
RFC 9618
Updates to X.509 Policy Validation

Abstract
This document updates RFC 5280 to replace the algorithm for X.509 policy validation with an
equivalent, more efficient algorithm. The original algorithm built a structure that scaled
exponentially in the worst case, leaving implementations vulnerable to denial-of-service attacks.

Stream:
RFC:
Updates:
Category:
Published:
ISSN:
Author:

Internet Engineering Task Force (IETF)
9618
5280
Standards Track
August 2024
2070-1721
D. Benjamin
Google LLC

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9618

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Benjamin Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9618
https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/info/rfc9618
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Summary of Changes from RFC 5280

2. Conventions and Definitions

3. Denial-of-Service Vulnerability

3.1. Policy Trees

3.2. Exponential Growth

3.3. Attack Vector

4. Avoiding Exponential Growth

4.1. Policy Graphs

4.2. Verification Outputs

5. Updates to RFC 5280

5.1. Updates to Section 6.1

5.2. Updates to Section 6.1.2

5.3. Updates to Section 6.1.3

5.4. Updates to Section 6.1.4

5.5. Updates to Section 6.1.5

5.6. Updates to Section 6.1.6

6. Other Mitigations

6.1. Verify Signatures First

6.2. Limit Certificate Depth

6.3. Limit Policy Tree Size

6.4. Inhibit Policy Mapping

6.5. Disable Policy Checking

7. Security Considerations

8. IANA Considerations

9. References

9.1. Normative References

3

3

3

4

4

5

6

6

6

7

8

8

8

10

14

15

16

17

17

17

18

18

18

18

18

18

18

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 2

9.2. Informative References

Acknowledgements

Author's Address

19

19

19

1. Introduction
 defines a suite of extensions for determining the policies that apply to a certification

path. A policy is described by an object identifier (OID) and a set of optional qualifiers.

Policy validation in is complex. As an overview, the certificate policies extension
() describes the policies, with optional qualifiers, under which an
individual certificate was issued. The policy mappings extension ()
allows a CA certificate to map its policy OIDs to other policy OIDs in certificates that it issues.
Subject to these mappings and other extensions, the certification path's overall policy set is the
intersection of policies asserted by each certificate in the path.

The procedure in determines this set in the course of certification path
validation. It does so by building a policy tree containing policies asserted by each certificate and
the mappings between them. This tree can grow exponentially in the depth of the certification
path, which means an attacker, with a small input, can cause a path validator to consume
excessive memory and computational resources. This cost asymmetry can lead to a denial-of-
service vulnerability in X.509-based applications, such as and .

Section 3 describes this vulnerability. Section 4.1 describes the primary mitigation for this
vulnerability, a replacement for the policy tree structure. Section 5 provides updates to
that implement this change. Finally, Section 6 discusses alternative mitigation strategies for X.509
applications.

[RFC5280]

[RFC5280]
Section 4.2.1.4 of [RFC5280]

Section 4.2.1.5 of [RFC5280]

Section 6.1 of [RFC5280]

[CVE-2023-0464] [CVE-2023-23524]

[RFC5280]

1.1. Summary of Changes from RFC 5280
The algorithm for processing certificate policies and policy mappings is replaced with one that
builds an equivalent but much more efficient structure. This new algorithm does not change the
validity status of any certification path or which certificate policies are valid for it.

2. Conventions and Definitions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc5280#section-4.2.1.4
https://www.rfc-editor.org/rfc/rfc5280#section-4.2.1.5
https://www.rfc-editor.org/rfc/rfc5280#section-6.1

3. Denial-of-Service Vulnerability
This section discusses how the path validation algorithm defined in
can lead to a denial-of-service vulnerability in X.509-based applications.

Section 6.1.2 of [RFC5280]

3.1. Policy Trees
 constructs the valid_policy_tree, a tree of certificate policies, during

certification path validation. The nodes at any given depth in the tree correspond to policies
asserted by a certificate in the certification path. A node's parent policy is the policy in the issuer
certificate that was mapped to this policy, and a node's children are the policies the node was
mapped to in the subject certificate.

For example, suppose a certification path contains:

An intermediate certificate that asserts the following policy OIDs: OID1, OID2, and OID5. It
contains mappings from OID1 to OID3 and from OID1 to OID4.
An end-entity certificate that asserts the following policy OIDs: OID2, OID3, and OID6.

