
The FeriteDoc Guide 1.0 - Documenting Ferite Applications

May 2, 2005

Contents

1 Introduction 2
1.1 feritedoc . 2
1.2 Background . 2
1.3 Assumptions . 2
1.4 The Obligatory Whirlwind Tour . 2

2 Running 5
2.1 Overview . 5
2.2 Usage . 5

3 Running 6
3.1 Documentation Blocks . 6
3.2 Three Types of Tags . 6

3.2.1 Block Level Tags . 6
3.2.2 Grouping Tags . 7
3.2.3 Attribute Tags . 7

3.3 Markup Tags . 8

4 Templates 10
4.1 Why create a template? . 10
4.2 How to create a template? . 10

5 Notes 11

6 Command Line Options 12
6.1 Overview . 12
6.2 Default Values . 12
6.3 Command Line Options . 12

1

1 Introduction

1.1 feritedoc

feritedoc is a documentation tool for ferite modules and scripts. It allows you, the
developer, to keep your documentation tightly integrated with your code. The html
template produces nice looking pages with an integrated search ability.

1.2 Background

Chris Ross, the author of ferite, wrote feritedoc as a handy tool for documenting ferite
scripts. feritedoc has similarities to other documentation programs, but is actually a
ferite script, so it is installed with the ferite distribution.

1.3 Assumptions

This document is written for the experienced ferite developer. It assumes that you
have ferite installed, know how to create scripts and are interested in adding in-line
documentation to your scripts.

1.4 The Obligatory Whirlwind Tour

feritedoc is pretty easy to use. You tell it what script you’re going to use as input,
what template you’re going to use for the output and where you want to create those
files. You can leave out the location if you want the files to be created in your working
directory.

feritedoc reads the input script and looks for document blocks. These are C style com-
ments that start with ”/**” and end with ”*/.” Here’s a short example.

/**
* @namespace myTest
* @brief Documentation for my test scripts.
*/
namespace myTest {

/**
* @function foobar
* @brief This function converts a string to foobiness.
* @declaration function foobar(string target)
* @param string target The string to be foobied.
* @description The target parameter is not updated, instead

2

* a foobie copy is created and returned.
* @return A copy of the target string that has been foobied.
* @example <nl />
* <code>Console.println("foobar(${target}) => ${foobar(target)}");</code>
*/
function foobar(string target) {
return "foo-" + target + "-bar";

}

/**
* @end
*/
}

When run with the following command line,

$ feritedoc --prefix docs/ --template html --file myTest.fe

it produces the following output files:

docs/myTest.html

docs/jse sites.js
docs/list.html
docs/main.html

docs/back.png
docs/class.png
docs/empty.png
docs/function.png
docs/index.html
docs/jse form.js
docs/jse search.js
docs/namespace.png
docs/results.html
docs/style.css
docs/var.png

The first file (myTest.html) is created specifically for the namespace. It gets its name
from the @namespace specified (in this case, myTest). Each @namespace in the script
will have a separate html file.

The next three files (jse sites.js, list.html and main.html) are standard files that are
customized to point to the namespace page.

The remaining files are standard boilerplate. They are copied from the template direc-
tory without modification.

3

To view the documentation, simply load the index.html file into your favorite browser.
You should see something similar to the following:

It is not difficult to customize the output. However, you do need to be very familiar
with the internals of the html template.

4

2 Running

2.1 Overview

This section desribes how to run feritedoc from the command line. The most common
command line options are mentioned. See The section On Command Line Options for
full details on all options.

2.2 Usage

feritedoc has a very easy to use command line interface. For most situations, only three
parameters will be used: –template, –prefix and –file.

The –template option specifies which template to use for the generated documents. It
is the only required option.

The –file option specifies the script name to document. It is optional. You could take
advantage of that to re-create all of the boilerplate files after an upgrade. But, it
doesn’t make much sense to generate documentation without specifying a file to process,
right?

The –prefix option specifies a string to prepend to all output file names. It is optional.
You can use this option to specify a simple name or a complete path. If you’re specifying
a path, be sure to include the trailing slash (”/”).

Other command line options are detailed in command line options .

