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Abstract

The MetaPost package bpolynomial helps plotting polynomial and root
functions. It provides macros to calculate one-segment Bézier curves ex-
actly matching a given cubic polynomial or square or cubic root function.
Additionally, tangents on all functions and derivatives of polynomials can
be calculated.

Contents

1 Introduction 1

2 Usage 2
2.1 Plotting polynomials . . 2
2.2 Plotting square and cu-

bic roots . . . . . . . . . 5
2.3 Dealing with derivatives 6

2.4 Accessing function pa-
rameters . . . . . . . . . 7

2.5 The plain interface . . . 8

3 Examples 8

A Calculating Bézier curves 13
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1 Introduction

MetaPost has a variable type path that can be used for drawing smooth and
visualy pleasing curves. When plotting graphs, the problem users are confronted
with is how to define a suitable path representing a given function f(x)?

The splines package by Dan Luecking provides macros for drawing smooth
piece-wise Bézier curves through arbitrary sample points of a function. [6] Since
Bézier curves are polynomials of degree three, for cubic polynomials we can do
better and find a matching one-segment Bézier curve. This package eases the
task of finding a Bézier curve corresponding to a given function of the following
types:

f(x) = ax3 + bx2 + cx+ d (1)

f(x) = u
√
x+ v + w (2)

f(x) = u 3
√
x+ v + w (3)

∗This document describes bpolynomial v0.5, last revised 2007/12/12.
†stephanhennig@arcor.de
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2 Usage

The bpolynomial package provides two flavours of user interfaces:

• An advanced interface, that first requires a function to be defined and
then provides access to the Bézier curve corresponding to the function, its
tangent or derivative in a given intervall.

• A plain interface, that gives instant access to the Bézier curve matching a
given function in an intervall.

The plain interface is less powerful, but might be convenient in certain circum-
stances. It is briefly described in section 2.5. The average user most likely wants
to use the advanced interface, so we will discuss that first.

2.1 Plotting polynomials

2.1.1 Defining polynomials

As was said before, calculating the Bézier curve of a polynomial function first
requires a function to be defined. The macro for defining a polynomial

f(x) = ax3 + bx2 + cx+ d (4)

is called

newBPolynomial

and takes five arguments. First argument is a suffix and the remaining four
arguments are the four coefficients of the polynomial function a, b, c, d.

A definition of a polynomial

f(x) = 2x3 + 0x2 − 3x− 1 (5)

associated with suffix f exemplary looks like this

newBPolynomial.f(2, 0, -3, -1);

The suffix argument f serves as an identifier for deriving names of other
macros, that are defined by newBPolynomial. To be more precise, command

newBPolynomial.<suffix>

defines three new macros

<suffix>.getPath
<suffix>.eval
<suffix>.getTangent

that do the real work. These macros are described in the following sections.
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Figure 1: A cubic polynomial.

2.1.2 Getting the Bézier curve of a polynomial

Once a polynomial 〈suffix〉 is defined, the macro to request a Bézier curve match-
ing the function on an intervall [xl, xr] is

<suffix>.getPath

This macro takes two argument, the intervall boundaries xl and xr, and returns
a polynomial shaped Bézier curve corresponding to function 〈suffix〉. Command
<suffix>.getPath can be called as often as required with varying intervall
boundaries and always returns a path corresponding to the new intervall.

Let’s have a look at an example. Plotting our polynomial f(x) on the inter-
vall (−2, 2) can be done with the following code (figure 1).

newBPolynomial.f(2, 0, -3, -1);

draw f.getPath(-2, 2) transformed T;

Hint: Since the bpolynomial package never uses 〈suffix〉 as a complete identi-
fier, you can use that as the name of a path variable to store the path returned
by <suffix>.getPath for later drawing. Any other path (array) variable serves
the same purpose, though.

newBPolynomial.f(2, 0, -3, -1);

path f;

f := f.getPath(-2, 2);

draw f transformed T;

Note, since the base unit of MetaPost is a big point (1 bp = 1
72 in) in most

cases functions have to be scaled to a proper size before plotting. It is not
recommended, however, to apply scaling to polynomial coefficients, since current
MetaPost versions can’t handle large numbers very well.1 Instead, scaling should
be applied to paths during draw operations. If not stated otherwise, in this
manual, scaling is applied by an affine transform

T = identity xscaled 10mm yscaled 1mm;

1At the time of writing the latest release is MetaPost v1.002.
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Figure 2: Cubic polynomial with a
tangent.