This would result in the tree shown below. Note that OID5 and OID6 are not included or mapped
across the whole path, so they do not appear in the final structure.

The complete algorithm for building this structure is described in steps (d), (e), and (f) in
; steps (h), (i), and (j) in ; and steps (a), (b), and (g) in

.

Section 6.1.2 of [RFC5280]

•

•

Root: anyPolicy

{anyPolicy}

Intermediate: OID1 OID2
(OID5 discarded)

{OID3, OID4} {OID2}

End-entity: OID3 OID2
(OID6 discarded)

Section
6.1.3 of [RFC5280] Section 6.1.4 of [RFC5280]
Section 6.1.5 of [RFC5280]

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc5280#section-6.1.2
https://www.rfc-editor.org/rfc/rfc5280#section-6.1.2
https://www.rfc-editor.org/rfc/rfc5280#section-6.1.3
https://www.rfc-editor.org/rfc/rfc5280#section-6.1.3
https://www.rfc-editor.org/rfc/rfc5280#section-6.1.4
https://www.rfc-editor.org/rfc/rfc5280#section-6.1.5

3.2. Exponential Growth
The valid_policy_tree grows exponentially in the worst case. In step (d.1) in

, a single policy P can produce multiple child nodes if multiple issuer policies map to P.
This can cause the tree size to increase in size multiplicatively at each level.

In particular, consider a certificate chain where every intermediate certificate asserts policies
OID1 and OID2 and then contains the full Cartesian product of mappings:

OID1 maps to OID1
OID1 maps to OID2
OID2 maps to OID1
OID2 maps to OID2

At each depth, the tree would double in size. For example, if there are two intermediate
certificates and one end-entity certificate, the resulting tree would be as depicted in Figure 1.

Section 6.1.3 of
[RFC5280]

•
•
•
•

Figure 1: An Example X.509 Policy Tree with Exponential Growth

anyPolicy

{anyPolicy}

OID1 OID2

{OID1, OID2} {OID1, OID2}

OID1 OID2 OID1 OID2

{OID1, OID2} {OID1, OID2} {OID1, OID2} {OID1, OID2}

OID1 OID2 OID1 OID2 OID1 OID2 OID1 OID2

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc5280#section-6.1.3

3.3. Attack Vector
An attacker can use the exponential growth to mount a denial-of-service attack against an X.509-
based application. The attacker sends a certificate chain as described in Section 3.2 and triggers
the target application's certificate validation process. For example, the target application may be
a TLS server that performs client certificate validation. The target application will
consume far more resources processing the input than the attacker consumed to send it, which
prevents the target application from servicing other clients.

[RFC8446]

4. Avoiding Exponential Growth
This document mitigates the denial-of-service vulnerability described in Section 3 by replacing
the policy tree with a policy graph structure, which is described in this section. The policy graph
grows linearly instead of exponentially. This removes the asymmetric cost in policy validation.

X.509 implementations perform policy validation by building a policy graph, following
the procedure described in Section 5. This replacement procedure computes the same policies as
in , but one of the outputs is in a different form. See Section 4.2 for details. Section 6
describes alternative mitigations for implementations that depend on the original, exponential-
sized output.

SHOULD

[RFC5280]

4.1. Policy Graphs
The tree structure in is an unnecessarily inefficient representation of a certification
path's policy mappings. When multiple issuer policies map to a single subject policy, the subject
policy will correspond to multiple duplicate nodes in the policy tree. Children of the subject
policy are then duplicated recursively. This duplication is the source of the exponential growth
described in Section 3.2.

A policy graph represents the same information with a directed acyclic graph of policy nodes. It
eliminates this duplication by using a single node with multiple parents. See Section 5 for the
procedure for building this structure. Figure 2 shows the updated representation of the example
in Figure 1.

[RFC5280]

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 6

This graph's size is bounded linearly by the total number of certificate policies (
) and policy mappings (). The policy tree in is the

tree of all paths from the root to a leaf in the policy graph, so no information is lost in the graph
representation.

