentiality of

CoSWID tag information that has been collected from an endpoint in transit and at rest, not

because those tags individually contain sensitive information but because the collection of

CoSWID tags and their association with an endpoint reveals information about that endpoint's

attack surface.

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 56

[BCP178]

[BCP26]

[IANA.cbor-tags]

11. References

11.1. Normative References

, ,

.

Finally, both the ISO-19770-2:2015 XML Schema SWID definition and the CoSWID CDDL

specification allow for the construction of "infinite" tags with link item loops or tags that contain

malicious content with the intent of creating non-deterministic states during validation or

processing of those tags. While software providers are unlikely to do this, CoSWID tags can be

created by any party and the CoSWID tags collected from an endpoint could contain a mixture of

tags created by vendors and tags not created by vendors. For this reason, a CoSWID tag might

contain potentially malicious content. Input sanitization, loop detection, and signature

verification are ways that implementations can address this concern.

More generally speaking, the Security Considerations sections of , , and

 apply.

[RFC8949] [RFC9052]

[RFC9338]

10. Privacy Considerations

As noted in Section 9, collected information about an endpoint's software load, such as what

might be represented by an endpoint's CoSWID tag collection, could be used by attackers to

identify vulnerable software. Collections of endpoint software information also can have privacy

implications for users. The set of applications a user installs can provide clues regarding

personal matters such as political affiliation, banking and investments, gender, sexual

orientation, medical concerns, etc. While the collection of CoSWID tags on an endpoint wouldn't

increase privacy risks (since a party able to view those tags could also view the applications

themselves), if those CoSWID tags are gathered and stored in a repository somewhere, visibility

into the repository now also provides visibility into a user's application collection. For this

reason, not only do repositories of collected CoSWID tags need to be protected against collection

by malicious parties but even authorized parties will need to be vetted and made aware of

privacy responsibilities associated with having access to this information. Likewise, users should

be made aware that their software inventories are being collected from endpoints. Furthermore,

when collected and stored by authorized parties or systems, the inventory data needs to be

protected as both security and privacy-sensitive information.

, , and ,

, , , June 2012.

Saint-Andre, P. Crocker, D. M. Nottingham "Deprecating the "X-" Prefix and

Similar Constructs in Application Protocols" BCP 178 RFC 6648

<https://www.rfc-editor.org/info/bcp178>

, , and ,

, , , June 2017.

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA

Considerations Section in RFCs" BCP 26 RFC 8126

<https://www.rfc-editor.org/info/bcp26>

IANA "Concise Binary Object Representation (CBOR) Tags" <https://

www.iana.org/assignments/cbor-tags>

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 57

https://www.rfc-editor.org/info/bcp178
https://www.rfc-editor.org/info/bcp26
https://www.iana.org/assignments/cbor-tags
https://www.iana.org/assignments/cbor-tags

[IANA.core-parameters]

[IANA.media-types]

[IANA.named-information]

[IANA.pa-tnc-parameters]

[IANA.uri-schemes]

[RFC2119]

[RFC3629]

[RFC3986]

[RFC5198]

[RFC5234]

[RFC5646]

[RFC5890]

[RFC7252]

[RFC8174]

, ,

.

, , .

, ,

.

,

,

.

, ,

.

, , ,

, , March 1997,

.

, , , ,

, November 2003,

.

, , and ,

, , , , January 2005,

.

 and , ,

, , March 2008,

.

 and ,

, , , , January 2008,

.

 and , , ,

, , September 2009,

.

,

, , ,

August 2010, .

, , and ,

, , , June 2014,

.

, ,

, , , May 2017,

.

IANA "Constrained RESTful Environments (CoRE) Parameters"

<https://www.iana.org/assignments/core-parameters>

IANA "Media Types" <https://www.iana.org/assignments/media-types>

IANA "Named Information" <https://www.iana.org/assignments/

named-information>

IANA "Posture Attribute (PA) Protocol Compatible with Trusted

Network Connect (TNC) Parameters" <https://www.iana.org/assignments/pa-tnc-

parameters>

IANA "Uniform Resource Identifier (URI) Schemes" <https://

www.iana.org/assignments/uri-schemes>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629

DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/

rfc3629>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):

Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986

<https://www.rfc-editor.org/info/rfc3986>

Klensin, J. M. Padlipsky "Unicode Format for Network Interchange" RFC

5198 DOI 10.17487/RFC5198 <https://www.rfc-editor.org/info/

rfc5198>

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:

ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://

www.rfc-editor.org/info/rfc5234>

Phillips, A., Ed. M. Davis, Ed. "Tags for Identifying Languages" BCP 47 RFC

5646 DOI 10.17487/RFC5646 <https://www.rfc-editor.org/info/

rfc5646>

Klensin, J. "Internationalized Domain Names for Applications (IDNA):

Definitions and Document Framework" RFC 5890 DOI 10.17487/RFC5890

<https://www.rfc-editor.org/info/rfc5890>

Shelby, Z. Hartke, K. C. Bormann "The Constrained Application Protocol

(CoAP)" RFC 7252 DOI 10.17487/RFC7252 <https://www.rfc-

editor.org/info/rfc7252>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 58

https://www.iana.org/assignments/core-parameters
https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/named-information
https://www.iana.org/assignments/named-information
https://www.iana.org/assignments/pa-tnc-parameters
https://www.iana.org/assignments/pa-tnc-parameters
https://www.iana.org/assignments/uri-schemes
https://www.iana.org/assignments/uri-schemes
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc5198
https://www.rfc-editor.org/info/rfc5198
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5890
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[RFC8288]

[RFC8412]

[RFC8610]

[RFC8949]

[RFC9052]

[RFC9338]

[SAM]

[SWID]

[UNSPSC]

[W3C.REC-mediaqueries-3-20220405]

[W3C.REC-xmlschema-2-20041028]

[W3C.REC-xpath20-20101214]

, , , , October 2017,

.

, , , , and ,

, ,

, July 2018, .

, , and ,

, ,

, June 2019, .

 and , ,

, , , December 2020,

.

,

, , , , August 2022,

.

, ,

, , , December 2022,

.

, , August 2015,

.

, , October 2015,

.

, 2022,

.

, ,

, 5 April 2022,

.

 and ,

, ,

28 October 2004, .

, , ,

, , , and ,

, , 14

December 2010, .

11.2. Informative References

Nottingham, M. "Web Linking" RFC 8288 DOI 10.17487/RFC8288

<https://www.rfc-editor.org/info/rfc8288>

Schmidt, C. Haynes, D. Coffin, C. Waltermire, D. J. Fitzgerald-McKay

"Software Inventory Message and Attributes (SWIMA) for PA-TNC" RFC 8412

DOI 10.17487/RFC8412 <https://www.rfc-editor.org/info/rfc8412>

Birkholz, H. Vigano, C. C. Bormann "Concise Data Definition Language

(CDDL): A Notational Convention to Express Concise Binary Object

Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/

RFC8610 <https://www.rfc-editor.org/info/rfc8610>

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"

STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-

editor.org/info/rfc8949>

Schaad, J. "CBOR Object Signing and Encryption (COSE): Structures and

Process" STD 96 RFC 9052 DOI 10.17487/RFC9052 <https://

www.rfc-editor.org/info/rfc9052>

Schaad, J. "CBOR Object Signing and Encryption (COSE): Countersignatures"

STD 96 RFC 9338 DOI 10.17487/RFC9338 <https://www.rfc-

editor.org/info/rfc9338>

"Information technology - IT asset management - Part 5: Overview and

vocabulary" ISO/IEC 19770-5:2015 <https://www.iso.org/standard/

68291.html>

"Information technology - IT asset management - Part 2: Software identification

tag" ISO/IEC 19770-2:2015 <https://www.iso.org/standard/

65666.html>

"United Nations Standard Products and Services Code" <https://

www.unspsc.org/>

Rivoal, F., Ed. "Media Queries Level 3" W3C

Recommendation REC-mediaqueries-3-20220405 <https://

www.w3.org/TR/mediaqueries-3/>

Biron, P. V., Ed. A. Malhotra, Ed. "XML Schema Part 2:

Datatypes Second Edition" W3C Recommendation REC-xmlschema-2-20041028

<https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/>

Berglund, A., Ed. Boag, S., Ed. Chamberlin, D., Ed. Fernández,

M. F., Ed. Kay, M., Ed. Robie, J., Ed. J. Siméon, Ed. "XML Path Language

(XPath) 2.0 (Second Edition)" W3C Recommendation REC-xpath20-20101214

<https://www.w3.org/TR/2010/REC-xpath20-20101214/>

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 59

https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8412
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9338
https://www.rfc-editor.org/info/rfc9338
https://www.iso.org/standard/68291.html
https://www.iso.org/standard/68291.html
https://www.iso.org/standard/65666.html
https://www.iso.org/standard/65666.html
https://www.unspsc.org/
https://www.unspsc.org/
https://www.w3.org/TR/mediaqueries-3/
https://www.w3.org/TR/mediaqueries-3/
https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
https://www.w3.org/TR/2010/REC-xpath20-20101214/

[CamelCase]

[KebabCase]

[RFC3444]

[RFC4122]

[RFC7595]

[RFC8322]

[RFC8520]

[RFC9334]

[SEMVER]

[SWID-GUIDANCE]

[X.1520]

, 18 December 2014,

.

, 29 August 2014, .

 and ,

, , , January 2003,

.

, , and ,

, , , July 2005,

.

, , and ,

, , , , June

2015, .

, , and ,

, , , February

2018, .

, , and ,

, , , March 2019,

.

, , , , and ,

, , ,

January 2023, .

, ,

.

, , , and ,

, ,

April 2016, .

, , ,

January 2014, .

"Camel Case (upper camel case)" <http://wiki.c2.com/?

CamelCase>

"Kebab Case" <http://wiki.c2.com/?KebabCase>

Pras, A. J. Schoenwaelder "On the Difference between Information Models

and Data Models" RFC 3444 DOI 10.17487/RFC3444 <https://

www.rfc-editor.org/info/rfc3444>

Leach, P. Mealling, M. R. Salz "A Universally Unique IDentifier (UUID) URN

Namespace" RFC 4122 DOI 10.17487/RFC4122 <https://www.rfc-

editor.org/info/rfc4122>

Thaler, D., Ed. Hansen, T. T. Hardie "Guidelines and Registration

Procedures for URI Schemes" BCP 35 RFC 7595 DOI 10.17487/RFC7595

<https://www.rfc-editor.org/info/rfc7595>

Field, J. Banghart, S. D. Waltermire "Resource-Oriented Lightweight

Information Exchange (ROLIE)" RFC 8322 DOI 10.17487/RFC8322

<https://www.rfc-editor.org/info/rfc8322>

Lear, E. Droms, R. D. Romascanu "Manufacturer Usage Description

Specification" RFC 8520 DOI 10.17487/RFC8520 <https://www.rfc-

editor.org/info/rfc8520>

Birkholz, H. Thaler, D. Richardson, M. Smith, N. W. Pan "Remote

ATtestation procedureS (RATS) Architecture" RFC 9334 DOI 10.17487/RFC9334

<https://www.rfc-editor.org/info/rfc9334>

Preston-Werner, T. "Semantic Versioning 2.0.0" <https://semver.org/spec/

v2.0.0.html>

Waltermire, D. Cheikes, B. A. Feldman, L. G. Witte "Guidelines for the

Creation of Interoperable Software Identification (SWID) Tags" NISTIR 8060

<https://doi.org/10.6028/NIST.IR.8060>

ITU-T "Common vulnerabilities and exposures" ITU-T Recommendation X.1520

<https://www.itu.int/rec/T-REC-X.1520>

Acknowledgments

This document draws heavily on the concepts defined in the ISO/IEC 19770-2:2015 specification.

The authors of this document are grateful for the prior work of the 19770-2 contributors.

We are also grateful for the careful reviews provided by the IESG reviewers. Special thanks go to

.Benjamin Kaduk

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 60

http://wiki.c2.com/?CamelCase
http://wiki.c2.com/?CamelCase
http://wiki.c2.com/?KebabCase
https://www.rfc-editor.org/info/rfc3444
https://www.rfc-editor.org/info/rfc3444
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc7595
https://www.rfc-editor.org/info/rfc8322
https://www.rfc-editor.org/info/rfc8520
https://www.rfc-editor.org/info/rfc8520
https://www.rfc-editor.org/info/rfc9334
https://semver.org/spec/v2.0.0.html
https://semver.org/spec/v2.0.0.html
https://doi.org/10.6028/NIST.IR.8060
https://www.itu.int/rec/T-REC-X.1520

Contributors

 contributed to the CDDL specifications and the IANA considerations.

