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Status of This Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the “Internet
Official Protocol Standards™ (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Abstract

This document specifies Version 1.2 of the Transport Layer Security
(TLS) protocol. The TLS protocol provides communications security
over the Internet. The protocol allows client/server applications to
communicate in a way that is designed to prevent eavesdropping,
tampering, or message forgery.
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1. Introduction

The primary goal of the TLS protocol is to provide privacy and data
integrity between two communicating applications. The protocol is
composed of two layers: the TLS Record Protocol and the TLS Handshake
Protocol. At the lowest level, layered on top of some reliable
transport protocol (e.g., TCP [TCP]), is the TLS Record Protocol.

The TLS Record Protocol provides connection security that has two
basic properties:

- The connection is private. Symmetric cryptography is used for
data encryption (e.g., AES [AES], RC4 [SCH], etc.). The keys for
this symmetric encryption are generated uniquely for each
connection and are based on a secret negotiated by another
protocol (such as the TLS Handshake Protocol). The Record
Protocol can also be used without encryption.

- The connection is reliable. Message transport includes a message
integrity check using a keyed MAC. Secure hash functions (e.g.,
SHA-1, etc.) are used for MAC computations. The Record Protocol
can operate without a MAC, but is generally only used in this mode
while another protocol is using the Record Protocol as a transport
for negotiating security parameters.

The TLS Record Protocol is used for encapsulation of various higher-
level protocols. One such encapsulated protocol, the TLS Handshake
Protocol, allows the server and client to authenticate each other and
to negotiate an encryption algorithm and cryptographic keys before
the application protocol transmits or receives its first byte of
data. The TLS Handshake Protocol provides connection security that
has three basic properties:

- The peer’s identity can be authenticated using asymmetric, or
public key, cryptography (e.g., RSA [RSA], DSA [DSS], etc.). This
authentication can be made optional, but is generally required for
at least one of the peers.

- The negotiation of a shared secret is secure: the negotiated
secret is unavailable to eavesdroppers, and for any authenticated
connection the secret cannot be obtained, even by an attacker who
can place himself in the middle of the connection.

- The negotiation is reliable: no attacker can modify the

negotiation communication without being detected by the parties to
the communication.
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One advantage of TLS is that it is application protocol independent.
Higher-level protocols can layer on top of the TLS protocol
transparently. The TLS standard, however, does not specify how
protocols add security with TLS; the decisions on how to initiate TLS
handshaking and how to interpret the authentication certificates
exchanged are left to the judgment of the designers and implementors
of protocols that run on top of TLS.

1.1. Requirements Terminology

The key words "MUST'", "MUST NOT'", "REQUIRED'", "SHALL"™, "SHALL NOT",

""'SHOULD", "'SHOULD NOT', "RECOMMENDED', "MAY"™, and "OPTIONAL"™ in this

document are to be interpreted as described in RFC 2119 [REQ].-

1.2. Major Differences from TLS 1.1

This document is a revision of the TLS 1.1 [TLS1.1] protocol which

contains improved flexibility, particularly for negotiation of

cryptographic algorithms. The major changes are:

- The MD5/SHA-1 combination in the pseudorandom function (PRF) has
been replaced with cipher-suite-specified PRFs. All cipher suites
in this document use P_SHA256.

- The MD5/SHA-1 combination in the digitally-signed element has been
replaced with a single hash. Signed elements now include a field
that explicitly specifies the hash algorithm used.

- Substantial cleanup to the client’s and server’s ability to
specify which hash and signature algorithms they will accept.

Note that this also relaxes some of the constraints on signature
and hash algorithms from previous versions of TLS.

- Addition of support for authenticated encryption with additional
data modes.

- TLS Extensions definition and AES Cipher Suites were merged in
from external [TLSEXT] and [TLSAES].

- Tighter checking of EncryptedPreMasterSecret version numbers.
- Tightened up a number of requirements.

- Verify_data length now depends on the cipher suite (default is
still 12).

