Oracle Berkeley DB

Berkeley DB
API Reference
for C++

Release 4.8

ORACLE
BERKELEY DR

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No third-party
use is permitted without the express prior written consent of Oracle.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forum|D=271

Published 4/12/2010

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

Table of Contents

o 1 =Tl X
1. Introduction 0 Berkeley DB APIS ..uciiiiiiiettiiiiiiietieeeiieeeeeeeenaeeeeeeessnseseesessnnsessesannnes 1
2 I TS 0 o o - 12 e | U 2
Database and Related Methodsc.urereeiiiiiiiiiii it eeer e et eeeneeseennerannnens 3
Do 1o Tat =Y = P PP 5
Db::aSSOCIAtE_fOr@IGN() voureeeeeeerrinereereeeieeeeeeeesrueeeeeeeesnaseeeesesnssssssessnnnseseessnnnnsasens 9
D] o B o (o 1= (I PP 12
3o PP 14
(D] o B ele]11] o - Lt f) HP PPN 16
D] 0 1 e 1= U T PP PPN 20
D] o B =] o of (P PP 23
DD iEXISTS() veeeereeenuueeeeeeeenueeeeeesesaeeeeesesnseseessssnnnssssesssnnssesssssnnnsessesssnnnsssssssnnns 25
D] 0 1383 e | P PP 27
D] o« (= () P PPN 28
DDt Dt MINKEY () trretttireiiittetteeiieeeeeeeenrneeeeeesssnseseesessnnasessessnnsssssssssnnassssennn 33
Db::get_DYteSWaAPPEA() tiverrrrettieeiiiiteeteeeiieteeeeeenineeeeeeeesneeeeeesessnsesessessnnnnsssesannnes 34
D] o I« (=] il of- ol) 1Ty 4=) P P PP PPN 35
Do I« (=] il ol ¢ == Y e |) P PP PP PPN 36
(D] oI« (=] il e o] g =11 o L=T P PPN 37
Db::get_@NCIYPL_flagS() ceeereereeeeeiiieeeeeeeriiueeeeeeseraseeeeeesseseeesessnnseseessssnssssssessnnnnes 38
Do e (= =] o o A 1 =T I PP PP 39
Do e (= =] 4 0] b (T PP PP 40
Do (=l L= T] (I P PPN 41
(D] oI« (=1 il T i = et o o I PP PP 42
Do I (=l T L=1 =111 T O PP PP PPN 43
Do (=l o] e =] o) PP 44
Do I« (=l 1 =4 1 (T (PP PP PP 45
Do (=l 1110|101 (=T PP 46
Dbt _OPEN_TlAaS() wvveeererrieteeieeiiieeeeeeeenereeeeeesrueeeeeeessnnssesessssnnsssssesennnssssesanns 47
Db::get_partition_CallbDAcCK() .ueeeeeereriieeeeieeiiieeeeeeeiieeeeeeeennneeeesessnneseeesssnnnsssseenns 48
Db::get _PartitioN_dirS() ceeeeereeeeeeereieeeeeeeerreeeeeeeensnaeeeeeeesnaseeesessssnsessesonnnsesssssnnnns 49
Db gt _PartitiON_KEYS() cuveeeeeeerrueeeeeeeereeeeeesenseeeeeesesnnseeeesssnsssessssnnnassssssonnnneess 50
DD GOt _PAZGESIZE() vvveerrerinnereeeeeeieeeeeeeeenaeeeeesesnaseceeeesnnnssesssssnnssssssssnnssssssesannnnes 51
D)o+ (= il o1 o] 1 Y/ () P PP PPN 52
D] o I« (= Al o I =) L= 1L 6 v4=] I PP PPN 53
Do« (= il (=B (=1L 1 1 PP PP PP 54
Do I < (=l (= (= P PP PP PPN 55
D] o I« (= il (= o - Lo [P P PPt 56
DD Gt M _SOUICE() teeeeennneteeeeenrueneeeeenruneeeesessnneseseesesnnsssessssnnnssssssennnnessssssnnnnnes 57
D] o (= 1Y/ 0 1= (P PPN 58
D] 0 03 0] [o1 I PP 59
Do I A - 111 =T PPN 62
D] o o] 01T o | I PP PPN 65
3]0 04 o U1) O PP PPN 70
D] o I (=11110) T [I P PP PPN 74
Do I (=1 aF- a1 1= PP PP 76
4/12/2010 DB C++ API Page ii

3]0 B A || o of T PPN 78
Db::SEt_apPPeNd_IECNO0() teieetireettenneerereeeraeeeerneeeeraeeeeneeessneseesaesesnaeessnessssnssesnnes 80
Db::SET_Dt_COMPAIE() «eveernttientteennteeeiueeeeeeeenneeeenneeesaeeesnsesesnseessneeesnnssssnnssssneess 82
Db::SET_Dt_COMPIESS() teueteeneerenneererueeeaneeeesneeresueeeanseeesnseeenneesensseesnsssesnessennneennns 84
Db::SET_ Dt MINKEY () «eenretieintiriietieiitteieereieeeeeeeeeraeereraeeesneeeesneeeonnsessnneessnssesnnees 87
DD :SEE Dt PIrefiX() veveeneeiertiriietieiietieieeteieeeeaeerenaeereraeeseneeessneeessneessnneessnesesnnees 88
B o B il o= ol A T=T) = () P 90
B o B el =YY (T« 11 (S 92
Db::SEt_AUP_COMPATE() teuueteeneerenneeeeneeeenneeeesneeeenaeeesnaeeesnsseesnnsesnssesnsssesnssssnnneens 93
DD iSEE_ENCTYPL() tervteenetieineerereteeeeeeeaneereneeeeaneeeesneesennseeensseesnsesesnessennsessnnnsennes 95
3] o B W =] o ot= L S N 97
3o B A=Y o o 1 (= T 99
B o B = o o A W (=T 1.1 101
D B M= 4 4 o) D (| I P PP PP 102
B o B Wl C=T=Te | o= el () TSP 103
DD:iSEE_flAGS() veerenneeennneeenueeeenueeeeneeeesneeeesneeeeneeesnseeesnsesennseesnnseesnsssesnssssnnneenns 105
Db::SET_N_COMPAIE() cuveeeneeieintteeieteeeieeeeeneeeenneeeenaeeesaseesneeessneeessnssesnasessnasesnnees 111
D] o Bl o T i = et o o PN 113
B o Bl T =T Y PSS 114
B o Bl T 0 1= (= 11 T 116
3] o B o] e F=T o) ISP 117
Db::Set_MeESSAZE_SEIEAM() uvtrerutereneererneerereeeeeeeeesneeeenaeesenaeessnesessneessnnsessnssssnness 118
Db::SEE_MSGCALL() tuvereneereinteerttieeeereneeeeeeeeeaneeeesneeeenaeeesneeeenneesesneessnsssssnessannes 119
D] Y=l 1 4 1 =T O PO PPN 121
DD :SET_PAZESTZE() +eennrerenneerannteeeeeeenneeeenneeeeraeeesnaeeasnesessneeesnneeesnnesesnneessnesesnnees 122
Db::SET_PArtilioN() weeeeueireietiriietieittrerteeereeeeaneereraeeeeneeeesneeresneeronneeesneesennseranns 124
Db::Set_PartitionN_dirS() teeeeeeiereeerereteereerereeereneeeesneeeenneeeenaeeesneeessaeessnneessnneesnnees 126
DD :SEE_PIIOMTEY () veeeeeneeeennetreneeereneeeenneeeeseeerereeeesneeeesaeesonaesssnseessnssssnnssssnseesnnes 127
Db::SET_Q_@XEENTSIZE() weererrtienneerennterenetereeeeeaneereraeeesneeeesneesenneeeennseesnsessnneesannes 129
3] o B (e (=111 1 0 PPN 130
3]0 B I (] o [(PPN 131
D] Y=l il (= o - Lo [I P PP PP 133
B o B (I o1V ol =] [I 134
3]0 354 - (P 136
Do S - Ll o] o [0 o) P PP 143
3]) 1 of § PP PP 144
3]0 A 4 U] Vat=Y T) T N 146
DD UPGIAAE() tuveeenneteeenettennteeeeeeeeneeeenneeeesueeeenneeesnsesennesesnnssesnsssesnsessnnssesnnnsens 148
Do YT o | Y I PP 150
T B L=l 0o el o - T e | C= PO PP 153
Database Cursors and Related Methodsoviiiiiiiiiiiiiiiiii it eeenas 154
B0 o1] Yo [155
3] Yoo o 11T [T 158
D] s Tebd el 111 o] | I PP 159
3] Yool 11T 31 f) PP 161
3] Yo /=1 (P 163
Do et d e 1] 5] PPN 165
Do et g =] o PP PP PP 167
D)o Tebd 1=yl o1 o] o 1Y/ H PP PP PP PP 175

4/12/2010

DB C++ API Page iii

D] Tob] o 11 (I PP 176

D] TRy =Y ol o T (o] o 1Y/ I PP PP 180
B 1 Tl Do) A o - T e | = PP 182
DBT and Bulk Operations ...e.ueeeeeueeeereteeeneeeenueeeenueeesneeeesneeeesneeesnnseesnsssssnseesnnneenns 187
DDMULEI P I EIAtOr . uveinttiertt ettt teit et eeeteteeeeerenneeeaaeeesneesesneesennsessnsssesnessanns 188
DDMULLIPLED At At ErATOr uuetiretteeitteeitt et eeeeeeennteeeeeeeaneeeesneeeenneeesnsesesnseeenneeenn 189
DbMULtipleKeyDatalterator .uuueee et eeetteerteeeieteeeeerenaeeeareeeenneerenneerenaseesnsesesneesanns 191
DbMULtipleRECNODAtAltErator «uve i ieretieeitt et teiteeeieeeeaetrenneerenaeeesneesesneesenneennnes 193
DBMULLIPLEBUILAET ettt eet ittt et i e it eeeneeeaeeeeaaneeeaaeeesnnesesnaeesnnesesnnees 195
DbMULLIPLEDAtABUILAET vttt i i et e i eiie ettt eenaeeaaneeeanaeesenneessneeennnens 196
DbMultipleKeyDataBUilderc.ueierieiieiiiiiiiieiieeiteeeieeeereeeenaeeeeneesesneeesnneseennees 198
DbMultipleRecnODataBUilderueeueiieitieeitieeitereieeeereeeeneeeeeaeeesneeessneeesnaeeeonnees 200
T B T 0o Y =T o Ve | (T P PP 202
Database Environments and Related Methodsc.vviiiiiiiiiiiiiiiiiiiiii e, 203
D] BTl =1 117 () I PP PP 205
(D] = \VARF- Ve [a e - 1= e 1 [o TS PN 206
3] 2 VR ol Fo -1) T 208
D01 o | PP PP PP 210
D] 2\ e o] =T 4 To V7Y (T PN 212
D] o\ e o =T o F= T =T TP 214
3] a0 R =T o o T PN 216
3] 2\ S - 1] Ul o TSP 218
D] o N g i 1 =0 e N (==L () P 220
DBENV::GEt_Create_dilr() eeeeeeeeeeeeeneeeeneeereeeeesneeresaeerenaeeesnsesesneesennsessnsssesnnssanns 222
DBENV::Get_data_dilrS() veeveeeeeneeeerueeeenueeeseeeenueeessneeeenueeesaeessneeessnseessnssesnasesonnens 223
DbENV::get_enCryPt_flagS() «eeeeeeeeereteeretiereereieteeneeeenueeeenneessneeessneesssaeseonasesnneens 224
DDENV:iGEE EITTILE() verenttiernttrieteeeettentereneeeerneeeeaneeresaeeesneeeesneesenneessnsssesnsesanns 225
DDENV:IGEE EITPIX() teuuterennttreetrenneerereeeeeneeeesneereraeeeenaeessneesennsessnnesssnesessnsssonnes 226
DDENV:IGEE flAaGS() cuveeeeneteenueeeenueeeenueeeeeeeesueeeesneeeenaeeesnsesesnesesnnseesnnssesnsssesnnsenns 227
DDENV:iGEE NOME() vteenttieittieinteeereteeaeeeeanteeesneeeanneeesneesesneseennseesnnssesnsssennneenns 228
DbEnv::get_intermediate_dir_mMode() «eoeeeeeeeeiitierieieiieeeiieeeaieeeeneeeeenaeeesneeennneens 229
DBENV::GEt _MSGFIlE() veeernntieinttieitteeitieeitteeeeeeennteeeneeeeaneeeasneeeenneeesnnseesneessnneeens 230
DBENV::8et_OPEN_flagS() «eeereererutereetiereerenueerereeeesneeresueereraeeesneeeesnessenneessnnssannes 231
DBENV::GEt SHIM_KEY() wetrenttiiittiiittteieterenetteaneerenaeeeeneeeesneesesneessnseessnesesnnsessnnens 232
DbENV::get _thread_COUNT() tiveeeiriieierieteerieteenieteenueeeenneeesneeeesneeessneeesnneeeonneesonnens 233
DBENV::GEt TIMEOUL() teueterrnttieinttrereteeeeteeaneeeenaeeeenaeeesneeeesneesennsessnsesesnessennsesanes 234
DBENV::GEt EMP_AIN() teueeerentteeenetreneeeeeneteeaeeeenneeeenaeeesneeeesneerennsessnsesssnsesennsseanns 235
DDENV:IGET VEIDOSE() +ettennttrenueereeteernetreraeeeereeessneeeesneeeennsessnseessneesssassssnssssnneens 236
3] o VR U T =TT =1 o T P 238
DDENVIIOPEN() ttttnuteennettenneerenneeeaneeeesneeeesneeeenaeeesnsesennsssesnsessnsssesnsssesnsessnnssennes 240
D] oV =T 1210 1Y (PPN 245
3] 2 N Y Y A 1 (o T [I 248
DbENV::set_app_diSPAtC() «eeeeueteertteeieeeeieteeeieeeeaeeeenneeeeneeeesneeeesneeessneeesnneeesnnees 250
D] 2o VY Y e - = M | [T 252
3] 2\ Y ol (=T LT« |1 o 254
DDENV::SEL_ENCIYPE() tureerenntereneeeeeneerenneeeeneeeesneesesneesenaeessnnesesnessesnssssnnseesnsesannes 256
DbENV::Set_eVENT_NOTITY() tevuetiertiiiitireieteeiiteeeiteeeneteeeeeeesneeeenneeesnaeeesnaesennneenns 258
3] o Y Y A =T o oF- | L T PN 261
3] o Y Y =T o i | U= T 263

4/12/2010

DB C++ API Page iv

D] o\ A Y T o o (== 11 1 T PPN 265

DDENV:SEE_EITPIX() teetenttreuteeneeeeeneeeenneeeerueeeenaeeesnseeenneeesnsesesnsesesnssessnssesnnasns 266
D] 2\ A Yl {T=Te oY Vel 267
DDENV:SEE_flAaGS() veeeveeeerneererueeeeneteerueerenueeeereeessneeeesneeeennsessneeessnsessnassssnnsesnneens 269
DbEnv::set_intermediate_dir_mMode() «.viveeiiieeiiiiiiiiiiiiiiiiiiieeeiiieeeeeiieeeeranaiaaas 275
B o Yyl Y= 1§ 7= TP 277
DbENV::Set_MeSSABE_STrEAMI() «eeeenreerenuteenneeeenneeeenueeeenneeesneeeesnseeennseesnnseesnsssssnneens 279
DBENV::SE_MSGCALL() “vteenneeeerneteeneteeeeeeeneeeenneeeenueeesneeeesneeessneeessassesnnesesnnessnnnens 280
DBENV::SEt_MSGFIlE() tretirittieittiiietteiitieiteteieteeaeeeenneerenaeessneeesnneeesnnsessnneennnes 281
DDENV::SEt_SHM_KEY () tenrttiettieittieetteeieteeateeeeeeeeenneeeenneeesnsesesneeessnseesnnssesnnesnns 282
DbENV::set_thread_COUNT() .uveiiiiiiiieiiiiiiii ittt ettt et eeeeiiaeeeeeeananaseseesannnnes 284
DBENV::SEt_thrEead_id() voveeeeeeiiiiiiit ittt ietiiieeteeeeieeeeeeeaaisseeeeeensnnseeeeeennnnes 286
DbEnv::set_thread_id_SErNG() cveeeeeeeerteerietiereeeenteeeneteesieeeesneeeenneeesnnseesneesenneeens 288
3] 2 N Y Yl {0 =T 1V (O 290
DBENV::SEt_ EMP_AIN() «eeeennteeeeeeeneeeenueeeenateeaeeeesneeeesneeesnneeesnnsessnseessnseessnssesnness 292
3] o Y Y A =T o o Yo 1Y =T 1 I PN 294
DDENV:SEAt_PIINT() veeeneeienntereieternneeeenneererueeesneeeesneeeesneeeenaeeesnsssesnsssennssesnsasanns 297
3] 2 R W =Y o o) (PP 298
3] o AT 4 o 3 ¥ T 299
6. The DDEXCEPTION CLASS .uvttenntteennterereteeaneeeenneeeenueeesneeeesnseeesneeessneeesnnssesnassssnasesnnnens 300
DB Gt EXCOPLIONS «unuueetettiiittetteeeianteeseearanneessesennnnesssesssnnsesssessnansesssessannasssanss 301
DbDEAdlOCKEXCEPLION \vtinnttiiieteeeeteeneereraeeeaeeeerneeeenaeeeenneeesneeeesnesesnnsessneeesnneens 302
DbLOCKNOLGrant@dEXCEPLION v.uuutirenetieiterenatereeeeerneerenneeeenneeesneeeenneesenneeesnseeannes 303
DDMEMOIYEXCEPLION 1 uvtiennttieieeeeenteeenueeeeneeeeaneeeesneeeenneeesnassesnaeessnseessneeessansssnnes 305
DbRepHaNdleDeadEXCEPLION +iiuuutiriretireetreieeereneeeeaneeeenaeeeeneeeesneeessneessnasessnaeesnnes 306
DbRUNRECOVEIYEXCEPLION . uutiiietiiiietiiietieitereieeeerneerenaeeranaeeesneeeesaeesonneessneeesnnees 307
7. The DBLOCK HanNAle ..nuueiiiitiiiitieiitieiieteeeteeeieeeeeneeeeaneeeaaneeesnneeesnaseesnaesssnesesnneens 308
Locking Subsystem and Related Methodscccueiiiiiiiiiiiiiiiieiiiieiieeieeeeieeeanneeanns 309
DBENV::get LK_CONTUCES() tuueeriineiriietiiiietieitereiteeeeeeeraeerenaeeerneeeesaeeeenaeeeonneesnnees 310
DBENV::GEt LK _AELECT() vetrenttreietieettieittreieteeeeeeeaneerenneeeenneeesneeeesneesennsessnnsennnes 311
DbENV::get LK_MaX_LOCKEIS() «ueeeenttieretieiietieiteeeiteeeneeeeaneeeenneeeennneesnaeeesnsessnnnaenns 312
DbENV::get LK_MaX_LOCKS() tuueererntereieteenteeeiteeenueeeaeeeeaneeeesneeeenneeesnsesesnesesnnneenns 313
DbENV::get LK_MaX_0DJECES() tevuetirrnetieiterereteeereteeaeerenaeereneeeesneeeenneesenneeenneeeannes 314
DbENV::get_LK_PartitionNS() veeeeueeeerueeeerueeeeieeeesieeeesneeeenneeesnneeesnaesssnseessnesesnnsssonnees 315
DBENV::SEt_ LK _CONFUICES() vevernnneeetereiitteteieiiieeetteiaieeeeeeeaniseeeeeesanneseseeeesnnseseeeanns 316
3] 2 N Y Yl (e L] o =Tt o T 318
DBENV:: St LK _MAaX_LOCKEIS() tevnnntetetieiiiieteetieaiieeeeteeaiaeeeeeeeessnneeeeesesnsseeesenannnnes 320
DBENV::SEt_ LK _MAaX_LOCKS() +eveeennntteteieiiitteetieiaiieeeeeeeanieeeeeeeeesnnseseeeesnnssesesensnnnseenns 321
DbENV::set_LK_MaX_0ODJECES() vuvererretrerntieeietieneeeenteeenneeeaeeeesneeeenneeesnnseesneesenneeens 322
DbENV::Set_LK_PartitionNS() cuveeeeeeeereretiereeeeneereneeeeeeeeesneerenneerenaeessneseesneesennseennes 323
3]] 23 VA U Tl [e =] o =Tt f) 325
DBENV:IIOCK _GET() weeernttiiintiiiitieiietieietrereeeeeeerenneerenaeeesneeessneeeennsssonneessneeesnnes 327
3] 23V Uo Tl T I TR 330
3] 2 VA Uo Tl [e I 1 4= PN 331
DBENV:ILOCK _PUL() tueeeenttieieteeeeteeneteeneeereneeeeaneeeesneeeenaeessneeeesneesennsessnsssesnsesanns 332
3] 2V o Tl] =) PN 333
DBENV::lOCK _StAt_PriNT() «eeeeeererutereietiereeeenneereneeeesneeeesneerenneeesnaeeesnessennsesonnseennes 338
3] 2 V] o Tl [=T of PPN 340
8. The DBLSN HaNALe ..uiiiieiiiieiiiiiiiititeteeeeeteneeeeaneeeenneerenaeeesneeessneeesnnssesnnsesnneens 344

4/12/2010 DB C++ APl Page v

Logging Subsystem and Related Methodscceiiiiiiiiiiiiiiiiiiiiiiieeieeeeieeeanaeeanns 345

DDENV:iGET LG DSIZE() tevnrttieintiteinteeeittieeteeenuteeenaeeesneeeesneeesnnseesnaeeesnsesesnseesnnneens 346
[D]aT AR 1<yl U= B« | 1§ I PP PO 347
DbENV::get 8 filemMOAE() .uveeerrtirietiriiiiiiteeeiteeeieeeeaeeeanneeesraeeesneeessneeessneeesnnees 348
[D]a] 0 AR 1<y dl U= 1 - PP PP PP 349
DbENV::get 8 reGiONMAX() teuueeeerueeeenuteeeneeeesneeeesneeeenaeeesneeeesnseesnnseesnsssesnsssesnnaens 350
DBENV::L0Z_arChiVE() teuueeieittieittteietieetteeeeeeenaeeeeneeeeaneeresneeeenaeeesneesesnsesennseennes 351
DDENV:Il0Z _CUIMSOI() tettenuteranuteenneeeeaneeeenneeeeneeeesnneeesnseeennneesnsesesnssesnnseesnnssesnnasnns 353
D)oY (A o A (=T § I PP PPN 354
DBENV:0Z_fLUSN() 4ettennttieintiiiitieietieitereieteeeeeeenneerenneeeaneeeesneesesneessnneessnessennes 355
DBENV::10Z_ 8t _CONTIG() teerrtereneerrreerereterereeeeaneerenneeeeraeeesneesesneeeenneessnesesnnsessnness 356
DBENV:I0ZG_ PriNtT() veeeeneteerteierneerereeeereeeerueeeerueeeeaeeesneeeesneesenasessnsssssnsesennseesnns 358
DDENV:II0Z PUL() +eeennteeaneteenueerenueeeenueeeeneeeesneeeesueeesnseeesnsesesnsseesnseesnsssesnssesnnneens 359
DBENV::10Z_SEt_CONTIG() vueerennteernuteenneeeenneeeerueeeeneeeesneeeesneeeenseeesnsesesnseesnnssesnnssans 361
DDENV:0Z_ STAL() weeenrrerenuteeenueeeeneeeesneeeesueeeenseeesneeeesnaeessnseesnnseesnsesssnasessnesesnnes 364
DBENV::10Z_STAt_PriNE() cuveeeenuteereeienteeeneteeeeeeeaeeeesneeeesueeesneesesneeessnseesnnssesnsasns 367
DDENV::SEE LG _DSIZE() vuvtrenttrietirittreieerereeeeeeerenneeeenaeeesneeeesneesonaeessnssesnneessnnes 368
DBENV:SEE LG ir() veveeenetiennttreiteeereteeneeeennteeenueeesneeeesneeeesneeesnnseesnsssssnssesnnneenns 370
DbENV::set_ L8 _filemMOdE() teuueririntiiiitiiiiieeieeitereieeeeaeeeenneerenneeeenaeessneesenneesanns 372
DDENV::SEE_ LS _MAX() tuvteennterenneeeaneeeenneeeenueeesaeeesnaeeesneeessnseesnseesnsssssnnsessnssssnnes 373
DbENV::Set_ L8 _reGiONMAX() weereueeereeeeerueerereeerereeeesneeeesneeesnneessneeessaeeesnnssesnneesnnes 375
The DBLOZC Handle ...uueiiiiiiiiit i iiiieit et eeeneeeeaneerenneeeanneeesnsesenneesanneeennes 376
D] o] e Totid ol (o 11 =T | I PP PP PP 377
D)o e eiid = I PP PP 378
DDENV::l0Z_COMPAIE() teuuetrenneeeenueeeenueeenneeeesueeeesaeeesnsssesnsssesnseesnnseesnsssesnssessnnaens 380
9. The DbMPOOLFile HaNALeuviiiitiiiitieiieeieeeeteeeineeeeneeeeanaeeanneeesneeesnnesesnaassnneens 381
Memory Pools and Related Methodsc.eeiiieiiiiiiiiiiiiiiii i eiieeeieeaeneeeanneens 382
Do B L] il 11] o1 I PP PP PP 384
DBENV::8et_CACNE_MAX() +eeurterneerenueerenueereneeeesneeeesneeeenaeeesnseeesnessesnssssnnsessnassannes 385
DBENV::GEt_CACNESIZE() tuvvtrenntereeteereeeeauteeenueeeaeeeesneeeesneeeenneeesnsesesnesesnnseesnnesens 386
DbEnv::get_mp_mMaX_OPENfA() «eeveeeeeetrereerereteeeieeeenneereneeereaeeesneeeesnsesenaseesnsseanns 387
DbENV::get_MP_MAaX_WIIEE() veveertereruterrneeeenneeeenueeeereeeesneeeesneeresnsessnsssesnessennseeanns 388
DbENV::get_MP_MMAPSIZE() teurrerenueeeenuerenneeeenueeessueeesnaeeesaeessnseessnseessassssnsssssneens 389
DBENV:iMEMP_fCrEaTE() tivnetirettreieereiteeeeteeaneereneeeeaeeeesneeeesaeessnneessnesesnnsesonnens 390
DBENV:iMEMP_IEGISTEI() teuuetreutereetiereereraeeeereeeesneeeenaeeeonaeessneeeesaeesonneessnseesnnees 391
DBENV:IMEMP_STAL() 4ettenuteernuteeretrennteeeneteeaneeeesneeeenneeesnaseesneesesnseessnseesnsssesnsaens 393
DbENV::mMeEMP_STat_PriNt() coueeeerneereretierieteereereneeereneeeesneeeesneereraeeesnsssesneesennseennes 399
DBENV:IMEMP_SYNC() vteenueeaeneeeenueeeenueeeenaeeesnaeeesnseesnnseesassesnassssnssessnssesnassssnnees 400
DBENV:iMEMP_trICKIE() verennttieietiiiitiiiitteitereretteteeeeraeeeaneeeesneeeenneeeonaeesnneeesnnees 401
D] 2 NV A=Y Al oF- Tl LT 11 T D TN 402
D] o N Y Y Wl oF- Tl ST 4= [I 404
DbENV::set_mMp_MaX_OPENTA() cuueeeereeeerueeeeiueeeereeeereeeesneeeesaeeesnaeessneeessnesesnnesesnnes 406
DBENV::Set_MP_MaX_WIIEE() teuutteenutereeeeeneeeenneeeenueeesreeeesneeessneeessaseessasessneeesnneens 407
DbENV::SEt_MP_MMAPSIZE() +eeerrteerneeranueerenueeesneeeesneerenaeeesseeesneesesnsssennssesnsssannes 409
DDMPOOLFTILEICLOSE() wevnnteranteeeeteeenteeennteeerueeeaneeeesneeeenneeesnseeesnsesesnseessnssesnnesnns 411
DDMPOOLFTLEIIGEOE() v eenretternetreieteeereteereerenaeereneeeeaneeeesaeesenaeeesneeessaesssnneessnneeenneens 412
DDMPOOLFTILEIZ0PEN() tuuttiiiettrietieiittrereeeeraeeeaeeeeraeerenaeeesneeessneeesnaeessnneessneessnnees 415
DDMPOOLFTLEIIPUL() weerennteretteeieerenuteeeneeeenneeeenaeereneeesneeeesneesenneeesnsseesneesanneesanns 417
DDMPOOLFTLEIISYNC() vuveeenntteenteeeueeeeeeeeaneeeenseeeseeeesnaeeesnseessnseesnsessnassssnseesnneens 419