Carsten Bormann

Universität Bremen TZI

Postfach 330440

 D-28359 Bremen

Germany

 +49-421-218-63921 Phone:

 cabo@tzi.org Email:

Carsten Bormann

Authors' Addresses

Henk Birkholz

Fraunhofer SIT

Rheinstrasse 75

 64295 Darmstadt

Germany

 henk.birkholz@sit.fraunhofer.de Email:

Jessica Fitzgerald-McKay

National Security Agency

9800 Savage Road

, Ft. Meade Maryland 20755

United States of America

 jmfitz2@cyber.nsa.gov Email:

Charles Schmidt

The MITRE Corporation

202 Burlington Road

, Bedford Massachusetts 01730

United States of America

 cmschmidt@mitre.org Email:

David Waltermire

National Institute of Standards and Technology

100 Bureau Drive

, Gaithersburg Maryland 20877

United States of America

 david.waltermire@nist.gov Email:

RFC 9393 CoSWID June 2023

Birkholz, et al. Standards Track Page 61

tel:+49-421-218-63921
mailto:cabo@tzi.org
mailto:henk.birkholz@sit.fraunhofer.de
mailto:jmfitz2@cyber.nsa.gov
mailto:cmschmidt@mitre.org
mailto:david.waltermire@nist.gov

	RFC 9393
	Concise Software Identification Tags
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. The SWID and CoSWID Tag Lifecycle
	1.2. Concise SWID Format
	1.3. Requirements Notation

	2. Concise SWID Data Definition
	2.1. Character Encoding
	2.2. Concise SWID Extensions
	2.3. The concise-swid-tag Map
	2.4. concise-swid-tag Co-constraints
	2.5. The global-attributes Group
	2.6. The entity-entry Map
	2.7. The link-entry Map
	2.8. The software-meta-entry Map
	2.9. The Resource Collection Definition
	2.9.1. The hash-entry Array
	2.9.2. The resource-collection Group
	2.9.3. The payload-entry Map
	2.9.4. The evidence-entry Map

	2.10. Full CDDL Specification

	3. Determining the Type of CoSWID
	4. CoSWID Indexed Label Values
	4.1. Version Scheme
	4.2. Entity Role Values
	4.3. Link Ownership Values
	4.4. Link Rel Values
	4.5. Link Use Values

	5. "swid" and "swidpath" Expressions
	5.1. "swid" Expressions
	5.2. "swidpath" Expressions

	6. IANA Considerations
	6.1. CoSWID Items Registry
	6.2. Registries for Software ID Values
	6.2.1. Registration Procedures
	6.2.2. Private Use of Index and Name Values
	6.2.3. Expert Review Criteria
	6.2.4. Software ID Version Scheme Values Registry
	6.2.5. Software ID Entity Role Values Registry
	6.2.6. Software ID Link Ownership Values Registry
	6.2.7. Software ID Link Relationship Values Registry
	6.2.8. Software ID Link Use Values Registry

	6.3. swid+cbor Media Type Registration
	6.4. CoAP Content-Format Registration
	6.5. CBOR Tag Registration
	6.6. URI Scheme Registrations
	6.6.1. URI Scheme "swid"
	6.6.2. URI Scheme "swidpath"

	6.7. CoSWID Model for Use in SWIMA Registration

	7. Signed CoSWID Tags
	8. CBOR-Tagged CoSWID Tags
	9. Security Considerations
	10. Privacy Considerations
	11. References
	11.1. Normative References
	11.2. Informative References

	Acknowledgments
	Contributors
	Authors' Addresses

 Concise Software Identification Tags

 Fraunhofer SIT

 Rheinstrasse 75
 Darmstadt
 64295
 Germany

 henk.birkholz@sit.fraunhofer.de

 National Security Agency

 9800 Savage Road
 Ft. Meade
 20755
 Maryland
 United States of America

 jmfitz2@cyber.nsa.gov

 The MITRE Corporation

 202 Burlington Road
 Bedford
 Massachusetts
 01730
 United States of America

 cmschmidt@mitre.org

 National Institute of Standards and Technology

 100 Bureau Drive
 Gaithersburg
 Maryland
 20877
 United States of America

 david.waltermire@nist.gov

 sec
 sacm

 ISO/IEC 19770-2:2015 Software Identification (SWID) tags provide an extensible XML-based structure to identify and describe individual software components, patches, and installation bundles. SWID tag representations can be too large for devices with network and storage constraints. This document defines a concise representation of SWID tags: Concise SWID (CoSWID) tags. CoSWID supports a set of semantics and features that are similar to those for SWID tags, as well as new semantics that allow CoSWIDs to describe additional types of information, all in a more memory-efficient format.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . The SWID and CoSWID Tag Lifecycle

 . Concise SWID Format

 . Requirements Notation

 . Concise SWID Data Definition

 . Character Encoding

 . Concise SWID Extensions

 . The concise-swid-tag Map

 . concise-swid-tag Co-constraints

 . The global-attributes Group

 . The entity-entry Map

 . The link-entry Map

 . The software-meta-entry Map

 . The Resource Collection Definition

 . The hash-entry Array

 . The resource-collection Group

 . The payload-entry Map

 . The evidence-entry Map

 . Full CDDL Specification

 . Determining the Type of CoSWID

 . CoSWID Indexed Label Values

 . Version Scheme

 . Entity Role Values

 . Link Ownership Values

 . Link Rel Values

 . Link Use Values

 . "swid" and "swidpath" Expressions

 . "swid" Expressions

 . "swidpath" Expressions

 . IANA Considerations

 . CoSWID Items Registry

 . Registries for Software ID Values

 . Registration Procedures

 . Private Use of Index and Name Values

 . Expert Review Criteria

 . Software ID Version Scheme Values Registry

 . Software ID Entity Role Values Registry

 . Software ID Link Ownership Values Registry

 . Software ID Link Relationship Values Registry

 . Software ID Link Use Values Registry

 . swid+cbor Media Type Registration

 . CoAP Content-Format Registration

 . CBOR Tag Registration

 . URI Scheme Registrations

 . URI Scheme "swid"

 . URI Scheme "swidpath"

 . CoSWID Model for Use in SWIMA Registration

 . Signed CoSWID Tags

 . CBOR-Tagged CoSWID Tags

 . Security Considerations

 . Privacy Considerations

 . References

 . Normative References

 . Informative References

 Acknowledgments

 Contributors

 Authors' Addresses

 Introduction
 SWID tags, as defined in ISO-19770-2:2015 , provide a standardized
XML-based record format that identifies and describes a specific release of
software, a patch, or an installation bundle, which are referred to as software components in this document. Different software components, and even different releases of a
particular software component, each have a different SWID tag record associated
with them. SWID tags are meant to be flexible and able to express a broad set of metadata
about a software component.
 SWID tags are used to support a number of processes, including but not limited to:

 Software Inventory Management, representing a part of a Software Asset Management process ,
which requires an accurate list of discernible deployed software
components.
 Vulnerability Assessment, which requires a semantic link between standardized
vulnerability descriptions and software components installed on IT assets .
 Remote Attestation, which requires a link between Reference Integrity Manifests (RIMs) and Attester-produced event logs that complement attestation evidence .

 While there are very few required fields in SWID tags, there are many optional
fields that support different uses. A
SWID tag consisting of only required fields might be a few hundred bytes in
size; however, a tag containing many of the optional fields can be many orders of
magnitude larger. Thus, real-world instances of SWID tags can be fairly large, and the communication of
SWID tags in usage scenarios, such as those described earlier, can cause a large
amount of data to be transported. This can be larger than acceptable for
constrained devices and networks. Concise SWID (CoSWID) tags significantly reduce the amount of
data transported as compared to a typical SWID tag
through the use of the Concise
Binary Object Representation (CBOR) .
 Size comparisons between XML SWID and CoSWID mainly depend on domain-specific applications and the complexity of attributes used in instances.
While the values stored in CoSWID are often unchanged and therefore not reduced in size compared to an XML SWID, the scaffolding that the CoSWID encoding represents is significantly smaller by taking up 10 percent or less in size.
This effect is visible in representation sizes, which in early experiments benefited from a 50 percent to 85 percent reduction in generic usage scenarios.
Additional size reduction is enabled with respect to the memory footprint of XML parsing/validation.
 In a CoSWID, the human-readable labels of SWID data items are replaced with
more concise integer labels (indices). This approach allows SWID and CoSWID to share a common implicit information model, with CoSWID providing an alternate data model . While SWID and CoSWID are intended to share the same implicit information model, this specification does not define this information model or a mapping between the two data formats. While an attempt to align SWID and CoSWID tags has been made here, future revisions of ISO/IEC 19770-2:2015 or this specification might cause this implicit information model to diverge, since these specifications are maintained by different standards groups.
 The use of CBOR to express SWID information in CoSWID tags allows both CoSWID and SWID tags to be part of an
enterprise security solution for a wider range of endpoints and environments.

 The SWID and CoSWID Tag Lifecycle
 In addition to defining the format of a SWID tag record, ISO/IEC 19770-2:2015
defines requirements concerning the SWID tag lifecycle. Specifically, when a
software component is installed on an endpoint, that software component's SWID tag is also
installed. Likewise, when the software component is uninstalled or replaced, the SWID tag
is deleted or replaced, as appropriate. As a result, ISO/IEC 19770-2:2015 describes
a system wherein there is a correspondence between the set of installed software
components on an endpoint and the presence of the corresponding SWID tags
for these components on that endpoint. CoSWIDs share the same lifecycle requirements
as a SWID tag.
 The SWID specification and supporting guidance provided in NIST Internal Report (NISTIR) 8060 ("Guidelines for the Creation of Interoperable Software
Identification (SWID) Tags") define four types of SWID tags: primary, patch, corpus, and supplemental. The following text is paraphrased from these sources.

 Primary Tag:
 A SWID or CoSWID tag that identifies and describes an installed software component on an endpoint. A primary tag is intended to be installed on an endpoint along with the corresponding software component.
 Patch Tag:
 A SWID or CoSWID tag that identifies and describes an installed patch that has made incremental changes to a software component installed on an endpoint. A patch tag is intended to be installed on an endpoint along with the corresponding software component patch.
 Corpus Tag:
 A SWID or CoSWID tag that identifies and describes an installable software component in its pre-installation state. A corpus tag can be used to represent metadata about an installation package or installer for a software component, a software update, or a patch.
 Supplemental Tag:
 A SWID or CoSWID tag that allows additional information to be associated with a referenced SWID tag. This allows tools and users to record their own metadata about a software component without modifying CoSWID primary or patch tags created by a software provider.

 The type of a tag is determined by specific data elements, which are discussed in . also provides normative language for CoSWID semantics that implement this lifecycle. The following information helps to explain how these semantics apply to the use of a CoSWID tag.
 Corpus, primary, and patch tags have similar functions in that they describe the existence and/or presence of different types of software components (e.g., software installers, software installations, software patches) and, potentially, different states of these software components. Supplemental tags have the same structure as other tags but are used to provide information not contained in the referenced corpus, primary, and patch tags. All four tag types come into play at various points in the software lifecycle and support software management processes that depend on the ability to accurately determine where each software component is in its lifecycle.

 Use of Tag Types in the Software Lifecycle

 +------------+
 v |
Software Software Software Software Software
Deployment -> Installation -> Patching -> Upgrading -> Removal

Corpus Primary Primary xPrimary xPrimary
Supplemental Supplemental Supplemental xSupplemental xSupplemental
 Patch xPatch
 Primary
 Supplemental

 illustrates the steps in the software lifecycle and the relationships among those lifecycle events supported by the four types of SWID and CoSWID tags. A detailed description of the four tag types is provided in . The figure identifies the types of tags that are used in each lifecycle event.
 There are many ways in which software tags might be managed for the host the software is installed on. For example, software tags could be made available on the host or to an external software manager when storage is limited on the host.
 In these cases, the host or external software manager is responsible for management of the tags, including deployment and removal of the tags as indicated by the above lifecycle. Tags are deployed, and previously deployed tags are typically removed (indicated by an "x" prefix) at each lifecycle stage as follows:

 Software Deployment:
 Before the software component is installed (i.e., pre-installation), and while the product is being deployed, a corpus tag provides information about the installation files and distribution media (e.g., CD/DVD, distribution package).

 Corpus tags are not actually deployed on the target system but are intended to support deployment procedures and their dependencies at install time, such as to verify the installation media.

 Software Installation:
 A primary tag will be installed with the software component (or subsequently created) to uniquely identify and describe the software component. Supplemental tags are created to augment primary tags with additional site-specific or extended information. While not illustrated in the figure, patch tags can also be installed during software installation to provide information about software fixes deployed along with the base software installation.
 Software Patching:
 When a patch is applied to the software component, a new patch tag is provided, supplying details about the patch and its dependencies. While not illustrated in the figure, a corpus tag can also provide information about the patch installer and patching dependencies that need to be installed before the patch.
 Software Upgrading:

 As a software component is upgraded to a new version, new primary and supplemental tags replace existing tags, enabling timely and accurate tracking of updates to software inventory. While not illustrated in the figure, a corpus tag can also provide information about the upgrade installer and dependencies that need to be installed before the upgrade.

 Note: In the context of software tagging, software patching and updating differ in an important way. When installing a patch, a set of file modifications are made to pre-installed software; these modifications do not alter the version number or the descriptive metadata of an installed software component. An update can also make a set of file modifications; in that case, the version number or the descriptive metadata of an installed software component is changed.

 Software Removal:
 Upon removal of the software component, relevant SWID tags are removed. This removal event can trigger timely updates to software inventory reflecting the removal of the product and any associated patch or supplemental tags.

 As illustrated in the figure, supplemental tags can be associated with any corpus, primary, or patch tag to provide additional metadata about an installer, installed software, or installed patch, respectively.
 Understanding the use of CoSWIDs in the software lifecycle provides a basis for understanding the information provided in a CoSWID and the associated semantics of this information. Each different SWID and CoSWID tag type provides different sets of
information. For example, a "corpus tag" is used to
describe a software component's installation image on an installation medium, while a
"patch tag" is meant to describe a patch that modifies some other software component.

 Concise SWID Format
 This document defines the CoSWID tag format, which is based on CBOR. CBOR-based CoSWID tags offer a more concise representation of SWID information as compared to the XML-based SWID tag representation in ISO-19770-2:2015. The structure of a CoSWID is described via the Concise
Data Definition Language (CDDL) . The resulting CoSWID data
definition is aligned with the information able to be expressed with the XML Schema definition of ISO-19770-2:2015
 . This alignment allows both SWID and CoSWID tags to represent a common set of software component information and allows CoSWID tags to support the same uses as a SWID tag.
 The vocabulary (i.e., the CDDL names of the types and members used in
the CoSWID CDDL specification) is mapped to more concise labels represented as
small integer values (indices). The names used in the CDDL specification and the mapping to
the CBOR representation using integer indices are based on the vocabulary of the
XML attribute and element names defined in ISO/IEC 19770-2:2015.

 Requirements Notation
 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL",
 " SHALL NOT", " SHOULD",
 " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document
 are to be interpreted as described in BCP 14
 when, and only
 when, they appear in all capitals, as shown here.

