
The package piton∗

F. Pantigny
fpantigny@wanadoo.fr

January 8, 2026

Abstract

This document is the documented code of the LuaLaTeX package piton. It is not its user’s
guide. The guide of utilisation is the document piton.pdf (with a French translation: piton-
french.pdf).

The development of the extension piton is done on the following GitHub depot:
https://github.com/fpantigny/piton

1 Introduction
The main job of the package piton is to take in as input a computer listing and to send back to LaTeX
as output that code with interlaced LaTeX instructions of formatting.
In fact, all that job is done by a lpeg called LPEG1[<language>] where <language> is a Lua string
which is the name of the computer language. That lpeg, when matched against the string of a
computer listing, returns as capture a Lua table containing data to send to LaTeX. The only thing
to do after will be to apply tex.tprint to each element of that table.1
In fact, there is a variant of the lpeg LPEG1[<language>], called LPEG2[<language>]. The latter
uses the first one and will be used to format the whole content of an environment {Piton} (with, in
particular, small tuning for the beginning and the end).

Consider, for example, the following Python code:
def parity(x):
 return x%2
The capture returned by the lpeg LPEG1['python'] (in Lua, this may also be written LPEG1.python)
against that code is the Lua table containing the following elements :

∗This document corresponds to the version 4.11 of piton, at the date of 2026/01/08.
1Recall that tex.tprint takes in as argument a Lua table whose first component is a “catcode table” and the second

element a string. The string will be sent to LaTeX with the regime of catcodes specified by the catcode table. If no
catcode table is provided, the standard catcodes of LaTeX will be used.

1

{ "__piton_begin_line:" }a

{ "{\PitonStyle{Keyword}{" }b

{ luatexbase.catcodetables.otherc, "def" }
{ "}}" }
{ luatexbase.catcodetables.other, " " }
{ "{\PitonStyle{Name.Function}{" }
{ luatexbase.catcodetables.other, "parity" }
{ "}}" }
{ luatexbase.catcodetables.other, "(" }
{ luatexbase.catcodetables.other, "x" }
{ luatexbase.catcodetables.other, ")" }
{ luatexbase.catcodetables.other, ":" }
{ "__piton_end_line: __piton_par: __piton_begin_line:" }
{ luatexbase.catcodetables.other, " " }
{ "{\PitonStyle{Keyword}{" }
{ luatexbase.catcodetables.other, "return" }
{ "}}" }
{ luatexbase.catcodetables.other, " " }
{ luatexbase.catcodetables.other, "x" }
{ "{\PitonStyle{Operator}{" }
{ luatexbase.catcodetables.other, "%" }
{ "}}" }
{ "{\PitonStyle{Number}{" }
{ luatexbase.catcodetables.other, "2" }
{ "}}" }
{ "__piton_end_line:" }

aEach line of the computer listings will be encapsulated in a pair: _@@_begin_line: – \@@_end_line:. The token
\@@_end_line: must be explicit because it will be used as marker in order to delimit the argument of the command
\@@_begin_line:. Both tokens _@@_begin_line: and \@@_end_line: will be nullified in the command \piton (since
there can’t be lines breaks in the argument of a command \piton).

bThe lexical elements for which we have a piton style will be formatted via the use of the command \PitonStyle.
Such an element is typeset in LaTeX via the syntax {\PitonStyle{style}{...}} because the instructions inside an
\PitonStyle may be both semi-global declarations like \bfseries and commands with one argument like \fbox.

cluatexbase.catcodetables.other is a mere number which corresponds to the “catcode table” whose all characters
have the catcode “other” (which means that they will be typeset by LaTeX verbatim).

We give now the LaTeX code which is sent back by Lua to TeX (we have written on several lines
for legibility but no character \r will be sent to LaTeX). The characters which are greyed-out are
sent to LaTeX with the catcode “other” (=12). All the others characters are sent with the regime of
catcodes of L3 (as set by \ExplSyntaxOn).

__piton_begin_line:{\PitonStyle{Keyword}{def}}
 {\PitonStyle{Name.Function}{parity}}(x):__piton_end_line:__piton_par:
__piton_begin_line: {\PitonStyle{Keyword}{return}}
 x{\PitonStyle{Operator}{%}}{\PitonStyle{Number}{2}}__piton_end_line:

2 The L3 part of the implementation
2.1 Declaration of the package

1 〈∗STY〉
2 \NeedsTeXFormat{LaTeX2e}
3 \ProvidesExplPackage
4 {piton}
5 {\PitonFileDate}
6 {\PitonFileVersion}
7 {Highlight computer listings with LPEG on LuaLaTeX}

8 \msg_new:nnn { piton } { latex-too-old }
9 {

10 Your~LaTeX~release~is~too~old. \\

2

11 You~need~at~least~the~version~of~2025-06-01. \\
12 If~you~use~Overleaf,~you~need~at~least~"TeX~Live~2025".\\
13 The~package~'piton'~won't~be~loaded.
14 }

15 \providecommand { \IfFormatAtLeastTF } { \@ifl@t@r \fmtversion }
16 \IfFormatAtLeastTF
17 { 2025-06-01 }
18 { }
19 { \msg_critical:nn { piton } { latex-too-old } }

The command \text provided by the package amstext will be used to allow the use of the command
\piton{...} (with the standard syntax) in mathematical mode.

20 \RequirePackage { amstext }

The command \marginalia of the package marginalia will be used for the margin notes created by
the keys paperclip and annotation.

21 \RequirePackage { marginalia }

The package transparent is compatible with pdfmanagement (which is not loaded by piton but which
is used for the key join when it is loaded).

22 \RequirePackage { transparent }

23 \cs_new_protected:Npn \@@_error:n { \msg_error:nn { piton } }
24 \cs_new_protected:Npn \@@_warning:n { \msg_warning:nn { piton } }
25 \cs_new_protected:Npn \@@_warning:nn { \msg_warning:nnn { piton } }
26 \cs_new_protected:Npn \@@_error:nn { \msg_error:nnn { piton } }
27 \cs_new_protected:Npn \@@_error:nnn { \msg_error:nnnn { piton } }
28 \cs_new_protected:Npn \@@_fatal:n { \msg_fatal:nn { piton } }
29 \cs_new_protected:Npn \@@_fatal:nn { \msg_fatal:nnn { piton } }
30 \cs_new_protected:Npn \@@_msg_new:nn { \msg_new:nnn { piton } }

With Overleaf (and also TeXPage), by default, a document is compiled in non-stop mode. When
there is an error, there is no way to the user to use the key H in order to have more information.
That’s why we decide to put that piece of information (for the messages with such information) in
the main part of the message when the key messages-for-Overleaf is used (at load-time).

31 \cs_new_protected:Npn \@@_msg_new:nnn #1 #2 #3
32 {
33 \bool_if:NTF \g_@@_messages_for_Overleaf_bool
34 { \msg_new:nnn { piton } { #1 } { #2 \\ #3 } }
35 { \msg_new:nnnn { piton } { #1 } { #2 } { #3 } }
36 }

We also create commands which will generate usually an error but only a warning on Overleaf. The
argument is given by curryfication.

37 \cs_new_protected:Npn \@@_error_or_warning:n
38 { \bool_if:NTF \g_@@_messages_for_Overleaf_bool \@@_warning:n \@@_error:n }
39 \cs_new_protected:Npn \@@_error_or_warning:nn
40 { \bool_if:NTF \g_@@_messages_for_Overleaf_bool \@@_warning:nn \@@_error:nn }

We try to detect whether the compilation is done on Overleaf. We use \c_sys_jobname_str because,
with Overleaf, the value of \c_sys_jobname_str is always “output”.

41 \bool_new:N \g_@@_messages_for_Overleaf_bool
42 \bool_gset:Nn \g_@@_messages_for_Overleaf_bool
43 {
44 \str_if_eq_p:on \c_sys_jobname_str { _region_ } % for Emacs
45 || \str_if_eq_p:on \c_sys_jobname_str { output } % for Overleaf
46 }

47 \@@_msg_new:nn { LuaLaTeX~mandatory }
48 {

3

49 LuaLaTeX~is~mandatory.\\
50 The~package~'piton'~requires~the~engine~LuaLaTeX.\\
51 \str_if_eq:onT \c_sys_jobname_str { output }
52 { If~you~use~Overleaf,~you~can~switch~to~LuaLaTeX~in~
53 "Settings~>~Compiler"~and~if~you~use~TeXPage,
54 ~you~should~go~in~"Settings". \\ }
55 \IfClassLoadedT { beamer }
56 {
57 Since~you~use~Beamer,~don't~forget~to~use~piton~in~frames~with~
58 the~key~'fragile'.\\
59 }
60 \IfClassLoadedT { ltx-talk }
61 {
62 Since~you~use~'ltx-talk',~don't~forget~to~use~piton~in~
63 environments~'frame*'.\\
64 }
65 That~error~is~fatal.
66 }
67 \sys_if_engine_luatex:F { \@@_fatal:n { LuaLaTeX~mandatory } }

68 \RequirePackage { luacode }

69 \@@_msg_new:nnn { piton.lua~not~found }
70 {
71 The~file~'piton.lua'~can't~be~found.\\
72 This~error~is~fatal.\\
73 If~you~want~to~know~how~to~retrieve~the~file~'piton.lua',~type~H~<return>.
74 }
75 {
76 On~the~site~CTAN,~go~to~the~page~of~'piton':~https://ctan.org/pkg/piton.~
77 The~file~'README.md'~explains~how~to~retrieve~the~files~'piton.sty'~and~
78 'piton.lua'.
79 }

80 \file_if_exist:nF { piton.lua } { \@@_fatal:n { piton.lua~not~found } }

The boolean \g_@@_footnotehyper_bool will indicate if the option footnotehyper is used.
81 \bool_new:N \g_@@_footnotehyper_bool

The boolean \g_@@_footnote_bool will indicate if the option footnote is used, but quickly, it will
also be set to true if the option footnotehyper is used.

82 \bool_new:N \g_@@_footnote_bool

83 \bool_new:N \g_@@_beamer_bool

We define a set of keys for the options at load-time.
84 \keys_define:nn { piton }
85 {
86 footnote .bool_gset:N = \g_@@_footnote_bool ,
87 footnotehyper .bool_gset:N = \g_@@_footnotehyper_bool ,
88 footnote .usage:n = load ,
89 footnotehyper .usage:n = load ,
90

91 beamer .bool_gset:N = \g_@@_beamer_bool ,
92 beamer .default:n = true ,
93 beamer .usage:n = load ,
94

95 unknown .code:n = \@@_error:n { Unknown~key~for~package }
96 }

97 \@@_msg_new:nn { Unknown~key~for~package }
98 {

4

99 Unknown~key.\\
100 You~have~used~the~key~'\l_keys_key_str'~when~loading~piton~
101 but~the~only~keys~available~here~are~'beamer',~'footnote'~
102 and~'footnotehyper'.~Other~keys~are~available~in~
103 \token_to_str:N \PitonOptions.\\
104 That~key~will~be~ignored.
105 }

We process the options provided by the user at load-time.
106 \ProcessKeyOptions

107 \IfClassLoadedT { beamer } { \bool_gset_true:N \g_@@_beamer_bool }
108 \IfClassLoadedT { ltx-talk } { \bool_gset_true:N \g_@@_beamer_bool }
109 \IfPackageLoadedT { beamerarticle } { \bool_gset_true:N \g_@@_beamer_bool }

110 \lua_now:e
111 {
112 piton = piton~or~{ }
113 piton.last_code = ''
114 piton.last_language = ''
115 piton.join = ''
116 piton.write = ''
117 piton.path_write = ''
118 \bool_if:NT \g_@@_beamer_bool { piton.beamer = true }
119 }

120 \RequirePackage { xcolor }

121 \@@_msg_new:nn { footnote~with~footnotehyper~package }
122 {
123 Footnote~forbidden.\\
124 You~can't~use~the~option~'footnote'~because~the~package~
125 footnotehyper~has~already~been~loaded.~
126 If~you~want,~you~can~use~the~option~'footnotehyper'~and~the~footnotes~
127 within~the~environments~of~piton~will~be~extracted~with~the~tools~
128 of~the~package~footnotehyper.\\
129 If~you~go~on,~the~package~footnote~won't~be~loaded.
130 }

131 \@@_msg_new:nn { footnotehyper~with~footnote~package }
132 {
133 You~can't~use~the~option~'footnotehyper'~because~the~package~
134 footnote~has~already~been~loaded.~
135 If~you~want,~you~can~use~the~option~'footnote'~and~the~footnotes~
136 within~the~environments~of~piton~will~be~extracted~with~the~tools~
137 of~the~package~footnote.\\
138 If~you~go~on,~the~package~footnotehyper~won't~be~loaded.
139 }

140 \bool_if:NT \g_@@_footnote_bool
141 {

The class beamer has its own system to extract footnotes and that’s why we have nothing to do if
beamer is used.

142 \IfClassLoadedTF { beamer }
143 { \bool_gset_false:N \g_@@_footnote_bool }
144 {
145 \IfPackageLoadedTF { footnotehyper }
146 { \@@_error:n { footnote~with~footnotehyper~package } }
147 { \usepackage { footnote } }
148 }
149 }

150 \bool_if:NT \g_@@_footnotehyper_bool
151 {

5

The class beamer has its own system to extract footnotes and that’s why we have nothing to do if
beamer is used.

152 \IfClassLoadedTF { beamer }
153 { \bool_gset_false:N \g_@@_footnote_bool }
154 {
155 \IfPackageLoadedTF { footnote }
156 { \@@_error:n { footnotehyper~with~footnote~package } }
157 { \usepackage { footnotehyper } }
158 \bool_gset_true:N \g_@@_footnote_bool
159 }
160 }

The flag \g_@@_footnote_bool is raised and so, we will only have to test \g_@@_footnote_bool in
order to know if we have to insert an environment {savenotes}.

2.2 Parameters and technical definitions
161 \dim_new:N \l_@@_rounded_corners_dim

162 \bool_new:N \l_@@_in_label_bool

163 \dim_new:N \l_@@_tmpc_dim

The listing that we have to format will be stored in \l_@@_listing_tl. That applies both for
the command \PitonInputFile and the environment {Piton} (or another environment defined by
\NewPitonEnvironment).

164 \tl_new:N \l_@@_listing_tl

The content of an environment such as {Piton} will be composed first in the following box, but that
box will (sometimes) be unvboxed at the end.
We need a global variable (see \@@_add_bg_and_right_nb_to_output_box:).

165 \box_new:N \g_@@_output_box

The following string will contain the name of the computer language considered (the initial value is
python).

166 \str_new:N \l_piton_language_str
167 \str_set:Nn \l_piton_language_str { python }

Each time an environment of piton is used, the computer listing in the body of that environment will
be stored in the following global string.

168 \tl_new:N \g_piton_last_code_tl

The following parameter corresponds to the key path (which is the path used to include files by
\PitonInputFile). Each component of that sequence will be a string (type str).

169 \seq_new:N \l_@@_path_seq

The names of all the join files will be stored in the following sequence:
170 \seq_new:N \g_@@_join_seq

The following parameter corresponds to the key path-write (which is the path used when writing
files from listings inserted in the environments of piton by use of the key write).

171 \str_new:N \l_@@_path_write_str

The following parameter corresponds to the key tcolorbox.
172 \bool_new:N \l_@@_tcolorbox_bool

When the key tcolorbox is used, you will have to take into account the width of the graphical
elements added by tcolorbox on both sides of the listing. We will put that quantity in the following
variable.

173 \dim_new:N \l_@@_tcb_margins_dim

The following parameter corresponds to the key box.
174 \str_new:N \l_@@_box_str

In order to have a better control over the keys.
175 \bool_new:N \l_@@_in_PitonOptions_bool

6

176 \bool_new:N \l_@@_in_PitonInputFile_bool

The following parameter corresponds to the key font-command.
177 \tl_new:N \l_@@_font_command_tl
178 \tl_set:Nn \l_@@_font_command_tl { \ttfamily }

We will compute (with Lua) the numbers of lines of the listings (or chunks of listings when split-
on-empty-lines is in force) and store it in the following counter.

179 \int_new:N \g_@@_nb_lines_int

The same for the number of non-empty lines of the listings.
180 \int_new:N \l_@@_nb_non_empty_lines_int

The following counter will be used to count the lines during the composition. It will take into account
all the lines, empty or not empty. It won’t be used to print the numbers of the lines but will be used
to allow or disallow line breaks (when splittable is in force) and for the color of the background
(when background-color is used with a list of colors or when \rowcolor is used).

181 \int_new:N \g_@@_line_int

The following counter corresponds to the key splittable of \PitonOptions. If the value of
\l_@@_splittable_int is equal to n, then no line break can occur within the first n lines or the last
n lines of a listing (or a chunk of listings when the key split-on-empty-lines is in force).

182 \int_new:N \l_@@_splittable_int

An initial value of splittable equal to 100 is equivalent to say that the environments {Piton} are
unbreakable.

183 \int_set:Nn \l_@@_splittable_int { 100 }

When the key split-on-empty-lines will be in force, then the following token list will be inserted
between the chunks of code (the computer listing provided by the end user is split in chunks on the
empty lines in the code).

184 \tl_new:N \l_@@_split_separation_tl
185 \tl_set:Nn \l_@@_split_separation_tl
186 { \vspace { \baselineskip } \vspace { -1.25pt } }

That parameter must contain elements to be inserted in vertical mode by TeX.

The following string corresponds to the key background-color of \PitonOptions.
187 \clist_new:N \l_@@_bg_color_clist

We will also keep in memory the length of the previous clist (for efficiency).
188 \int_new:N \l_@@_bg_colors_int

The package piton will also detect the lines of code which correspond to the user input in a Python
console, that is to say the lines of code beginning with >>> and It’s possible, with the key
prompt-background-color, to require a background for these lines of code (and the other lines of
code will have the standard background color specified by background-color).

189 \tl_new:N \l_@@_prompt_bg_color_tl
190 \tl_set:Nn \l_@@_prompt_bg_color_tl { gray!15 }

191 \tl_new:N \l_@@_space_in_string_tl

The following parameters correspond to the keys begin-range and end-range of the command
\PitonInputFile.

192 \str_new:N \l_@@_begin_range_str
193 \str_new:N \l_@@_end_range_str

The following boolean corresponds to the key math-comments (available only in the preamble of the
LaTeX document).

194 \bool_new:N \g_@@_math_comments_bool

The argument of \PitonInputFile.
195 \str_new:N \l_@@_file_name_str

The following flag corresponds to the key print. The initial value of that parameter will be true
(and not false) since, of course, by default, we want to print the content of the environment {Piton}

7

196 \bool_new:N \l_@@_print_bool
197 \bool_set_true:N \l_@@_print_bool

The parameter \l_@@_write_str corresponds to the key write.
198 \str_new:N \l_@@_write_str

The parameter \l_@@_join_str corresponds to the key join.
199 \str_new:N \l_@@_join_str
200 \str_new:N \l_@@_join_separation_str
201 \str_set:Nn \l_@@_join_separation_str { }

The following boolean corresponds to the keys paperclip and annotation.
202 \bool_new:N \l_@@_paperclip_bool
203 \str_new:N \l_@@_paperclip_str
204 \bool_new:N \l_@@_annotation_bool

The listings embedded in the pdf by the key paperclip will be numbered by the following counter.
205 \int_new:N \g_@@_paperclip_int

The following boolean corresponds to the key show-spaces.
206 \bool_new:N \l_@@_show_spaces_bool

The following booleans correspond to the keys break-lines and indent-broken-lines.
207 \bool_new:N \l_@@_break_lines_in_Piton_bool
208 \bool_set_true:N \l_@@_break_lines_in_Piton_bool
209 \bool_new:N \l_@@_indent_broken_lines_bool

The following token list corresponds to the key continuation-symbol.
210 \tl_new:N \l_@@_continuation_symbol_tl
211 \tl_set:Nn \l_@@_continuation_symbol_tl { + }

The following token list corresponds to the key continuation-symbol-on-indentation. The name
has been shorten to csoi.

212 \tl_new:N \l_@@_csoi_tl
213 \tl_set:Nn \l_@@_csoi_tl { $ \hookrightarrow \; $ }

The following token list corresponds to the key end-of-broken-line.
214 \tl_new:N \l_@@_end_of_broken_line_tl
215 \tl_set:Nn \l_@@_end_of_broken_line_tl { \hspace* { 0.5em } \textbackslash }

The following boolean corresponds to the key break-lines-in-piton.
216 \bool_new:N \l_@@_break_lines_in_piton_bool

The following flag will be raised when the key max-width is used (and when width is used with the
key min, which is equivalent to max-width=\linewidth). Note also that the key box sets width=min
(except if min is used with a numerical value).

217 \bool_new:N \l_@@_minimize_width_bool

The following dimension corresponds to the key width. It’s meant to be the whole width of the
environment (for instance, the width of the box of tcolorbox when the key tcolorbox is used). The
initial value is 0 pt which means that the end user has not used the key. In that case, it will be set
equal to the current value of \linewidth in \@@_pre_composition:.
However if max-width is used (or width=min which is equivalent to max-width=\linewidth), the
actual width of the final environment in the pdf may (potentially) be smaller.

218 \dim_new:N \l_@@_width_dim

\l_@@_listing_width_dim will be the width of the listing taking into account the lines of code (of
course) but also:

• l_@@_left_margin_dim (for the numbers of lines);

• a small margin when background-color is in force2).

2Remark that the mere use of \rowcolor does not add those small margins.

8

219 \dim_new:N \l_@@_listing_width_dim

However, if max-width is used (or width=min which is equivalent to max-width=\linewidth), that
length will be computed once again in \@@_create_output_box:

\l_@@_code_width_dim will be the length of the lines of code, without the potential margins (for the
backgrounds and for length-margin for the number of lines).
It will be computed in \@@_compute_code_width:.

220 \dim_new:N \l_@@_code_width_dim

221 \box_new:N \l_@@_line_box

The following dimension corresponds to the keys left-margin and right-margin.
222 \dim_new:N \l_@@_left_margin_dim
223 \dim_new:N \l_@@_right_margin_dim

The following boolean will be set when the key left-margin=auto is used.
224 \bool_new:N \l_@@_left_margin_auto_bool
225 \bool_new:N \l_@@_right_margin_auto_bool

The following dimension corresponds to the key numbers-sep of \PitonOptions.
226 \dim_new:N \l_@@_numbers_sep_dim
227 \dim_set:Nn \l_@@_numbers_sep_dim { 0.7 em }

The following parameter corresponds to the key numbers/step.
228 \int_new:N \l_@@_numbers_step_int
229 \int_set:Nn \l_@@_numbers_step_int { 1 }

When the key line-numbers/position is set to right, we will have to keep in memory the numbers
of the lines in the following sequence.

230 \seq_new:N \g_@@_visual_line_numbers_seq

Be careful. The following sequence \g_@@_languages_seq is not the list of the languages supported
by piton. It’s the list of the languages for which at least a user function has been defined. We need
that sequence only for the command \PitonClearUserFunctions when it is used without its optional
argument: it must clear the whole list of languages for which at least a user function has been defined.

231 \seq_new:N \g_@@_languages_seq

232 \int_new:N \l_@@_tab_size_int
233 \int_set:Nn \l_@@_tab_size_int { 4 }

234 \cs_new_protected:Npn \@@_tab:
235 {
236 \bool_if:NTF \l_@@_show_spaces_bool
237 {
238 \hbox_set:Nn \l_tmpa_box
239 { \prg_replicate:nn \l_@@_tab_size_int { ~ } }
240 \dim_set:Nn \l_tmpa_dim { \box_wd:N \l_tmpa_box }
241 \(\mathcolor { gray }
242 { \hbox_to_wd:nn \l_tmpa_dim { \rightarrowfill } } \)
243 }
244 { \hbox:n { \prg_replicate:nn \l_@@_tab_size_int { ~ } } }
245 \int_gadd:Nn \g_@@_indentation_int \l_@@_tab_size_int
246 }

The following integer corresponds to the key gobble.
247 \int_new:N \l_@@_gobble_int

The following token list will be used only for the spaces in the strings.
248 \tl_set_eq:NN \l_@@_space_in_string_tl \nobreakspace

9

When the key break-lines-in-piton is set, that parameter will be replaced by \space (in \piton
with the standard syntax) and when the key show-spaces-in-strings is set, it will be replaced by
␣ (U+2423).
At each line, the following counter will count the spaces at the beginning.

249 \int_new:N \g_@@_indentation_int

In the environment {Piton}, the command \label will be linked to the following command.
250 \cs_new_protected:Npn \@@_label:n #1
251 {
252 \bool_if:NTF \l_@@_line_numbers_bool
253 {
254 \@bsphack
255 \protected@write \@auxout { }
256 {
257 \string \newlabel { #1 }
258 {
259 { \int_use:N \g_@@_visual_line_int }
260 { \thepage }
261 { }
262 { line.#1 }
263 { }
264 }
265 }
266 \@esphack
267 \IfPackageLoadedT { hyperref }
268 { \Hy@raisedlink { \hyper@anchorstart { line.#1 } \hyper@anchorend } }
269 }
270 { \@@_error:n { label~with~lines~numbers } }
271 }

The same goes for the command \zlabel if the zref package is loaded. Note that \label will also
be linked to \@@_zlabel:n if the key label-as-zlabel is set to true.

272 \cs_new_protected:Npn \@@_zlabel:n #1
273 {
274 \bool_if:NTF \l_@@_line_numbers_bool
275 {
276 \@bsphack
277 \protected@write \@auxout { }
278 {
279 \string \zref@newlabel { #1 }
280 {
281 \string \default { \int_use:N \g_@@_visual_line_int }
282 \string \page { \thepage }
283 \string \zc@type { line }
284 \string \anchor { line.#1 }
285 }
286 }
287 \@esphack
288 \IfPackageLoadedT { hyperref }
289 { \Hy@raisedlink { \hyper@anchorstart { line.#1 } \hyper@anchorend } }
290 }
291 { \@@_error:n { label~with~lines~numbers } }
292 }

In the environments {Piton} the command \rowcolor will be linked to the following one.
293 \NewDocumentCommand { \@@_rowcolor:n } { o m }
294 {
295 \tl_gset:ce
296 { g_@@_color_ \int_eval:n { \g_@@_line_int + 1 }_ tl }
297 { \tl_if_novalue:nTF { #1 } { #2 } { [#1] { #2 } } }
298 \bool_gset_true:N \g_@@_rowcolor_inside_bool
299 }

10

In the command piton (in fact in \@@_piton_standard and \@@_piton_verbatim, the command
\rowcolor will be linked to the following one (in order to nullify its effect).

300 \NewDocumentCommand { \@@_noop_rowcolor } { o m } { }

The following commands correspond to the keys marker/beginning and marker/end. The values of
that keys are functions that will be applied to the “range” specified by the end user in an individual
\PitonInputFile. They will construct the markers used to find textually in the external file loaded
by piton the part which must be included (and formatted).
These macros must not be protected.

301 \cs_new:Npn \@@_marker_beginning:n #1 { }
302 \cs_new:Npn \@@_marker_end:n #1 { }

The following token list will be evaluated at the end of \@@_begin_line:... \@@_end_line: and
cleared at the end. It will be used by LPEG acting between the lines of the Python code in order to
add instructions to be executed in vertical mode between the lines.

303 \tl_new:N \g_@@_after_line_tl

The spaces at the end of a line of code are deleted by piton. However, it’s not actually true: they are
replace by \@@_trailing_space:.

304 \cs_new_protected:Npn \@@_trailing_space: { }

When we have to rescan some pieces of code, we will use \@@_piton:n and that command
\@@_piton:n will set \@@_trailing_space: equal to \space.

305 \bool_new:N \g_@@_color_is_none_bool
306 \bool_new:N \g_@@_next_color_is_none_bool

307 \bool_new:N \g_@@_rowcolor_inside_bool

2.3 Detected commands
There are four keys for “detected commands and environments”: detected-commands, raw-
detected-commands, beamer-commands and beamer-environments.
In fact, there is also vertical-detected-commands but has a special treatment.
For each of those keys, we keep a clist of the names of such detected commands and environments.
For the commands, the corresponding clist will contain the name of the commands wihtout the
backlash.

308 \clist_new:N \l_@@_detected_commands_clist
309 \clist_new:N \l_@@_raw_detected_commands_clist
310 \clist_new:N \l_@@_beamer_commands_clist
311 \clist_set:Nn \l_@@_beamer_commands_clist
312 { uncover, only , visible , invisible , alert , action}
313 \clist_new:N \l_@@_beamer_environments_clist
314 \clist_set:Nn \l_@@_beamer_environments_clist
315 { uncoverenv , onlyenv , visibleenv , invisibleenv , alertenv , actionenv }

Remark that, since we have used clists, these clists, as token lists are “purified”: there is no empty
component and for each component, there is no space on both sides.

Of course, the value of those clists may be modified during the preamble of the document by using
the corresponding key (detected-commands, etc.).
However, after the \begin{document}, it’s no longer possible to modify those clists because their
contents will be used in the construction of the main lpeg for each computer language.

However, in a \AtBeginDocument, we will convert those clists into “toks registers” of TeX.
316 \hook_gput_code:nnn { begindocument } { . }
317 {

11

318 \newtoks \PitonDetectedCommands
319 \newtoks \PitonRawDetectedCommands
320 \newtoks \PitonBeamerCommands
321 \newtoks \PitonBeamerEnvironments

L3 does not support those “toks registers” but it’s still possible to affect to the “toks registers” the
content of the clists with a L3-like syntax.

322 \exp_args:NV \PitonDetectedCommands \l_@@_detected_commands_clist
323 \exp_args:NV \PitonRawDetectedCommands \l_@@_raw_detected_commands_clist
324 \exp_args:NV \PitonBeamerCommands \l_@@_beamer_commands_clist
325 \exp_args:NV \PitonBeamerEnvironments \l_@@_beamer_environments_clist
326 }

Then at the beginning of the document, when we will load the Lua file piton.lua, we will read those
“toks registers” within Lua (with tex.toks) and convert them into Lua tables (and, then, use those
tables to construct lpeg).

When the key vertical-detected-commands is used, we will have to redefine the corresponding
commands in \@@_pre_composition:.
The instructions for these redefinitions will be put in the following token list.

327 \tl_new:N \g_@@_def_vertical_commands_tl

328 \cs_new_protected:Npn \@@_vertical_commands:n #1
329 {
330 \clist_put_right:Nn \l_@@_raw_detected_commands_clist { #1 }
331 \clist_map_inline:nn { #1 }
332 {
333 \cs_set_eq:cc { @@ _ old _ ##1 : } { ##1 }
334 \cs_new_protected:cn { @@ _ new _ ##1 : n }
335 {
336 \bool_if:nTF
337 { \l_@@_tcolorbox_bool || ! \str_if_empty_p:N \l_@@_box_str }
338 {
339 \tl_gput_right:Nn \g_@@_after_line_tl
340 { \use:c { @@ _old _ ##1 : } { ####1 } }
341 }
342 {
343 \cs_if_exist:cTF { g_@@_after_line _ \int_use:N \g_@@_line_int _ tl }
344 { \tl_gput_right:cn }
345 { \tl_gset:cn }
346 { g_@@_after_line _ \int_eval:n { \g_@@_line_int + 1 } _ tl }
347 { \use:c { @@ _old _ ##1 : } { ####1 } }
348 }
349 }
350 \tl_gput_right:Nn \g_@@_def_vertical_commands_tl
351 { \cs_set_eq:cc { ##1 } { @@ _ new _ ##1 : n } }
352 }
353 }

2.4 Treatment of a line of code
354 \cs_new_protected:Npn \@@_replace_spaces:n #1
355 {
356 \tl_set:Nn \l_tmpa_tl { #1 }
357 \bool_if:NTF \l_@@_show_spaces_bool
358 {
359 \tl_set:Nn \l_@@_space_in_string_tl { ␣ } % U+2423
360 \tl_replace_all:NVn \l_tmpa_tl \c_catcode_other_space_tl { ␣ } % U+2423
361 }
362 {

12

If the key break-lines-in-Piton is in force, we replace all the characters U+0020 (that is to say
the spaces) by \@@_breakable_space:. Remark that, except the spaces inserted in the LaTeX
comments (and maybe in the math comments), all these spaces are of catcode “other” (=12) and are
unbreakable.

363 \bool_if:NT \l_@@_break_lines_in_Piton_bool
364 {
365 \tl_if_eq:NnF \l_@@_space_in_string_tl { ␣ }
366 { \tl_set_eq:NN \l_@@_space_in_string_tl \@@_breakable_space: }

In the following code, we have to replace all the spaces in the token list \l_tmpa_tl. That means that
this replacement must be “recursive”: even the spaces which are within brace groups ({...}) must
be replaced. For instance, the spaces in long strings of Python are within such groups since there are
within a command \PitonStyle{String.Long}{...}. That’s why the use of \tl_replace_all:Nnn
is not enough.
The first implementation was using \tl_regex_replace_all:nnN
\tl_regex_replace_all:nnN { \x20 } { \c { @@_breakable_space: } } \l_tmpa_tl
but that programming was certainly slow.
Now, we use \tl_replace_all:NVn but, in the styles String.Long.Internal we replace the spaces
with \@@_breakable_space: by another use of the same technic with \tl_replace_all:NVn. We
do the same jog for the doc strings of Python and for the comments.