- Cleaned up description of Bleichenbacher/Klima attack defenses.
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Alerts MUST now be sent in many cases.

After a certificate_request, if no certificates are available,
clients now MUST send an empty certificate list.

TLS_RSA WITH_AES 128 CBC_SHA is now the mandatory to implement
cipher suite.

Added HMAC-SHA256 cipher suites.

Removed IDEA and DES cipher suites. They are now deprecated and
will be documented in a separate document.

Support for the SSLv2 backward-compatible hello is now a MAY, not
a SHOULD, with sending it a SHOULD NOT. Support will probably
become a SHOULD NOT in the future.

Added limited "fall-through™ to the presentation language to allow
multiple case arms to have the same encoding.

Added an Implementation Pitfalls sections

The usual clarifications and editorial work.

Goals

The goals of the TLS protocol, in order of priority, are as follows:

1.

Cryptographic security: TLS should be used to establish a secure
connection between two parties.

Interoperability: Independent programmers should be able to
develop applications utilizing TLS that can successfully exchange
cryptographic parameters without knowledge of one another’s code.

. Extensibility: TLS seeks to provide a framework into which new

public key and bulk encryption methods can be incorporated as
necessary. This will also accomplish two sub-goals: preventing
the need to create a new protocol (and risking the introduction of
possible new weaknesses) and avoiding the need to implement an
entire new security library.

. Relative efficiency: Cryptographic operations tend to be highly

CPU intensive, particularly public key operations. For this
reason, the TLS protocol has incorporated an optional session
caching scheme to reduce the number of connections that need to be
established from scratch. Additionally, care has been taken to
reduce network activity.
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3. Goals of This Document

This document and the TLS protocol itself are based on the SSL 3.0
Protocol Specification as published by Netscape. The differences
between this protocol and SSL 3.0 are not dramatic, but they are
significant enough that the various versions of TLS and SSL 3.0 do
not interoperate (although each protocol incorporates a mechanism by
which an implementation can back down to prior versions). This
document is intended primarily for readers who will be implementing
the protocol and for those doing cryptographic analysis of it. The
specification has been written with this in mind, and it is intended
to reflect the needs of those two groups. For that reason, many of
the algorithm-dependent data structures and rules are included in the
body of the text (as opposed to in an appendix), providing easier
access to them.

This document is not intended to supply any details of service
definition or of interface definition, although it does cover select
areas of policy as they are required for the maintenance of solid
security.

4. Presentation Language

This document deals with the formatting of data in an external
representation. The following very basic and somewhat casually
defined presentation syntax will be used. The syntax draws from
several sources in its structure. Although it resembles the
programming language "C'" in its syntax and XDR [XDR] in both its
syntax and intent, it would be risky to draw too many parallels. The
purpose of this presentation language is to document TLS only; it has
no general application beyond that particular goal.

4_.1. Basic Block Size

The representation of all data items is explicitly specified. The
basic data block size is one byte (i.e., 8 bits). Multiple byte data
items are concatenations of bytes, from left to right, from top to
bottom. From the byte stream, a multi-byte item (a numeric in the
example) is formed (using C notation) by:

value = (byte[0] << 8*(n-1)) | (byte[1l] << 8*(n-2)) |
| byte[n-1];

This byte ordering for multi-byte values is the commonplace network
byte order or big-endian format.
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4.2. Miscellaneous
Comments begin with "/*" and end with "*/".

Optional components are denoted by enclosing them in "[[ ]]1" double
brackets.

Single-byte entities containing uninterpreted data are of type
opaque.

4.3. Vectors

A vector (single-dimensioned array) is a stream of homogeneous data
elements. The size of the vector may be specified at documentation
time or left unspecified until runtime. In either case, the length
declares the number of bytes, not the number of elements, in the
vector. The syntax for specifying a new type, T”, that is a fixed-
length vector of type T is

T T°[n];

Here, T> occupies n bytes in the data stream, where n is a multiple
of the size of T. The length of the vector is not included in the
encoded stream.