 Concise SWID Data Definition
 The following describes the general rules and processes for encoding data using CDDL representation. Prior familiarity with CBOR and CDDL concepts will be helpful in understanding this CoSWID specification.
 This section describes the conventions by which a CoSWID is represented in the CDDL structure. The CamelCase notation used in the XML Schema definition is changed to a hyphen-separated
notation (e.g., "ResourceCollection" is named "resource-collection") in the CoSWID CDDL specification.
This deviation from the original notation used in the XML representation reduces ambiguity when referencing
certain attributes in corresponding textual descriptions. An attribute referred to by its name in CamelCase
notation explicitly relates to XML SWID tags; an attribute referred to by its name in
KebabCase notation explicitly relates to CBOR CoSWID tags. This approach simplifies the
composition of further work that will reference both XML SWID and CBOR CoSWID documents.
 In most cases, mapping attribute names between SWID and CoSWID can be done automatically by converting between CamelCase and KebabCase attribute names. However, some CoSWID CDDL attribute names show greater variation relative to their corresponding SWID XML Schema attributes. This is done when the change improves clarity in the CoSWID specification. For example, the "name" and "version" SWID fields correspond to the "software-name" and "software-version" CoSWID fields, respectively. As such, it is not always possible to mechanically translate between corresponding attribute names in the two formats. In such cases, a manual mapping will need to be used. XPath expressions need to use SWID names; see .
 The 57 human-readable text labels of the CDDL-based CoSWID vocabulary are mapped to integer indices via a block of rules at the bottom of the definition. This allows a more concise integer-based form to be stored or transported, as compared to the less efficient text-based form of the original vocabulary.
 Through the use of CDDL-based integer labels, CoSWID allows for future expansion in subsequent revisions of this specification and through extensions (see). New constructs can be associated with a new integer index. A deprecated construct can be replaced by a new construct with a new integer index. An implementation can use these integer indices to identify the construct to parse. The "CoSWID Items" registry, defined in , is used to ensure that new constructs are assigned a unique index value. This approach avoids the need to have an explicit CoSWID version.
 In a number of places, the value encoding admits both integer values and text strings.
The integer values are defined in a registry specific to the kind of value; the text values are not intended for interchange and are exclusively meant for private use as defined in . Encoders SHOULD NOT use string values based on the names registered in the registry, as these values are less concise than their index value equivalent; a decoder MUST, however, be prepared to accept text strings that are not specified in this document (and ignore the construct if a string is unknown).
In the rest of this document, we call this an "integer label with text escape".
 The root of the CDDL specification provided by this document is the
rule coswid (as defined in):

start = coswid

 In CBOR, an array is encoded using bytes that identify the array, and the array's length or stop point (see). To make items that support one or more values, the following CDDL notation is used.

name = (_label_ => _data_ / [2* _data_])

 The CDDL rule above allows either a single data item or an array of two or more data values to be provided. When a singleton data value is provided, the CBOR markers for the array, array length, and stop point are not needed, saving bytes. When two or more data values are provided, these values are encoded as an array. This modeling pattern is used frequently in the CoSWID CDDL specification to allow for more efficient encoding of singleton values.
 Usage of this construct can be simplified using

one-or-more<T> = T / [2* T]

 simplifying the above example to

name = (_label_ => one-or-more<_data_>)

 The following subsections describe the different parts of the CoSWID model.

 Character Encoding
 The CDDL "text" type is represented in CBOR as a major type 3, which represents a string of Unicode characters that are encoded as UTF-8 (see).
Thus, both SWID and CoSWID use UTF-8 for the encoding of characters in text strings.
 To ensure that UTF-8 character strings are able to be encoded/decoded and exchanged interoperably, text strings in CoSWID MUST be encoded in a way that is consistent with the Net-Unicode definition provided in .
 All names registered with IANA according to the requirements in also MUST be valid according to the XML Schema NMTOKEN data type (see , Section 3.3.4) to ensure compatibility with the SWID specification where these names are used.

 Concise SWID Extensions
 The CoSWID specification contains two features that are not included in the SWID specification on which it is based. These features are:

 The explicit definition of types for some attributes in the ISO-19770-2:2015 XML representation that are typically represented by
the any-attribute item in the SWID model. These are
covered in .
 The inclusion of extension points in the CoSWID specification using CDDL sockets (see). The use of CDDL sockets allows for well-formed extensions to be defined in supplementary CDDL descriptions that support additional uses of CoSWID tags that go beyond the original scope of ISO-19770-2:2015 tags.

 The following CDDL sockets (extension points) are defined in this document; they allow the addition of new information structures to their respective CDDL groups.

 CoSWID CDDL Group Extension Points

 Map Name
 CDDL Socket
 Defined in

 concise-swid-tag
 $$coswid-extension

 entity-entry
 $$entity-extension

 link-entry
 $$link-extension

 software-meta-entry
 $$software-meta-extension

 resource-collection
 $$resource-collection-extension

 file-entry
 $$file-extension

 directory-entry
 $$directory-extension

 process-entry
 $$process-extension

 resource-entry
 $$resource-extension

 payload-entry
 $$payload-extension

 evidence-entry
 $$evidence-extension

 The "CoSWID Items" registry, defined in , provides a registration mechanism allowing new items, and their associated index values, to be added to the CoSWID model through the use of the CDDL sockets described in the table above. This registration mechanism provides for well-known index values for data items in CoSWID extensions, allowing these index values to be recognized by implementations supporting a given extension.
 The following additional CDDL sockets are defined in this document to allow for adding new values to corresponding type choices (i.e., to represent enumerations) via custom CDDL specifications.

 CoSWID CDDL Enumeration Extension Points

 Enumeration Name
 CDDL Socket
 Defined in

 version-scheme
 $version-scheme

 role
 $role

 ownership
 $ownership

 rel
 $rel

 use
 $use

 A number of IANA registries for CoSWID values are also defined in ; these registries allow new values to be registered with IANA for the enumerations above. This registration mechanism supports the definition of new well-known index values and names for new enumeration values used by CoSWID, which can also be used by other software tagging specifications. This registration mechanism allows new standardized enumerated values to be shared between multiple tagging specifications (and associated implementations) over time.

 The concise-swid-tag Map
 The CDDL specification for the root concise-swid-tag map is as follows. This rule and its constraints MUST be followed when creating or validating a CoSWID tag:

concise-swid-tag = {
 tag-id => text / bstr .size 16,
 tag-version => integer,
 ? corpus => bool,
 ? patch => bool,
 ? supplemental => bool,
 software-name => text,
 ? software-version => text,
 ? version-scheme => $version-scheme,
 ? media => text,
 ? software-meta => one-or-more<software-meta-entry>,
 entity => one-or-more<entity-entry>,
 ? link => one-or-more<link-entry>,
 ? payload-or-evidence,
 * $$coswid-extension,
 global-attributes,
}

payload-or-evidence //= (payload => payload-entry)
payload-or-evidence //= (evidence => evidence-entry)

tag-id = 0
software-name = 1
entity = 2
evidence = 3
link = 4
software-meta = 5
payload = 6
corpus = 8
patch = 9
media = 10
supplemental = 11
tag-version = 12
software-version = 13
version-scheme = 14

$version-scheme /= multipartnumeric
$version-scheme /= multipartnumeric-suffix
$version-scheme /= alphanumeric
$version-scheme /= decimal
$version-scheme /= semver
$version-scheme /= int / text
multipartnumeric = 1
multipartnumeric-suffix = 2
alphanumeric = 3
decimal = 4
semver = 16384

 The following list describes each member of the concise-swid-tag root map.

 global-attributes:
 A list of items, including an optional language definition to support the
processing of text-string values and an unbounded set of any-attribute items. Described in .
 tag-id (index 0):
 A 16-byte binary string, or a textual identifier, uniquely referencing a software component. The tag
identifier MUST be globally unique. Failure to ensure global uniqueness can create ambiguity in tag use, since the tag-id serves as the global key for matching and lookups. If represented as a 16-byte binary string, the identifier MUST be a valid Universally Unique Identifier (UUID) as defined by . There are no strict guidelines on
how the identifier is structured, but examples include a 16-byte Globally Unique Identifier (GUID) (e.g.,
class 4 UUID) , or a DNS domain name followed by a "/" and a text string, where the domain name serves to ensure uniqueness across organizations.
A textual tag-id value MUST NOT contain a sequence of two underscores ("__"). This is because a sequence of two underscores is used to separate the TAG_CREATOR_REGID value and UNIQUE_ID value in a Software Identifier and a sequence of two underscores in a tag-id value could create ambiguity when parsing this identifier. See .
 software-name (index 1):
 A textual item that provides the software component's name. This name is likely the same name that would appear in a package management tool. This item maps to '/SoftwareIdentity/@name' in .
 entity (index 2):
 Provides information about one or more organizations responsible for producing the CoSWID tag, and producing or releasing the software component referenced by this
CoSWID tag. Described in .
 evidence (index 3):
 Can be used to record the results of a software discovery process used to identify untagged software on an endpoint or to represent indicators for why software is believed to be installed on the endpoint. In either case, a CoSWID tag can be created by the tool performing an analysis of the software components installed on the endpoint. This item is mutually exclusive to payload, as evidence is always generated on the target device ad hoc. Described in .
 link (index 4):
 Provides a means to establish relationship arcs between the tag and another item. A given link can be used to establish the relationship between tags or to reference another resource that is related to the
CoSWID tag, e.g.,
vulnerability database association, Resource-Oriented Lightweight Information Exchange (ROLIE) Feed , Manufacturer Usage Description (MUD) resource , software download location, etc.).
This is modeled after the HTML "link" element. Described in .
 software-meta (index 5):
 An open-ended map of key/value data pairs.
A number of predefined keys can be used within this item providing for
common usage and semantics across the industry. The use of this map allows any additional
attribute to be included in the tag. It is expected that industry groups will use a common set of attribute names to allow for interoperability within their communities. Described in . This item maps to '/SoftwareIdentity/Meta' in .
 payload (index 6):
 Represents a collection of software artifacts (described by child items) that compose the target software. For example, these artifacts could be the files included with an installer for a corpus tag or installed on an endpoint when the software component
is installed for a primary or patch tag. The artifacts listed in a payload may be a superset of the software artifacts that are actually installed. Based on user selections at install time,
an installation might not include every artifact that could be created or executed on the
endpoint when the software component is installed or run. This item is mutually exclusive to evidence, as payload can only be provided by an external entity. Described in .
 corpus (index 8):
 A boolean value that indicates if the tag identifies and describes an installable software component in its pre-installation state. Installable software includes an installation package or installer for a software component, a software update, or a patch. If the CoSWID tag represents installable software, the corpus item MUST be set to "true". If not provided, the default value MUST be considered "false".
 patch (index 9):
 A boolean value that indicates if the tag identifies and describes an installed patch that has made incremental changes to a software component installed on an endpoint. If a CoSWID tag is for a patch, the patch item MUST be set to "true". If not provided, the default value MUST be considered "false". A patch item's value MUST NOT be set to "true" if the installation of the associated software package changes the version of a software component.
 media (index 10):
 A text value that provides a hint to the tag consumer to understand what target platform this tag
applies to. This item MUST be formatted as a
query as defined by the W3C "Media Queries Level 3" Recommendation (see). Support for media queries is included here for interoperability with , which does not provide any further requirements for media query use. Thus, this specification does not clarify how a media query is to be used for a CoSWID.
 supplemental (index 11):
 A boolean value that indicates if the tag is providing additional information to be associated with another referenced SWID or CoSWID tag. This allows tools and users to record their own metadata about a software component without modifying SWID primary or patch tags created by a software provider. If a CoSWID tag is a supplemental tag, the supplemental item MUST be set to "true". If not provided, the default value MUST be considered "false".
 tag-version (index 12):
 An integer value that indicates the specific release revision of the tag. Typically, the initial value of this field is set to 0 and the value is increased for subsequent tags produced for the same software component release. This value allows a CoSWID tag producer to correct an incorrect tag previously released without indicating a change to the underlying software component the tag represents. For example, the tag-version could be changed to add new metadata, to correct a broken link, to add a missing payload entry, etc. When producing a revised tag, the new tag-version value MUST be greater than the old tag-version value.
 software-version (index 13):
 A textual value representing the specific release or development version of the software component. This item maps to '/SoftwareIdentity/@version' in .
 version-scheme (index 14):
 An integer or textual value representing the versioning scheme used for the software-version item, as an integer label with text escape. For the "Version Scheme" values, see .
If an integer value is used, it MUST be an index value in the range -256 to 65535. Integer values in the range -256 to -1 are reserved for testing and use in closed environments (see). Integer values in the range 0 to 65535 correspond to registered entries in the IANA "Software ID Version Scheme Values" registry (see).
 $$coswid-extension:
 A CDDL socket that is used to add new information structures to the concise-swid-tag root map. See .

 concise-swid-tag Co-constraints
 The following co-constraints apply to the information provided in the concise-swid-tag group.

 The patch and supplemental items MUST NOT both be set to "true".
 If the patch item is set to "true", the tag MUST contain at least one link item (see) with both the rel item value of "patches" and an href item specifying an association with the software that was patched. Without at least one link item, the target of the patch cannot be identified and the patch tag cannot be applied without external context.
 If all of the corpus, patch, and supplemental items are "false" or if the corpus item is set to "true", then a software-version item MUST be included with a value set to the version of the software component.

 The global-attributes Group
 The global-attributes group provides a list of items, including an optional
language definition to support the processing of text-string values, and an
unbounded set of any-attribute items allowing for additional items to be
provided as a general point of extension in the model.
 The CDDL for the global-attributes group follows:

global-attributes = (
 ? lang => text,
 * any-attribute,
)

any-attribute = (
 label => one-or-more<text> / one-or-more<int>
)

label = text / int

 The following list describes each child item of this group.

 lang (index 15):
 A textual language tag that
conforms with the IANA "Language Subtag Registry" . The context of the specified language applies to all sibling and descendant textual values, unless a descendant object has defined a different language tag. Thus, a new context is established when a descendant object redefines a new language tag. All textual values within a given context MUST be considered expressed in the specified language.
 any-attribute:
 A sub-group that provides a means to include arbitrary information
via label/index ("key") value pairs. Labels can be either a single integer or text string. Values can be a single integer, a text string, or an array of integers or text strings.

 The entity-entry Map
 The CDDL for the entity-entry map follows:

entity-entry = {
 entity-name => text,
 ? reg-id => any-uri,
 role => one-or-more<$role>,
 ? thumbprint => hash-entry,
 * $$entity-extension,
 global-attributes,
}

entity-name = 31
reg-id = 32
role = 33
thumbprint = 34

$role /= tag-creator
$role /= software-creator
$role /= aggregator
$role /= distributor
$role /= licensor
$role /= maintainer
$role /= int / text
tag-creator=1
software-creator=2
aggregator=3
distributor=4
licensor=5
maintainer=6

 The following list describes each child item of this group.

 global-attributes:
 The global-attributes group as described in .
 entity-name (index 31):
 The textual name of the organizational entity claiming the roles specified by the role item for the CoSWID tag. This item maps to '/SoftwareIdentity/Entity/@name' in .
 reg-id (index 32):
 Registration ID. This value is intended to uniquely identify a naming authority in a
given scope (e.g., global, organization, vendor, customer, administrative domain,
etc.) for the referenced entity. The value of a
registration ID MUST be a URI as defined in ; it is not intended to be dereferenced. The scope will usually be the scope of an organization.
 role (index 33):

 An integer or textual value (integer label with text escape; see) representing the relationship(s) between the entity and this tag or the referenced software component. If an integer value is used, it MUST be an index value in the range -256 to 255. Integer values in the range -256 to -1 are reserved for testing and use in closed environments (see). Integer values in the range 0 to 255 correspond to registered entries in the IANA "Software ID Entity Role Values" registry (see).
 The following additional requirements exist for the use of the role item:

 An entity item MUST be provided with the role of "tag-creator" for every CoSWID tag. This indicates the organization that created the CoSWID tag.
 An entity item SHOULD be provided with the role of "software-creator" for every CoSWID tag, if this information is known to the tag creator. This indicates the organization that created the referenced software component.

 thumbprint (index 34):
 Value that provides a hash (i.e., the thumbprint) of the signing entity's public key certificate. This item provides an indicator of which entity signed the CoSWID tag, which will typically be the tag creator. See for more details on the use of the hash-entry data structure.
 $$entity-extension:
 A CDDL socket that can be used to extend the entity-entry group model. See .