4/12/2010

DB C++ APl Page vi

DbMPOOLFile::8et_Clear_LEN() «veieerttreitieeietieiiteeeiteeeneteearteeenneeeenneeesnseeesnsesennseenns 420

DbMPOOLFile::8et_fileId() vveeeruterretierttieitereiteeereeeeeeeeenuteeaeeeesneeeanneeeenneeesnaesnns 421
DBMPOOLFIlE::80E_TlagS() «eeereererutereieeiereerenueerenueeesneeresneerenneeesnaeeesnessenneeeonnseannes 422
DBMPOOLFILE: 18O _TLYPE() vteenneererneeteinterereeeeaeeeeaneeeenneeesaeeesneeeesnseesnnseesnaesesnneens 423
DbMpPOOLFile::get_ISN_OffSEL() vuveerrutirrietieiitieiieiieeeeieeeeereeeenneeeanneeessaeeeoneeesnneens 424
DBMPOOLFile: 180T _MAXSIZE() weererrtereneeterneerenneeeenueeesneeeesneeresneeesnaeeesnessesnsesonnseennes 425
DbMpPOOLFile::8et_PYCOOKIE() weererurereetieeeeeenneeeernteeareeeesneeeesneerenneeesnaeeesnssesnnneenns 426
DbMPOOLFile: 18t _PriOritY() veveeeerereterretrereeereretereeeeeneeeeenaeeseneeeesneeessaseeonneesnneens 427
DbMPOOLFile::Set_Clear_LEN() tivueiriietiiiietiiittreiteeieteerneerenaeeeaneeeesneeesnasessnneesnneens 428
DBMPOOLFile::Set_fileId() toueerrretiiitiiiitiiii et ereieeeeeereaneerenaeeeeneeeesneeeenneesonnens 429
DDBMPOOLFTLE::SEE_TlagS() «uveeeenueeerneeeeneeeenueeeeieeeeseeeesneeessneeessaeeesnassesnneessneeesnneens 431
DBMPOOLFTLE::SEE_fLYPE() teuretreneererutireetieieerereeeeeneeeerneeeenaeessnaeeesneesssnsessnneesnnees 433
DbMpOOLFile::set_ISN_OffSEE() tivvetirrttieitiiiiieiiieiiereitereneeeeaeerenneeeenneeenneeeannes 434
DBMPOOLFIlE::SEE_MAXSIZE() terrreerneerenneeeenneeeereeeesneeeesneeeesneeessaeeesnassssnseessneeesnneens 435
DbMPOOLFile::Set_PBCOOKIE() teuurteernttreneeeernteeereeeeaeeeesneeessneeesnaeeesneeeesneeessnesesnness 436
DBMPOOLFIlE::SEt_PriOritY () vuueeeerneereruteeeeeeereeeenneeeeraeeeeneesesneeeennseesnseeseesesnneenns 437
10, MUEEX METNOAS ©eiiniiiiii i it ittt e it ettt e eeeeeeaeerenaeeeanaesanneesannsessnneeannes 439
T = T 3 oo 440
D] 2 NV T =Y oYl (P 441
D] 2V 1 o T o £ (=TT T PN 443
DBENV::MUEEX_GET_lIGN() tuetrennterieeieretrereereieteerneeeenneerenaeessneeessaeeeennsessnneeenneens 444
DbENV::mMUEEX_GET_INCIEMENT() .uverrrnetrereterrneeeenneerenneeeeneeeesneerenneeeenaeeesnsesesnessannes 445
DBENV:iMUEEX_GET_MAX() +eeuuterenueeenneerenneererueeeaneeeesneesenneessnsseesnessennsesennssesnsssanns 446
DbENV::mMUEEX_get_taS_SPINS() teeveererueereeeeereererueerenneeesneeeesneeresneeeonsseesnessennsseanns 447
DDENV: iMUEEX_LOCK() vvettieiiitttetieiiiitetteeeiiteeeteeaaeeeeeeeeanseeeesensnnseeesesesnssesseennns 448
DBENV::MUEEX_SET_AlIGN() +eenrttrrintereieteeeeteeiteeenueeeeneeeesneeeenneeesnneeesnnesesnseesnnneenns 449
DBENV: :mMUEEX_SET_INCIEMENT() ©vvttiiiiittttiieiiieeetieeaieeeeeeeaiiaeeeeeeessnaseeseesnnnssseeeen 450
DDENV: i MUEEX _SEE_MAX() +ettiiiiinnteeteeeiiteeeteenaieeeeeeearnseeeeeeesnssesseeesssseeesensnnaseens 452
DbENV::MUEEX_SET_TAS_SPINS() cveeeenuteernuerenneeeenneeeenueeesneeeesneeeesneeessaeeessassssnaasssneens 454
3] 2V T oD - L o T 455
DBENV::MUEEX_SEAT_PIriNT() «eeueereinteerieteeeeerenneeeanueeeseeeesneeeenneeesnneeesneseesnseesnnneens 457
DBENV: iMUEEX_UNLOCK() +eeventttetieiiiieteeteeaiitteeteeenaneeeeteeesnsseeeeeessnnseeeeessnsseseeennns 458
11. Replication METhOAS ...iiiuiiiii it ieii et et it eeeeeenateeanaeeeaneesannsesenneeeanneennn 459
Replication and Related Methodsccvviiiiiiiiiiiiiiiiiiiri e e e e 460
[D]0] o A =T o I =] (T o) PP PP 461
DbENV::rep_get_ClOCKSKEW() tuuetieittieitieeitieieeeiteeeneteeaeeeenneeeenneeeenaseesneesenneeens 464
DBENV::reP_get_CONTIG() teurttreintieriuteeeieeeeaeeeeineeeenaeeeseeeesneeessneeesnseesnaesssnesesnnees 465
DBENV::rep_get_LIMIt() tuveeernetiereerereteeeneteeaeeeenneeeenaeeeeneesesneeeennneesnnseesnaesennneenns 466
DDENV::ireP_SEt NSTEES() teeurttrernterneererneerereeeraeeeenneeeenaeeesnaeeesnessennsessnnsessneessnnens 467
DBENV::reP_get_ PIriOTTEY() toueeeerueererueereneeeesneeeesneeeesaeeesneeeesneesennssesnsesesnseessnessannes 468
DBENV::reP_SEt _FEQUEST() teeuretrerntereneteeeneeeenneeeesueeesnaeeesnsesesnseesnnseesnsssesnsessnnseenns 469
DBENV::rep_get_TiMEOUL() tueererretiereterrreteeneerenueereneeeesneeeesneerenaseesnsseesnessennseeanes 470
DbENV::rep_ProCeSsS_IMESSABE() «eeeenueeeeneeeeaneeeenneeeenueeesnaseesnasessneeessassesnassssnsassnnsens 471
DbENV::rep_sSet_CLOCKSKEW() «iierutiiiietiiiietieiiteieiteeiieteeiaeereneeeesneeeenneeesnneessnneesnnens 474
DBENV::reP_SEt_CONTIG() tetrerntirretieneeeeneerereteeaeerenneeeeraeeesneeeesneesenneessnnssesnsssanns 476
DBENV::reP_Set_LIMIT() veeeereeeeintierietiereeeeieeeeneeeeenaeeeseeessneeessneeesnessesnaeessneeeennees 479
DDENV::reP_SET_NSTEES() tuveeenutererueeeaneeeeeneeeesueeeenneeesnseeesneeeesnseesnnssesnsssesnssesnnsaens 481
DDENV::reP_SEt_PriOTTtY() weeeeneeeeeneeeenueeeeneeeesneeeesneeeesneeesaseesnsssesnseessnseesnsssesnnaens 482
DDENV::reP_SEt_FEQUEST() uvereneterrneeeerueeeereeereneeessneeeenneeesnaeessneeessneessnnsessnssesnneens 483

4/12/2010

DB C++ API Page vii

DBENV::rep_Set_TiMEOUL() «veeerreteeruteeeieeeeaeeeenneeeenueeesneeeesneeeesneeesnaeeesnasessnaeesnneens 485
DbENV::rep_Set_TranSPOrT() veeeeeeeeeeeerereeereeeeenneereneeeeeeeessneeeenaeessneeessneeessnseesnnees 488
DDENV:IrEP_SEAIT() «eeuuteeenueeenneeeenneeeenueeeenaeeesneeeesueeesnneeesnaesesnaeessnseessneeesnnesesnnes 491
DDENV:IrEP_SEAL() teenueerenteeaueeeeieeeeaneeeesneeeeneeesneseesneeessneeesnseesnnssssnnsessnseesnneens 493
DBENV::reP_SEat_PriNt() weeeeeueeeenneeeeneteeeeeeenueeeenueeesneeeesneesennseeennseesnssessnssesnnneenns 499
DDENV:IIEP_SYNC() teenuuteernteeenneeeenueeesueeeesneeeesnseeensseesnassesnsssssnssessnssesnassssnssssnnees 500
DbENV::repmgr_add_remote_SIite() cuveeeereeeerieeerieeeeeieeeenieeeenneeesiaeeesneeeesneeessneeesnnees 501
DbENV::repmgr_get_ack _POLICY() «eeeeeererueerereterereeeenueereneeesseeeesneeessasesenaeessneeesnnees 503
DbENV::repmgr_set_aCK_POLICY() «oueeeerueeeenuteeeeeeeneeeenneeeenueeesneeeesneeessnseesnassesnsasns 504
DbENV::repmgr_set_LOCAl_STEE() cuueerrretiennetrerterereteerreeeenneereraeeesneeeesneesennsesannseennes 506
DBENV::repPM@r_Sit@_LIST() vueerereeerreeeenueererueerereeernneeeesneeeenaeessneeeesneeessaseesneeesnneens 507
DBENV:irePMGI_SEAIT() veerereteenneerenneereneeeeeneeeesneeeesneeeenseeesneseesnessssnsessnsssesnessannes 509
DBENV:irePMGI_SEAT() vueerenneereneeeenneeeenueerereeeeaneeeenneeeenaeessnsesesnesesnnsessnasessnssesnnes 511
DBENV::repmM@r_Stat_PriNt() «eeeueeeereeeeereeeeeeeeenneeesnueeeeneeeesneeessneeesnaesesnaseesnseesnneens 513
12. The DbSequence Handlecccueiiiieiiiitiiiiteiieeiteeenateeeneeeeeaeeesneeeennseesnaesenneeenns 514
Sequences and Related Methodscoeuiiiiiiiiiiiiiiii it eii i eieeieeeeeneeeanneenn 515
BT[] o[l PP 516
DDSEQUENCE:ICLOSE() weennrtrenterenneerereteeaneeeenneeeenaneesnseeesnsesesnseeennseesnsssesnssesnnnaenns 518
DS EGUENCE:IGEE() «eenrtetenteeeeteeeeeeenneeeenneeeaaeeesnaeeesneeesnneeesnneeesnasessnseessnesesnnes 519
DbSequence::8et_CACNESIZE() tivveterretiereereretereneeeerneerereeerereeeesneesesneesenneeesnneeannes 521
DbSEqUENCE: GO _ADP() teenrterrnetienteeeruteeeiueeeereeeeaneeeesneeessaeeesnaeessneeessneeesnnsssonnes 522
DbSequENCE::GEt_flAagS() teeveererreererueerrieteerneeiereeeeeeeeesneerenaeeronaeessneeessneeesnnseennees 523
DbSEQUENCE: GO _KEY() werenrttrernterereteenneerenueeeeneeeesneeeesaeesonaeeesneeessneessnnsessnneesnnes 524
DbSeqUENCE::GEE_FANZGE() teeurttreneteenneerenneerereeeesneeeesneerenseeesnsseesnessennsessnsssesnsssanns 525
DbSequence::initial_ValUE() «.cieveeierietierterrretienreereaneereneeeesneeeesneerenneeesnneessneesannes 526
DDSEQUENCEIIOPEN() turttteneteenteeaueeeneeeeaneeeesaeeesaeeesnasessnesessneeesnssesnnsessnesesnnees 527
DbSEQUENCE:IMEMOVE() tetrennttreneteenneerennteeeneeeesneeresneeeenaeeesneesesnessennssesnsesesnaesannes 529
DbSequenCe::SEt_CACNESIZE() vuvereereereruterereteeneeeeneeeenneeeseeeesneeeesnneesnnseesnaesesneeens 531
DbSeqUENCE::SEE_flAGS() cvveeerreerenueeereeeenueeeerueeeeneeeesneeeesneeeenneeesnaesesnsssesnneesnnssens 532
DbSEqUENCE::SEE_TANZGE() tuveeenetrenneeeenneeeenueeesneeeesneeeesneeessaeeesnaesssnssessnssesnassssnnes 534
DDSEQUENCE:ISEAL() eeeerterenternneteenneerenneereneeeesneerenaeerenaeeesnseeesneesennsessnsssesnsssanns 535
DbSequUENCE::StAt_PriNT() toueereretereieteereereneeerereeeesneeeenaeerenaeeesneeeesaeeeonaesssnneesnnees 537
13. The DBTXN HaNALE ..uviiitiiiitiiii i teiteeeieteeeneeeeaneerennaeeaneeeesneesenneessnneeesnsesanns 538
Transaction Subsystem and Related Methodsccceiiiiiiiiiiiiiiiiiiiiii i eeieeeaes 539
Db::get_transaCtional() cueeeeeeeeeerueeeeneteereeeenuteeenneeesneeeesneeeenneeeenneeesnsesesneeesnnneenns 540
DBENV::CASGrOUP_DEGIN() teuretirinttieittreieteeetetereereraeeeeneeeesneeeenneesenaeeesnsesennessannes 541
[D]0] 0 A1) il 0l 11 - V(| I PP PP PP 542
DbENV::get X _TiMeSTAMP() «eeeutterrutiriieteeeieeeeneeeerueeeeneeeesneeeesneeessneeesnaeeesnneessneens 543
DDENV: SO tX_MAX() +eeerennnnneeeeerenineeeeeeessnaeeeeeeesusseeeesesnssseeesensnsssessesssnsseseeennnnes 544
DbENV::set_IX_TIMESTAMP() cueererutienneerenneerereeeeeneeeesneerenneeeeeeeesnsesesneesennssssnassannes 546
B0l (g BE= 1o Lo o T 547
DDENV: EXN_DEGIN() teerenntirettieietreneeeereeeeaeeeenaeeeenaeeesneeeesneesennsessnssessnsssennseeonns 548
DBENV::tXN_ChECKPOTNT() uvteeenetieitteriteeeieteeeieeeeaeeeenneeesnaeeesnaesesneeessnesesnnesssnnees 551
(B0l (g Bl 10111 1 (PP 553
B0l (g B | 1o U [T 555
DD XN 1GEE_NAME() turtteenntteennteeeeeeenneeeenneeeanaeeesneesesneeessneeesnaseesnassssnneessnesesnnnens 556
3]0 157 T [P 557
DDTXNIIPIEPAIE() weeunuteeeneteeaneeeenneeeenueeesnaeeesneeessnssessnneesnnssssnsssssnseessnssesnnssssnnes 558
3] 2 g g T =T el o 1L =] o I PPN 559

4/12/2010

DB C++ APl Page viii

B0l (g B <] = 14T (PP 1o X
DDTXN::SEE_EIMEOUL() tevinetettiiiiiit et ittt eeeaieeeeteeaieaeeeeeesnseeesesansssseseeannnness D02
DDENV: i tXN_SEAT() venreteeeeeeiiieteeieeeiiteeeteenieeeeeeeessseeeeeensnssseseesssnssesesensnsseseeenss D04
DBENV::tXN_Stat_Prinf() veeeeeerereeieieeereietieneerereeeeereeeesneeeesneesonneessnessssnssssnaseesness D08

A. Berkeley DB Command Line UtIlItiescovviieenieenieenneenne. D69

LU L | 1= - V4 0
ooVl 177 P YA |
oo el =Tl 4o 7o) 1| A PP PP PPPPPPP. ¥ 4
oo T [T Ve | o ol 2 PPN ¥ 4o
oo 3 e (011 0 T PP PP PPN Y 44
oo 3 T) Y- ol (U o J PP PPPIR. T ¢
a0 T (o =V PP No 1 X
oo 30T 101 Uo - S PP T 74
oo T (=Tl T P NNo 1>

o [o T e | PP OP TP PRPPPPORSRPRRE. 1°

e o T = R o 1° .

a0 T o <] U PP 0 X
oo Y= 1 Y PO PPN ¢ 0

4/12/2010

DB C++ APl Page ix

Preface

Welcome to Berkeley DB (DB). This document describes the C++ API for DB, version 4.8. It is intended
to describe the DB API, including all classes, methods, and functions. As such, this document is intended
for C++ developers who are actively writing or maintaining applications that make use of DB databases.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in nonospaced font, as are met hod names. For example: "Db: : open() is a
Db class method.”

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL directory."”

Program examples are displayed in a nonospaced font on a shaded background. For example:

typedef struct vendor {

char name[MAXFI ELD] ; Il Vendor nane
char street[MAXFI ELD] ; Il Street name and number
char city[MAXFI ELD] ; Il Gty
char state[3]; Il Two-digit US state code
char zipcode[6] ; Il US zipcode
char phone_nunber[13]; Il Vendor phone number

} VENDOR,

|:| Finally, notes of interest are represented using a note block such as this.

For More Information

Beyond this manual, you may also find the following sources of information useful when building a DB
application:

o Getting Started with Berkeley DB for C++ [http://www.oracle.com/technology/documentation/
berkeley-db/db/gsg/CXX/BerkeleyDB-Core-Cxx-GSG.pdf]

» Getting Started with Transaction Processing for C++ [http://www.oracle.com/technology/
documentation/berkeley-db/db/gsg_txn/CXX/BerkeleyDB-Core-Cxx-Txn.pdf]

» Berkeley DB Getting Started with Replicated Applications for C++ [http://www.oracle.com/
technology/documentation/berkeley-db/db/gsg_db_rep/CXX/Replication_CXX_GSG.pdf]

» Berkeley DB C API [http://www.oracle.com/technology/documentation/berkeley-db/db/
api_reference/C/BDB-C_APIReference.pdf]

o Berkeley DB STL API [http://www.oracle.com/technology/documentation/berkeley-db/db/
api_reference/STL/BDB-STL_APIReference.pdf]

4/12/2010

DB C++ API Page x

http://www.oracle.com/technology/documentation/berkeley-db/db/gsg/CXX/BerkeleyDB-Core-Cxx-GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg/CXX/BerkeleyDB-Core-Cxx-GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg/CXX/BerkeleyDB-Core-Cxx-GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/CXX/BerkeleyDB-Core-Cxx-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/CXX/BerkeleyDB-Core-Cxx-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/CXX/BerkeleyDB-Core-Cxx-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/CXX/Replication_CXX_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/CXX/Replication_CXX_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/CXX/Replication_CXX_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/C/BDB-C_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/C/BDB-C_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/C/BDB-C_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/STL/BDB-STL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/STL/BDB-STL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/STL/BDB-STL_APIReference.pdf

» Berkeley DB TCL API [http://www.oracle.com/technology/documentation/berkeley-db/db/
api_reference/TCL/BDB-TCL_APIReference.pdf]

» Berkeley DB Programmer's Reference Guide [http://www.oracle.com/technology/documentation/
berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf]

4/12/2010 DB C++ APl Page xi

http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/TCL/BDB-TCL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/TCL/BDB-TCL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/TCL/BDB-TCL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf

Chapter 1. Introduction to Berkeley DB APIs

Welcome to the Berkeley DB APl Reference Manual for C++

DB is a general-purpose embedded database engine that is capable of providing a wealth of data
management services. It is designed from the ground up for high-throughput applications requiring
in-process, bullet-proof management of mission-critical data. DB can gracefully scale from managing
a few bytes to terabytes of data. For the most part, DB is limited only by your system's available physical
resources.

This manual describes the various APls and command line utilities available for use in the DB library.

For a general description of using DB beyond the reference material available in this manual, see the
Getting Started Guides which are identified in this manual's preface.

This manual is broken into chapters, each one of which describes a series of APIs designed to work with
one particular aspect of the DB library. In many cases, each such chapter is organized around a "handle”,
or class, which provides an interface to DB structures such as databases, environments or locks. However,
in some cases, methods for multiple handles are combined together when they are used to control or
interface with some isolated DB functionality. See, for example, the The DbLsn Handle chapter.

Within each chapter, methods, functions and command line utilities are organized alphabetically.

4/12/2010 DB C++ APl Page 1

Chapter 2. The Db Handle

The Db is the handle for a single Berkeley DB database. A Berkeley DB database provides a mechanism
for organizing key-data pairs of information. From the perspective of some database systems, a Berkeley
DB database could be thought of as a single table within a larger database.

You create a Db handle using the Db constructor. For most database activities, you must then open
the handle using the Db::open() method. When you are done with them, handles must be closed using
the Db::close() method.

Alternatively, you can create a Db and then rename, remove or verify the database without performing
an open. See Db::rename(), Db::remove() or Db::verify() for information on these activities.

It is possible to create databases such that they are organized within a database environment.
Environments are optional for simple Berkeley DB applications that do not use transactions, recovery,
replication or any other advanced features. For simple Berkeley DB applications, environments still
offer some advantages. For example, they provide some organizational benefits on-disk (all databases
are located on disk relative to the environment). Also, if you are using multiple databases, then
environments allow your databases to share a common in-memory cache, which makes for more efficient
usage of your hardware's resources.

See DbEnv for information on using database environments.

You specify the underlying organization of the data in the database (e.g. BTree, Hash, Queue, and
Recno) when you open the database. When you create a database, you are free to specify any of the
available database types. On subsequent opens, you must either specify the access method used when
you first opened the database, or you can specify DB_UNKNOWN in order to have this information retrieved
for you. See the Db::open() method for information on specifying database types.