In the following example, Datum is defined to be three consecutive
bytes that the protocol does not interpret, while Data is three
consecutive Datum, consuming a total of nine bytes.

opaque Datum[3]; /* three uninterpreted bytes */
Datum Data[9]; /* 3 consecutive 3 byte vectors */

Variable-length vectors are defined by specifying a subrange of legal
lengths, inclusively, using the notation <floor..ceiling>. When
these are encoded, the actual length precedes the vector’s contents
in the byte stream. The length will be in the form of a number
consuming as many bytes as required to hold the vector’s specified
maximum (ceiling) length. A variable-length vector with an actual
length field of zero is referred to as an empty vector.

T T><floor..ceiling>;

In the following example, mandatory is a vector that must contain
between 300 and 400 bytes of type opaque. It can never be empty.
The actual length field consumes two bytes, a uintl6, which is
sufficient to represent the value 400 (see Section 4.4). On the
other hand, longer can represent up to 800 bytes of data, or 400
uintlé elements, and it may be empty. Its encoding will include a
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two-byte actual length field prepended to the vector. The length of
an encoded vector must be an even multiple of the length of a single
element (for example, a 17-byte vector of uintl6 would be illegal).

opaque mandatory<300..400>;

/* length field is 2 bytes, cannot be empty */
uintl6é longer<0..800>;

/* zero to 400 16-bit unsigned integers */

4.4. Numbers

The basic numeric data type is an unsigned byte (uint8). All larger
numeric data types are formed from fixed-length series of bytes
concatenated as described in Section 4.1 and are also unsigned. The
following numeric types are predefined.

uint8 uintl6[2];
uint8 uint24[3];
uint8 uint32[4];
uint8 uint64[8];

All values, here and elsewhere iIn the specification, are stored in
network byte (big-endian) order; the uint32 represented by the hex
bytes 01 02 03 04 is equivalent to the decimal value 16909060.

Note that in some cases (e.g., DH parameters) it is necessary to
represent integers as opaque vectors. In such cases, they are
represented as unsigned integers (i.e., leading zero octets are not
required even if the most significant bit is set).

4.5. Enumerateds

An additional sparse data type is available called enum. A field of
type enum can only assume the values declared in the definition.
Each definition is a different type. Only enumerateds of the same
type may be assigned or compared. Every element of an enumerated
must be assigned a value, as demonstrated in the following example.
Since the elements of the enumerated are not ordered, they can be
assigned any unique value, In any order.

enum { el(vl), e2(v2), ... , en(vn) [[, (N)]1] } Te;
An enumerated occupies as much space in the byte stream as would its
maximal defined ordinal value. The following definition would cause
one byte to be used to carry fields of type Color.

enum { red(3), blue(5), white(7) } Color;
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One may optionally specify a value without its associated tag to
force the width definition without defining a superfluous element.

In the following example, Taste will consume two bytes in the data
stream but can only assume the values 1, 2, or 4.

enum { sweet(l), sour(2), bitter(4), (32000) } Taste;

The names of the elements of an enumeration are scoped within the
defined type. In the First example, a fully qualified reference to
the second element of the enumeration would be Color_blue. Such
qualification is not required if the target of the assignment is well

specified.
Color color = Color.blue; /* overspecified, legal */
Color color = blue; /* correct, type implicit */

For enumerateds that are never converted to external representation,
the numerical information may be omitted.

enum { low, medium, high } Amount;
4_.6. Constructed Types

Structure types may be constructed from primitive types for
convenience. Each specification declares a new, unique type. The
syntax for definition is much like that of C.

struct {
T1 f1;
T2 T2;

fﬁ-fn;
3 [LT11:

The fields within a structure may be qualified using the type’s name,
with a syntax much like that available for enumerateds. For example,
T.f2 refers to the second field of the previous declaration.
Structure definitions may be embedded.