 The link-entry Map
 The CDDL for the link-entry map follows:

link-entry = {
 ? artifact => text,
 href => any-uri,
 ? media => text,
 ? ownership => $ownership,
 rel => $rel,
 ? media-type => text,
 ? use => $use,
 * $$link-extension,
 global-attributes,
}

media = 10
artifact = 37
href = 38
ownership = 39
rel = 40
media-type = 41
use = 42

$ownership /= shared
$ownership /= private
$ownership /= abandon
$ownership /= int / text
abandon=1
private=2
shared=3

$rel /= ancestor
$rel /= component
$rel /= feature
$rel /= installationmedia
$rel /= packageinstaller
$rel /= parent
$rel /= patches
$rel /= requires
$rel /= see-also
$rel /= supersedes
$rel /= supplemental
$rel /= -256..65536 / text
ancestor=1
component=2
feature=3
installationmedia=4
packageinstaller=5
parent=6
patches=7
requires=8
see-also=9
supersedes=10
supplemental=11

$use /= optional
$use /= required
$use /= recommended
$use /= int / text
optional=1
required=2
recommended=3

 The following list describes each member of this map.

 global-attributes:
 The global-attributes group as described in .
 media (index 10):
 A value that provides a hint to the consumer of the link so that the consumer understands what target platform the link is applicable to. This item represents a
query as defined by the W3C "Media Queries Level 3" Recommendation (see). As highlighted in the definition of the media item provided in , support for media queries is included here for interoperability with , which does not provide any further requirements for media query use. Thus, this specification does not clarify how a media query is to be used for a CoSWID.
 artifact (index 37):
 To be used with rel="installationmedia". This item's value provides the absolute filesystem path to the installer executable or script that can be run to launch the referenced installation. Links with the same artifact name MUST be considered mirrors of each other, allowing the installation media to be acquired from any of the described sources.
 href (index 38):

 A URI-reference for the referenced resource. The href item's value can be, but is not limited to, the following (which is a slightly modified excerpt from):

 If no URI scheme is provided, then the URI-reference is a relative reference to the base URI of the CoSWID tag, i.e., the URI under which the CoSWID tag was provided -- for example, "./folder/supplemental.coswid".
 This item can be a physical resource location with any acceptable URI scheme (e.g., <file://>, <http://>, <https://>, <ftp://>).
 A URI-like expression with "swid:" as the scheme refers to another SWID or CoSWID by the referenced tag's tag-id. This
expression needs to be resolved in the context of the endpoint by software
that can look up other SWID or CoSWID tags. For example, "swid:2df9de35-0aff-4a86-ace6-f7dddd1ade4c" references the tag with the tag-id value "2df9de35-0aff-4a86-ace6-f7dddd1ade4c". See for guidance on the "swid" expressions.
 This item can be a URI-like expression with "swidpath:" as the scheme, which refers to another software tag via an
XPath query that matches items in that tag (). This scheme is provided for compatibility with . This specification does not define how to resolve an XPath query in the context of CBOR. See for guidance on the "swidpath" expressions.

 ownership (index 39):
 An integer or textual value (integer label with text escape; see). See for the list of values available for this item. This item is used when the href item references another software component to indicate the degree of ownership between the software component referenced by the CoSWID tag and the software component referenced by the link. If an integer value is used, it MUST be an index value in the range -256 to 255. Integer values in the range -256 to -1 are reserved for testing and use in closed environments (see). Integer values in the range 0 to 255 correspond to registered entries in the "Software ID Link Ownership Values" registry.
 rel (index 40):
 An integer or textual value (integer label with text escape; see). See for the list of values available for this item. This item identifies the relationship between this CoSWID and the target resource identified by the href item. If an integer value is used, it MUST be an index value in the range -256 to 65535. Integer values in the range -256 to -1 are reserved for testing and use in closed environments (see). Integer values in the range 0 to 65535 correspond to registered entries in the IANA "Software ID Link Relationship Values" registry (see). If a string value is used, it MUST be either a private use name as defined in or a "Relation Name" from the IANA "Link Relation Types" registry (see) as defined by . When a string value defined in the IANA "Software ID Link Relationship Values" registry matches a Relation Name defined in the IANA "Link Relation Types" registry, the index value in the IANA "Software ID Link Relationship Values" registry MUST be used instead, as this relationship has a specialized meaning in the context of a CoSWID tag. String values correspond to registered entries in the "Software ID Link Relationship Values" registry.
 media-type (index 41):
 Supplies the resource consumer with a hint regarding what type of resource to expect. A link can point to arbitrary resources on the endpoint, local network, or Internet using the href item. (This is a hint: there
is no obligation for the server hosting the target of the URI to use the
indicated media type when the URI is dereferenced.)
Media types are identified by referencing a "Name" from the IANA "Media Types" registry (see). This item maps to '/SoftwareIdentity/Link/@type' in .
 use (index 42):
 An integer or textual value (integer label with text escape; see). See for the list of values available for this item. This item is used to determine if the referenced software component has to be installed before installing the software component identified by the CoSWID tag. If an integer value is used, it MUST be an index value in the range -256 to 255. Integer values in the range -256 to -1 are reserved for testing and use in closed environments (see). Integer values in the range 0 to 255 correspond to registered entries in the IANA "Software ID Link Use Values" registry (see). If a string value is used, it MUST be a private use name as defined in . String values correspond to registered entries in the "Software ID Link Use Values" registry.
 $$link-extension:
 A CDDL socket that can be used to extend the link-entry map model. See .

 The software-meta-entry Map
 The CDDL for the software-meta-entry map follows:

software-meta-entry = {
 ? activation-status => text,
 ? channel-type => text,
 ? colloquial-version => text,
 ? description => text,
 ? edition => text,
 ? entitlement-data-required => bool,
 ? entitlement-key => text,
 ? generator => text / bstr .size 16,
 ? persistent-id => text,
 ? product => text,
 ? product-family => text,
 ? revision => text,
 ? summary => text,
 ? unspsc-code => text,
 ? unspsc-version => text,
 * $$software-meta-extension,
 global-attributes,
}

activation-status = 43
channel-type = 44
colloquial-version = 45
description = 46
edition = 47
entitlement-data-required = 48
entitlement-key = 49
generator = 50
persistent-id = 51
product = 52
product-family = 53
revision = 54
summary = 55
unspsc-code = 56
unspsc-version = 57

 The following list describes each child item of this group.

 global-attributes:
 The global-attributes group as described in .
 activation-status (index 43):
 A textual value that identifies how the software component has been activated, which might relate to specific terms and conditions for its use (e.g., trial, serialized, licensed, unlicensed, etc.) and relate to an entitlement. This attribute is typically used in supplemental tags, as it contains information that might be selected during a specific install.
 channel-type (index 44):
 A textual value that identifies which sales, licensing, or marketing channel the software component has been targeted for (e.g., volume, retail, original equipment manufacturer (OEM), academic, etc.). This attribute is typically used in supplemental tags, as it contains information that might be selected during a specific install.
 colloquial-version (index 45):
 A textual value for the software component's informal or colloquial version. Examples may include a year value, a major version number, or a similar value used to identify a group of specific software component releases that are part of the same release/support cycle. This version can be the same through multiple releases of a software component, while the software-version specified in the concise-swid-tag group is much more specific and will change for each software component release. This version is intended to be used for string comparison (byte by byte) only and is not intended to be used to determine if a specific value is earlier or later in a sequence.
 description (index 46):
 A textual value that provides a detailed description of the software component. This value MAY be multiple paragraphs separated by CR LF characters as described by .
 edition (index 47):
 A textual value indicating that the software component represents a functional variation of the code base used to support multiple software components. For example, this item can be used to differentiate enterprise, standard, or professional variants of a software component.
 entitlement-data-required (index 48):
 A boolean value that can be used to determine if accompanying proof of entitlement is needed when a software license reconciliation process is performed.
 entitlement-key (index 49):
 A vendor-specific textual key that can be used to identify and establish a relationship to an entitlement. Examples of an entitlement-key might include a serial number, product key, or license key. For values that relate to a given software component install (e.g., license key), a supplemental tag will typically contain this information. In other cases, where a general-purpose key can be provided that applies to all possible installs of the software component on different endpoints, a primary tag will typically contain this information.
Since CoSWID tags are not intended to contain confidential information, tag authors are advised not to record unprotected, private software license keys in this field.
 generator (index 50):
 The name (or tag-id) of the software component that created the CoSWID tag. If the generating software component has a SWID or CoSWID tag, then the tag-id for the generating software component SHOULD be provided.
 persistent-id (index 51):
 A globally unique identifier used to identify a set of software components that are related. Software components sharing the same persistent-id can be different versions. This item can be used to relate software components, released at different points in time or through different release channels, that may not be able to be related through the use of the link item.
 product (index 52):
 A basic name for the software component that can be common across multiple tagged software components (e.g., Apache HTTP daemon (HTTPD)).
 product-family (index 53):
 A textual value indicating the software components' overall product family. This should be used when multiple related software components form a larger capability that is installed on multiple different endpoints. For example, some software families may consist of a server, a client, and shared service components that are part of a larger capability. Email systems, enterprise applications, backup services, web conferencing, and similar capabilities are examples of families. The use of this item is not intended to represent groups of software that are bundled or installed together. The persistent-id or link items SHOULD be used to relate bundled software components.
 revision (index 54):
 A string value indicating an informal or colloquial release version of the software. This value can provide a different version value as compared to the software-version specified in the concise-swid-tag group. This is useful when one or more releases need to have an informal version label that differs from the specific exact version value specified by software-version. Examples can include SP1, RC1, Beta, etc.
 summary (index 55):
 A short description of the software component. This MUST be a single sentence suitable for display in a user interface.
 unspsc-code (index 56):
 An 8-digit United Nations Standard Products and Services Code (UNSPSC) classification code for the software component as defined by the UNSPSC .
 unspsc-version (index 57):
 The UNSPSC version used to define the unspsc-code value.
 $$software-meta-extension:
 A CDDL socket that can be used to extend the software-meta-entry group model. See .

 The Resource Collection Definition

 The hash-entry Array
 CoSWID adds explicit support for the representation of hash entries using algorithms that are
registered in the IANA "Named Information Hash Algorithm Registry" . This array is used by both the hash (index 7) and thumbprint (index 34) values. This is the equivalent of the namespace qualified "hash" attribute in .

hash-entry = [
 hash-alg-id: int,
 hash-value: bytes,
]

 The number used as a value for hash-alg-id is an integer-based hash algorithm identifier whose value MUST refer to an ID in the IANA "Named Information Hash Algorithm Registry" with a Status of "current" (at the time the generator software was built or later); other hash algorithms MUST NOT be used. If the hash-alg-id is not known, then the integer value "0" MUST be used. This allows for conversion from ISO SWID tags , which do not allow an algorithm to be identified for this field.
 The hash-value MUST represent the raw hash value as a byte string (as opposed to, for example, base64 encoded) generated from the representation of the resource using the hash algorithm indicated by hash-alg-id.

 The resource-collection Group
 The resource-collection group provides a list of items used in both evidence (created by a software discovery process) and
payload (installed in an endpoint) content of a CoSWID tag document to
structure and differentiate the content of specific CoSWID tag types. Potential
content includes directories, files, processes, or resources.
 The CDDL for the resource-collection group follows:

path-elements-group = (? directory => one-or-more<directory-entry>,
 ? file => one-or-more<file-entry>,
)

resource-collection = (
 path-elements-group,
 ? process => one-or-more<process-entry>,
 ? resource => one-or-more<resource-entry>,
 * $$resource-collection-extension,
)

filesystem-item = (
 ? key => bool,
 ? location => text,
 fs-name => text,
 ? root => text,
)

file-entry = {
 filesystem-item,
 ? size => uint,
 ? file-version => text,
 ? hash => hash-entry,
 * $$file-extension,
 global-attributes,
}

directory-entry = {
 filesystem-item,
 ? path-elements => { path-elements-group },
 * $$directory-extension,
 global-attributes,
}

process-entry = {
 process-name => text,
 ? pid => integer,
 * $$process-extension,
 global-attributes,
}

resource-entry = {
 type => text,
 * $$resource-extension,
 global-attributes,
}

hash = 7
directory = 16
file = 17
process = 18
resource = 19
size = 20
file-version = 21
key = 22
location = 23
fs-name = 24
root = 25
path-elements = 26
process-name = 27
pid = 28
type = 29

 The following list describes each member of the groups and maps illustrated above.

 filesystem-item:
 A list of common items used for representing the filesystem root, relative location, name, and significance of a file or directory item.
 global-attributes:
 The global-attributes group as described in .
 hash (index 7):
 Value that provides a hash of a file. This item provides an integrity measurement with respect to a specific file. See for more details on the use of the hash-entry data structure.
 directory (index 16):
 Item that allows child directory and file items to be defined within a directory hierarchy for the software component.
 file (index 17):
 Item that allows details about a file to be provided for the software component.
 process (index 18):
 Item that allows details to be provided about the runtime behavior of the software component, such as information that will appear in a process listing on an endpoint.
 resource (index 19):
 Item that can be used to provide details about an artifact or capability expected to be found on an endpoint or evidence collected related to the software component. This can be used to represent concepts not addressed directly by the directory, file, or process items. Examples include registry keys, bound ports, etc. The equivalent construct in is currently underspecified. As a result, this item might be further defined through extensions in the future.
 size (index 20):
 The file's size in bytes.
 file-version (index 21):
 The file's version as reported by querying information on the file from the operating system (if available). This item maps to '/SoftwareIdentity/(Payload|Evidence)/File/@version' in .
 key (index 22):
 A boolean value indicating if a file or directory is significant or required for the software component to execute or function properly. These are files or directories that can be used to affirmatively determine if the software component is installed on an endpoint.
 location (index 23):
 The filesystem path where a file is expected to be located when installed or copied. The location MUST be either an absolute path, a path relative to the path value included in the parent directory item (preferred), or a path relative to the location of the CoSWID tag if no parent is defined. The location MUST NOT include a file's name, which is provided by the fs-name item.
 fs-name (index 24):
 The name of the directory or file without any path information. This aligns with a file "name" in . This item maps to '/SoftwareIdentity/(Payload|Evidence)/(File|Directory)/@name' in .
 root (index 25):
 A host-specific name for the root of the filesystem. The location item is considered relative to this location if specified. If not provided, the value provided by the location item is expected to be relative to its parent or the location of the CoSWID tag if no parent is provided.
 path-elements (index 26):
 Group that allows a hierarchy of directory and file items to be defined in payload or evidence items. This is a construction within the CDDL definition of CoSWID to support shared syntax and does not appear in .
 process-name (index 27):
 The software component's process name as it will appear in an endpoint's process list. This aligns with a process "name" in . This item maps to '/SoftwareIdentity/(Payload|Evidence)/Process/@name' in .
 pid (index 28):
 The process ID identified for a running instance of the software component in the endpoint's process list. This is used as part of the evidence item.
 type (index 29):
 A human-readable string indicating the type of resource.
 $$resource-collection-extension:
 A CDDL socket that can be used to extend the resource-collection group model. This can be used to add new specialized types of resources. See .
 $$file-extension:
 A CDDL socket that can be used to extend the file-entry group model. See .
 $$directory-extension:
 A CDDL socket that can be used to extend the directory-entry group model. See .
 $$process-extension:
 A CDDL socket that can be used to extend the process-entry group model. See .
 $$resource-extension:
 A CDDL socket that can be used to extend the resource-entry group model. See .