Figure 2: A More Efficient Representation of an X.509 Policy Tree

anyPolicy

{anyPolicy}

OID1 OID2

{OID1, OID2} {OID1, OID2}

OID1 OID2

{OID1, OID2} {OID1, OID2}

OID1 OID2

Section 4.2.1.4 of
[RFC5280] Section 4.2.1.5 of [RFC5280] [RFC5280]

4.2. Verification Outputs
 describes the entire valid_policy_tree structure as an output of the

verification process. However, Section 12.2 of only describes the following as outputs: the
authorities-constrained policies, the user-constrained policies, and their associated qualifiers.

Section 6.1.6 of [RFC5280]
[X.509]

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc5280#section-4.2.1.4
https://www.rfc-editor.org/rfc/rfc5280#section-4.2.1.5
https://www.rfc-editor.org/rfc/rfc5280#section-6.1.6

As the valid_policy_tree is the exponential structure, computing it reintroduces the denial-of-
service vulnerability. X.509 implementations output the entire valid_policy_tree
structure; instead, they limit output to just the set of authorities-constrained and/or
user-constrained policies, as described in . Sections 5.6 and 6 discuss other mitigations for
applications where this option is not available.

X.509 implementations omit policy qualifiers from the output to simplify processing. Note
that already recommends that certification authorities omit policy
qualifiers from policy information terms.

SHOULD NOT
SHOULD

[X.509]

MAY
Section 4.2.1.4 of [RFC5280]

5. Updates to RFC 5280
This section provides updates to . These updates implement the changes described in
Section 4.

[RFC5280]

5.1. Updates to Section 6.1
 is updated as follows:

OLD:

A particular certification path may not, however, be appropriate for all applications.
Therefore, an application augment this algorithm to further limit the set of valid
paths. The path validation process also determines the set of certificate policies that are
valid for this path, based on the certificate policies extension, policy mappings
extension, policy constraints extension, and inhibit anyPolicy extension. To achieve this,
the path validation algorithm constructs a valid policy tree. If the set of certificate
policies that are valid for this path is not empty, then the result will be a valid policy tree
of depth n, otherwise the result will be a null valid policy tree.

NEW:

A particular certification path may not, however, be appropriate for all applications.
Therefore, an application augment this algorithm to further limit the set of valid
paths. The path validation process also determines the set of certificate policies that are
valid for this path, based on the certificate policies extension, policy mappings
extension, policy constraints extension, and inhibit anyPolicy extension. To achieve this,
the path validation algorithm constructs a valid policy set, which may be empty if no
certificate policies are valid for this path.

Section 6.1 of [RFC5280]

MAY

MAY

5.2. Updates to Section 6.1.2
The following replaces entry (a) in :Section 6.1.2 of [RFC5280]

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc5280#section-4.2.1.4
https://www.rfc-editor.org/rfc/rfc5280#section-6.1
https://www.rfc-editor.org/rfc/rfc5280#section-6.1.2

(a)

(1)

(2)

(3)

valid_policy_graph: A directed acyclic graph of certificate policies with their
optional qualifiers; each of the leaves of the graph represents a valid policy at this
stage in the certification path validation. If valid policies exist at this stage in the
certification path validation, the depth of the graph is equal to the number of
certificates in the chain that have been processed. If valid policies do not exist at
this stage in the certification path validation, the graph is set to NULL. Once the
graph is set to NULL, policy processing ceases. Implementations omit
qualifiers if not returned in the output.

Each node in the valid_policy_graph includes three data objects: the valid
policy, a set of associated policy qualifiers, and a set of one or more expected
policy values.

Nodes in the graph can be divided into depths, numbered starting from zero. A
node at depth x can have zero or more children at depth x+1 and, with the
exception of depth zero, one or more parents at depth x-1. No other edges
between nodes may exist.

If the node is at depth x, the components of the node have the following
semantics:

The valid_policy is a single policy OID representing a valid policy for the
path of length x.

The qualifier_set is a set of policy qualifiers associated with the valid
policy in certificate x. It is only necessary to maintain this field if policy
qualifiers are returned to the application. See Section 6.1.5, step (g).

The expected_policy_set contains one or more policy OIDs that would
satisfy this policy in the certificate x+1.

The initial value of the valid_policy_graph is a single node with valid_policy
anyPolicy, an empty qualifier_set, and an expected_policy_set with the
single value anyPolicy. This node is considered to be at depth zero.