367 \tl_replace_all:NVn \l_tmpa_tl
368 \c_catcode_other_space_tl
369 \@@_breakable_space:
370 }
371 }
372 \l_tmpa_tl
373 }
374 \cs_generate_variant:Nn \@@_replace_spaces:n { o }

In the contents provided by Lua, each line of the Python code will be surrounded by \@@_begin_line:
and \@@_end_line:.
\@@_begin_line: is a TeX command with a delimited argument (\@@_end_line: is the marker for
the end of the argument).
However, we define also \@@_end_line: as no-op, because, when the last line of the listing is the end
of an environment of Beamer (eg \end{uncoverenv}), we will have a token \@@_end_line: added
at the end without any corresponding \@@_begin_line:).

375 \cs_set_protected:Npn \@@_end_line: { }

376 \cs_set_protected:Npn \@@_begin_line: #1 \@@_end_line:
377 {
378 \group_begin:
379 \int_gzero:N \g_@@_indentation_int

We put the potential number of line, the potential left and right margins.
380 \hbox_set:Nn \l_@@_line_box
381 {
382 \skip_horizontal:N \l_@@_left_margin_dim
383 \bool_if:NT \l_@@_line_numbers_bool
384 {

\l_tmpa_int will be equal to 1 when the current line is not empty.
385 \int_set:Nn \l_tmpa_int
386 {
387 \lua_now:e
388 {
389 tex.sprint
390 (

The following expression gives an integer of Lua (integer is a sub-type of number introduced in Lua
5.3), the output will be of the form "3" (and not "3.0") which is what we want for \int_set:Nn.

391 piton.empty_lines
392 [\int_eval:n { \g_@@_line_int + 1 }]
393)

13

394 }
395 }
396 \bool_lazy_or:nnT
397 { \int_compare_p:nNn \l_tmpa_int = \c_one_int }
398 { ! \l_@@_skip_empty_lines_bool }
399 { \int_gincr:N \g_@@_visual_line_int }
400

401 \bool_lazy_or:nnTF
402 { \int_compare_p:nNn \l_tmpa_int = \c_one_int }
403 { ! \l_@@_skip_empty_lines_bool && \l_@@_label_empty_lines_bool }
404 {
405 \bool_lazy_or:nnTF
406 { \int_compare_p:nNn { \l_@@_numbers_step_int } = 1 }
407 {
408 \int_compare_p:nNn
409 {
410 \int_mod:nn
411 { \g_@@_visual_line_int }
412 { \l_@@_numbers_step_int }
413 }
414 = \c_one_int
415 }
416 {
417 \str_if_eq:eeTF \l_@@_line_numbers_position_str { left }
418 { \@@_print_number_left: }
419 {
420 \seq_gput_right:Ne \g_@@_visual_line_numbers_seq
421 { \int_use:N \g_@@_visual_line_int }
422 }
423 }
424 {
425 \str_if_eq:eeT \l_@@_line_numbers_position_str { right }
426 { \seq_gput_right:Nn \g_@@_visual_line_numbers_seq { } }
427 }
428 }
429 {
430 \str_if_eq:eeT \l_@@_line_numbers_position_str { right }
431 { \seq_gput_right:Nn \g_@@_visual_line_numbers_seq { } }
432 }
433 }

If there is a background, we must remind that there is a left margin of 0.5 em for the background
(which will be added later).

434 \int_compare:nNnT \l_@@_bg_colors_int > { \c_zero_int }
435 {

... but if only if the key left-margin is not used !
436 \dim_compare:nNnT \l_@@_left_margin_dim = \c_zero_dim
437 { \skip_horizontal:n { 0.5 em } }
438 }

439 \bool_if:NTF \l_@@_minimize_width_bool
440 {
441 \hbox_set:Nn \l_tmpa_box
442 {
443 \language = -1
444 \raggedright
445 \strut
446 \@@_replace_spaces:n { #1 }
447 \strut \hfil
448 }
449 \dim_compare:nNnTF { \box_wd:N \l_tmpa_box } < \l_@@_code_width_dim
450 { \box_use:N \l_tmpa_box }
451 { \@@_vtop_of_code:n { #1 } }
452 }

14

453 { \@@_vtop_of_code:n { #1 } }
454 }

Now, the line of code is composed in the box \l_@@_line_box.

455 \box_set_dp:Nn \l_@@_line_box { \box_dp:N \l_@@_line_box + 1.25 pt }
456 \box_set_ht:Nn \l_@@_line_box { \box_ht:N \l_@@_line_box + 1.25 pt }

457 \box_use_drop:N \l_@@_line_box

458 \group_end:
459 \g_@@_after_line_tl
460 \tl_gclear:N \g_@@_after_line_tl
461 }

The following command will be used in \@@_begin_line: … \@@_end_line:.
462 \cs_new_protected:Npn \@@_vtop_of_code:n #1
463 {
464 \vbox_top:n
465 {
466 \hsize = \l_@@_code_width_dim
467 \language = -1
468 \raggedright
469 \strut
470 \@@_replace_spaces:n { #1 }
471 \strut \hfil
472 }
473 }

The following command will be used when the key background-color is used or when the key
line-numbers is used in conjunction with line-numbers/position=right.
The content of the line has been previously set in \l_@@_line_box.
That command is used only once, in \@@_add_bg_and_right_nb_to_output_box:.

474 \cs_new_protected:Npn \@@_add_bg_and_right_nb_to_line_and_use:
475 {
476 \vtop
477 {
478 \offinterlineskip
479 \hbox
480 {

The command \@@_compute_and_set_color: sets the current color but also sets the booleans
\g_@@_color_is_none_bool and \g_@@_next_color_is_none_bool. It uses the current value of
\l_@@_bg_color_clist, the value of \g_@@_line_int (the number of the current line) but also po-
tential token lists of the form \g_@@_color_12_tl if the end user has used the command \rowcolor.

481 \group_begin:
482 \@@_compute_and_set_color:

The colored panels are overlapping. However, if the special color none is used we must not put such
overlapping.

483 \dim_set:Nn \l_tmpa_dim { \box_dp:N \l_@@_line_box }
484 \bool_if:NT \g_@@_next_color_is_none_bool
485 { \dim_sub:Nn \l_tmpa_dim { 2.5 pt } }

When \g_@@_color_is_none_bool is in force, we will compose a \vrule of width 0 pt. We need
that \vrule because it will be a strut.

486 \bool_if:NTF \g_@@_color_is_none_bool
487 { \dim_zero:N \l_tmpb_dim }
488 { \dim_set_eq:NN \l_tmpb_dim \l_@@_listing_width_dim }
489 \dim_set:Nn \l_@@_tmpc_dim { \box_ht:N \l_@@_line_box }

Now, the colored panel.
490 \dim_compare:nNnTF \l_@@_rounded_corners_dim > \c_zero_dim
491 {
492 \int_compare:nNnTF \g_@@_line_int = \c_one_int
493 {

15

494 \begin{tikzpicture}[baseline = 0cm]
495 \fill (0,0)
496 [rounded~corners = \l_@@_rounded_corners_dim]
497 -- (0,\l_@@_tmpc_dim)
498 -- (\l_tmpb_dim,\l_@@_tmpc_dim)
499 [sharp~corners] -- (\l_tmpb_dim,-\l_tmpa_dim)
500 -- (0,-\l_tmpa_dim)
501 -- cycle ;
502 \end{tikzpicture}
503 }
504 {
505 \int_compare:nNnTF \g_@@_line_int = \g_@@_nb_lines_int
506 {
507 \begin{tikzpicture}[baseline = 0cm]
508 \fill (0,0) -- (0,\l_@@_tmpc_dim)
509 -- (\l_tmpb_dim,\l_@@_tmpc_dim)
510 [rounded~corners = \l_@@_rounded_corners_dim]
511 -- (\l_tmpb_dim,-\l_tmpa_dim)
512 -- (0,-\l_tmpa_dim)
513 -- cycle ;
514 \end{tikzpicture}
515 }
516 {
517 \vrule height \l_@@_tmpc_dim
518 depth \l_tmpa_dim
519 width \l_tmpb_dim

For the case when line-numbers/position=right is in force with line-numbers.
520 % added 2026-01-02
521 \dim_compare:nNnT \l_tmpb_dim = \c_zero_dim
522 { \skip_horizontal:N \l_@@_listing_width_dim }
523 }
524 }
525 }
526 {
527 \vrule height \l_@@_tmpc_dim
528 depth \l_tmpa_dim
529 width \l_tmpb_dim

For the case when line-numbers/position=right is in force with line-numbers.
530 % added 2026-01-02
531 \dim_compare:nNnT \l_tmpb_dim = \c_zero_dim
532 { \skip_horizontal:N \l_@@_listing_width_dim }
533 }

The group is for the color of the background.
534 \group_end:
535 % added 2026-01-02
536 \bool_if:NT \l_@@_line_numbers_bool
537 {
538 \str_if_eq:eeT \l_@@_line_numbers_position_str { right }
539 {
540 \seq_gpop_right:NN \g_@@_visual_line_numbers_seq \l_tmpa_tl
541 \@@_print_number_right:
542 }
543 }
544 }
545 \bool_if:NT \g_@@_next_color_is_none_bool
546 { \skip_vertical:n { 2.5 pt } }
547 \skip_vertical:n { - \box_ht_plus_dp:N \l_@@_line_box }
548 \box_use_drop:N \l_@@_line_box
549 }
550 }

End of \@@_add_bg_and_right_nb_to_line_and_use:

16

The command \@@_compute_and_set_color: sets the current color but also sets the booleans
\g_@@_color_is_none_bool and \g_@@_next_color_is_none_bool. It uses the current value of
\l_@@_bg_color_clist, the value of \g_@@_line_int (the number of the current line) but also po-
tential token lists of the form \g_@@_color_12_tl if the end user has used the command \rowcolor.

551 \cs_set_protected:Npn \@@_compute_and_set_color:
552 {
553 \int_compare:nNnTF \l_@@_bg_colors_int = \c_zero_int
554 { \tl_set:Nn \l_tmpa_tl { none } }
555 {
556 \int_set:Nn \l_tmpb_int
557 { \int_mod:nn \g_@@_line_int \l_@@_bg_colors_int + 1 }
558 \tl_set:Ne \l_tmpa_tl { \clist_item:Nn \l_@@_bg_color_clist \l_tmpb_int }
559 }

The row may have a color specified by the command \rowcolor. We check that point now.
560 \cs_if_exist:cT { g_@@_color_ \int_use:N \g_@@_line_int _ tl }
561 {
562 \tl_set_eq:Nc \l_tmpa_tl { g_@@_color_ \int_use:N \g_@@_line_int _ tl }

We don’t need any longer the variable and that’s why we delete it (it must be free for the next
environment of piton).

563 \cs_undefine:c { g_@@_color_ \int_use:N \g_@@_line_int _ tl }
564 }
565 \tl_if_eq:NnTF \l_tmpa_tl { none }
566 { \bool_gset_true:N \g_@@_color_is_none_bool }
567 {
568 \bool_gset_false:N \g_@@_color_is_none_bool
569 \@@_color:o \l_tmpa_tl
570 }

We are looking for the next color because we have to know whether that color is the special color
none (for the vertical adjustment of the background color).

571 \int_compare:nNnTF { \g_@@_line_int + 1 } = \g_@@_nb_lines_int
572 { \bool_gset_false:N \g_@@_next_color_is_none_bool }
573 {
574 \int_compare:nNnTF \l_@@_bg_colors_int = \c_zero_int
575 { \tl_set:Nn \l_tmpa_tl { none } }
576 {
577 \int_set:Nn \l_tmpb_int
578 { \int_mod:nn { \g_@@_line_int + 1 } \l_@@_bg_colors_int + 1 }
579 \tl_set:Ne \l_tmpa_tl { \clist_item:Nn \l_@@_bg_color_clist \l_tmpb_int }
580 }
581 \cs_if_exist:cT { g_@@_color_ \int_eval:n { \g_@@_line_int + 1 } _ tl }
582 {
583 \tl_set_eq:Nc \l_tmpa_tl
584 { g_@@_color_ \int_eval:n { \g_@@_line_int + 1 } _ tl }
585 }
586 \tl_if_eq:NnTF \l_tmpa_tl { none }
587 { \bool_gset_true:N \g_@@_next_color_is_none_bool }
588 { \bool_gset_false:N \g_@@_next_color_is_none_bool }
589 }
590 }

The following command \@@_color:n will accept both the instruction \@@_color:n { red!15 } and
the instruction \@@_color:n { [rgb]{0.9,0.9,0} }.

591 \cs_set_protected:Npn \@@_color:n #1
592 {
593 \tl_if_head_eq_meaning:nNTF { #1 } [
594 {
595 \tl_set:Nn \l_tmpa_tl { #1 }
596 \tl_set_rescan:Nno \l_tmpa_tl { } \l_tmpa_tl
597 \exp_last_unbraced:No \color \l_tmpa_tl
598 }
599 { \color { #1 } }
600 }
601 \cs_generate_variant:Nn \@@_color:n { o }

17

The command \@@_par: will be inserted by Lua between two lines of the computer listing.
• In fact, it will be inserted between two commands \@@_begin_line:...\@@_end_of_line:.

• When the key break-lines-in-Piton is in force, a line of the computer listing (the input) may
result in several lines in the pdf (the output).

• Remind that \@@_par: has a rather complex behaviour because it will finish and start para-
graphs.

602 \cs_new_protected:Npn \@@_par:
603 {

We recall that \g_@@_line_int is not used for the number of line printed in the pdf (when line-
numbers is in force)...

604 \int_gincr:N \g_@@_line_int

... it will be used to allow or disallow page breaks, and also by the command \rowcolor.
Each line in the listing is composed in a box of TeX (which may contain several lines when the key
break-lines-in-Piton is in force) put in a paragraph.

605 \par

We now add a \kern because each line of code is overlapping vertically by a quantity of 2.5 pt in
order to have a good background (when background-color is in force). We need to use a \kern (in
fact \par\kern...) and not a \vskip because page breaks should not be allowed on that kern.

606 \kern -2.5 pt

Now, we control page breaks after the paragraph.
607 \@@_add_penalty_for_the_line:
608 }

After the command \@@_par:, we will usually have a command \@@_begin_line:.

The following command \@@_breakable_space: is for breakable spaces in the environments {Piton}
and the listings of \PitonInputFile and not for the commands \piton.

609 \cs_set_protected:Npn \@@_breakable_space:
610 {
611 \discretionary
612 { \hbox:n { \color { gray } \l_@@_end_of_broken_line_tl } }
613 {
614 \hbox_overlap_left:n
615 {
616 {
617 \normalfont \footnotesize \color { gray }
618 \l_@@_continuation_symbol_tl
619 }
620 \skip_horizontal:n { 0.3 em }
621 \int_compare:nNnT \l_@@_bg_colors_int > { \c_zero_int }
622 { \skip_horizontal:n { 0.5 em } }
623 }
624 \bool_if:NT \l_@@_indent_broken_lines_bool
625 {
626 \hbox:n
627 {
628 \prg_replicate:nn { \g_@@_indentation_int } { ~ }
629 { \color { gray } \l_@@_csoi_tl }
630 }
631 }
632 }
633 { \hbox { ~ } }
634 }

18

2.5 PitonOptions

635 \bool_new:N \l_@@_line_numbers_bool
636 \bool_new:N \l_@@_skip_empty_lines_bool
637 \bool_set_true:N \l_@@_skip_empty_lines_bool
638 \bool_new:N \l_@@_line_numbers_absolute_bool
639 \tl_new:N \l_@@_line_numbers_format_tl
640 \tl_set:Nn \l_@@_line_numbers_format_tl { \footnotesize \color { gray } }
641 \bool_new:N \l_@@_label_empty_lines_bool
642 \bool_set_true:N \l_@@_label_empty_lines_bool
643 \int_new:N \l_@@_number_lines_start_int
644 \str_new:N \l_@@_line_numbers_position_str
645 \str_set:Nn \l_@@_line_numbers_position_str { left }
646 \bool_new:N \l_@@_resume_bool
647 \bool_new:N \l_@@_split_on_empty_lines_bool
648 \bool_new:N \l_@@_splittable_on_empty_lines_bool
649 \bool_new:N \g_@@_label_as_zlabel_bool

650 \keys_define:nn { PitonOptions / marker }
651 {
652 beginning .cs_set:Np = \@@_marker_beginning:n #1 ,
653 beginning .value_required:n = true ,
654 end .cs_set:Np = \@@_marker_end:n #1 ,
655 end .value_required:n = true ,
656 include-lines .bool_set:N = \l_@@_marker_include_lines_bool ,
657 include-lines .default:n = true ,
658 unknown .code:n = \@@_error:n { Unknown~key~for~marker }
659 }

660 \keys_define:nn { PitonOptions / line-numbers }
661 {
662 true .code:n = \bool_set_true:N \l_@@_line_numbers_bool ,
663 false .code:n = \bool_set_false:N \l_@@_line_numbers_bool ,
664

665 start .code:n =
666 \bool_set_true:N \l_@@_line_numbers_bool
667 \int_set:Nn \l_@@_number_lines_start_int { #1 } ,
668 start .value_required:n = true ,
669

670 skip-empty-lines .code:n =
671 \bool_if:NF \l_@@_in_PitonOptions_bool
672 { \bool_set_true:N \l_@@_line_numbers_bool }
673 \str_if_eq:nnTF { #1 } { false }
674 { \bool_set_false:N \l_@@_skip_empty_lines_bool }
675 { \bool_set_true:N \l_@@_skip_empty_lines_bool } ,
676 skip-empty-lines .default:n = true ,
677

678 label-empty-lines .code:n =
679 \bool_if:NF \l_@@_in_PitonOptions_bool
680 { \bool_set_true:N \l_@@_line_numbers_bool }
681 \str_if_eq:nnTF { #1 } { false }
682 { \bool_set_false:N \l_@@_label_empty_lines_bool }
683 { \bool_set_true:N \l_@@_label_empty_lines_bool } ,
684 label-empty-lines .default:n = true ,
685

686 absolute .code:n =
687 \bool_if:NTF \l_@@_in_PitonOptions_bool
688 { \bool_set_true:N \l_@@_line_numbers_absolute_bool }
689 { \bool_set_true:N \l_@@_line_numbers_bool }
690 \bool_if:NT \l_@@_in_PitonInputFile_bool
691 {
692 \bool_set_true:N \l_@@_line_numbers_absolute_bool
693 \bool_set_false:N \l_@@_skip_empty_lines_bool

19

694 } ,
695 absolute .value_forbidden:n = true ,
696

697 resume .code:n =
698 \bool_set_true:N \l_@@_resume_bool
699 \bool_if:NF \l_@@_in_PitonOptions_bool
700 { \bool_set_true:N \l_@@_line_numbers_bool } ,
701 resume .value_forbidden:n = true ,
702

703 sep .dim_set:N = \l_@@_numbers_sep_dim ,
704 sep .value_required:n = true ,
705

706 step .int_set:N = \l_@@_numbers_step_int ,
707 step .value_required:n = true ,
708

709 position .choices:nn = { left , right }
710 { \str_set_eq:NN \l_@@_line_numbers_position_str \l_keys_choice_tl } ,
711 position .value_required:n = true ,
712

713 format .tl_set:N = \l_@@_line_numbers_format_tl ,
714 format .value_required:n = true ,
715

716 unknown .code:n =
717 \@@_unknown_key:nn
718 { PitonOptions / line-numbers }
719 { Unknown~key~for~line-numbers }
720

721 }

Be careful! The name of the following set of keys must be considered as public! Hence, it should not
be changed.

722 \keys_define:nn { PitonOptions }
723 {
724 indentations-for-Foxit .choices:nn = { true , false }
725 {
726 \tl_if_eq:VnTF \l_keys_value_tl { true }
727 { \@@_define_leading_space_Foxit: }
728 { \@@_define_leading_space_normal: }
729 } ,
730 box .choices:nn = { c , t , b , m }
731 { \str_set_eq:NN \l_@@_box_str \l_keys_choice_tl } ,
732 box .default:n = c ,
733 break-strings-anywhere .bool_set:N = \l_@@_break_strings_anywhere_bool ,
734 break-strings-anywhere .default:n = true ,
735 break-numbers-anywhere .bool_set:N = \l_@@_break_numbers_anywhere_bool ,
736 break-numbers-anywhere .default:n = true ,

First, we put keys that should be available only in the preamble.
737 detected-commands .code:n =
738 \clist_if_in:nnTF { #1 } { rowcolor }
739 {
740 \@@_error:n { rowcolor~in~detected-commands }
741 \clist_set:Nn \l_tmpa_clist { #1 }
742 \clist_remove_all:Nn \l_tmpa_clist { rowcolor }
743 \clist_put_right:No \l_@@_detected_commands_clist \l_tmpa_clist
744 }
745 { \clist_put_right:Nn \l_@@_detected_commands_clist { #1 } } ,
746 detected-commands .value_required:n = true ,
747 detected-commands .usage:n = preamble ,
748 vertical-detected-commands .code:n = \@@_vertical_commands:n { #1 } ,
749 vertical-detected-commands .value_required:n = true ,
750 vertical-detected-commands .usage:n = preamble ,
751 raw-detected-commands .code:n =
752 \clist_put_right:Nn \l_@@_raw_detected_commands_clist { #1 } ,

20

753 raw-detected-commands .value_required:n = true ,
754 raw-detected-commands .usage:n = preamble ,
755 detected-beamer-commands .code:n =
756 \@@_error_if_not_in_beamer:
757 \clist_put_right:Nn \l_@@_beamer_commands_clist { #1 } ,
758 detected-beamer-commands .value_required:n = true ,
759 detected-beamer-commands .usage:n = preamble ,
760 detected-beamer-environments .code:n =
761 \@@_error_if_not_in_beamer:
762 \clist_put_right:Nn \l_@@_beamer_environments_clist { #1 } ,
763 detected-beamer-environments .value_required:n = true ,
764 detected-beamer-environments .usage:n = preamble ,

Remark that the command \lua_escape:n is fully expandable. That’s why we use \lua_now:e.
765 begin-escape .code:n =
766 \lua_now:e { piton.begin_escape = "\lua_escape:n{#1}" } ,
767 begin-escape .value_required:n = true ,
768 begin-escape .usage:n = preamble ,
769

770 end-escape .code:n =
771 \lua_now:e { piton.end_escape = "\lua_escape:n{#1}" } ,
772 end-escape .value_required:n = true ,
773 end-escape .usage:n = preamble ,
774

775 begin-escape-math .code:n =
776 \lua_now:e { piton.begin_escape_math = "\lua_escape:n{#1}" } ,
777 begin-escape-math .value_required:n = true ,
778 begin-escape-math .usage:n = preamble ,
779

780 end-escape-math .code:n =
781 \lua_now:e { piton.end_escape_math = "\lua_escape:n{#1}" } ,
782 end-escape-math .value_required:n = true ,
783 end-escape-math .usage:n = preamble ,
784

785 comment-latex .code:n = \lua_now:n { comment_latex = "#1" } ,
786 comment-latex .value_required:n = true ,
787 comment-latex .usage:n = preamble ,
788

789 label-as-zlabel .bool_gset:N = \g_@@_label_as_zlabel_bool ,
790 label-as-zlabel .default:n = true ,
791 label-as-zlabel .usage:n = preamble ,
792

793 math-comments .bool_gset:N = \g_@@_math_comments_bool ,
794 math-comments .default:n = true ,
795 math-comments .usage:n = preamble ,

Now, general keys.
796 language .code:n =
797 \str_set:Ne \l_piton_language_str { \str_lowercase:n { #1 } } ,
798 language .value_required:n = true ,
799 path .code:n =
800 \seq_clear:N \l_@@_path_seq
801 \clist_map_inline:nn { #1 }
802 {
803 \str_set:Nn \l_tmpa_str { ##1 }
804 \seq_put_right:No \l_@@_path_seq { \l_tmpa_str }
805 } ,
806 path .value_required:n = true ,

The initial value of the key path is not empty: it’s ., that is to say a comma separated list with only
one component which is ., the current directory.

807 path .initial:n = . ,
808 path-write .str_set:N = \l_@@_path_write_str ,
809 path-write .value_required:n = true ,

21

810 font-command .tl_set:N = \l_@@_font_command_tl ,
811 font-command .value_required:n = true ,
812 gobble .int_set:N = \l_@@_gobble_int ,
813 gobble .default:n = -1 ,
814 auto-gobble .code:n = \int_set:Nn \l_@@_gobble_int { -1 } ,
815 auto-gobble .value_forbidden:n = true ,
816 env-gobble .code:n = \int_set:Nn \l_@@_gobble_int { -2 } ,
817 env-gobble .value_forbidden:n = true ,
818 tabs-auto-gobble .code:n = \int_set:Nn \l_@@_gobble_int { -3 } ,
819 tabs-auto-gobble .value_forbidden:n = true ,
820

821 splittable-on-empty-lines .bool_set:N = \l_@@_splittable_on_empty_lines_bool ,
822 splittable-on-empty-lines .default:n = true ,
823

824 split-on-empty-lines .bool_set:N = \l_@@_split_on_empty_lines_bool ,
825 split-on-empty-lines .default:n = true ,
826

827 split-separation .tl_set:N = \l_@@_split_separation_tl ,
828 split-separation .value_required:n = true ,
829

830 add-to-split-separation .code:n =
831 \tl_put_right:Nn \l_@@_split_separation_tl { #1 } ,
832 add-to-split-separation .value_required:n = true ,
833

834 marker .code:n =
835 \bool_lazy_or:nnTF
836 \l_@@_in_PitonInputFile_bool
837 \l_@@_in_PitonOptions_bool
838 { \keys_set:nn { PitonOptions / marker } { #1 } }
839 { \@@_error:n { Invalid~key } } ,
840 marker .value_required:n = true ,
841

842 line-numbers .code:n =
843 \keys_set:nn { PitonOptions / line-numbers } { #1 } ,
844 line-numbers .default:n = true ,
845

846 splittable .int_set:N = \l_@@_splittable_int ,
847 splittable .default:n = 1 ,
848 background-color .code:n =
849 \clist_set:Nn \l_@@_bg_color_clist { #1 }

We keep the lenght of the clist \l_@@_bg_color_clist in a counter for efficiency only.
850 \int_set:Nn \l_@@_bg_colors_int { \clist_count:N \l_@@_bg_color_clist } ,
851 background-color .value_required:n = true ,
852 prompt-background-color .tl_set:N = \l_@@_prompt_bg_color_tl ,
853 prompt-background-color .value_required:n = true ,

With the tuning write=false, the content of the environment won’t be parsed and won’t be printed
on the pdf. However, the Lua variables piton.last_code and piton.last_language will be set
(and, hence, piton.get_last_code will be operational). The keys join and write will be honoured.

854 print .bool_set:N = \l_@@_print_bool ,
855 print .value_required:n = true ,
856

857 width .code:n =
858 \str_if_eq:nnTF { #1 } { min }
859 {
860 \bool_set_true:N \l_@@_minimize_width_bool
861 \dim_zero:N \l_@@_width_dim
862 }
863 {
864 \bool_set_false:N \l_@@_minimize_width_bool
865 \dim_set:Nn \l_@@_width_dim { #1 }
866 } ,
867 width .value_required:n = true ,
868

22

869 max-width .code:n =
870 \bool_set_true:N \l_@@_minimize_width_bool
871 \dim_set:Nn \l_@@_width_dim { #1 } ,
872 max-width .value_required:n = true ,
873

874 paperclip .code:n =
875 \bool_set_true:N \l_@@_paperclip_bool
876 \tl_if_novalue:nTF { #1 }
877 { \str_set:Nn \l_@@_paperclip_str { } }
878 { \str_set:Nn \l_@@_paperclip_str { #1 } } ,
879

880 annotation .bool_set:N = \l_@@_annotation_bool ,
881 annotation .default:n = true ,
882

883 write .str_set:N = \l_@@_write_str ,
884 write .value_required:n = true ,
885 no-write .code:n = \str_set_eq:NN \l_@@_write_str \c_empty_str ,
886 no-write .value_forbidden:n = true ,
887 join .code:n =
888 \str_set:Nn \l_@@_join_str { #1 }
889 \seq_if_in:NnF \g_@@_join_seq { #1 }
890 { \seq_gput_right:No \g_@@_join_seq { #1 } } ,
891 join .value_required:n = true ,
892 join-separation .str_set:N = \l_@@_join_separation_str ,
893 join-separation .value_required:n = true ,
894 no-join .code:n = \str_set_eq:NN \l_@@_join_str \c_empty_str ,
895 no-join .value_forbidden:n = true ,
896

897 left-margin .code:n =
898 \str_if_eq:nnTF { #1 } { auto }
899 {
900 \dim_zero:N \l_@@_left_margin_dim
901 \bool_set_true:N \l_@@_left_margin_auto_bool
902 }
903 {
904 \dim_set:Nn \l_@@_left_margin_dim { #1 }
905 \bool_set_false:N \l_@@_left_margin_auto_bool
906 } ,
907 left-margin .value_required:n = true ,
908

909 right-margin .code:n =
910 \str_if_eq:nnTF { #1 } { auto }
911 {
912 \dim_zero:N \l_@@_right_margin_dim
913 \bool_set_true:N \l_@@_right_margin_auto_bool
914 }
915 {
916 \dim_set:Nn \l_@@_right_margin_dim { #1 }
917 \bool_set_false:N \l_@@_right_margin_auto_bool
918 } ,
919 right-margin .value_required:n = true ,
920

921 tab-size .int_set:N = \l_@@_tab_size_int ,
922 tab-size .value_required:n = true ,
923 show-spaces .bool_set:N = \l_@@_show_spaces_bool ,
924 show-spaces .value_forbidden:n = true ,
925 show-spaces-in-strings .code:n =
926 \tl_set:Nn \l_@@_space_in_string_tl { ␣ } , % U+2423
927 show-spaces-in-strings .value_forbidden:n = true ,
928 break-lines-in-Piton .bool_set:N = \l_@@_break_lines_in_Piton_bool ,
929 break-lines-in-Piton .default:n = true ,
930 break-lines-in-piton .bool_set:N = \l_@@_break_lines_in_piton_bool ,
931 break-lines-in-piton .default:n = true ,

23

932 break-lines .meta:n = { break-lines-in-piton , break-lines-in-Piton } ,
933 break-lines .value_forbidden:n = true ,
934 indent-broken-lines .bool_set:N = \l_@@_indent_broken_lines_bool ,
935 indent-broken-lines .default:n = true ,
936 end-of-broken-line .tl_set:N = \l_@@_end_of_broken_line_tl ,
937 end-of-broken-line .value_required:n = true ,
938 continuation-symbol .tl_set:N = \l_@@_continuation_symbol_tl ,
939 continuation-symbol .value_required:n = true ,
940 continuation-symbol-on-indentation .tl_set:N = \l_@@_csoi_tl ,
941 continuation-symbol-on-indentation .value_required:n = true ,
942

943 first-line .code:n = \@@_in_PitonInputFile:n
944 { \int_set:Nn \l_@@_first_line_int { #1 } } ,
945 first-line .value_required:n = true ,
946

947 last-line .code:n = \@@_in_PitonInputFile:n
948 { \int_set:Nn \l_@@_last_line_int { #1 } } ,
949 last-line .value_required:n = true ,
950

951 begin-range .code:n = \@@_in_PitonInputFile:n
952 { \str_set:Nn \l_@@_begin_range_str { #1 } } ,
953 begin-range .value_required:n = true ,
954

955 end-range .code:n = \@@_in_PitonInputFile:n
956 { \str_set:Nn \l_@@_end_range_str { #1 } } ,
957 end-range .value_required:n = true ,
958

959 range .code:n = \@@_in_PitonInputFile:n
960 {
961 \str_set:Nn \l_@@_begin_range_str { #1 }
962 \str_set:Nn \l_@@_end_range_str { #1 }
963 } ,
964 range .value_required:n = true ,
965

966 env-used-by-split .code:n =
967 \lua_now:n { piton.env_used_by_split = '#1' } ,
968 env-used-by-split .initial:n = Piton ,
969

970 resume .meta:n = line-numbers/resume ,
971

972 unknown .code:n =
973 \@@_unknown_key:nn
974 { PitonOptions }
975 { Unknown~key~for~PitonOptions } ,
976

977 % deprecated
978 all-line-numbers .code:n =
979 \bool_set_true:N \l_@@_line_numbers_bool
980 \bool_set_false:N \l_@@_skip_empty_lines_bool ,

981 rounded-corners .code:n =
982 \AtBeginDocument
983 {
984 \IfPackageLoadedTF { tikz }
985 { \dim_set:Nn \l_@@_rounded_corners_dim { #1 } }
986 { \@@_err_rounded_corners_without_Tikz: }
987 } ,
988 rounded-corners .default:n = 4 pt
989 }

990 \hook_gput_code:nnn { begindocument } { . }
991 {
992 \IfPackageLoadedTF { tcolorbox }
993 {
994 \pgfkeysifdefined { / tcb / libload / breakable }

24

995 {
996 \keys_define:nn { PitonOptions }
997 {
998 tcolorbox .bool_set:N = \l_@@_tcolorbox_bool ,
999 tcolorbox .default:n = true

1000 }
1001 }
1002 {
1003 \keys_define:nn { PitonOptions }
1004 { tcolorbox .code:n = \@@_error:n { library~breakable~not~loaded } }
1005 }
1006 }
1007 {
1008 \keys_define:nn { PitonOptions }
1009 { tcolorbox .code:n = \@@_error:n { tcolorbox~not~loaded } }
1010 }
1011 }

1012 \cs_new_protected:Npn \@@_err_rounded_corners_without_Tikz:
1013 {
1014 \@@_error:n { rounded-corners~without~Tikz }
1015 \cs_gset:Npn \@@_err_rounded_corners_without_Tikz: { }
1016 }

1017 \cs_new_protected:Npn \@@_in_PitonInputFile:n #1
1018 {
1019 \bool_if:NTF \l_@@_in_PitonInputFile_bool
1020 { #1 }
1021 { \@@_error:n { Invalid~key } }
1022 }

1023 \NewDocumentCommand \PitonOptions { m }
1024 {
1025 \bool_set_true:N \l_@@_in_PitonOptions_bool
1026 \keys_set:nn { PitonOptions } { #1 }
1027 \bool_set_false:N \l_@@_in_PitonOptions_bool
1028 }

When using \NewPitonEnvironment a user may use \PitonOptions inside. However, the set of
keys available should be different that in standard \PitonOptions. That’s why we define a version
of \PitonOptions with no restriction on the set of available keys and we will link that version to
\PitonOptions in such environment.