 The payload-entry Map
 The CDDL for the payload-entry map follows:

payload-entry = {
 resource-collection,
 * $$payload-extension,
 global-attributes,
}

 The following list describes each child item of this group.

 global-attributes:
 The global-attributes group as described in .
 resource-collection:
 The resource-collection group as described in .
 $$payload-extension:
 A CDDL socket that can be used to extend the payload-entry group model. See .

 The evidence-entry Map
 The CDDL for the evidence-entry map follows:

evidence-entry = {
 resource-collection,
 ? date => integer-time,
 ? device-id => text,
 ? location => text,
 * $$evidence-extension,
 global-attributes,
}

date = 35
device-id = 36

 The following list describes each child item of this group.

 global-attributes:
 The global-attributes group as described in .
 resource-collection:
 The resource-collection group as described in .
 location (index 23):
 The filesystem path of the location of the CoSWID tag generated as evidence. This path is always an absolute file path (unlike the value of a location item found within a filesystem-item as described
in , which can be either a relative path or an absolute path).
 date (index 35):
 The date and time the information was collected pertaining to the evidence item in epoch-based date/time format as specified in .
 device-id (index 36):
 The endpoint's string identifier from which the evidence was collected.
 $$evidence-extension:
 A CDDL socket that can be used to extend the evidence-entry group model. See .

 Full CDDL Specification
 In order to create a valid CoSWID document, the structure of the corresponding CBOR message MUST
adhere to the following CDDL specification.

concise-swid-tag = {
 tag-id => text / bstr .size 16,
 tag-version => integer,
 ? corpus => bool,
 ? patch => bool,
 ? supplemental => bool,
 software-name => text,
 ? software-version => text,
 ? version-scheme => $version-scheme,
 ? media => text,
 ? software-meta => one-or-more<software-meta-entry>,
 entity => one-or-more<entity-entry>,
 ? link => one-or-more<link-entry>,
 ? payload-or-evidence,
 * $$coswid-extension,
 global-attributes,
}

payload-or-evidence //= (payload => payload-entry)
payload-or-evidence //= (evidence => evidence-entry)

any-uri = uri
label = text / int

$version-scheme /= multipartnumeric
$version-scheme /= multipartnumeric-suffix
$version-scheme /= alphanumeric
$version-scheme /= decimal
$version-scheme /= semver
$version-scheme /= int / text

any-attribute = (
 label => one-or-more<text> / one-or-more<int>
)

one-or-more<T> = T / [2* T]

global-attributes = (
 ? lang => text,
 * any-attribute,
)

hash-entry = [
 hash-alg-id: int,
 hash-value: bytes,
]

entity-entry = {
 entity-name => text,
 ? reg-id => any-uri,
 role => one-or-more<$role>,
 ? thumbprint => hash-entry,
 * $$entity-extension,
 global-attributes,
}

$role /= tag-creator
$role /= software-creator
$role /= aggregator
$role /= distributor
$role /= licensor
$role /= maintainer
$role /= int / text

link-entry = {
 ? artifact => text,
 href => any-uri,
 ? media => text,
 ? ownership => $ownership,
 rel => $rel,
 ? media-type => text,
 ? use => $use,
 * $$link-extension,
 global-attributes,
}

$ownership /= shared
$ownership /= private
$ownership /= abandon
$ownership /= int / text

$rel /= ancestor
$rel /= component
$rel /= feature
$rel /= installationmedia
$rel /= packageinstaller
$rel /= parent
$rel /= patches
$rel /= requires
$rel /= see-also
$rel /= supersedes
$rel /= supplemental
$rel /= -256..65536 / text

$use /= optional
$use /= required
$use /= recommended
$use /= int / text

software-meta-entry = {
 ? activation-status => text,
 ? channel-type => text,
 ? colloquial-version => text,
 ? description => text,
 ? edition => text,
 ? entitlement-data-required => bool,
 ? entitlement-key => text,
 ? generator => text / bstr .size 16,
 ? persistent-id => text,
 ? product => text,
 ? product-family => text,
 ? revision => text,
 ? summary => text,
 ? unspsc-code => text,
 ? unspsc-version => text,
 * $$software-meta-extension,
 global-attributes,
}

path-elements-group = (? directory => one-or-more<directory-entry>,
 ? file => one-or-more<file-entry>,
)

resource-collection = (
 path-elements-group,
 ? process => one-or-more<process-entry>,
 ? resource => one-or-more<resource-entry>,
 * $$resource-collection-extension,
)

file-entry = {
 filesystem-item,
 ? size => uint,
 ? file-version => text,
 ? hash => hash-entry,
 * $$file-extension,
 global-attributes,
}

directory-entry = {
 filesystem-item,
 ? path-elements => { path-elements-group },
 * $$directory-extension,
 global-attributes,
}

process-entry = {
 process-name => text,
 ? pid => integer,
 * $$process-extension,
 global-attributes,
}

resource-entry = {
 type => text,
 * $$resource-extension,
 global-attributes,
}

filesystem-item = (
 ? key => bool,
 ? location => text,
 fs-name => text,
 ? root => text,
)

payload-entry = {
 resource-collection,
 * $$payload-extension,
 global-attributes,
}

evidence-entry = {
 resource-collection,
 ? date => integer-time,
 ? device-id => text,
 ? location => text,
 * $$evidence-extension,
 global-attributes,
}

integer-time = #6.1(int)

; "global map member" integer indices
tag-id = 0
software-name = 1
entity = 2
evidence = 3
link = 4
software-meta = 5
payload = 6
hash = 7
corpus = 8
patch = 9
media = 10
supplemental = 11
tag-version = 12
software-version = 13
version-scheme = 14
lang = 15
directory = 16
file = 17
process = 18
resource = 19
size = 20
file-version = 21
key = 22
location = 23
fs-name = 24
root = 25
path-elements = 26
process-name = 27
pid = 28
type = 29
entity-name = 31
reg-id = 32
role = 33
thumbprint = 34
date = 35
device-id = 36
artifact = 37
href = 38
ownership = 39
rel = 40
media-type = 41
use = 42
activation-status = 43
channel-type = 44
colloquial-version = 45
description = 46
edition = 47
entitlement-data-required = 48
entitlement-key = 49
generator = 50
persistent-id = 51
product = 52
product-family = 53
revision = 54
summary = 55
unspsc-code = 56
unspsc-version = 57

; "version-scheme" integer indices
multipartnumeric = 1
multipartnumeric-suffix = 2
alphanumeric = 3
decimal = 4
semver = 16384

; "role" integer indices
tag-creator=1
software-creator=2
aggregator=3
distributor=4
licensor=5
maintainer=6

; "ownership" integer indices
abandon=1
private=2
shared=3

; "rel" integer indices
ancestor=1
component=2
feature=3
installationmedia=4
packageinstaller=5
parent=6
patches=7
requires=8
see-also=9
supersedes=10
; supplemental=11 ; already defined

; "use" integer indices
optional=1
required=2
recommended=3

 Determining the Type of CoSWID
 The operational model for SWID and CoSWID tags was introduced in , which described four different CoSWID tag types. The following additional rules apply to the use of CoSWID tags to ensure that created tags properly identify the tag type.
 The first matching rule MUST determine the type of the CoSWID tag.

 Primary Tag:
 A CoSWID tag MUST be considered a primary tag if the corpus, patch, and supplemental items are "false".
 Supplemental Tag:
 A CoSWID tag MUST be considered a supplemental tag if the supplemental item is set to "true".
 Corpus Tag:
 A CoSWID tag MUST be considered a corpus tag if the corpus item is "true".
 Patch Tag:
 A CoSWID tag MUST be considered a patch tag if the patch item is "true".

 Note: It is possible for some or all of the corpus, patch, and supplemental items to simultaneously have values set as "true". The rules above provide a means to determine the tag's type in such a case. For example, a SWID or CoSWID tag for a patch installer might have both corpus and patch items set to "true". In such a case, the tag is a "corpus tag". The tag installed by this installer would have only the patch item set to "true", making the installed tag type a "patch tag".

 CoSWID Indexed Label Values
 This section defines multiple kinds of indexed label values that are maintained in several IANA registries. See for details.
These values are represented as positive integers. In each registry, the value 0 is marked as Reserved.

 Version Scheme
 The following table contains a set of values for use in the concise-swid-tag group's version-scheme item. The "Index" value indicates the value to use as the version-scheme item's value. Strings in the "Version Scheme Name" column provide human-readable text for the value and match the version schemes defined in the ISO/IEC 19770-2:2015 specification . The "Definition" column describes the syntax of allowed values for each entry.

 Version Scheme Values

 Index
 Version Scheme Name
 Definition

 1
 multipartnumeric
 Numbers separated by dots, where the numbers are interpreted as decimal integers (e.g., 1.2.3, 1.2.3.4.5.6.7, 1.4.5, 1.21)

 2
 multipartnumeric+suffix
 Numbers separated by dots, where the numbers are interpreted as decimal integers with an additional textual suffix (e.g., 1.2.3a)

 3
 alphanumeric
 Strictly a string, no interpretation as number

 4
 decimal
 A single decimal floating-point number

 16384
 semver
 A semantic version as defined by . Also see the specification for more information

 "multipartnumeric" and the numbers part of "multipartnumeric+suffix" are interpreted as a sequence of numbers and are sorted in lexicographical order by these numbers (i.e., not by the digits in the numbers) and then the textual suffix (for "multipartnumeric+suffix"). "alphanumeric" strings are sorted lexicographically as character strings. "decimal" version numbers are interpreted as single floating-point numbers (e.g., 1.25 is less than 1.3).
 The values above are registered in the IANA "Software ID Version Scheme Values" registry, defined in . Additional entries will likely be registered over time in this registry.
 A CoSWID producer that is aware of the version scheme that has been used to select the version value SHOULD include the optional version-scheme item to avoid semantic ambiguity.
If the CoSWID producer does not have this information, it SHOULD omit the version-scheme item.
The following heuristics can be used by a CoSWID consumer, based on the version schemes' partially overlapping value spaces:

 "decimal" and "multipartnumeric" partially overlap in their value space when a value matches a decimal number. When a corresponding software-version item's value falls within this overlapping value space, it is expected that the "decimal" version scheme is used.
 "multipartnumeric" and "semver" partially overlap in their value space when a "multipartnumeric" value matches the semantic versioning syntax. When a corresponding software-version item's value falls within this overlapping value space, it is expected that the "semver" version scheme is used.
 "alphanumeric" and other version schemes might overlap in their value space. When a corresponding software-version item's value falls within this overlapping value space, it is expected that the other version scheme is used and "alphanumeric" is not used.

 Note that these heuristics are imperfect and can guess wrong, which is the reason the version-scheme item SHOULD be included by the producer.

 Entity Role Values
 The following table indicates the index value to use for the entity-entry group's role item (see). These values match the entity roles defined in the ISO/IEC 19770-2:2015 specification . The "Index" value indicates the value to use as the role item's value. Items in the "Role Name" column provide human-readable text for the value. The "Definition" column describes the semantic meaning of each entry.

 Entity Role Values

 Index
 Role Name
 Definition

 1
 tagCreator
 The person or organization that created the containing SWID or CoSWID tag.

 2
 softwareCreator
 The person or organization entity that created the software component.

 3
 aggregator
 From , "An organization or system that encapsulates software from their own and/or other organizations into a different distribution process (as in the case of virtualization), or as a completed system to accomplish a specific task (as in the case of a value added reseller)."

 4
 distributor
 From , "An entity that furthers the marketing, selling and/or distribution of software from the original place of manufacture to the ultimate user without modifying the software, its packaging or its labelling."

 5
 licensor
 From , as a "software licensor", a "person or organization who owns or holds the rights to issue a software license for a specific software [component]."

 6
 maintainer
 The person or organization that is responsible for coordinating and making updates to the source code for the software component. This SHOULD be used when the "maintainer" is a different person or organization than the original "softwareCreator".

 The values above are registered in the IANA "Software ID Entity Role Values" registry, defined in . Additional values will likely be registered over time.

 Link Ownership Values
 The following table indicates the index value to use for the link-entry group's ownership item (see). These values match the link ownership values defined in the ISO/IEC 19770-2:2015 specification . The "Index" value indicates the value to use as the link-entry group ownership item's value. Items in the "Ownership Type" column provide human-readable text for the value. The "Definition" column describes the semantic meaning of each entry.

 Link Ownership Values

 Index
 Ownership Type
 Definition

 1
 abandon
 If the software component referenced by the CoSWID tag is uninstalled, then the referenced software SHOULD NOT be uninstalled.

 2
 private
 If the software component referenced by the CoSWID tag is uninstalled, then the referenced software SHOULD be uninstalled as well.

 3
 shared
 If the software component referenced by the CoSWID tag is uninstalled, then the referenced software SHOULD be uninstalled if no other components are sharing the software.

 The values above are registered in the IANA "Software ID Link Ownership Values" registry, defined in . Additional values will likely be registered over time.

 Link Rel Values
 The following table indicates the index value to use for the link-entry group's rel item (see). These values match the link rel values defined in the ISO/IEC 19770-2:2015 specification . The "Index" value indicates the value to use as the link-entry group ownership item's value. Items in the "Relationship Type" column provide human-readable text for the value. The "Definition" column describes the semantic meaning of each entry.