4/12/2010

DB C++ APl Page 2

Database and Related Methods

Database and Related Methods

Database Operations

Description

Db::associate()

Associate a secondary index

Db::associate_foreign()

Associate a foreign index

Db::close() Close a database

Db Create a database handle
Db::compact() Compact a database

Db::del() Delete items from a database

Db::err() Error message

Db::exists() Return if an item appears in a database
Db::fd() Return a file descriptor from a database
Db::get() Get items from a database

Db::get_byteswapped()

Return if the underlying database is in host order

Db::get_dbname()

Return the file and database name

Db::get_multiple()

Return if the database handle references multiple
databases

Db::get_open_flags()

Returns the flags specified to Db::open

Db::get_type()

Return the database type

Db::join() Perform a database join on cursors
Db::key_range() Return estimate of key location
Db::open() Open a database

Db::put() Store items into a database

Db::remove()

Remove a database

Db::rename()

Rename a database

Db::set_priority(), Db::get_priority()

Set/get cache page priority

Db::stat() Database statistics
Db::stat_print() Display database statistics
Db::sync() Flush a database to stable storage

Db::truncate()

Empty a database

Db::upgrade()

Upgrade a database

Db::verify()

Verify/salvage a database

Db::cursor()

Create a cursor handle

Database Configuration

Db::set_alloc()

Set local space allocation functions

Db::set_cachesize(), Db::get_cachesize()

Set/get the database cache size

4/12/2010 DB C++ APl

Page 3

Database and Related Methods

Database Operations

Description

Db::set_create_dir(), Db::get_create_dir()

Set/get the directory in which a database is placed

Db::set_dup_compare()

Set a duplicate comparison function

Db::set_encrypt(), Db::get_encrypt_flags()

Set/get the database cryptographic key

Db::set_errcall()

Set error message callback

Db::set_errfile(), Db::get_errfile()

Set/get error message FILE

Db::set_error_stream()

Set C++ ostream used for error messages

Db::set_errpfx(), Db::get_errpfx()

Set/get error message prefix

Db::set_feedback()

Set feedback callback

Db::set_flags(), Db::get_flags()

Set/get general database configuration

Db::set_lorder(), Db::get_lorder()

Set/get the database byte order

Db::set_message_stream()

Set C++ ostream used for informational messages

Db::set_msgcall()

Set informational message callback

Db::set_msgfile(), Db::get_msgfile()

Set/get informational message FILE

Db::set_pagesize(), Db::get_pagesize()

Set/get the underlying database page size

Db::set_partition()

Set database partitioning

Db::set_partition_dirs(), Db::get_partition_dirs()

Set/get the directories used for database partitions

Btree/Recno Configuration

Db::set_append_recno()

Set record append callback

Db::set_bt_compare()

Set a Btree comparison function

Db::set_bt_compress()

Set Btree compression functions

Db::set_bt_minkey(), Db::get_bt_minkey()

Set/get the minimum number of keys per Btree
page

Db::set_bt_prefix() Set a Btree prefix comparison function
Db::set_re_delim(), Db::get_re_delim() Set/get the variable-length record delimiter
Db::set_re_len(), Db::get_re_len() Set/get the fixed-length record length
Db::set_re_pad(), Db::get_re_pad() Set/get the fixed-length record pad byte
Db::set_re_source(), Db::get_re_source() Set/get the backing Recno text file

Hash Configuration

Db::set_h_compare() Set a Hash comparison function

Db::set_h_ffactor(), Db::get_h_ffactor()

Set/get the Hash table density

Db::set_h_hash()

Set a hashing function

Db::set_h_nelem(), Db::get_h_nelem()

Set/get the Hash table size

Queue Configuration

Db::set_q_extentsize(), Db::get_q_extentsize()

Set/get Queue database extent size

4/12/2010

DB C++ APl

Page 4

Db::associate()

Db::associate()

#include <db_cxx. h>

int
Db: : associ at e(DbTxn *txnid, Db *secondary,
int (*callback)(Db *secondary,
const Dbt *key, const Dbt *data, Dbt *result), u_int32_t flags);

The Db: : associ at e() function is used to declare one database a secondary index for a primary database.
The Db handle that you call the associ at e() method from is the primary database.

After a secondary database has been "associated” with a primary database, all updates to the primary
will be automatically reflected in the secondary and all reads from the secondary will return
corresponding data from the primary. Note that as primary keys must be unique for secondary indices
to work, the primary database must be configured without support for duplicate data items. See
Secondary Indices in the Berkeley DB Programmer’s Reference Guide for more information.

The Db: : associ at e() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

callback

The callback parameter is a callback function that creates the set of secondary keys corresponding to
a given primary key and data pair.

The callback parameter may be NULL if both the primary and secondary database handles were opened
with the DB_RDONLY flag.

The callback takes four arguments:
« secondary
The secondary parameter is the database handle for the secondary.
* key
The key parameter is a Dbt referencing the primary key.
« data
The data parameter is a Dbt referencing the primary data item.
e result

The result parameter is a zeroed Dbt in which the callback function should fill in data and size fields
that describe the secondary key or keys.

4/12/2010

DB C++ APl Page 5

../../programmer_reference/am_second.html

Db::associate()

|:| Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for

example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

The result Dbt can have the following flags set in its flags field:

« DB_DBT_APPMALLOC

If the callback function needs to allocate memory for the result data field (rather than simply pointing
into the primary key or datum), DB_DBT_APPMALLOC should be set in the flags field of the result
Dbt, which indicates that Berkeley DB should free the memory when it is done with it.

DB_DBT_MULTI PLE

To return multiple secondary keys, DB_DBT_MULTIPLE should be set in the flags field of the result
Dbt, which indicates Berkeley DB should treat the size field as the number of secondary keys (zero
or more), and the data field as a pointer to an array of that number of Dbts describing the set of
secondary keys.

When multiple secondary keys are returned, keys may not be repeated. In other words, there
must be no repeated record numbers in the array for Recno and Queue databases, and keys must
not compare equally using the secondary database's comparison function for Btree and Hash databases.
If keys are repeated, operations may fail and the secondary may become inconsistent with the
primary.

The DB_DBT_APPMALLOC flag may be set for any Dbt in the array of returned Dbt's to indicate that
Berkeley DB should free the memory referenced by that particular Dbt's data field when it is done
with it.

The DB_DBT_APPMALLOC flag may be combined with DB_DBT_MULTIPLE in the result Dbt's flag field
to indicate that Berkeley DB should free the array once it is done with all of the returned keys.

In addition, the callback can optionally return the following special value:

« DB_DONOTI NDEX

If any key/data pair in the primary yields a null secondary key and should be left out of the secondary
index, the callback function may optionally return DB_DONOTINDEX. Otherwise, the callback function
should return 0 in case of success or an error outside of the Berkeley DB name space in case of failure;
the error code will be returned from the Berkeley DB call that initiated the callback.

If the callback function returns DB_DONOTINDEX for any key/data pairs in the primary database, the
secondary index will not contain any reference to those key/data pairs, and such operations as cursor
iterations and range queries will reflect only the corresponding subset of the database. If this is not
desirable, the application should ensure that the callback function is well-defined for all possible
values and never returns DB_DONOTINDEX.

Returning DB_DONOTINDEX is equivalent to setting DB_DBT_MULTIPLE on the result Dbt and setting
the size field to zero.

4/12/2010

DB C++ APl Page 6

Db::associate()

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

« DB_CREATE

If the secondary database is empty, walk through the primary and create an index to it in the empty
secondary. This operation is potentially very expensive.

If the secondary database has been opened in an environment configured with transactions, the
entire secondary index creation is performed in the context of a single transaction.

Care should be taken not to use a newly-populated secondary database in another thread of control
until the Db: : associ ate() call has returned successfully in the first thread.

If transactions are not being used, care should be taken not to modify a primary database being used
to populate a secondary database, in another thread of control, until the Db:: associ ate() call has
returned successfully in the first thread. If transactions are being used, Berkeley DB will perform
appropriate locking and the application need not do any special operation ordering.

» DB | MUTABLE_KEY
Specifies the secondary key is immutable.

This flag can be used to optimize updates when the secondary key in a primary record will never be
changed after the primary record is inserted. For immutable secondary keys, a best effort is made
to avoid calling the secondary callback function when primary records are updated. This optimization
may reduce the overhead of update operations significantly if the callback function is expensive.

Be sure to specify this flag only if the secondary key in the primary record is never changed. If this
rule is violated, the secondary index will become corrupted, that is, it will become out of sync with
the primary.

secondary

The secondary parameter should be an open database handle of either a newly created and empty
database that is to be used to store a secondary index, or of a database that was previously associated
with the same primary and contains a secondary index. Note that it is not safe to associate as a secondary
database a handle that is in use by another thread of control or has open cursors. If the handle was
opened with the DB_THREAD flag it is safe to use it in multiple threads of control after the

Db: : associ at e() method has returned. Note also that either secondary keys must be unique or the
secondary database must be configured with support for duplicate data items.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected.

4/12/2010

DB C++ APl Page 7

Db::associate()

Errors

Class

The Db: : associ at () method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB _REP_LOCKQUT is returned.

EINVAL

If the secondary database handle has already been associated with this or another database handle;
the secondary database handle is not open; the primary database has been configured to allow
duplicates; or if an invalid flag value or parameter was specified.

Db

See Also

Database and Related Methods

4/12/2010

DB C++ APl Page 8

Db::associate_foreign()

Db::associate_foreign()

#include <db_cxx. h>

int

DB: : associ ate_foreign(Db *secondary,,
int (*callback)(Db *secondary,
const Dbt *key, Dbt *data, const Dbt *foreignkey, int *changed),
u_int32_t flags);

The Db:: associ ate_foreign() function is used to declare one database a foreign constraint for a
secondary database. The Db handle that you call the associ ate_f orei gn() method from is the foreign
database.

After a foreign database has been "associated” with a secondary database, all keys inserted into the
secondary must exist in the foreign database. Attempting to add a record with a foreign key that does
not exist in the foreign database will cause the put method to fail and return DB_FOREI GN_CONFLI CT.

Deletions in the foreign database affect the secondary in a manner defined by the flags parameter.
See Foreign Indices in the Berkeley DB Programmer's Reference Guide for more information.

The Db: : associ ate_forei gn() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

callback
The callback parameter is a callback function that nullifies the foreign key portion of a data Dbt.
The callback parameter must be NULL if either DB_FOREIGN_ABORT or DB_FOREIGN_CASCADE is set.
The callback takes four arguments:
e secondary
The secondary parameter is the database handle for the secondary.
e key
The key parameter is a Dbt referencing the primary key.
» data
The data parameter is a Dbt referencing the primary data item to be updated.
« foreignkey
The foreignkey parameter is a Dbt referencing the foreign key which is being deleted.

« changed

4/12/2010

DB C++ APl Page 9

../../programmer_reference/am_foreign.html

Db::associate_foreign()

Errors

The changed parameter is a pointer to a boolean value, indicated whether data has changed.

|:| Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.
flags
The flags parameter must be set to one of the following values:
o DB FOREI GN_ABORT

Abort the deletion of a key in the foreign database and return DB_FOREIGN_CONFLICT if that key
exists in the secondary database. The deletion should be protected by a transaction to ensure database
integrity after the aborted delete.

« DB_FORE| GN_CASCADE

The deletion of a key in the foreign database will also delete that key from the secondary database
(and the corresponding entry in the secondary's primary database.)

o DB_FOREI GN_NULLI FY

The deletion of a key in the foreign database will call the nullification function passed to
associate_foreign and update the secondary database with the changed data.

secondary

The secondary parameter should be an open database handle of a database that contains a secondary
index who's keys also exist in the foreign database.

The Db: : associ ate_forei gn() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKQUT is returned.

4/12/2010

DB C++ APl Page 10

Db::associate_foreign()

EINVAL

If the foreign database handle is a secondary index; the foreign database handle has been configured
to allow duplicates; the foreign database handle is a renumbering recno database; callback is configured
and DB_FOREIGN_NULLIFY is not; DB_FOREIGN_NULLIFY is configured and callback is not.

Class
Db

See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 11

Db::close()

Db::close()

#include <db_cxx. h>

int
Db::close(u_int32_t flags);

The Db: : cl ose() method flushes any cached database information to disk, closes any open cursors,
frees any allocated resources, and closes any underlying files.

Although closing a database handle will close any open cursors, it is recommended that applications
explicitly close all their Dbc handles before closing the database. The reason why is that when the
cursor is explicitly closed, the memory allocated for it is reclaimed; however, this will not happen if
you close a database while cursors are still opened.

The same rule, for the same reasons, hold true for DbTxn handles. Simply make sure you close all your
transaction handles before closing your database handle.

Because key/data pairs are cached in memory, applications should make a point to always either close
database handles or sync their data to disk (using the Db::sync() method) before exiting, to ensure
that any data cached in main memory are reflected in the underlying file system.

When called on a database that is the primary database for a secondary index, the primary database
should be closed only after all secondary indices referencing it have been closed.

When multiple threads are using the Db concurrently, only a single thread may call the Db: : cl ose()
method.

The Db handle may not be accessed again after Db: : cl ose() is called, regardless of its return.

The Db: : cl ose() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

flags
The flags parameter must be set to 0 or be set to the following value:
« DB_NOSYNC

Do not flush cached information to disk. This flag is a dangerous option. It should be set only if the
application is doing logging (with transactions) so that the database is recoverable after a system or
application crash, or if the database is always generated from scratch after any system or application
crash.

It is important to understand that flushing cached information to disk only minimizes the window
of opportunity for corrupted data. Although unlikely, it is possible for database corruption to happen
if a system or application crash occurs while writing data to the database. To ensure that database
corruption never occurs, applications must either: use transactions and logging with automatic

recovery; use logging and application-specific recovery; or edit a copy of the database, and once all

4/12/2010

DB C++ APl Page 12

Db::close()

applications using the database have successfully called Db: : cl ose() , atomically replace the original
database with the updated copy.

Note that this flag only works when the database has been opened using an environment.

Errors

The Db: : cl ose() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class
Db
See Also
Database and Related Methods
4/12/2010

DB C++ APl Page 13

Db

Db
#include <db_cxx. h>
class Db {
public:
Db(DoEnv *dbenv, u_int32_t flags);
~Do() ;
DB *Db::get DB();
const DB *Db::get_const_DB() const;
static Db *Db::get Db(DB *db);
static const Db *Db::get_const_Db(const DB *db);
b
The Db handle is the handle for a Berkeley DB database, which may or may not be part of a database
environment.
Db handles are free-threaded if the DB_THREAD flag is specified to the Db::open() method when the
database is opened or if the database environment in which the database is opened is free-threaded.
The handle should not be closed while any other handle that refers to the database is in use; for
example, database handles must not be closed while cursor handles into the database remain open,
or transactions that include operations on the database have not yet been committed or aborted. Once
the Db::close(), Db::remove(), Db::rename(), or Db::verify() methods are called, the handle may not
be accessed again, regardless of the method's return.
The constructor creates a Db object that is the handle for a Berkeley DB database. The constructor
allocates memory internally; calling the Db::close(), Db::remove(), or Db::rename() methods will free
that memory.
Note that destroying the Db object is synonomous with calling Db: : cl ose(0) .
Each Db object has an associated DB struct, which is used by the underlying implementation of Berkeley
DB and its C-language API. The Db:: get_DB() method returns a pointer to this struct. Given a const
Db object, Db:: get _const _DB() returns a const pointer to the same struct.
Given a DB struct, the Db: : get _Db() method returns the corresponding Db object, if there is one. If the
DB object was not associated with a Db (that is, it was not returned from a call to the Db: : get _DB()
method), then the result of Db: : get _Db() is undefined. Given a const DB struct, Db::get_const_Db()
returns the associated const Dbobject, if there is one.
These methods may be useful for Berkeley DB applications including both C and C++ language software.
It should not be necessary to use these calls in a purely C++ application.
4/12/2010 DB C++ API Page 14

Db

Parameters

Class

dbenv

If no dbenv value is specified, the database is standalone; that is, it is not part of any Berkeley DB
environment.

If a dbenv value is specified, the database is created within the specified Berkeley DB environment.
The database access methods automatically make calls to the other subsystems in Berkeley DB, based
on the enclosing environment. For example, if the environment has been configured to use locking,
the access methods will automatically acquire the correct locks when reading and writing pages of the
database.

flags
The flags parameter is currently unused, and must be set to 0.
o DB_CXX_NO EXCEPTI ON

The Berkeley DB C++ API supports two different error behaviors. By default, whenever an error
occurs, an exception is thrown that encapsulates the error information. This generally allows for
cleaner logic for transaction processing because a try block can surround a single transaction. However,
if this flag is specified, exceptions are not thrown; instead, each individual function returns an error
code.

If a dbenv value is specified, this flag is ignored, and the error behavior of the specified environment
is used instead.

Db

See Also

Database and Related Methods

4/12/2010

DB C++ APl Page 15

Db::compact()

Db::compact()

#include <db_cxx. h>

i nt
Db: : conpact (DbTxn *txni d,
Dbt *start, Dbt *stop, DB COVPACT *c_data, u_int32_t flags, Dbt *end);

The Db: : conpact () method compacts Btree and Recno access method databases, and optionally returns
unused Btree, Hash or Recno database pages to the underlying filesystem.

The Db: : conpact () method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.

If a transaction handle is supplied to this method, then the operation is performed using that transaction.
In this event, large sections of the tree may be locked during the course of the transaction.

If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected using multiple transactions. These transactions will be
periodically committed to avoid locking large sections of the tree. Any deadlocks encountered cause
the compaction operation to be retried from the point of the last transaction commit.

start

If non-NULL, the start parameter is the starting point for compaction in a Btree or Recno database.
Compaction will start at the smallest key greater than or equal to the specified key. If NULL, compaction
will start at the beginning of the database.

stop

If non-NULL, the stop parameter is the stopping point for compaction in a Btree or Recno database.
Compaction will stop at the page with the smallest key greater than the specified key. If NULL,
compaction will stop at the end of the database.

c_data

If non-NULL, the c_data parameter contains additional compaction configuration parameters, and
returns compaction operation statistics, in a structure of type DB_COMPACT.

The following input configuration fields are available from the DB_COMPACT structure:

e int conpact fillpercent;

4/12/2010

DB C++ APl Page 16

Db::compact()

If non-zero, this provides the goal for filling pages, specified as a percentage between 1 and 100.
Any page in a Btree or Recno databases not at or above this percentage full will be considered for
compaction. The default behavior is to consider every page for compaction, regardless of its page
fill percentage.

e int conpact _pages;

If non-zero, the call will return after the specified number of pages have been freed, or no more
pages can be freed.

e db_tineout t conpact tineout;

If non-zero, and no txnid parameter was specified, this parameter identifies the lock timeout used
for implicit transactions, in microseconds.

The following output statistics fields are available from the DB_COVPACT structure:
e u_int32_t conpact_deadl ock;

An output statistics parameter: if no txnid parameter was specified, the number of deadlocks which
occurred.

u_int32_t conpact_ pages_exanine;

An output statistics parameter: the number of database pages reviewed during the compaction phase.

u_int32_t conpact_pages_free;

An output statistics parameter: the number of database pages freed during the compaction phase.

u_int32_t conpact |evels;

An output statistics parameter: the number of levels removed from the Btree or Recno database
during the compaction phase.

u_int32_t conpact_pages_truncated,;

An output statistics parameter: the number of database pages returned to the filesystem.
flags

The flags parameter must be set to 0 or one of the following values:

« DB_FREELI ST_ONLY

Do no page compaction, only returning pages to the filesystem that are already free and at the end
of the file. This flag must be set if the database is a Hash access method database.

« DB_FREE_SPACE

Return pages to the filesystem when possible. If this flag is not specified, pages emptied as a result
of compaction will be placed on the free list for re-use, but never returned to the filesystem.

4/12/2010

DB C++ APl Page 17

Db::compact()

Errors

Note that only pages at the end of a file can be returned to the filesystem. Because of the one-pass
nature of the compaction algorithm, any unemptied page near the end of the file inhibits returning
pages to the file system. A repeated call to the Db: : conpact () method with a low compact_fillpercent
may be used to return pages in this case.

end

If non-NULL, the end parameter will be filled in with the database key marking the end of the
compaction operation in a Btree or Recno database. This is generally the first key of the page where
the operation stopped.

The Db: : conpact () method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKQUT is returned.

EACCES

An attempt was made to modify a read-only database.

4/12/2010

DB C++ APl Page 18

Db::compact()

EINVAL

An invalid flag value or parameter was specified.
Class

Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 19

Db::del()

Db::del()

#include <db_cxx. h>

int
Db: : del (DbTxn *txnid, Dbt *key, u_int32_t flags);

The Db: : del () method removes key/data pairs from the database. The key/data pair associated with
the specified key is discarded from the database. In the presence of duplicate key values, all records
associated with the designated key will be discarded.

When called on a database that has been made into a secondary index using the Db::associate() method,
the Db: : del () method deletes the key/data pair from the primary database and all secondary indices.

The Db: : del () method will return DB_NOTFOUND if the specified key is not in the database. The

Db: : del () method will return DB_KEYEMPTY if the database is a Queue or Recno database and the
specified key exists, but was never explicitly created by the application or was later deleted. Unless
otherwise specified, the Db: : del () method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags
The flags parameter must be set to 0 or one of the following values:
» DB_CONSUME

If the database is of type DB_QUEUE then this flag may be set to force the head of the queue to
move to the first non-deleted item in the queue. Normally this is only done if the deleted item is
exactly at the head when deleted.

o DB_MULTIPLE
Delete multiple data items using keys from the buffer to which the key parameter refers.

To delete records in bulk by key with the btree or hash access methods, construct a bulk buffer in
the key Dbt using DbMultipleDataBuilder. To delete records in bulk by record number, construct a
bulk buffer in the key Dbt using DbMultipleRecnoDataBuilder with a data size of zero.

A successful bulk delete operation is logically equivalent to a loop through each key/data pair,
performing a Db::del() for each one.

See the DBT and Bulk Operations for more information on working with bulk updates.
The DB_MJULTI PLE flag may only be used alone.
o DB_MULTI PLE_KEY

Delete multiple data items using keys and data from the buffer to which the key parameter refers.

4/12/2010

DB C++ APl Page 20

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Db::del()

Errors

To delete records in bulk with the btree or hash access methods, construct a bulk buffer in the key
Dbt using DbMultipleKeyDataBuilder. To delete records in bulk with the recno or hash access methods,
construct a bulk buffer in the key Dbt using DbMultipleRecnoDataBuilder.

See the DBT and Bulk Operations for more information on working with bulk updates.
The DB_MJILTI PLE_KEY flag may only be used alone.

key

The key Dbt operated on.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected.

The Db: : del () method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DB_FOREIGN_CONFLICT
A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for that record
does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 10) was declared for a foreign key database, and then subsequently a
record was deleted from the foreign key database without first removing it from the constrained
secondary database.

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB _LOCK DEADLQOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK NOTGRANTED is returned.

4/12/2010

DB C++ APl Page 21

Db::del()

Class

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB _REP_LQOCKQUT is returned.

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.
EACCES

An attempt was made to modify a read-only database.
EINVAL

An invalid flag value or parameter was specified.

Db

See Also

Database and Related Methods

4/12/2010

DB C++ APl Page 22

Db::err()

Db::err()

#include <db_cxx. h>
Db::err(int error, const char *fnt, ...);

Db: :errx(const char *fnmt, ...);

The DbEnv::err(), DbEnv::errx(), Db::err() and Db::errx() methods provide error-messaging
functionality for applications written using the Berkeley DB library.

The Db: : err() and DbEnv::err() methods construct an error message consisting of the following elements:

An optional prefix string

If no error callback function has been set using the DbEnv::set_errcall() method, any prefix string
specified using the DbEnv::set_errpfx() method, followed by two separating characters: a colon and
a <space> character.

An optional printf-style message

The supplied message fmt, if non-NULL, in which the ANSI C X3.159-1989 (ANSI C) printf function
specifies how subsequent parameters are converted for output.

A separator
Two separating characters: a colon and a <space> character.
A standard error string

The standard system or Berkeley DB library error string associated with the error value, as returned
by the DbEnv::strerror() method.

The Db::errx() and DbEnv:: errx() methods are the same as the Db: : err() and DbEnv::err() methods,
except they do not append the final separator characters and standard error string to the error message.

This constructed error message is then handled as follows:

If an error callback function has been set (see Db::set_errcall() and DbEnv::set_errcall()), that
function is called with two parameters: any prefix string specified (see Db::set_errpfx() and
DbEnv::set_errpfx()) and the error message.

If a C library FILE * has been set (see Db::set_errfile() and DbEnv::set_errfile()), the error message
is written to that output stream.

If a C++ ostream has been set (see DbEnv::set_error_stream() and Db::set_error_stream()), the error
message is written to that stream.

If none of these output options have been configured, the error message is written to stderr, the
standard error output stream.

4/12/2010

DB C++ APl Page 23

Db::err()

Parameters
error

The error parameter is the error value for which the DbEnv::err() and Db:: err() methods will display
an explanatory string.

fmt

The fmt parameter is an optional printf-style message to display.
Class

Db

See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 24

Db::exists()

Db::exists()

#include <db_cxx. h>
i nt
Db: : exi sts(DbTxn *txnid, Dbt *key, u_int32_t flags);
The Db: : exi st s() method returns whether the specified key appears in the database.

The Db: : exi st s() method will return DB_NOTFOUND if the specified key is not in the database. The
Db: : exi sts() method will return DB_KEYEMPTY if the database is a Queue or Recno database and the
specified key exists, but was never explicitly created by the application or was later deleted.

Parameters

flags

The flags parameter must be set to zero or by bitwise inclusively OR'ing together one or more of the
following values:

« DB_READ COW TTED
Configure a transactional read operation to have degree 2 isolation (the read is not repeatable).
« DB_READ_UNCOWM TTED

Configure a transactional read operation to have degree 1 isolation, reading modified but not yet
committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified when the
underlying database was opened.

« DB_RWW

Acquire write locks instead of read locks when doing the read, if locking is configured. Setting this
flag can eliminate deadlock during a read-modify-write cycle by acquiring the write lock during the
read part of the cycle so that another thread of control acquiring a read lock for the same item, in
its own read-modify-write cycle, will not result in deadlock.

Because the Db: : exi st s() method will not hold locks across Berkeley DB calls in non-transactional
operations, the DB_RMW flag to the Db: ; exi sts() call is meaningful only in the presence of
transactions.

key
The key Dbt operated on.
txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.

4/12/2010

DB C++ APl Page 25

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Db::exists()

If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected.

Class
Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 26

Db::fd()

Db::fd()

#include <db_cxx. h>

int

Db::fd(int *fdp);
The Db:: fd() method provides access to a file descriptor representative of the underlying database.
A file descriptor referring to the same file will be returned to all processes that call Db::open() with
the same file parameter.

This file descriptor may be safely used as a parameter to the fcntl(2) and flock(2) locking functions.

The Db: : fd() method only supports a coarse-grained form of locking. Applications should instead use
the Berkeley DB lock manager where possible.