4.6.1. Variants

Defined structures may have variants based on some knowledge that is
available within the environment. The selector must be an enumerated
type that defines the possible variants the structure defines. There
must be a case arm for every element of the enumeration declared in
the select. Case arms have limited fall-through: if two case arms
follow in immediate succession with no fields in between, then they
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both contain the same fields. Thus, in the example below, "orange"
and "banana' both contain V2. Note that this is a new piece of
syntax in TLS 1.2.

The body of the variant structure may be given a label for reference.
The mechanism by which the variant is selected at runtime is not
prescribed by the presentation language.

struct {
T1 f1;
T2 £2;
Tn fn;
select (BE) {
case el: Tel;

case e2: Te2;
case e3: case e4: Te3;

éééé en: Ten;
3 [[Fv1];
+ [[Tv1];

For example:
enum { apple, orange, banana } VariantTag;

struct {

uintl6é number;

opaque string<0..10>; /* variable length */
} vi;

struct {

uint32 number;

opaque string[10]; /* Fixed length */
¥ V2;

struct {
select (VariantTag) { /7* value of selector is implicit */
case apple:
V1; /* VariantBody, tag = apple */
case orange:
case banana:
V2; /* VariantBody, tag = orange or banana */
} variant_body; /* optional label on variant */
} VariantRecord;
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4.7. Cryptographic Attributes

The five cryptographic operations -- digital signing, stream cipher
encryption, block cipher encryption, authenticated encryption with
additional data (AEAD) encryption, and public key encryption -- are
designated digitally-signed, stream-ciphered, block-ciphered, aead-
ciphered, and public-key-encrypted, respectively. A field’s
cryptographic processing is specified by prepending an appropriate
key word designation before the field’s type specification.
Cryptographic keys are implied by the current session state (see
Section 6.1).

A digitally-signed element is encoded as a struct DigitallySigned:

struct {
SignatureAndHashAlgorithm algorithm;
opaque signature<0..2716-1>;

} DigitallySigned;

The algorithm field specifies the algorithm used (see Section
7.4.1.4_.1 for the definition of this field). Note that the
introduction of the algorithm field is a change from previous
versions. The signature is a digital signature using those
algorithms over the contents of the element. The contents themselves
do not appear on the wire but are simply calculated. The length of
the signature is specified by the signing algorithm and key.

In RSA signing, the opaque vector contains the signature generated
using the RSASSA-PKCS1-vl 5 signature scheme defined in [PKCS1]. As
discussed in [PKCS1], the Digestinfo MUST be DER-encoded [X680]
[X690]. For hash algorithms without parameters (which includes
SHA-1), the Digestinfo._Algorithmldentifier_parameters field MUST be
NULL, but implementations MUST accept both without parameters and
with NULL parameters. Note that earlier versions of TLS used a
different RSA signature scheme that did not include a Digestinfo
encoding.

In DSA, the 20 bytes of the SHA-1 hash are run directly through the
Digital Signing Algorithm with no additional hashing. This produces
two values, r and s. The DSA signature is an opaque vector, as
above, the contents of which are the DER encoding of:

Dss-Sig-Value ::= SEQUENCE {
r INTEGER,
s INTEGER

}
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Note: In current terminology, DSA refers to the Digital Signature
Algorithm and DSS refers to the NIST standard. In the original SSL
and TLS specs, '"DSS" was used universally. This document uses ''DSA™
to refer to the algorithm, "DSS" to refer to the standard, and it
uses "'DSS™ in the code point definitions for historical continuity.

In stream cipher encryption, the plaintext is exclusive-ORed with an
identical amount of output generated from a cryptographically secure
keyed pseudorandom number generator.

In block cipher encryption, every block of plaintext encrypts to a
block of ciphertext. All block cipher encryption is done in CBC
(Cipher Block Chaining) mode, and all items that are block-ciphered
will be an exact multiple of the cipher block length.

In AEAD encryption, the plaintext is simultaneously encrypted and
integrity protected. The input may be of any length, and aead-
ciphered output is generally larger than the input in order to
accommodate the integrity check value.