 Link Relationship Values

 Index
 Relationship Type
 Definition

 1
 ancestor
 The link references a software tag for a previous release of this software. This can be useful to define an upgrade path.

 2
 component
 The link references a software tag for a separate component of this software.

 3
 feature
 The link references a configurable feature of this software that can be enabled or disabled without changing the installed files.

 4
 installationmedia
 The link references the installation package that can be used to install this software.

 5
 packageinstaller
 The link references the installation software needed to install this software.

 6
 parent
 The link references a software tag that is the parent of the referencing tag. This relationship can be used when multiple software components are part of a software bundle, where the "parent" is the software tag for the bundle and each child is a "component". In such a case, each child component can provide a "parent" link relationship to the bundle's software tag, and the bundle can provide a "component" link relationship to each child software component.

 7
 patches
 The link references a software tag that the referencing software patches. Typically only used for patch tags (see).

 8
 requires
 The link references a prerequisite for installing this software. A patch tag (see) can use this to represent base software or another patch that needs to be installed first.

 9
 see-also
 The link references other software that may be of interest that relates to this software.

 10
 supersedes
 The link references other software (e.g., an older software version) that this software replaces. A patch tag (see) can use this to represent another patch that this patch incorporates or replaces.

 11
 supplemental
 The link references a software tag that the referencing tag supplements. Used on supplemental tags (see).

 The values above are registered in the IANA "Software ID Link Relationship Values" registry, defined in . Additional values will likely be registered over time.

 Link Use Values
 The following table indicates the index value to use for the link-entry group's use item (see). These values match the link use values defined in the ISO/IEC 19770-2:2015 specification . The "Index" value indicates the value to use as the link-entry group use item's value. Items in the "Use Type" column provide human-readable text for the value. The "Definition" column describes the semantic meaning of each entry.

 Link Use Values

 Index
 Use Type
 Definition

 1
 optional
 From , "Not absolutely required; the [Link]'d software is installed only when specified."

 2
 required
 From , "The [Link]'d software is absolutely required for an operation software installation."

 3
 recommended
 From , "Not absolutely required; the [Link]'d software is installed unless specified otherwise."

 The values above are registered in the IANA "Software ID Link Use Values" registry, defined in . Additional values will likely be registered over time.

 "swid" and "swidpath" Expressions
 This specification defines the following scheme names for use in CoSWID and to provide interoperability with scheme names used in .
Because both the "swid" and "swidpath" scheme names are to be interpreted within a local (rather than a global) context, neither of these are technically URI scheme names as defined in .
For this reason, the "swid" and "swidpath" scheme names are registered with IANA as provisional, rather than permanent, scheme names.
However, registering these scheme names as provisional ensures that the scheme names are reserved and that they are properly defined going forward.
 The swid and swidpath expressions conform to all rules for URI syntax.
All uses of these expressions encountered within a CoSWID are to be interpreted as described in this section.

 "swid" Expressions
 Expressions specifying the "swid" scheme are used to reference a software tag by its tag-id. A tag-id referenced in this way can be used to identify the tag resource in the context of where it is referenced from. For example, when a tag is installed on a given device, that tag can reference related tags on the same device using expressions with this scheme.
 For expressions that use the "swid" scheme, the scheme-specific part MUST consist of a referenced software tag's tag-id. This tag-id MUST be URI encoded according to .
 The following expression is a valid example:

swid:2df9de35-0aff-4a86-ace6-f7dddd1ade4c

 "swidpath" Expressions
 Expressions specifying the "swidpath" scheme are used to filter tags out of a base collection, so that matching tags are included in the identified tag collection.
The XPath expression references the data that must be found in a given software tag out of the base collection for that tag to be considered a matching tag.
Tags to be evaluated (the base collection) include all tags in the context of where the "swidpath" expression is referenced from.
For example, when a tag is installed on a given device, that tag can reference related tags on the same device using an expression with this scheme.
 For URIs that use the "swidpath" scheme, the following requirements apply:

 The scheme-specific part MUST be an XPath expression as defined by . The included XPath expression will be URI encoded according to .
 This XPath is evaluated over SWID tags, or CoSWID tags transformed into SWID tags, found on a system. A given tag MUST be considered a match if the XPath evaluation result value has an effective boolean value of "true" according to , Section 2.4.3.

 IANA Considerations
 This document has a number of IANA considerations, as described in
the following subsections. In summary, six new registries are established by this document, with initial entries provided for each registry. New values for five other registries are also defined.

 CoSWID Items Registry
 This document defines a new registry titled
"CoSWID Items". This registry uses integer values as index values in CBOR maps. Future registrations for this registry are to be made based on as follows:

 CoSWID Items Registration Procedures

 Range
 Registration Procedures

 0-32767
 Standards Action with Expert Review

 32768-4294967295
 Specification Required

 All negative values are reserved for private use.
 Initial registrations for the "CoSWID Items" registry
are provided below. Assignments consist of an integer index value, the item name, and a reference to the defining specification.

 CoSWID Items Initial Registrations

 Index
 Item Name
 Reference

 0
 tag-id
 RFC 9393

 1
 software-name
 RFC 9393

 2
 entity
 RFC 9393

 3
 evidence
 RFC 9393

 4
 link
 RFC 9393

 5
 software-meta
 RFC 9393

 6
 payload
 RFC 9393

 7
 hash
 RFC 9393

 8
 corpus
 RFC 9393

 9
 patch
 RFC 9393

 10
 media
 RFC 9393

 11
 supplemental
 RFC 9393

 12
 tag-version
 RFC 9393

 13
 software-version
 RFC 9393

 14
 version-scheme
 RFC 9393

 15
 lang
 RFC 9393

 16
 directory
 RFC 9393

 17
 file
 RFC 9393

 18
 process
 RFC 9393

 19
 resource
 RFC 9393

 20
 size
 RFC 9393

 21
 file-version
 RFC 9393

 22
 key
 RFC 9393

 23
 location
 RFC 9393

 24
 fs-name
 RFC 9393

 25
 root
 RFC 9393

 26
 path-elements
 RFC 9393

 27
 process-name
 RFC 9393

 28
 pid
 RFC 9393

 29
 type
 RFC 9393

 30
 Unassigned

 31
 entity-name
 RFC 9393

 32
 reg-id
 RFC 9393

 33
 role
 RFC 9393

 34
 thumbprint
 RFC 9393

 35
 date
 RFC 9393

 36
 device-id
 RFC 9393

 37
 artifact
 RFC 9393

 38
 href
 RFC 9393

 39
 ownership
 RFC 9393

 40
 rel
 RFC 9393

 41
 media-type
 RFC 9393

 42
 use
 RFC 9393

 43
 activation-status
 RFC 9393

 44
 channel-type
 RFC 9393

 45
 colloquial-version
 RFC 9393

 46
 description
 RFC 9393

 47
 edition
 RFC 9393

 48
 entitlement-data-required
 RFC 9393

 49
 entitlement-key
 RFC 9393

 50
 generator
 RFC 9393

 51
 persistent-id
 RFC 9393

 52
 product
 RFC 9393

 53
 product-family
 RFC 9393

 54
 revision
 RFC 9393

 55
 summary
 RFC 9393

 56
 unspsc-code
 RFC 9393

 57
 unspsc-version
 RFC 9393

 58-4294967295
 Unassigned

 Registries for Software ID Values
 The following IANA registries provide a mechanism for new values to be added over time to common enumerations used by SWID and CoSWID. While neither the CoSWID specification nor the SWID specification is subordinate to the other and will evolve as their respective standards group chooses, there is value in supporting alignment between the two standards. Shared use of common code points, as spelled out in these registries, will facilitate this alignment -- hence the intent for shared use of these registries and the decision to use "swidsoftware-id" (rather than "swid" or "coswid") in registry names.

 Registration Procedures
 The following registries allow for the registration of index values and names. New registrations will be permitted through either a Standards Action with Expert Review policy or a Specification Required policy .
 The following registries also reserve the integer-based index values in the range of -1 to -256 for private use as defined by . This allows values -1 to -24 to be expressed as a single uint8_t in CBOR and values -25 to -256 to be expressed using an additional uint8_t in CBOR.

 Private Use of Index and Name Values
 The integer-based index values in the private use range (-1 to -256) are intended for testing purposes and closed environments; values in other ranges SHOULD NOT be assigned for testing.
 For names that correspond to private use index values, an Internationalized Domain Name prefix MUST be used to prevent name conflicts using the form

domainprefix/name

 where both "domainprefix" and "name" MUST each be either a Non-Reserved LDH (NR-LDH) label or a U-label as defined by , and "name" also MUST be a unique name within the namespace defined by the "domainprefix". ("LDH" is an abbreviation for "letters, digits, hyphen".) Using a prefix in this way allows for a name to be used in the private use range. This is consistent with the guidance in .

 Expert Review Criteria
 Designated experts MUST ensure that new registration requests meet the following additional criteria:

 The requesting specification MUST provide a clear semantic definition for the new entry. This definition MUST clearly differentiate the requested entry from other previously registered entries.
 The requesting specification MUST describe the intended use of the entry, including any co-constraints that exist between (1) the use of the entry's index value or name and (2) other values defined within the SWID/CoSWID model.
 Index values and names outside the private use space MUST NOT be used without registration. This is considered "squatting" and MUST be avoided. Designated experts MUST ensure that reviewed specifications register all appropriate index values and names.
 Standards Track documents MAY include entries registered in the range reserved for entries under the Specification Required policy. This can occur when a Standards Track document provides further guidance on the use of index values and names that are in common use but were not registered with IANA. This situation SHOULD be avoided.
 All registered names MUST be valid according to the XML Schema NMTOKEN data type (see , Section 3.3.4). This ensures that registered names are compatible with the SWID format where they are used.
 Registration of vanity names SHOULD be discouraged. The requesting specification MUST provide a description of how a requested name will allow for use by multiple stakeholders.

 Software ID Version Scheme Values Registry
 This document establishes a new registry titled
"Software ID Version Scheme Values". This registry provides index values for use as version-scheme item values in this document and Version Scheme Names for use in .
 This registry uses the registration procedures defined in , with the following associated ranges:

 Software ID Version Scheme Registration Procedures

 Range
 Registration Procedures

 0-16383
 Standards Action with Expert Review

 16384-65535
 Specification Required

 Assignments MUST consist of an integer index value, the Version Scheme Name, and a reference to the defining specification.
 Initial registrations for the "Software ID Version Scheme Values" registry
are provided below and are derived from the textual Version Scheme Names
defined in .

 Software ID Version Scheme Initial Registrations

 Index
 Version Scheme Name
 Reference

 0
 Reserved

 1
 multipartnumeric
 RFC 9393,

 2
 multipartnumeric+suffix
 RFC 9393,

 3
 alphanumeric
 RFC 9393,

 4
 decimal
 RFC 9393,

 5-16383
 Unassigned

 16384
 semver
 RFC 9393,

 16385-65535
 Unassigned

 Registrations MUST conform to the expert review criteria defined in .
 Designated experts MUST also ensure that newly requested entries define a value space for the corresponding software-version item that is unique from other previously registered entries.

 Note: The initial registrations violate this requirement but are included for backwards compatibility with . See also .

 Software ID Entity Role Values Registry
 This document establishes a new registry titled
"Software ID Entity Role Values". This registry provides index values for use as entity-entry role item values in this document and entity role names for use in .
 This registry uses the registration procedures defined in , with the following associated ranges:

 Software ID Entity Role Registration Procedures

 Range
 Registration Procedures

 0-127
 Standards Action with Expert Review

 128-255
 Specification Required

 Assignments consist of an integer index value, a role name, and a reference to the defining specification.
 Initial registrations for the "Software ID Entity Role Values" registry
are provided below and are derived from the textual entity role names
defined in .

 Software ID Entity Role Initial Registrations

 Index
 Role Name
 Reference

 0
 Reserved

 1
 tagCreator
 RFC 9393,

 2
 softwareCreator
 RFC 9393,

 3
 aggregator
 RFC 9393,

 4
 distributor
 RFC 9393,

 5
 licensor
 RFC 9393,

 6
 maintainer
 RFC 9393,

 7-255
 Unassigned

 Registrations MUST conform to the expert review criteria defined in .

 Software ID Link Ownership Values Registry
 This document establishes a new registry titled
"Software ID Link Ownership Values". This registry provides index values for use as link-entry ownership item values in this document and link ownership names for use in .
 This registry uses the registration procedures defined in , with the following associated ranges:

 Software ID Link Ownership Registration Procedures

 Range
 Registration Procedures

 0-127
 Standards Action with Expert Review

 128-255
 Specification Required

 Assignments consist of an integer index value, an ownership type name, and a reference to the defining specification.
 Initial registrations for the "Software ID Link Ownership Values" registry
are provided below and are derived from the textual entity role names
defined in .

 Software ID Link Ownership Initial Registrations

 Index
 Ownership Type Name
 Reference

 0
 Reserved

 1
 abandon
 RFC 9393,

 2
 private
 RFC 9393,

 3
 shared
 RFC 9393,

 4-255
 Unassigned

 Registrations MUST conform to the expert review criteria defined in .

 Software ID Link Relationship Values Registry
 This document establishes a new registry titled
"Software ID Link Relationship Values". This registry provides index values for use as link-entry rel item values in this document and link ownership names for use in .
 This registry uses the registration procedures defined in , with the following associated ranges:

 Software ID Link Relationship Registration Procedures

 Range
 Registration Procedures

 0-32767
 Standards Action with Expert Review

 32768-65535
 Specification Required

 Assignments consist of an integer index value, the relationship type name, and a reference to the defining specification.
 Initial registrations for the "Software ID Link Relationship Values" registry are provided below and are derived from the link relationship values
defined in .

 Software ID Link Relationship Initial Registrations

 Index
 Relationship Type Name
 Reference

 0
 Reserved

 1
 ancestor
 RFC 9393,

 2
 component
 RFC 9393,

 3
 feature
 RFC 9393,

 4
 installationmedia
 RFC 9393,

 5
 packageinstaller
 RFC 9393,

 6
 parent
 RFC 9393,

 7
 patches
 RFC 9393,

 8
 requires
 RFC 9393,

 9
 see-also
 RFC 9393,

 10
 supersedes
 RFC 9393,

 11
 supplemental
 RFC 9393,

 12-65535
 Unassigned

 Registrations MUST conform to the expert review criteria defined in .
 Designated experts MUST also ensure that a newly requested entry documents the URI schemes allowed to be used in an href associated with the link relationship and the expected resolution behavior of these URI schemes. This will help to ensure that applications processing software tags are able to interoperate when resolving resources referenced by a link of a given type.