The Db: : fd() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

fdp

The fdp parameter references memory into which the current file descriptor is copied.
Class

Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 27

Db::get()

Db::get()

#include <db_cxx. h>

int

Db: : get (DbTxn *txnid, Dbt *key, Dbt *data, u_int32_t flags);

int

Db: : pget (DbTxn *txnid, Dbt *key, Dbt *pkey, Dbt *data, u_int32_t flags);

The Db: : get () method retrieves key/data pairs from the database. The address and length of the data
associated with the specified key are returned in the structure to which data refers.

In the presence of duplicate key values, Db: : get () will return the first data item for the designated
key. Duplicates are sorted by:

« Their sort order, if a duplicate sort function was specified.

« Any explicit cursor designated insertion.

» By insert order. This is the default behavior.

Retrieval of duplicates requires the use of cursor operations. See Dbc::get() for details.

When called on a database that has been made into a secondary index using the Db::associate() method,
the Db: : get () and Db: : pget () methods return the key from the secondary index and the data item
from the primary database. In addition, the Db:: pget () method returns the key from the primary
database. In databases that are not secondary indices, the Db:: pget () method will always fail.

The Db: : get () method will return DB_NOTFOUND if the specified key is not in the database. The

Db: : get () method will return DB_KEYEMPTY if the database is a Queue or Recno database and the
specified key exists, but was never explicitly created by the application or was later deleted. Unless
otherwise specified, the Db: : get () method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

data

The data Dbt operated on.

flags

The flags parameter must be set to 0 or one of the following values:
« DB_CONSUME

Return the record number and data from the available record closest to the head of the queue, and
delete the record. The record number will be returned in key, as described in Dbt. The data will be
returned in the data parameter. A record is available if it is not deleted and is not currently locked.
The underlying database must be of type Queue for DB_CONSUME to be specified.

4/12/2010

DB C++ APl Page 28

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Db::get()

« DB_CONSUME_WAI T

The DB_CONSUME_WAIT flag is the same as the DB_CONSUME flag, except that if the Queue database
is empty, the thread of control will wait until there is data in the queue before returning. The
underlying database must be of type Queue for DB_CONSUME_WAIT to be specified.

If lock or transaction timeouts have been specified, the Db: : get () method with the DB_CONSUME_WAIT
flag may return DB_LOCK_NOTGRANTED. This failure, by itself, does not require the enclosing
transaction be aborted.

DB_GET_BOTH
Retrieve the key/data pair only if both the key and data match the arguments.
When using a secondary index handle, the DB_GET_BOTH: flag causes:

» the Db: : pget () version of this method to retun the secondary key/primary key/data tuple only if
both the primary and secondary keys match the arguments.

» the Db:: get() version of this method to result in an error.
DB_SET_RECNO

Retrieve the specified numbered key/data pair from a database. Upon return, both the key and data
items will have been filled in.

The data field of the specified key must be a pointer to a logical record number (that is, a
db_recno_t). This record number determines the record to be retrieved.

For DB_SET_RECNO to be specified, the underlying database must be of type Btree, and it must have
been created with the DB_RECNUM flag.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags parameter:

« DB_| GNORE_LEASE

Return the data item irrespective of the state of master leases. The item will be returned under all
conditions: if master leases are not configured, if the request is made to a client, if the request is
made to a master with a valid lease, or if the request is made to a master without a valid lease.

DB_MULTI PLE
Return multiple data items in the buffer to which the data parameter refers.

In the case of Btree or Hash databases, all of the data items associated with the specified key are
entered into the buffer. In the case of Queue or Recno databases, all of the data items in the database,
starting at, and subsequent to, the specified key, are entered into the buffer.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM). The buffer must be at least as large as the page size of the underlying database,
aligned for unsigned integer access, and be a multiple of 1024 bytes in size. If the buffer size is

4/12/2010

DB C++ APl Page 29

../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED

Db::get()

insufficient, then upon return from the call the size field of the data parameter will have been set
to an estimated buffer size, and the error DB_BUFFER_SMALL is returned. (The size is an estimate
as the exact size needed may not be known until all entries are read. It is best to initially provide a
relatively large buffer, but applications should be prepared to resize the buffer as necessary and
repeatedly call the method.)

The DB_MULTIPLE flag may only be used alone, or with the DB_GET_BOTH and DB_SET_RECNO options.
The DB_MULTIPLE flag may not be used when accessing databases made into secondary indices using
the Db::associate() method.

See the DBT and Bulk Operations for more information on working with bulk get.
« DB_READ COWM TTED

Configure a transactional get operation to have degree 2 isolation (the read is not repeatable).
« DB_READ UNCOWM TTED

Configure a transactional get operation to have degree 1 isolation, reading modified but not yet
committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified when the
underlying database was opened.

« DB_RW

Acquire write locks instead of read locks when doing the read, if locking is configured. Setting this
flag can eliminate deadlock during a read-modify-write cycle by acquiring the write lock during the
read part of the cycle so that another thread of control acquiring a read lock for the same item, in
its own read-modify-write cycle, will not result in deadlock.

Because the Db: : get () method will not hold locks across Berkeley DB calls in non-transactional
operations, the DB_RMW flag to the Db: : get () call is meaningful only in the presence of transactions.

key

The key Dbt operated on.

pkey

The pkey parameter is the return key from the primary database.
txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected.

4/12/2010

DB C++ APl Page 30

Db::get()

Errors

The Db: : get () method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DbMemoryException or DB_BUFFER_SMALL
The requested item could not be returned due to undersized buffer.

DbMemoryException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB BUFFER SMALL is returned.

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK NOTGRANTED is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

The DB_CONSUME_WAI T flag was specified, lock or transaction timers were configured and the lock could
not be granted before the wait-time expired.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DB_REP_LEASE_EXPIRED
The operation failed because the site's replication master lease has expired.
DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

4/12/2010

DB C++ APl Page 31

Db::get()

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB _REP_LOCKQUT is returned.

DB_SECONDARY_BAD
A secondary index references a nonexistent primary key.
EINVAL

If a record number of 0 was specified; the DB_THREAD flag was specified to the Db::open() method
and none of the DB_DBT_MALLOC, DB_DBT_REALLOC or DB_DBT_USERMEM flags were set in the Dbt;
the Db: : pget () method was called with a Db handle that does not refer to a secondary index; or if an
invalid flag value or parameter was specified.

Class
Db

See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 32

Db::get_bt_minkey()

Db::get_bt_minkey()

#include <db_cxx. h>

int
Db: : get bt _m nkey(u_int32_t *bt_m nkeyp);

The Db: : get _bt _ni nkey() method returns the minimum number of key/data pairs intended to be stored
on any single Btree leaf page. This value can be set using the Db::set_bt_minkey() method.

The Db:: get bt _m nkey() method may be called at any time during the life of the application.

The Db:: get _bt_m nkey() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
bt_minkeyp

The Db: : get _bt _m nkey() method returns the minimum number of key/data pairs intended to be stored
on any single Btree leaf page in bt_minkeyp.

Class
Db
See Also

Database and Related Methods, Db::set_bt_minkey()

4/12/2010 DB C++ APl Page 33

Db::get_byteswapped()

Db::get_byteswapped()
#include <db_cxx. h>
int
Db: : get _byt eswapped(int *i sswapped);

The Db: : get byt eswapped() method returns whether the underlying database files were created on an
architecture of the same byte order as the current one, or if they were not (that is, big-endian on a
little-endian machine, or vice versa). This information may be used to determine whether application
data needs to be adjusted for this architecture or not.

The Db: : get byt eswapped() method may not be called before the Db::open() method is called.

The Db: : get byt eswapped() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
isswapped

If the underlying database files were created on an architecture of the same byte order as the current
one, 0 is stored into the memory location referenced by isswapped. If the underlying database files
were created on an architecture of a different byte order as the current one, 1 is stored into the
memory location referenced by isswapped.

Errors

The Db: : get _byt eswapped() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL
If the method was called before Db::open() was called; or if an invalid flag value or parameter was
specified.
Class
Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 34

Db::get_cachesize()

Db::get_cachesize()

#include <db_cxx. h>

int
Db: : get _cachesize(u_int32_t *gbytesp, u_int32_t *bytesp, int *ncachep);

The Dh: : get _cachesi ze() method returns the current size and composition of the cache. These values
may be set using the Db::set_cachesize() method.

The Db: : get _cachesi ze() method may be called at any time during the life of the application.

The Db: : get _cachesi ze() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bytesp

The bytesp parameter references memory into which the additional bytes of memory in the cache is
copied.

gbytesp
The gbytesp parameter references memory into which the gigabytes of memory in the cache is copied.
ncachep

The ncachep parameter references memory into which the number of caches is copied.

Class
Db
See Also
Database and Related Methods, Db::set_cachesize()
4/12/2010 DB C++ API Page 35

Db::get_create_dir()

Db::get_create_dir()

#include <db_cxx. h>

int
Db: : get _create dir(const char **dirp);

Determine which directory a database file will be created in or was found in.
The Db:: get _create_dir() method may be called at any time.

The Db: : get _create_dir() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
dirp

The dirp will be set to the directory specified in the call to Db::set_create_dir() method on this handle
or to the directory that the database was found in after Db::open() has been called.

Errors

The Db: : get _create_dir() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.
Class

Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 36

Db::get_dbname()

Db::get_dbname()

#include <db_cxx. h>

int
Db: : get _dbnane(const char **filenanmep, const char **dbnanep);

The Db: : get _dbnane() method returns the filename and database name used by the Db handle.

The Db: : get _dbnane() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
filenamep
The filenamep parameter references memory into which a pointer to the current filename is copied.
dbnamep

The dbnamep parameter references memory into which a pointer to the current database name is

copied.
Class

Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 37

Db::get_encrypt_flags()

Db::get_encrypt_flags()

#include <db_cxx. h>

int
Db: : get _encrypt _flags(u_int32_t *flagsp);

The Db:: get _encrypt _flags() method returns the encryption flags. This flag can be set using the
Db::set_encrypt() method.

The Db:: get_encrypt _flags() method may be called at any time during the life of the application.

The Db:: get_encrypt _flags() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The Db: : get _encrypt _flags() method returns the encryption flags in flagsp.
Class

Db
See Also

Database and Related Methods, Db::set_encrypt()

4/12/2010 DB C++ APl Page 38

Db::get_errfile()

Db::get_errfile()

#include <db_cxx. h>
void Db::get_errfile(FILE **errfilep);
The Db::get _errfile() method returns the FI LE *, as set by the Db::set_errfile() method.
The Db::get _errfile() method may be called at any time during the life of the application.
Parameters
errfilep
The Db: : get_errfile() method returns the FILE * in errfilep.
Class
Db
See Also

Database and Related Methods, Db::set_errfile()

4/12/2010 DB C++ APl Page 39

Db::get_errpfx()

Db::get_errpfx()
#include <db_cxx. h>
voi d Db::get_errpfx(const char **errpfxp);
The Db: : get _errpfx() method returns the error prefix.
The Db:: get _errpfx() method may be called at any time during the life of the application.
Parameters
errpfxp
The Db: : get _errpfx() method returns a reference to the error prefix in errpfxp.
Class
Db
See Also

Database and Related Methods, Db::set_errpfx()

4/12/2010 DB C++ APl Page 40

Db::get_flags()

Db::get_flags()
#include <db_cxx. h>
int Db::get flags(u_int32_t *flagsp);
The Db: : get _flags() method returns the current database flags as set by the Db::set_flags() method.
The Db:: get _flags() method may be called at any time during the life of the application.

The Db:: get _flags() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The Db: : get _flags() method returns the current flags in flagsp.
Class

Db
See Also

Database and Related Methods, Db::set_flags()

4/12/2010 DB C++ APl Page 41

Db::get_h_ffactor()

Db::get_h_ffactor()
#include <db_cxx. h>
int Db::get_h ffactor(u_int32_t *h_ffactorp);

The Db::get_h _ffactor() method returns the hash table density as set by the Db::set_h_ffactor()
method. The hash table density is the number of items that Berkeley DB tries to place in a hash bucket
before splitting the hash bucket.

The Db::get_h _ffactor() method may be called at any time during the life of the application.

The Db::get _h_ffactor() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

h_ffactorp

The Db::get_h_ffactor() method returns the hash table density in h_ffactorp.
Class

Db
See Also

Database and Related Methods, Db::set_h_ffactor()

4/12/2010 DB C++ APl Page 42

Db::get_h_nelem()

Db::get_h_nelem()

#include <db_cxx. h>

i nt
Db::get _h_nelem(u_int32_t *h_nel enp);

The Db:: get _h_nel en() method returns the estimate of the final size of the hash table as set by the
Db::set_h_nelem() method.

The Db:: get _h_nel en() method may be called at any time during the life of the application.

The Db:: get _h_nel en() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

h_nelemp

The Db: : get _h_nel en{) method returns the estimate of the final size of the hash table in h_nelemp.
Class

Db
See Also

Database and Related Methods, Db::set_h_nelem()

4/12/2010 DB C++ APl Page 43

Db::get_lorder()

Db::get_lorder()

#include <db_cxx. h>

i nt

Db::get _lorder(int *lorderp);
The Db:: get | order () method returns the database byte order; a byte order of 4,321 indicates a big
endian order, and a byte order of 1,234 indicates a little endian order. This value is set using the
Db::set_lorder() method.
The Db:: get | order() method may be called at any time during the life of the application.

The Db:: get | order() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lorderp

The Db: : get _| order () method returns the database byte order in lorderp.
Class

Db
See Also

Database and Related Methods, Db::set_lorder()

4/12/2010 DB C++ APl Page 44

Db::get_msgfile()

Db::get_msgfile()
#include <db_cxx. h>
voi d Db::get_nsgfile(FILE **nsgfilep);

The Db: : get _msgfil e() method returns the FI LE * used to output informational or statistical messages.
This file handle is configured using the Db::set_msgfile() method.

The Db:: get_msgfil e() method may be called at any time during the life of the application.
Parameters

msgfilep

The Db: : get _nsgfil e() method returns the FI LE * in msgfilep.
Class

Db
See Also

Database and Related Methods, Db::set_msgfile()

4/12/2010 DB C++ APl Page 45

Db::get_multiple()

Db::get_multiple()

#include <db_cxx. h>

int
Db::get _multiple()

This method returns non-zero if the Db handle references a physical file supporting multiple databases,
and 0 otherwise.

In this case, the Db handle is a handle on a database whose key values are the names of the databases
stored in the physical file and whose data values are opaque objects. No keys or data values may be
modified or stored using the database handle.
This method may not be called before the Db::open() method is called.

Class
Db

See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 46

Db::get_open_flags()

Db::get_open_flags()

#include <db_cxx. h>

int
Db: : get _open_flags(u_int32_t *flagsp);

The Db: : get _open_flags() method returns the current open method flags. That is, this method returns
the flags that were specified when Db::open() was called.

The Db:: get _open_flags() method may not be called before the Db: : open() method is called.

The Db:: get _open_flags() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The Db: : get _open_flags() method returns the current open method flags in flagsp.
Class

Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 47

Db::get_partition_callback()

Db::get_partition_callback()

#include <db_cxx. h>

int
Db::get_partition_callback(u_int32_t *partsp,
u_int32_t (**callback_fcn) (DB *dbp, DBT *key);

The Db::get _partition_cal | back() method returns the partitioning information as set by the
Db::set_partition() method.

The Db::get _partition_callback() method may be called at any time during the life of the application.

The Db::get_partition_call back() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
partsp
The Db: : get_partition_callback() method returns number of partitions in the partsp parameter.
callback_fcn
The callback_fcn parameter will be set to the partitioning function.
Class
Db
See Also

Database and Related Methods, Db::set_partition()

4/12/2010 DB C++ APl Page 48

Db::get_partition_dirs()

Db::get_partition_dirs()

#include <db_cxx. h>

int
Db::get _partition_dirs(const char ***dirsp);

Determine which directorise the database partitions files will be created in or were found in.
The Db::get _partition_dirs() method may be called at any time.

The Db::get _partition_dirs() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
dirsp

The dirsp will be set to the array of directories specified in the call to Db::set_partition_dirs() method
on this handle or to the directoreies that the database partitions were found in after Db::open() has
been called.

Errors

The Db: :get_partition_dirs() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.
Class

Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 49

Db::get_partition_keys()

Db::get_partition_keys()

#include <db_cxx. h>

int
Db::get_partition_keys(u_int32_t *partsp, DBT *keysp);

The Db::get _partition_keys() method returns the partitioning information as set by the
Db::set_partition() method.

The Db:: get _partition_keys() method may be called at any time during the life of the application.

The Db:: get _partition_keys() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
partsp
The Db: : get_partition_keys() method returns number of partitions in the partsp parameter.
keysp
The keysp parameter will be set to the array of partitioning keys.
Class
Db
See Also

Database and Related Methods, Db::set_partition()

4/12/2010 DB C++ APl Page 50

Db::get_pagesize()

Db::get_pagesize()
#include <db_cxx. h>
int
Db: : get _pagesi ze(u_int32_t *pagesi zep);

The Db: : get _pagesi ze() method returns the database's current page size, as set by the
Db::set_pagesize() method. Note that if Db: : set _pagesi ze() was not called by your application, then
the default pagesize is selected based on the underlying filesystem 1/0 block size. If you call

Db: : get _pagesi ze() before you have opened the database, the value returned by this method is

therefore the underlying filesystem 1/0 block size.
The Db: : get _pagesi ze() method may be called only after the database has been opened.

The Db: : get _pagesi ze() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

pagesizep

The Db: : get _pagesi ze() method returns the page size in pagesizep.
Class

Db

See Also

Database and Related Methods, Db::set_pagesize()

4/12/2010 DB C++ APl Page 51

Db::get_priority()

Db::get_priority()

#include <db_cxx. h>

int
Db::get _priority(DB CACHE PRIORITY *priorityp);

The Db:: get _priority() method returns the cache priority for pages referenced by the Db handle.
This priority value is set using the Db::set_priority() method.

The Db:: get _priority() method may be called only after the database has been opened.

The Db::get _priority() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priorityp

The Db: : get_priority() method returns a reference to the cache priority in priorityp. See
Db::set_priority() for a list of possible priorities.

Class
Db
See Also

Database and Related Methods, Db::set_priority()

4/12/2010 DB C++ APl Page 52

Db::get_q_extentsize()

Db::get_q_extentsize()

#include <db_cxx. h>

int
Db::get _g_extentsize(u_int32_t *extentsizep);

The Dh: : get _q_extentsize() method returns the number of pages in an extent. This value is used only
for Queue databases and is set using the Db::set_q_extentsize() method.

The Db:: get _q_extentsize() method may be called only after the database has been opened.

The Db: : get _qg_extentsize() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
extentsizep

The Db:: get _g_extentsi ze() method returns the number of pages in an extent in extentsizep. If used
on a handle that has not yet been opened, 0 is returned.

Class

Db

See Also

Database and Related Methods, Db::set_q_extentsize()

4/12/2010 DB C++ APl Page 53

Db::get_re_delim()

Db::get_re_delim()

#include <db_cxx. h>

int

Db::get_re_delin(int *delinp);
The Db: : get _re_del i {) method returns the delimiting byte, which is used to mark the end of a record
in the backing source file for the Recno access method. This value is set using the Db::set_re_delim()
method.

The Db:: get _re_delim) method may be called only after the database has been opened.

The Db:: get _re_delim) method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
delimp
The Db: : get _re_deli m() method returns the delimiting byte in delimp. If this method is called on a
handle that has not yet been opened, then the default delimiting byte is returned. See
Db::set_re_delim() for details.

Class
Db

See Also

Database and Related Methods, Db::set_re_delim()

4/12/2010 DB C++ APl Page 54

Db::get_re_len()

Db::get_re_len()

#include <db_cxx. h>

i nt
Db::get re len(u_int32_t *re_lenp);

The Db: : get _re_| en() method returns the length of the records held in a Queue access method database.
This value can be set using the Db::set_re_len() method.

The Db:: get _re_len() method may be called only after the database has been opened.

The Db:: get _re_|en() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
re_lenp

The Db: : get_re_|l en() method returns the record length in re_lenp. If the record length has never
been set using Db::set_re_len(), then 0 is returned.

Class
Db
See Also

Database and Related Methods, Db::set_re_len()

4/12/2010 DB C++ APl Page 55

Db::get_re_pad()

Db::get_re_pad()

#include <db_cxx. h>

int
Db: :get_re_pad(int *re_padp);

The Db:: get _re_pad() method returns the pad character used for short, fixed-length records used by
the Queue and Recno access methods. This character is set using the Db::set_re_pad() method.

The Db:: get _re_pad() method may be called only after the database has been opened.

The Db:: get _re_pad() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

re_padp

The Db: : get _re_pad() method returns the pad character in re_padp. If used on a handle that has not
yet been opened, the default pad character is returned. See the Db::set_re_pad() method description
for what that default value is.

Class
Db

See Also

Database and Related Methods, Db::set_re_pad()

4/12/2010 DB C++ APl Page 56

Db::get_re_source()

Db::get_re_source()

#include <db_cxx. h>

int
Db: : get _re_source(const char **sourcep);

The Db:: get_re_source() method returns the source file used by the Recno access method. This file
is configured for the Recno access method using the Db::set_re_source() method.

The Db:: get _re_source() method may be called only after the database has been opened.

The Db:: get _re_source() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

sourcep

The Db: : get _re_source() method returns a reference to the source file in sourcep.
Class

Db
See Also

Database and Related Methods, Db::set_re_source()

4/12/2010 DB C++ APl Page 57

Db::get_type()

Db::get_type()

#include <db_cxx. h>
i nt
Db: : get _type(DBTYPE *type);

The Db: : get _type() method returns the type of the underlying access method (and file format). The
type value is one of DB_BTREE, DB_HASH, DB_RECNO, or DB_QUEUE. This value may be used to determine
the type of the database after a return from Db::open() with the type parameter set to DB_UNKNOWN.

The Db:: get _type() method may not be called before the Db::open() method is called.

The Db:: get _type() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

Class

type

The type parameter references memory into which the type of the underlying access method is copied.

The Db: : get _type() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called before Db::open() was called; or if an invalid flag value or parameter was
specified.

Db

See Also

Database and Related Methods

4/12/2010

DB C++ APl Page 58

Db::join()

Db::join()
#include <db_cxx. h>
int
Db: :join(Dbc **curslist, Dbc **dbcp, u_int32_t flags);

The Db: :j oi n() method creates a specialized join cursor for use in performing equality or natural joins
on secondary indices. For information on how to organize your data to use this functionality, see
Equality join.

The Db::joi n() method is called using the Db handle of the primary database.
The join cursor supports only the Dbc::get() and Dbc::close() cursor functions:
o Dbc::get()

Iterates over the values associated with the keys to which each item in curslist was initialized. Any
data value that appears in all items specified by the curslist parameter is then used as a key into
the primary, and the key/data pair found in the primary is returned. The flags parameter must be
set to 0 or the following value:

« DB_JO N | TEM

Do not use the data value found in all the cursors as a lookup key for the primary, but simply
return it in the key parameter instead. The data parameter is left unchanged.

In addition, the following flag may be set by bitwise inclusively OR'ing it into the flags parameter:
« DB_READ_UNCOWM TTED

Configure a transactional join operation to have degree 1 isolation, reading modified but not yet
committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified when the
underlying database was opened.

« DB_RWW

Acquire write locks instead of read locks when doing the read, if locking is configured. Setting this
flag can eliminate deadlock during a read-modify-write cycle by acquiring the write lock during
the read part of the cycle so that another thread of control acquiring a read lock for the same
item, in its own read-modify-write cycle, will not result in deadlock.

» Dbc::close()

Close the returned cursor and release all resources. (Closing the cursors in curslist is the responsibility
of the caller.)

The Db: :j oi n() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

4/12/2010 DB C++ APl Page 59

../../programmer_reference/am_cursor.html#am_join

Db::join()

Parameters

Errors

curslist

The curslist parameter contains a NULL terminated array of cursors. Each cursor must have been
initialized to refer to the key on which the underlying database should be joined. Typically, this
initialization is done by a Dbc::get() call with the DB_SET flag specified. Once the cursors have been
passed as part of a curslist, they should not be accessed or modified until the newly created join cursor
has been closed, or else inconsistent results may be returned.

Joined values are retrieved by doing a sequential iteration over the first cursor in the curslist parameter,
and a nested iteration over each secondary cursor in the order they are specified in the curslist
parameter. This requires database traversals to search for the current datum in all the cursors after
the first. For this reason, the best join performance normally results from sorting the cursors from the
one that refers to the least number of data items to the one that refers to the most. By default,

Db: :joi n() does this sort on behalf of its caller.

For the returned join cursor to be used in a transaction-protected manner, the cursors listed in curslist
must have been created within the context of the same transaction.

dbcp

The newly created join cursor is returned in the memory location to which dbcp refers.
flags

The flags parameter must be set to 0 or the following value:

« DB_JO N_NOSORT

Do not sort the cursors based on the number of data items to which they refer. If the data are
structured so that cursors with many data items also share many common elements, higher
performance will result from listing those cursors before cursors with fewer data items; that is, a
sort order other than the default. The DB_JOIN_NOSORT flag permits applications to perform join
optimization prior to calling the Db: : j oi n() method.

The Db: :j oi n() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

4/12/2010

DB C++ APl Page 60

Db::join()

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKQUT is returned.

DB_SECONDARY_BAD
A secondary index references a nonexistent primary key.
EINVAL

If cursor methods other than Dbc::get() or Dbc::close() were called; or if an invalid flag value or
parameter was specified.

Class
Db

See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 61

Db::key_range()

Db::key_range()

#include <db_cxx. h>

int
Db: : key_range(DbTxn *txnid
Dot *key, DB KEY RANGE *key range, u_int32_t flags);

The Db: : key_range() method returns an estimate of the proportion of keys that are less than, equal
to, and greater than the specified key. The underlying database must be of type Btree.