(−0.5, 0.25)

Figure 3: And a labelled point.

2.1.3 Getting a tangent on a polynomial

Another macro set up during a function definition is

<suffix>.getTangent

This macro returns a path tangent to a function 〈suffix〉 at a specific point.
Arguments are an x-coordinate, where the tangent is placed, and two values εl,
εr that specify the neighbourhood around x. The tangent path then covers the
intervall [x+ εl, x+ εr]. This syntax has been choosen to make it easy to move
a tangent along a function, keeping its neighbourhood at a fixed size.

As an example, the following code draws a tangent that touches f at x =
−0.5 with a neighbourhood ε = ±1 (figure 2).2

newBPolynomial.f(2, 0, -3, -1);

draw f.getPath(-2, 2) transformed T;

draw f.getTangent(-0.5)(-1, 1) transformed T;

2.1.4 Evaluating polynomials

Additionally to getting the Bézier curve or tangent of a polynomial, polynomial
functions can also be evaluated numerically at a specific location. Defining a
function 〈suffix〉 sets up a macro

<suffix>.eval

that takes as argument an x-coordinate and returns the function value at that
location. As an example, labelling an arbitrary point on f can be done as follows
(figure 3).

dotlabeldiam := 2bp;

labeloffset := 10bp;

2Both types of arguments to f.getTangent—x and ε values—have been put in separate
pairs of parentheses to make the code more readable. Even if the second pair of parentheses
looks like a coordinate of type pair—it isn’t. For MetaPost this syntax is equivalent to

draw f.getTangent(-0.5, -1, 1) transformed T;
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newBPolynomial.f(2, 0, -3, -1);

draw f.getPath(-2, 2) transformed T;

x := -0.5;

show (x, f.eval(x));

draw f.getTangent(x)(-1, 1) transformed T;

dotlabel.top(btex $(-0.5, 0.25)$ etex, (x, f.eval(x)) transformed T);

For simplicity, the label has been provided explicitly in this example (after
reading the coordinates off the log file). But it is also possible to attach the cor-
rect coordinates automatically with the help of the MetaPost package LaTeXMP
and LATEX package numprint. While the former helps passing dynamically gen-
erated text from MetaPost to LATEX, the latter can be used to format and round
numbers. [2, 7].

2.2 Plotting square and cubic roots

Two other types of functions can be described by Bézier curves: square and
cubic roots3. The bpolynomial package provides support for square and cubic
root functions of the following type

fsqr(x) = u
√
x+ v + w (6)

fcub(x) = u 3
√
x+ v + w (7)

through macros

newBSqrRoot
newBCubRoot

These macros are similar to newBPolynomial. Both macros take as argu-
ments a suffix 〈suffix〉 and the three parameters u, v and w of the respective
function. They define three macros

<suffix>.getPath
<suffix>.eval
<suffix>.getTangent

that can be used the same way as for polynomial functions.
There is one notable difference between polynomial and root functions. While

polynomials zk are defined for all arguments z ∈ R, roots k
√
z are only defined

for non-negative arguments z ∈ R+ and therefore the functions from equations 6
and 7 are only defined for

x ≥ −v. (8)

In case the arguments to macros <suffix>.getPath, <suffix>.getTangent
or <suffix>.eval violate equation 8 all macros write a warning to the log file,

3The reason square and cubic roots can be expressed in terms of Bézier curves is that both
are inverse functions of cubic polynomials. More information can be found in appendix A.2.
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Figure 4: Square and cubic roots with a tan-
gent.

Figure 5: First derivative of a
cubic polynomial with tangent.

but go on with their calculations replacing the arguments in question (or the
resulting range boundaries) by −v.

The following example plots two functions s(x) =
√
x and c(x) = 3

√
x with

a tangent on s at x = 3 (figure 4).

T := identity scaled 10mm;

newBSqrRoot.s(1,0,0);

newBCubRoot.c(1,0,0);

draw s.getPath(0,6) transformed T;

draw c.getPath(0,6) transformed T;

draw s.getTangent(3)(-2, 2) transformed T;

2.3 Dealing with derivatives

Since plotting function often involves plotting derivatives of functions, too, the
bpolynomial package provides support for plotting derivatives of polynomials
and tangents thereof. Unfortunately, derivatives of root functions cannot be
described by Bézier curves, so those are not supported.