 Software ID Link Use Values Registry
 This document establishes a new registry titled
"Software ID Link Use Values". This registry provides index values for use as link-entry use item values in this document and link use names for use in .
 This registry uses the registration procedures defined in , with the following associated ranges:

 Software ID Link Use Registration Procedures

 Range
 Registration Procedures

 0-127
 Standards Action with Expert Review

 128-255
 Specification Required

 Assignments consist of an integer index value, the link use type name, and a reference to the defining specification.
 Initial registrations for the "Software ID Link Use Values" registry
are provided below and are derived from the link relationship values
defined in .

 Software ID Link Use Initial Registrations

 Index
 Link Use Type Name
 Reference

 0
 Reserved

 1
 optional
 RFC 9393,

 2
 required
 RFC 9393,

 3
 recommended
 RFC 9393,

 4-255
 Unassigned

 Registrations MUST conform to the expert review criteria defined in .

 swid+cbor Media Type Registration
 IANA has added the following to the "Media Types" registry .

 Type name:
 application
 Subtype name:
 swid+cbor
 Required parameters:
 none
 Optional parameters:
 none
 Encoding considerations:
 Binary (encoded as CBOR).
See RFC 9393 for details.
 Security considerations:
 See of RFC 9393.
 Interoperability considerations:
 Applications MAY ignore any key
value pairs that they do not understand. This allows
backwards-compatible extensions to this specification.
 Published specification:
 RFC 9393
 Applications that use this media type:
 The type is used by software
asset management systems and vulnerability assessment systems and is used in
applications that use remote integrity verification.
 Fragment Identifier Considerations:
 The syntax and semantics of
fragment identifiers specified for "application/swid+cbor" are as specified
for "application/cbor". (At publication of RFC 9393, there is no
fragment identification syntax defined for "application/cbor".)

 Additional information:

 Magic number(s):
 If tagged, the first five bytes in hex: da 53 57 49 44 (see of RFC 9393).
 File extension(s):
 coswid
 Macintosh file type code(s):
 none
 Macintosh Universal Type Identifier code:
 org.ietf.coswid
conforms to public.data.

 Person & email address to contact for further information:

 IESG <iesg@ietf.org>
 Intended usage:
 COMMON
 Restrictions on usage:
 none
 Author:
 Henk Birkholz <henk.birkholz@sit.fraunhofer.de>
 Change controller:
 IESG

 CoAP Content-Format Registration
 IANA has assigned a CoAP Content-Format ID for the CoSWID
media type in the "CoAP Content-Formats" subregistry, from the "IETF
Review or IESG Approval" space (256..999), within the "CoRE
Parameters" registry :

 CoAP Content-Format IDs

 Content Type
 Content Coding
 ID
 Reference

 application/swid+cbor
 -
 258
 RFC 9393

 CBOR Tag Registration
 IANA has allocated a tag in the "CBOR Tags" registry :

 CoSWID CBOR Tag

 Tag
 Data Item
 Semantics
 Reference

 1398229316
 map
 Concise Software Identifier (CoSWID)
 RFC 9393

 URI Scheme Registrations
 The ISO 19770-2:2015 SWID specification describes the use of the "swid" and "swidpath" URI schemes, which are currently in use in implementations. This document continues this use for CoSWID. The following subsections provide registrations for these schemes to ensure that a registration for these schemes exists that is suitable for use in the SWID and CoSWID specifications.
 URI schemes are registered within the "Uniform Resource Identifier (URI)
Schemes" registry maintained at .

 URI Scheme "swid"
 IANA has registered the URI scheme "swid".
This registration complies with .

 Scheme name:
 swid
 Status:
 Provisional
 Applications/protocols that use this scheme name:
 Applications that require Software IDs (SWIDs) or Concise
Software IDs (CoSWIDs); see of RFC 9393.
 Contact:
 IETF Chair <chair@ietf.org>
 Change controller:
 IESG <iesg@ietf.org>
 Reference:

 of RFC 9393

 Note: This scheme has been documented by an IETF working
 group and is mentioned in an IETF Standard specification. However, as it
 describes a locally scoped, limited-purpose form of identification, it
 does not fully meet the requirements for permanent registration.
 As long as this specification (or any successors that
 describe this scheme) is a current IETF specification, this scheme should
 be considered to be "in use" and not considered for removal from the
 registry.

 URI Scheme "swidpath"
 IANA has registered the URI scheme "swidpath". This registration
complies with .

 Scheme name:
 swidpath
 Status:
 Provisional
 Applications/protocols that use this scheme name:
 Applications that require Software IDs (SWIDs) or Concise
Software IDs (CoSWIDs); see of RFC 9393.
 Contact:
 IETF Chair <chair@ietf.org>
 Change controller:
 IESG <iesg@ietf.org>
 Reference:

 of RFC 9393

 Note: This scheme has been documented by an IETF working
 group and is mentioned in an IETF Standard specification. However, as it
 describes a locally scoped, limited-purpose form of identification, it
 does not fully meet the requirements for permanent registration.
 As long as this specification (or any successors that
 describe this scheme) is a current IETF specification, this scheme should
 be considered to be "in use" and not considered for removal from the
 registry.

 CoSWID Model for Use in SWIMA Registration
 " " defines a standardized method for collecting an endpoint device's software inventory. A CoSWID can provide evidence of software installation that can then be used and exchanged with SWIMA. This registration adds a new entry to the IANA "Software Data Model Types" registry defined by and to support CoSWID use in SWIMA as follows:

 Pen:
 0
 Integer:
 2
 Name:
 Concise Software Identifier (CoSWID)
 Reference:
 RFC 9393
 Deriving Software Identifiers:

 A Software Identifier generated from a CoSWID tag is expressed as a concatenation of the form used in as follows --

TAG_CREATOR_REGID "_" "_" UNIQUE_ID

 where TAG_CREATOR_REGID is the reg-id item value of the tag's entity item having the role value of 1 (corresponding to "tag-creator"), and the UNIQUE_ID is the same tag's tag-id item. If the tag-id item's value is expressed as a 16-byte binary string, the UNIQUE_ID MUST be represented using the UUID string representation defined in , including the "urn:uuid:" prefix.
 The TAG_CREATOR_REGID and the UNIQUE_ID are connected with a double underscore (_), without any other connecting character or whitespace.

 Signed CoSWID Tags
 SWID tags, as defined in the ISO-19770-2:2015 XML Schema, can include cryptographic signatures to protect the integrity of the SWID tag.
In general, tags are signed by the tag creator (typically, although not exclusively, the vendor of the software component that the SWID tag identifies).
Cryptographic signatures can make any modification of the tag detectable, which is especially important if the integrity of the tag is important, such as when the tag is providing RIMs for files.
The ISO-19770-2:2015 XML Schema uses XML Digital Signatures (XMLDSIG) to support cryptographic signatures.
 Signing CoSWID tags follows the procedures defined in CBOR Object Signing and Encryption (COSE) . A CoSWID tag MUST be wrapped in a COSE Signature structure, either COSE_Sign1 or COSE_Sign.
In the first case, a Single Signer Data Object (COSE_Sign1) contains a single signature and MUST be signed by the tag creator. The following CDDL specification defines a restrictive subset of COSE header parameters that MUST be used in the protected header in this case.

COSE_Sign1-coswid<payload> = [
 protected: bstr .cbor protected-signed-coswid-header,
 unprotected: unprotected-signed-coswid-header,
 payload: bstr .cbor payload,
 signature: bstr,
]

cose-label = int / tstr
cose-values = any

protected-signed-coswid-header = {
 1 => int, ; algorithm identifier
 3 => "application/swid+cbor",
 * cose-label => cose-values,
}

unprotected-signed-coswid-header = {
 * cose-label => cose-values,
}

 The COSE_Sign structure allows for more than one signature, one of which MUST be issued by the tag creator, to be applied to a CoSWID tag and MAY be used. The corresponding usage scenarios are domain specific and require well-specified application guidance.

COSE_Sign-coswid<payload> = [
 protected: bstr .cbor protected-signed-coswid-header1,
 unprotected: unprotected-signed-coswid-header,
 payload: bstr .cbor payload,
 signature: [* COSE_Signature],
]

protected-signed-coswid-header1 = {
 3 => "application/swid+cbor",
 * cose-label => cose-values,
}

protected-signature-coswid-header = {
 1 => int, ; algorithm identifier
 * cose-label => cose-values,
}

unprotected-signed-coswid-header = {
 * cose-label => cose-values,
}

COSE_Signature = [
 protected: bstr .cbor protected-signature-coswid-header,
 unprotected: unprotected-signed-coswid-header,
 signature: bstr
]

 Additionally, the COSE header countersignature MAY be used as an attribute in the unprotected header map of the COSE envelope of a CoSWID .
The application of countersigning enables second parties to provide a signature on a signature allowing for proof that a signature existed at a given time (i.e., a timestamp).
 A CoSWID MUST be signed, using the above mechanism, to protect the integrity of the CoSWID tag. See (" ") for more information on why a signed CoSWID is valuable in most cases.

 CBOR-Tagged CoSWID Tags
 This specification allows for tagged and untagged CBOR data items that are CoSWID tags.
Consequently, the CBOR tag defined by this document () for CoSWID tags SHOULD be used in conjunction with CBOR data items that are CoSWID tags.
Other CBOR tags MUST NOT be used with a CBOR data item that is a CoSWID tag.
If tagged, both signed and unsigned CoSWID tags MUST use the CoSWID CBOR tag.
If a signed CoSWID is tagged, a CoSWID CBOR tag MUST be appended before the COSE envelope, whether it is a COSE_Untagged_Message or a COSE_Tagged_Message.
If an unsigned CoSWID is tagged, a CoSWID CBOR tag MUST be appended before the CBOR data item that is the CoSWID tag.

coswid = unsigned-coswid / signed-coswid
unsigned-coswid = concise-swid-tag / tagged-coswid<concise-swid-tag>
signed-coswid1 = signed-coswid-for<unsigned-coswid>
signed-coswid = signed-coswid1 / tagged-coswid<signed-coswid1>

tagged-coswid<T> = #6.1398229316(T)

signed-coswid-for<payload> = #6.18(COSE_Sign1-coswid<payload>)
 / #6.98(COSE_Sign-coswid<payload>)

 This specification allows for a CBOR-tagged CoSWID tag to reside in a COSE envelope that is also tagged with a CoSWID CBOR tag. In cases where a tag creator is not a signer (e.g., hand-offs between entities in a trusted portion of a supply chain), retaining CBOR tags attached to unsigned CoSWID tags can be of great use. Nevertheless, redundant use of tags SHOULD be avoided when possible.

 Security Considerations
 The following security considerations for the use of CoSWID tags focus on:

 ensuring the integrity and authenticity of a CoSWID tag
 the application of CoSWID tags to address security challenges related to unmanaged or unpatched software
 reducing the potential for unintended disclosure of a device's software load

 A tag is considered "authoritative" if the CoSWID tag was created by the
software provider. An authoritative CoSWID tag contains information about a software component provided by the supplier of the software component, who is expected to be an expert in their own software. Thus, authoritative CoSWID tags can represent authoritative information about the software component. The degree to which this information can be trusted depends on the tag's chain of custody and the ability to verify a signature provided by the supplier if present in the CoSWID tag. The provisioning and validation of CoSWID tags are handled by local policy and are outside the scope of this document.
 A signed CoSWID tag (see) whose signature has been validated can be relied upon to be unchanged since the time at which it was signed. By contrast, the data contained in unsigned tags can be altered by any user or process with write access to the tag. To support signature validation, there is a need to associate the right key with the software provider or party originating the signature in a secure way. This operation is application specific and needs to be addressed by the application or a user of the application; a specific approach for this topic is out of scope for this document.
 When an authoritative tag is signed, the originator of the signature can be verified. A trustworthy association between the signature and the originator of the signature can be established via trust anchors. A certification path between a trust anchor and a certificate, including a public key enabling the validation of a tag signature, can realize the assessment of trustworthiness of an authoritative tag. Verifying that the software provider is the signer is a different matter. This requires verifying that the party that signed the tag is the same party given in the software-creator role of the tag's entity item. No mechanism is defined in this document to make this association; therefore, this association will need to be handled by local policy.
As always, the validity of a signature does not imply the veracity of the
signed statements: anyone can sign assertions such that the software
is from a specific software-creator or that a specific persistent-id
applies; policy needs to be applied to evaluate these statements and to determine their suitability for a specific use.
 Loss of control of signing credentials used to sign CoSWID tags would cast doubt on the authenticity and integrity of any CoSWID tags signed using the compromised keys. In such cases, the legitimate tag signer (namely, the software provider for an authoritative CoSWID tag) can employ uncompromised signing credentials to create a new signature on the original tag. The tag's version number would not be incremented, since the tag itself was not modified. Consumers of CoSWID tags would need to validate the tag using the new credentials and would also need to make use of revocation information available for the compromised credentials to avoid validating tags signed with them. The process for doing this is beyond the scope of this specification.
 The CoSWID format allows the use of hash values without an
accompanying hash algorithm identifier.
This exposes the tags to some risk of cross-algorithm attacks.
We believe that this can become a practical problem only if some
implementations allow the use of insecure hash algorithms.
Since it may not become known immediately when an algorithm becomes
insecure, this leads to a strong recommendation to only include
support for hash algorithms that are generally considered secure, and
not just marginally so.
 CoSWID tags are intended to contain public information about software components and, as
such, the contents of a CoSWID tag (as opposed to the set of tags that apply to the endpoint; see below) do not need to be protected against unintended disclosure on an endpoint.
Conversely, generators of CoSWID tags need to ensure that only public
information is disclosed.
The entitlement-key item is an example of information for which particular care
is required; tag authors are advised not to record unprotected,
private software license keys in this field.
 CoSWID tags are intended to be easily discoverable by
authorized applications and users on an endpoint in order to make it easy to determine the tagged software load. Access to the collection of an endpoint's CoSWID tags needs to be limited to authorized applications and users using an appropriate access control mechanism.
 Since the tag-id of a CoSWID tag can be used as a global index value, failure to ensure the tag-id's uniqueness can cause collisions or ambiguity in CoSWID tags that are retrieved or processed using this identifier. CoSWID is designed to not require a registry of identifiers. As a result, CoSWID requires the tag creator to employ a method of generating a unique tag identifier. Specific methods of generating a unique identifier are beyond the scope of this specification. A collision in tag-ids may result in false positives/negatives in software integrity checks or misidentification of installed software, undermining CoSWID use cases such as vulnerability identification, software inventory, etc. If such a collision is detected, then the tag consumer may want to contact the maintainer of the CoSWID to have them issue a correction addressing the collision; however, this also discloses to the maintainer that the consumer has the other tag with the given tag-id in their database.
More generally speaking, a tag consumer needs to be robust against such collisions lest the collision become a viable attack vector.
 CoSWID tags are designed to be easily added and removed from an
endpoint along with the installation or removal of software components.
On endpoints where the addition or removal of software components is
tightly controlled, the addition or removal of CoSWID tags can be
similarly controlled. On more open systems, where many users can
manage the software inventory, CoSWID tags can be easier to add or
remove. On such systems, it can be possible to add or remove CoSWID
tags in a way that does not reflect the actual presence or absence of
corresponding software components. Similarly, not all software
products automatically install CoSWID tags, so products can be present
on an endpoint without providing a corresponding CoSWID tag. As such,
any collection of CoSWID tags cannot automatically be assumed to
represent either a complete or fully accurate representation of the
software inventory of the endpoint. However, especially on endpoint devices
that more strictly control the ability to add or remove applications,
CoSWID tags are an easy way to provide a preliminary understanding of
that endpoint's software inventory.
 As CoSWID tags do not expire, inhibiting new CoSWID tags from reaching an intended consumer would render that consumer stuck with outdated information, potentially leaving associated vulnerabilities or weaknesses unmitigated. Therefore, a CoSWID tag consumer should actively check for updated tag-versions via more than one means.
 This specification makes use of relative paths (e.g., filesystem
paths) in several places.
A signed CoSWID tag cannot make use of these to derive information
that is considered to be covered under the signature.
Typically, relative filesystem paths will be used to identify
targets for an installation, not sources of tag information.
 Any report of an endpoint's CoSWID tag collection provides
information about the software inventory of that endpoint. If such a
report is exposed to an attacker, this can tell them which software
products and versions thereof are present on the endpoint. By
examining this list, the attacker might learn of the presence of
applications that are vulnerable to certain types of attacks. As
noted earlier, CoSWID tags are designed to be easily discoverable by authorized applications and users on an
endpoint, but this does not present a significant risk, since an
attacker would already need to have access to the endpoint to view
that information. However, when the endpoint transmits its software
inventory to another party or that inventory is stored on a server
for later analysis, this can potentially expose this information to
attackers who do not yet have access to the endpoint. For this reason, it is
important to protect the confidentiality of CoSWID tag information that
has been collected from an endpoint in transit and at rest, not because those tags
individually contain sensitive information but because the
collection of CoSWID tags and their association with an endpoint
reveals information about that endpoint's attack surface.
 Finally, both the ISO-19770-2:2015 XML Schema SWID definition and the
CoSWID CDDL specification allow for the construction of "infinite"
tags with link item loops or tags that contain malicious content with the intent
of creating non-deterministic states during validation or processing of those tags. While software
providers are unlikely to do this, CoSWID tags can be created by any party and the CoSWID tags
collected from an endpoint could contain a mixture of tags created by vendors and tags not created by vendors. For this
reason, a CoSWID tag might contain potentially malicious
content. Input sanitization, loop detection, and signature
verification are ways that implementations can address this concern.
 More generally speaking, the Security Considerations sections of ,
 , and apply.