The Db: : key_range() method fills in a structure of type DB_KEY_RANGE. The following data fields are
available from the DB_KEY_RANGE structure:

o double less;
A value between 0 and 1, the proportion of keys less than the specified key.
» double equal;
A value between 0 and 1, the proportion of keys equal to the specified key.
o double greater;
A value between 0 and 1, the proportion of keys greater than the specified key.

Values are in the range of 0 to 1; for example, if the field less is 0.05, 5% of the keys in the database
are less than the key parameter. The value for equal will be zero if there is no matching key, and will
be non-zero otherwise.

The Db: : key_range() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

key
The key Dbt operated on.
key_range

The estimates are returned in the key_range parameter, which contains three elements of type double:
less, equal, and greater. Values are in the range of 0 to 1; for example, if the field less is 0.05, 5% of
the keys in the database are less than the key parameter. The value for equal will be zero if there is
no matching key, and will be non-zero otherwise.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.

4/12/2010

DB C++ APl Page 62

Db::key_range()

Errors

Class

If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected. The Db: : key_range() method does not retain the locks it
acquires for the life of the transaction, so estimates may not be repeatable.

flags

The flags parameter is currently unused, and must be set to 0.

The Db: : key_range() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKQUT is returned.

EINVAL

If the underlying database was not of type Btree; or if an invalid flag value or parameter was specified.

Db

4/12/2010

DB C++ APl Page 63

Db::key_range()

See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 64

Db::open()

Db::open()

#include <db_cxx. h>

int
Db: : open(DbTxn *txnid, const char *file,
const char *database, DBTYPE type, u_int32_t flags, int node);

The Db: : open() method opens the database represented by the file and database.

The currently supported Berkeley DB file formats (or access methods) are Btree, Hash, Queue, and

Recno. The Btree format is a representation of a sorted, balanced tree structure. The Hash format is
an extensible, dynamic hashing scheme. The Queue format supports fast access to fixed-length records
accessed sequentially or by logical record number. The Recno format supports fixed- or variable-length
records, accessed sequentially or by logical record number, and optionally backed by a flat text file.

Storage and retrieval for the Berkeley DB access methods are based on key/data pairs; see Dbt for
more information.

Calling Db: : open() is a relatively expensive operation, and maintaining a set of open databases will
normally be preferable to repeatedly opening and closing the database for each new query.

The Db: : open() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success. If Db: : open() fails, the Db::close() method
must be called to discard the Db handle.

Parameters

database

The database parameter is optional, and allows applications to have multiple databases in a single
file. Although no database parameter needs to be specified, it is an error to attempt to open a second
database in a file that was not initially created using a database name. Further, the database parameter
is not supported by the Queue format. Finally, when opening multiple databases in the same physical
file, it is important to consider locking and memory cache issues; see Opening multiple databases in a
single file for more information.

If both the database and file parameters are NULL, the database is strictly temporary and cannot be
opened by any other thread of control. Thus the database can only be accessed by sharing the single
database handle that created it, in circumstances where doing so is safe.

If the database parameter is not set to NULL, the database can be opened by other threads of control
and will be replicated to client sites in any replication group, regardless of whether the file parameter
is set to NULL.

file

The file parameter is used as the name of an underlying file that will be used to back the database;
see File naming for more information.

4/12/2010

DB C++ APl Page 65

../../programmer_reference/am_opensub.html
../../programmer_reference/am_opensub.html
../../programmer_reference/env_naming.html

Db::open()

In-memory databases never intended to be preserved on disk may be created by setting the file
parameter to NULL. Whether other threads of control can access this database is driven entirely by
whether the database parameter is set to NULL.

When using a Unicode build on Windows (the default), the file argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

flags

The flags parameter must be set to zero or by bitwise inclusively OR'ing together one or more of the
following values:

« DB_AUTO COW T

Enclose the Db:: open() call within a transaction. If the call succeeds, the open operation will be
recoverable and all subsequent database modification operations based on this handle will be
transactionally protected. If the call fails, no database will have been created.

« DB_CREATE

Create the database. If the database does not already exist and the DB_CREATE flag is not specified,
the Db: : open() will fail.

« DB_EXCL

Return an error if the database already exists. The DB_EXCL flag is only meaningful when specified
with the DB_CREATE. flag.

o DB_MULTI VERSI ON

Open the database with support for multiversion concurrency control. This will cause updates to the
database to follow a copy-on-write protocol, which is required to support snapshot isolation. The
DB_MULTI VERSI ON flag requires that the database be transactionally protected during its open and is
not supported by the queue format.

« DB_NOVMAP

Do not map this database into process memory (see the DbEnv::set_mp_mmapsize() method for
further information).

« DB_RDONLY

Open the database for reading only. Any attempt to modify items in the database will fail, regardless
of the actual permissions of any underlying files.

« DB_READ_UNCOMM TTED

Support transactional read operations with degree 1 isolation. Read operations on the database may
request the return of modified but not yet committed data. This flag must be specified on all Db
handles used to perform dirty reads or database updates, otherwise requests for dirty reads may not
be honored and the read may block.

4/12/2010

DB C++ APl Page 66

../../programmer_reference/transapp_read.html

Db::open()

« DB_THREAD

Cause the Db handle returned by Db: : open() to be free-threaded; that is, concurrently usable by
multiple threads in the address space.

« DB_TRUNCATE

Physically truncate the underlying file, discarding all previous databases it might have held. Underlying
filesystem primitives are used to implement this flag. For this reason, it is applicable only to the file
and cannot be used to discard databases within a file.

The DB_TRUNCATE flag cannot be lock or transaction-protected, and it is an error to specify it in a
locking or transaction-protected environment.

mode
On Windows systems, the mode parameter is ignored.

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, files created by the database open
are created with mode mode (as described in chmod(2)) and modified by the process’ umask value at
the time of creation (see umask(2)). Created files are owned by the process owner; the group ownership
of created files is based on the system and directory defaults, and is not further specified by Berkeley
DB. System shared memory segments created by the database open are created with mode mode,
unmodified by the process’ umask value. If mode is 0, the database open will use a default mode of
readable and writable by both owner and group.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the DB_AUTO_COMMIT flag is specified, the operation will be
implicitly transaction protected. Note that transactionally protected operations on a Db handle requires
the Db handle itself be transactionally protected during its open. Also note that the transaction must
be committed before the handle is closed; see Berkeley DB handles for more information.

type

The type parameter is of type DBTYPE, and must be set to one of DB_BTREE, DB_HASH, DB_QUEUE, DB_RECNO,
or DB_UNKNOM. If type is DB_UNKNOWN, the database must already exist and Db: : open() will
automatically determine its type. The Db::get_type() method may be used to determine the underlying
type of databases opened using DB_UNKNOWN.

It is an error to specify the incorrect type for a database that already exists.
Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME may
be used as the path of the database environment home.

4/12/2010 DB C++ APl Page 67

../../programmer_reference/program_scope.html

Db::open()

Errors

Db: : open() is affected by any database directory specified using the DbEnv::set_data_dir() method,
or by setting the "set_data_dir" string in the environment's DB_CONFIG file.

+ TMPDIR

If the file and dbenv parameters to Db:: open() are NULL, the environment variable TMPDIR may be
used as a directory in which to create temporary backing files

The Db: : open() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB _LOCK DEADLQOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK NOTGRANTED is returned.

ENOENT

The file or directory does not exist.

ENOENT

A nonexistent re_source file was specified.
DB_OLD_VERSION

The database cannot be opened without being first upgraded.
EEXIST

DB_CREATE and DB_EXCL were specified and the database exists.
EINVAL

If an unknown database type, page size, hash function, pad byte, byte order, or a flag value or parameter
that is incompatible with the specified database was specified; the DB_THREAD flag was specified and
fast mutexes are not available for this architecture; the DB_THREAD flag was specified to Db: : open(),
but was not specified to the DbEnv: : open() call for the environment in which the Db handle was created;
a backing flat text file was specified with either the DB_THREAD flag or the provided database
environment supports transaction processing; or if an invalid flag value or parameter was specified.

4/12/2010

DB C++ APl Page 68

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Db::open()

Class

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB _REP_LQOCKQUT is returned.

Db

See Also

Database and Related Methods

4/12/2010

DB C++ APl Page 69

Db::put()

Db::put()

#include <db_cxx. h>

int
Db: : put (DbTxn *txnid, Dbt *key, Dbt *data, u_int32_t flags);

The Db: : put () method stores key/data pairs in the database. The default behavior of the Db: : put ()
function is to enter the new key/data pair, replacing any previously existing key if duplicates are
disallowed, or adding a duplicate data item if duplicates are allowed. If the database supports duplicates,
the Db: : put () method adds the new data value at the end of the duplicate set. If the database supports
sorted duplicates, the new data value is inserted at the correct sorted location.

Unless otherwise specified, the Db: : put () method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags
The flags parameter must be set to 0 or one of the following values:
« DB _APPEND

Append the key/data pair to the end of the database. For the DB_APPEND flag to be specified, the
underlying database must be a Queue or Recno database. The record number allocated to the record
is returned in the specified key.

There is a minor behavioral difference between the Recno and Queue access methods for the
DB_APPEND flag. If a transaction enclosing a Db: : put () operation with the DB_APPEND flag aborts,
the record number may be reallocated in a subsequent DB_APPEND operation if you are using the
Recno access method, but it will not be reallocated if you are using the Queue access method.

» DB_NCDUPDATA

In the case of the Btree and Hash access methods, enter the new key/data pair only if it does not
already appear in the database.

The DB_NODUPDATA flag may only be specified if the underlying database has been configured to
support sorted duplicates. The DB_NODUPDATA flag may not be specified to the Queue or Recno
access methods.

The Db: : put () method will return DB_KEYEXIST if DB_NODUPDATA is set and the key/data pair already
appears in the database.

» DB_NOOVERVRI TE

Enter the new key/data pair only if the key does not already appear in the database. The Db: : put ()
method call with the DB_NOOVERWRITE flag set will fail if the key already exists in the database,
even if the database supports duplicates.

4/12/2010

DB C++ APl Page 70

Db::put()

The Db: : put () method will return DB_KEYEXIST if DB_NOOVERWRITE is set and the key already
appears in the database.

This enforcement of uniqueness of keys applies only to the primary key. The behavior of insertions
into secondary databases is not affected by the DB_NOOVERWRITE flag. In particular, the insertion
of a record that would result in the creation of a duplicate key in a secondary database that allows
duplicates would not be prevented by the use of this flag.

DB_MULTI PLE

Put multiple data items using keys from the buffer to which the key parameter refers and data values
from the buffer to which the data parameter refers.

To put records in bulk with the btree or hash access methods, construct bulk buffers in the key and
data Dbt using DbMultipleDataBuilder. To put records in bulk with the recno or queue access methods,
construct bulk buffers in the data Dbt as before, but construct the key Dbt using
DbMultipleRecnoDataBuilder with a data size of zero.

A successful bulk operation is logically equivalent to a loop through each key/data pair, performing
a Db::put() for each one.

See DBT and Bulk Operations for more information on working with bulk updates.

The DB_MULTI PLE flag may only be used alone, or with the DB_OVERWRI TE_DUP option.

DB_MULTI PLE_KEY

Put multiple data items using keys and data from the buffer to which the key parameter refers.

To put records in bulk with the btree or hash access methods, construct a bulk buffer in the key Dbt
using DbMultipleKeyDataBuilder. To put records in bulk with the recno or queue access methods,
construct a bulk buffer in the key Dbt using DbMultipleRecnoDataBuilder.

See DBT and Bulk Operations for more information on working with bulk updates.

The DB_MULTI PLE_KEY flag may only be used alone, or with the DB_OVERWRI TE_DUP option.
DB_OVERVR TE_DUP

Ignore duplicate records when overwriting records in a database configured for sorted duplicates.

Normally, if a database is configured for sorted duplicates, an attempt to put a record that compares
identically to a record already existing in the database will fail. Using this flag causes the put to
silently proceed, without failure.

This flag is extremely useful when performing bulk puts (using the DB MJLTI PLE or DB_MJLTI PLE_KEY
flags). Depending on the number of records you are writing to the database with a bulk put, you may
not want the operation to fail in the event that a duplicate record is encountered. Using this flag
along with the DB_MULTI PLE or DB_MULTI PLE_KEY flags allows the bulk put to complete, even if a
duplicate record is encountered.

4/12/2010

DB C++ APl Page 71

Db::put()

Errors

This flag is also useful if you are using a custom comparison function that compares only part of the
data portion of a record. In this case, two records can compare equally when, in fact, they are not
equal. This flag allows the put to complete, even if your custom comparison routine claims the two
records are equal.

data

The data Dbt operated on.
key

The key Dbt operated on.
txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected.

The Db: : put () method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DB_FOREIGN_CONFLICT
A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for that record
does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 10) was declared for a foreign key database, and then subsequently a
record was deleted from the foreign key database without first removing it from the constrained
secondary database.

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK NOTGRANTED is returned.

4/12/2010

DB C++ APl Page 72

Db::put()

Class

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB _REP_LQOCKQUT is returned.

EACCES
An attempt was made to modify a read-only database.
EINVAL

If a record number of 0 was specified; an attempt was made to add a record to a fixed-length database
that was too large to fit; an attempt was made to do a partial put; an attempt was made to add a
record to a secondary index; or if an invalid flag value or parameter was specified.

ENOSPC

A btree exceeded the maximum btree depth (255).

Db

See Also

Database and Related Methods

4/12/2010

DB C++ APl Page 73

Db::remove()

Db::remove()

#include <db_cxx. h>

int
Db: : renmove(const char *file, const char *database, u_int32_t flags);

The Db: : renpove() method removes the database specified by the file and database parameters. If no
database is specified, the underlying file represented by file is removed, incidentally removing all of
the databases it contained.

Applications should never remove databases with open Db handles, or in the case of removing a file,
when any database in the file has an open handle. For example, some architectures do not permit the
removal of files with open system handles. On these architectures, attempts to remove databases
currently in use by any thread of control in the system may fail.

The Db: : remove() method should not be called if the remove is intended to be transactionally safe;
the DbEnv::dbremove() method should be used instead.

The Db: : remove() method may not be called after calling the Db::open() method on any Db handle. If
the Db::open() method has already been called on a Db handle, close the existing handle and create
a new one before calling Db: : remove. ()

The Db handle may not be accessed again after Db: : renmove() is called, regardless of its return.

The Db: : remove() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

database

The database parameter is the database to be removed.

file

The file parameter is the physical file which contains the database(s) to be removed.
Environment Variables

If the database was opened within a database environment, the environment variable DB_HOVE may be
used as the path of the database environment home.

Db: : remove() is affected by any database directory specified using the DbEnv::set_data_dir() method,
or by setting the "set_data_dir" string in the environment's DB_CONFIG file.

Errors

The Db: : renove() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

4/12/2010 DB C++ APl Page 74

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Db::remove()

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

ENOENT

The file or directory does not exist.

Class
Db

See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 75

Db::rename()

Db::rename()

#include <db_cxx. h>

int
Db: : renane(const char *file,
const char *database, const char *newnane, u_int32_t flags);

The Db:: rename() method renames the database specified by the file and database parameters to
newname. If no database is specified, the underlying file represented by file is renamed, incidentally
renaming all of the databases it contained.

Applications should not rename databases that are currently in use. If an underlying file is being renamed
and logging is currently enabled in the database environment, no database in the file may be open
when the Db: : renane() method is called. In particular, some architectures do not permit renaming
files with open handles. On these architectures, attempts to rename databases that are currently in
use by any thread of control in the system may fail.

The Db: : rename() method should not be called if the rename is intended to be transactionally safe;
the DbEnv::dbrename() method should be used instead.

The Db: : rename() method may not be called after calling the Db::open() method on any Db handle. If
the Db::open() method has already been called on a Db handle, close the existing handle and create
a new one before calling Db: : renang() .

The Db handle may not be accessed again after Db: : renane() is called, regardless of its return.

The Db: : renane() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

database

The database parameter is the database to be renamed.

file

The file parameter is the physical file which contains the database(s) to be renamed.

When using a Unicode build on Windows (the default), the file argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

flags
The flags parameter is currently unused, and must be set to 0.
newname

The newname parameter is the new name of the database or file.

4/12/2010

DB C++ APl Page 76

Db::rename()

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOVE may be
used as the path of the database environment home.

Db: : renane() is affected by any database directory specified using the DbEnv::set_data_dir() method,
or by setting the "set_data_dir" string in the environment's DB_CONFIG file.

Errors

The Db: : renane() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

ENOENT

The file or directory does not exist.
Class

Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 77

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Db::set_alloc()

Db::set_alloc()

Errors

#include <db_cxx. h>

int

Db: :set_alloc(db_mal | oc_fcn_type app_nall oc,
db_realloc_fcn_type app_realloc,
db_free fcn_type app_free);

Set the allocation functions used by the DbEnv and Db methods to allocate or free memory owned by
the application.

There are a number of interfaces in Berkeley DB where memory is allocated by the library and then
given to the application. For example, the DB_DBT_MALLOC flag, when specified in the Dbt object,
will cause the Db methods to allocate and reallocate memory which then becomes the responsibility
of the calling application. (See Dbt for more information.) Other examples are the Berkeley DB interfaces
which return statistical information to the application: Db::stat(), DbEnv::lock_stat(),
DbEnv::log_archive(), DbEnv::log_stat(), DbEnv::memp_stat(), and DbEnv::txn_stat(). There is one
method in Berkeley DB where memory is allocated by the application and then given to the library:
Db::associate().

On systems in which there may be multiple library versions of the standard allocation routines (notably
Windows NT), transferring memory between the library and the application will fail because the Berkeley
DB library allocates memory from a different heap than the application uses to free it. To avoid this
problem, the DbEnv::set_alloc() and Db: : set _al | oc() methods can be used to pass Berkeley DB
references to the application’s allocation routines.

It is not an error to specify only one or two of the possible allocation function parameters to these
interfaces; however, in that case the specified interfaces must be compatible with the standard library
interfaces, as they will be used together. The functions specified must match the calling conventions
of the ANSI C X3.159-1989 (ANSI C) library routines of the same name.

Because databases opened within Berkeley DB environments use the allocation interfaces specified to
the environment, it is an error to attempt to set those interfaces in a database created within an
environment.

The Db::set _all oc() method may not be called after the Db::open() method is called.

The Db: : set _all oc() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

The Db: :set_al | oc() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If called in a database environment, or called after Db::open() was called; or if an invalid flag value
or parameter was specified.

4/12/2010

DB C++ APl Page 78

Db::set_alloc()

Class
Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 79

Db::set_append_recno()

Db::set_append_recno()

#include <db_cxx. h>

int
Db: : set _append_recno(int (*db_append_recno_fcn)(DB *dbp, Dbt *data, db_recno_t recno));

When using the DB_APPEND option of the Db::put() method, it may be useful to modify the stored data
based on the generated key. If a callback function is specified using the Db: : set _append_recno()
method, it will be called after the record number has been selected, but before the data has been
stored.

The Db: : set _append_recno() method configures operations performed using the specified Db handle,
not all operations performed on the underlying database.

The Db: : set _append_recno() method may not be called after the Db::open() method is called.
The Db: : set _append_recno() method either returns a non-zero error value or throws an exception that

encapsulates a non-zero error value on failure, and returns 0 on success.

|:| Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

Parameters

db_append_recno_fcn

The db_append_recno_fcn parameter is a function to call after the record number has been selected
but before the data has been stored into the database. The function takes three parameters:

o dbp

The dbp parameter is the enclosing database handle.
e data

The data parameter is the data Dbt to be stored.
e recno

The recno parameter is the generated record number.

The called function may modify the data Dbt. If the function needs to allocate memory for the data
field, the flags field of the returned Dbt should be set to DB DBT APPMALLCC, which indicates that
Berkeley DB should free the memory when it is done with it.

The callback function must return 0 on success and errno or a value outside of the Berkeley DB error
name space on failure.

4/12/2010

DB C++ APl Page 80

Db::set_append_recno()

Errors

The Db: : set _append_recno() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL
If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class
Db

See Also
Database and Related Methods

4/12/2010 DB C++ API

Page 81

Db::set_bt_compare()

Db::set_bt_compare()

#include <db_cxx. h>

extern "C' {
typedef int (*bt_conpare_fcn_type) (DB *db, const DBT *dbt1, const DBT *dbt2);
g
I nt
Db: : set bt _conpare(bt _conpare_fcn_type bt _conpare _fcn);

Set the Btree key comparison function. The comparison function is called whenever it is necessary to
compare a key specified by the application with a key currently stored in the tree.

If no comparison function is specified, the keys are compared lexically, with shorter keys collating
before longer keys.

The Db: : set _bt_conpare() method configures operations performed using the specified Db handle, not
all operations performed on the underlying database.

The Db: : set_bt _conpare() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db: : set bt conpare()
must be the same as that historically used to create the database or corruption can occur.

The Db: : set _bt _conpare() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bt_compare_fcn

The bt_compare_fcn function is the application-specified Btree comparison function. The comparison
function takes three parameters:

e db

The db parameter is the enclosing database handle.
o dbtl

The dbt1 parameter is the Dbt representing the application supplied key.
o dbt2

The dbt2 parameter is the Dbt representing the current tree's key.

The bt_compare_fcn function must return an integer value less than, equal to, or greater than zero
if the first key parameter is considered to be respectively less than, equal to, or greater than the
second key parameter. In addition, the comparison function must cause the keys in the database to
be well-ordered. The comparison function must correctly handle any key values used by the application
(possibly including zero-length keys). In addition, when Btree key prefix comparison is being performed
(see Db::set_bt_prefix() for more information), the comparison routine may be passed a prefix of any

4/12/2010

DB C++ APl Page 82

Db::set_bt_compare()

database key. The data and size fields of the Dbt are the only fields that may be used for the purposes

of this comparison, and no particular alignment of the memory to which by the data field refers may
be assumed.

Errors

The Db: :set_bt conpare() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL
If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.
Class
Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 83

Db::set_bt_compress()

Db::set_bt_compress()

#include <db_cxx. h>

extern "C' {
typedef int (*bt_conpress_fcn_type) (DB *db, const DBT *prevKey,
const DBT *prevData, const DBT *key, const DBT *data, DBT *dest);
typedef int (*bt_deconmpress fcn_typ) (DB *db, const DBT *prevKey,
const DBT *prevData, DBT *conpressed, DBT *destKey,
DBT *dest Dat a) ;
g
I nt
Db: :set bt _conpress(bt_conpress_fcn_type bt _conpress_fcn,
bt deconpress_fcn_type bt _deconpress_fcn);

Set the Btree compression and decompression functions. The compression function is called whenever
a key/data pair is added to the tree and the decompression function is called whenever data is requested
from the tree.

If NULL function pointers are specified, then default compression and decompression functions are
used. Berkeley DB's default compression function performs prefix compression on all keys and prefix
compression on data values for duplicate keys. If using default compression, both the default compression
and decompression functions must be used.

The Db: :set_bt_conpress() method configures operations performed using the specified Db handle,
not all operations performed on the underlying database.

The Db: : set_bt_conpress() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db: : set _bt conpress()
must be the same as that historically used to create the database or corruption can occur.

The Db: : set _bt _conpress() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bt_compress_fcn

The bt_compress_fcn function is the application-specified Btree compression function. The compression
function takes six parameters:

e db
The db parameter is the enclosing database handle.
e prevkey

The prevKey parameter is the Dbt representing the key immediately preceding the application
supplied key.

e prevData

4/12/2010

DB C++ APl Page 84

Db::set_bt_compress()

The prevData parameter is the Dbt representing the data associated with prevKey.
* key

The key parameter is the Dbt representing the application supplied key.
- data

The data parameter is the Dbt representing the application supplied data.
* dest

The dest parameter is the Dbt representing the data stored in the tree, where the function should
write the compressed data.

The bt_compress_fcn function must return 0 on success and a non-zero value on failure. If the
compressed data cannot fit in dest->set_data() (the size of which is returned by dest->get_ulen()),
the function should identify the required buffer size in dest->set_size() and return DB BUFFER SMALL.

bt_decompress_fcn

The bt_decompress_fcn function is the application-specified Btree decompression function. The
decompression function takes six parameters:

« db
The db parameter is the enclosing database handle.
e prevkey

The prevKey parameter is the Dbt representing the key immediately preceding the key being
decompressed.

e prevData
The prevData parameter is the Dbt representing the data associated with prevKey.
e conpressed

The compressed parameter is the Dbt representing the data stored in the tree, that is, the compressed
data.

» key
The key parameter is the Dbt where the decompression function should store the decompressed key.
- data

The data parameter is the Dbt where the decompression function should store the decompressed
key.

4/12/2010

DB C++ APl Page 85

Db::set_bt_compress()

The bt_decompress_fcn function must return 0 on success and a non-zero value on failure. If the
decompressed data cannot fit in key->set_data() or data->set_data() (the size of which is returned
by the Dbt's get_ulen() method), the function should identify the required buffer size using the Dbt's
set_size() method and return DB_BUFFER SMALL.

Errors

The Db::set_bt_conpress() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class
Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 86

Db::set_bt_minkey()

Db::set_bt_minkey()

#include <db_cxx. h>

i nt
Db: :set bt _m nkey(u_int32_t bt_m nkey);

Set the minimum number of key/data pairs intended to be stored on any single Btree leaf page.

This value is used to determine if key or data items will be stored on overflow pages instead of Btree
leaf pages. For more information on the specific algorithm used, see Minimum keys per page. The
bt_minkey value specified must be at least 2; if bt_minkey is not explicitly set, a value of 2 is used.

The Db: :set_bt _m nkey() method configures a database, not only operations performed using the
specified Db handle.

The Db: : set_bt _m nkey() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db: : set _bt _m nkey()
will be ignored.

The Db: : set _bt _mi nkey() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

Class

bt_minkey

The bt_minkey parameter is the minimum number of key/data pairs intended to be stored on any
single Btree leaf page.