In public key encryption, a public key algorithm is used to encrypt
data in such a way that it can be decrypted only with the matching
private key. A public-key-encrypted element is encoded as an opaque
vector <0..2716-1>, where the length is specified by the encryption
algorithm and key.

RSA encryption is done using the RSAES-PKCS1-v1l_5 encryption scheme
defined in [PKCS1].

In the following example

stream-ciphered struct {
uint8 fieldl;
uint8 field2;
digitally-signed opaque {
uint8 field3<0..255>;
uint8 field4;
}:
} UserType;

The contents of the inner struct (field3 and field4) are used as
input for the signature/hash algorithm, and then the entire structure
is encrypted with a stream cipher. The length of this structure, in
bytes, would be equal to two bytes for fieldl and field2, plus two
bytes for the sighature and hash algorithm, plus two bytes for the
length of the signature, plus the length of the output of the signing
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algorithm. The length of the signature is known because the
algorithm and key used for the signing are known prior to encoding or
decoding this structure.

4.8. Constants

Typed constants can be defined for purposes of specification by
declaring a symbol of the desired type and assigning values to it.

Under-specified types (opaque, variable-length vectors, and
structures that contain opaque) cannot be assigned values. No fields
of a multi-element structure or vector may be elided.

For example:

struct {
uint8 f1;
uint8 f2;
} Examplel;

Examplel ex1 = {1, 4}; /* assigns f1 =1, f2 =4 */
5. HMAC and the Pseudorandom Function

The TLS record layer uses a keyed Message Authentication Code (MAC)
to protect message integrity. The cipher suites defined in this
document use a construction known as HMAC, described in [HMAC], which
is based on a hash function. Other cipher suites MAY define their
own MAC constructions, if needed.

In addition, a construction is required to do expansion of secrets
into blocks of data for the purposes of key generation or validation.
This pseudorandom function (PRF) takes as input a secret, a seed, and
an identifying label and produces an output of arbitrary length.

In this section, we define one PRF, based on HMAC. This PRF with the
SHA-256 hash function is used for all cipher suites defined in this
document and in TLS documents published prior to this document when
TLS 1.2 is negotiated. New cipher suites MUST explicitly specify a
PRF and, in general, SHOULD use the TLS PRF with SHA-256 or a
stronger standard hash function.

First, we define a data expansion function, P_hash(secret, data),

that uses a single hash function to expand a secret and seed into an
arbitrary quantity of output:
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P_hash(secret, seed) = HMAC hash(secret, A(1) + seed) +
HMAC hash(secret, A(2) + seed) +
HMAC_hash(secret, A(3) + seed) + ...

where + indicates concatenation.

AQ is defined as:

A(0)
ACI)

P_hash can be iterated as many times as necessary to produce the
required quantity of data. For example, if P_SHA256 is being used to
create 80 bytes of data, it will have to be iterated three times
(through A(3)), creating 96 bytes of output data; the last 16 bytes
of the final iteration will then be discarded, leaving 80 bytes of
output data.

seed
HMAC_hash(secret, A(i-1))

TLS’s PRF is created by applying P_hash to the secret as:
PRF(secret, label, seed) = P_<hash>(secret, label + seed)

The label is an ASCII string. It should be included in the exact
form it is given without a length byte or trailing null character.
For example, the label "slithy toves"™ would be processed by hashing
the following bytes:

73 6C 69 74 68 79 20 74 6F 76 65 73
6. The TLS Record Protocol

The TLS Record Protocol is a layered protocol. At each layer,
messages may include fields for length, description, and content.

The Record Protocol takes messages to be transmitted, fragments the
data into manageable blocks, optionally compresses the data, applies
a MAC, encrypts, and transmits the result. Received data is
decrypted, verified, decompressed, reassembled, and then delivered to
higher-level clients.