 Privacy Considerations
 As noted in , collected information about an endpoint's software load, such as what might be represented by an endpoint's CoSWID tag collection, could be used by attackers to identify vulnerable software. Collections of endpoint software information also can have privacy implications for users. The set of applications a user installs can provide clues regarding personal matters such as political affiliation, banking and investments, gender, sexual orientation, medical concerns, etc. While the collection of CoSWID tags on an endpoint wouldn't increase privacy risks (since a party able to view those tags could also view the applications themselves), if those CoSWID tags are gathered and stored in a repository somewhere, visibility into the repository now also provides visibility into a user's application collection. For this reason, not only do repositories of collected CoSWID tags need to be protected against collection by malicious parties but even authorized parties will need to be vetted and made aware of privacy responsibilities associated with having access to this information. Likewise, users should be made aware that their software inventories are being collected from endpoints. Furthermore, when collected and stored by authorized parties or systems, the inventory data needs to be protected as both security and privacy-sensitive information.

 References

 Normative References

 Deprecating the "X-" Prefix and Similar Constructs in Application Protocols

 Historically, designers and implementers of application protocols have often distinguished between standardized and unstandardized parameters by prefixing the names of unstandardized parameters with the string "X-" or similar constructs. In practice, that convention causes more problems than it solves. Therefore, this document deprecates the convention for newly defined parameters with textual (as opposed to numerical) names in application protocols. This memo documents an Internet Best Current Practice.

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 Concise Binary Object Representation (CBOR) Tags

 Internet Assigned Numbers Authority

 Constrained RESTful Environments (CoRE) Parameters

 Internet Assigned Numbers Authority

 Media Types

 Internet Assigned Numbers Authority

 Named Information

 Internet Assigned Numbers Authority

 Posture Attribute (PA) Protocol Compatible with Trusted Network Connect (TNC) Parameters

 Internet Assigned Numbers Authority

 Uniform Resource Identifier (URI) Schemes

 Internet Assigned Numbers Authority

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 UTF-8, a transformation format of ISO 10646

 ISO/IEC 10646-1 defines a large character set called the Universal Character Set (UCS) which encompasses most of the world's writing systems. The originally proposed encodings of the UCS, however, were not compatible with many current applications and protocols, and this has led to the development of UTF-8, the object of this memo. UTF-8 has the characteristic of preserving the full US-ASCII range, providing compatibility with file systems, parsers and other software that rely on US-ASCII values but are transparent to other values. This memo obsoletes and replaces RFC 2279.

 Uniform Resource Identifier (URI): Generic Syntax

 A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]

 Unicode Format for Network Interchange

 The Internet today is in need of a standardized form for the transmission of internationalized "text" information, paralleling the specifications for the use of ASCII that date from the early days of the ARPANET. This document specifies that format, using UTF-8 with normalization and specific line-ending sequences. [STANDARDS-TRACK]

 Augmented BNF for Syntax Specifications: ABNF

 Internet technical specifications often need to define a formal syntax. Over the years, a modified version of Backus-Naur Form (BNF), called Augmented BNF (ABNF), has been popular among many Internet specifications. The current specification documents ABNF. It balances compactness and simplicity with reasonable representational power. The differences between standard BNF and ABNF involve naming rules, repetition, alternatives, order-independence, and value ranges. This specification also supplies additional rule definitions and encoding for a core lexical analyzer of the type common to several Internet specifications. [STANDARDS-TRACK]

 Tags for Identifying Languages

 This document describes the structure, content, construction, and semantics of language tags for use in cases where it is desirable to indicate the language used in an information object. It also describes how to register values for use in language tags and the creation of user-defined extensions for private interchange. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Internationalized Domain Names for Applications (IDNA): Definitions and Document Framework

 This document is one of a collection that, together, describe the protocol and usage context for a revision of Internationalized Domain Names for Applications (IDNA), superseding the earlier version. It describes the document collection and provides definitions and other material that are common to the set. [STANDARDS-TRACK]

 The Constrained Application Protocol (CoAP)

 The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with constrained nodes and constrained (e.g., low-power, lossy) networks. The nodes often have 8-bit microcontrollers with small amounts of ROM and RAM, while constrained networks such as IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) often have high packet error rates and a typical throughput of 10s of kbit/s. The protocol is designed for machine- to-machine (M2M) applications such as smart energy and building automation.
 CoAP provides a request/response interaction model between application endpoints, supports built-in discovery of services and resources, and includes key concepts of the Web such as URIs and Internet media types. CoAP is designed to easily interface with HTTP for integration with the Web while meeting specialized requirements such as multicast support, very low overhead, and simplicity for constrained environments.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Web Linking

 This specification defines a model for the relationships between resources on the Web ("links") and the type of those relationships ("link relation types").
 It also defines the serialisation of such links in HTTP headers with the Link header field.

 Software Inventory Message and Attributes (SWIMA) for PA-TNC

 This document extends "PA-TNC: A Posture Attribute (PA) Protocol Compatible with Trusted Network Connect (TNC)" (RFC 5792) by providing specific attributes and message exchanges to allow endpoints to report their installed software inventory information to a NEA Server, as defined in "Network Endpoint Assessment (NEA): Overview and Requirements" (RFC 5209).

 Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary Object Representation (CBOR) and JSON Data Structures

 This document proposes a notational convention to express Concise Binary Object Representation (CBOR) data structures (RFC 7049). Its main goal is to provide an easy and unambiguous way to express structures for protocol messages and data formats that use CBOR or JSON.

 Concise Binary Object Representation (CBOR)

 The Concise Binary Object Representation (CBOR) is a data format whose design goals include the possibility of extremely small code size, fairly small message size, and extensibility without the need for version negotiation. These design goals make it different from earlier binary serializations such as ASN.1 and MessagePack.
 This document obsoletes RFC 7049, providing editorial improvements, new details, and errata fixes while keeping full compatibility with the interchange format of RFC 7049. It does not create a new version of the format.

 CBOR Object Signing and Encryption (COSE): Structures and Process

 Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size. There is a need to be able to define basic security services for this data format. This document defines the CBOR Object Signing and Encryption (COSE) protocol. This specification describes how to create and process signatures, message authentication codes, and encryption using CBOR for serialization. This specification additionally describes how to represent cryptographic keys using CBOR.
 This document, along with RFC 9053, obsoletes RFC 8152.

 CBOR Object Signing and Encryption (COSE): Countersignatures

 Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size. CBOR Object Signing and Encryption (COSE) defines a set of security services for CBOR. This document defines a countersignature algorithm along with the needed header parameters and CBOR tags for COSE. This document updates RFC 9052.

 Information technology - IT asset management - Part 5: Overview and vocabulary

 ISO/IEC 19770-5:2015

 Information technology - IT asset management - Part 2: Software identification tag

 ISO/IEC 19770-2:2015

 United Nations Standard Products and Services Code

 Media Queries Level 3

 W3C Recommendation REC-mediaqueries-3-20220405

 XML Schema Part 2: Datatypes Second Edition

 W3C Recommendation REC-xmlschema-2-20041028

 XML Path Language (XPath) 2.0 (Second Edition)

 W3C Recommendation REC-xpath20-20101214

 Informative References

 Camel Case (upper camel case)

 Kebab Case

 On the Difference between Information Models and Data Models

 There has been ongoing confusion about the differences between Information Models and Data Models for defining managed objects in network management. This document explains the differences between these terms by analyzing how existing network management model specifications (from the IETF and other bodies such as the International Telecommunication Union (ITU) or the Distributed Management Task Force (DMTF)) fit into the universe of Information Models and Data Models. This memo documents the main results of the 8th workshop of the Network Management Research Group (NMRG) of the Internet Research Task Force (IRTF) hosted by the University of Texas at Austin. This memo provides information for the Internet community.

 A Universally Unique IDentifier (UUID) URN Namespace

 This specification defines a Uniform Resource Name namespace for UUIDs (Universally Unique IDentifier), also known as GUIDs (Globally Unique IDentifier). A UUID is 128 bits long, and can guarantee uniqueness across space and time. UUIDs were originally used in the Apollo Network Computing System and later in the Open Software Foundation\'s (OSF) Distributed Computing Environment (DCE), and then in Microsoft Windows platforms.
 This specification is derived from the DCE specification with the kind permission of the OSF (now known as The Open Group). Information from earlier versions of the DCE specification have been incorporated into this document. [STANDARDS-TRACK]

 Guidelines and Registration Procedures for URI Schemes

 This document updates the guidelines and recommendations, as well as the IANA registration processes, for the definition of Uniform Resource Identifier (URI) schemes. It obsoletes RFC 4395.

 Resource-Oriented Lightweight Information Exchange (ROLIE)

 This document defines a resource-oriented approach for security automation information publication, discovery, and sharing. Using this approach, producers may publish, share, and exchange representations of software descriptors, security incidents, attack indicators, software vulnerabilities, configuration checklists, and other security automation information as web-addressable resources. Furthermore, consumers and other stakeholders may access and search this security information as needed, establishing a rapid and on-demand information exchange network for restricted internal use or public access repositories. This specification extends the Atom Publishing Protocol and Atom Syndication Format to transport and share security automation resource representations.

 Manufacturer Usage Description Specification

 This memo specifies a component-based architecture for Manufacturer Usage Descriptions (MUDs). The goal of MUD is to provide a means for end devices to signal to the network what sort of access and network functionality they require to properly function. The initial focus is on access control. Later work can delve into other aspects.
 This memo specifies two YANG modules, IPv4 and IPv6 DHCP options, a Link Layer Discovery Protocol (LLDP) TLV, a URL, an X.509 certificate extension, and a means to sign and verify the descriptions.

 Remote ATtestation procedureS (RATS) Architecture

 In network protocol exchanges, it is often useful for one end of a communication to know whether the other end is in an intended operating state. This document provides an architectural overview of the entities involved that make such tests possible through the process of generating, conveying, and evaluating evidentiary Claims. It provides a model that is neutral toward processor architectures, the content of Claims, and protocols.

 Semantic Versioning 2.0.0

 Guidelines for the Creation of Interoperable Software Identification (SWID) Tags

 National Institute for Standards and Technology

 The MITRE Corporation

 G2, Inc

 G2, Inc

 NISTIR 8060

 Common vulnerabilities and exposures

 ITU-T

 ITU-T Recommendation X.1520

 Acknowledgments
 This document draws heavily on the concepts defined in the ISO/IEC 19770-2:2015 specification. The authors of this document are grateful for the prior work of the 19770-2 contributors.
 We are also grateful for the careful reviews provided by the IESG
reviewers. Special thanks go to .

 Contributors

 Universität Bremen TZI

 Postfach 330440
 Bremen
 D-28359
 Germany

 +49-421-218-63921
 cabo@tzi.org

 contributed to the CDDL specifications and the IANA considerations.

 Authors' Addresses

 Fraunhofer SIT

 Rheinstrasse 75
 Darmstadt
 64295
 Germany

 henk.birkholz@sit.fraunhofer.de

 National Security Agency

 9800 Savage Road
 Ft. Meade
 20755
 Maryland
 United States of America

 jmfitz2@cyber.nsa.gov

 The MITRE Corporation

 202 Burlington Road
 Bedford
 Massachusetts
 01730
 United States of America

 cmschmidt@mitre.org

 National Institute of Standards and Technology

 100 Bureau Drive
 Gaithersburg
 Maryland
 20877
 United States of America

 david.waltermire@nist.gov