The Db::set_bt_m nkey() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Db

See Also

Database and Related Methods

4/12/2010

DB C++ APl Page 87

../../programmer_reference/bt_conf.html#am_conf_bt_minkey

Db::set_bt_prefix()

Db::set_bt_prefix()

#include <db_cxx. h>

extern "C' {
typedef size t (*bt_prefix_fcn_type)(DB *, const DBT *, const DBT *);
g
I nt
Db::set bt _prefix(bt_prefix_fcn_type bt_prefix_fcn);

Set the Btree prefix function. The prefix function is used to determine the amount by which keys stored
on the Btree internal pages can be safely truncated without losing their uniqueness. See the Btree
prefix comparison section of the Berkeley DB Reference Guide for more details about how this works.
The usefulness of this is data-dependent, but can produce significantly reduced tree sizes and search
times in some data sets.

If no prefix function or key comparison function is specified by the application, a default lexical
comparison function is used as the prefix function. If no prefix function is specified and a key comparison
function is specified, no prefix function is used. It is an error to specify a prefix function without also
specifying a Btree key comparison function.

The Db: :set_bt_prefix() method configures operations performed using the specified Db handle, not
all operations performed on the underlying database.

The Db: :set_bt_prefix() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db: : set _bt _prefix()
must be the same as that historically used to create the database or corruption can occur.

The Db: : set _bt _prefix() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bt_prefix_fcn

The bt_prefix_fcn function is the application-specific Btree prefix function. The prefix function takes
three parameters:

e db

The db parameter is the enclosing database handle.
o dbtl

The dbt1 parameter is a Dbt representing a database key.
o dbt2

The dbt2 parameter is a Dbt representing a database key.

4/12/2010

DB C++ APl Page 88

../../programmer_reference/bt_conf.html#am_conf_bt_prefix
../../programmer_reference/bt_conf.html#am_conf_bt_prefix

Db::set_bt_prefix()

Errors

Class

The bt_prefix_fcn function must return the number of bytes of the second key parameter that would
be required by the Btree key comparison function to determine the second key parameter's ordering
relationship with respect to the first key parameter. If the two keys are equal, the key length should
be returned. The prefix function must correctly handle any key values used by the application (possibly
including zero-length keys). The data and size fields of the Dbt are the only fields that may be used
for the purposes of this determination, and no particular alignment of the memory to which the data
field refers may be assumed.

The Db::set bt _prefix() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Db

See Also

Database and Related Methods

4/12/2010

DB C++ APl Page 89

Db::set_cachesize()

Db::set_cachesize()

#include <db_cxx. h>

int
Db: : set _cachesize(u_int32_t gbytes, u_int32_t bytes, int ncache);

Set the size of the shared memory buffer pool -- that is, the cache. The cache should be the size of
the normal working data set of the application, with some small amount of additional memory for
unusual situations. (Note: the working set is not the same as the number of pages accessed
simultaneously, and is usually much larger.)

The default cache size is 256KB, and may not be specified as less than 20KB. Any cache size less than
500MB is automatically increased by 25% to account for buffer pool overhead; cache sizes larger than
500MB are used as specified. The maximum size of a single cache is 4GB on 32-bit systems and 10TB
on 64-bit systems. (All sizes are in powers-of-two, that is, 256KB is 2"18 not 256,000.) For information
on tuning the Berkeley DB cache size, see Selecting a cache size.

It is possible to specify caches to Berkeley DB large enough they cannot be allocated contiguously on
some architectures. For example, some releases of Solaris limit the amount of memory that may be
allocated contiguously by a process. If ncache is 0 or 1, the cache will be allocated contiguously in
memory. If it is greater than 1, the cache will be split across ncache separate regions, where the
region size is equal to the initial cache size divided by ncache.

Because databases opened within Berkeley DB environments use the cache specified to the environment,
it is an error to attempt to set a cache in a database created within an environment.

The Db: : set _cachesi ze() method may not be called after the Db::open() method is called.

The Db: : set _cachesi ze() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

bytes

The size of the cache is set to gbytes gigabytes plus bytes.
gbytes

The size of the cache is set to gbytes gigabytes plus bytes.
ncache

The ncache parameter is the number of caches to create.

The Db: : set_cachesi ze() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

4/12/2010

DB C++ APl Page 90

../../programmer_reference/general_am_conf.html#am_conf_cachesize

Db::set_cachesize()

EINVAL

If the specified cache size was impossibly small; the method was called after Db::open() was called;
or if an invalid flag value or parameter was specified.

Class
Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 91

Db::set_create_dir()

Db::set_create_dir()

#include <db_cxx. h>

int
Db::set_create dir(const char *dir);

Specify which directory a database should be created in or looked for.
The Db::set _create_dir() method may not be called after the Db::open() method is called.

The Db::set_create dir() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
dir

The dir will be used to create or locate the database file specified in the Db::open() method call. The
directory must be one of the directories in the environment list specified by DbEnv::add_data_dir().

Errors

The Db: : set_create_di r() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.
Class

Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 92

Db::set_dup_compare()

Db::set_dup_compare()

#include <db_cxx. h>

extern "C' {
typedef int (*dup_conpare fcn_type)(DB *db, const DBT *dbt1,
const DBT *dbt 2);

g

I nt

Db: : set _dup_conpar e(dup_conpare_fcn_type dup_conpare_fcn);

Set the duplicate data item comparison function. The comparison function is called whenever it is
necessary to compare a data item specified by the application with a data item currently stored in the
database. Calling Db: : set _dup_conpare() implies calling Db::set_flags() with the DB_DUPSORT flag.

If no comparison function is specified, the data items are compared lexically, with shorter data items
collating before longer data items.

The Db: : set _dup_conpare() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db: : set _dup_conpare()
must be the same as that historically used to create the database or corruption can occur.

The Db: : set _dup_conpare() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dup_compare_fcn

The dup_compare_fcn function is the application-specified duplicate data item comparison function.
The function takes three arguments:

o db

The db parameter is the enclosing database handle.
o dbtl

The dbt1 parameter is a Dbt representing the application supplied data item.
o dbt2

The dbt2 parameter is a Dbt representing the current tree's data item.

The dup_compare_fcn function must return an integer value less than, equal to, or greater than zero
if the first data item parameter is considered to be respectively less than, equal to, or greater than
the second data item parameter. In addition, the comparison function must cause the data items in
the set to be well-ordered. The comparison function must correctly handle any data item values used
by the application (possibly including zero-length data items). The data and size fields of the Dbt are
the only fields that may be used for the purposes of this comparison, and no particular alignment of
the memory to which the data field refers may be assumed.

4/12/2010

DB C++ APl Page 93

Db::set_dup_compare()

Errors

The Db: : set _dup_conpare() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class
Db
See Also
Database and Related Methods
4/12/2010

DB C++ APl Page 94

Db::set_encrypt()

Db::set_encrypt()

#include <db_cxx. h>

int
Db: :set _encrypt(const char *passwd, u_int32_t flags);

Set the password used by the Berkeley DB library to perform encryption and decryption.

Because databases opened within Berkeley DB environments use the password specified to the
environment, it is an error to attempt to set a password in a database created within an environment.

The Db: : set _encrypt () method may not be called after the Db::open() method is called.

The Db: : set _encrypt () method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

Class

flags
The flags parameter must be set to 0 or the following value:
« DB_ENCRYPT AES

Use the Rijndael/AES (also known as the Advanced Encryption Standard and Federal Information
Processing Standard (FIPS) 197) algorithm for encryption or decryption.

passwd

The passwd parameter is the password used to perform encryption and decryption.

The Db: : set _encrypt () method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

EOPNOTSUPP

Cryptography is not available in this Berkeley DB release.

Db

4/12/2010

DB C++ APl Page 95

Db::set_encrypt()

See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 96

Db::set_errcall()

Db::set_errcall()

#include <db_cxx. h>

voi d Db::set_errcall(void (*db_errcall _fcn)
(const DbEnv *dbenv, const char *errpfx, const char *nsg));

When an error occurs in the Berkeley DB library, an exception is thrown or an error return value is
returned by the interface. In some cases, however, the errno value may be insufficient to completely
describe the cause of the error, especially during initial application debugging.

The DbEnv::set_errcall() and Db: : set_errcal | () methods are used to enhance the mechanism for
reporting error messages to the application. In some cases, when an error occurs, Berkeley DB will call
db_errcall_fen() with additional error information. It is up to the db_errcall_fcn() function to display
the error message in an appropriate manner.

Setting db_errcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DbEnv::set_error_stream() and Db::set_error_stream() methods to display
the additional information via an output stream, or the Db::set_errfile() or Db::set_errfile() methods
to display the additional information via a C library FI LE *. You should not mix these approaches.

This error-logging enhancement does not slow performance or significantly increase application size,
and may be run during normal operation as well as during application debugging.

For Db handles opened inside of Berkeley DB environments, calling the Db: : set _errcal | () method
affects the entire environment and is equivalent to calling the DbEnv::set_errcall() method.

When used on a database that was not opened in an environment, the Db: : set_errcal | () method
configures operations performed using the specified Db handle, not all operations performed on the
underlying database.

The Db::set_errcal | () method may be called at any time during the life of the application.

|:| Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

Parameters

db_errcall_fcn

The db_errcall_fcn parameter is the application-specified error reporting function. The function takes
three parameters:

 dbenv
The dbenv parameter is the enclosing database environment.

e errpfx

4/12/2010

DB C++ APl Page 97

Db::set_errcall()

The errpfx parameter is the prefix string (as previously set by Db::set_errpfx() or DbEnv::set_errpfx()

).
. MBQ
The msg parameter is the error message string.
Class
Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 98

Db::set_errfile()

Db::set_errfile()

#include <db_cxx. h>

void Db::set_errfile(FILE *errfile);

When an error occurs in the Berkeley DB library, an exception is thrown or an error return value is
returned by the interface. In some cases, however, the errno value may be insufficient to completely
describe the cause of the error, especially during initial application debugging.

The DbEnv::set_errfile() and Db: : set_errfile() methods are used to enhance the mechanism for
reporting error messages to the application by setting a C library FILE * to be used for displaying
additional Berkeley DB error messages. In some cases, when an error occurs, Berkeley DB will output
an additional error message to the specified file reference.

Alternatively, you can use the DbEnv::set_error_stream() and Db::set_error_stream() methods to display
the additional messages via an output stream, or the DbEnv::set_errcall() or Db::set_errcall() methods
to capture the additional error information in a way that does not use C library FILE *'s. You should not
mix these approaches.

The error message will consist of the prefix string and a colon (":") (if a prefix string was previously
specified using Db::set_errpfx() or DbEnv::set_errpfx()), an error string, and a trailing <newline>
character.

The default configuration when applications first create Db or DbEnv handles is as if the
DbEnv::set_errfile() or Db: : set_errfil e() methods were called with the standard error output (stderr)
specified as the FILE * argument. Applications wanting no output at all can turn off this default
configuration by calling the DbEnv::set_errfile() or Db: : set _errfil e() methods with NULL as the FILE
* argument. Additionally, explicitly configuring the error output channel using any of the following
methods will also turn off this default output for the application:

e Db::set_errfile()

o DbEnv::set_errfile()

o DbEnv::set_errcall()

e Db::set_errcall()

o DbEnv::set_error_stream()
o Db::set_error_stream()

This error logging enhancement does not slow performance or significantly increase application size,
and may be run during normal operation as well as during application debugging.

For Db handles opened inside of Berkeley DB environments, calling the Db: : set_errfile() method
affects the entire environment and is equivalent to calling the DbEnv::set_errfile() method.

4/12/2010

DB C++ APl Page 99

Db::set_errfile()

When used on a database that was not opened in an environment, the Db: : set _errfile() method

configures operations performed using the specified Db handle, not all operations performed on the

underlying database.

The Db: :set_errfile() method may be called at any time during the life of the application.
Parameters

errfile

The errfile parameter is a C library FI LE * to be used for displaying additional Berkeley DB error
information.

Class
Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 100

Db::set_error_stream()

Db::set_error_stream()

#include <db_cxx. h>

voi d Db::set_error_streanm(class ostreant);

When an error occurs in the Berkeley DB library, an exception is thrown or an errno value is returned
by the interface. In some cases, however, the errno value may be insufficient to completely describe
the cause of the error, especially during initial application debugging.

The DbEnv::set_error_stream() and Db: : set _error_strean() methods are used to enhance the mechanism
for reporting error messages to the application by setting the C++ ostream used for displaying additional
Berkeley DB error messages. In some cases, when an error occurs, Berkeley DB will output an additional
error message to the specified stream.

The error message will consist of the prefix string and a colon (":") (if a prefix string was previously
specified using Db::set_errpfx(), an error string, and a trailing <newline> character.

Setting stream to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_errfile() or Db::set_errfile() methods to display the additional
information via a C Library FI LE *, or the DbEnv::set_errcall() and Db::set_errcall() methods to capture
the additional error information in a way that does not use either output streams or C Library FI LE
*'s. You should not mix these approaches.

This error-logging enhancement does not slow performance or significantly increase application size,
and may be run during normal operation as well as during application debugging.

For Db handles opened inside of Berkeley DB environments, calling the Db: : set_error_strean() method
affects the entire environment and is equivalent to calling the DbEnv::set_error_stream() method.

The Db::set_error_strean() method may be called at any time during the life of the application.

Parameters

Class

stream

The stream parameter is the application-specified output stream to be used for additional error
information.

Db

See Also

Database and Related Methods

4/12/2010

DB C++ APl Page 101

Db::set_errpfx()

Db::set_errpfx()
#include <db_cxx. h>
voi d Db::set_errpfx(const char *errpfx);
Set the prefix string that appears before error messages issued by Berkeley DB.

The Db: :set _errpfx() and DbEnv::set_errpfx() methods do not copy the memory to which the errpfx
parameter refers; rather, they maintain a reference to it. Although this allows applications to modify
the error message prefix at any time (without repeatedly calling the interfaces), it means the memory
must be maintained until the handle is closed.

For Db handles opened inside of Berkeley DB environments, calling the Db: : set _errpfx() method
affects the entire environment and is equivalent to calling the DbEnv::set_errpfx() method.

The Db: : set _errpfx() method configures operations performed using the specified Db handle, not all
operations performed on the underlying database.

The Db: :set_errpfx() method may be called at any time during the life of the application.
Parameters

errpfx

The errpfx parameter is the application-specified error prefix for additional error messages.
Class

Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 102

Db::set_feedback()

Db::set_feedback()

#include <db_cxx. h>

i nt
Db: : set _feedback(void (*db_feedback fcn)(DB *dbp, int opcode, int percent));
Some operations performed by the Berkeley DB library can take non-trivial amounts of time. The
Db: : set _feedback() method can be used by applications to monitor progress within these operations.

When an operation is likely to take a long time, Berkeley DB will call the specified callback function
with progress information.

It is up to the callback function to display this information in an appropriate manner.
The Db: : set _feedback() method may be called at any time during the life of the application.

The Db: : set _feedback() method returns a non-zero error value on failure and 0 on success.

|:| Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

Parameters

db_feedback_fcn

The db_feedback_fcn parameter is the application-specified feedback function called to report Berkeley
DB operation progress. The callback function must take three parameters:

e dbp
The dbp parameter is a reference to the enclosing database.
e opcode

The opcode parameter is an operation code. The opcode parameter may take on any of the following
values:

+ DB_UPGRADE
The underlying database is being upgraded.
« DB VER FY
The underlying database is being verified.
 percent

The percent parameter is the percent of the operation that has been completed, specified as an
integer value between 0 and 100.

4/12/2010

DB C++ APl Page 103

Db::set_feedback()

Class
Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 104

Db::set_flags()

Db::set_flags()

#include <db_cxx. h>

int
Db::set flags(u_int32_t flags);

Configure a database. Calling Db: : set _flags() is additive; there is no way to clear flags.
The Db::set_flags() method may not be called after the Db::open() method is called.

The Db::set_flags() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

General
The following flags may be specified for any Berkeley DB access method:

« DB_CHKSUM

Do checksum verification of pages read into the cache from the backing filestore. Berkeley DB uses
the SHA1 Secure Hash Algorithm if encryption is configured and a general hash algorithm if it is not.

Calling Db: : set _flags() with the DB_CHKSUM flag only affects the specified Db handle (and any
other Berkeley DB handles opened within the scope of that handle).

If the database already exists when Db::open() is called, the DB_CHKSUM flag will be ignored.
DB_ENCRYPT

Encrypt the database using the cryptographic password specified to the DbEnv::set_encrypt() or
Db::set_encrypt() methods.

Calling Db: : set _flags() with the DB_ENCRYPT flag only affects the specified Db handle (and any
other Berkeley DB handles opened within the scope of that handle).

If the database already exists when Db::open() is called, the DB_ENCRYPT flag must be the same as
the existing database or an error will be returned.

Encrypted databases are not portable between machines of different byte orders, that is, encrypted
databases created on big-endian machines cannot be read on little-endian machines, and vice versa.

« DB_TXN_NOT_DURABLE

4/12/2010

DB C++ APl Page 105

Db::set_flags()

If set, Berkeley DB will not write log records for this database. This means that updates of this
database exhibit the ACI (atomicity, consistency, and isolation) properties, but not D (durability);
that is, database integrity will be maintained, but if the application or system fails, integrity will
not persist. The database file must be verified and/or restored from backup after a failure. In order
to ensure integrity after application shut down, the database handles must be closed without specifying
DB_NOSYNC, or all database changes must be flushed from the database environment cache using
either the DbEnv::txn_checkpoint() or DbEnv::memp_sync() methods. All database handles for a
single physical file must set DB_TXN_NOT_DURABLE, including database handles for different databases
in a physical file.

Calling Db: : set _flags() with the DB_TXN_NOT_DURABLE flag only affects the specified Db handle
(and any other Berkeley DB handles opened within the scope of that handle).

Btree
The following flags may be specified for the Btree access method:

« DB_DUP

Permit duplicate data items in the database; that is, insertion when the key of the key/data pair
being inserted already exists in the database will be successful. The ordering of duplicates in the
database is determined by the order of insertion, unless the ordering is otherwise specified by use
of a cursor operation or a duplicate sort function.

The DB_DUPSORT flag is preferred to DB_DUP for performance reasons. The DB_DUP flag should only
be used by applications wanting to order duplicate data items manually.

Calling Db: : set _flags() with the DB_DUP flag affects the database, including all threads of control
accessing the database.

If the database already exists when Db::open() is called, the DB_DUP flag must be the same as the
existing database or an error will be returned.

It is an error to specify both DB_DUP and DB_RECNUM.
DB_DUPSORT

Permit duplicate data items in the database; that is, insertion when the key of the key/data pair
being inserted already exists in the database will be successful. The ordering of duplicates in the
database is determined by the duplicate comparison function. If the application does not specify a
comparison function using the Db::set_dup_compare() method, a default lexical comparison will be
used. It is an error to specify both DB_DUPSORT and DB_RECNUM.

Calling Db: : set _flags() with the DB_DUPSORT flag affects the database, including all threads of
control accessing the database.

If the database already exists when Db::open() is called, the DB_DUPSORT flag must be the same as
the existing database or an error will be returned.

« DB_RECNUM

4/12/2010

DB C++ APl Page 106

Db::set_flags()

Support retrieval from the Btree using record numbers. For more information, see the DB_SET_RECNO
flag to the Db::get() and Dbc::get() methods.

Logical record numbers in Btree databases are mutable in the face of record insertion or deletion.
See the DB_RENUMBER flag in the Recno access method information for further discussion.

Maintaining record counts within a Btree introduces a serious point of contention, namely the page
locations where the record counts are stored. In addition, the entire database must be locked during
both insertions and deletions, effectively single-threading the database for those operations. Specifying
DB_RECNUM can result in serious performance degradation for some applications and data sets.

It is an error to specify both DB_DUP and DB_RECNUM.

Calling Db: : set_flags() with the DB_RECNUM flag affects the database, including all threads of
control accessing the database.

If the database already exists when Db::open() is called, the DB_RECNUM flag must be the same as
the existing database or an error will be returned.

o DB_REVSPLI TOFF

Turn off reverse splitting in the Btree. As pages are emptied in a database, the Berkeley DB Btree
implementation attempts to coalesce empty pages into higher-level pages in order to keep the
database as small as possible and minimize search time. This can hurt performance in applications
with cyclical data demands; that is, applications where the database grows and shrinks repeatedly.
For example, because Berkeley DB does page-level locking, the maximum level of concurrency in a
database of two pages is far smaller than that in a database of 100 pages, so a database that has
shrunk to a minimal size can cause severe deadlocking when a new cycle of data insertion begins.

Calling Db: : set _flags() with the DB_REVSPLITOFF flag only affects the specified Db handle (and any
other Berkeley DB handles opened within the scope of that handle).

Hash

The following flags may be specified for the Hash access method:

« DB_DUP

Permit duplicate data items in the database; that is, insertion when the key of the key/data pair
being inserted already exists in the database will be successful. The ordering of duplicates in the
database is determined by the order of insertion, unless the ordering is otherwise specified by use
of a cursor operation.

The DB_DUPSORT flag is preferred to DB_DUP for performance reasons. The DB_DUP flag should only
be used by applications wanting to order duplicate data items manually.

Calling Db: : set _flags() with the DB_DUP flag affects the database, including all threads of control
accessing the database.

If the database already exists when Db::open() is called, the DB_DUP flag must be the same as the
existing database or an error will be returned.

4/12/2010

DB C++ APl Page 107

Db::set_flags()

» DB_DUPSORT

Permit duplicate data items in the database; that is, insertion when the key of the key/data pair
being inserted already exists in the database will be successful. The ordering of duplicates in the
database is determined by the duplicate comparison function. If the application does not specify a
comparison function using the Db::set_dup_compare() method, a default lexical comparison will be
used.

Calling Db: : set _flags() with the DB_DUPSORT flag affects the database, including all threads of
control accessing the database.

If the database already exists when Db::open() is called, the DB_DUPSORT flag must be the same as
the existing database or an error will be returned.

Queue
The following flags may be specified for the Queue access method:

« DB_I NORDER

The DB_INORDER flag modifies the operation of the DB_CONSUME or DB_CONSUME_WAIT flags to
Db::get() to return key/data pairs in order. That is, they will always return the key/data item from
the head of the queue.

The default behavior of queue databases is optimized for multiple readers, and does not guarantee
that record will be retrieved in the order they are added to the queue. Specifically, if a writing
thread adds multiple records to an empty queue, reading threads may skip some of the initial records
when the next Db::get() call returns.

This flag modifies the Db::get() call to verify that the record being returned is in fact the head of
the queue. This will increase contention and reduce concurrency when there are many reading
threads.

Calling Db: : set _flags() with the DB_INORDER flag only affects the specified Db handle (and any
other Berkeley DB handles opened within the scope of that handle).

Recno
The following flags may be specified for the Recno access method:

» DB_RENUMBER

Specifying the DB_RENUMBER flag causes the logical record numbers to be mutable, and change as
records are added to and deleted from the database.

Using the Db::put() or Dbc::put() interfaces to create new records will cause the creation of multiple
records if the record number is more than one greater than the largest record currently in the
database. For example, creating record 28, when record 25 was previously the last record in the
database, will create records 26 and 27 as well as 28. Attempts to retrieve records that were created
in this manner will result in an error return of DB_KEYEMPTY.

4/12/2010

DB C++ APl Page 108

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Db::set_flags()

Errors

Class

If a created record is not at the end of the database, all records following the new record will be
automatically renumbered upward by one. For example, the creation of a new record numbered 8
causes records numbered 8 and greater to be renumbered upward by one. If a cursor was positioned
to record number 8 or greater before the insertion, it will be shifted upward one logical record,
continuing to refer to the same record as it did before.

If a deleted record is not at the end of the database, all records following the removed record will
be automatically renumbered downward by one. For example, deleting the record numbered 8 causes
records numbered 9 and greater to be renumbered downward by one. If a cursor was positioned to
record number 9 or greater before the removal, it will be shifted downward one logical record,
continuing to refer to the same record as it did before.

If a record is deleted, all cursors that were positioned on that record prior to the removal will no
longer be positioned on a valid entry. This includes cursors used to delete an item. For example, if
a cursor was positioned to record number 8 before the removal of that record, subsequent calls to
Dbc::get() with flags of DB_CURRENT will result in an error return of DB_KEYEMPTY until the cursor
is moved to another record. A call to Dbc::get() with flags of DB_NEXT will return the new record
numbered 8 - which is the record that was numbered 9 prior to the delete (if such a record existed).

For these reasons, concurrent access to a Recno database with the DB_RENUMBER flag specified may
be largely meaningless, although it is supported.

Calling Db: : set _flags() with the DB_RENUMBER flag affects the database, including all threads of
control accessing the database.

If the database already exists when Db::open() is called, the DB_RENUMBER flag must be the same
as the existing database or an error will be returned.

« DB_SNAPSHOT

This flag specifies that any specified re_source file be read in its entirety when Db::open() is called.
If this flag is not specified, the re_source file may be read lazily.

See the Db::set_re_source() method for information on the re_source file.

Calling Db: : set _flags() with the DB_SNAPSHOT flag only affects the specified Db handle (and any
other Berkeley DB handles opened within the scope of that handle).

The Db: : set _flags() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Db

4/12/2010

DB C++ APl Page 109

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Db::set_flags()

See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 110

Db::set_h_compare()

Db::set_h_compare()

#include <db_cxx. h>

extern "C' {
typedef int (*conpare_fcn_type) (DB *db, const DBT *dbt1, const DBT *dbt2);
g
I nt
Db: : set _h_conpare(conpare_fcn_type conpare_fcn);

Set the Hash key comparison function. The comparison function is called whenever it is necessary to
compare a key specified by the application with a key currently stored in the database.

If no comparison function is specified, a byte-by-byte comparison is performed.