In section 2.1.1 it was said macro newBPolynomial defines three new macros.
But this is not the full story. In fact, the command

newBPolynomial.<suffix>

defines twelve macros, three of them we already know, <suffix>.getPath,
<suffix>.eval, <suffix>.getTangent. The remaining nine macros are sim-
ilar, but correspond to the first, second and third derivative of a polynomial
〈suffix〉, resp. To access these macros just add the required number of prime
characters to the suffix name (three at maximum). For instance, to get the path
corresponding to the first derivative of polynomial 〈suffix〉 call

<suffix>’.getPath

and to get a tangent on the first derivative call

<suffix>’.getTangent.
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In total these are the macros defined by newBPolynomial.<suffix>:

<suffix>.getPath
<suffix>.eval
<suffix>.getTangent
<suffix>’.getPath
<suffix>’.eval
<suffix>’.getTangent

<suffix>’’.getPath
<suffix>’’.eval
<suffix>’’.getTangent
<suffix>’’’.getPath
<suffix>’’’.eval
<suffix>’’’.getTangent

As an example, the following code draws a tangent on the first derivative of
a polynomial f (figure 5).

newBPolynomial.f(2, 0, -3, -1);

draw f’.getPath(-2, 2) transformed T;

draw f’.getTangent(-0.25)(-1, 1) transformed T;

2.4 Accessing function parameters

The parameters passed to one of the function defining macros are saved for
internal calculations. These variables can be accessed by users, too, but should
not be changed.

Defining a polynomial with

newBPolynomial.<suffix>(<a>, <b>, <c>, <d>)

defines variables

<suffix>.a
<suffix>.b
<suffix>.c
<suffix>.d
<suffix>’.a
<suffix>’.b
<suffix>’.c
<suffix>’.d

<suffix>’’.a
<suffix>’’.b
<suffix>’’.c
<suffix>’’.d
<suffix>’’’.a
<suffix>’’’.b
<suffix>’’’.c
<suffix>’’’.d

and sets them to the value of the corresponding coefficient.
For root functions the following variables are used:

<suffix>.u
<suffix>.v
<suffix>.w

Additionally, variables

<suffix>.a
<suffix>.b
<suffix>.c
<suffix>.d

contain the coefficients of the inverse polynomial function.
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2.5 The plain interface

The bpolynomial package provides a plain interface, too. This interface avoids
the necessity to define a function prior to calculating paths, but is limited to
calculating Bézier curves of explicitly given polynomials and root functions—
tangents and derivatives are not supported. The plain interface consists of three
macros

getBezierFromPolynomial
getBezierFromSqrRoot
getBezierFromCubRoot

that take as arguments the parameters of the polynomial or root function plus
the range the path should cover.

For instance, the first example could as well have been drawn with the fol-
lowing code

draw getBezierFromPolynomial(2, 0, -3, -1)(-2, 2) transformed T;

All three macros call a macro bpolynomial_getBezierFromPolynomial be-
hind the scenes, that does the necessary calculations and, in fact, is the heart of
this package. The mathematics behind that macro are described in appendix A.

3 Examples

This section contains some more elaborate examples. The code of all examples
is copied here, so that you can easily compare it with the resulting figures. If
you want to play around with the code you can also find it in file examples.mp,
that actually contains the code of all examples in this manual.

One additional note in advance: While playing with figure 8, the author
noticed a subtle rendering bug in Adobe Reader 7.0.9, that caused the graphs
and the filled area not matching exactly. In print or with GSview 4.8 and
Ghostscript 8.60 everything looked fine. The problem is actually unrelated to
the filling, but there seem to be some numeric issues in the Bézier curve rendering
algorithm of Adobe Reader. A work-around is to modifiy problematic paths,
e. g., by slightly changing their plotting range.

The first example demonstrates how bpolynomial and John Hobby’s graph
package[3] can be used together to plot polynomials in a coordinate system.
The draw command has just to be replaced by gdraw. The latter command
additionally clips paths to the boundaries of the coordinate system (see figure 6).
Finally, in this example a table of points is printed to the console and log file.

path f, g;

xmin := -7; xmax := 7;

ymin := -7; ymax := 7;

%%% Define polynomials f and g.
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Figure 6: Packages bpolynomial and graph interacting.

newBPolynomial.f(0.3, 0, -3, -1);

f := f.getPath(xmin, xmax);

newBPolynomial.g(0, 0.5, -2, 0);

g := g.getPath(xmin, xmax);