The simplest usage is

$ feritedoc --template html --file myTest.fe

The –template option specifies that we’ll be using the html template. That’s the template
used in the ferite standard documentation. It will create one file per ”group” in the script
(grouping is covered in markup tagging). The other template type is ”text,” which
we won’t mention except to mention that we won’t mention it.

5

3 Running

All templates use a common processor (the ”parser”) that extracts in-line documenta-
tion from the script files. The parser examines each script looking for documentation
blocks. When it finds a documentation block, it scans the block looking for markup
tags. All templates use the same markup tags, they only differ in how they format the
output.

It is important to note that the html template requires that you provide at least one
grouping tag in your script (grouping tags are covered in The Next Section). If you
don’t, feritedoc will either create an empty set of documents or display the following
error message:

Error: Trying to access variable ’doctype’ in object ’b’ which is
null

3.1 Documentation Blocks

All of the markup tags are embedded in specially formatted C style comments. A docu-
mentation block starts with ”/**” and ends with ”*/.” The block looks like this:

/**
* This is a C style documentation block.
* Note that there are two asterisks on the first line.
*/

All comments that have this format will be scanned by the parser.

There are some limitations to the parser. For example, the following

string foolMeOnce = "/**";
string foolMeTwice = " * @namespace";

can cause it to blow up. The parser doesn’t understand that the comment is quoted, so
it isn’t really a comment.

3.2 Three Types of Tags

feritedoc has notions about the types of tags. There are block level tags, grouping tags
and attribute tags. If there is a better notation, please let me know.

3.2.1 Block Level Tags

Block level tags (such as @namespace) should be the first tag in a documentation block.
They control what the documentation will apply to. Their scope is the entire com-

6

ment.

Trying to include two block level tags in one comment will generally result in the following
error message:

Error: Can’t assign variables of type string and array

This won’t cause feritedoc to abend, but the files that are output will be unusuable.

3.2.2 Grouping Tags

Grouping tags are a type of container. All tags between the start of the group and the
end of the group are ”in” the group. All the tags in a group are written to the same
document file. The grouping tags are sorted alphabetically prior to being written to the
document file.

The @end tag flags the end of a group.

Interestingly, some grouping tags can be nested. The html template uses a dot notation
to indicate the container. For example, if @namespace bar is in @namespace foo, the
index page will have an entry for both foo and foo.bar. That’s not true for @group.

Gates of Madness, Next Right

feritedoc won’t mind if you use the same name for multiple grouping tags, but you won’t
like the output. All documentation is written to the same output file, effectively losing
most of the entries in each set. The index page generated will have the information for
the first group processed, repeated once for each entry in the set. To top it off, all the
links will bring up the information for the last group processed. Confusing and ugly.
You’ve been warned.

3.2.3 Attribute Tags

An attribute tag specifies the value of an attribute. In a way, all tags are attribute tags.
The @variable tag specifies the name of the variable. It’s just that the block level and
grouping tags have a larger impact.

Generally speaking, the value of an attribute tag will be all of the text between the tag
and the next tag (or the end of the comment). Some tags (such as @param) will parse
the text further. You would think that this is part of the parser, but it is actually part
of the template. In html.fe, there is a function ”generateTypeList” that seems to do
this.

Using an attribute tag outside the scope of a block level tag will cause feritedoc to display
the following error message:

7

Error: Trying to access variable ’doctype’ in object ’b’ which is
null

This won’t cause feritedoc to abend, but the files that it outputs will be unusuable.

3.3 Markup Tags

The following tags are recognized by the parser.

• @brief

A brief description of the item.

• @class

The name of the class being documented. This is a block level, grouping tag.

• @declaration

The signature of the function, with the names of any parameters.

• description

A long description of the item.

• @example

An example of using the item.

• @extends

The name of the object being extended.

• @function

The name of the function being documented. This is a block level, grouping tag.

• @group

The name of the group being documented. This is a block level, grouping tag.

• @modifies

The name of the object that is being modified.

• @module

The name of the module being documented. This is a block level, grouping tag.

• @namespace

The name of the namespace being documented. This is a block level, grouping tag.

8

• @param

The parameter type and usage. In the form ’@param type name description’.