1029 \NewDocumentCommand \@@_fake_PitonOptions { }
1030 { \keys_set:nn { PitonOptions } }

2.6 The numbers of the lines

The following counter will be used to count the lines in the code when the user requires the numbers of
the lines to be printed (with line-numbers) whereas the counter \g_@@_line_int previously defined
is not used for that functionality.

1031 \int_new:N \g_@@_visual_line_int

1032 \cs_new_protected:Npn \@@_incr_visual_line:
1033 {
1034 \bool_if:NF \l_@@_skip_empty_lines_bool
1035 { \int_gincr:N \g_@@_visual_line_int }
1036 }

25

The following command will be used when the numbers of lines are printed on the left (line-
numbers/position=left). The number of line is in the counter \g_@@_visual_line_int.

1037 \cs_new_protected:Npn \@@_print_number_left:
1038 {
1039 \hbox_overlap_left:n
1040 {
1041 \@@_actually_print_number:n { \int_to_arabic:n { \g_@@_visual_line_int } }
1042 \skip_horizontal:N \l_@@_numbers_sep_dim
1043 }
1044 }

The following command will be used when the numbers of lines are printed on the right (line-
numbers/position=right). The number of line is in \l_tmpa_tl.

1045 \cs_new_protected:Npn \@@_print_number_right:
1046 {
1047 \hbox_overlap_left:n
1048 {
1049 \@@_actually_print_number:n { \l_tmpa_tl }
1050 \int_compare:nNnT \l_@@_bg_colors_int > 0
1051 { \skip_horizontal:n { 0.1 em } }
1052 }
1053 }

\@@_actually_print_number: itself prints the number without the \hbox_overlap_left:n. It is
used by both \@@_print_number_left: and \@@_print_number_right:

1054 \cs_new_protected:Npn \@@_actually_print_number:n #1
1055 {
1056 \group_begin:
1057 \pdfextension literal { /Artifact << /ActualText (\space) >> BDC }

We put braces. Thus, the user may use the key line-numbers/format with a value such as \fbox.
1058 \l_@@_line_numbers_format_tl { #1 }
1059 \pdfextension literal { EMC }
1060 \group_end:
1061 }

2.7 The main commands and environments for the end user

1062 \NewDocumentCommand { \NewPitonLanguage } { O { } m ! o }
1063 {
1064 \tl_if_novalue:nTF { #3 }

The last argument is provided by curryfication.
1065 { \@@_NewPitonLanguage:nnn { #1 } { #2 } }

The two last arguments are provided by curryfication.
1066 { \@@_NewPitonLanguage:nnnnn { #1 } { #2 } { #3 } }
1067 }

The following property list will contain the definitions of the computer languages as provided by the
end user. However, if a language is defined over another base language, the corresponding list will
contain the whole definition of the language.

1068 \prop_new:N \g_@@_languages_prop

1069 \keys_define:nn { NewPitonLanguage }
1070 {
1071 morekeywords .code:n = ,
1072 otherkeywords .code:n = ,
1073 sensitive .code:n = ,
1074 keywordsprefix .code:n = ,
1075 moretexcs .code:n = ,

26

1076 morestring .code:n = ,
1077 morecomment .code:n = ,
1078 moredelim .code:n = ,
1079 moredirectives .code:n = ,
1080 tag .code:n = ,
1081 alsodigit .code:n = ,
1082 alsoletter .code:n = ,
1083 alsoother .code:n = ,
1084 unknown .code:n = \@@_error:n { Unknown~key~NewPitonLanguage }
1085 }

The function \@@_NewPitonLanguage:nnn will be used when the language is not defined above a base
language (and a base dialect).

1086 \cs_new_protected:Npn \@@_NewPitonLanguage:nnn #1 #2 #3
1087 {

We store in \l_tmpa_tl the name of the language with the potential dialect, that is to say, for
example : [AspectJ]{Java}. We use \tl_if_blank:nF because the end user may have written
\NewPitonLanguage[]{Java}{...}.

1088 \tl_set:Ne \l_tmpa_tl
1089 {
1090 \tl_if_blank:nF { #1 } { [\str_lowercase:n { #1 }] }
1091 \str_lowercase:n { #2 }
1092 }

The following set of keys is only used to raise an error when a key in unknown!
1093 \keys_set:nn { NewPitonLanguage } { #3 }

We store in LaTeX the definition of the language because some languages may be defined with that
language as base language.

1094 \prop_gput:Non \g_@@_languages_prop \l_tmpa_tl { #3 }

The Lua part of the package piton will be loaded in a \AtBeginDocument. Hence, we will put also in
a \AtBeginDocument the use of the Lua function piton.new_language (which does the main job).

1095 \@@_NewPitonLanguage:on \l_tmpa_tl { #3 }
1096 }

1097 \cs_new_protected:Npn \@@_NewPitonLanguage:nn #1 #2
1098 {
1099 \hook_gput_code:nnn { begindocument } { . }
1100 { \lua_now:e { piton.new_language("#1","\lua_escape:n{#2}") } }
1101 }
1102 \cs_generate_variant:Nn \@@_NewPitonLanguage:nn { o }

Now the case when the language is defined upon a base language.
1103 \cs_new_protected:Npn \@@_NewPitonLanguage:nnnnn #1 #2 #3 #4 #5
1104 {

We store in \l_tmpa_tl the name of the base language with the dialect, that is to say, for
example : [AspectJ]{Java}. We use \tl_if_blank:nF because the end user may have used
\NewPitonLanguage[Handel]{C}[]{C}{...}

1105 \tl_set:Ne \l_tmpa_tl
1106 {
1107 \tl_if_blank:nF { #3 } { [\str_lowercase:n { #3 }] }
1108 \str_lowercase:n { #4 }
1109 }

We retrieve in \l_tmpb_tl the definition (as provided by the end user) of that base language. Caution:
\g_@@_languages_prop does not contain all the languages provided by piton but only those defined
by using \NewPitonLanguage.

1110 \prop_get:NoNTF \g_@@_languages_prop \l_tmpa_tl \l_tmpb_tl

We can now define the new language by using the previous function.
1111 { \@@_NewPitonLanguage:nnno { #1 } { #2 } { #5 } \l_tmpb_tl }
1112 { \@@_error:n { Language~not~defined } }
1113 }

27

1114 \cs_new_protected:Npn \@@_NewPitonLanguage:nnnn #1 #2 #3 #4

In the following line, we write #4,#3 and not #3,#4 because we want that the keys which correspond
to base language appear before the keys which are added in the language we define.

1115 { \@@_NewPitonLanguage:nnn { #1 } { #2 } { #4 , #3 } }
1116 \cs_generate_variant:Nn \@@_NewPitonLanguage:nnnn { n n n o }

1117 \NewDocumentCommand { \piton } { }
1118 { \peek_meaning:NTF \bgroup { \@@_piton_standard } { \@@_piton_verbatim } }

1119 \NewDocumentCommand { \@@_piton_standard } { m }
1120 {
1121 \group_begin:
1122 \tl_if_eq:NnF \l_@@_space_in_string_tl { ␣ }
1123 {

Remind that, when break-strings-anywhere is in force, multiple commands \- will be inserted
between the characters of the string to allow the breaks. The \exp_not:N before \space is mandatory.

1124 \bool_lazy_or:nnT
1125 \l_@@_break_lines_in_piton_bool
1126 \l_@@_break_strings_anywhere_bool
1127 { \tl_set:Nn \l_@@_space_in_string_tl { \exp_not:N \space } }
1128 }

The following tuning of LuaTeX in order to avoid all breaks of lines on the hyphens.
1129 \automatichyphenmode = 1

Remark that the argument of \piton (with the normal syntax) is expanded in the TeX sens, (see the
\tl_set:Ne below) and that’s why we can provide the following escapes to the end user:

1130 \cs_set_eq:NN \\ \c_backslash_str
1131 \cs_set_eq:NN \% \c_percent_str
1132 \cs_set_eq:NN \{ \c_left_brace_str
1133 \cs_set_eq:NN \} \c_right_brace_str
1134 \cs_set_eq:NN \$ \c_dollar_str

The standard command \␣ is not expandable and we need here expandable commands. With the
following code, we define an expandable command.

1135 \cs_set_eq:cN { ~ } \space

1136 \cs_set_eq:NN \@@_begin_line: \prg_do_nothing:

We redefine \rowcolor inside of \piton commands to do nothing.
1137 \cs_set_eq:NN \rowcolor \@@_noop_rowcolor

1138 \tl_set:Ne \l_tmpa_tl
1139 {
1140 \lua_now:e
1141 { piton.ParseBis('\l_piton_language_str',token.scan_string()) }
1142 { #1 }
1143 }
1144 \bool_if:NTF \l_@@_show_spaces_bool
1145 { \tl_replace_all:NVn \l_tmpa_tl \c_catcode_other_space_tl { ␣ } } % U+2423
1146 {
1147 \bool_if:NT \l_@@_break_lines_in_piton_bool

With the following line, the spaces of catacode 12 (which were not breakable) are replaced by \space,
and, thus, become breakable.

1148 { \tl_replace_all:NVn \l_tmpa_tl \c_catcode_other_space_tl \space }
1149 }

The command \text is provided by the package amstext (loaded by piton).
1150 \if_mode_math:
1151 \text { \l_@@_font_command_tl \l_tmpa_tl }
1152 \else:
1153 \l_@@_font_command_tl \l_tmpa_tl
1154 \fi:
1155 \group_end:

28

1156 }

1157 \NewDocumentCommand { \@@_piton_verbatim } { v }
1158 {
1159 \group_begin:
1160 \automatichyphenmode = 1
1161 \cs_set_eq:NN \@@_begin_line: \prg_do_nothing:

We redefine \rowcolor inside of \piton commands to do nothing.
1162 \cs_set_eq:NN \rowcolor \@@_noop_rowcolor

1163 \tl_set:Ne \l_tmpa_tl
1164 {
1165 \lua_now:e
1166 { piton.Parse('\l_piton_language_str',token.scan_string()) }
1167 { #1 }
1168 }
1169 \bool_if:NT \l_@@_show_spaces_bool
1170 { \tl_replace_all:NVn \l_tmpa_tl \c_catcode_other_space_tl { ␣ } } % U+2423
1171 \if_mode_math:
1172 \text { \l_@@_font_command_tl \l_tmpa_tl }
1173 \else:
1174 \l_@@_font_command_tl \l_tmpa_tl
1175 \fi:
1176 \group_end:
1177 }

The following command does not correspond to a user command. It will be used when we will have
to “rescan” some chunks of computer code. For example, it will be the initial value of the Piton style
InitialValues (the default values of the arguments of a Python function).

1178 \cs_new_protected:Npn \@@_piton:n #1
1179 { \tl_if_blank:nF { #1 } { \@@_piton_i:n { #1 } } }
1180

1181 \cs_new_protected:Npn \@@_piton_i:n #1
1182 {
1183 \group_begin:
1184 \cs_set_eq:NN \@@_begin_line: \prg_do_nothing:
1185 \cs_set:cpn { pitonStyle _ \l_piton_language_str _ Prompt } { }
1186 \cs_set:cpn { pitonStyle _ Prompt } { }
1187 \cs_set_eq:NN \@@_leading_space: \space
1188 \cs_set_eq:NN \@@_trailing_space: \space
1189 \tl_set:Ne \l_tmpa_tl
1190 {
1191 \lua_now:e
1192 { piton.ParseTer('\l_piton_language_str',token.scan_string()) }
1193 { #1 }
1194 }
1195 \bool_if:NT \l_@@_show_spaces_bool
1196 { \tl_replace_all:NVn \l_tmpa_tl \c_catcode_other_space_tl { ␣ } } % U+2423
1197 \@@_replace_spaces:o \l_tmpa_tl
1198 \group_end:
1199 }

\@@_pre_composition: will be used both in \PitonInputFile and in the environments such as
{Piton}.

1200 \cs_new_protected:Npn \@@_pre_composition:
1201 {
1202 \dim_compare:nNnT \l_@@_width_dim = \c_zero_dim
1203 {
1204 \dim_set_eq:NN \l_@@_width_dim \linewidth

29

When the key box is used, width=min is activated (except when width has been used with a numerical
value).

1205 \str_if_empty:NF \l_@@_box_str
1206 { \bool_set_true:N \l_@@_minimize_width_bool }
1207 }

We compute \l_@@_listing_width_dim. However, if max-width is used (or width=min which uses
max-width), that length will be computed again in \@@_create_output_box: but even in the case,
we have to compute that value now (because the maximal width set by max-width may be reached
by some lines of the listing—and those lines would be wrapped).

1208 \dim_set:Nn \l_@@_listing_width_dim
1209 {
1210 \bool_if:NTF \l_@@_tcolorbox_bool
1211 {
1212 \l_@@_width_dim -
1213 (\kvtcb@left@rule
1214 + \kvtcb@leftupper
1215 + \kvtcb@boxsep * 2
1216 + \kvtcb@rightupper
1217 + \kvtcb@right@rule)
1218 }
1219 { \l_@@_width_dim }
1220 }

1221 \legacy_if:nT { @inlabel } { \bool_set_true:N \l_@@_in_label_bool }
1222 \automatichyphenmode = 1
1223 \bool_if:NF \l_@@_resume_bool { \int_gzero:N \g_@@_visual_line_int }
1224 \g_@@_def_vertical_commands_tl
1225 \int_gzero:N \g_@@_line_int
1226 \int_gzero:N \g_@@_nb_lines_int
1227 \dim_zero:N \parindent
1228 \dim_zero:N \lineskip
1229 \dim_zero:N \parskip
1230

1231 % added 2026-01-02
1232 \seq_gclear:N \g_@@_visual_line_numbers_seq
1233

1234 \cs_set_eq:NN \rowcolor \@@_rowcolor:n

For efficiency, we keep in \l_@@_bg_colors_int the length of \l_@@_bg_color_clist.
1235 \int_compare:nNnT \l_@@_bg_colors_int > { \c_zero_int }
1236 { \bool_set_true:N \l_@@_bg_bool }
1237 \bool_gset_false:N \g_@@_rowcolor_inside_bool
1238 \IfPackageLoadedTF { zref-base }
1239 {
1240 \bool_if:NTF \g_@@_label_as_zlabel_bool
1241 { \cs_set_eq:NN \label \@@_zlabel:n }
1242 { \cs_set_eq:NN \label \@@_label:n }
1243 \cs_set_eq:NN \zlabel \@@_zlabel:n
1244 }
1245 { \cs_set_eq:NN \label \@@_label:n }
1246 \l_@@_font_command_tl
1247 }

When the parameters line-numbers, line-numbers/position=left and left-margin are in force
(or if line-numbers, line-numbers=right and right-margin are in force), we have to compute
the width of the maximal number of lines at the end of the environment to fix the correct value to
left-margin (or right-margin).
The command \@@_compute_margin:N will do that job.
It’s argument must be either \l_@@_left_margin_dim either \l_@@_right_margin_dim.

1248 \cs_new_protected:Npn \@@_compute_margin:N #1
1249 {
1250 \use:e
1251 {

30

1252 \bool_if:NTF \l_@@_skip_empty_lines_bool
1253 { \lua_now:n { piton.CountNonEmptyLines(token.scan_argument()) } }
1254 { \lua_now:n { piton.CountLines(token.scan_argument()) } }
1255 { \l_@@_listing_tl }
1256 }
1257 \hbox_set:Nn \l_tmpa_box
1258 {
1259 \l_@@_line_numbers_format_tl
1260 \int_to_arabic:n
1261 {
1262 \g_@@_visual_line_int
1263 +
1264 \bool_if:NTF \l_@@_skip_empty_lines_bool
1265 { \l_@@_nb_non_empty_lines_int }
1266 { \g_@@_nb_lines_int }
1267 }
1268 }
1269 \dim_set:Nn #1 { \box_wd:N \l_tmpa_box + \l_@@_numbers_sep_dim + 0.1 em }
1270 }

The following command computes \l_@@_code_width_dim.
It will be used only once (in \@@_create_output_box:).
If there is a background (even a background with the color none), we subtract 0.5 em on both sides.
However, if there is a left margin or a right margin, we use those margins. If the key left-margin
has been used with the special value auto (this is meaningful only in conjonction with the key line-
numbers and a value of line-numbers/position equal to left), the actual value for the left margin
has yet computed (and stored in left-margin). Idem for the right margin.

1271 \cs_new_protected:Npn \@@_compute_code_width:
1272 {
1273 \dim_set:Nn \l_@@_code_width_dim
1274 {
1275 \l_@@_listing_width_dim
1276 -
1277 (
1278 \int_compare:nNnTF \l_@@_bg_colors_int > { \c_zero_int }
1279 {
1280 \dim_compare:nNnTF \l_@@_left_margin_dim > \c_zero_dim
1281 { \l_@@_left_margin_dim }
1282 { 0.5 em }
1283 +
1284 \dim_compare:nNnTF \l_@@_right_margin_dim > \c_zero_dim
1285 { \l_@@_right_margin_dim }
1286 { 0.5 em }
1287 }
1288 { \l_@@_left_margin_dim + \l_@@_right_margin_dim }
1289)
1290 }
1291 }

The following command computes \l_@@_listing_width_dim and it will be used when max-width
(or width=min) is used. Remind that the key box sets width=min (except when width is used with
a numerical value).
It will be used only once (in \@@_create_output_box:).
The computation is the inverse of the computation done in \@@_compute_code_width:.

1292 \cs_new_protected:Npn \@@_recompute_listing_width:
1293 {
1294 \dim_set:Nn \l_@@_listing_width_dim
1295 {
1296 \box_wd:N \g_@@_output_box
1297 +
1298 \int_compare:nNnTF \l_@@_bg_colors_int > \c_zero_int
1299 {

31

1300 \dim_compare:nNnTF \l_@@_left_margin_dim > \c_zero_dim
1301 { \l_@@_left_margin_dim }
1302 { 0.5 em }
1303 +
1304 \dim_compare:nNnTF \l_@@_right_margin_dim > \c_zero_dim
1305 { \l_@@_right_margin_dim }
1306 { 0.5 em }
1307 }
1308 { \l_@@_left_margin_dim + \l_@@_right_margin_dim }
1309 }
1310 }

1311 \cs_new_protected:Npn \@@_store_body:n #1
1312 {

Now, we have to replace all the occurrences of \obeyedline by a character of end of line (\r in the
strings of Lua).

1313 \tl_set:Ne \obeyedline { \char_generate:nn { 13 } { 11 } }
1314 \tl_set:Ne \l_@@_listing_tl { #1 }
1315 \tl_set_eq:NN \ProcessedArgument \l_@@_listing_tl
1316 }

The first argument of the following macro is one of the four strings: New, Renew, Provide and Declare.
1317 \cs_new_protected:Nn \@@_DefinePitonEnvironment:nnnnn
1318 {
1319 \use:c { #1 DocumentEnvironment } { #2 } { #3 > { \@@_store_body:n } c }
1320 {
1321 \cs_set_eq:NN \PitonOptions \@@_fake_PitonOptions
1322 #4
1323 \@@_pre_composition:
1324 \int_compare:nNnT { \l_@@_number_lines_start_int } > { \c_zero_int }
1325 {
1326 \int_gset:Nn \g_@@_visual_line_int
1327 { \l_@@_number_lines_start_int - 1 }
1328 }
1329 \bool_if:NT \g_@@_beamer_bool
1330 { \@@_translate_beamer_env:o { \l_@@_listing_tl } }
1331 \bool_if:NT \g_@@_footnote_bool \savenotes
1332 \@@_composition:
1333 \bool_lazy_or:nnT { \l_@@_paperclip_bool } { \l_@@_annotation_bool }
1334 { \@@_create_paperclip_annotation: }
1335 \bool_if:NT \g_@@_footnote_bool \endsavenotes
1336 #5
1337 }
1338 { \ignorespacesafterend }
1339 }

\marginalia is a command of the package marginalia (loaded by piton).
1340 \cs_new_protected:Npn \@@_create_paperclip_annotation:
1341 {
1342 \marginalia
1343 {
1344 \vspace* { - 0.8 em }
1345 \hbox:n
1346 {
1347 \vrule~height~0~pt~depth~12~pt~width~0~pt
1348 \bool_if:NT \l_@@_annotation_bool
1349 {
1350 \lua_now:n
1351 {

The function piton.utf16 does a conversion from utf8 to utf16 big endian encoded in hexadecimal
(with the bom of big endian), which is suitable to be put in a string between angular brackets of the
pdf. It’s easier for a stream!

32

1352 pdf.immediateobj
1353 ("<" .. piton.utf16 (piton.get_last_code ()) .. ">")
1354 }
1355 \pdfextension annot~width~5pt~height~10pt~depth~0pt
1356 {
1357 /Subtype /Text
1358 /Contents~\pdf_object_ref_last:
1359 /Name /Note
1360 /Subj (Computer~listing)

The following tries to specify that the note should not receive answers (since it is meant for an easy
copy-past of the computer listing).

1361 /ReplyType /Group

Adds the bit 10 which means LockedContents.
1362 /F~512
1363 /C [0.8~0.8~0.8]
1364 }
1365 \hspace* { 7 mm }
1366 }
1367 \bool_if:NT \l_@@_paperclip_bool { \@@_create_paperclip: }
1368 }
1369 }
1370 }

1371 \cs_new_protected:Npn \@@_create_paperclip:
1372 {
1373 \str_if_empty:NT \l_@@_paperclip_str
1374 {
1375 \int_gincr:N \g_@@_paperclip_int
1376 \str_set:Ne \l_@@_paperclip_str { listing_\int_use:N \g_@@_paperclip_int .txt }
1377 }

Here, we don’t understand why the tostring is mandatory.
1378 \lua_now:n { pdf.immediateobj ("stream" , tostring (piton.get_last_code())) }
1379 \box_move_down:nn
1380 { 10 pt }
1381 {
1382 \hbox:n
1383 {
1384 \pdfextension annot~width~10pt~height~20pt~depth~0pt
1385 {
1386 /Subtype /FileAttachment
1387 /Name /Paperclip
1388 /F~8 % no zoom

/Contents will be used as info-bulle and description of the file in the panel of the embedded files.
1389 /Contents (The~computer~listing)
1390 /FS <<
1391 /Type /Filespec
1392 /F (\l_@@_paperclip_str)
1393 /EF << /F~\pdf_object_ref_last: >>
1394 /AFRelationship /Supplement
1395 >>
1396 }
1397 }
1398 }
1399 }

For the following commands, the arguments are provided by curryfication.
1400 \NewDocumentCommand { \NewPitonEnvironment } { }
1401 { \@@_DefinePitonEnvironment:nnnnn { New } }

1402 \NewDocumentCommand { \DeclarePitonEnvironment } { }
1403 { \@@_DefinePitonEnvironment:nnnnn { Declare } }

33

1404 \NewDocumentCommand { \RenewPitonEnvironment } { }
1405 { \@@_DefinePitonEnvironment:nnnnn { Renew } }

1406 \NewDocumentCommand { \ProvidePitonEnvironment } { }
1407 { \@@_DefinePitonEnvironment:nnnnn { Provide } }

1408 \cs_new_protected:Npn \@@_translate_beamer_env:n
1409 { \lua_now:e { piton.TranslateBeamerEnv(token.scan_argument ()) } }
1410 \cs_generate_variant:Nn \@@_translate_beamer_env:n { o }

1411 \cs_new_protected:Npn \@@_composition:
1412 {
1413 \str_if_empty:NT \l_@@_box_str
1414 {
1415 \mode_if_vertical:F
1416 { \bool_if:NF \l_@@_in_PitonInputFile_bool { \newline } }
1417 }

1418 \bool_if:NT \l_@@_line_numbers_bool
1419 {
1420 \bool_lazy_and:nnT
1421 { \l_@@_left_margin_auto_bool }
1422 { \str_if_eq_p:ee \l_@@_line_numbers_position_str { left } }
1423 { \@@_compute_margin:N \l_@@_left_margin_dim }
1424 \bool_lazy_and:nnT
1425 { \l_@@_right_margin_auto_bool }
1426 { \str_if_eq_p:ee \l_@@_line_numbers_position_str { right } }
1427 { \@@_compute_margin:N \l_@@_right_margin_dim }
1428 }

1429 \lua_now:e
1430 {
1431 piton.join_separation = "\l_@@_join_separation_str"
1432 piton.join = "\l_@@_join_str"
1433 piton.write = "\l_@@_write_str"
1434 piton.path_write = "\l_@@_path_write_str"
1435 }
1436 \noindent
1437 \bool_if:NTF \l_@@_print_bool
1438 {

When split-on-empty-lines is in force, each chunk will be formated by an environment {Piton}
(or the environment specified by env-used-by-split). Within each of these environments, we will
come back here (but, of course, split-on-empty-line will have been set to false). The mechanism
“retrieve” is mandatory.

1439 \bool_if:NTF \l_@@_split_on_empty_lines_bool
1440 { \par \@@_retrieve_gobble_split_parse:o \l_@@_listing_tl }
1441 {
1442 \@@_create_output_box:

Now, the listing has been composed in \g_@@_output_box and \l_@@_listing_width_dim contains
the width of the listing (with the potential margin for the numbers of lines).

1443 \bool_if:NTF \l_@@_tcolorbox_bool
1444 {
1445 \str_if_empty:NTF \l_@@_box_str
1446 { \@@_composition_iii: }
1447 { \@@_composition_iv: }
1448 }
1449 {
1450 \str_if_empty:NTF \l_@@_box_str
1451 { \@@_composition_i: }
1452 { \@@_composition_ii: }
1453 }
1454 }
1455 }

34

1456 { \@@_gobble_parse_no_print:o \l_@@_listing_tl }
1457 }

\@@_composition_i: is for the main case: the key tcolorbox is not used, nor the key box.
We can’t do a mere \vbox_unpack:N \g_@@_output_box because that would not work inside a list
of LaTeX ({itemize} or {enumerate}).
The composition in the box \g_@@_output_box was mandatory to be able to deal with the case of a
conjunction of the keys width=min and background-color=....

1458 \cs_new_protected:Npn \@@_composition_i:
1459 {

First, we “reverse” the box \g_@@_output_box: we put in the box \g_tmpa_box the boxes present in
\g_@@_output_box, but in reversed order. The vertical spaces and the penalties are discarded.

1460 \box_clear:N \g_tmpa_box

The box \g_@@_line_box will be used as an auxiliary box.
1461 \box_clear_new:N \g_@@_line_box

We unpack \g_@@_output_box in \l_tmpa_box used as a scratched box.
1462 \vbox_set:Nn \l_tmpa_box
1463 {
1464 \vbox_unpack_drop:N \g_@@_output_box
1465 \bool_gset_false:N \g_tmpa_bool
1466 \unskip \unskip
1467 \bool_gset_false:N \g_tmpa_bool
1468 \bool_do_until:nn \g_tmpa_bool
1469 {
1470 \unskip \unskip \unskip
1471 \unpenalty \unkern
1472 \box_set_to_last:N \l_@@_line_box
1473 \box_if_empty:NTF \l_@@_line_box
1474 { \bool_gset_true:N \g_tmpa_bool }
1475 {
1476 \vbox_gset:Nn \g_tmpa_box
1477 {
1478 \vbox_unpack:N \g_tmpa_box
1479 \box_use:N \l_@@_line_box
1480 }
1481 }
1482 }
1483 }

Now, we will loop over the boxes in \g_tmpa_box and compose the boxes in the TeX flow.
1484 \bool_gset_false:N \g_tmpa_bool
1485 \int_zero:N \g_@@_line_int
1486 \bool_do_until:nn \g_tmpa_bool
1487 {

We retrieve the last box of \g_tmpa_box (and store it in \g_@@_line_box) and keep the other boxes
in \g_tmpa_box.

1488 \vbox_gset:Nn \g_tmpa_box
1489 {
1490 \vbox_unpack_drop:N \g_tmpa_box
1491 \box_gset_to_last:N \g_@@_line_box
1492 }

If the box that we have retrieved is void, that means that, in fact, there is no longer boxes in
\g_tmpa_box and we will exit the loop.

1493 \box_if_empty:NTF \g_@@_line_box
1494 { \bool_gset_true:N \g_tmpa_bool }
1495 {
1496 \box_use:N \g_@@_line_box
1497 \int_gincr:N \g_@@_line_int
1498 \par
1499 \kern -2.5 pt

35

We will determine the penalty by reading the Lua table piton.lines_status. That will use the
current value of \g_@@_line_int.

1500 \@@_add_penalty_for_the_line:

We now add the instructions corresponding to the vertical detected commands that are potentially
used in the corresponding line of the listing.

1501 \cs_if_exist_use:cT { g_@@_after_line _ \int_use:N \g_@@_line_int _ tl }
1502 { \cs_undefine:c { g_@@_after_line _ \int_use:N \g_@@_line_int _ tl } }
1503 \int_compare:nNnT \g_@@_line_int < \g_@@_nb_lines_int
1504 { \mode_leave_vertical: }
1505 }
1506 }
1507 \skip_vertical:n { 2.5 pt }
1508 }

\@@_composition_ii: will be used when the key box is in force but not the key tcolorbox.
1509 \cs_new_protected:Npn \@@_composition_ii:
1510 {
1511 \use:e { \begin { minipage } [\l_@@_box_str] }
1512 { \l_@@_listing_width_dim }

Here, \vbox_unpack:N, instead of \box_use:N is mandatory for the vertical position of the box.
1513 \vbox_unpack:N \g_@@_output_box

\kern is mandatory here (\skip_vertical:n won’t work).
1514 \kern 2.5 pt
1515 \end { minipage }
1516 }

\@@_composition_iii: will be used when the key tcolorbox is in force but not the key box.
1517 \cs_new_protected:Npn \@@_composition_iii:
1518 {
1519 \use:e
1520 {
1521 \begin { tcolorbox }

Even though we use the key breakable of {tcolorbox}, our environment will be breakable only
when the key splittable of piton is used.

1522 [breakable , text~width = \l_@@_listing_width_dim]
1523 }
1524 \par
1525 \vbox_unpack:N \g_@@_output_box
1526 \end { tcolorbox }
1527 }

\@@_composition_iv: will be used when both keys tcolorbox and box are in force.
1528 \cs_new_protected:Npn \@@_composition_iv:
1529 {
1530 \use:e
1531 {
1532 \begin { tcolorbox }
1533 [
1534 hbox ,
1535 text~width = \l_@@_listing_width_dim ,
1536 nobeforeafter ,
1537 box~align =
1538 \str_case:Nn \l_@@_box_str
1539 {
1540 t { top }
1541 b { bottom }
1542 c { center }
1543 m { center }
1544 }
1545]
1546 }

36

1547 \box_use:N \g_@@_output_box
1548 \end { tcolorbox }
1549 }

The following function will add the correct vertical penalty after a line of code in order to control
the breaks of the pages. We use the Lua table piton.lines_status which has been written by
piton.ComputeLinesStatus for this aim. Each line has a “status“ (equal to 0, 1 or 2) and that
status directly says whether a break is allowed.

1550 \cs_new_protected:Npn \@@_add_penalty_for_the_line:
1551 {
1552 \int_case:nn
1553 {
1554 \lua_now:e
1555 {
1556 tex.sprint
1557 (piton.lines_status [\int_use:N \g_@@_line_int])
1558 }
1559 }
1560 { 1 { \penalty 100 } 2 \nobreak }
1561 }

\@@_create_output_box: is used only once, in \@@_composition:.
It creates (and modifies when there are backgrounds or numbers of the lines on the right)
\g_@@_output_box.

1562 \cs_new_protected:Npn \@@_create_output_box:
1563 {
1564 \@@_compute_code_width:
1565 \vbox_gset:Nn \g_@@_output_box
1566 { \@@_retrieve_gobble_parse:o \l_@@_listing_tl }
1567 \bool_if:NT \l_@@_minimize_width_bool { \@@_recompute_listing_width: }
1568 \bool_lazy_any:nT
1569 {
1570 { \int_compare_p:nNn \l_@@_bg_colors_int > { \c_zero_int } }
1571 { \g_@@_rowcolor_inside_bool }
1572 {
1573 \l_@@_line_numbers_bool
1574 &&
1575 \str_if_eq_p:ee { \l_@@_line_numbers_position_str } { right }
1576 }
1577 }
1578 { \@@_add_bg_and_right_nb_to_output_box: }
1579 }

We add the backgrounds after the composition of the box \g_@@_output_box by a loop over
the lines in that box. Idem when the key line-numbers is used in conjunction with line-
numbers/position=right.
The backgrounds will have a width equal to \l_@@_listing_width_dim.
That command will be used only once, in \@@_create_output_box:.