The graph additionally satisfies the following invariants:

For any depth x and policy OID P-OID, there is at most one node at depth x
whose valid_policy is P-OID.
The expected_policy_set of a node whose valid_policy is anyPolicy is
always {anyPolicy}.
A node at depth x whose valid_policy is anyPolicy, except for the one at
depth zero, always has exactly one parent: a node at depth x-1 whose
valid_policy is also anyPolicy.

MAY

•

•

•

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 9

Each node at depth greater than 0 has either one or more parent nodes whose
valid_policy is not anyPolicy or a single parent node whose valid_policy
is anyPolicy. That is, a node cannot simultaneously be a child of both
anyPolicy and some non-anyPolicy OID.

Figure 3 is a graphic representation of the initial state of the
valid_policy_graph. Additional figures will use this format to describe changes
in the valid_policy_graph during path processing.

•

Figure 3: Initial Value of the valid_policy_graph State Variable

anyPolicy valid_policy

{} qualifier_set

{anyPolicy} expected_policy_set

(d)

(1)

(i)

5.3. Updates to Section 6.1.3
The following replaces steps (d), (e), and (f) in :

If the certificate policies extension is present in the certificate and the
valid_policy_graph is not NULL, process the policy information by performing
the following steps in order:

For each policy P not equal to anyPolicy in the certificate policies extension,
let P-OID denote the OID for policy P and P-Q denote the qualifier set for
policy P. Perform the following steps in order:

Let parent_nodes be the nodes at depth i-1 in the
valid_policy_graph where P-OID is in the expected_policy_set. If
parent_nodes is not empty, create a child node as follows: set the
valid_policy to P-OID, set the qualifier_set to P-Q, set the
expected_policy_set to {P-OID}, and set the parent nodes to
parent_nodes.

For example, consider a valid_policy_graph with a node of depth
i-1 where the expected_policy_set is {Gold, White} and a second
node where the expected_policy_set is {Gold, Yellow}. Assume the
certificate policies Gold and Silver appear in the certificate policies

Section 6.1.3 of [RFC5280]

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc5280#section-6.1.3

(ii)

extension of certificate i. The Gold policy is matched, but the Silver
policy is not. This rule will generate a child node of depth i for the
Gold policy. The result is shown as Figure 4.

If there was no match in step (i) and the valid_policy_graph
includes a node of depth i-1 with the valid_policy anyPolicy,
generate a child node with the following values: set the
valid_policy to P-OID, set the qualifier_set to P-Q, set the
expected_policy_set to {P-OID}, and set the parent node to the
anyPolicy node at depth i-1.

For example, consider a valid_policy_graph with a node of depth
i-1 where the valid_policy is anyPolicy. Assume the certificate
policies Gold and Silver appear in the certificate policies extension of
certificate i. The Gold policy does not have a qualifier, but the Silver
policy has the qualifier Q-Silver. If Gold and Silver were not matched
in (i) above, this rule will generate two child nodes of depth i, one for
each policy. The result is shown as Figure 5.

Figure 4: Processing an Exact Match

Red Blue

{} {} depth i-1

{Gold, White} {Gold, Yellow}

Gold

{} depth i

{Gold}

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 11

(2) If the certificate policies extension includes the policy anyPolicy with the
qualifier set AP-Q and either (a) inhibit_anyPolicy is greater than 0 or (b)
i<n and the certificate is self-issued, then:

For each policy OID P-OID (including anyPolicy) that appears in the
expected_policy_set of some node in the valid_policy_graph for depth
i-1, if P-OID does not appear as the valid_policy of some node at depth i,
create a single child node with the following values: set the valid_policy
to P-OID, set the qualifier_set to AP-Q, set the expected_policy_set to
{P-OID}, and set the parents to the nodes at depth i-1 where P-OID appears
in expected_policy_set.

This is equivalent to running step (1) above as if the certificate policies
extension contained a policy with OID P-OID and qualifier set AP-Q.

For example, consider a valid_policy_graph with a node of depth i-1
where the expected_policy_set is {Gold, Silver} and a second node of
depth i-1 where the expected_policy_set is {Gold}. Assume anyPolicy
appears in the certificate policies extension of certificate i with policy
qualifiers AP-Q, but Gold and Silver do not appear. This rule will generate
two child nodes of depth i, one for each policy. The result is shown below as
Figure 6.