Four protocols that use the record protocol are described in this
document: the handshake protocol, the alert protocol, the change
cipher spec protocol, and the application data protocol. In order to
allow extension of the TLS protocol, additional record content types
can be supported by the record protocol. New record content type
values are assigned by IANA in the TLS Content Type Registry as
described in Section 12.
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Implementations MUST NOT send record types not defined in this
document unless negotiated by some extension. |If a TLS
implementation receives an unexpected record type, It MUST send an
unexpected_message alert.

Any protocol designed for use over TLS must be carefully designed to
deal with all possible attacks against it. As a practical matter,
this means that the protocol designer must be aware of what security
properties TLS does and does not provide and cannot safely rely on
the latter.

Note in particular that type and length of a record are not protected
by encryption. IFf this information is itself sensitive, application

designers may wish to take steps (padding, cover traffic) to minimize
information leakage.

6.1. Connection States

A TLS connection state is the operating environment of the TLS Record
Protocol. It specifies a compression algorithm, an encryption
algorithm, and a MAC algorithm. In addition, the parameters for
these algorithms are known: the MAC key and the bulk encryption keys
for the connection in both the read and the write directions.
Logically, there are always four connection states outstanding: the
current read and write states, and the pending read and write states.
All records are processed under the current read and write states.
The security parameters for the pending states can be set by the TLS
Handshake Protocol, and the ChangeCipherSpec can selectively make
either of the pending states current, in which case the appropriate
current state is disposed of and replaced with the pending state; the
pending state is then reinitialized to an empty state. It is illegal
to make a state that has not been initialized with security
parameters a current state. The initial current state always
specifies that no encryption, compression, or MAC will be used.

The security parameters for a TLS Connection read and write state are
set by providing the following values:

connection end
Whether this entity is considered the "client"™ or the 'server' in
this connection.

PRF algorithm

An algorithm used to generate keys from the master secret (see
Sections 5 and 6.3).
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bulk encryption algorithm
An algorithm to be used for bulk encryption. This specification
includes the key size of this algorithm, whether it is a block,
stream, or AEAD cipher, the block size of the cipher (if
appropriate), and the lengths of explicit and implicit
initialization vectors (or nonces).

MAC algorithm
An algorithm to be used for message authentication. This
specification includes the size of the value returned by the MAC
algorithm.

compression algorithm
An algorithm to be used for data compression. This specification
must include all information the algorithm requires to do
compression.

master secret
A 48-byte secret shared between the two peers in the connection.

client random
A 32-byte value provided by the client.

server random
A 32-byte value provided by the server.

These parameters are defined in the presentation language as:
enum { server, client } ConnectionEnd;
enum { tls _prf_sha256 } PRFAlgorithm;

enum { null, rc4, 3des, aes }
BulkCipherAlgorithm;

enum { stream, block, aead } CipherType;

enum { null, hmac_md5, hmac_shal, hmac_sha256,
hmac_sha384, hmac_sha512} MACAlgorithm;

enum { null(0), (255) } CompressionMethod;

/* The algorithms specified in CompressionMethod, PRFAlgorithm,
BulkCipherAlgorithm, and MACAlgorithm may be added to. */
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struct {
ConnectionEnd entity;
PRFAlgorithm prf_algorithm;
BulkCipherAlgorithm bulk_cipher_algorithm;
CipherType cipher_type;
uints enc_key length;
uints block length;
uint8 fixed_iv_length;
uints record_iv_length;
MACAlgorithm mac_algorithm;
uint8 mac_length;
uints mac_key length;
CompressionMethod compression_algorithm;
opaque master_secret[48];
opague client_random[32];
opaque server_random[32];

August 2008

} SecurityParameters;

The record layer will use the security parameters to generate the
following six items (some of which are not required by all ciphers,
and are thus empty):

client write MAC key

server write MAC key

client write encryption key
server write encryption key
client write 1V

server write 1V

The client write parameters are used by the server when receiving and
processing records and vice versa. The algorithm used for generating
these items from the security parameters is described in Section 6.3.