1580 \cs_new_protected:Npn \@@_add_bg_and_right_nb_to_output_box:
1581 {
1582 \int_gset_eq:NN \g_@@_line_int \g_@@_nb_lines_int

\l_tmpa_box is only used to unpack the vertical box \g_@@_output_box.
1583 \vbox_set:Nn \l_tmpa_box
1584 {
1585 \vbox_unpack_drop:N \g_@@_output_box

We will raise \g_tmpa_bool to exit the loop \bool_do_until:nn below.
1586 \bool_gset_false:N \g_tmpa_bool
1587 \unskip \unskip

We begin the loop.
1588 \bool_do_until:nn \g_tmpa_bool

37

1589 {
1590 \unskip \unskip \unskip
1591 \int_set_eq:NN \l_tmpa_int \lastpenalty
1592 \unpenalty \unkern

In standard TeX (not LuaTeX), the only way to loop over the sub-boxes of a given box is to use
the TeX primitive \lastbox (via \box_set_to_last:N of L3). Of course, it would be interesting to
replace that programming by a programming in Lua of LuaTeX...

1593 \box_set_to_last:N \l_@@_line_box
1594 \box_if_empty:NTF \l_@@_line_box
1595 { \bool_gset_true:N \g_tmpa_bool }
1596 {

\g_@@_line_int will be used in \@@_add_bg_and_right_nb_to_line_and_use:.
1597 \vbox_gset:Nn \g_@@_output_box
1598 {

The command \@@_add_bg_and_right_nb_to_line_and_use: will add a background to the line (in
\l_@@_line_box) but will also put the line in the current box. The background will have a width
equal to \l_@@_listing_width_dim.

1599 \@@_add_bg_and_right_nb_to_line_and_use:
1600 \kern -2.5 pt
1601 \penalty \l_tmpa_int
1602 \vbox_unpack:N \g_@@_output_box
1603 }
1604 }
1605 \int_gdecr:N \g_@@_line_int
1606 }
1607 }
1608 }

The following will be used when the end user has used print=false.
1609 \cs_new_protected:Npn \@@_gobble_parse_no_print:n
1610 {
1611 \lua_now:e
1612 {
1613 piton.GobbleParseNoPrint
1614 (
1615 '\l_piton_language_str' ,
1616 \int_use:N \l_@@_gobble_int ,
1617 token.scan_argument ()
1618)
1619 }
1620 }
1621 \cs_generate_variant:Nn \@@_gobble_parse_no_print:n { o }

The following function will be used when the key split-on-empty-lines is not in force. It will
retrieve the first empty line, gobble the spaces at the beginning of the lines and parse the code. The
argument is provided by curryfication.

1622 \cs_new_protected:Npn \@@_retrieve_gobble_parse:n
1623 {
1624 \lua_now:e
1625 {
1626 piton.RetrieveGobbleParse
1627 (
1628 '\l_piton_language_str' ,
1629 \int_use:N \l_@@_gobble_int ,
1630 \bool_if:NTF \l_@@_splittable_on_empty_lines_bool
1631 { \int_eval:n { - \l_@@_splittable_int } }
1632 { \int_use:N \l_@@_splittable_int } ,
1633 token.scan_argument ()
1634)
1635 }
1636 }

38

1637 \cs_generate_variant:Nn \@@_retrieve_gobble_parse:n { o }

The following function will be used when the key split-on-empty-lines is in force. It will gobble
the spaces at the beginning of the lines (if the key gobble is in force), then split the code at the
empty lines and, eventually, parse the code. The argument is provided by curryfication.

1638 \cs_new_protected:Npn \@@_retrieve_gobble_split_parse:n
1639 {
1640 \lua_now:e
1641 {
1642 piton.RetrieveGobbleSplitParse
1643 (
1644 '\l_piton_language_str' ,
1645 \int_use:N \l_@@_gobble_int ,
1646 \int_use:N \l_@@_splittable_int ,
1647 token.scan_argument ()
1648)
1649 }
1650 }
1651 \cs_generate_variant:Nn \@@_retrieve_gobble_split_parse:n { o }

Now, we define the environment {Piton}, which is the main environment provided by the package
piton. Of course, you use \NewPitonEnvironment.

1652 \bool_if:NTF \g_@@_beamer_bool
1653 {
1654 \NewPitonEnvironment { Piton } { D < > { .- } O { } }
1655 {
1656 \keys_set:nn { PitonOptions } { #2 }
1657 \begin { actionenv } < #1 >
1658 }
1659 { \end { actionenv } }
1660 }
1661 {
1662 \NewPitonEnvironment { Piton } { O { } }
1663 { \keys_set:nn { PitonOptions } { #1 } }
1664 { }
1665 }

1666 \NewDocumentCommand { \PitonInputFileTF } { d < > O { } m m m }
1667 {
1668 \mode_if_vertical:F { \par }
1669 \group_begin:
1670 \seq_concat:NNN
1671 \l_file_search_path_seq
1672 \l_@@_path_seq
1673 \l_file_search_path_seq
1674 \file_get_full_name:nNTF { #3 } \l_@@_file_name_str
1675 {
1676 \@@_input_file:nn { #1 } { #2 }
1677 #4
1678 }
1679 { #5 }
1680 \group_end:
1681 }

1682 \cs_new_protected:Npn \@@_unknown_file:n #1
1683 { \msg_error:nnn { piton } { Unknown~file } { #1 } }

1684 \NewDocumentCommand { \PitonInputFile } { d < > O { } m }
1685 {
1686 \PitonInputFileTF < #1 > [#2] { #3 } { }
1687 {

The following line is for latexmk (suggestion of Y. Salmon).

39

1688 \iow_log:n { No~file~#3 }
1689 \@@_unknown_file:n { #3 }
1690 }
1691 }
1692 \NewDocumentCommand { \PitonInputFileT } { d < > O { } m m }
1693 {
1694 \PitonInputFileTF < #1 > [#2] { #3 } { #4 }
1695 {

The following line is for latexmk (suggestion of Y. Salmon).
1696 \iow_log:n { No~file~#3 }
1697 \@@_unknown_file:n { #3 }
1698 }
1699 }
1700 \NewDocumentCommand { \PitonInputFileF } { d < > O { } m m }
1701 { \PitonInputFileTF < #1 > [#2] { #3 } { } { #4 } }

The following command uses as implicit argument the name of the file in \l_@@_file_name_str.
1702 \cs_new_protected:Npn \@@_input_file:nn #1 #2
1703 {

We recall that, if we are in Beamer, the command \PitonInputFile is “overlay-aware” and that’s
why there is an optional argument between angular brackets (< and >).

1704 \tl_if_novalue:nF { #1 }
1705 {
1706 \bool_if:NTF \g_@@_beamer_bool
1707 { \begin { uncoverenv } < #1 > }
1708 { \@@_error_or_warning:n { overlay~without~beamer } }
1709 }
1710 \group_begin:

The following line is to allow tools such as latexmk to be aware that the file read by \PitonInputFile
is loaded during the compilation of the LaTeX document.

1711 \iow_log:e { (\l_@@_file_name_str) }
1712 \int_zero_new:N \l_@@_first_line_int
1713 \int_zero_new:N \l_@@_last_line_int
1714 \int_set_eq:NN \l_@@_last_line_int \c_max_int
1715 \bool_set_true:N \l_@@_in_PitonInputFile_bool
1716 \keys_set:nn { PitonOptions } { #2 }
1717 \bool_if:NT \l_@@_line_numbers_absolute_bool
1718 { \bool_set_false:N \l_@@_skip_empty_lines_bool }
1719 \bool_if:nTF
1720 {
1721 (
1722 \int_compare_p:nNn \l_@@_first_line_int > \c_zero_int
1723 || \int_compare_p:nNn \l_@@_last_line_int < \c_max_int
1724)
1725 && ! \str_if_empty_p:N \l_@@_begin_range_str
1726 }
1727 {
1728 \@@_error_or_warning:n { bad~range~specification }
1729 \int_zero:N \l_@@_first_line_int
1730 \int_set_eq:NN \l_@@_last_line_int \c_max_int
1731 }
1732 {
1733 \str_if_empty:NF \l_@@_begin_range_str
1734 {
1735 \@@_compute_range:
1736 \bool_lazy_or:nnT
1737 \l_@@_marker_include_lines_bool
1738 { ! \str_if_eq_p:NN \l_@@_begin_range_str \l_@@_end_range_str }
1739 {
1740 \int_decr:N \l_@@_first_line_int
1741 \int_incr:N \l_@@_last_line_int
1742 }
1743 }

40

1744 }
1745 \@@_pre_composition:
1746 \bool_if:NT \l_@@_line_numbers_absolute_bool
1747 { \int_gset:Nn \g_@@_visual_line_int { \l_@@_first_line_int - 1 } }
1748 \int_compare:nNnT \l_@@_number_lines_start_int > \c_zero_int
1749 {
1750 \int_gset:Nn \g_@@_visual_line_int
1751 { \l_@@_number_lines_start_int - 1 }
1752 }

The following case arises when the code line-numbers/absolute is in force without the use of a
marked range.

1753 \int_compare:nNnT \g_@@_visual_line_int < \c_zero_int
1754 { \int_gzero:N \g_@@_visual_line_int }

1755 \lua_now:e
1756 {

The following command will store the content of the file (or only a part of that file) in
\l_@@_listing_tl.

1757 piton.ReadFile(
1758 '\l_@@_file_name_str' ,
1759 \int_use:N \l_@@_first_line_int ,
1760 \int_use:N \l_@@_last_line_int)
1761 }
1762 \@@_composition:
1763 \group_end:

We recall that, if we are in Beamer, the command \PitonInputFile is “overlay-aware” and that’s why
we close now an environment {uncoverenv} that we have opened at the beginning of the command.

1764 \tl_if_novalue:nF { #1 }
1765 { \bool_if:NT \g_@@_beamer_bool { \end { uncoverenv } } }
1766 }

The following command computes the values of \l_@@_first_line_int and \l_@@_last_line_int
when \PitonInputFile is used with textual markers.

1767 \cs_new_protected:Npn \@@_compute_range:
1768 {

We store the markers in L3 strings (str) in order to do safely the following replacement of \#.
1769 \str_set:Ne \l_tmpa_str { \@@_marker_beginning:n { \l_@@_begin_range_str } }
1770 \str_set:Ne \l_tmpb_str { \@@_marker_end:n { \l_@@_end_range_str } }

We replace the sequences \# which may be present in the prefixes and suffixes added to the markers
by the functions \@@_marker_beginning:n and \@@_marker_end:n.

1771 \tl_replace_all:Nee \l_tmpa_str { \c_backslash_str \c_hash_str } \c_hash_str
1772 \tl_replace_all:Nee \l_tmpb_str { \c_backslash_str \c_hash_str } \c_hash_str

1773 \lua_now:e
1774 {
1775 piton.ComputeRange
1776 ('\l_tmpa_str' , '\l_tmpb_str' , '\l_@@_file_name_str')
1777 }
1778 }

2.8 The styles

The following command is fundamental: it will be used by the Lua code.
1779 \NewDocumentCommand { \PitonStyle } { m }
1780 {
1781 \cs_if_exist_use:cF { pitonStyle _ \l_piton_language_str _ #1 }
1782 { \use:c { pitonStyle _ #1 } }
1783 }

41

The following variant will be rarely used. It applies only a local style and only when that style exists
(no error will be raised when the style does not exist). That command will be used in particular for
the language “expl”.

1784 \NewDocumentCommand { \OptionalLocalPitonStyle } { m }
1785 { \cs_if_exist_use:c { pitonStyle _ \l_piton_language_str _ #1 } }

1786 \NewDocumentCommand { \SetPitonStyle } { O { } m }
1787 {
1788 \str_clear_new:N \l_@@_SetPitonStyle_option_str
1789 \str_set:Ne \l_@@_SetPitonStyle_option_str { \str_lowercase:n { #1 } }
1790 \str_if_eq:onT { \l_@@_SetPitonStyle_option_str } { current-language }
1791 { \str_set_eq:NN \l_@@_SetPitonStyle_option_str \l_piton_language_str }
1792 \keys_set:nn { piton / Styles } { #2 }
1793 }

1794 \cs_new_protected:Npn \@@_math_scantokens:n #1
1795 { \normalfont \scantextokens { \begin{math} #1 \end{math} } }

1796 \clist_new:N \g_@@_styles_clist
1797 \clist_gset:Nn \g_@@_styles_clist
1798 {
1799 Comment ,
1800 Comment.Internal ,
1801 Comment.LaTeX ,
1802 Discard ,
1803 Exception ,
1804 FormattingType ,
1805 Identifier.Internal ,
1806 Identifier ,
1807 InitialValues ,
1808 Interpol.Inside ,
1809 Keyword ,
1810 Keyword.Governing ,
1811 Keyword.Constant ,
1812 Keyword2 ,
1813 Keyword3 ,
1814 Keyword4 ,
1815 Keyword5 ,
1816 Keyword6 ,
1817 Keyword7 ,
1818 Keyword8 ,
1819 Keyword9 ,
1820 Name.Builtin ,
1821 Name.Class ,
1822 Name.Constructor ,
1823 Name.Decorator ,
1824 Name.Field ,
1825 Name.Function ,
1826 Name.Module ,
1827 Name.Namespace ,
1828 Name.Table ,
1829 Name.Type ,
1830 Number ,
1831 Number.Internal ,
1832 Operator ,
1833 Operator.Word ,
1834 Preproc ,
1835 Prompt ,
1836 String.Doc ,
1837 String.Doc.Internal ,
1838 String.Interpol ,
1839 String.Long ,

42

1840 String.Long.Internal ,
1841 String.Short ,
1842 String.Short.Internal ,
1843 Tag ,
1844 TypeParameter ,
1845 UserFunction ,

TypeExpression is an internal style for expressions which defines types in OCaml.
1846 TypeExpression ,

Now, specific styles for the languages created with \NewPitonLanguage with the syntax of listings.
1847 Directive
1848 }

1849 \clist_map_inline:Nn \g_@@_styles_clist
1850 {
1851 \keys_define:nn { piton / Styles }
1852 {
1853 #1 .value_required:n = true ,
1854 #1 .code:n =
1855 \tl_set:cn
1856 {
1857 pitonStyle _
1858 \str_if_empty:NF \l_@@_SetPitonStyle_option_str
1859 { \l_@@_SetPitonStyle_option_str _ }
1860 #1
1861 }
1862 { ##1 }
1863 }
1864 }
1865

1866 \keys_define:nn { piton / Styles }
1867 {
1868 String .meta:n = { String.Long = #1 , String.Short = #1 } ,
1869 String .value_required:n = true ,
1870 Comment.Math .tl_set:c = pitonStyle _ Comment.Math ,
1871 Comment.Math .value_required:n = true ,
1872 unknown .code:n = \@@_unknown_style:
1873 }

For the langage expl, it’s possible to create “on the fly” some styles of the form Module.name or
Type.name. For the other languages, it’s not possible.

1874 \cs_new_protected:Npn \@@_unknown_style:
1875 {
1876 \str_if_eq:eeTF \l_@@_SetPitonStyle_option_str { expl }
1877 {
1878 \seq_set_split:Nne \l_tmpa_seq { . } \l_keys_key_str
1879 \seq_get_left:NN \l_tmpa_seq \l_tmpa_str

Now, the first part of the key (before the first period) is stored in \l_tmpa_str.
1880 \bool_lazy_and:nnTF
1881 { \int_compare_p:nNn { \seq_count:N \l_tmpa_seq } > { 1 } }
1882 {
1883 \str_if_eq_p:Vn \l_tmpa_str { Module }
1884 ||
1885 \str_if_eq_p:Vn \l_tmpa_str { Type }
1886 }

Now, we will create a new style.
1887 { \tl_set:co { pitonStyle _ expl _ \l_keys_key_str } \l_keys_value_tl }
1888 { \@@_error:n { Unknown~key~for~SetPitonStyle } }
1889 }
1890 { \@@_error:n { Unknown~key~for~SetPitonStyle } }
1891 }

43

1892 \SetPitonStyle[OCaml]
1893 {
1894 TypeExpression =
1895 {
1896 \SetPitonStyle [OCaml] { Identifier = \PitonStyle { Name.Type } }
1897 \@@_piton:n
1898 }
1899 }

We add the word String to the list of the styles because we will use that list in the error message
for an unknown key in \SetPitonStyle.

1900 \clist_gput_left:Nn \g_@@_styles_clist { String }

Of course, we sort that clist.
1901 \clist_gsort:Nn \g_@@_styles_clist
1902 {
1903 \str_compare:nNnTF { #1 } < { #2 }
1904 \sort_return_same:
1905 \sort_return_swapped:
1906 }

1907 \cs_set_eq:NN \@@_break_strings_anywhere:n \prg_do_nothing:
1908

1909 \cs_set_eq:NN \@@_break_numbers_anywhere:n \prg_do_nothing:
1910

1911 \cs_new_protected:Npn \@@_actually_break_anywhere:n #1
1912 {
1913 \tl_set:Nn \l_tmpa_tl { #1 }

We have to begin by a substitution for the spaces. Otherwise, they would be gobbled in the
\tl_map_inline:Nn.

1914 \tl_replace_all:NVn \l_tmpa_tl \c_catcode_other_space_tl \space
1915 \seq_clear:N \l_tmpa_seq
1916 \tl_map_inline:Nn \l_tmpa_tl { \seq_put_right:Nn \l_tmpa_seq { ##1 } }
1917 \seq_use:Nn \l_tmpa_seq { \- }
1918 }

1919 \cs_new_protected:Npn \@@_comment:n #1
1920 {
1921 \PitonStyle { Comment }
1922 {
1923 \bool_if:NTF \l_@@_break_lines_in_Piton_bool
1924 {
1925 \tl_set:Nn \l_tmpa_tl { #1 }
1926 \tl_replace_all:NVn \l_tmpa_tl
1927 \c_catcode_other_space_tl
1928 \@@_breakable_space:
1929 \l_tmpa_tl
1930 }
1931 { #1 }
1932 }
1933 }

1934 \cs_new_protected:Npn \@@_string_long:n #1
1935 {
1936 \PitonStyle { String.Long }
1937 {
1938 \bool_if:NTF \l_@@_break_strings_anywhere_bool
1939 { \@@_actually_break_anywhere:n { #1 } }
1940 {

44

We have, when break-lines-in-Piton is in force, to replace the spaces by \@@_breakable_space:
because, when we have done a similar job in \@@_replace_spaces:n used in \@@_begin_line:, that
job was not able to do the replacement in the brace group {...} of \PitonStyle{String.Long}{...}
because we used a \tl_replace_all:NVn. At that time, it would have been possible to use a
\tl_regex_replace_all:Nnn but it is notoriously slow.

1941 \bool_if:NTF \l_@@_break_lines_in_Piton_bool
1942 {
1943 \tl_set:Nn \l_tmpa_tl { #1 }
1944 \tl_replace_all:NVn \l_tmpa_tl
1945 \c_catcode_other_space_tl
1946 \@@_breakable_space:
1947 \l_tmpa_tl
1948 }
1949 { #1 }
1950 }
1951 }
1952 }
1953 \cs_new_protected:Npn \@@_string_short:n #1
1954 {
1955 \PitonStyle { String.Short }
1956 {
1957 \bool_if:NT \l_@@_break_strings_anywhere_bool
1958 { \@@_actually_break_anywhere:n }
1959 { #1 }
1960 }
1961 }
1962 \cs_new_protected:Npn \@@_string_doc:n #1
1963 {
1964 \PitonStyle { String.Doc }
1965 {
1966 \bool_if:NTF \l_@@_break_lines_in_Piton_bool
1967 {
1968 \tl_set:Nn \l_tmpa_tl { #1 }
1969 \tl_replace_all:NVn \l_tmpa_tl
1970 \c_catcode_other_space_tl
1971 \@@_breakable_space:
1972 \l_tmpa_tl
1973 }
1974 { #1 }
1975 }
1976 }
1977 \cs_new_protected:Npn \@@_number:n #1
1978 {
1979 \PitonStyle { Number }
1980 {
1981 \bool_if:NT \l_@@_break_numbers_anywhere_bool
1982 { \@@_actually_break_anywhere:n }
1983 { #1 }
1984 }
1985 }

2.9 The initial styles
The initial styles are inspired by the style “manni” of Pygments.

1986 \SetPitonStyle
1987 {
1988 Comment = \color [HTML] { 0099FF } \itshape ,
1989 Comment.Internal = \@@_comment:n ,
1990 Exception = \color [HTML] { CC0000 } ,
1991 Keyword = \color [HTML] { 006699 } \bfseries ,
1992 Keyword.Governing = \color [HTML] { 006699 } \bfseries ,

45

1993 Keyword.Constant = \color [HTML] { 006699 } \bfseries ,
1994 Name.Builtin = \color [HTML] { 336666 } ,
1995 Name.Decorator = \color [HTML] { 9999FF },
1996 Name.Class = \color [HTML] { 00AA88 } \bfseries ,
1997 Name.Function = \color [HTML] { CC00FF } ,
1998 Name.Namespace = \color [HTML] { 00CCFF } ,
1999 Name.Constructor = \color [HTML] { 006000 } \bfseries ,
2000 Name.Field = \color [HTML] { AA6600 } ,
2001 Name.Module = \color [HTML] { 0060A0 } \bfseries ,
2002 Name.Table = \color [HTML] { 309030 } ,
2003 Number = \color [HTML] { FF6600 } ,
2004 Number.Internal = \@@_number:n ,
2005 Operator = \color [HTML] { 555555 } ,
2006 Operator.Word = \bfseries ,
2007 String = \color [HTML] { CC3300 } ,
2008 String.Long.Internal = \@@_string_long:n ,
2009 String.Short.Internal = \@@_string_short:n ,
2010 String.Doc.Internal = \@@_string_doc:n ,
2011 String.Doc = \color [HTML] { CC3300 } \itshape ,
2012 String.Interpol = \color [HTML] { AA0000 } ,
2013 Comment.LaTeX = \normalfont \color [rgb] { .468, .532, .6 } ,
2014 Name.Type = \color [HTML] { 336666 } ,
2015 InitialValues = \@@_piton:n ,
2016 Interpol.Inside = { \l_@@_font_command_tl \@@_piton:n } ,
2017 TypeParameter = \color [HTML] { 336666} \itshape ,
2018 Preproc = \color [HTML] { AA6600} \slshape ,

We need the command \@@_identifier:n because of the command \SetPitonIdentifier. The
command \@@_identifier:n will potentially call the style Identifier (which is a user-style, not an
internal style).

2019 Identifier.Internal = \@@_identifier:n ,
2020 Identifier = ,
2021 Directive = \color [HTML] { AA6600} ,
2022 Tag = \colorbox { gray!10 } ,
2023 UserFunction = \PitonStyle { Identifier } ,
2024 Prompt = ,
2025 Discard = \use_none:n
2026 }

2.10 Styles specific to the language expl
2027 \clist_new:N \g_@@_expl_styles_clist
2028 \clist_gset:Nn \g_@@_expl_styles_clist
2029 {
2030 Scope.l ,
2031 Scope.g ,
2032 Scope.c
2033 }

2034 \clist_map_inline:Nn \g_@@_expl_styles_clist
2035 {
2036 \keys_define:nn { piton / Styles }
2037 {
2038 #1 .value_required:n = true ,
2039 #1 .code:n =
2040 \tl_set:cn
2041 {
2042 pitonStyle _
2043 \str_if_empty:NF \l_@@_SetPitonStyle_option_str
2044 { \l_@@_SetPitonStyle_option_str _ }
2045 #1
2046 }
2047 { ##1 }

46

2048 }
2049 }

2050 \SetPitonStyle [expl]
2051 {
2052 Scope.l = ,
2053 Scope.g = \bfseries ,
2054 Scope.c = \slshape ,
2055 Type.bool = \color [HTML] { AA6600} ,
2056 Type.box = \color [HTML] { 267910 } ,
2057 Type.clist = \color [HTML] { 309030 } ,
2058 Type.fp = \color [HTML] { FF3300 } ,
2059 Type.int = \color [HTML] { FF6600 } ,
2060 Type.seq = \color [HTML] { 309030 } ,
2061 Type.skip = \color [HTML] { 0CC060 } ,
2062 Type.str = \color [HTML] { CC3300 } ,
2063 Type.tl = \color [HTML] { AA2200 } ,
2064 Module.bool = \color [HTML] { AA6600} ,
2065 Module.box = \color [HTML] { 267910 } ,
2066 Module.cs = \bfseries \color [HTML] { 006699 } ,
2067 Module.exp = \bfseries \color [HTML] { 404040 } ,
2068 Module.hbox = \color [HTML] { 267910 } ,
2069 Module.prg = \bfseries ,
2070 Module.clist = \color [HTML] { 309030 } ,
2071 Module.fp = \color [HTML] { FF3300 } ,
2072 Module.int = \color [HTML] { FF6600 } ,
2073 Module.seq = \color [HTML] { 309030 } ,
2074 Module.skip = \color [HTML] { 0CC060 } ,
2075 Module.str = \color [HTML] { CC3300 } ,
2076 Module.tl = \color [HTML] { AA2200 } ,
2077 Module.vbox = \color [HTML] { 267910 }
2078 }

If the key math-comments has been used in the preamble of the LaTeX document, we change the
style Comment.Math which should be considered only at an “internal style”. However, maybe we will
document in a future version the possibility to write change the style locally in a document)].

2079 \hook_gput_code:nnn { begindocument } { . }
2080 {
2081 \bool_if:NT \g_@@_math_comments_bool
2082 { \SetPitonStyle { Comment.Math = \@@_math_scantokens:n } }
2083 }

2.11 Highlighting some identifiers

2084 \NewDocumentCommand { \SetPitonIdentifier } { o m m }
2085 {
2086 \clist_set:Nn \l_tmpa_clist { #2 }
2087 \tl_if_novalue:nTF { #1 }
2088 {
2089 \clist_map_inline:Nn \l_tmpa_clist
2090 { \cs_set:cpn { PitonIdentifier _ ##1 } { #3 } }
2091 }
2092 {
2093 \str_set:Ne \l_tmpa_str { \str_lowercase:n { #1 } }
2094 \str_if_eq:onT \l_tmpa_str { current-language }
2095 { \str_set_eq:NN \l_tmpa_str \l_piton_language_str }
2096 \clist_map_inline:Nn \l_tmpa_clist
2097 { \cs_set:cpn { PitonIdentifier _ \l_tmpa_str _ ##1 } { #3 } }
2098 }
2099 }

2100 \cs_new_protected:Npn \@@_identifier:n #1
2101 {
2102 \cs_if_exist_use:cF { PitonIdentifier _ \l_piton_language_str _ #1 }

47

2103 {
2104 \cs_if_exist_use:cF { PitonIdentifier _ #1 }
2105 { \PitonStyle { Identifier } }
2106 }
2107 { #1 }
2108 }

In particular, we have an highlighting of the identifiers which are the names of Python func-
tions previously defined by the user. Indeed, when a Python function is defined, the style
Name.Function.Internal is applied to that name. We define now that style (you define it directly
and you short-cut the function \SetPitonStyle).

2109 \cs_new_protected:cpn { pitonStyle _ Name.Function.Internal } #1
2110 {

First, the element is composed in the TeX flow with the style Name.Function which is provided to
the end user.

2111 { \PitonStyle { Name.Function } { #1 } }

Now, we specify that the name of the new Python function is a known identifier that will be formatted
with the Piton style UserFunction. Of course, here the affectation is global because we have to exit
many groups and even the environments {Piton}).

2112 \cs_gset_protected:cpn { PitonIdentifier _ \l_piton_language_str _ #1 }
2113 { \PitonStyle { UserFunction } }

Now, we put the name of that new user function in the dedicated sequence (specific of the current
language). That sequence will be used only by \PitonClearUserFunctions.

2114 \seq_if_exist:cF { g_@@_functions _ \l_piton_language_str _ seq }
2115 { \seq_new:c { g_@@_functions _ \l_piton_language_str _ seq } }
2116 \seq_gput_right:cn { g_@@_functions _ \l_piton_language_str _ seq } { #1 }

We update \g_@@_languages_seq which is used only by the command \PitonClearUserFunctions
when it’s used without its optional argument.

2117 \seq_if_in:NoF \g_@@_languages_seq { \l_piton_language_str }
2118 { \seq_gput_left:No \g_@@_languages_seq { \l_piton_language_str } }
2119 }

2120 \NewDocumentCommand \PitonClearUserFunctions { ! o }
2121 {
2122 \tl_if_novalue:nTF { #1 }

If the command is used without its optional argument, we will deleted the user language for all the
computer languages.

2123 { \@@_clear_all_functions: }
2124 { \@@_clear_list_functions:n { #1 } }
2125 }

2126 \cs_new_protected:Npn \@@_clear_list_functions:n #1
2127 {
2128 \clist_set:Nn \l_tmpa_clist { #1 }
2129 \clist_map_function:NN \l_tmpa_clist \@@_clear_functions_i:n
2130 \clist_map_inline:nn { #1 }
2131 { \seq_gremove_all:Nn \g_@@_languages_seq { ##1 } }
2132 }

2133 \cs_new_protected:Npn \@@_clear_functions_i:n #1
2134 { \@@_clear_functions_ii:n { \str_lowercase:n { #1 } } }

The following command clears the list of the user-defined functions for the language provided in
argument (mandatory in lower case).

2135 \cs_new_protected:Npn \@@_clear_functions_ii:n #1
2136 {
2137 \seq_if_exist:cT { g_@@_functions _ #1 _ seq }
2138 {
2139 \seq_map_inline:cn { g_@@_functions _ #1 _ seq }
2140 { \cs_undefine:c { PitonIdentifier _ #1 _ ##1} }

48

2141 \seq_gclear:c { g_@@_functions _ #1 _ seq }
2142 }
2143 }
2144 \cs_generate_variant:Nn \@@_clear_functions_ii:n { e }

2145 \cs_new_protected:Npn \@@_clear_functions:n #1
2146 {
2147 \@@_clear_functions_i:n { #1 }
2148 \seq_gremove_all:Nn \g_@@_languages_seq { #1 }
2149 }

The following command clears all the user-defined functions for all the computer languages.
2150 \cs_new_protected:Npn \@@_clear_all_functions:
2151 {
2152 \seq_map_function:NN \g_@@_languages_seq \@@_clear_functions_i:n
2153 \seq_gclear:N \g_@@_languages_seq
2154 }

2155 \AtEndDocument
2156 {

For the files written on the disk (with the key write), all the job is done by Lua.
2157 \lua_now:n { piton.write_files_now () }

For the files joined in the pdf, we have a modern version which uses the package pdfmanagement of
LaTeX and a legacy mechanism.

2158 \IfPDFManagementActiveTF
2159 { \@@_join_files: }
2160 { \@@_join_files_legacy: }
2161 }

If the new pakcage pdfmanagement is used, we insert the file directly in the catalog of the pdf file.
2162 \cs_new_protected:Npn \@@_join_files:
2163 {
2164 \seq_map_inline:Nn \g_@@_join_seq
2165 {
2166 \lua_now:n { pdf.immediateobj ("stream" , piton.join_files["##1"]) }
2167 \str_set_convert:Nnnn \l_tmpa_str { ##1 } { } { utf16/hex }
2168 \pdfmanagement_add:nne { Catalog / Names } { EmbeddedFiles }
2169 {
2170 <<
2171 /Type /Filespec
2172 /UF <\l_tmpa_str>
2173 /EF << /F~\pdf_object_ref_last: >>
2174 /Desc (Computer~listing)
2175 /AFRelationship /Supplement
2176 >>
2177 }
2178 }
2179 }

The legacy version of \@@_join_files: will be used when the new package pdfmanagement is not
used. It that case, we can’t insert the file directly in the catalog of the pdf file. Therefore, we insert
the file linked to a annotation in a page of the pdf file. We try to make the annotation itself invisible
with several technics.

2180 \cs_new_protected:Npn \@@_join_files_legacy:
2181 {
2182 \seq_map_inline:Nn \g_@@_join_seq
2183 {
2184 \str_set_convert:Nnnn \l_tmpa_str { ##1 } { } { utf16/hex }
2185 \lua_now:n { pdf.immediateobj ("stream" , piton.join_files["##1"]) }
2186 \pdfextension annot~width~0pt~height~0pt~depth~0pt

49

The entry /F in the pdf dictionnary of the annotation is an unsigned 32-bit integer containing flags
specifying various characteristics of the annotation. The bit in position 2 means Hidden. However,
despite that bit which means Hidden, some pdf readers show the annotation. That’s why we have
used width 0pt height 0pt depth 0pt.

2187 {
2188 /Subtype /FileAttachment
2189 /F~2
2190 /Name /Paperclip
2191 /Contents (Computer~listing)
2192 /FS <<
2193 /Type /Filespec

We have previously converted the name of the embedded file in utf16/hex with the bom of big endian
and now we can write a pdf string between < and > (with that encoding).

2194 /UF <\l_tmpa_str>

It would have been possible to write \pdffeedback lastobj~0~R instead \pdf_object_ref_last:
since LuaTeX is the only engine allowed by piton. Remark that \pdf_object_ref_last: is in the
LaTeX kernel (not in the package pdfmanagement).