%%% Draw graph.

draw begingraph(10cm, 6cm);

setrange(xmin,ymin, xmax,ymax);

autogrid(grid.bot, grid.lft) dashed evenly withcolor .9white;

drawoptions(withpen pencircle scaled 1bp);

gdraw f;

gdraw g dashed evenly scaled 2;

drawoptions();

endgraph;

show f;

%%% Write table with some points of f to log file.

show "Polynomial: " & decimal f.a & "x^3 + " &

decimal f.b & "x^2 + " & decimal f.c & "x + " & decimal f.d;

for x=-5 upto 5:

show (x, f.eval(x));

endfor

Note command show f that writes path f to the log file. Inspecting that
we can easily verify f consists of just one path segment:

(-7,-82.90105)..controls (-2.33333,108.90105) and (2.33333,-110.90105)

..(7,80.90105)

In the next example, a cubic polynomial f is plotted together with its deriva-
tives f ′, f ′′ and f ′′′. Additionally, for all four functions the tangents are drawn
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Figure 7: A cubic polynomial with derivatives and tangents.

at x = 2. Admittedly, the plot is a little bit crowded. But it should only serve
as an example (figure 7).

xmin := -6; xmax := 6;

ymin := -6; ymax := 6;

newBPolynomial.f(0.3, -0.5, -0.5, -1);

draw begingraph(10cm, 6cm);

setrange(xmin,ymin, xmax,ymax);

autogrid(grid.bot, grid.lft) dashed evenly withcolor .9white;

drawoptions(withpen pencircle scaled 1bp);

%%% Draw f and its derivatives f’, f’’, f’’’.

gdraw f.getPath(xmin, xmax);

gdraw f’.getPath(xmin, xmax) dashed evenly scaled 2;

gdraw f’’.getPath(xmin, xmax) dashed withdots

withpen pencircle scaled 2bp;

gdraw f’’’.getPath(-5, 5) withcolor .6white;

%%% Draw tangents and mark points.

x := 2;

drawoptions(withcolor (1, 0.6, 0.6));

gdraw f.getTangent(x)(-2, 2);

gdraw f’.getTangent(x)(-1, 1);

gdraw f’’.getTangent(x)(-2, 2);

gdraw f’’’.getTangent(x)(-2, 2);

drawoptions(withcolor (0.6, 0.6, 1));

dotlabeldiam := 2.5bp;

gdotlabel("", (x, f.eval(x)));

gdotlabel("", (x, f’.eval(x)));

gdotlabel("", (x, f’’.eval(x)));
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Figure 8: Applying a transparent fill to an area enclosed by two functions.

gdotlabel("", (x, f’’’.eval(x)));

drawoptions();

endgraph;

How about some eye candy, e. g., transparency effects? In the next example
the area enclosed by two functions is filled with a transparent colour (figure 8).

Note, advanced PDF features like transparency and shadings are provided
by package metafun. [1] Figures using such features have to be converted to
stand-alone PDF files with the mptopdf utility before including them into a
LATEX document.

path f, g, A;

xmin := -3; xmax := 6;

ymin := -3; ymax := 6;

newBPolynomial.f(-0.25, 0.5, 2, -1);

newBPolynomial.g(0, 0.5, -2, 0);

f := f.getPath(-2.5, 5.5);

g := g.getPath(-1.5, 5.5);

%%% Find area between f and g.

A := buildcycle(g, reverse f);

draw begingraph(10cm, 6cm);

setrange(xmin,ymin, xmax,ymax);

autogrid(grid.bot, grid.lft) dashed evenly withcolor .9white;

%%% Fill area with transparent colour.

gfill A withcolor transparent (1, .3, (1, 0.5, 0));

drawoptions(withpen pencircle scaled 1bp);

gdraw f;
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Figure 9: Hatching an area enclosed by two functions.

gdraw g dashed evenly scaled 2;

drawoptions();

endgraph;

As an alternative to solid fills areas can be emphasized by hatch patterns.
Hatching support is provided by package hatching. [4] Unfortunately, packages
graph and hatching do not work together. Therefore, in the next example a
simple coordinate system had to be drawn manually (figure 9).

path f, g, A;

T := identity xscaled 10mm yscaled 6mm;

%%% Draw coordinate system.