Once the security parameters have been set and the keys have been
generated, the connection states can be instantiated by making them
the current states. These current states MUST be updated for each
record processed. Each connection state includes the following
elements:

compression state
The current state of the compression algorithm.

cipher state
The current state of the encryption algorithm. This will consist
of the scheduled key for that connection. For stream ciphers,
this will also contain whatever state information iIs necessary to
allow the stream to continue to encrypt or decrypt data.
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MAC key
The MAC key for this connection, as generated above.

sequence number
Each connection state contains a sequence number, which is
maintained separately for read and write states. The sequence
number MUST be set to zero whenever a connection state is made the
active state. Sequence numbers are of type uint64 and may not
exceed 2764-1. Sequence numbers do not wrap. If a TLS
implementation would need to wrap a sequence number, it must
renegotiate instead. A sequence number is incremented after each
record: specifically, the first record transmitted under a
particular connection state MUST use sequence number O.

6.2. Record Layer

The TLS record layer receives uninterpreted data from higher layers
in non-empty blocks of arbitrary size.

6.2.1. Fragmentation

The record layer fragments information blocks into TLSPlaintext
records carrying data in chunks of 2714 bytes or less. Client
message boundaries are not preserved in the record layer (i.e.,
multiple client messages of the same ContentType MAY be coalesced
into a single TLSPlaintext record, or a single message MAY be
fragmented across several records).

struct {
uint8 major;
uint8 minor;

} ProtocolVersion;

enum {
change_cipher_spec(20), alert(21), handshake(22),
application_data(23), (255)

} ContentType;

struct {

ContentType type;

ProtocolVersion version;

uintlé length;

opaque fragment[TLSPlaintext.length];
} TLSPlaintext;

type
The higher-level protocol used to process the enclosed fragment.
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version

The version of the protocol being employed. This document
describes TLS Version 1.2, which uses the version { 3, 3 }. The
version value 3.3 is historical, deriving from the use of {3, 1}
for TLS 1.0. (See Appendix A.1l.) Note that a client that
supports multiple versions of TLS may not know what version will
be employed before it receives the ServerHello. See Appendix E
for discussion about what record layer version number should be
employed for ClientHello.

length
The length (in bytes) of the following TLSPlaintext.fragment. The
length MUST NOT exceed 2714.

fragment
The application data. This data is transparent and treated as an
independent block to be dealt with by the higher-level protocol
specified by the type field.

Implementations MUST NOT send zero-length fragments of Handshake,
Alert, or ChangeCipherSpec content types. Zero-length fragments of
Application data MAY be sent as they are potentially useful as a
traffic analysis countermeasure.

Note: Data of different TLS record layer content types MAY be
interleaved. Application data is generally of lower precedence for
transmission than other content types. However, records MUST be
delivered to the network in the same order as they are protected by
the record layer. Recipients MUST receive and process interleaved
application layer traffic during handshakes subsequent to the first
one on a connection.

6.2.2. Record Compression and Decompression

All records are compressed using the compression algorithm defined in
the current session state. There is always an active compression
algorithm; however, initially it is defined as
CompressionMethod.null. The compression algorithm translates a
TLSPlaintext structure into a TLSCompressed structure. Compression
functions are initialized with default state information whenever a
connection state is made active. [RFC3749] describes compression
algorithms for TLS.

Compression must be lossless and may not increase the content length

by more than 1024 bytes. If the decompression function encounters a

TLSCompressed.fragment that would decompress to a length in excess of
2714 bytes, it MUST report a fatal decompression failure error.
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struct {
ContentType type; /* same as TLSPlaintext.type */
ProtocolVersion version;/* same as TLSPlaintext.version */
uintl6 length;
opaque fragment[TLSCompressed.length];

} TLSCompressed;

length
The length (in bytes) of the following TLSCompressed.fragment.
The length MUST NOT exceed 2714 + 1024.

fragment
The compressed form of TLSPlaintext.fragment.

Note: A CompressionMethod.null operation is an identity operation;
no fields are altered.