2195 /EF << /F~\pdf_object_ref_last: >>
2196 /AFRelationship /Supplement
2197 >>
2198 }
2199 }
2200 }

2.12 Spaces of indentation

2201 \cs_new_protected:Npn \@@_define_leading_space_normal:
2202 {
2203 \cs_set_protected:Npn \@@_leading_space:
2204 {
2205 \int_gincr:N \g_@@_indentation_int

Be careful: the \hbox:n is mandatory.
2206 \hbox:n { ~ }
2207 }
2208 }

2209 \cs_new_protected:Npn \@@_define_leading_space_Foxit:
2210 {
2211 \cs_set_protected:Npn \@@_leading_space:
2212 {
2213 \int_gincr:N \g_@@_indentation_int
2214 \pdfextension literal { /Artifact << /ActualText (\space) >> BDC }
2215 {
2216 \color { white }
2217 \transparent { 0 }
2218 . % previously : ␣ U+2423
2219 }
2220 \pdfextension literal { EMC }
2221 }
2222 }
2223 \@@_define_leading_space_Foxit:

2.13 Security
2224 \AddToHook { env / piton / before }
2225 { \@@_fatal:n { No~environment~piton } }

2.14 The error messages of the package
When there is a unknown key, we try a “normal form” of the key and, when that normal form exists,
we add that information in the error message.

50

The normal form is the lower case form of the key, with all the spaces replaced by hyphens (there is
never spaces in the keys of piton).
#1 is a clist of names of sets of keys and #2 is the error message to send.

2226 \cs_new_protected:Npn \@@_unknown_key:nn #1 #2
2227 {
2228 \str_set_eq:NN \l_tmpa_str \l_keys_key_str
2229 \str_replace_all:Nnn \l_tmpa_str { ~ } { - }
2230 \str_set:Ne \l_tmpa_str { \str_lowercase:f { \l_tmpa_str } }
2231 \bool_set_false:N \l_tmpa_bool
2232 \clist_map_inline:nn { #1 }
2233 {
2234 \keys_if_exist:neT { ##1 } { \l_tmpa_str }
2235 {
2236 \@@_error:n { key~with~normal~form~exists }
2237 \bool_set_true:N \l_tmpa_bool
2238 \clist_map_break:
2239 }
2240 }
2241 \bool_if:NF \l_tmpa_bool { \@@_error:n { #2 } }
2242 }

2243 \@@_msg_new:nn { key~with~normal~form~exists }
2244 {
2245 The~key~'\l_keys_key_str'~does~not~exists.~It~will~be~ignored.\\
2246 Maybe~you~want~to~use~the~key~'\l_tmpa_str'.
2247 }

2248 \@@_msg_new:nn { No~environment~piton }
2249 {
2250 There~is~no~environment~piton!\\
2251 There~is~an~environment~{Piton}~and~a~command~
2252 \token_to_str:N \piton\ but~there~is~no~environment~
2253 {piton}.~This~error~is~fatal.
2254 }

2255 \@@_msg_new:nn { rounded-corners~without~Tikz }
2256 {
2257 TikZ~not~used \\
2258 You~can't~use~the~key~'rounded-corners'~because~
2259 you~have~not~loaded~the~package~TikZ. \\
2260 If~you~go~on,~that~key~will~be~ignored. \\
2261 You~won't~have~similar~error~till~the~end~of~the~document.
2262 }

2263 \@@_msg_new:nn { tcolorbox~not~loaded }
2264 {
2265 tcolorbox~not~loaded \\
2266 You~can't~use~the~key~'tcolorbox'~because~
2267 you~have~not~loaded~the~package~tcolorbox. \\
2268 Use~\token_to_str:N \usepackage[breakable]{tcolorbox}. \\
2269 If~you~go~on,~that~key~will~be~ignored.
2270 }

2271 \@@_msg_new:nn { library~breakable~not~loaded }
2272 {
2273 breakable~not~loaded \\
2274 You~can't~use~the~key~'tcolorbox'~because~
2275 you~have~not~loaded~the~library~'breakable'~of~tcolorbox'. \\
2276 Use~\token_to_str:N \tcbuselibrary{breakable}~in~the~preamble~
2277 of~your~document.\\
2278 If~you~go~on,~that~key~will~be~ignored.
2279 }

2280 \@@_msg_new:nn { Language~not~defined }
2281 {
2282 Language~not~defined \\
2283 The~language~'\l_tmpa_tl'~has~not~been~defined~previously.\\

51

2284 If~you~go~on,~your~command~\token_to_str:N \NewPitonLanguage\
2285 will~be~ignored.
2286 }

2287 \@@_msg_new:nn { bad~version~of~piton.lua }
2288 {
2289 Bad~number~version~of~'piton.lua'\\
2290 The~file~'piton.lua'~loaded~has~not~the~same~number~of~
2291 version~as~the~file~'piton.sty'.~You~can~go~on~but~you~should~
2292 address~that~issue.
2293 }

2294 \@@_msg_new:nn { Unknown~key~NewPitonLanguage }
2295 {
2296 Unknown~key~for~\token_to_str:N \NewPitonLanguage.\\
2297 The~key~'\l_keys_key_str'~is~unknown.\\
2298 This~key~will~be~ignored.\\
2299 }

2300 \@@_msg_new:nn { Unknown~key~for~SetPitonStyle }
2301 {
2302 The~style~'\l_keys_key_str'~is~unknown.\\
2303 This~setting~will~be~ignored.\\
2304 The~available~styles~are~(in~alphabetic~order):~
2305 \clist_use:Nnnn \g_@@_styles_clist { ~and~ } { ,~ } { ~and~ }.
2306 }

2307 \@@_msg_new:nn { Invalid~key }
2308 {
2309 Wrong~use~of~key.\\
2310 You~can't~use~the~key~'\l_keys_key_str'~here.\\
2311 That~key~will~be~ignored.
2312 }

2313 \@@_msg_new:nn { Unknown~key~for~line-numbers }
2314 {
2315 Unknown~key. \\
2316 The~key~'line-numbers / \l_keys_key_str'~is~unknown.\\
2317 The~available~keys~of~the~family~'line-numbers'~are~(in~
2318 alphabetic~order):~
2319 absolute,~false,~label-empty-lines,~position,~resume,~skip-empty-lines,~
2320 sep,~start~and~true.\\
2321 That~key~will~be~ignored.
2322 }

2323 \@@_msg_new:nn { Unknown~key~for~marker }
2324 {
2325 Unknown~key. \\
2326 The~key~'marker / \l_keys_key_str'~is~unknown.\\
2327 The~available~keys~of~the~family~'marker'~are~(in~
2328 alphabetic~order):~ beginning,~end~and~include-lines.\\
2329 That~key~will~be~ignored.
2330 }

2331 \@@_msg_new:nn { bad~range~specification }
2332 {
2333 Incompatible~keys.\\
2334 You~can't~specify~the~range~of~lines~to~include~by~using~both~
2335 markers~and~explicit~number~of~lines.\\
2336 Your~whole~file~'\l_@@_file_name_str'~will~be~included.
2337 }

2338 \cs_new_nopar:Nn \@@_thepage:
2339 {
2340 \thepage
2341 \cs_if_exist:NT \insertframenumber
2342 {
2343 ~(frame~\insertframenumber

52

2344 \cs_if_exist:NT \beamer@slidenumber { ,~slide~\insertslidenumber }
2345)
2346 }
2347 }

We don’t give the name syntax error for the following error because you should not give a name
with a space because such space could be replaced by U+2423 when the key show-spaces is in force
in the command \piton.

2348 \@@_msg_new:nn { SyntaxError }
2349 {
2350 Syntax~Error~on~page~\@@_thepage:.\\
2351 Your~code~of~the~language~'\l_piton_language_str'~is~not~
2352 syntactically~correct.\\
2353 It~won't~be~printed~in~the~PDF~file.
2354 }

2355 \@@_msg_new:nn { FileError }
2356 {
2357 File~Error.\\
2358 It's~not~possible~to~write~on~the~file~'#1' \\
2359 \sys_if_shell_unrestricted:F
2360 { (try~to~compile~with~'lualatex~-shell-escape').\\ }
2361 If~you~go~on,~nothing~will~be~written~on~that~file.
2362 }

2363 \@@_msg_new:nn { InexistentDirectory }
2364 {
2365 Inexistent~directory.\\
2366 The~directory~'\l_@@_path_write_str'~
2367 given~in~the~key~'path-write'~does~not~exist.\\
2368 Nothing~will~be~written~on~'\l_@@_write_str'.
2369 }

2370 \@@_msg_new:nn { begin~marker~not~found }
2371 {
2372 Marker~not~found.\\
2373 The~range~'\l_@@_begin_range_str'~provided~to~the~
2374 command~\token_to_str:N \PitonInputFile\ has~not~been~found.~
2375 The~whole~file~'\l_@@_file_name_str'~will~be~inserted.
2376 }

2377 \@@_msg_new:nn { end~marker~not~found }
2378 {
2379 Marker~not~found.\\
2380 The~marker~of~end~of~the~range~'\l_@@_end_range_str'~
2381 provided~to~the~command~\token_to_str:N \PitonInputFile\
2382 has~not~been~found.~The~file~'\l_@@_file_name_str'~will~
2383 be~inserted~till~the~end.
2384 }

2385 \@@_msg_new:nn { Unknown~file }
2386 {
2387 Unknown~file. \\
2388 The~file~'#1'~is~unknown.\\
2389 Your~command~\token_to_str:N \PitonInputFile\ will~be~discarded.
2390 }

2391 \cs_new_protected:Npn \@@_error_if_not_in_beamer:
2392 {
2393 \bool_if:NF \g_@@_beamer_bool
2394 { \@@_error_or_warning:n { Without~beamer } }
2395 }

2396 \@@_msg_new:nn { Without~beamer }
2397 {
2398 Key~'\l_keys_key_str'~without~Beamer.\\
2399 You~should~not~use~the~key~'\l_keys_key_str'~since~you~
2400 are~not~in~Beamer.\\

53

2401 However,~you~can~go~on.
2402 }

2403 \@@_msg_new:nn { rowcolor~in~detected-commands }
2404 {
2405 'rowcolor'~forbidden~in~'detected-commands'.\\
2406 You~should~put~'rowcolor'~in~'raw-detected-commands'.\\
2407 That~key~will~be~ignored.
2408 }

2409 \@@_msg_new:nnn { Unknown~key~for~PitonOptions }
2410 {
2411 Unknown~key. \\
2412 The~key~'\l_keys_key_str'~is~unknown~for~\token_to_str:N \PitonOptions.~
2413 It~will~be~ignored.\\
2414 For~a~list~of~the~available~keys,~type~H~<return>.
2415 }
2416 {
2417 The~available~keys~are~(in~alphabetic~order):~
2418 annotation,~
2419 add-to-split-separation,~
2420 auto-gobble,~
2421 background-color,~
2422 begin-range,~
2423 box,~
2424 break-lines,~
2425 break-lines-in-piton,~
2426 break-lines-in-Piton,~
2427 break-numbers-anywhere,~
2428 break-strings-anywhere,~
2429 continuation-symbol,~
2430 continuation-symbol-on-indentation,~
2431 detected-beamer-commands,~
2432 detected-beamer-environments,~
2433 detected-commands,~
2434 end-of-broken-line,~
2435 end-range,~
2436 env-gobble,~
2437 env-used-by-split,~
2438 font-command,~
2439 gobble,~
2440 indent-broken-lines,~
2441 join,~
2442 label-as-zlabel,~
2443 language,~
2444 left-margin,~
2445 line-numbers/,~
2446 marker/,~
2447 math-comments,~
2448 no-join,~
2449 no-write,~
2450 path,~
2451 path-write,~
2452 print,~
2453 prompt-background-color,~
2454 raw-detected-commands,~
2455 resume,~
2456 right-margin,~
2457 rounded-corners,~
2458 show-spaces,~
2459 show-spaces-in-strings,~
2460 splittable,~
2461 splittable-on-empty-lines,~
2462 split-on-empty-lines,~
2463 split-separation,~

54

2464 tabs-auto-gobble,~
2465 tab-size,~
2466 tcolorbox,~
2467 varwidth,~
2468 vertical-detected-commands,~
2469 width~and~write.
2470 }

2471 \@@_msg_new:nn { label~with~lines~numbers }
2472 {
2473 You~can't~use~the~command~\token_to_str:N \label\
2474 or~\token_to_str:N \zlabel\ because~the~key~'line-numbers'
2475 ~is~not~active.\\
2476 If~you~go~on,~that~command~will~ignored.
2477 }

2478 \@@_msg_new:nn { overlay~without~beamer }
2479 {
2480 You~can't~use~an~argument~<...>~for~your~command~
2481 \token_to_str:N \PitonInputFile\ because~you~are~not~
2482 in~Beamer.\\
2483 If~you~go~on,~that~argument~will~be~ignored.
2484 }

2485 \@@_msg_new:nn { label~as~zlabel~needs~zref~package }
2486 {
2487 The~key~'label-as-zlabel'~requires~the~package~'zref'.~
2488 Please~load~the~package~'zref'~before~setting~the~key.\\
2489 This~error~is~fatal.
2490 }
2491 \hook_gput_code:nnn { begindocument } { . }
2492 {
2493 \bool_if:NT \g_@@_label_as_zlabel_bool
2494 {
2495 \IfPackageLoadedF { zref-base }
2496 { \@@_fatal:n { label~as~zlabel~needs~zref~package } }
2497 }
2498 }

2.15 We load piton.lua

2499 \cs_new_protected:Npn \@@_test_version:n #1
2500 {
2501 \str_if_eq:onF \PitonFileVersion { #1 }
2502 { \@@_error:n { bad~version~of~piton.lua } }
2503 }

2504 \hook_gput_code:nnn { begindocument } { . }
2505 {
2506 \lua_load_module:n { piton }
2507 \lua_now:n
2508 {
2509 tex.sprint (luatexbase.catcodetables.expl ,
2510 [[\@@_test_version:n {]] .. piton_version .. "}")
2511 }
2512 }

</STY>

55

3 The Lua part of the implementation

The Lua code will be loaded via a {luacode*} environment. The environment is by itself a Lua block
and the local declarations will be local to that block. All the global functions (used by the L3 parts
of the implementation) will be put in a Lua table called piton.

2513 〈∗LUA〉
2514 piton.comment_latex = piton.comment_latex or ">"
2515 piton.comment_latex = "#" .. piton.comment_latex

The table piton.write_files will contain the contents of all the files that we will write on the disk
in the \AtEndDocument (if the user has used the key write-file). The table piton.join_files is
similar for the key join.

2516 piton.write_files = { }
2517 piton.join_files = { }

2518 local sprintL3
2519 function sprintL3 (s)
2520 tex.sprint (luatexbase.catcodetables.expl , s)
2521 end

3.1 Special functions dealing with LPEG

We will use the Lua library lpeg which is built in LuaTeX. That’s why we define first aliases for
several functions of that library.

2522 local P, S, V, C, Ct, Cc = lpeg.P, lpeg.S, lpeg.V, lpeg.C, lpeg.Ct, lpeg.Cc
2523 local Cg , Cmt , Cb = lpeg.Cg , lpeg.Cmt , lpeg.Cb
2524 local B , R = lpeg.B , lpeg.R

The following line is mandatory.
2525 lpeg.locale(lpeg)

3.2 The functions Q, K, WithStyle, etc.

The function Q takes in as argument a pattern and returns a lpeg which does a capture of the pattern.
That capture will be sent to LaTeX with the catcode “other” for all the characters: it’s suitable for
elements of the computer listings that piton will typeset verbatim (thanks to the catcode “other”).

2526 local Q
2527 function Q (pattern)
2528 return Ct (Cc (luatexbase.catcodetables.other) * C (pattern))
2529 end

The function L takes in as argument a pattern and returns a lpeg which does a capture of the pattern.
That capture will be sent to LaTeX with standard LaTeX catcodes for all the characters: the elements
captured will be formatted as normal LaTeX codes. It’s suitable for the “LaTeX comments” in the
environments {Piton} and the elements between begin-escape and end-escape. That function
won’t be much used.

2530 local L
2531 function L (pattern) return
2532 Ct (C (pattern))
2533 end

56

The function Lc (the c is for constant) takes in as argument a string and returns a lpeg with does a
constant capture which returns that string. The elements captured will be formatted as L3 code. It
will be used to send to LaTeX all the formatting LaTeX instructions we have to insert in order to do
the syntactic highlighting (that’s the main job of piton). That function, unlike the previous one, will
be widely used.

2534 local Lc
2535 function Lc (string) return
2536 Cc ({ luatexbase.catcodetables.expl , string })
2537 end

The function K creates a lpeg which will return as capture the whole LaTeX code corresponding to a
Python chunk (that is to say with the LaTeX formatting instructions corresponding to the syntactic
nature of that Python chunk). The first argument is a Lua string corresponding to the name of a
piton style and the second element is a pattern (that is to say a lpeg without capture)

2538 local K
2539 function K (style , pattern) return
2540 Lc ([[{\PitonStyle{]] .. style .. "}{")
2541 * Q (pattern)
2542 * Lc "}}"
2543 end

The formatting commands in a given piton style (eg. the style Keyword) may be semi-global dec-
larations (such as \bfseries or \slshape) or LaTeX macros with an argument (such as \fbox
or \colorbox{yellow}). In order to deal with both syntaxes, we have used two pairs of braces:
{\PitonStyle{Keyword}{text to format}}.

The following function WithStyle is similar to the function K but should be used for multi-lines
elements.

2544 local WithStyle
2545 function WithStyle (style , pattern) return
2546 Ct (Cc "Open" * Cc ([[{\PitonStyle{]] .. style .. "}{") * Cc "}}")
2547 * pattern
2548 * Ct (Cc "Close")
2549 end

The following lpeg catches the Python chunks which are in LaTeX escapes (and that chunks will be
considered as normal LaTeX constructions).

2550 Escape = P (false)
2551 EscapeClean = P (false)
2552 if piton.begin_escape then
2553 Escape =
2554 P (piton.begin_escape)
2555 * L ((1 - P (piton.end_escape)) ^ 1)
2556 * P (piton.end_escape)

The LPEG EscapeClean will be used in the LPEG Clean (and that LPEG is used to “clean” the
code by removing the formatting elements).

2557 EscapeClean =
2558 P (piton.begin_escape)
2559 * (1 - P (piton.end_escape)) ^ 1
2560 * P (piton.end_escape)
2561 end

2562 EscapeMath = P (false)
2563 if piton.begin_escape_math then
2564 EscapeMath =
2565 P (piton.begin_escape_math)
2566 * Lc "$"
2567 * L ((1 - P(piton.end_escape_math)) ^ 1)
2568 * Lc "$"
2569 * P (piton.end_escape_math)
2570 end

57

The basic syntactic LPEG
2571 local alpha , digit = lpeg.alpha , lpeg.digit
2572 local space = P " "

Remember that, for lpeg, the Unicode characters such as à, â, ç, etc. are in fact strings of length 2
(2 bytes) because lpeg is not Unicode-aware.

2573 local letter = alpha + "_" + "â" + "à" + "ç" + "é" + "è" + "ê" + "ë" + "ï" + "î"
2574 + "ô" + "û" + "ü" + "Â" + "À" + "Ç" + "É" + "È" + "Ê" + "Ë"
2575 + "Ï" + "Î" + "Ô" + "Û" + "Ü"
2576

2577 local alphanum = letter + digit

The following lpeg identifier is a mere pattern (that is to say more or less a regular expression)
which matches the Python identifiers (hence the name).

2578 local identifier = letter * alphanum ^ 0

On the other hand, the lpeg Identifier (with a capital) also returns a capture.
2579 local Identifier = K ('Identifier.Internal' , identifier)

By convention, we will use names with an initial capital for LPEG which return captures.

The following functions allow to recognize numbers that contains _ among their digits, for example
1_000_000, but also floating point numbers, numbers with exponents and numbers with different
bases.3

2580 local allow_underscores_except_first
2581 function allow_underscores_except_first (p)
2582 return p * (P "_" + p)^0
2583 end
2584 local allow_underscores
2585 function allow_underscores (p)
2586 return (P "_" + p)^0
2587 end
2588 local digits_to_number
2589 function digits_to_number(prefix, digits)
2590 -- The edge cases of what is allowed in number litterals is modelled after
2591 -- OCaml numbers, which seems to be the most permissive language
2592 -- in this regard (among C, OCaml, Python & SQL).
2593 return prefix
2594 * allow_underscores_except_first(digits^1)
2595 * (P "." * #(1 - P ".") * allow_underscores(digits))^-1
2596 * (S "eE" * S "+-"^-1 * allow_underscores_except_first(digits^1))^-1
2597 end

Here is the first use of our function K. That function will be used to construct lpeg which capture
Python chunks for which we have a dedicated piton style. For example, for the numbers, piton
provides a style which is called Number. The name of the style is provided as a Lua string in the
second argument of the function K. By convention, we use single quotes for delimiting the Lua strings
which are names of piton styles (but this is only a convention).

2598 local Number =
2599 K ('Number.Internal' ,
2600 digits_to_number (P "0x" + P "0X", R "af" + R "AF" + digit)
2601 + digits_to_number (P "0o" + P "0O", R "07")
2602 + digits_to_number (P "0b" + P "0B", R "01")
2603 + digits_to_number ("" , digit)
2604)

3The edge cases such as

58

We will now define the LPEG Word.
We have a problem in the following LPEG because, obviously, we should adjust the list of symbols
with the delimiters of the current language (no?).

2605 local lpeg_central = 1 - S " '\"\r[({})]" - digit

We recall that piton.begin_escape and piton_end_escape are Lua strings corresponding to the
keys begin-escape and end-escape.

2606 if piton.begin_escape then
2607 lpeg_central = lpeg_central - piton.begin_escape
2608 end
2609 if piton.begin_escape_math then
2610 lpeg_central = lpeg_central - piton.begin_escape_math
2611 end
2612 local Word = Q (lpeg_central ^ 1)

2613 local Space = Q " " ^ 1
2614 local SkipSpace = Q " " ^ 0
2615

2616 local Punct = Q (S ".,:;!")
2617

2618 local Tab = "\t" * Lc [[\@@_tab:]]

2619 local LeadingSpace = Lc [[\@@_leading_space:]] * P " "

2620 local Delim = Q (S "[({})]")

The following lpeg catches a space (U+0020) and replaces it by \l_@@_space_in_string_tl. It
will be used in the strings. Usually, \l_@@_space_in_string_tl will contain a space and there-
fore there won’t be any difference. However, when the key show-spaces-in-strings is in force,
\\l_@@_space_in_string_tl will contain ␣ (U+2423) in order to visualize the spaces.

2621 local SpaceInString = space * Lc [[\l_@@_space_in_string_tl]]

3.3 The option ’detected-commands’ and al.
We create four Lua tables called detected_commands, raw_detected_commands, beamer_commands
and beamer_environments.
On the TeX side, the corresponding data have first been stored as clists.
Then, in a \AtBeginDocument, they have been converted in “toks registers” of TeX.
Now, on the Lua side, we are able to access to those “toks registers” with the special pseudo-table
tex.toks of LuaTeX.
Remark that we can safely use explode(',') to convert such “toks registers” in Lua tables since, in
a clist of L3, there is no empty component and, for each component, there is no space on both sides
(the explode of the Lua of LuaTeX is unable to do itself such purification of the components).

2622 local detected_commands = tex.toks.PitonDetectedCommands : explode (',')
2623 local raw_detected_commands = tex.toks.PitonRawDetectedCommands : explode (',')
2624 local beamer_commands = tex.toks.PitonBeamerCommands : explode (',')
2625 local beamer_environments = tex.toks.PitonBeamerEnvironments : explode (',')

We will also create some lpeg.
According to our conventions, a lpeg with a name in camelCase is a lpeg which doesn’t do any
capture.

2626 local detectedCommands = P (false)
2627 for _ , x in ipairs (detected_commands) do
2628 detectedCommands = detectedCommands + P ("\\" .. x)
2629 end

59

Further, we will have a lpeg called DetectedCommands (in PascalCase) which will be a lpeg with
captures.

2630 local rawDetectedCommands = P (false)
2631 for _ , x in ipairs (raw_detected_commands) do
2632 rawDetectedCommands = rawDetectedCommands + P ("\\" .. x)
2633 end

2634 local beamerCommands = P (false)
2635 for _ , x in ipairs (beamer_commands) do
2636 beamerCommands = beamerCommands + P ("\\" .. x)
2637 end

2638 local beamerEnvironments = P (false)
2639 for _ , x in ipairs (beamer_environments) do
2640 beamerEnvironments = beamerEnvironments + P (x)
2641 end

Several tools for the construction of the main LPEG
2642 local LPEG0 = { }
2643 local LPEG1 = { }
2644 local LPEG2 = { }
2645 local LPEG_cleaner = { }

For each language, we will need a pattern to match expressions with balanced braces. Those balanced
braces must not take into account the braces present in strings of the language. However, the syntax
for the strings is language-dependent. That’s why we write a Lua function Compute_braces which
will compute the pattern by taking in as argument a pattern for the strings of the language (at least
the shorts strings). The argument of Compute_braces must be a pattern which does no captures.

2646 local Compute_braces
2647 function Compute_braces (lpeg_string) return
2648 P { "E" ,
2649 E =
2650 (
2651 "{" * V "E" * "}"
2652 +
2653 lpeg_string
2654 +
2655 (1 - S "{}")
2656) ^ 0
2657 }
2658 end

The following Lua function will compute the lpeg DetectedCommands which is a lpeg with captures.
2659 local Compute_DetectedCommands
2660 function Compute_DetectedCommands (lang , braces) return
2661 Ct (
2662 Cc "Open"
2663 * C (detectedCommands * space ^ 0 * P "{")
2664 * Cc "}"
2665)
2666 * (braces
2667 / (function (s)
2668 if s ~= '' then return
2669 LPEG1[lang] : match (s)
2670 end
2671 end)
2672)
2673 * P "}"
2674 * Ct (Cc "Close")
2675 end

60

2676 local Compute_RawDetectedCommands
2677 function Compute_RawDetectedCommands (lang , braces) return
2678 Ct (C (rawDetectedCommands * space ^ 0 * P "{" * braces * P "}"))
2679 end

2680 local Compute_LPEG_cleaner
2681 function Compute_LPEG_cleaner (lang , braces) return
2682 Ct (((detectedCommands + rawDetectedCommands) * "{"
2683 * (braces
2684 / (function (s)
2685 if s ~= '' then return
2686 LPEG_cleaner[lang] : match (s)
2687 end
2688 end)
2689)
2690 * "}"
2691 + EscapeClean
2692 + C (P (1))
2693) ^ 0) / table.concat
2694 end

The following function ParseAgain will be used in the definitions of the LPEG of the different
computer languages when we will need to parse again a small chunk of code. It’s a way to avoid the
use of a actual grammar of LPEG (in a sens, a recursive regular expression).
Remark that there is no piton style associated to a chunk of code which is analyzed by ParseAgain.
If we wish a piton style available to the end user (if he wish to format that element with a uniform
font instead of an analyze by ParseAgain), we have to use \@@_piton:n.

2695 local ParseAgain
2696 function ParseAgain (code)
2697 if code ~= '' then return

The variable piton.language is set in the function piton.Parse.
2698 LPEG1[piton.language] : match (code)
2699 end
2700 end

Constructions for Beamer If the class Beamer is used, some environments and commands of
Beamer are automatically detected in the listings of piton.

2701 local Beamer = P (false)

The following Lua function will be used to compute the lpeg Beamer for each computer language.
According to our conventions, the lpeg Beamer, with its name in PascalCase does captures.

2702 local Compute_Beamer
2703 function Compute_Beamer (lang , braces)

We will compute in lpeg the lpeg that we will return.
2704 local lpeg = L (P [[\pause]] * ("[" * (1 - P "]") ^ 0 * "]") ^ -1)
2705 lpeg = lpeg +
2706 Ct (Cc "Open"
2707 * C (beamerCommands
2708 * ("<" * (1 - P ">") ^ 0 * ">") ^ -1
2709 * P "{"
2710)
2711 * Cc "}"
2712)
2713 * (braces /
2714 (function (s) if s ~= '' then return LPEG1[lang] : match (s) end end))
2715 * "}"
2716 * Ct (Cc "Close")

61

For the command \alt, the specification of the overlays (between angular brackets) is mandatory.
2717 lpeg = lpeg +
2718 L (P [[\alt]] * "<" * (1 - P ">") ^ 0 * ">{")
2719 * (braces /
2720 (function (s) if s ~= '' then return LPEG1[lang] : match (s) end end))
2721 * L (P "}{")
2722 * (braces /
2723 (function (s) if s ~= '' then return LPEG1[lang] : match (s) end end))
2724 * L (P "}")

For \temporal, the specification of the overlays (between angular brackets) is mandatory.
2725 lpeg = lpeg +
2726 L (P [[\temporal]] * "<" * (1 - P ">") ^ 0 * ">{")
2727 * (braces
2728 / (function (s)
2729 if s ~= '' then return LPEG1[lang] : match (s) end end))
2730 * L (P "}{")
2731 * (braces
2732 / (function (s)
2733 if s ~= '' then return LPEG1[lang] : match (s) end end))
2734 * L (P "}{")
2735 * (braces
2736 / (function (s)
2737 if s ~= '' then return LPEG1[lang] : match (s) end end))
2738 * L (P "}")

Now, the environments of Beamer.
2739 for _ , x in ipairs (beamer_environments) do
2740 lpeg = lpeg +
2741 Ct (Cc "Open"
2742 * C (
2743 P ([[\begin{]] .. x .. "}")
2744 * ("<" * (1 - P ">") ^ 0 * ">") ^ -1
2745)
2746 * space ^ 0 * (P "\r") ^ 1 -- added 25/08/23
2747 * Cc ([[\end{]] .. x .. "}")
2748)
2749 * (

We catch all the content of the Beamer environment which a lpeg which is a grammar because t
here may be nested environments of the same type (added 2025/11/14).

2750 (
2751 P { "E" ,
2752 E = (
2753 P ([[\begin{]] .. x .. "}")
2754 * V "E"
2755 * P ([[\end{]] .. x .. "}")
2756 +
2757 (
2758 1
2759 - P ([[\begin{]] .. x .. "}")
2760 - P ([[\end{]] .. x .. "}")
2761)
2762) ^ 0
2763 }
2764)
2765 / (function (s)
2766 if s ~= '' then return
2767 LPEG1[lang] : match (s)
2768 end
2769 end)
2770)

62

2771 * P ([[\end{]] .. x .. "}")
2772 * Ct (Cc "Close")
2773 end

Now, you can return the value we have computed.
2774 return lpeg
2775 end

The following LPEG is in relation with the key math-comments. It will be used in all the languages.
2776 local CommentMath =
2777 P "$" * K ('Comment.Math' , (1 - S "$\r") ^ 1) * P "$" -- $

EOL There may be empty lines in the transcription of the prompt, id est lines of the form ...
without space after and that’s why we need P " " ^ -1 with the ^ -1.

2778 local Prompt =
2779 K ('Prompt' , (P ">>>" + "...") * P " " ^ -1)
2780 * Lc [[\rowcolor { \l_@@_prompt_bg_color_tl }]]

The following lpeg EOL is for the end of lines.
2781 local EOL =
2782 P "\r"
2783 *
2784 (
2785 space ^ 0 * -1
2786 +
2787 Cc "EOL"
2788)
2789 * (LeadingSpace ^ 0 * # (1 - S " \r")) ^ -1

The following lpeg CommentLaTeX is for what is called in that document the “LaTeX comments”.
2790 local CommentLaTeX =
2791 P (piton.comment_latex)
2792 * Lc [[{\PitonStyle{Comment.LaTeX}{\ignorespaces]]
2793 * L ((1 - P "\r") ^ 0)
2794 * Lc "}}"
2795 * (EOL + -1)

3.4 The language Python
We open a Lua local scope for the language Python (of course, there will be also global definitions).

2796 --python Python
2797 do

Some strings of length 2 are explicit because we want the corresponding ligatures available in some
fonts such as Fira Code to be active.

2798 local Operator =
2799 K ('Operator' ,
2800 P "!=" + "<>" + "==" + "<<" + ">>" + "<=" + ">=" + ":=" + "//" + "**"
2801 + S "-~+/*%=<>&.@|")
2802

2803 local OperatorWord =
2804 K ('Operator.Word' , P "in" + "is" + "and" + "or" + "not")

63

The keyword in in a construction such as “for i in range(n)” must be formatted as a keyword
and not as an Operator.Word and that’s why we write the following LPEG For.