Figure 5: Processing Unmatched Policies When a Leaf Node Specifies
anyPolicy

anyPolicy

{}
depth i-1

{anyPolicy}

Gold Silver

{} {Q-Silver} depth i

{Gold} {Silver}

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 12

(3) If there is a node in the valid_policy_graph of depth i-1 or less without
any child nodes, delete that node. Repeat this step until there are no nodes
of depth i-1 or less without children.

For example, consider the valid_policy_graph shown in Figure 7 below.
The two nodes at depth i-1 that are marked with an 'X' have no children,
and they are deleted. Applying this rule to the resulting graph will cause the
nodes at depth i-2 that is marked with a 'Y' to be deleted. In the resulting
graph, there are no nodes of depth i-1 or less without children, and this step
is complete.

Figure 6: Processing Unmatched Policies When the Certificate Policies
Extension Specifies anyPolicy

Red Blue

{} {} depth i-1

{Gold, Silver} {Gold}

Silver Gold

{AP-Q} {AP-Q} depth i

{Silver} {Gold}

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 13

(e)

(f)

If the certificate policies extension is not present, set the valid_policy_graph to
NULL.

Verify that either explicit_policy is greater than 0 or the valid_policy_graph
is not equal to NULL.

The text following step (f) in , beginning with "If any of steps (a), (b), (c),
or (f) fails", is left unmodified.

Figure 7: Pruning the valid_policy_graph

depth i-3

Y depth i-2

X X depth i-1

depth i

Section 6.1.3 of [RFC5280]

(b)

(1)

5.4. Updates to Section 6.1.4
The following replaces step (b) in :

If a policy mappings extension is present, then for each issuerDomainPolicy ID-P
in the policy mappings extension:

Section 6.1.4 of [RFC5280]

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc5280#section-6.1.3
https://www.rfc-editor.org/rfc/rfc5280#section-6.1.4

(2)

(i)

(ii)

(iii)

(3)

(i)

(ii)

If the policy_mapping variable is greater than 0 and there is a node in the
valid_policy_graph of depth i where ID-P is the valid_policy, set
expected_policy_set to the set of subjectDomainPolicy values that are
specified as equivalent to ID-P by the policy mappings extension.

If the policy_mapping variable is greater than 0 and no node of depth i in
the valid_policy_graph has a valid_policy of ID-P but there is a node of
depth i with a valid_policy of anyPolicy, then generate a child node of the
node of depth i-1 that has a valid_policy of anyPolicy as follows:

set the valid_policy to ID-P;

set the qualifier_set to the qualifier set of the policy anyPolicy in
the certificate policies extension of certificate i; and

set the expected_policy_set to the set of subjectDomainPolicy
values that are specified as equivalent to ID-P by the policy mappings
extension.

If the policy_mapping variable is equal to 0:

delete the node, if any, of depth i in the valid_policy_graph where
ID-P is the valid_policy.

If there is a node in the valid_policy_graph of depth i-1 or less
without any child nodes, delete that node. Repeat this step until there
are no nodes of depth i-1 or less without children.

(g)

(1)

(2)

(3)

5.5. Updates to Section 6.1.5
The following replaces step (g) in :

Calculate the user_constrained_policy_set as follows. The
user_constrained_policy_set is a set of policy OIDs, along with associated
policy qualifiers.

If the valid_policy_graph is NULL, set valid_policy_node_set to the
empty set.

If the valid_policy_graph is not NULL, set valid_policy_node_set to the
set of policy nodes whose valid_policy is not anyPolicy and whose parent
list is a single node with valid_policy of anyPolicy.

If the valid_policy_graph is not NULL and contains a node of depth n
with the valid_policy anyPolicy, add it to valid_policy_node_set.

Section 6.1.5 of [RFC5280]

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 15

https://www.rfc-editor.org/rfc/rfc5280#section-6.1.5

(4)

(i)

(ii)

(5)

(6)

(i)

(ii)

Compute authority_constrained_policy_set, a set of policy OIDs and
associated qualifiers as follows. For each node in valid_policy_node_set:

Add the node's valid_policy to
authority_constrained_policy_set.