Implementation note: Decompression functions are responsible for
ensuring that messages cannot cause internal buffer overflows.

6.2.3. Record Payload Protection

The encryption and MAC functions translate a TLSCompressed
structure into a TLSCiphertext. The decryption functions reverse
the process. The MAC of the record also includes a sequence
number so that missing, extra, or repeated messages are
detectable.

struct {
ContentType type;
ProtocolVersion version;
uintlé length;
select (SecurityParameters.cipher_type) {
case stream: GenericStreamCipher;
case block: GenericBlockCipher;
case aead: GenericAEADCipher;
} fragment;
} TLSCiphertext;

type
The type field is identical to TLSCompressed.type.

version
The version field is identical to TLSCompressed.version.

length

The length (in bytes) of the following TLSCiphertext.fragment.
The length MUST NOT exceed 2714 + 2048.
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fragment
The encrypted form of TLSCompressed.fragment, with the MAC.

6.2.3.1. Null or Standard Stream Cipher

Stream ciphers (including BulkCipherAlgorithm.null; see Appendix A.6)
convert TLSCompressed.fragment structures to and from stream
TLSCiphertext.fragment structures.

stream-ciphered struct {
opaque content[TLSCompressed.length];
opaque MAC[SecurityParameters.mac_length];
} GenericStreamCipher;

The MAC is generated as:

MAC(MAC_write_key, seq_num +
TLSCompressed.type +
TLSCompressed.version +
TLSCompressed. length +
TLSCompressed.fragment) ;

where "+" denotes concatenation.

seq_num
The sequence number for this record.

MAC
The MAC algorithm specified by SecurityParameters.mac_algorithm.

Note that the MAC is computed before encryption. The stream cipher
encrypts the entire block, including the MAC. For stream ciphers
that do not use a synchronization vector (such as RC4), the stream
cipher state from the end of one record is simply used on the
subsequent packet. If the cipher suite is TLS_NULL _WITH_NULL_NULL,
encryption consists of the identity operation (i.e., the data is not
encrypted, and the MAC size is zero, implying that no MAC is used).
For both null and stream ciphers, TLSCiphertext.length is
TLSCompressed. length plus SecurityParameters.mac_length.

6.2.3.2. CBC Block Cipher
For block ciphers (such as 3DES or AES), the encryption and MAC

functions convert TLSCompressed.fragment structures to and from block
TLSCiphertext.fragment structures.
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struct {
opagque l1V[SecurityParameters.record_iv_length];
block-ciphered struct {
opaque content[TLSCompressed.length];
opaque MAC[SecurityParameters.mac_length];
uint8 padding[GenericBlockCipher.padding_length];
uint8 padding_length;

} GenéricBlockCipher;

The MAC is generated as described in Section 6.2.3.1.

v
The Initialization Vector (1V) SHOULD be chosen at random, and
MUST be unpredictable. Note that in versions of TLS prior to 1.1,
there was no IV field, and the last ciphertext block of the
previous record (the "CBC residue™) was used as the 1V. This was
changed to prevent the attacks described in [CBCATT]. For block
ciphers, the IV length is of length
SecurityParameters.record_iv_length, which is equal to the
SecurityParameters._block_size.

padding
Padding that is added to force the length of the plaintext to be
an integral multiple of the block cipher’s block length. The
padding MAY be any length up to 255 bytes, as long as it results
in the TLSCiphertext.length being an integral multiple of the
block length. Lengths longer than necessary might be desirable to
frustrate attacks on a protocol that are based on analysis of the
lengths of exchanged messages. Each uint8 in the padding data
vector MUST be filled with the padding length value. The receiver
MUST check this padding and MUST use the bad record mac alert to
indicate padding errors.

padding_length
The padding length MUST be such that the total size of the
GenericBlockCipher structure is a multiple of the cipher’s block
length. Legal values range from zero to 255, inclusive. This

length specifies the length of the padding field exclusive of the
padding_