2805 local For = K ('Keyword' , P "for")
2806 * Space
2807 * Identifier
2808 * Space
2809 * K ('Keyword' , P "in")
2810

2811 local Keyword =
2812 K ('Keyword' ,
2813 P "assert" + "as" + "break" + "case" + "class" + "continue" + "def" +
2814 "del" + "elif" + "else" + "except" + "exec" + "finally" + "for" + "from" +
2815 "global" + "if" + "import" + "lambda" + "non local" + "pass" + "return" +
2816 "try" + "while" + "with" + "yield" + "yield from")
2817 + K ('Keyword.Constant' , P "True" + "False" + "None")
2818

2819 local Builtin =
2820 K ('Name.Builtin' ,
2821 P "__import__" + "abs" + "all" + "any" + "bin" + "bool" + "bytearray" +
2822 "bytes" + "chr" + "classmethod" + "compile" + "complex" + "delattr" +
2823 "dict" + "dir" + "divmod" + "enumerate" + "eval" + "filter" + "float" +
2824 "format" + "frozenset" + "getattr" + "globals" + "hasattr" + "hash" +
2825 "hex" + "id" + "input" + "int" + "isinstance" + "issubclass" + "iter" +
2826 "len" + "list" + "locals" + "map" + "max" + "memoryview" + "min" + "next"
2827 + "object" + "oct" + "open" + "ord" + "pow" + "print" + "property" +
2828 "range" + "repr" + "reversed" + "round" + "set" + "setattr" + "slice" +
2829 "sorted" + "staticmethod" + "str" + "sum" + "super" + "tuple" + "type" +
2830 "vars" + "zip")
2831

2832 local Exception =
2833 K ('Exception' ,
2834 P "ArithmeticError" + "AssertionError" + "AttributeError" +
2835 "BaseException" + "BufferError" + "BytesWarning" + "DeprecationWarning" +
2836 "EOFError" + "EnvironmentError" + "Exception" + "FloatingPointError" +
2837 "FutureWarning" + "GeneratorExit" + "IOError" + "ImportError" +
2838 "ImportWarning" + "IndentationError" + "IndexError" + "KeyError" +
2839 "KeyboardInterrupt" + "LookupError" + "MemoryError" + "NameError" +
2840 "NotImplementedError" + "OSError" + "OverflowError" +
2841 "PendingDeprecationWarning" + "ReferenceError" + "ResourceWarning" +
2842 "RuntimeError" + "RuntimeWarning" + "StopIteration" + "SyntaxError" +
2843 "SyntaxWarning" + "SystemError" + "SystemExit" + "TabError" + "TypeError"
2844 + "UnboundLocalError" + "UnicodeDecodeError" + "UnicodeEncodeError" +
2845 "UnicodeError" + "UnicodeTranslateError" + "UnicodeWarning" +
2846 "UserWarning" + "ValueError" + "VMSError" + "Warning" + "WindowsError" +
2847 "ZeroDivisionError" + "BlockingIOError" + "ChildProcessError" +
2848 "ConnectionError" + "BrokenPipeError" + "ConnectionAbortedError" +
2849 "ConnectionRefusedError" + "ConnectionResetError" + "FileExistsError" +
2850 "FileNotFoundError" + "InterruptedError" + "IsADirectoryError" +
2851 "NotADirectoryError" + "PermissionError" + "ProcessLookupError" +
2852 "TimeoutError" + "StopAsyncIteration" + "ModuleNotFoundError" +
2853 "RecursionError")
2854

2855 local RaiseException = K ('Keyword' , P "raise") * SkipSpace * Exception * Q "("

In Python, a “decorator” is a statement whose begins by @ which patches the function defined in the
following statement.

2856 local Decorator = K ('Name.Decorator' , P "@" * letter ^ 1)

The following lpeg DefClass will be used to detect the definition of a new class (the name of that
new class will be formatted with the piton style Name.Class).
Example: class myclass:

64

2857 local DefClass =
2858 K ('Keyword' , "class") * Space * K ('Name.Class' , identifier)

If the word class is not followed by a identifier, it will be caught as keyword by the lpeg Keyword
(useful if we want to type a list of keywords).

The following lpeg ImportAs is used for the lines beginning by import. We have to detect the
potential keyword as because both the name of the module and its alias must be formatted with the
piton style Name.Namespace.
Example: import numpy as np
Moreover, after the keyword import, it’s possible to have a comma-separated list of modules (if the
keyword as is not used).
Example: import math, numpy

2859 local ImportAs =
2860 K ('Keyword' , "import")
2861 * Space
2862 * K ('Name.Namespace' , identifier * ("." * identifier) ^ 0)
2863 * (
2864 (Space * K ('Keyword' , "as") * Space
2865 * K ('Name.Namespace' , identifier))
2866 +
2867 (SkipSpace * Q "," * SkipSpace
2868 * K ('Name.Namespace' , identifier)) ^ 0
2869)

Be careful: there is no commutativity of + in the previous expression.

The lpeg FromImport is used for the lines beginning by from. We need a special treatment because
the identifier following the keyword from must be formatted with the piton style Name.Namespace
and the following keyword import must be formatted with the piton style Keyword and must not be
caught by the lpeg ImportAs.
Example: from math import pi

2870 local FromImport =
2871 K ('Keyword' , "from")
2872 * Space * K ('Name.Namespace' , identifier)
2873 * Space * K ('Keyword' , "import")

The strings of Python For the strings in Python, there are four categories of delimiters (without
counting the prefixes for f-strings and raw strings). We will use, in the names of our lpeg, prefixes
to distinguish the lpeg dealing with that categories of strings, as presented in the following tabular.

Single Double

Short 'text' "text"
Long '''test''' """text"""

We have also to deal with the interpolations in the f-strings. Here is an example of a f-string with an
interpolation and a format instruction4 in that interpolation:
\piton{f'Total price: {total+1:.2f} €'}

The interpolations beginning by % (even though there is more modern techniques now in Python).
2874 local PercentInterpol =
2875 K ('String.Interpol' ,
2876 P "%"

4There is no special piton style for the formatting instruction (after the colon): the style which will be applied will
be the style of the encompassing string, that is to say String.Short or String.Long.

65

2877 * ("(" * alphanum ^ 1 * ")") ^ -1
2878 * (S "-#0 +") ^ 0
2879 * (digit ^ 1 + "*") ^ -1
2880 * ("." * (digit ^ 1 + "*")) ^ -1
2881 * (S "HlL") ^ -1
2882 * S "sdfFeExXorgiGauc%"
2883)

We can now define the lpeg for the four kinds of strings. It’s not possible to use our function K
because of the interpolations which must be formatted with another piton style that the rest of the
string.5

2884 local SingleShortString =
2885 WithStyle ('String.Short.Internal' ,

First, we deal with the f-strings of Python, which are prefixed by f or F.
2886 Q (P "f'" + "F'")
2887 * (
2888 K ('String.Interpol' , "{")
2889 * K ('Interpol.Inside' , (1 - S "}':") ^ 0)
2890 * Q (P ":" * (1 - S "}:'") ^ 0) ^ -1
2891 * K ('String.Interpol' , "}")
2892 +
2893 SpaceInString
2894 +
2895 Q ((P "\\'" + "\\\\" + "{{" + "}}" + 1 - S " {}'") ^ 1)
2896) ^ 0
2897 * Q "'"
2898 +

Now, we deal with the standard strings of Python, but also the “raw strings”.
2899 Q (P "'" + "r'" + "R'")
2900 * (Q ((P "\\'" + "\\\\" + 1 - S " '\r%") ^ 1)
2901 + SpaceInString
2902 + PercentInterpol
2903 + Q "%"
2904) ^ 0
2905 * Q "'")

2906 local DoubleShortString =
2907 WithStyle ('String.Short.Internal' ,
2908 Q (P "f\"" + "F\"")
2909 * (
2910 K ('String.Interpol' , "{")
2911 * K ('Interpol.Inside' , (1 - S "}\":") ^ 0)
2912 * (K ('String.Interpol' , ":") * Q ((1 - S "}:\"") ^ 0)) ^ -1
2913 * K ('String.Interpol' , "}")
2914 +
2915 SpaceInString
2916 +
2917 Q ((P "\\\"" + "\\\\" + "{{" + "}}" + 1 - S " {}\"") ^ 1)
2918) ^ 0
2919 * Q "\""
2920 +
2921 Q (P "\"" + "r\"" + "R\"")
2922 * (Q ((P "\\\"" + "\\\\" + 1 - S " \"\r%") ^ 1)
2923 + SpaceInString
2924 + PercentInterpol
2925 + Q "%"
2926) ^ 0
2927 * Q "\"")

5The interpolations are formatted with the piton style Interpol.Inside. The initial value of that style is \@@_piton:n
which means that the interpolations are parsed once again by piton.

66

2928

2929 local ShortString = SingleShortString + DoubleShortString

Beamer The argument of Compute_braces must be a pattern which does no catching corresponding
to the strings of the language.

2930 local braces =
2931 Compute_braces
2932 (
2933 (P "\"" + "r\"" + "R\"" + "f\"" + "F\"")
2934 * (P '\\\"' + 1 - S "\"") ^ 0 * "\""
2935 +
2936 (P '\'' + 'r\'' + 'R\'' + 'f\'' + 'F\'')
2937 * (P '\\\'' + 1 - S '\'') ^ 0 * '\''
2938)
2939

2940 if piton.beamer then Beamer = Compute_Beamer ('python' , braces) end

Detected commands
2941 DetectedCommands = Compute_DetectedCommands ('python' , braces)
2942 + Compute_RawDetectedCommands ('python' , braces)

LPEG_cleaner
2943 LPEG_cleaner.python = Compute_LPEG_cleaner ('python' , braces)

The long strings
2944 local SingleLongString =
2945 WithStyle ('String.Long.Internal' ,
2946 (Q (S "fF" * P "'''")
2947 * (
2948 K ('String.Interpol' , "{")
2949 * K ('Interpol.Inside' , (1 - S "}:\r" - "'''") ^ 0)
2950 * Q (P ":" * (1 - S "}:\r" - "'''") ^ 0) ^ -1
2951 * K ('String.Interpol' , "}")
2952 +
2953 Q ((1 - P "'''" - S "{}'\r") ^ 1)
2954 +
2955 EOL
2956) ^ 0
2957 +
2958 Q ((S "rR") ^ -1 * "'''")
2959 * (
2960 Q ((1 - P "'''" - S "\r%") ^ 1)
2961 +
2962 PercentInterpol
2963 +
2964 P "%"
2965 +
2966 EOL
2967) ^ 0
2968)
2969 * Q "'''")

67

2970 local DoubleLongString =
2971 WithStyle ('String.Long.Internal' ,
2972 (
2973 Q (S "fF" * "\"\"\"")
2974 * (
2975 K ('String.Interpol', "{")
2976 * K ('Interpol.Inside' , (1 - S "}:\r" - "\"\"\"") ^ 0)
2977 * Q (":" * (1 - S "}:\r" - "\"\"\"") ^ 0) ^ -1
2978 * K ('String.Interpol' , "}")
2979 +
2980 Q ((1 - S "{}\"\r" - "\"\"\"") ^ 1)
2981 +
2982 EOL
2983) ^ 0
2984 +
2985 Q (S "rR" ^ -1 * "\"\"\"")
2986 * (
2987 Q ((1 - P "\"\"\"" - S "%\r") ^ 1)
2988 +
2989 PercentInterpol
2990 +
2991 P "%"
2992 +
2993 EOL
2994) ^ 0
2995)
2996 * Q "\"\"\""
2997)

2998 local LongString = SingleLongString + DoubleLongString

We have a lpeg for the Python docstrings. That lpeg will be used in the lpeg DefFunction which
deals with the whole preamble of a function definition (which begins with def).

2999 local StringDoc =
3000 K ('String.Doc.Internal' , P "r" ^ -1 * "\"\"\"")
3001 * (K ('String.Doc.Internal' , (1 - P "\"\"\"" - "\r") ^ 0) * EOL
3002 * Tab ^ 0
3003) ^ 0
3004 * K ('String.Doc.Internal' , (1 - P "\"\"\"" - "\r") ^ 0 * "\"\"\"")

The comments in the Python listings We define different lpeg dealing with comments in the
Python listings.

3005 local Comment =
3006 WithStyle
3007 ('Comment.Internal' ,
3008 Q "#" * (CommentMath + Q ((1 - S "$\r") ^ 1)) ^ 0 -- $
3009)
3010 * (EOL + -1)

DefFunction The following lpeg expression will be used for the parameters in the argspec of a
Python function. It’s necessary to use a grammar because that pattern mainly checks the correct
nesting of the delimiters (and it’s known in the theory of formal languages that this can’t be done
with regular expressions stricto sensu only).

3011 local expression =
3012 P { "E" ,
3013 E = ("'" * (P "\\'" + 1 - S "'\r") ^ 0 * "'"
3014 + "\"" * (P "\\\"" + 1 - S "\"\r") ^ 0 * "\""
3015 + "{" * V "F" * "}"
3016 + "(" * V "F" * ")"

68

3017 + "[" * V "F" * "]"
3018 + (1 - S "{}()[]\r,")) ^ 0 ,
3019 F = ("{" * V "F" * "}"
3020 + "(" * V "F" * ")"
3021 + "[" * V "F" * "]"
3022 + (1 - S "{}()[]\r\"'")) ^ 0
3023 }

We will now define a lpeg Params that will catch the list of parameters (that is to say the argspec)
in the definition of a Python function. For example, in the line of code

def MyFunction(a,b,x=10,n:int): return n

the lpeg Params will be used to catch the chunk a,b,x=10,n:int.

3024 local Params =
3025 P { "E" ,
3026 E = (V "F" * (Q "," * V "F") ^ 0) ^ -1 ,
3027 F = SkipSpace * (Identifier + Q "*args" + Q "**kwargs") * SkipSpace
3028 * (Q ":" * SkipSpace * K ('Name.Type' , identifier)) ^ -1
3029 * (SkipSpace * K ('InitialValues' , "=" * SkipSpace * expression)) ^ -1
3030 }

The following lpeg DefFunction catches a keyword def and the following name of function but also
everything else until a potential docstring. That’s why this definition of lpeg must occur (in the
file piton.sty) after the definition of several other lpeg such as Comment, CommentLaTeX, Params,
StringDoc...

3031 local DefFunction =
3032 K ('Keyword' , "def")
3033 * Space
3034 * K ('Name.Function.Internal' , identifier)
3035 * SkipSpace
3036 * Q "(" * Params * Q ")"
3037 * SkipSpace
3038 * (Q "->" * SkipSpace * K ('Name.Type' , identifier)) ^ -1

3039 * (C ((1 - S ":\r") ^ 0) / ParseAgain)
3040 * Q ":"
3041 * (SkipSpace
3042 * (EOL + CommentLaTeX + Comment) -- in all cases, that contains an EOL
3043 * Tab ^ 0
3044 * SkipSpace
3045 * StringDoc ^ 0 -- there may be additional docstrings
3046) ^ -1

Remark that, in the previous code, CommentLaTeX must appear before Comment: there is no commu-
tativity of the addition for the parsing expression grammars (peg).
If the word def is not followed by an identifier and parenthesis, it will be caught as keyword by the
lpeg Keyword (useful if, for example, the end user wants to speak of the keyword def).

Miscellaneous
3047 local ExceptionInConsole = Exception * Q ((1 - P "\r") ^ 0) * EOL

69

The main LPEG for the language Python
3048 local EndKeyword
3049 = Space + Punct + Delim + EOL + Beamer + DetectedCommands + Escape +
3050 EscapeMath + -1

First, the main loop :
3051 local Main =
3052 space ^ 0 * EOL -- faut-il le mettre en commentaire ?
3053 + Space
3054 + Tab
3055 + Escape + EscapeMath
3056 + Beamer
3057 + CommentLaTeX
3058 + DetectedCommands
3059 + Prompt
3060 + LongString
3061 + Comment
3062 + ExceptionInConsole
3063 + Delim
3064 + Operator
3065 + OperatorWord * EndKeyword
3066 + ShortString
3067 + Punct
3068 + FromImport
3069 + RaiseException
3070 + DefFunction
3071 + DefClass
3072 + For
3073 + Keyword * EndKeyword
3074 + Decorator
3075 + Builtin * EndKeyword
3076 + Identifier
3077 + Number
3078 + Word

Here, we must not put local, of course.
3079 LPEG1.python = Main ^ 0

We recall that each line in the Python code to parse will be sent back to LaTeX between a pair
\@@_begin_line: – \@@_end_line:6.

3080 LPEG2.python =
3081 Ct (
3082 (space ^ 0 * "\r") ^ -1
3083 * Lc [[\@@_begin_line:]]
3084 * LeadingSpace ^ 0
3085 * (space ^ 1 * -1 + space ^ 0 * EOL + Main) ^ 0
3086 * -1
3087 * Lc [[\@@_end_line:]]
3088)

End of the Lua scope for the language Python.
3089 end

6Remember that the \@@_end_line: must be explicit because it will be used as marker in order to delimit the
argument of the command \@@_begin_line:

70

3.5 The language OCaml
We open a Lua local scope for the language OCaml (of course, there will be also global definitions).

3090 --ocaml Ocaml OCaml
3091 do

3092 local SkipSpace = (Q " " + EOL) ^ 0
3093 local Space = (Q " " + EOL) ^ 1

3094 local braces = Compute_braces ('\"' * (1 - S "\"") ^ 0 * '\"')

3095 if piton.beamer then Beamer = Compute_Beamer ('ocaml' , braces) end
3096 DetectedCommands =
3097 Compute_DetectedCommands ('ocaml' , braces)
3098 + Compute_RawDetectedCommands ('ocaml' , braces)
3099 local Q

Usually, the following version of the function Q will be used without the second arguemnt (strict),
that is to say in a loosy way. However, in some circunstancies, we will a need the “strict” version, for
instance in DefFunction.

3100 function Q (pattern, strict)
3101 if strict ~= nil then
3102 return Ct (Cc (luatexbase.catcodetables.CatcodeTableOther) * C (pattern))
3103 else
3104 return Ct (Cc (luatexbase.catcodetables.CatcodeTableOther) * C (pattern))
3105 + Beamer + DetectedCommands + EscapeMath + Escape
3106 end
3107 end

3108 local K
3109 function K (style , pattern, strict) return
3110 Lc ([[{\PitonStyle{]] .. style .. "}{")
3111 * Q (pattern, strict)
3112 * Lc "}}"
3113 end

3114 local WithStyle
3115 function WithStyle (style , pattern) return
3116 Ct (Cc "Open" * Cc ([[{\PitonStyle{]] .. style .. "}{") * Cc "}}")
3117 * (pattern + Beamer + DetectedCommands + EscapeMath + Escape)
3118 * Ct (Cc "Close")
3119 end

The following LPEG corresponds to the balanced expressions (balanced according to the parenthesis).
Of course, we must write (1 - S "()") with outer parenthesis.

3120 local balanced_parens =
3121 P { "E" , E = ("(" * V "E" * ")" + (1 - S "()")) ^ 0 }

The strings of OCaml
3122 local ocaml_string =
3123 P "\""
3124 * (
3125 P " "
3126 +
3127 P ((1 - S " \"\r") ^ 1)
3128 +
3129 EOL -- ?
3130) ^ 0
3131 * P "\""

71

3132 local String =
3133 WithStyle
3134 ('String.Long.Internal' ,
3135 Q "\""
3136 * (
3137 SpaceInString
3138 +
3139 Q ((1 - S " \"\r") ^ 1)
3140 +
3141 EOL
3142) ^ 0
3143 * Q "\""
3144)

Now, the “quoted strings” of OCaml (for example {ext|Essai|ext}).
For those strings, we will do two consecutive analysis. First an analysis to determine the whole string
and, then, an analysis for the potential visual spaces and the EOL in the string.
The first analysis require a match-time capture. For explanations about that programmation, see the
paragraphe Lua’s long strings in www.inf.puc-rio.br/~roberto/lpeg.

3145 local ext = (R "az" + "_") ^ 0
3146 local open = "{" * Cg (ext , 'init') * "|"
3147 local close = "|" * C (ext) * "}"
3148 local closeeq =
3149 Cmt (close * Cb ('init') ,
3150 function (s , i , a , b) return a == b end)

The lpeg QuotedStringBis will do the second analysis.
3151 local QuotedStringBis =
3152 WithStyle ('String.Long.Internal' ,
3153 (
3154 Space
3155 +
3156 Q ((1 - S " \r") ^ 1)
3157 +
3158 EOL
3159) ^ 0)

We use a “function capture” (as called in the official documentation of the lpeg) in order to do the
second analysis on the result of the first one.

3160 local QuotedString =
3161 C (open * (1 - closeeq) ^ 0 * close) /
3162 (function (s) return QuotedStringBis : match (s) end)

In OCaml, the delimiters for the comments are (* and *). There are unsymmetrical and OCaml
allows those comments to be nested. That’s why we need a grammar.
In these comments, we embed the math comments (between $ and $) and we embed also a treatment
for the end of lines (since the comments may be multi-lines).

3163 local comment =
3164 P {
3165 "A" ,
3166 A = Q "(*"
3167 * (V "A"
3168 + Q ((1 - S "\r$\"" - "(*" - "*)") ^ 1) -- $
3169 + ocaml_string
3170 + "$" * K ('Comment.Math' , (1 - S "$\r") ^ 1) * "$" -- $
3171 + EOL
3172) ^ 0
3173 * Q "*)"
3174 }
3175 local Comment = WithStyle ('Comment.Internal' , comment)

72

Some standard LPEG
3176 local Delim = Q (P "[|" + "|]" + S "[()]")
3177 local Punct = Q (S ",:;!")

The identifiers caught by cap_identifier begin with a capital. In OCaml, it’s used for the con-
structors of types and for the names of the modules.

3178 local cap_identifier = R "AZ" * (R "az" + R "AZ" + S "_'" + digit) ^ 0

We consider :: and [] as constructors (of the lists) as does the Tuareg mode of Emacs.
3179 local Constructor =
3180 P "::"

Don’t use \hspace instead of \kern
3181 * Lc [[{\PitonStyle{Name.Constructor}{\kern0.1em:\kern-0.2em:\kern0.1em}}]]
3182 +
3183 P "[]"
3184 * Lc ([[{\PitonStyle{Name.Constructor}{\kern-0.1em[\kern0.1em]}}]])
3185 K ('Name.Constructor' ,
3186 Q "`" ^ -1 * cap_identifier
3187 + Q ("[" , true) * SkipSpace * Q ("]" , true))

3188 local ModuleType = K ('Name.Type' , cap_identifier)

3189 local OperatorWord =
3190 K ('Operator.Word' ,
3191 P "asr" + "land" + "lor" + "lsl" + "lxor" + "mod" + "or" + "not")

In OCaml, some keywords are considered as governing keywords with some special syntactic charac-
teristics.

3192 local governing_keyword = P "and" + "begin" + "class" + "constraint" +
3193 "end" + "external" + "functor" + "include" + "inherit" + "initializer" +
3194 "in" + "let" + "method" + "module" + "object" + "open" + "rec" + "sig" +
3195 "struct" + "type" + "val"

3196 local Keyword =
3197 K ('Keyword' ,
3198 P "assert" + "as" + "done" + "downto" + "do" + "else" + "exception"
3199 + "for" + "function" + "fun" + "if" + "lazy" + "match" + "mutable"
3200 + "new" + "of" + "private" + "raise" + "then" + "to" + "try"
3201 + "virtual" + "when" + "while" + "with")
3202 + K ('Keyword.Constant' , P "true" + "false")
3203 + K ('Keyword.Governing', governing_keyword)

3204 local EndKeyword
3205 = Space + Punct + Delim + EOL + Beamer + DetectedCommands + Escape
3206 + EscapeMath + -1

Now, the identifier. Recall that we have also a LPEG cap_identifier for the indentifiers beginning
with a capital letter.

3207 local identifier = (R "az" + "_") * (R "az" + R "AZ" + S "_'" + digit) ^ 0
3208 - (OperatorWord + Keyword) * EndKeyword

We have the internal style Identifier.Internal in order to be able to implement the mechanism
\SetPitonIdentifier. The final user has access to a style called Identifier.

3209 local Identifier = K ('Identifier.Internal' , identifier)

73

In OCmal, character is a type different of the type string.
3210 local ocaml_char =
3211 P "'" *
3212 (
3213 (1 - S "'\\")
3214 + "\\"
3215 * (S "\\'ntbr \""
3216 + digit * digit * digit
3217 + P "x" * (digit + R "af" + R "AF")
3218 * (digit + R "af" + R "AF")
3219 * (digit + R "af" + R "AF")
3220 + P "o" * R "03" * R "07" * R "07")
3221)
3222 * "'"
3223 local Char =
3224 K ('String.Short.Internal', ocaml_char)

For the parameter of the types (for example : `\a as in `a list).
3225 local TypeParameter =
3226 K ('TypeParameter' ,
3227 "'" * Q "_" ^ -1 * alpha ^ 1 * digit ^ 0 * (# (1 - P "'") + -1))

DotNotation Now, we deal with the notations with points (eg: List.length). In OCaml, such
notation is used for the fields of the records and for the modules.

3228 local DotNotation =
3229 (
3230 K ('Name.Module' , cap_identifier)
3231 * Q "."
3232 * (Identifier + Constructor + Q "(" + Q "[" + Q "{") ^ -1
3233 +
3234 Identifier
3235 * Q "."
3236 * K ('Name.Field' , identifier)
3237)
3238 * (Q "." * K ('Name.Field' , identifier)) ^ 0

The records
3239 local expression_for_fields_type =
3240 P { "E" ,
3241 E = ("{" * V "F" * "}"
3242 + "(" * V "F" * ")"
3243 + TypeParameter
3244 + (1 - S "{}()[]\r;")) ^ 0 ,
3245 F = ("{" * V "F" * "}"
3246 + "(" * V "F" * ")"
3247 + (1 - S "{}()[]\r\"'") + TypeParameter) ^ 0
3248 }

3249 local expression_for_fields_value =
3250 P { "E" ,
3251 E = ("{" * V "F" * "}"
3252 + "(" * V "F" * ")"
3253 + "[" * V "F" * "]"
3254 + ocaml_string + ocaml_char
3255 + (1 - S "{}()[];")) ^ 0 ,
3256 F = ("{" * V "F" * "}"
3257 + "(" * V "F" * ")"
3258 + "[" * V "F" * "]"
3259 + ocaml_string + ocaml_char
3260 + (1 - S "{}()[]\"'")) ^ 0
3261 }

74

3262 local OneFieldDefinition =
3263 (K ('Keyword' , "mutable") * SkipSpace) ^ -1
3264 * K ('Name.Field' , identifier) * SkipSpace
3265 * Q ":" * SkipSpace
3266 * K ('TypeExpression' , expression_for_fields_type)
3267 * SkipSpace

3268 local OneField =
3269 K ('Name.Field' , identifier) * SkipSpace
3270 * Q "=" * SkipSpace

Don’t forget the parentheses!
3271 * (C (expression_for_fields_value) / ParseAgain)
3272 * SkipSpace

The records.
3273 local RecordVal =
3274 Q "{" * SkipSpace
3275 *
3276 (
3277 (Identifier + DotNotation) * Space * K('Keyword', "with") * Space
3278) ^-1
3279 *
3280 (
3281 OneField * (Q ";" * SkipSpace * (Comment * SkipSpace) ^ 0 * OneField) ^ 0
3282)
3283 * SkipSpace
3284 * Q ";" ^ -1
3285 * SkipSpace
3286 * Comment ^ -1
3287 * SkipSpace
3288 * Q "}"
3289 local RecordType =
3290 Q "{" * SkipSpace
3291 *
3292 (
3293 OneFieldDefinition
3294 * (Q ";" * SkipSpace * (Comment * SkipSpace) ^ 0 * OneFieldDefinition) ^ 0
3295)
3296 * SkipSpace
3297 * Q ";" ^ -1
3298 * SkipSpace
3299 * Comment ^ -1
3300 * SkipSpace
3301 * Q "}"
3302 local Record = RecordType + RecordVal

3303 local Operator =
3304 P "||" *

Don’t use \hspace instead of \kern!
3305 Lc([[{\PitonStyle{Operator}{\kern0.1em|\kern-0.2em|\kern0.1em}}]])
3306 +
3307 K ('Operator' ,
3308 P "!=" + "<>" + "==" + "<<" + ">>" + "<=" + ">=" + ":=" + "&&" +
3309 "//" + "**" + ";;" + "->" + "+." + "-." + "*." + "/."
3310 + S "-~+/*%=<>&@|")

3311 local Builtin =
3312 K ('Name.Builtin' , P "incr" + "decr" + "fst" + "snd" + "ref")

75

3313 local Exception =
3314 K ('Exception' ,
3315 P "Division_by_zero" + "End_of_File" + "Failure" + "Invalid_argument" +
3316 "Match_failure" + "Not_found" + "Out_of_memory" + "Stack_overflow" +
3317 "Sys_blocked_io" + "Sys_error" + "Undefined_recursive_module")

3318 LPEG_cleaner.ocaml = Compute_LPEG_cleaner ('ocaml' , braces)

An argument in the definition of a OCaml function may be of the form (pattern:type). pattern
may be a single identifier but it’s not mandatory. First instance, it’s possible to write in OCaml:
let head (a::q) = a
First, we write a pattern (in the LPEG sens!) to match what will be the pattern (in the OCaml sens).

3319 local pattern_part =
3320 (P "(" * balanced_parens * ")" + (1 - S ":()") + P "::") ^ 0

For the “type” part, the LPEG-pattern will merely be balanced_parens.

We can now write a LPEG Argument which catches a argument of function (in the definition of the
function).

3321 local Argument =

The following line is for the labels of the labeled arguments. Maybe we will, in the future, create a
style for those elements.

3322 (Q "~" * Identifier * Q ":" * SkipSpace) ^ -1
3323 *

Now, the argument itself, either a single identifier, or a construction between parentheses
3324 (
3325 K ('Identifier.Internal' , identifier)
3326 +
3327 Q "(" * SkipSpace
3328 * (C (pattern_part) / ParseAgain)
3329 * SkipSpace

Of course, the specification of type is optional.
3330 * (Q ":" * #(1- P"=")
3331 * K ('TypeExpression' , balanced_parens) * SkipSpace
3332) ^ -1
3333 * Q ")"
3334)

Despite its name, then lpeg DefFunction deals also with let open which opens locally a module.
3335 local DefFunction =
3336 K ('Keyword.Governing' , "let open")
3337 * Space
3338 * K ('Name.Module' , cap_identifier)
3339 +
3340 K ('Keyword.Governing' , P "let rec" + "let" + "and")
3341 * Space
3342 * K ('Name.Function.Internal' , identifier)
3343 * Space
3344 * (

We use here the argument strict in order to allow a correct analyse of let x = \uncover<2->{y}
(elsewhere, it’s interpreted as a definition of a OCaml function).

3345 Q "=" * SkipSpace * K ('Keyword' , "function" , true)
3346 +
3347 Argument * (SkipSpace * Argument) ^ 0
3348 * (
3349 SkipSpace
3350 * Q ":" * # (1 - P "=")
3351 * K ('TypeExpression' , (1 - P "=") ^ 0)
3352) ^ -1
3353)

76

DefModule
3354 local DefModule =
3355 K ('Keyword.Governing' , "module") * Space
3356 *
3357 (
3358 K ('Keyword.Governing' , "type") * Space
3359 * K ('Name.Type' , cap_identifier)
3360 +
3361 K ('Name.Module' , cap_identifier) * SkipSpace
3362 *
3363 (
3364 Q "(" * SkipSpace
3365 * K ('Name.Module' , cap_identifier) * SkipSpace
3366 * Q ":" * # (1 - P "=") * SkipSpace
3367 * K ('Name.Type' , cap_identifier) * SkipSpace
3368 *
3369 (
3370 Q "," * SkipSpace
3371 * K ('Name.Module' , cap_identifier) * SkipSpace
3372 * Q ":" * # (1 - P "=") * SkipSpace
3373 * K ('Name.Type' , cap_identifier) * SkipSpace
3374) ^ 0
3375 * Q ")"
3376) ^ -1
3377 *
3378 (
3379 Q "=" * SkipSpace
3380 * K ('Name.Module' , cap_identifier) * SkipSpace
3381 * Q "("
3382 * K ('Name.Module' , cap_identifier) * SkipSpace
3383 *
3384 (
3385 Q ","
3386 *
3387 K ('Name.Module' , cap_identifier) * SkipSpace
3388) ^ 0
3389 * Q ")"
3390) ^ -1
3391)
3392 +
3393 K ('Keyword.Governing' , P "include" + "open")
3394 * Space
3395 * K ('Name.Module' , cap_identifier)

DefType
3396 local DefType =
3397 K ('Keyword.Governing' , "type")
3398 * Space
3399 * K ('TypeExpression' , Q (1 - P "=" - P "+=") ^ 1)
3400 * SkipSpace
3401 * (Q "+=" + Q "=")
3402 * SkipSpace
3403 * (
3404 RecordType
3405 +

The following lines are a suggestion of Y. Salmon.
3406 WithStyle
3407 (
3408 'TypeExpression' ,
3409 (
3410 (
3411 EOL

77

3412 + comment
3413 + Q (1
3414 - P ";;"
3415 - P "type"
3416 - ((Space + EOL) * governing_keyword * EndKeyword)
3417)
3418) ^ 0
3419 *
3420 (
3421 # (P "type" + (Space + EOL) * governing_keyword * EndKeyword)
3422 + Q ";;"
3423 + -1
3424)
3425)
3426)
3427)

3428 local prompt =
3429 Q "utop[" * digit^1 * Q "]> "
3430 local start_of_line = P(function(subject, position)
3431 if position == 1 or subject:sub(position - 1, position - 1) == "\r" then
3432 return position
3433 end
3434 return nil
3435 end)
3436 local Prompt = #start_of_line * K('Prompt', prompt)
3437 local Answer = #start_of_line * (Q "-" + Q "val" * Space * Identifier)
3438 * SkipSpace * Q ":" * #(1- P"=") * SkipSpace
3439 * (K ('TypeExpression' , Q (1 - P "=") ^ 1)) * SkipSpace * Q "="

The main LPEG for the language OCaml
3440 local Main =
3441 space ^ 0 * EOL
3442 + Space
3443 + Tab
3444 + Escape + EscapeMath
3445 + Beamer
3446 + DetectedCommands
3447 + TypeParameter
3448 + String + QuotedString + Char
3449 + Comment
3450 + Prompt + Answer

For the labels (maybe we will write in the future a dedicated LPEG pour those tokens).
3451 + Q "~" * Identifier * (Q ":") ^ -1
3452 + Q ":" * # (1 - P ":") * SkipSpace
3453 * K ('TypeExpression' , balanced_parens) * SkipSpace * Q ")"
3454 + Exception
3455 + DefType
3456 + DefFunction
3457 + DefModule
3458 + Record
3459 + Keyword * EndKeyword
3460 + OperatorWord * EndKeyword
3461 + Builtin * EndKeyword
3462 + DotNotation * EndKeyword
3463 + Constructor
3464 + Identifier
3465 + Punct
3466 + Delim -- Delim is before Operator for a correct analysis of [| et |]
3467 + Operator

78

3468 + Number
3469 + Word

Here, we must not put local, of course.
3470 LPEG1.ocaml = Main ^ 0

3471 LPEG2.ocaml =
3472 Ct (

The following lines are in order to allow, in \piton (and not in {Piton}), judgments of type (such as
f : my_type -> 'a list) or single expressions of type such as my_type -> 'a list (in that case,
the argument of \piton must begin by a colon).