The Db: :set_h_conpare() method configures operations performed using the specified Db handle, not
all operations performed on the underlying database.

The Db: : set_h_conpare() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db: : set _h_conpare()
must be the same as that historically used to create the database or corruption can occur.

The Db: : set _h_conpare() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

compare_fcn

The compare_fcn function is the application-specified Hash comparison function. The comparison
function takes three parameters:

e db

The db parameter is the enclosing database handle.
o dbtl

The dbt1 parameter is the Dbt representing the application supplied key.
o dbt2

The dbt2 parameter is the Dbt representing the current database's key.

The compare_fcn function must return an integer value less than, equal to, or greater than zero if
the first key parameter is considered to be respectively less than, equal to, or greater than the second
key parameter. The comparison function must correctly handle any key values used by the application
(possibly including zero-length keys). The data and size fields of the Dbt are the only fields that may
be used for the purposes of this comparison, and no particular alignment of the memory to which by
the data field refers may be assumed.

4/12/2010

DB C++ APl Page 111

Db::set_h_compare()

Errors

The Db::set_h_conpare() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL
If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Class
Db

See Also
Database and Related Methods

4/12/2010 DB C++ API

Page 112

Db::set_h_ffactor()

Db::set_h_ffactor()

#include <db_cxx. h>
i nt
Db::set_h ffactor(u_int32_t h_ffactor);

Set the desired density within the hash table. If no value is specified, the fill factor will be selected
dynamically as pages are filled.

The density is an approximation of the number of keys allowed to accumulate in any one bucket,
determining when the hash table grows or shrinks. If you know the average sizes of the keys and data
in your data set, setting the fill factor can enhance performance. A reasonable rule computing fill
factor is to set it to the following:

(pagesize - 32) | (average key size + average data_size + 8)

The Db: :set_h ffactor() method configures a database, not only operations performed using the
specified Db handle.

The Db: :set_h_ffactor() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db: : set _h_ffactor ()
will be ignored.

The Db: :set_h ffactor() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

h_ffactor

The h_ffactor parameter is the desired density within the hash table.
Errors

The Db::set_h _ffactor() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL
If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.
Class
Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 113

Db::set_h_hash()

Db::set_h_hash()

#include <db_cxx. h>

extern "C' {
typedef u_int32_t (*h_hash_fcn_type)
(DB *, const void *bytes, u_int32_t length);
g
I nt
Db: : set _h_hash(h_hash_fcn_type h_hash_fcn);

Set a user-defined hash function; if no hash function is specified, a default hash function is used.
Because no hash function performs equally well on all possible data, the user may find that the built-in
hash function performs poorly with a particular data set.

The Db::set _h_hash() method configures operations performed using the specified Db handle, not all
operations performed on the underlying database.

The Db: : set _h_hash() method may not be called after the Db::open() method is called. If the database
already exists when Db::open() is called, the information specified to Db: : set _h_hash() must be the
same as that historically used to create the database or corruption can occur.

The Db::set _h_hash() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

Class

h_hash_fcn
The h_hash_fcn parameter is the application-specified hash function.

Application-specified hash functions take a pointer to a byte string and a length as parameters, and
return a value of type u_int32_t. The hash function must handle any key values used by the application
(possibly including zero-length keys).

The Db::set _h_hash() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Db

4/12/2010

DB C++ APl Page 114

Db::set_h_hash()

See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 115

Db::set_h_nelem()

Db::set_h_nelem()

#include <db_cxx. h>

i nt
Db::set_h_nelem(u_int32_t h_nelen;

Set an estimate of the final size of the hash table.

In order for the estimate to be used when creating the database, the Db::set_h_ffactor() method must
also be called. If the estimate or fill factor are not set or are set too low, hash tables will still expand
gracefully as keys are entered, although a slight performance degradation may be noticed.

The Db: : set _h_nel en{) method configures a database, not only operations performed using the specified
Db handle.

The Db: : set _h_nel en() method may not be called after the Db::open() method is called. If the database
already exists when Db::open() is called, the information specified to Db: : set _h_nel en{) will be ignored.

The Db: : set _h_nel en{) method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

h_nelem

The h_nelem parameter is an estimate of the final size of the hash table.
Errors

The Dh: : set_h _nel en{) method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL
If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.
Class
Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 116

Db::set_lorder()

Db::set_lorder()

#include <db_cxx. h>
int
Db::set _lorder(int |order);

Set the byte order for integers in the stored database metadata. The host byte order of the machine
where the Berkeley DB library was compiled will be used if no byte order is set.

The access methods provide no guarantees about the byte ordering of the application data stored
in the database, and applications are responsible for maintaining any necessary ordering.

The Db: : set | order () method configures a database, not only operations performed using the specified
Db handle.

The Db: : set _| order () method may not be called after the Db::open() method is called. If the database
already exists when Db::open() is called, the information specified to Db: : set | order () will be ignored.

If creating additional databases in a single physical file, information specified to Db: : set | order () will
be ignored and the byte order of the existing databases will be used.

The Db: : set _| order () method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

Class

lorder

The lorder parameter should represent the byte order as an integer; for example, big endian order is
the number 4,321, and little endian order is the number 1,234.

The Db::set | order () method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Db

See Also

Database and Related Methods

4/12/2010

DB C++ APl Page 117

Db::set_message_stream()

Db::set_message_stream()

#include <db_cxx. h>

voi d Db::set_nessage_strean(class ostreant);

There are interfaces in the Berkeley DB library which either directly output informational messages or
statistical information, or configure the library to output such messages when performing other
operations. For example, the DbEnv::set_verbose() and DbEnv::stat_print() methods.

The DbEnv::set_message_stream() and Db: : set _nmessage_strean() methods are used to display these
messages for the application. In this case, the message will include a trailing <newl i ne> character.

Setting stream to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_msgfile() or Db::set_msgfile() methods to display the additional
information via a C Library FI LE *, or the DbEnv::set_msgcall() and Db::set_msgcall() methods to
capture the additional error information in a way that does not use either output streams or C Library
FILE *'s. You should not mix these approaches.

For Db handles opened inside of Berkeley DB environments, calling the Db: : set _nessage_strean()
method affects the entire environment and is equivalent to calling the DbEnv::set_message_stream()
method.

The Db: : set _message_strean() method configures operations performed using the specified Db handle,
not all operations performed on the underlying database.

The Db: : set _nessage_strean{) method may be called at any time during the life of the application.

Parameters

Class

stream

The stream parameter is the application-specified output stream to be used for additional message
information.

Db

See Also

Database and Related Methods

4/12/2010

DB C++ APl Page 118

Db::set_msgcall()

Db::set_msgcall()

#include <db_cxx. h>

voi d Db::set_mnsgcal | (void (*db_nsgcal | _fcn)(const DbEnv *dbenv, char *nsg));

There are interfaces in the Berkeley DB library which either directly output informational messages or
statistical information, or configure the library to output such messages when performing other
operations, for example, DbEnv::set_verbose() and DbEnv::stat_print().

The DbEnv::set_msgcall() and Db: : set _nsgcal | () methods are used to pass these messages to the
application, and Berkeley DB will call db_msgcall_fcn with each message. It is up to the db_msgcall_fcn
function to display the message in an appropriate manner.

Setting db_msgcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DbEnv::set_error_stream() and Db::set_error_stream() methods to display
the messages via an output stream, or the Db::set_msgfile() or Db::set_msgfile() methods to display
the messages via a C library FILE *. You should not mix these approaches.

For Db handles opened inside of Berkeley DB environments, calling the Db: : set_nsgcal | () method
affects the entire environment and is equivalent to calling the DbEnv: : set _nsgcal | () method.

The Db: : set _nsgcal | () method configures operations performed using the specified Db handle, not
all operations performed on the underlying database.

The Db: : set_msgcal | () method may be called at any time during the life of the application.

|:| Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

Parameters

Class

db_msgcall_fcn

The db_msgcall_fcn parameter is the application-specified message reporting function. The function
takes two parameters:

« dbenv
The dbenv parameter is the enclosing database environment.
. n’Bg

The msg parameter is the message string.

Db

4/12/2010

DB C++ APl Page 119

Db::set_msgcall()

See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 120

Db::set_msgfile()

Db::set_msgfile()
#include <db_cxx. h>
voi d Db::set_nsgfile(FILE *msgfile);

There are interfaces in the Berkeley DB library which either directly output informational messages or
statistical information, or configure the library to output such messages when performing other
operations, for example, DbEnv::set_verbose() and DbEnv::stat_print().

The DbEnv::set_msgfile() and Db: : set_nsgfil e() methods are used to display these messages for the
application. In this case the message will include a trailing <newline> character.

Setting msgfile to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_message_stream() and Db::set_message_stream() methods
to display the messages via an output stream, or the DbEnv::set_msgcall() or Db::set_msgcall() methods
to capture the additional error information in a way that does not use C library FILE *'s. You should not
mix these approaches.

For Db handles opened inside of Berkeley DB environments, calling the Db: : set_nsgfil e() method
affects the entire environment and is equivalent to calling the DbEnv::set_msgfile() method.

The Db::set_msgfil e() method configures operations performed using the specified Db handle, not
all operations performed on the underlying database.

The Db::set_msgfil e() method may be called at any time during the life of the application.
Parameters

msgdgfile

The msgfile parameter is a C library FILE * to be used for displaying messages.
Class

Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 121

Db::set_pagesize()

Db::set_pagesize()

#include <db_cxx. h>

int
Db: : set _pagesi ze(u_int32_t pagesi ze);

Set the size of the pages used to hold items in the database, in bytes. The minimum page size is 512
bytes, the maximum page size is 64K bytes, and the page size must be a power-of-two. If the page size
is not explicitly set, one is selected based on the underlying filesystem I/0 block size. The automatically
selected size has a lower limit of 512 bytes and an upper limit of 16K bytes.

For information on tuning the Berkeley DB page size, see Selecting a page size.

The Db: : set _pagesi ze() method configures a database, not only operations performed using the
specified Db handle.

The Db: : set _pagesi ze() method may not be called after the Db::open() method is called. If the database
already exists when Db::open() is called, the information specified to Db: : set pagesi ze() will be
ignored.

If creating additional databases in a single physical file, information specified to Db: : set _pagesi ze()
will be ignored and the page size of the existing databases will be used.

The Db: : set _pagesi ze() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

The Db: : set _pagesi ze() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

Class

pagesize

The pagesize parameter sets the database page size.

The Db: : set _pagesi ze() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Db

4/12/2010

DB C++ APl Page 122

../../programmer_reference/general_am_conf.html#am_conf_pagesize

Db::set_pagesize()

See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 123

Db::set_partition()

Db::set_partition()

#include <db_cxx. h>

int
Db::set_partition(u_int32_t parts, DBT *kyes,
u_int32_t (*db_partition_fcn) (Db *db, DBT *key));

Set up partitioning for a database. Partitioning may be used on either BTREE or HASH databases.
Partitions may be specified by either a set of keys specifying a range of values in each partition or with
a callback function that returns the number of the partition to put a specific key. Partition range keys
may only be specified for BTREE databases.

Partitions are implimented as separate database files and can help reduce contention within a logical
database. Contention can come from multiple threads of control accessing database pages simultaniously.
Typically these pages are the root of a btree and the metadata page which contains allocation

information in both BTREE and HASH databases. Each partition has its own metadata and root pages.

Parameters

Class

Exactly one of the parameters keys and partition_fcn must be NULL.

parts

The parts parameter is the number of partitions to create. The value must be 2 or greater.
keys

The keys parameter is an array of DBT structures containing the keys that specify the range of key
values to be stored in each partition. Each key specifies the minimum value that may be stored in the
corresponding partition. The number of keys must be one less than the number of partitions specified
by the parts parameter since the first partition will hold any key less than the first key in the array.

db_ partition_fcn

The db_partition_fcn parameter is the application-specified partitioning function. The function returns
an integer which will be used modulo the number of partitions specified by the parts parameter. The
function will be called with two parameters:

o db
The db parameter is the database handle.
o key

The key parameter is the key for which a partition number should be returned.

Db

4/12/2010

DB C++ APl Page 124

Db::set_partition()

See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 125

Db::set_partition_dirs()

Db::set_partition_dirs()

#include <db_cxx. h>

int
Db::set_partition_dirs(const char **dirs);

Specify which directories the database extents should be created in or looked for. If the number of
directories is less than the number of partitions, the directories will be used in a round robin fashion.

The Db::set_partition_dirs() method may not be called after the Db::open() method is called.

The Db::set_partition_dirs() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

Class

dirs

The dirs points to an array of directories that will be used to create or locate the database extent files
specified in the Db::open() method call. The directories must be included in the environment list
specified by DbEnv::add_data_dir().

The Db: :set_partition_dirs() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Db

See Also

Database and Related Methods

4/12/2010

DB C++ APl Page 126

Db::set_priority()

Db::set_priority()

#include <db_cxx. h>

int
Db::set _priority(DB CACHE PRIORITY priority);

Set the cache priority for pages referenced by the Db handle.

The priority of a page biases the replacement algorithm to be more or less likely to discard a page
when space is needed in the buffer pool. The bias is temporary, and pages will eventually be discarded
if they are not referenced again. The Db::set_priority() method is only advisory, and does not
guarantee pages will be treated in a specific way.

The Db::set _priority() method may be called at any time during the life of the application.

The Db: : set_priority() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

Class

priority
The priority parameter must be set to one of the following values:
« DB_PRI ORI TY_VERY_LOW
The lowest priority: pages are the most likely to be discarded.
« DB PRICRI TY_LOW

The next lowest priority.

DB PRI ORI TY_DEFAULT
The default priority.
« DB PRIORI TY H GH

The next highest priority.

DB_PRI ORI TY_VERY_Hl GH

The highest priority: pages are the least likely to be discarded.

Db

4/12/2010

DB C++ APl Page 127

Db::set_priority()

See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 128

Db::set_q_extentsize()

Db::set_q_extentsize()

#include <db_cxx. h>

i nt
Db: :set _q_extentsize(u_int32_t extentsize);
Set the size of the extents used to hold pages in a Queue database, specified as a number of pages.

Each extent is created as a separate physical file. If no extent size is set, the default behavior is to
create only a single underlying database file.

For information on tuning the extent size, see Selecting a extent size.

The Db: :set_q_extentsize() method configures a database, not only operations performed using the
specified Db handle.

The Db: : set_q_extentsize() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db: : set _q_ext ent si ze()
will be ignored.

The Db: : set _g_ext ent si ze() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

Class

extentsize

The extentsize parameter is the number of pages in a Queue database extent.

The Db::set_q_extentsize() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Db

See Also

Database and Related Methods

4/12/2010

DB C++ APl Page 129

../../programmer_reference/rq_conf.html#am_conf_extentsize

Db::set_re_delim()

Db::set_re_delim()

#include <db_cxx. h>

i nt
Db::set re delin(int re_delim;

Set the delimiting byte used to mark the end of a record in the backing source file for the Recno access
method.

This byte is used for variable length records if the re_source file is specified using the
Db::set_re_source() method. If the re_source file is specified and no delimiting byte was specified,
<newline> characters (that is, ASCII Ox0a) are interpreted as end-of-record markers.

The Db: :set_re_delim) method configures a database, not only operations performed using the
specified Db handle.

The Db: : set _re_del i () method may not be called after the Db::open() method is called. If the database
already exists when Db::open() is called, the information specified to Db: : set re_delin{) will be
ignored.

The Db: : set_re_del i m{) method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

Class

re_delim

The re_delim parameter is the delimiting byte used to mark the end of a record.

The Db::set_re_delinm) method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Db

See Also

Database and Related Methods

4/12/2010

DB C++ APl Page 130

Db::set_re_len()

Db::set_re_len()

#include <db_cxx. h>

i nt
Db::set re_len(u_int32_t re_len);
For the Queue access method, specify that the records are of length re_len. For the Queue access

method, the record length must be enough smaller than the database's page size that at least one
record plus the database page's metadata information can fit on each database page.

For the Recno access method, specify that the records are fixed-length, not byte-delimited, and are
of length re_len.

Any records added to the database that are less than re_len bytes long are automatically padded (see
Db::set_re_pad() for more information).

Any attempt to insert records into the database that are greater than re_len bytes long will cause the
call to fail immediately and return an error.

The Db::set_re_| en() method configures a database, not only operations performed using the specified
Db handle.

The Db: : set _re_| en() method may not be called after the Db::open() method is called. If the database
already exists when Db::open() is called, the information specified to Db: : set_re_| en() will be ignored.

The Db::set_re_| en() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

Class

re_len

The re_len parameter is the length of a Queue or Recno database record, in bytes.

The Db: :set_re_| en() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Db

4/12/2010

DB C++ APl Page 131

Db::set_re_len()

See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 132

Db::set_re_pad()

Db::set_re_pad()

#include <db_cxx. h>

int
Db::set _re_pad(int re_pad);

Set the padding character for short, fixed-length records for the Queue and Recno access methods.
If no pad character is specified, <space> characters (that is, ASCII 0x20) are used for padding.

The Db: : set_re_pad() method configures a database, not only operations performed using the specified
Db handle.

The Db: : set _re_pad() method may not be called after the Db::open() method is called. If the database
already exists when Db::open() is called, the information specified to Db: : set _re_pad() will be ignored.

The Db: : set_re_pad() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

re_pad

The re_pad parameter is the pad character for fixed-length records for the Queue and Recno access
methods.

Errors

The Db::set_re_pad() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL
If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.
Class
Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 133

Db::set_re_source()

Db::set_re_source()

#include <db_cxx. h>

int
Db: :set _re_source(char *source);

Set the underlying source file for the Recno access method. The purpose of the source value is to
provide fast access and modification to databases that are normally stored as flat text files.

The source parameter specifies an underlying flat text database file that is read to initialize a transient
record number index. In the case of variable length records, the records are separated, as specified
by Db::set_re_delim(). For example, standard UNIX byte stream files can be interpreted as a sequence
of variable length records separated by <newline> characters.

In addition, when cached data would normally be written back to the underlying database file (for
example, the Db::close() or Db::sync() methods are called), the in-memory copy of the database will
be written back to the source file.

By default, the backing source file is read lazily; that is, records are not read from the file until they
are requested by the application. If multiple processes (not threads) are accessing a Recno database
concurrently, and are either inserting or deleting records, the backing source file must be read in
its entirety before more than a single process accesses the database, and only that process should
specify the backing source file as part of the Db::open() call. See the DB_SNAPSHOT flag for more
information.

Reading and writing the backing source file specified by source cannot be transaction-protected
because it involves filesystem operations that are not part of the Db transaction methodology. For
this reason, if a temporary database is used to hold the records, it is possible to lose the contents of
the source file, for example, if the system crashes at the right instant. If a file is used to hold the
database, normal database recovery on that file can be used to prevent information loss, although it
is still possible that the contents of source will be lost if the system crashes.

The source file must already exist (but may be zero-length) when Db::open() is called.

It is not an error to specify a read-only source file when creating a database, nor is it an error to modify
the resulting database. However, any attempt to write the changes to the backing source file using
either the Db::sync() or Db::close() methods will fail, of course. Specify the DB_NOSYNC flag to the
Db::close() method to stop it from attempting to write the changes to the backing file; instead, they
will be silently discarded.

For all of the previous reasons, the source field is generally used to specify databases that are read-only
for Berkeley DB applications; and that are either generated on the fly by software tools or modified
using a different mechanism — for example, a text editor.

The Db: :set_re_source() method configures operations performed using the specified Db handle, not
all operations performed on the underlying database.

4/12/2010

DB C++ APl Page 134

Db::set_re_source()

The Db: :set_re_source() method may not be called after the Db::open() method is called. If the
database already exists when Db::open() is called, the information specified to Db: : set _re_source()
must be the same as that historically used to create the database or corruption can occur.

The Db: : set _re_source() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

Class

source
The backing flat text database file for a Recno database.

When using a Unicode build on Windows (the default), the source argument will be interpreted as a
UTF-8 string, which is equivalent to ASCII for Latin characters.

The Db::set_re_source() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

Db

See Also

Database and Related Methods

4/12/2010

DB C++ APl Page 135

Db::stat()

Db::stat()

#include <db_cxx. h>
i nt
Db::stat(void *sp, u_int32_t flags);

The Db: : stat () method creates a statistical structure and copies a pointer to it into user-specified
memory locations. Specifically, if sp is non-NULL, a pointer to the statistics for the database are copied
into the memory location to which it refers.

The Db: : stat () method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters
flags
The flags parameter must be set to 0 or one of the following values:
o DB FAST_STAT

Return only the values which do not require traversal of the database. Among other things, this flag
makes it possible for applications to request key and record counts without incurring the performance
penalty of traversing the entire database.

« DB_READ_COWM TTED

Database items read during a transactional call will have degree 2 isolation. This ensures the stability
of the data items read during the stat operation but permits that data to be modified or deleted by
other transactions prior to the commit of the specified transaction.

« DB_READ_UNCOMM TTED

Database items read during a transactional call will have degree 1 isolation, including modified but
not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified when
the underlying database was opened.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected.

Statistical Structure

Statistical structures are stored in allocated memory. If application-specific allocation routines have
been declared (see DbEnv::set_alloc() for more information), they are used to allocate the memory;
otherwise, the standard C library malloc(3) is used. The caller is responsible for deallocating the

4/12/2010 DB C++ APl Page 136

Db::stat()

memory. To deallocate the memory, free the memory reference; references inside the returned memory
need not be individually freed.

If the DB_FAST_STAT flag has not been specified, the Db: : st at () method will access some of or all the
pages in the database, incurring a severe performance penalty as well as possibly flushing the underlying
buffer pool.

In the presence of multiple threads or processes accessing an active database, the information returned
by DB->stat may be out-of-date.

If the database was not opened read-only and the DB_FAST_STAT flag was not specified, the cached
key and record numbers will be updated after the statistical information has been gathered.

The Db: : stat() method may not be called before the Db::open() method is called.
The Db: : stat() method returns a non-zero error value on failure and 0 on success.
Hash Statistics

In the case of a Hash database, the statistics are stored in a structure of type DB _HASH STAT. The
following fields will be filled in:

e u_int32_ t hash_magic;

Magic number that identifies the file as a Hash file. Returned if DB_FAST_STAT is set.
e U_int32_t hash_version;

The version of the Hash database. Returned if DB_FAST_STAT is set.
e u_int32_ t hash_nkeys;

The number of unique keys in the database. If DB_FAST_STAT was specified the count will be the
last saved value unless it has never been calculated, in which case it will be 0. Returned if
DB_FAST_STAT is set.

e u_int32_t hash_ndata;

The number of key/data pairs in the database. If DB_FAST_STAT was specified the count will be the
last saved value unless it has never been calculated, in which case it will be 0. Returned if
DB_FAST_STAT is set.

e U_int32_t hash_pagecnt;
The number of pages in the database. Returned if DB_FAST_STAT is set.
e u_int32_t hash_pagesi ze;
The underlying database page (and bucket) size, in bytes. Returned if DB_FAST_STAT is set.

e U_int32_t hash ffactor;

4/12/2010

DB C++ APl Page 137

Db::stat()

The desired fill factor (number of items per bucket) specified at database-creation time. Returned
if DB_FAST_STAT is set.

e u_int32_t hash_buckets;

The number of hash buckets. Returned if DB_FAST_STAT is set.
e u_int32_t hash free;

The number of pages on the free list.
e uintmax_t hash_bfree;

The number of bytes free on bucket pages.
e u_int32_t hash_bigpages;

The number of big key/data pages.
e uintmax_t hash_big_bfree;

The number of bytes free on big item pages.
e u_int32_t hash_overfl ows;

The number of overflow pages (overflow pages are pages that contain items that did not fit in the
main bucket page).

e uintmax_t hash_ovfl free;

The number of bytes free on overflow pages.
e u_int32_t hash_dup;

The number of duplicate pages.
e uintmax_t hash_dup_free;

The number of bytes free on duplicate pages.
Btree and Recno Statistics

In the case of a Btree or Recno database, the statistics are stored in a structure of type DB_BTREE STAT.
The following fields will be filled in:

e U_int32_t bt_magic;
Magic number that identifies the file as a Btree database. Returned if DB_FAST_STAT is set.
e uU_int32_t bt _version;

The version of the Btree database. Returned if DB_FAST_STAT is set.

4/12/2010 DB C++ APl Page 138

Db::stat()

e u_int32_t bt_nkeys;

For the Btree Access Method, the number of keys in the database. If the DB_FAST_STAT flag is not
specified or the database was configured to support record numbers (see DB_RECNUM), the count
will be exact. Otherwise, the count will be the last saved value unless it has never been calculated,
in which case it will be 0.

For the Recno Access Method, the number of records in the database. If the database was configured
with mutable record numbers (see DB_RENUMBER), the count will be exact. Otherwise, if the
DB_FAST_STAT flag is specified the count will be exact but will include deleted and implicitly created
records; if the DB_FAST_STAT flag is not specified, the count will be exact and will not include
deleted or implicitly created records.

Returned if DB_FAST_STAT is set.
u_int32_t bt ndata;

For the Btree Access Method, the number of key/data pairs in the database. If the DB_FAST_STAT
flag is not specified, the count will be exact. Otherwise, the count will be the last saved value unless
it has never been calculated, in which case it will be 0.

For the Recno Access Method, the number of records in the database. If the database was configured
with mutable record numbers (see DB_RENUMBER), the count will be exact. Otherwise, if the
DB_FAST_STAT flag is specified the count will be exact but will include deleted and implicitly created
records; if the DB_FAST_STAT flag is not specified, the count will be exact and will not include
deleted or implicitly created records.

Returned if DB_FAST_STAT is set.

u_int32_t bt _pagecnt;

The number of pages in the database. Returned if DB_FAST_STAT is set.
u_int32_t bt _pagesize;

The underlying database page size, in bytes. Returned if DB_FAST_STAT is set.
u_int32_t bt _ninkey;

The minimum keys per page. Returned if DB_FAST_STAT is set.

uint32_t bt re len;

The length of fixed-length records. Returned if DB_FAST_STAT is set.
u_int32_t bt re_pad,

The padding byte value for fixed-length records. Returned if DB_FAST_STAT is set.
u_int32_t bt _levels;

Number of levels in the database.