Collect all qualifiers in the node, its ancestors, and descendants and
associate them with valid_policy. Applications that do not use
policy qualifiers skip this step to simplify processing.

Set user_constrained_policy_set to
authority_constrained_policy_set.

If the user-initial-policy-set is not anyPolicy:

Remove any elements of user_constrained_policy_set that do not
appear in user-initial-policy-set.

If anyPolicy appears in authority_constrained_policy_set with
qualifiers AP-Q, for each OID P-OID in user-initial-policy-set that does
not appear in user_constrained_policy_set, add P-OID with
qualifiers AP-Q to user_constrained_policy_set.

In addition, the final paragraph in is updated as follows:

OLD:

If either (1) the value of explicit_policy variable is greater than zero or (2) the
valid_policy_tree is not NULL, then path processing has succeeded.

NEW:

If either (1) the value of explicit_policy is greater than zero, or (2) the
user_constrained_policy_set is not empty, then path processing has succeeded.

MAY

Section 6.1.5 of [RFC5280]

5.6. Updates to Section 6.1.6
The following replaces :

If path processing succeeds, the procedure terminates, returning a success indication
together with the final value of the user_constrained_policy_set, the
working_public_key, the working_public_key_algorithm, and the
working_public_key_parameters.

Section 6.1.6 of [RFC5280]

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 16

https://www.rfc-editor.org/rfc/rfc5280#section-6.1.5
https://www.rfc-editor.org/rfc/rfc5280#section-6.1.6

Note that the original procedure described in included a valid_policy_tree
structure as part of the output. This structure grows exponentially in the size of the
input, so computing it risks denial-of-service vulnerabilities in X.509-based applications,
such as and . Accordingly, this output is deprecated.
Computing this structure is .

An implementation that requires valid_policy_tree for compatibility with legacy
systems may compute it from valid_policy_graph by recursively duplicating every
multi-parent node. This may be done on-demand when the calling application first
requests this output. However, this computation may consume exponential time and
memory, so such implementations mitigate denial-of-service attacks in other
ways, such as by limiting the depth or size of the tree.

[RFC5280]

[CVE-2023-0464] [CVE-2023-23524]
NOT RECOMMENDED

SHOULD

6. Other Mitigations
X.509 implementations that are unable to switch to the policy graph structure mitigate
the denial-of-service attack in other ways. This section describes alternate mitigation and partial
mitigation strategies.

SHOULD

6.1. Verify Signatures First
X.509 validators verify signatures in certification paths before or in conjunction with
policy verification. This limits the attack to entities in control of CA certificates. For some
applications, this may be sufficient to mitigate the attack. However, other applications may still
be impacted, for example:

Any application that evaluates an untrusted PKI, such as a hosting provider that evaluates a
customer-supplied PKI
Any application that evaluates an otherwise trusted PKI that includes untrusted entities with
technically constrained intermediate certificates. If the intermediates do not constrain policy
mapping or path length, those entities may be able to perform this attack.

SHOULD

•

•

6.2. Limit Certificate Depth
The policy tree grows exponentially in the depth of a certification path, so limiting the depth and
certificate size can mitigate the attack.

However, this option may not be viable for all applications. Too low of a limit may reject existing
paths that the application wishes to accept. Too high of a limit may still admit a denial-of-service
attack for the application. By modifying the example in Section 3.2 to increase the number of

policies asserted in each certificate, an attacker could still achieve O(N(depth/2)) scaling.

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 17

9. References

6.3. Limit Policy Tree Size
The attack can be mitigated by limiting the number of nodes in the policy tree and rejecting the
certification path if this limit is reached. This limit should be set high enough to still admit
existing valid certification paths for the application but low enough to no longer admit a denial-
of-service attack.

6.4. Inhibit Policy Mapping
If policy mapping is disabled via the initial-policy-mapping-inhibit setting (see

), the attack is mitigated. This also significantly simplifies the X.509 implementation,
which reduces the risk of other security bugs. However, this will break compatibility with any
existing certification paths that rely on policy mapping.

To facilitate this mitigation, certificate authorities issue certificates with the policy
mappings extension (). Applications maintaining policies for accepted
trust anchors are to forbid this extension in participating certificate authorities.