3473 (
3474 (
3475 P ":"
3476 +
3477 (
3478 (K ('Name.Module' , cap_identifier) * Q ".") ^ -1
3479 * Identifier
3480 * SkipSpace
3481 * Q ":"
3482)
3483)
3484 * # (1 - S ":=")
3485 * SkipSpace
3486 * K ('TypeExpression' , (1 - P "\r") ^ 0) * -1
3487)
3488 +
3489 (
3490 (space ^ 0 * "\r") ^ -1
3491 * Lc [[\@@_begin_line:]]
3492 * LeadingSpace ^ 0
3493 * ((space * Lc [[\@@_trailing_space:]]) ^ 1 * -1
3494 + space ^ 0 * EOL
3495 + Main
3496) ^ 0
3497 * -1
3498 * Lc [[\@@_end_line:]]
3499)
3500)

End of the Lua scope for the language OCaml.
3501 end

3.6 The language C
We open a Lua local scope for the language C (of course, there will be also global definitions).

3502 --c C c++ C++
3503 do

3504 local Delim = Q (S "{[()]}")

3505 local Punct = Q (S ",:;!")

Some strings of length 2 are explicit because we want the corresponding ligatures available in some
fonts such as Fira Code to be active.

3506 local identifier = letter * alphanum ^ 0
3507

3508 local Operator =

79

3509 K ('Operator' ,
3510 P "!=" + "==" + "<<" + ">>" + "<=" + ">=" + "||" + "&&"
3511 + S "-~+/*%=<>&.@|!")
3512

3513 local Keyword =
3514 K ('Keyword' ,
3515 P "alignas" + "asm" + "auto" + "break" + "case" + "catch" + "class" +
3516 "const" + "constexpr" + "continue" + "decltype" + "do" + "else" + "enum" +
3517 "extern" + "for" + "goto" + "if" + "nexcept" + "private" + "public" +
3518 "register" + "restricted" + "return" + "static" + "static_assert" +
3519 "struct" + "switch" + "thread_local" + "throw" + "try" + "typedef" +
3520 "union" + "using" + "virtual" + "volatile" + "while"
3521)
3522 + K ('Keyword.Constant' , P "default" + "false" + "NULL" + "nullptr" + "true")
3523

3524 local Builtin =
3525 K ('Name.Builtin' ,
3526 P "alignof" + "malloc" + "printf" + "scanf" + "sizeof")
3527

3528 local Type =
3529 K ('Name.Type' ,
3530 P "bool" + "char" + "char16_t" + "char32_t" + "double" + "float" +
3531 "int8_t" + "int16_t" + "int32_t" + "int64_t" + "uint8_t" + "uint16_t" +
3532 "uint32_t" + "uint64_t" + "int" + "long" + "short" + "signed" + "unsigned" +
3533 "void" + "wchar_t") * Q "*" ^ 0
3534

3535 local DefFunction =
3536 Type
3537 * Space
3538 * Q "*" ^ -1
3539 * K ('Name.Function.Internal' , identifier)
3540 * SkipSpace
3541 * # P "("

We remind that the marker # of lpeg specifies that the pattern will be detected but won’t consume
any character.

The following lpeg DefClass will be used to detect the definition of a new class (the name of that
new class will be formatted with the piton style Name.Class).
Example: class myclass:

3542 local DefClass =
3543 K ('Keyword' , "class") * Space * K ('Name.Class' , identifier)

If the word class is not followed by a identifier, it will be caught as keyword by the lpeg Keyword
(useful if we want to type a list of keywords).

3544 local Character =
3545 K ('String.Short' ,
3546 P [['\'']] + P "'" * (1 - P "'") ^ 0 * P "'")

The strings of C
3547 String =
3548 WithStyle ('String.Long.Internal' ,
3549 Q "\""
3550 * (SpaceInString
3551 + K ('String.Interpol' ,
3552 "%" * (S "difcspxXou" + "ld" + "li" + "hd" + "hi")
3553)
3554 + Q ((P "\\\"" + 1 - S " \"") ^ 1)
3555) ^ 0
3556 * Q "\""
3557)

80

Beamer The argument of Compute_braces must be a pattern which does no catching corresponding
to the strings of the language.

3558 local braces = Compute_braces ("\"" * (1 - S "\"") ^ 0 * "\"")
3559 if piton.beamer then Beamer = Compute_Beamer ('c' , braces) end

3560 DetectedCommands =
3561 Compute_DetectedCommands ('c' , braces)
3562 + Compute_RawDetectedCommands ('c' , braces)

3563 LPEG_cleaner.c = Compute_LPEG_cleaner ('c' , braces)

The directives of the preprocessor
3564 local Preproc = K ('Preproc' , "#" * (1 - P "\r") ^ 0) * (EOL + -1)

The comments in the C listings We define different lpeg dealing with comments in the C
listings.

3565 local Comment =
3566 WithStyle ('Comment.Internal' ,
3567 Q "//" * (CommentMath + Q ((1 - S "$\r") ^ 1)) ^ 0) -- $
3568 * (EOL + -1)
3569

3570 local LongComment =
3571 WithStyle ('Comment.Internal' ,
3572 Q "/*"
3573 * (CommentMath + Q ((1 - P "*/" - S "$\r") ^ 1) + EOL) ^ 0
3574 * Q "*/"
3575) -- $

The main LPEG for the language C
3576 local EndKeyword
3577 = Space + Punct + Delim + EOL + Beamer + DetectedCommands + Escape +
3578 EscapeMath + -1

First, the main loop :
3579 local Main =
3580 space ^ 0 * EOL
3581 + Space
3582 + Tab
3583 + Escape + EscapeMath
3584 + CommentLaTeX
3585 + Beamer
3586 + DetectedCommands
3587 + Preproc
3588 + Comment + LongComment
3589 + Delim
3590 + Operator
3591 + Character
3592 + String
3593 + Punct
3594 + DefFunction
3595 + DefClass
3596 + Type * (Q "*" ^ -1 + EndKeyword)
3597 + Keyword * EndKeyword
3598 + Builtin * EndKeyword
3599 + Identifier
3600 + Number
3601 + Word

81

Here, we must not put local, of course.
3602 LPEG1.c = Main ^ 0

We recall that each line in the C code to parse will be sent back to LaTeX between a pair
\@@_begin_line: – \@@_end_line:7.

3603 LPEG2.c =
3604 Ct (
3605 (space ^ 0 * P "\r") ^ -1
3606 * Lc [[\@@_begin_line:]]
3607 * LeadingSpace ^ 0
3608 * (space ^ 1 * -1 + space ^ 0 * EOL + Main) ^ 0
3609 * -1
3610 * Lc [[\@@_end_line:]]
3611)

End of the Lua scope for the language C.
3612 end

3.7 The language SQL
We open a Lua local scope for the language SQL (of course, there will be also global definitions).

3613 --sql SQL
3614 do

3615 local LuaKeyword
3616 function LuaKeyword (name) return
3617 Lc [[{\PitonStyle{Keyword}{]]
3618 * Q (Cmt (
3619 C (letter * alphanum ^ 0) ,
3620 function (_ , _ , a) return a : upper () == name end
3621)
3622)
3623 * Lc "}}"
3624 end

In the identifiers, we will be able to catch those contening spaces, that is to say like "last name".
3625 local identifier =
3626 letter * (alphanum + "-") ^ 0
3627 + P '"' * ((1 - P '"') ^ 1) * '"'

3628 local Operator =
3629 K ('Operator' , P "=" + "!=" + "<>" + ">=" + ">" + "<=" + "<" + S "*+/")

In SQL, the keywords are case-insensitive. That’s why we have a little complication. We will catch
the keywords with the identifiers and, then, distinguish the keywords with a Lua function. However,
some keywords will be caught in special LPEG because we want to detect the names of the SQL
tables.

The following function converts a comma-separated list in a “set”, that is to say a Lua table with a
fast way to test whether a string belongs to that set (eventually, the indexation of the components
of the table is no longer done by integers but by the strings themselves).

3630 local Set
3631 function Set (list)
3632 local set = { }
3633 for _ , l in ipairs (list) do set[l] = true end
3634 return set
3635 end

7Remember that the \@@_end_line: must be explicit because it will be used as marker in order to delimit the
argument of the command \@@_begin_line:

82

We now use the previous function Set to creates the “sets” set_keywords and set_builtin. That
list of keywords comes from https://sqlite.org/lang_keywords.html.

3636 local set_keywords = Set
3637 {
3638 "ABORT", "ACTION", "ADD", "AFTER", "ALL", "ALTER", "ALWAYS", "ANALYZE",
3639 "AND", "AS", "ASC", "ATTACH", "AUTOINCREMENT", "BEFORE", "BEGIN", "BETWEEN",
3640 "BY", "CASCADE", "CASE", "CAST", "CHECK", "COLLATE", "COLUMN", "COMMIT",
3641 "CONFLICT", "CONSTRAINT", "CREATE", "CROSS", "CURRENT", "CURRENT_DATE",
3642 "CURRENT_TIME", "CURRENT_TIMESTAMP", "DATABASE", "DEFAULT", "DEFERRABLE",
3643 "DEFERRED", "DELETE", "DESC", "DETACH", "DISTINCT", "DO", "DROP", "EACH",
3644 "ELSE", "END", "ESCAPE", "EXCEPT", "EXCLUDE", "EXCLUSIVE", "EXISTS",
3645 "EXPLAIN", "FAIL", "FILTER", "FIRST", "FOLLOWING", "FOR", "FOREIGN", "FROM",
3646 "FULL", "GENERATED", "GLOB", "GROUP", "GROUPS", "HAVING", "IF", "IGNORE",
3647 "IMMEDIATE", "IN", "INDEX", "INDEXED", "INITIALLY", "INNER", "INSERT",
3648 "INSTEAD", "INTERSECT", "INTO", "IS", "ISNULL", "JOIN", "KEY", "LAST",
3649 "LEFT", "LIKE", "LIMIT", "MATCH", "MATERIALIZED", "NATURAL", "NO", "NOT",
3650 "NOTHING", "NOTNULL", "NULL", "NULLS", "OF", "OFFSET", "ON", "OR", "ORDER",
3651 "OTHERS", "OUTER", "OVER", "PARTITION", "PLAN", "PRAGMA", "PRECEDING",
3652 "PRIMARY", "QUERY", "RAISE", "RANGE", "RECURSIVE", "REFERENCES", "REGEXP",
3653 "REINDEX", "RELEASE", "RENAME", "REPLACE", "RESTRICT", "RETURNING", "RIGHT",
3654 "ROLLBACK", "ROW", "ROWS", "SAVEPOINT", "SELECT", "SET", "TABLE", "TEMP",
3655 "TEMPORARY", "THEN", "TIES", "TO", "TRANSACTION", "TRIGGER", "UNBOUNDED",
3656 "UNION", "UNIQUE", "UPDATE", "USING", "VACUUM", "VALUES", "VIEW", "VIRTUAL",
3657 "WHEN", "WHERE", "WINDOW", "WITH", "WITHOUT"
3658 }

3659 local set_builtins = Set
3660 {
3661 "AVG" , "COUNT" , "CHAR_LENGTH" , "CONCAT" , "CURDATE" , "CURRENT_DATE" ,
3662 "DATE_FORMAT" , "DAY" , "LOWER" , "LTRIM" , "MAX" , "MIN" , "MONTH" , "NOW" ,
3663 "RANK" , "ROUND" , "RTRIM" , "SUBSTRING" , "SUM" , "UPPER" , "YEAR"
3664 }

The lpeg Identifier will catch the identifiers of the fields but also the keywords and the built-in
functions of SQL. If will not catch the names of the SQL tables.

3665 local Identifier =
3666 C (identifier) /
3667 (
3668 function (s)
3669 if set_keywords [s : upper ()] then return

Remind that, in Lua, it’s possible to return several values.
3670 { [[{\PitonStyle{Keyword}{]] } ,
3671 { luatexbase.catcodetables.other , s } ,
3672 { "}}" }
3673 else
3674 if set_builtins [s : upper ()] then return
3675 { [[{\PitonStyle{Name.Builtin}{]] } ,
3676 { luatexbase.catcodetables.other , s } ,
3677 { "}}" }
3678 else return
3679 { [[{\PitonStyle{Name.Field}{]] } ,
3680 { luatexbase.catcodetables.other , s } ,
3681 { "}}" }
3682 end
3683 end
3684 end
3685)

The strings of SQL
3686 local String = K ('String.Long.Internal' , "'" * (1 - P "'") ^ 1 * "'")

83

https://sqlite.org/lang_keywords.html

Beamer The argument of Compute_braces must be a pattern which does no catching corresponding
to the strings of the language.

3687 local braces = Compute_braces ("'" * (1 - P "'") ^ 1 * "'")
3688 if piton.beamer then Beamer = Compute_Beamer ('sql' , braces) end

3689 DetectedCommands =
3690 Compute_DetectedCommands ('sql' , braces)
3691 + Compute_RawDetectedCommands ('sql' , braces)

3692 LPEG_cleaner.sql = Compute_LPEG_cleaner ('sql' , braces)

The comments in the SQL listings We define different lpeg dealing with comments in the SQL
listings.

3693 local Comment =
3694 WithStyle ('Comment.Internal' ,
3695 Q "--" -- syntax of SQL92
3696 * (CommentMath + Q ((1 - S "$\r") ^ 1)) ^ 0) -- $
3697 * (EOL + -1)
3698

3699 local LongComment =
3700 WithStyle ('Comment.Internal' ,
3701 Q "/*"
3702 * (CommentMath + Q ((1 - P "*/" - S "$\r") ^ 1) + EOL) ^ 0
3703 * Q "*/"
3704) -- $

The main LPEG for the language SQL
3705 local EndKeyword
3706 = Space + Punct + Delim + EOL + Beamer + DetectedCommands + Escape +
3707 EscapeMath + -1

3708 local TableField =
3709 K ('Name.Table' , identifier)
3710 * Q "."
3711 * (DetectedCommands + (K ('Name.Field' , identifier)) ^ 0)
3712

3713 local OneField =
3714 (
3715 Q ("(" * (1 - P ")") ^ 0 * ")")
3716 +
3717 K ('Name.Table' , identifier)
3718 * Q "."
3719 * K ('Name.Field' , identifier)
3720 +
3721 K ('Name.Field' , identifier)
3722)
3723 * (
3724 Space * LuaKeyword "AS" * Space * K ('Name.Field' , identifier)
3725) ^ -1
3726 * (Space * (LuaKeyword "ASC" + LuaKeyword "DESC")) ^ -1
3727

3728 local OneTable =
3729 K ('Name.Table' , identifier)
3730 * (
3731 Space
3732 * LuaKeyword "AS"
3733 * Space
3734 * K ('Name.Table' , identifier)
3735) ^ -1
3736

3737 local WeCatchTableNames =

84

3738 LuaKeyword "FROM"
3739 * (Space + EOL)
3740 * OneTable * (SkipSpace * Q "," * SkipSpace * OneTable) ^ 0
3741 + (
3742 LuaKeyword "JOIN" + LuaKeyword "INTO" + LuaKeyword "UPDATE"
3743 + LuaKeyword "TABLE"
3744)
3745 * (Space + EOL) * OneTable

3746 local EndKeyword
3747 = Space + Punct + Delim + EOL + Beamer
3748 + DetectedCommands + Escape + EscapeMath + -1

First, the main loop :
3749 local Main =
3750 space ^ 0 * EOL
3751 + Space
3752 + Tab
3753 + Escape + EscapeMath
3754 + CommentLaTeX
3755 + Beamer
3756 + DetectedCommands
3757 + Comment + LongComment
3758 + Delim
3759 + Operator
3760 + String
3761 + Punct
3762 + WeCatchTableNames
3763 + (TableField + Identifier) * (Space + Operator + Punct + Delim + EOL + -1)
3764 + Number
3765 + Word

Here, we must not put local, of course.
3766 LPEG1.sql = Main ^ 0

We recall that each line in the code to parse will be sent back to LaTeX between a pair
\@@_begin_line: – \@@_end_line:8.

3767 LPEG2.sql =
3768 Ct (
3769 (space ^ 0 * "\r") ^ -1
3770 * Lc [[\@@_begin_line:]]
3771 * LeadingSpace ^ 0
3772 * (space ^ 1 * -1 + space ^ 0 * EOL + Main) ^ 0
3773 * -1
3774 * Lc [[\@@_end_line:]]
3775)

End of the Lua scope for the language SQL.
3776 end

3.8 The language “Minimal”
We open a Lua local scope for the language “Minimal” (of course, there will be also global definitions).

3777 --minimal Minimal
3778 do

8Remember that the \@@_end_line: must be explicit because it will be used as marker in order to delimit the
argument of the command \@@_begin_line:

85

3779 local Punct = Q (S ",:;!\\")
3780

3781 local Comment =
3782 WithStyle ('Comment.Internal' ,
3783 Q "#"
3784 * (CommentMath + Q ((1 - S "$\r") ^ 1)) ^ 0 -- $
3785)
3786 * (EOL + -1)
3787

3788 local String =
3789 WithStyle ('String.Short.Internal' ,
3790 Q "\""
3791 * (SpaceInString
3792 + Q ((P [[\"]] + 1 - S " \"") ^ 1)
3793) ^ 0
3794 * Q "\""
3795)

The argument of Compute_braces must be a pattern which does no catching corresponding to the
strings of the language.

3796 local braces = Compute_braces (P "\"" * (P "\\\"" + 1 - P "\"") ^ 1 * "\"")
3797

3798 if piton.beamer then Beamer = Compute_Beamer ('minimal' , braces) end
3799

3800 DetectedCommands =
3801 Compute_DetectedCommands ('minimal' , braces)
3802 + Compute_RawDetectedCommands ('minimal' , braces)
3803

3804 LPEG_cleaner.minimal = Compute_LPEG_cleaner ('minimal' , braces)
3805

3806 local identifier = letter * alphanum ^ 0
3807

3808 local Identifier = K ('Identifier.Internal' , identifier)
3809

3810 local Delim = Q (S "{[()]}")
3811

3812 local Main =
3813 space ^ 0 * EOL
3814 + Space
3815 + Tab
3816 + Escape + EscapeMath
3817 + CommentLaTeX
3818 + Beamer
3819 + DetectedCommands
3820 + Comment
3821 + Delim
3822 + String
3823 + Punct
3824 + Identifier
3825 + Number
3826 + Word

Here, we must not put local, of course.
3827 LPEG1.minimal = Main ^ 0
3828

3829 LPEG2.minimal =
3830 Ct (
3831 (space ^ 0 * "\r") ^ -1
3832 * Lc [[\@@_begin_line:]]
3833 * LeadingSpace ^ 0
3834 * (space ^ 1 * -1 + space ^ 0 * EOL + Main) ^ 0
3835 * -1

86

3836 * Lc [[\@@_end_line:]]
3837)

End of the Lua scope for the language “Minimal”.
3838 end

3.9 The language “Verbatim”
We open a Lua local scope for the language “Verbatim” (of course, there will be also global definitions).

3839 --verbatim Verbatim
3840 do

Here, we don’t use braces as done with the other languages because we don’t have have to take into
account the strings (there is no string in the langage “Verbatim”).

3841 local braces =
3842 P { "E" ,
3843 E = ("{" * V "E" * "}" + (1 - S "{}")) ^ 0
3844 }
3845

3846 if piton.beamer then Beamer = Compute_Beamer ('verbatim' , braces) end
3847

3848 DetectedCommands =
3849 Compute_DetectedCommands ('verbatim' , braces)
3850 + Compute_RawDetectedCommands ('verbatim' , braces)
3851

3852 LPEG_cleaner.verbatim = Compute_LPEG_cleaner ('verbatim' , braces)

Now, you will construct the LPEG Word.
3853 local lpeg_central = 1 - S " \\\r"
3854 if piton.begin_escape then
3855 lpeg_central = lpeg_central - piton.begin_escape
3856 end
3857 if piton.begin_escape_math then
3858 lpeg_central = lpeg_central - piton.begin_escape_math
3859 end
3860 local Word = Q (lpeg_central ^ 1)
3861

3862 local Main =
3863 space ^ 0 * EOL
3864 + Space
3865 + Tab
3866 + Escape + EscapeMath
3867 + Beamer
3868 + DetectedCommands
3869 + Q [[\]]
3870 + Word

Here, we must not put local, of course.
3871 LPEG1.verbatim = Main ^ 0
3872

3873 LPEG2.verbatim =
3874 Ct (
3875 (space ^ 0 * "\r") ^ -1
3876 * Lc [[\@@_begin_line:]]
3877 * LeadingSpace ^ 0
3878 * (space ^ 1 * -1 + space ^ 0 * EOL + Main) ^ 0
3879 * -1
3880 * Lc [[\@@_end_line:]]
3881)

End of the Lua scope for the language “verbatim”.
3882 end

87

3.10 The language expl
We open a Lua local scope for the language expl of LaTeX3 (of course, there will be also global
definitions).

3883 --EXPL expl
3884 do

3885 local Comment =
3886 WithStyle
3887 ('Comment.Internal' ,
3888 Q "%" * (CommentMath + Q ((1 - S "$\r") ^ 1)) ^ 0 -- $
3889)
3890 * (EOL + -1)

First, we begin with a special function to analyse the “keywords”, that is to say the control sequences
beginning by “\”.

3891 local analyze_cs
3892 function analyze_cs (s)
3893 local i = s : find (":")
3894 if i then

First, the case of what might be called a “function” in expl, for instance, \tl_set:Nn or
\int_compare:nNnTF.

3895 local name = s : sub (2 , i - 1)
3896 local parts = name : explode ("_")
3897 local module = parts[1]
3898 if module == "" then module = parts[3] end

Remind that, in Lua, we can return several values.
3899 return
3900 { [[{\OptionalLocalPitonStyle{Module.]] .. module .. "}{" } ,
3901 { luatexbase.catcodetables.other , s } ,
3902 { "}}" }
3903 else

3904 local p = s : sub (1 , 3)
3905 if p == [[\l_]] or p == [[\g_]] or p == [[\c_]] then

The case of what might be called a “variable”, for instance, \l_tmpa_int or \g__module_text_tl.
3906 local scope = s : sub(2,2)
3907 local parts = s : explode ("_")
3908 local module = parts[2]
3909 if module == "" then module = parts[3] end
3910 local type = parts[#parts]
3911 return
3912 { [[{\OptionalLocalPitonStyle{Scope.]] .. scope .. "}{" } ,
3913 { [[{\OptionalLocalPitonStyle{Module.]] .. module .. "}{" } ,
3914 { [[{\OptionalLocalPitonStyle{Type.]] .. type .. "}{" } ,
3915 { luatexbase.catcodetables.other , s } ,
3916 { "}}}}}}" }
3917 else

We have a control sequence which is neither a “function” neither a “variable” of expl. It’s a control
sequence of standard LaTeX and we don’t format it.

3918 return { luatexbase.catcodetables.other , s }
3919 end
3920 end
3921 end

Here, we don’t use braces as done with the other languages because we don’t have have to take into
account the strings (there is no string in the langage expl).

3922 local braces =
3923 P { "E" ,
3924 E = ("{" * V "E" * "}" + (1 - S "{}")) ^ 0
3925 }

88

3926

3927 if piton.beamer then Beamer = Compute_Beamer ('expl' , braces) end
3928

3929 DetectedCommands =
3930 Compute_DetectedCommands ('expl' , braces)
3931 + Compute_RawDetectedCommands ('expl' , braces)
3932

3933 LPEG_cleaner.expl = Compute_LPEG_cleaner ('expl' , braces)

3934 local control_sequence = P "\\" * (R "Az" + "_" + ":" + "@") ^ 1
3935 local ControlSequence = C (control_sequence) / analyze_cs

3936 local def_function
3937 = P [[\cs_]]
3938 * (P "set" + "new")
3939 * (P "_protected") ^ -1
3940 * P ":N" * (P "p") ^ -1 * "n"

3941 local DefFunction =
3942 C (def_function) / analyze_cs
3943 * Space
3944 * Lc ([[{\PitonStyle{Name.Function}{]])
3945 * ControlSequence -- Q (ControlSequence) ?
3946 * Lc "}}"

3947 local Word = Q ((1 - S " \r") ^ 1)
3948

3949 local Main =
3950 space ^ 0 * EOL
3951 + Space
3952 + Tab
3953 + Escape + EscapeMath
3954 + Beamer
3955 + Comment
3956 + DetectedCommands
3957 + DefFunction
3958 + ControlSequence
3959 + Word

Here, we must not put local, of course.
3960 LPEG1.expl = Main ^ 0
3961

3962 LPEG2.expl =
3963 Ct (
3964 (space ^ 0 * "\r") ^ -1
3965 * Lc [[\@@_begin_line:]]
3966 * LeadingSpace ^ 0
3967 * (space ^ 1 * -1 + space ^ 0 * EOL + Main) ^ 0
3968 * -1
3969 * Lc [[\@@_end_line:]]
3970)

End of the Lua scope for the language expl of LaTeX3.
3971 end

3.11 The function Parse

The function Parse is the main function of the package piton. It parses its argument and sends back
to LaTeX the code with interlaced formatting LaTeX instructions. In fact, everything is done by the
lpeg corresponding to the considered language (LPEG2[language]) which returns as capture a Lua
table containing data to send to LaTeX.

3972 function piton.Parse (language , code)

89

The variable piton.language will be used by the function ParseAgain.
3973 piton.language = language
3974 local t = LPEG2[language] : match (code)
3975 if not t then
3976 sprintL3 [[\@@_error_or_warning:n { SyntaxError }]]
3977 return -- to exit in force the function
3978 end
3979 local left_stack = {}
3980 local right_stack = {}
3981 for _ , one_item in ipairs (t) do
3982 if one_item == "EOL" then
3983 for i = #right_stack, 1, -1 do
3984 tex.sprint (right_stack[i])
3985 end

We remind that the \@@_end_line: must be explicit since it’s the marker of end of the command
\@@_begin_line:.

3986 sprintL3 ([[\@@_end_line: \@@_par: \@@_begin_line:]])
3987 tex.sprint (table.concat (left_stack))
3988 else

Here is an example of an item beginning with "Open".
{ "Open" , "\begin{uncoverenv}<2>" , "\end{uncoverenv}" }
In order to deal with the ends of lines, we have to close the environment ({uncoverenv} in this
example) at the end of each line and reopen it at the beginning of the new line. That’s why we
use two Lua stacks, called left_stack and right_stack. left_stack will be for the elements like
\begin{uncoverenv}<2> and right_stack will be for the elements like \end{uncoverenv}.

3989 if one_item[1] == "Open" then
3990 tex.sprint (one_item[2])
3991 table.insert (left_stack , one_item[2])
3992 table.insert (right_stack , one_item[3])
3993 else
3994 if one_item[1] == "Close" then
3995 tex.sprint (right_stack[#right_stack])
3996 left_stack[#left_stack] = nil
3997 right_stack[#right_stack] = nil
3998 else
3999 tex.tprint (one_item)
4000 end
4001 end
4002 end
4003 end
4004 end

There is the problem of the conventions of end of lines (\n in Unix and Linux but \r\n in Windows).
The function my_file_lines will read a file line by line after replacement of the potential \r\n by
\n (that means that we go the convention unix).

4005 local my_file_lines
4006 function my_file_lines (filename)
4007 local f = io.open (filename , 'rb')
4008 local s = f : read ('*a')
4009 f : close ()

À la fin, on doit bien mettre (.-) et pas (.*).
4010 return (s .. '\n') : gsub('\r\n?' , '\n') : gmatch ('(.-)\n')
4011 end

Recall that, in Lua, gmatch returns an iterator.

4012 function piton.ReadFile (name , first_line , last_line)
4013 local s = ''
4014 local i = 0
4015 for line in my_file_lines (name) do

90

4016 i = i + 1
4017 if i >= first_line then
4018 s = s .. '\r' .. line
4019 end
4020 if i >= last_line then break end
4021 end

We extract the BOM of utf-8, if present.
4022 if s : sub (1 , 4) == string.char (13 , 239 , 187 , 191) then
4023 s = s : sub (5 , -1)
4024 end

4025 sprintL3 ([[\tl_set:Nn \l_@@_listing_tl {]])
4026 tex.sprint (luatexbase.catcodetables.other , s)
4027 sprintL3 ("}")
4028 end

4029 function piton.RetrieveGobbleParse (lang , n , splittable , code)
4030 local s
4031 s = ((P " " ^ 0 * "\r") ^ -1 * C (P (1) ^ 0) * -1) : match (code)
4032 piton.GobbleParse (lang , n , splittable , s)
4033 end

3.12 Two variants of the function Parse with integrated preprocessors
The following command will be used by the user command \piton. For that command, we have to
undo the duplication of the symbols #.

4034 function piton.ParseBis (lang , code)
4035 return piton.Parse (lang , code : gsub ('##' , '#'))
4036 end

Of course, gsub spans the string only once for the substitutions, which means that #### will be
replaced by ## as expected and not by #.

The following command will be used when we have to parse some small chunks of code that have yet
been parsed. They are re-scanned by LaTeX because it has been required by \@@_piton:n in the piton
style of the syntaxic element. In that case, you have to remove the potential \@@_breakable_space:
that have been inserted when the key break-lines is in force.

4037 function piton.ParseTer (lang , code)

Be careful: we have to write [[\@@_breakable_space:]] with a space after the name of the LaTeX
command \@@_breakable_space:.

4038 return piton.Parse
4039 (
4040 lang ,
4041 code : gsub ([[\@@_breakable_space:]] , ' ')
4042)
4043 end

3.13 Preprocessors of the function Parse for gobble
We deal now with preprocessors of the function Parse which are needed when the “gobble mechanism”
is used.

The following lpeg returns as capture the minimal number of spaces at the beginning of the lines of
code.

4044 local AutoGobbleLPEG =
4045 ((
4046 P " " ^ 0 * "\r"

91

4047 +
4048 Ct (C " " ^ 0) / table.getn
4049 * (1 - P " ") * (1 - P "\r") ^ 0 * "\r"
4050) ^ 0
4051 * (Ct (C " " ^ 0) / table.getn
4052 * (1 - P " ") * (1 - P "\r") ^ 0) ^ -1
4053) / math.min

The following lpeg is similar but works with the tabulations.
4054 local TabsAutoGobbleLPEG =
4055 (
4056 (
4057 P "\t" ^ 0 * "\r"
4058 +
4059 Ct (C "\t" ^ 0) / table.getn
4060 * (1 - P "\t") * (1 - P "\r") ^ 0 * "\r"
4061) ^ 0
4062 * (Ct (C "\t" ^ 0) / table.getn
4063 * (1 - P "\t") * (1 - P "\r") ^ 0) ^ -1
4064) / math.min

The following lpeg returns as capture the number of spaces at the last line, that is to say before the
\end{Piton} (and usually it’s also the number of spaces before the corresponding \begin{Piton}
because that’s the traditional way to indent in LaTeX).

4065 local EnvGobbleLPEG =
4066 ((1 - P "\r") ^ 0 * "\r") ^ 0
4067 * Ct (C " " ^ 0 * -1) / table.getn

The function gobble gobbles n characters on the left of the code. The negative values of n have
special significations.

4068 function piton.Gobble (n , code)
4069 if n == 0 then return
4070 code
4071 else
4072 if n == -1 then
4073 n = AutoGobbleLPEG : match (code)

for the case of an empty environment (only blank lines)
4074 if tonumber(n) then else n = 0 end
4075 else
4076 if n == -2 then
4077 n = EnvGobbleLPEG : match (code)
4078 else
4079 if n == -3 then
4080 n = TabsAutoGobbleLPEG : match (code)
4081 if tonumber(n) then else n = 0 end
4082 end
4083 end
4084 end

We have a second test if n == 0 because, even if the key like auto-gobble is in force, it’s possible
that, in fact, there is no space to gobble...

4085 if n == 0 then return
4086 code
4087 else return

We will now use a lpeg that we have to compute dynamically because it depends on the value of n.
4088 (Ct (
4089 (1 - P "\r") ^ (-n) * C ((1 - P "\r") ^ 0)
4090 * (C "\r" * (1 - P "\r") ^ (-n) * C ((1 - P "\r") ^ 0)
4091) ^ 0)
4092 / table.concat

92

4093) : match (code)
4094 end
4095 end
4096 end

In the following code, n is the value of \l_@@_gobble_int.
splittable is the value of \l_@@_splittable_int.

4097 function piton.GobbleParse (lang , n , splittable , code)
4098 piton.ComputeLinesStatus (code , splittable)
4099 piton.last_code = piton.Gobble (n , code)
4100 piton.last_language = lang

We count the number of lines of the computer listing. The result will be stored by Lua in
\g_@@_nb_lines_int.

4101 piton.CountLines (piton.last_code)
4102 piton.Parse (lang , piton.last_code)
4103 piton.join_and_write ()
4104 end

The following function will be used when the end user has used the key join or the key write. The
value of the key join has been written in the Lua variable piton.join.