xmin := -3; xmax := 6;

ymin := -3; ymax := 6;

drawoptions(withpen pencircle scaled 1bp withcolor 0.8white);

drawarrow ((xmin,0)--(xmax,0)) transformed T;

drawarrow ((0,ymin)--(0,ymax)) transformed T;

newBPolynomial.f(-0.25, 0.5, 2, -1);

newBPolynomial.g(0, 0.5, -2, 0);

f := f.getPath(-2.5, 4.2);

g := g.getPath(-1, 5);

A := buildcycle(g, reverse f);

%%% Fill area with pattern.

drawoptions();

hatchoptions(withcolor (0.6, 0.3, 0.3));

hatchfill A transformed T

withcolor (-45, 2mm, -0.5bp) withcolor (45, 2mm, -0.5bp);

drawoptions(withpen pencircle scaled 1bp);

draw f transformed T;

draw g transformed T dashed evenly scaled 2;
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A Calculating Bézier curves

A.1 Polynomials

A Bézier curve P (t) with end points A = (xA, yA) and D = (xD, yD) and control
points B = (xB , yB) and C = (xC , yC) is defined as [5]

P (t) =
(
x
y

)
(t) = (1− t)3A+3(1− t)2tB+3(1− t)t2C+ t3D, 0 ≤ t ≤ 1. (9)

This equation can be rewritten as

P (t) = A+3(B−A)t+3(C−2B+A)t2+(D−3C+3B−A)t3, 0 ≤ t ≤ 1. (10)

An arbitrary function y = f(x) can be written in parameter form as

F (t) =
(
x
y

)
(t) =

(
x(t)

f
(
x(t)

)) , t ∈ R (11)

with parameter t.
For a polynomial function

f(x) = ax3 + bx2 + cx+ d, x ∈ [x0, x1] (12)

we have
x(t) = x0 + (x1 − x0)t, 0 ≤ t ≤ 1 (13)

and hence

F (t) =
(

x0 + (x1 − x0)t
ax(t)3 + bx(t)2 + cx(t) + d

)
, 0 ≤ t ≤ 1. (14)

Writing F(t) down explicitly is left as an exercise for the interested reader.
Finally, setting

P (t) = F (t) (15)

and sorting the coefficients of the tk one arrives at the following original equation
system:

xA = x0 (16)
3(xB − xA) = x1 − x0 (17)

3(xC − 2xB + xA) = 0 (18)
xD − 3xC + 3xB − xA = 0 (19)

yA = ax3
0 + bx2

0 + cx0 + d (20)

3(yB − yA) = 3ax2
0(x1 − x0) + 2bx0(x1 − x0) + c(x1 − x0) (21)

3(yC − 2yB + yA) = 3ax0(x1 − x0)2 + b(x1 − x0)2 (22)

yD − 3yC + 3yB − yA = a(x1 − x0)3 (23)
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Note, there are only constants on the right-hand side of all equations. That is,
this equation system is linear in the eight variables xA, xB , xC , xD, yA, yB , yC ,
yD.

Since MetaPost can solve linear equation systems, hacking equations 16 to 23
into MetaPost code and requesting a path segment

(xA,yA)..controls (xB,yB) and (xC,yC)..(xD,yD)

returns the polynomial shaped curve we are looking for.
Internally, the bpolynomial package does not solve the original equation sys-

tem, but a modified variant, that is numerically slightly more robust.
Equations 16 to 19 can be written down explicitly as

xA = x0 (24)

xB = x0 +
1
3
(x1 − x0) (25)

xC = x1 −
1
3
(x1 − x0) (26)

xD = x1 (27)

Additionally, we know that D = (xD, yD) is a point on the polynomial.
Therefore, equation 23 of the original system can be replaced by

yD = ax3
1 + bx2

1 + cx1 + d (28)

Equations 20 to 22 of the original equation system and the new equations 24
to 28 constitute the modified equation system, that is solved in bpolynomial.

A.2 Square and cubic roots

When requesting the Bézier curve of a root function, the bpolynomial package
first calculates the inverse function, then calculates the corresponding path and
finally reflects that on the function f(x) = x to get the inverse again.

The inverse functions of the root functions from equations 6 and 7 are

f̃sqr(y) =
(
y − w
u

)2

− v = 0y3 +
1
u2
y2 +

−2w
u2

y +
w2

u2
− v (29)

f̃cub(y) =
(
y − w
u

)3

− v =
1
u3
y3 +

−3w
u3

y2 +
3w2

u3
y +

w3

u3
− v (30)

which both are clearly polynomials.

Happy TEXing!
Stephan Hennig
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