Section 6.1.1 of
[RFC5280]

SHOULD NOT
Section 4.2.1.5 of [RFC5280]

RECOMMENDED

6.5. Disable Policy Checking
An X.509 validator can mitigate this attack by disabling policy validation entirely. This may be
viable for applications that do not require policy validation. In this case, critical policy-related
extensions, notably the policy constraints extension (), be
treated as unrecognized extensions as described in and be rejected.

Section 4.2.1.11 of [RFC5280] MUST
Section 4.2 of [RFC5280]

7. Security Considerations
Section 3 discusses how the policy tree algorithm in can lead to denial-of-service
vulnerabilities in X.509-based applications, such as and .

Section 5 replaces this algorithm to avoid this issue. As discussed in Section 4.1, the new structure
scales linearly with the input. This means input limits in X.509 validators will more naturally
bound processing time, thus avoiding these vulnerabilities.

[RFC5280]
[CVE-2023-0464] [CVE-2023-23524]

8. IANA Considerations
This document has no IANA actions.

[RFC2119]

9.1. Normative References

, , ,
, , March 1997,
.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 18

https://www.rfc-editor.org/rfc/rfc5280#section-6.1.1
https://www.rfc-editor.org/rfc/rfc5280#section-4.2.1.5
https://www.rfc-editor.org/rfc/rfc5280#section-4.2.1.11
https://www.rfc-editor.org/rfc/rfc5280#section-4.2
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC5280]

[RFC8174]

, , , , , and ,

, , , May 2008,
.

, ,
, , , May 2017,

.

Cooper, D. Santesson, S. Farrell, S. Boeyen, S. Housley, R. W. Polk
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-
editor.org/info/rfc5280>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

[CVE-2023-0464]

[CVE-2023-23524]

[RFC8446]

[X.509]

9.2. Informative References

, ,
, March 2023,

.

,
, , February 2023,

.

, , ,
, August 2018, .

,
, ,

October 2019, .

CVE "Excessive Resource Usage Verifying X.509 Policy Constraints"
CVE-2023-0464 <https://www.cve.org/CVERecord?
id=CVE-2023-0464>

CVE "Processing a maliciously crafted certificate may lead to a denial-of-
service" CVE-2023-23524 <https://www.cve.org/CVERecord?
id=CVE-2023-23524>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

ITU-T "Information technology - Open Systems Interconnection - The Directory:
Public-key and attribute certificate frameworks" ITU-T Recommendation X.509

<https://www.itu.int/rec/T-REC-X.509>

Acknowledgements
The author thanks , , , and for many valuable
discussions that led to discovering this issue, understanding it, and developing the mitigation.
The author also thanks , , and for their review and
feedback on this document.

Bob Beck Adam Langley Matt Mueller Ryan Sleevi

Martin Thomson Job Snijders John Scudder

Author's Address
David Benjamin
Google LLC

davidben@google.comEmail:

RFC 9618 Updates to X.509 Policy Validation August 2024

Benjamin Standards Track Page 19

https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.cve.org/CVERecord?id=CVE-2023-0464
https://www.cve.org/CVERecord?id=CVE-2023-0464
https://www.cve.org/CVERecord?id=CVE-2023-23524
https://www.cve.org/CVERecord?id=CVE-2023-23524
https://www.rfc-editor.org/info/rfc8446
https://www.itu.int/rec/T-REC-X.509
mailto:davidben@google.com

	RFC 9618
	Updates to X.509 Policy Validation
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Summary of Changes from RFC 5280

	2. Conventions and Definitions
	3. Denial-of-Service Vulnerability
	3.1. Policy Trees
	3.2. Exponential Growth
	3.3. Attack Vector

	4. Avoiding Exponential Growth
	4.1. Policy Graphs
	4.2. Verification Outputs

	5. Updates to RFC 5280
	5.1. Updates to Section 6.1
	5.2. Updates to Section 6.1.2
	5.3. Updates to Section 6.1.3
	5.4. Updates to Section 6.1.4
	5.5. Updates to Section 6.1.5
	5.6. Updates to Section 6.1.6

	6. Other Mitigations
	6.1. Verify Signatures First
	6.2. Limit Certificate Depth
	6.3. Limit Policy Tree Size
	6.4. Inhibit Policy Mapping
	6.5. Disable Policy Checking

	7. Security Considerations
	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgements
	Author's Address