4105 function piton.join_and_write ()
4106 if piton.join ~= '' then
4107 if not piton.join_files [piton.join] then
4108 piton.join_files [piton.join] = piton.get_last_code ()
4109 else
4110 if piton.join_separation == '' then
4111 piton.join_files [piton.join] =
4112 piton.join_files [piton.join]
4113 .. "\r\n"
4114 .. piton.get_last_code ()
4115 else
4116 piton.join_files [piton.join] =
4117 piton.join_files [piton.join]
4118 .. "\r\n"
4119 .. (piton.join_separation : gsub ('##' , '#'))
4120 .. "\r\n"
4121 .. piton.get_last_code ()
4122 end
4123 end
4124 end

Now, if the end user has used the key write to write the listing of the environment on an external
file (on the disk).
We have written the values of the keys write and path-write in the Lua variables piton.write and
piton.path_write.
If piton.write is not empty, that means that the key write has been used for the current environment
and, hence, we have to write the content of the listing on the corresponding external file.

4125 if piton.write ~= '' then

We will write on file_name the full name (with the path) of the file in which we will write.
4126 local file_name = ''
4127 if piton.path_write == '' then
4128 file_name = piton.write
4129 else

If piton.path-write is not empty, that means that we will not write on a file in the current directory
but in another directory. First, we verify that that directory actually exists.

4130 local attr = lfs.attributes (piton.path_write)
4131 if attr and attr.mode == "directory" then
4132 file_name = piton.path_write .. "/" .. piton.write
4133 else

93

If the directory does not exist, you raise an (non-fatal) error since TeX is not able to create a new
directory.

4134 sprintL3 [[\@@_error_or_warning:n { InexistentDirectory }]]
4135 end
4136 end
4137 if file_name ~= '' then

Now, file_name contains the complete name of the file on which we will have to write. Maybe the
file does not exist but we are sure that the directory exist.
The Lua table piton.write_files is a table of Lua strings corresponding to all the files that we
will write on the disk in the \AtEndDocument. They correspond to the use of the key write (and
path-write).

4138 if not piton.write_files [file_name] then
4139 piton.write_files [file_name] = piton.get_last_code ()
4140 else
4141 piton.write_files [file_name] =
4142 piton.write_files [file_name] .. "\n" .. piton.get_last_code ()
4143 end
4144 end
4145 end
4146 end

The following command will be used when the end user has set print=false.
4147 function piton.GobbleParseNoPrint (lang , n , code)
4148 piton.last_code = piton.Gobble (n , code)
4149 piton.last_language = lang
4150 piton.join_and_write ()
4151 end

The following function will be used when the key split-on-empty-lines is in force. With that key,
the computer listing is split in chunks at the empty lines (usually between the abstract functions
defined in the computer code). LaTeX will be able to change the page between the chunks. The
second argument n corresponds to the value of the key gobble (number of spaces to gobble).

4152 function piton.GobbleSplitParse (lang , n , splittable , code)
4153 local chunks
4154 chunks =
4155 (
4156 Ct (
4157 (
4158 P " " ^ 0 * "\r"
4159 +
4160 C (((1 - P "\r") ^ 1 * (P "\r" + -1)
4161 - (P " " ^ 0 * (P "\r" + -1))
4162) ^ 1
4163)
4164) ^ 0
4165)
4166) : match (piton.Gobble (n , code))
4167 sprintL3 [[\begingroup]]
4168 sprintL3
4169 (
4170 [[\PitonOptions { split-on-empty-lines = false, gobble = 0,]]
4171 .. "language = " .. lang .. ","
4172 .. "splittable = " .. splittable .. "}"
4173)
4174 for k , v in pairs (chunks) do
4175 if k > 1 then
4176 sprintL3 ([[\l_@@_split_separation_tl]])
4177 end
4178 tex.print
4179 (
4180 [[\begin{]] .. piton.env_used_by_split .. "}\r"

94

4181 .. v
4182 .. [[\end{]] .. piton.env_used_by_split .. "}\r"
4183)
4184 end
4185 sprintL3 [[\endgroup]]
4186 end

4187 function piton.RetrieveGobbleSplitParse (lang , n , splittable , code)
4188 local s
4189 s = ((P " " ^ 0 * "\r") ^ -1 * C (P (1) ^ 0) * -1) : match (code)
4190 piton.GobbleSplitParse (lang , n , splittable , s)
4191 end

The following Lua string will be inserted between the chunks of code created when the key split-
on-empty-lines is in force. It’s used only once: you have given a name to that Lua string only for
legibility. The token list \l_@@_split_separation_tl corresponds to the key split-separation.
That token list must contain elements inserted in vertical mode of TeX.

4192 piton.string_between_chunks =
4193 [[\par \l_@@_split_separation_tl \mode_leave_vertical:]]
4194 .. [[\global \g_@@_line_int = 0]]

The counter \g_@@_line_int will be used to control the points where the code may be broken by a
change of page (see the key splittable).

The following public Lua function is provided to the developer.
4195 function piton.get_last_code ()
4196 return LPEG_cleaner[piton.last_language] : match (piton.last_code)
4197 : gsub ('\r\n?' , '\n')
4198 end

3.14 To count the number of lines
4199 local CountBeamerEnvironments
4200 function CountBeamerEnvironments (code) return
4201 (
4202 Ct (
4203 (
4204 P "\\begin{" * beamerEnvironments * (1 - P "\r") ^ 0 * C "\r"
4205 +
4206 (1 - P "\r") ^ 0 * "\r"
4207) ^ 0
4208 * (1 - P "\r") ^ 0
4209 * -1
4210) / table.getn
4211) : match (code)
4212 end

The following function counts the lines of code except the lines which contains only instructions for
the environements of Beamer.
It is used in GobbleParse and at the beginning of \@@_composition: (in some rare circumstancies).
Be careful. We have tried a version with string.gsub without success.

4213 function piton.CountLines (code)
4214 local count
4215 count =
4216 (Ct (((1 - P "\r") ^ 0 * C "\r") ^ 0
4217 *
4218 (
4219 space ^ 0 * (1 - P "\r" - space) * (1 - P "\r") ^ 0 * Cc "\r"
4220 + space ^ 0
4221) ^ -1
4222 * -1

95

4223) / table.getn
4224) : match (code)
4225 if piton.beamer then
4226 count = count - 2 * CountBeamerEnvironments (code)
4227 end
4228 sprintL3 ([[\int_gset:Nn \g_@@_nb_lines_int {]] .. count .. "}")
4229 end

The following function is only used once (in piton.GobbleParse). We have written an au-
tonomous function only for legibility. The number of lines of the code will be stored in
\l_@@_nb_non_empty_lines_int. It will be used to compute the largest number of lines to write
(when line-numbers is in force).

4230 function piton.CountNonEmptyLines (code)
4231 local count = 0

The following code is not clear. We should try to replace it by use of the string library of Lua.
4232 count =
4233 (Ct ((P " " ^ 0 * "\r"
4234 + (1 - P "\r") ^ 0 * C "\r") ^ 0
4235 * (1 - P "\r") ^ 0
4236 * -1
4237) / table.getn
4238) : match (code)
4239 count = count + 1

4240 if piton.beamer then
4241 count = count - 2 * CountBeamerEnvironments (code)
4242 end
4243 sprintL3
4244 ([[\int_set:Nn \l_@@_nb_non_empty_lines_int {]] .. count .. "}")
4245 end

The following function stores in \l_@@_first_line_int and \l_@@_last_line_int the numbers of
lines of the file file_name corresponding to the strings marker_beginning and marker_end.
s is the marker of the beginning and t is the marker of the end.

4246 function piton.ComputeRange (s , t , file_name)
4247 local first_line = -1
4248 local count = 0
4249 local last_found = false
4250 for line in io.lines (file_name) do
4251 if first_line == -1 then
4252 if line : sub (1 , #s) == s then
4253 first_line = count
4254 end
4255 else
4256 if line : sub (1 , #t) == t then
4257 last_found = true
4258 break
4259 end
4260 end
4261 count = count + 1
4262 end
4263 if first_line == -1 then
4264 sprintL3 [[\@@_error_or_warning:n { begin~marker~not~found }]]
4265 else
4266 if not last_found then
4267 sprintL3 [[\@@_error_or_warning:n { end~marker~not~found }]]
4268 end
4269 end
4270 sprintL3 (
4271 [[\int_set:Nn \l_@@_first_line_int {]] .. first_line .. ' + 2 }'
4272 .. [[\global \l_@@_last_line_int =]] .. count)
4273 end

96

3.15 To determine the empty lines of the listings
Despite its name, the Lua function ComputeLinesStatus computes piton.lines_status but also
piton.empty_lines.

In piton.empty_lines, a line will have the number 0 if it’s a empty line (in fact a blank line, with
only spaces) and 1 elsewhere.

In piton.lines_status, each line will have a status with regard the breaking points allowed (for the
changes of pages).

• 0 if the line is empty and a page break is allowed;

• 1 if the line is not empty but a page break is allowed after that line;

• 2 if a page break is not allowed after that line (empty or not empty).

splittable is the value of \l_@@_splittable_int. However, if splittable-on-empty-lines is in
force, splittable is the opposite of \l_@@_splittable_int.

4274 function piton.ComputeLinesStatus (code , splittable)

The lines in the listings which correspond to the beginning or the end of an environment of Beamer
(eg. \begin{uncoverenv}) must be retrieved (those lines have no number and therefore, no status).

4275 local lpeg_line_beamer
4276 if piton.beamer then
4277 lpeg_line_beamer =
4278 space ^ 0
4279 * P [[\begin{]] * beamerEnvironments * "}"
4280 * ("<" * (1 - P ">") ^ 0 * ">") ^ -1
4281 +
4282 space ^ 0
4283 * P [[\end{]] * beamerEnvironments * "}"
4284 else
4285 lpeg_line_beamer = P (false)
4286 end

4287 local lpeg_empty_lines =
4288 Ct (
4289 (lpeg_line_beamer * "\r"
4290 +
4291 P " " ^ 0 * "\r" * Cc (0)
4292 +
4293 (1 - P "\r") ^ 0 * "\r" * Cc (1)
4294) ^ 0
4295 *
4296 (lpeg_line_beamer + (1 - P "\r") ^ 1 * Cc (1)) ^ -1
4297)
4298 * -1

4299 local lpeg_all_lines =
4300 Ct (
4301 (lpeg_line_beamer * "\r"
4302 +
4303 (1 - P "\r") ^ 0 * "\r" * Cc (1)
4304) ^ 0
4305 *
4306 (lpeg_line_beamer + (1 - P "\r") ^ 1 * Cc (1)) ^ -1
4307)
4308 * -1

We begin with the computation of piton.empty_lines. It will be used in conjonction with line-
numbers.

4309 piton.empty_lines = lpeg_empty_lines : match (code)

97

Now, we compute piton.lines_status. It will be used in conjonction with splittable and
splittable-on-empty-lines.
Now, we will take into account the current value of \l_@@_splittable_int (provided by the absolute
value of the argument splittable).

4310 local lines_status
4311 local s = splittable
4312 if splittable < 0 then s = - splittable end

4313 if splittable > 0 then
4314 lines_status = lpeg_all_lines : match (code)
4315 else

Here, we should try to copy piton.empty_lines but it’s not easy.
4316 lines_status = lpeg_empty_lines : match (code)
4317 for i , x in ipairs (lines_status) do
4318 if x == 0 then
4319 for j = 1 , s - 1 do
4320 if i + j > #lines_status then break end
4321 if lines_status[i+j] == 0 then break end
4322 lines_status[i+j] = 2
4323 end
4324 for j = 1 , s - 1 do
4325 if i - j == 1 then break end
4326 if lines_status[i-j-1] == 0 then break end
4327 lines_status[i-j-1] = 2
4328 end
4329 end
4330 end
4331 end

In all cases (whatever is the value of splittable-on-empty-lines) we have to deal with both
extremities of the listing to format.
First from the beginning of the code.

4332 for j = 1 , s - 1 do
4333 if j > #lines_status then break end
4334 if lines_status[j] == 0 then break end
4335 lines_status[j] = 2
4336 end

Now, from the end of the code.
4337 for j = 1 , s - 1 do
4338 if #lines_status - j == 0 then break end
4339 if lines_status[#lines_status - j] == 0 then break end
4340 lines_status[#lines_status - j] = 2
4341 end

4342 piton.lines_status = lines_status
4343 end

4344 function piton.TranslateBeamerEnv (code)
4345 local s
4346 s =
4347 (
4348 Ct (
4349 (
4350 space ^ 0
4351 * C (
4352 (P "\\begin{" + "\\end{")
4353 * beamerEnvironments * "}" * (1 - P "\r") ^ 0 * "\r"
4354)
4355 + C ((1 - P "\r") ^ 0 * "\r")
4356) ^ 0
4357 *
4358 (

98

4359 (
4360 space ^ 0
4361 * C (
4362 (P "\\begin{" + "\\end{")
4363 * beamerEnvironments * "}" * (1 - P "\r") ^ 0 * -1
4364)
4365 + C ((1 - P "\r") ^ 1) * -1
4366) ^ -1
4367)
4368) ^ -1 / table.concat
4369) : match (code)
4370 sprintL3 ([[\tl_set:Nn \l_@@_listing_tl {]])
4371 tex.sprint (luatexbase.catcodetables.other , s)
4372 sprintL3 ("}")
4373 end

3.16 To create new languages with the syntax of listings
4374 function piton.new_language (lang , definition)
4375 lang = lang : lower ()

4376 local alpha , digit = lpeg.alpha , lpeg.digit
4377 local extra_letters = { "@" , "_" , "$" } --

The command add_to_letter (triggered by the key) don’t write right away in the lpeg pattern
of the letters in an intermediate extra_letters because we may have to retrieve letters from that
“list” if there appear in a key alsoother.

4378 function add_to_letter (c)
4379 if c ~= " " then table.insert (extra_letters , c) end
4380 end

For the digits, it’s straitforward.
4381 function add_to_digit (c)
4382 if c ~= " " then digit = digit + c end
4383 end

The main use of the key alsoother is, for the language LaTeX, when you have to retrieve some
characters from the list of letters, in particular @ and _ (which, by default, are not allowed in the
name of a control sequence in TeX).

(In the following lpeg we have a problem when we try to add { and }).
4384 local other = S ":_@+-*/<>!?;.()[]~^=#&\"\'\\$" --
4385 local extra_others = { }

4386 function add_to_other (c)
4387 if c ~= " " then

We will use extra_others to retrieve further these characters from the list of the letters.
4388 extra_others[c] = true

The lpeg pattern other will be used in conjunction with the key tag (mainly for languages such as
html and xml) for the character / in the closing tags </....>).

4389 other = other + P (c)
4390 end
4391 end

Now, the first transformation of the definition of the language, as provided by the end user in the
argument definition of piton.new_language.

4392 local def_table
4393 if (S ", " ^ 0 * -1) : match (definition) then
4394 def_table = {}
4395 else
4396 local strict_braces =

99

4397 P { "E" ,
4398 E = ("{" * V "F" * "}" + (1 - S ",{}")) ^ 0 ,
4399 F = ("{" * V "F" * "}" + (1 - S "{}")) ^ 0
4400 }
4401 local cut_definition =
4402 P { "E" ,
4403 E = Ct (V "F" * ("," * V "F") ^ 0) ,
4404 F = Ct (space ^ 0 * C (alpha ^ 1) * space ^ 0
4405 * ("=" * space ^ 0 * C (strict_braces)) ^ -1)
4406 }
4407 def_table = cut_definition : match (definition)
4408 end

The definition of the language, provided by the end user of piton is now in the Lua table def_table.
We will use it several times.

The following lpeg will be used to extract arguments in the values of the keys (morekeywords,
morecomment, morestring, etc.).

4409 local tex_braced_arg = "{" * C ((1 - P "}") ^ 0) * "}"
4410 local tex_arg = tex_braced_arg + C (1)
4411 local tex_option_arg = "[" * C ((1 - P "]") ^ 0) * "]" + Cc (nil)

4412 local args_for_tag
4413 = tex_option_arg
4414 * space ^ 0
4415 * tex_arg
4416 * space ^ 0
4417 * tex_arg

4418 local args_for_morekeywords
4419 = "[" * C ((1 - P "]") ^ 0) * "]"
4420 * space ^ 0
4421 * tex_option_arg
4422 * space ^ 0
4423 * tex_arg
4424 * space ^ 0
4425 * (tex_braced_arg + Cc (nil))

4426 local args_for_moredelims
4427 = (C (P "*" ^ -2) + Cc (nil)) * space ^ 0
4428 * args_for_morekeywords

4429 local args_for_morecomment
4430 = "[" * C ((1 - P "]") ^ 0) * "]"
4431 * space ^ 0
4432 * tex_option_arg
4433 * space ^ 0
4434 * C (P (1) ^ 0 * -1)

We scan the definition of the language (i.e. the table def_table) in order to detect the potential key
sensitive. Indeed, we have to catch that key before the treatment of the keywords of the language.
We will also look for the potential keys alsodigit, alsoletter and tag.

4435 local sensitive = true
4436 local style_tag , left_tag , right_tag
4437 for _ , x in ipairs (def_table) do
4438 if x[1] == "sensitive" then
4439 if x[2] == nil or (P "true") : match (x[2]) then
4440 sensitive = true
4441 else
4442 if (P "false" + P "f") : match (x[2]) then sensitive = false end
4443 end
4444 end
4445 if x[1] == "alsodigit" then x[2] : gsub ("." , add_to_digit) end
4446 if x[1] == "alsoletter" then x[2] : gsub ("." , add_to_letter) end
4447 if x[1] == "alsoother" then x[2] : gsub ("." , add_to_other) end
4448 if x[1] == "tag" then

100

4449 style_tag , left_tag , right_tag = args_for_tag : match (x[2])
4450 style_tag = style_tag or [[\PitonStyle{Tag}]]
4451 end
4452 end

Now, the lpeg for the numbers. Of course, it uses digit previously computed.
4453 local Number =
4454 K ('Number.Internal' ,
4455 (digit ^ 1 * "." * # (1 - P ".") * digit ^ 0
4456 + digit ^ 0 * "." * digit ^ 1
4457 + digit ^ 1)
4458 * (S "eE" * S "+-" ^ -1 * digit ^ 1) ^ -1
4459 + digit ^ 1
4460)

4461 local string_extra_letters = ""
4462 for _ , x in ipairs (extra_letters) do
4463 if not (extra_others[x]) then
4464 string_extra_letters = string_extra_letters .. x
4465 end
4466 end
4467 local letter = alpha + S (string_extra_letters)
4468 + P "â" + "à" + "ç" + "é" + "è" + "ê" + "ë" + "ï" + "î"
4469 + "ô" + "û" + "ü" + "Â" + "À" + "Ç" + "É" + "È" + "Ê" + "Ë"
4470 + "Ï" + "Î" + "Ô" + "Û" + "Ü"

4471 local alphanum = letter + digit
4472 local identifier = letter * alphanum ^ 0
4473 local Identifier = K ('Identifier.Internal' , identifier)

Now, we scan the definition of the language (i.e. the table def_table) for the keywords.
The following LPEG does not catch the optional argument between square brackets in first position.

4474 local split_clist =
4475 P { "E" ,
4476 E = ("[" * (1 - P "]") ^ 0 * "]") ^ -1
4477 * (P "{") ^ 1
4478 * Ct (V "F" * ("," * V "F") ^ 0)
4479 * (P "}") ^ 1 * space ^ 0 ,
4480 F = space ^ 0 * C (letter * alphanum ^ 0 + other ^ 1) * space ^ 0
4481 }

The following function will be used if the keywords are not case-sensitive.
4482 local keyword_to_lpeg
4483 function keyword_to_lpeg (name) return
4484 Q (Cmt (
4485 C (identifier) ,
4486 function (_ , _ , a) return a : upper () == name : upper ()
4487 end
4488)
4489)
4490 end
4491 local Keyword = P (false)
4492 local PrefixedKeyword = P (false)

Now, we actually treat all the keywords and also the key moredirectives.
4493 for _ , x in ipairs (def_table)
4494 do if x[1] == "morekeywords"
4495 or x[1] == "otherkeywords"
4496 or x[1] == "moredirectives"
4497 or x[1] == "moretexcs"
4498 then
4499 local keywords = P (false)

4500 local style = [[\PitonStyle{Keyword}]]
4501 if x[1] == "moredirectives" then style = [[\PitonStyle{Directive}]] end
4502 style = tex_option_arg : match (x[2]) or style
4503 local n = tonumber (style)

101

4504 if n then
4505 if n > 1 then style = [[\PitonStyle{Keyword]] .. style .. "}" end
4506 end

4507 for _ , word in ipairs (split_clist : match (x[2])) do
4508 if x[1] == "moretexcs" then
4509 keywords = Q ([[\]] .. word) + keywords
4510 else
4511 if sensitive

The documentation of lstlistings specifies that, for the key morekeywords, if a keyword is a prefix of
another keyword, then the prefix must appear first. However, for the lpeg, it’s rather the contrary.
That’s why, here, we add the new element on the left.

4512 then keywords = Q (word) + keywords
4513 else keywords = keyword_to_lpeg (word) + keywords
4514 end
4515 end
4516 end
4517 Keyword = Keyword +
4518 Lc ("{" .. style .. "{") * keywords * Lc "}}"
4519 end

Of course, the feature with the key keywordsprefix is designed for the languages TeX, LaTeX, et
al. In that case, there is two kinds of keywords (= control sequences).

• those beginning with \ and a sequence of characters of catcode “letter”;

• those beginning by \ followed by one character of catcode “other”.

The following code addresses both cases. Of course, the lpeg pattern letter must catch only
characters of catcode “letter”. That’s why we have a key alsoletter to add new characters in that
category (e.g. : when we want to format L3 code). However, the lpeg pattern is allowed to catch
more than only the characters of catcode “other” in TeX.

4520 if x[1] == "keywordsprefix" then
4521 local prefix = ((C (1 - P " ") ^ 1) * P " " ^ 0) : match (x[2])
4522 PrefixedKeyword = PrefixedKeyword
4523 + K ('Keyword' , P (prefix) * (letter ^ 1 + other))
4524 end
4525 end

Now, we scan the definition of the language (i.e. the table def_table) for the strings.
4526 local long_string = P (false)
4527 local Long_string = P (false)
4528 local LongString = P (false)
4529 local central_pattern = P (false)
4530 for _ , x in ipairs (def_table) do
4531 if x[1] == "morestring" then
4532 arg1 , arg2 , arg3 , arg4 = args_for_morekeywords : match (x[2])
4533 arg2 = arg2 or [[\PitonStyle{String.Long}]]
4534 if arg1 ~= "s" then
4535 arg4 = arg3
4536 end
4537 central_pattern = 1 - S (" \r" .. arg4)
4538 if arg1 : match "b" then
4539 central_pattern = P ([[\]] .. arg3) + central_pattern
4540 end

In fact, the specifier d is point-less: when it is not in force, it’s still possible to double the delimiter
with a correct behaviour of piton since, in that case, piton will compose two contiguous strings...

4541 if arg1 : match "d" or arg1 == "m" then
4542 central_pattern = P (arg3 .. arg3) + central_pattern
4543 end
4544 if arg1 == "m"
4545 then prefix = B (1 - letter - ")" - "]")
4546 else prefix = P (true)
4547 end

102

First, a pattern without captures (needed to compute braces).
4548 long_string = long_string +
4549 prefix
4550 * arg3
4551 * (space + central_pattern) ^ 0
4552 * arg4

Now a pattern with captures.
4553 local pattern =
4554 prefix
4555 * Q (arg3)
4556 * (SpaceInString + Q (central_pattern ^ 1) + EOL) ^ 0
4557 * Q (arg4)

We will need Long_string in the nested comments.
4558 Long_string = Long_string + pattern
4559 LongString = LongString +
4560 Ct (Cc "Open" * Cc ("{" .. arg2 .. "{") * Cc "}}")
4561 * pattern
4562 * Ct (Cc "Close")
4563 end
4564 end

The argument of Compute_braces must be a pattern which does no catching corresponding to the
strings of the language.

4565 local braces = Compute_braces (long_string)
4566 if piton.beamer then Beamer = Compute_Beamer (lang , braces) end
4567

4568 DetectedCommands =
4569 Compute_DetectedCommands (lang , braces)
4570 + Compute_RawDetectedCommands (lang , braces)
4571

4572 LPEG_cleaner[lang] = Compute_LPEG_cleaner (lang , braces)

Now, we deal with the comments and the delims.
4573 local CommentDelim = P (false)
4574

4575 for _ , x in ipairs (def_table) do
4576 if x[1] == "morecomment" then
4577 local arg1 , arg2 , other_args = args_for_morecomment : match (x[2])
4578 arg2 = arg2 or [[\PitonStyle{Comment}]]

If the letter i is present in the first argument (eg: morecomment = [si]{(*}{*)}, then the corre-
sponding comments are discarded.

4579 if arg1 : match "i" then arg2 = [[\PitonStyle{Discard}]] end
4580 if arg1 : match "l" then
4581 local arg3 = (tex_braced_arg + C (P (1) ^ 0 * -1))
4582 : match (other_args)
4583 if arg3 == [[\#]] then arg3 = "#" end -- mandatory
4584 if arg3 == [[\%]] then arg3 = "%" end -- mandatory¨
4585 CommentDelim = CommentDelim +
4586 Ct (Cc "Open"
4587 * Cc ("{" .. arg2 .. "{") * Cc "}}")
4588 * Q (arg3)
4589 * (CommentMath + Q ((1 - S "$\r") ^ 1)) ^ 0 -- $
4590 * Ct (Cc "Close")
4591 * (EOL + -1)
4592 else
4593 local arg3 , arg4 =
4594 (tex_arg * space ^ 0 * tex_arg) : match (other_args)
4595 if arg1 : match "s" then
4596 CommentDelim = CommentDelim +
4597 Ct (Cc "Open" * Cc ("{" .. arg2 .. "{") * Cc "}}")
4598 * Q (arg3)

103

4599 * (
4600 CommentMath
4601 + Q ((1 - P (arg4) - S "$\r") ^ 1) -- $
4602 + EOL
4603) ^ 0
4604 * Q (arg4)
4605 * Ct (Cc "Close")
4606 end
4607 if arg1 : match "n" then
4608 CommentDelim = CommentDelim +
4609 Ct (Cc "Open" * Cc ("{" .. arg2 .. "{") * Cc "}}")
4610 * P { "A" ,
4611 A = Q (arg3)
4612 * (V "A"
4613 + Q ((1 - P (arg3) - P (arg4)
4614 - S "\r$\"") ^ 1) -- $
4615 + long_string
4616 + "$" -- $
4617 * K ('Comment.Math' , (1 - S "$\r") ^ 1) --$
4618 * "$" -- $
4619 + EOL
4620) ^ 0
4621 * Q (arg4)
4622 }
4623 * Ct (Cc "Close")
4624 end
4625 end
4626 end

For the keys moredelim, we have to add another argument in first position, equal to * or **.
4627 if x[1] == "moredelim" then
4628 local arg1 , arg2 , arg3 , arg4 , arg5
4629 = args_for_moredelims : match (x[2])
4630 local MyFun = Q
4631 if arg1 == "*" or arg1 == "**" then
4632 function MyFun (x)
4633 if x ~= '' then return
4634 LPEG1[lang] : match (x)
4635 end
4636 end
4637 end
4638 local left_delim
4639 if arg2 : match "i" then
4640 left_delim = P (arg4)
4641 else
4642 left_delim = Q (arg4)
4643 end
4644 if arg2 : match "l" then
4645 CommentDelim = CommentDelim +
4646 Ct (Cc "Open" * Cc ("{" .. arg3 .. "{") * Cc "}}")
4647 * left_delim
4648 * (MyFun ((1 - P "\r") ^ 1)) ^ 0
4649 * Ct (Cc "Close")
4650 * (EOL + -1)
4651 end
4652 if arg2 : match "s" then
4653 local right_delim
4654 if arg2 : match "i" then
4655 right_delim = P (arg5)
4656 else
4657 right_delim = Q (arg5)
4658 end
4659 CommentDelim = CommentDelim +
4660 Ct (Cc "Open" * Cc ("{" .. arg3 .. "{") * Cc "}}")

104

4661 * left_delim
4662 * (MyFun ((1 - P (arg5) - "\r") ^ 1) + EOL) ^ 0
4663 * right_delim
4664 * Ct (Cc "Close")
4665 end
4666 end
4667 end
4668

4669 local Delim = Q (S "{[()]}")
4670 local Punct = Q (S "=,:;!\\'\"")

4671 local Main =
4672 space ^ 0 * EOL
4673 + Space
4674 + Tab
4675 + Escape + EscapeMath
4676 + CommentLaTeX
4677 + Beamer
4678 + DetectedCommands
4679 + CommentDelim

We must put LongString before Delim because, in PostScript, the strings are delimited by parenthesis
and those parenthesis would be caught by Delim.

4680 + LongString
4681 + Delim
4682 + PrefixedKeyword
4683 + Keyword * (-1 + # (1 - alphanum))
4684 + Punct
4685 + K ('Identifier.Internal' , letter * alphanum ^ 0)
4686 + Number
4687 + Word

The lpeg LPEG1[lang] is used to reformat small elements, for example the arguments of the “detected
commands”.
Of course, here, we must not put local, of course.

4688 LPEG1[lang] = Main ^ 0

The lpeg LPEG2[lang] is used to format general chunks of code.
4689 LPEG2[lang] =
4690 Ct (
4691 (space ^ 0 * P "\r") ^ -1
4692 * Lc [[\@@_begin_line:]]
4693 * LeadingSpace ^ 0
4694 * (space ^ 1 * -1 + space ^ 0 * EOL + Main) ^ 0
4695 * -1
4696 * Lc [[\@@_end_line:]]
4697)

If the key tag has been used. Of course, this feature is designed for the languages such as html and
xml.

4698 if left_tag then
4699 local Tag = Ct (Cc "Open" * Cc ("{" .. style_tag .. "{") * Cc "}}")
4700 * Q (left_tag * other ^ 0) -- $
4701 * (((1 - P (right_tag)) ^ 0)
4702 / (function (x) return LPEG0[lang] : match (x) end))
4703 * Q (right_tag)
4704 * Ct (Cc "Close")
4705 MainWithoutTag
4706 = space ^ 1 * -1
4707 + space ^ 0 * EOL
4708 + Space
4709 + Tab
4710 + Escape + EscapeMath
4711 + CommentLaTeX
4712 + Beamer

105

4713 + DetectedCommands
4714 + CommentDelim
4715 + Delim
4716 + LongString
4717 + PrefixedKeyword
4718 + Keyword * (-1 + # (1 - alphanum))
4719 + Punct
4720 + K ('Identifier.Internal' , letter * alphanum ^ 0)
4721 + Number
4722 + Word
4723 LPEG0[lang] = MainWithoutTag ^ 0
4724 local LPEGaux = Tab + Escape + EscapeMath + CommentLaTeX
4725 + Beamer + DetectedCommands + CommentDelim + Tag
4726 MainWithTag
4727 = space ^ 1 * -1
4728 + space ^ 0 * EOL
4729 + Space
4730 + LPEGaux
4731 + Q ((1 - EOL - LPEGaux) ^ 1)
4732 LPEG1[lang] = MainWithTag ^ 0
4733 LPEG2[lang] =
4734 Ct (
4735 (space ^ 0 * P "\r") ^ -1
4736 * Lc [[\@@_begin_line:]]
4737 * Beamer
4738 * LeadingSpace ^ 0
4739 * LPEG1[lang]
4740 * -1
4741 * Lc [[\@@_end_line:]]
4742)
4743 end
4744 end

3.17 We write the files (key ’write’) and join the files in the PDF (key
’join’)

4745 function piton.write_files_now ()
4746 for file_name , file_content in pairs (piton.write_files) do
4747 local file = io.open (file_name , "w")
4748 if file then
4749 file : write (file_content)
4750 file : close ()
4751 else
4752 sprintL3
4753 ([[\@@_error_or_warning:nn { FileError } {]] .. file_name .. "}")
4754 end
4755 end
4756 end

3.18 Conversion from utf8 to utf16
Caution: the following function should be considered as public.

4757 function piton.utf16 (str)
4758 local hex = { "FEFF" } -- BOM UTF-16BE
4759 for _, codepoint in utf8.codes(str) do
4760 table.insert(hex, string.format("%04X", codepoint))
4761 end
4762 return table.concat(hex)
4763 end
4764 〈/LUA〉

106

	1 Introduction
	2 The L3 part of the implementation
	2.1 Declaration of the package
	2.2 Parameters and technical definitions
	2.3 Detected commands
	2.4 Treatment of a line of code
	2.5 PitonOptions
	2.6 The numbers of the lines
	2.7 The main commands and environments for the end user
	2.8 The styles
	2.9 The initial styles
	2.10 Styles specific to the language expl
	2.11 Highlighting some identifiers
	2.12 Spaces of indentation
	2.13 Security
	2.14 The error messages of the package
	2.15 We load piton.lua

	3 The Lua part of the implementation
	3.1 Special functions dealing with LPEG
	3.2 The functions Q, K, WithStyle, etc.
	3.3 The option 'detected-commands' and al.
	3.4 The language Python
	3.5 The language OCaml
	3.6 The language C
	3.7 The language SQL
	3.8 The language ``Minimal''
	3.9 The language ``Verbatim''
	3.10 The language expl
	3.11 The function Parse
	3.12 Two variants of the function Parse with integrated preprocessors
	3.13 Preprocessors of the function Parse for gobble
	3.14 To count the number of lines
	3.15 To determine the empty lines of the listings
	3.16 To create new languages with the syntax of listings
	3.17 We write the files (key 'write') and join the files in the PDF (key 'join')
	3.18 Conversion from utf8 to utf16