• @return

The type returned from the function. Can this apply to a module?

• @static

Indicate that the item being documented is static.

• @type

The type of the variable being documented.

• @variable

The name of the variable being documented. This is a block level tag.

• @warning

Document any warnings for the item.

• @protocol

The name of the protocol being documented. This is a block level, grouping tag.

• @implements

Document any protocols that a class implements. Used in the form ’@implements
protocol’.

9

4 Templates

To determine what templates are installed, go to /share/ferite/doc/template/. All .fe
files in that directory with a class that extend Template are templates.

The templates in the current release of ferite include text and html.

4.1 Why create a template?

Insert intelligent text here.

4.2 How to create a template?

Insert intelligent text here.

10

5 Notes

Go ahead and take a look at the feritedoc script. You should find it in the bin directory
of your distribution. You’ll see a lot of system- specific setup and one important bit:
”doc.fe.” That indicates that feritedoc is actually a ferite script.

You may see older scripts with ”* !class” instead of ”* @class.” Those scripts will not
work with the current version of feritedoc.

How to make your template accept additional parameters.

I prefer using the –prefix to put documents into a separate directory.

11

6 Command Line Options

6.1 Overview

This section documents all of the feritedoc command line options.

6.2 Default Values

It is important to note that the feritedoc script will set the –ferite-prefix and –install-
path options for you. You should only specify them if you need to override the default
values.

6.3 Command Line Options

• –extra-file-name scriptName

This command line option adds the script name specified to the list of scripts to
extract documentation from. Unlike –file, this option can be specified multiple
times and each script name will be documented.

Please note that the scripts won’t be documented until all other command line
options have been parsed.

• –ferite-prefix path

This command line option specifies the path to install ferite documentation to.
This path will have ”/lib/ferite/” appended to it.

This option is only valid if the –regenerate option is also specified.

It is interesting to contemplate what happens if both –prefix and –ferite-prefix are
passed.

The ferite prefix is automatically set by the feritedoc script. The value depends
on your local installation. It should be the same as the output from running
ferite-config –prefix.

• –file scriptName

This command line option will place the script at the head of the list of scripts to
extract documentation from. If there is already a script there, it will be replaced.
You must use the –extra-file-name if you need to process multiple scripts.

Please note that the script won’t be documented until all other command line
options have been parsed.

12

• –help

This command line option causes feritedoc to print out a summary of the command
line options. After doing so, the program exits.

• –install-path value

This command line option tells feritedoc where to look to find the template files.
feritedoc will append ”/template/” to this path and

The install path is automatically set by the feritedoc script. It defaults to the ferix
prefix appended with ”/share/ferite/doc.”

• –prefix value

This command line options tells feritedoc where to create the documentation files.
If not specified, the files will be created in the current directory. If specified multiple
times, only the last value will be used. The other values will be silently ignored.

The prefix is prepended to every output file name. If you intend for the documen-
tation files to go to a directory, you must ensure that the prefix ends with a ”.”
character.

The prefix defaults to the empty string if not specified.

• –regenerate

This command line option causes feritedoc to create documentation for the ferite
system. After doing so, the program exits. This should be the last option on the
command line.

This option forces the template type to ”html.”

If you haven’t specified a –prefix, then the prefix will be set to the ferite prefix,
with ”/share/doc/ferite/api/” appended to it.

• –template templateName

This command line option specifies the name of the template file to use. This
name should not include the ”.fe” extension as feritedoc appends it automatically.

There are currently two templates distributed with ferite. They are ”text” and
”html.” These are both described in templates . If you specify an invalid template
name, ferite will abend with the following error message.

Unable to load template ’templateName’, aborting

If you don’t supply a template name, ferite will abend with the following error
message.

No template specified - please specify one [eg. text]

13

The template arguments are passed to the constructor during run parser.

The template name defaults to the empty string if not specified.

Please note that the –regenerate option will override this value, forcing it to ”html.”

• –template-args ”commaSeparatedArgumentList”

This command line option causes feritedoc to pass the argument list to the tem-
plate’s constructor.

The template arguments default to the empty string if not specified.

• –version

This command line option causes feritedoc to print out the version number. After
doing so, the program exits.

14