4/12/2010

DB C++ APl Page 139

Db::stat()

u_int32_t bt_int_pg;

Number of database internal pages.
u_int32_t bt _|eaf pg;

Number of database leaf pages.

u_int32_t bt_dup_pg;

Number of database duplicate pages.

u_int32_t bt_over_pg;

Number of database overflow pages.
u_int32_t bt_enpty pg;

Number of empty database pages.
u_int32t bt free;

Number of pages on the free list.

uintmax_t bt _int_pgfree;

Number of bytes free in database internal pages.

uintmax_t bt _leaf pgfree;

Number of bytes free in database leaf pages.

uintmax_t bt _dup_pgfree;

Number of bytes free in database duplicate pages.

uintmax_t bt _over pgfree;

Number of bytes free in database overflow pages.

Queue Statistics

In the case of a Queue database, the statistics are stored in a structure of type DB_QUEUE STAT. The
following fields will be filled in:

u_int32_t qs_magic;

Magic number that identifies the file as a Queue file. Returned if DB_FAST_STAT is set.

u_int32_t qgs_version;

The version of the Queue file type. Returned if DB_FAST_STAT is set.

4/12/2010

DB C++ APl

Page 140

Db::stat()

u_int32_t qs_nkeys;

The number of records in the database. If DB_FAST_STAT was specified the count will be the last
saved value unless it has never been calculated, in which case it will be 0. Returned if DB_FAST_STAT
is set.

e U_int32_t gs_ndata;

The number of records in the database. If DB_FAST_STAT was specified the count will be the last
saved value unless it has never been calculated, in which case it will be 0. Returned if DB_FAST_STAT
is set.

e u_int32_t qs_pagesize;

Underlying database page size, in bytes. Returned if DB_FAST_STAT is set.
e u_int32_t gs_extentsize;

Underlying database extent size, in pages. Returned if DB_FAST_STAT is set.
e U_int32_t gs_pages;

Number of pages in the database.
e u_int32_t gs_re_len;

The length of the records. Returned if DB_FAST_STAT is set.
e uU_int32_t gs_re_pad;

The padding byte value for the records. Returned if DB_FAST_STAT is set.
e u_int32_t gs_pgfree;

Number of bytes free in database pages.
e u_int32_t gs_first_recno;

First undeleted record in the database. Returned if DB_FAST_STAT is set.
e u_int32_t gs_cur_recno;

Next available record number. Returned if DB_FAST_STAT is set.

Errors

The Db: : st at () method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

4/12/2010 DB C++ APl Page 141

Db::stat()

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB _REP_LQOCKQUT is returned.

EINVAL

An invalid flag value or parameter was specified.
Class

Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 142

Db::stat_print()

Db::stat_print()

#include <db_cxx. h>

int

Db::stat_print(u_int32_t flags);
The Db::stat_print() method displays the database statistical information, as described for the
Db: : stat () method. The information is printed to a specified output channel (see the

DbEnv::set_msgfile() method for more information), or passed to an application callback function (see
the DbEnv::set_msgcall() method for more information).

The Db: :stat_print() method may not be called before the Db::open() method is called.

The Db: :stat_print() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

Class

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

o DB _FAST_STAT
Return only the values which do not require traversal of the database. Among other things, this flag
makes it possible for applications to request key and record counts without incurring the performance
penalty of traversing the entire database.

« DB _STAT ALL

Display all available information.

Db

See Also

Database and Related Methods

4/12/2010

DB C++ APl Page 143

Db::sync()

Db::sync()

#include <db_cxx. h>

int
Db: :sync(u_int32_t flags);

The Db: : sync() method flushes any cached information to disk.
If the database is in memory only, the Db: : sync() method has no effect and will always succeed.

It is important to understand that flushing cached information to disk only minimizes the window
of opportunity for corrupted data. Although unlikely, it is possible for database corruption to happen
if a system or application crash occurs while writing data to the database. To ensure that database
corruption never occurs, applications must either: use transactions and logging with automatic recovery;
use logging and application-specific recovery; or edit a copy of the database, and once all applications
using the database have successfully called Db::close(), atomically replace the original database with
the updated copy.

The Db: : sync() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

flags

The flags parameter is currently unused, and must be set to 0.

The Db: : sync() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB _REP_LOCKQUT is returned.

EINVAL

An invalid flag value or parameter was specified.

4/12/2010

DB C++ APl Page 144

Db::sync()

Class
Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 145

Db::truncate()

Db::truncate()

#include <db_cxx. h>
int
Db: :truncate(DoTxn *txnid, u_int32_t *countp, u_int32_t flags);

The Db::truncate() method empties the database, discarding all records it contains. The number of
records discarded from the database is returned in countp.

When called on a database configured with secondary indices using the Db::associate() method, the
Db: :truncat e() method truncates the primary database and all secondary indices. A count of the
records discarded from the primary database is returned.

It is an error to call the Db:: truncate() method on a database with open cursors.

The Db: :truncate() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

countp

The countp parameter references memory into which the number of records discarded from the
database is copied.

flags
The flags parameter is currently unused, and must be set to 0.
txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DbEnv::txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DbEnv::cdsgroup_begin(); otherwise NULL.
If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected.

The Db: :truncate() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB _LOCK DEADLOCK is returned.

4/12/2010

DB C++ APl Page 146

Db::truncate()

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If there are open cursors in the database; or if an invalid flag value or parameter was specified.
Class

Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 147

Db::upgrade()

Db::upgrade()

#include <db_cxx. h>

int
Db: : upgrade(const char *file, u_int32_t flags);

The Db: : upgrade() method upgrades all of the databases included in the file file, if necessary. If no
upgrade is necessary, Db: : upgrade() always returns success.

Database upgrades are done in place and are destructive. For example, if pages need to be allocated
and no disk space is available, the database may be left corrupted. Backups should be made before
databases are upgraded. See Upgrading databases for more information.

Unlike all other database operations, Db: : upgrade() may only be done on a system with the same
byte-order as the database.

The Db: : upgr ade() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

file

The file parameter is the physical file containing the databases to be upgraded.
flags

The flags parameter must be set to 0 or the following value:

« DB_DUPSORT

This flag is only meaningful when upgrading databases from releases before the Berkeley DB 3.1
release.

As part of the upgrade from the Berkeley DB 3.0 release to the 3.1 release, the on-disk format of
duplicate data items changed. To correctly upgrade the format requires applications to specify
whether duplicate data items in the database are sorted or not. Specifying the DB_DUPSORT flag
informs Db: : upgrade() that the duplicates are sorted; otherwise they are assumed to be unsorted.
Incorrectly specifying the value of this flag may lead to database corruption.

Further, because the Db: : upgrade() method upgrades a physical file (including all the databases it
contains), it is not possible to use Db: : upgrade() to upgrade files in which some of the databases it
includes have sorted duplicate data items, and some of the databases it includes have unsorted
duplicate data items. If the file does not have more than a single database, if the databases do not
support duplicate data items, or if all of the databases that support duplicate data items support
the same style of duplicates (either sorted or unsorted), Db: : upgr ade() will work correctly as long
as the DB_DUPSORT flag is correctly specified. Otherwise, the file cannot be upgraded using

Db: : upgrade; () it must be upgraded manually by dumping and reloading the databases.

4/12/2010

DB C++ APl Page 148

../../programmer_reference/am_upgrade.html

Db::upgrade()

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOVE may be
used as the path of the database environment home.

Db: : upgrade() is affected by any database directory specified using the DbEnv::set_data_dir() method,
or by setting the "set_data_dir" string in the environment's DB_CONFIG file.

Errors

The Db: : upgrade() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DB_OLD_VERSION

The database cannot be upgraded by this version of the Berkeley DB software.
Class

Db
See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 149

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Db::verify()

Db::verify()

#include <db_cxx. h>

int
Db: :verify(const char *file,
const char *database, ostream *outfile, u_int32_t flags);

The Db: : verify() method verifies the integrity of all databases in the file specified by the file
parameter, and optionally outputs the databases' key/data pairs to the file stream specified by the
outfile parameter.

The Db: : verify() method does not perform any locking, even in Berkeley DB environments that
are configured with a locking subsystem. As such, it should only be used on files that are not being
modified by another thread of control.

The Db: : verify() method may not be called after the Db::open() method is called.
The Db handle may not be accessed again after Db: : verify() is called, regardless of its return.

The Db: : verify() method will return DB_VERIFY_BAD if a database is corrupted. When the DB_SALVAGE
flag is specified, the DB_VERIFY_BAD return means that all key/data pairs in the file may not have
been successfully output. Unless otherwise specified, the Db: : veri fy() method either returns a non-zero
error value or throws an exception that encapsulates a non-zero error value on failure, and returns 0
on success.

Parameters

database

The database parameter is the database in file on which the database checks for btree and duplicate
sort order and for hashing are to be performed. See the DB_ORDERCHKONLY flag for more information.

The database parameter must be set to NULL except when the DB_ORDERCHKONLY flag is set.
file

The file parameter is the physical file in which the databases to be verified are found.

flags

The flags parameter must be set to 0 or the following value:

« DB SALVAGE

Write the key/data pairs from all databases in the file to the file stream named in the outfile
parameter. Key values are written for Btree, Hash and Queue databases, but not for Recno databases.

The output format is the same as that specified for the db_dump utility, and can be used as input
for the db_load utility.

4/12/2010

DB C++ APl Page 150

Db::verify()

Because the key/data pairs are output in page order as opposed to the sort order used by db_dump,
using Db: : verify() to dump key/data pairs normally produces less than optimal loads for Btree
databases.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags parameter:
» DB AGGRESSI VE

Output all the key/data pairs in the file that can be found. By default, Db: : veri fy() does not assume
corruption. For example, if a key/data pair on a page is marked as deleted, it is not then written to
the output file. When DB_AGGRESSIVE is specified, corruption is assumed, and any key/data pair
that can be found is written. In this case, key/data pairs that are corrupted or have been deleted
may appear in the output (even if the file being salvaged is in no way corrupt), and the output will
almost certainly require editing before being loaded into a database.

» DB_PRI NTABLE

When using the DB_SALVAGE flag, if characters in either the key or data items are printing characters
(as defined by isprint(3)), use printing characters to represent them. This flag permits users to use
standard text editors and tools to modify the contents of databases or selectively remove data from
salvager output.

Note: different systems may have different notions about what characters are considered printing
characters, and databases dumped in this manner may be less portable to external systems.

» DB_NOORDERCHK
Skip the database checks for btree and duplicate sort order and for hashing.

The Db: : verify() method normally verifies that btree keys and duplicate items are correctly sorted,
and hash keys are correctly hashed. If the file being verified contains multiple databases using
differing sorting or hashing algorithms, some of them must necessarily fail database verification
because only one sort order or hash function can be specified before Db: : veri fy() is called. To verify
files with multiple databases having differing sorting orders or hashing functions, first perform
verification of the file as a whole by using the DB_NOORDERCHK flag, and then individually verify
the sort order and hashing function for each database in the file using the DB_ORDERCHKONLY flag.

« DB_ORDERCHKONLY

Perform the database checks for btree and duplicate sort order and for hashing, skipped by
DB_NOORDERCHK.

When this flag is specified, a database parameter should also be specified, indicating the database
in the physical file which is to be checked. This flag is only safe to use on databases that have already
successfully been verified using Db: : veri fy() with the DB_NOORDERCHK flag set.

outfile

The outfile parameter is an optional file stream to which the databases’ key/data pairs are written.

4/12/2010 DB C++ APl Page 151

Db::verify()

Environment Variables

Errors

Class

If the database was opened within a database environment, the environment variable DB_HOVE may be
used as the path of the database environment home.

Db: :verify() is affected by any database directory specified using the DbEnv::set_data_dir() method,
or by setting the "set_data_dir" string in the environment's DB_CONFIG file.

The Db: : verify() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() was called; or if an invalid flag value or parameter was
specified.

ENOENT

The file or directory does not exist.

Db

See Also

Database and Related Methods

4/12/2010

DB C++ APl Page 152

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Chapter 3. The Dbc Handle

A Dbc object is a handle for a cursor into a Berkeley DB database.

Dbc handles are not free-threaded. Cursor handles may be shared by multiple threads if access is
serialized by the application.

You create a Dbc using the Db::cursor() method.

If the cursor is to be used to perform operations on behalf of a transaction, the cursor must be opened
and closed within the context of that single transaction.

Once Dbc::close() has been called, the handle may not be accessed again, regardless of the method's
return.

4/12/2010 DB C++ APl Page 153

Database Cursors and Related Methods

Database Cursors and Related Methods

Database Cursors and Related Methods Description
Db::cursor() Create a cursor handle
Dbc::close() Close a cursor handle
Dbc::cmp() Compare two cursors for equality.
Dbc::count() Return count of duplicates for current key
Dbc::del() Delete current key/data pair
Dbc::dup() Duplicate the cursor handle
Dbc::get() Retrieve by cursor
Dbc::put() Store by cursor
Dbc::set_priority(), Dbc::get_priority() Set/get the cursor's cache priority

4/12/2010 DB C++ APl Page 154

Db::cursor()

Db::cursor()

#include <db_cxx. h>

int
Db: : cursor (DbTxn *txnid, Dbc **cursorp, u_int32_t flags);

The Db: : cursor () method returns a created database cursor.

Cursors may span threads, but only serially, that is, the application must serialize access to the cursor
handle.

The Db: : cursor () method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

cursorp
The cursorp parameter references memory into which a pointer to the allocated cursor is copied.
flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

« DB_BULK

Configure a cursor to optimize for bulk operations. Each successive operation on a cursor configured
with this flag attempts to continue on the same database page as the previous operation, falling
back to a search if a different page is required. This avoids searching if there is a high degree of
locality between cursor operations. This flag is currently only effective with the btree access method:
for other access methods it is ignored.

« DB_READ_COWM TTED

Configure a transactional cursor to have degree 2 isolation. This ensures the stability of the current
data item read by this cursor but permits data read by this cursor to be modified or deleted prior to
the commit of the transaction for this cursor.

« DB_READ_UNCOWM TTED

Configure a transactional cursor to have degree 1 isolation. Read operations performed by the cursor
may return modified but not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED
flag was not specified when the underlying database was opened.

« DB_WRI TECURSCR

Specify that the cursor will be used to update the database. The underlying database environment
must have been opened using the DB_INIT_CDB flag.

4/12/2010

DB C++ APl Page 155

Db::cursor()

Errors

Class

« DB_TXN_SNAPSHOT

Configure a transactional cursor to operate with read-only snapshot isolation. For databases with
the DB_MULTIVERSION flag set, data values will be read as they are when the cursor is opened,
without taking read locks.

This flag implicitly begins a transaction that is committed when the cursor is closed.

This flag is silently ignored if DB_MULTIVERSION is not set on the underlying database or if a transaction
is supplied in the txnid parameter.

txnid

To transaction-protect cursor operations, cursors must be opened and closed within the context of a
transaction. The txnid parameter specifies the transaction context in which the cursor may be used.

Cursor operations are not automatically transaction-protected, even if the DB_AUTO_COMMIT flag is
specified to the DbEnv::set_flags() or Db::open() methods. If cursor operations are to be
transaction-protected, the txnid parameter must be a transaction handle returned from
DbEnv::txn_begin(); otherwise, NULL.

The Db: : cursor () method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP HANDLE DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB _REP_LOCKQUT is returned.

EINVAL

An invalid flag value or parameter was specified.

Db

4/12/2010

DB C++ APl Page 156

../../programmer_reference/transapp_read.html

Db::cursor()

See Also

Database Cursors and Related Methods

4/12/2010 DB C++ APl Page 157

Dbc::close()

Dbc::close()

#include <db_cxx. h>

i nt
Dbc: : cl ose(voi d);

The Dbc: : cl ose() method discards the cursor.

It is possible for the Dbc: : cl ose() method to return DB_LOCK_DEADLOCK, signaling that any enclosing
transaction should be aborted. If the application is already intending to abort the transaction, this
error should be ignored, and the application should proceed.

After Dbc: : cl ose() has been called, regardless of its return, the cursor handle may not be used again.

The Dbc: : cl ose() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Errors

The Dbc: : cl ose() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_LOCK DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK NOTGRANTED is returned.

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.
Class

Dbc
See Also

Database Cursors and Related Methods

4/12/2010 DB C++ APl Page 158

../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK

Dbc::cmp()

Dbc::

cmp()

#include <db_cxx. h>
int
Dbc: : cnp(Dbc *other _cursor, int *result, u_int32_t flags);

The Dbc: : cnp() method compares two cursors for equality. Two cursors are equal if and only if they
are positioned on the same item in the same database.

The Dobc: : cnp() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

Class

other_cursor
The other_cursor parameter references another cursor handle that will be used as the comparator.
result

If the call is successful and both cursors are positioned on the same item, result is set to zero. If the
call is successful but the cursors are not positioned on the same item, result is set to a non-zero value.
If the call is unsuccessful, the value of result should be ignored.

flags

The flags parameter is currently unused, and must be set to 0.

The Dbc: : cmp() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

EINVAL
« If either of the cursors are already closed.

« If the cursors have been opened against different databases.

If either of the cursors have not been positioned.

If the other_dbc parameter is NULL.

If the result parameter is NULL.

Dbc

4/12/2010

DB C++ APl Page 159

Dbc::cmp()

See Also

Database Cursors and Related Methods

4/12/2010 DB C++ APl Page 160

Dbc::count()

Dbc::

count()

#include <db_cxx. h>
int
Dbc: : count (db_recno_t *countp, u_int32_t flags);

The Dbc: : count () method returns a count of the number of data items for the key to which the cursor
refers.

The Dbc: : count () method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

Class

countp

The countp parameter references memory into which the count of the number of duplicate data items
is copied.

flags

The flags parameter is currently unused, and must be set to 0.

The Dbc: : count () method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKQUT is returned.

EINVAL

If the cursor has not been initialized; or if an invalid flag value or parameter was specified.

Dbc

4/12/2010

DB C++ APl Page 161

Dbc::count()

See Also

Database Cursors and Related Methods

4/12/2010 DB C++ APl Page 162

Dbc::del()

Dbc::del()

#include <db_cxx. h>

int
Dbc: :del (u_int32_t flags);

The Dbc: : del () method deletes the key/data pair to which the cursor refers.

When called on a cursor opened on a database that has been made into a secondary index using the
Db::associate() method, the Db::del() method deletes the key/data pair from the primary database
and all secondary indices.

The cursor position is unchanged after a delete, and subsequent calls to cursor functions expecting the
cursor to refer to an existing key will fail.

The Doc: : del () method will return DB_KEYEMPTY if the element has already been deleted. The
Dbc: : del () method either returns a non-zero error value or throws an exception that encapsulates a
non-zero error value on failure, and returns 0 on success.

Parameters

Errors

flags
The flags parameter must be set to 0 or one of the following values:
» DB_CONSUME
If the database is of type DB_QUEUE then this flag may be set to force the head of the queue to

move to the first non-deleted item in the queue. Normally this is only done if the deleted item is
exactly at the head when deleted.

The Dbc: : del () method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DB_FOREIGN_CONFLICT
A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for that record
does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 10) was declared for a foreign key database, and then subsequently a
record was deleted from the foreign key database without first removing it from the constrained
secondary database.

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

4/12/2010

DB C++ APl Page 163

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Dbc::del()

Class

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB _LOCK DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKQUT is returned.

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EACCES

An attempt was made to modify a read-only database.

EINVAL

If the cursor has not been initialized; or if an invalid flag value or parameter was specified.
EPERM

Write attempted on read-only cursor when the DB_INIT_CDB flag was specified to DbEnv::open().

Dbc

See Also

Database Cursors and Related Methods

4/12/2010

DB C++ APl Page 164

Dbc::dup()

Dbc::

dup()

#include <db_cxx. h>

i nt
Dbc: : dup(Dbc **cursorp, u_int32_t flags);
The Dbc: : dup() method creates a new cursor that uses the same transaction and locker ID as the original

cursor. This is useful when an application is using locking and requires two or more cursors in the same
thread of control.

The Dbc: : dup() method either returns a non-zero error value or throws an exception that encapsulates
a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

cursorp

The Doc: : dup() method returns the newly created cursor in cursorp.
flags

The flags parameter must be set to 0 or the following flag:

« DB_PCSI TI ON

The newly created cursor is initialized to refer to the same position in the database as the original
cursor (if any) and hold the same locks (if any). If the DB_POSITION flag is not specified, or the
original cursor does not hold a database position and locks, the created cursor is uninitialized and
will behave like a cursor newly created using the Db::cursor() method.

The Dbc: : dup() method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_REP_LOCKQUT is returned.

4/12/2010

DB C++ APl Page 165

Dbc::dup()

EINVAL

An invalid flag value or parameter was specified.

Class

Dbc

See Also

Database Cursors and Related Methods

4/12/2010 DB C++ APl Page 166

Dbc::get()

Dbc::get()

#include <db_cxx. h>

int
Dbc::get (Dbt *key, Dbt *data, u_int32_t flags);

int
Dbc: : pget (Dot *key, Dbt *pkey, Dbt *data, u_int32_t flags);

The Dbc: : get () method retrieves key/data pairs from the database. The address and length of the key
are returned in the object to which key refers (except for the case of the DB_SET flag, in which the
key object is unchanged), and the address and length of the data are returned in the object to which
data refers.

When called on a cursor opened on a database that has been made into a secondary index using the
Db::associate() method, the Dbc:: get() and Dbc:: pget () methods return the key from the secondary
index and the data item from the primary database. In addition, the Dbc: : pget () method returns the
key from the primary database. In databases that are not secondary indices, the Dbc: : pget () method
will always fail.

Modifications to the database during a sequential scan will be reflected in the scan; that is, records
inserted behind a cursor will not be returned while records inserted in front of a cursor will be returned.

In Queue and Recno databases, missing entries (that is, entries that were never explicitly created or
that were created and then deleted) will be skipped during a sequential scan.

Unless otherwise specified, the Dbc: : get () method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

If Dbc: : get () fails for any reason, the state of the cursor will be unchanged.

Parameters

data
The data Dbt operated on.
flags
The flags parameter must be set to one of the following values:
« DB_CURRENT
Return the key/data pair to which the cursor refers.

The Dbc: : get () method will return DB_KEYEMPTY if DB_CURRENT is set and the cursor key/data pair
was deleted.

« DB_FIRST

4/12/2010

DB C++ APl Page 167

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Dbc::get()

The cursor is set to refer to the first key/data pair of the database, and that pair is returned. If the
first key has duplicate values, the first data item in the set of duplicates is returned.

If the database is a Queue or Recno database, Doc: : get () using the DB_FIRST flag will ignore any
keys that exist but were never explicitly created by the application, or were created and later
deleted.

The Dbc: : get () method will return DB_NOTFOUND if DB_FIRST is set and the database is empty.
DB_GET_BOTH

Move the cursor to the specified key/data pair of the database. The cursor is positioned to a key/data
pair if both the key and data match the values provided on the key and data parameters.

In all other ways, this flag is identical to the DB_SET flag.

When used with Dbc: : pget () on a secondary index handle, both the secondary and primary keys must
be matched by the secondary and primary key item in the database. It is an error to use the
DB_GET_BOTH flag with the Dbc: : get () version of this method and a cursor that has been opened
on a secondary index handle.

DB_GET_BOTH_RANGE

Move the cursor to the specified key/data pair of the database. The key parameter must be an exact
match with a key in the database. The data item retrieved is the item in a duplicate set that is the
smallest value which is greater than or equal to the value provided by the data parameter (as
determined by the comparison function). If this flag is specified on a database configured without
sorted duplicate support, the behavior is identical to the DB_GET_BOTH flag. Returns the datum
associated with the given key/data pair.

In all other ways, this flag is identical to the DB_GET_BOTH flag.
DB GET_RECNO

Return the record number associated with the cursor. The record number will be returned in data,
as described in Dbt. The key parameter is ignored.

For DB_GET_RECNO to be specified, the underlying database must be of type Btree, and it must have
been created with the DB_RECNUM flag.

When called on a cursor opened on a database that has been made into a secondary index, the
Dbc: : get () and Dbc: : pget () methods return the record number of the primary database in data. In
addition, the Dbc: : pget () method returns the record number of the secondary index in pkey. If
either underlying database is not of type Btree or is not created with the DB_RECNUM flag, the
out-of-band record number of 0 is returned.

DB_JO N_| TEM

Do not use the data value found in all of the cursors as a lookup key for the primary database, but
simply return it in the key parameter instead. The data parameter is left unchanged.

4/12/2010

DB C++ APl Page 168

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Dbc::get()

For DB_JOIN_ITEM to be specified, the underlying cursor must have been returned from the Db::join()
method.

DB_LAST

The cursor is set to refer to the last key/data pair of the database, and that pair is returned. If the
last key has duplicate values, the last data item in the set of duplicates is returned.

If the database is a Queue or Recno database, Dbc: : get () using the DB_LAST flag will ignore any
keys that exist but were never explicitly created by the application, or were created and later
deleted.

The Dbc: : get () method will return DB_NOTFOUND if DB_LAST is set and the database is empty.
DB_NEXT

If the cursor is not yet initialized, DB_NEXT is identical to DB_FIRST. Otherwise, the cursor is moved
to the next key/data pair of the database, and that pair is returned. In the presence of duplicate
key values, the value of the key may not change.

If the database is a Queue or Recno database, Dbc: : get () using the DB_NEXT flag will skip any keys
that exist but were never explicitly created by the application, or those that were created and later
deleted.

The Dbc: : get () method will return DB_NOTFOUND if DB_NEXT is set and the cursor is already on the
last record in the database.

DB_NEXT_DUP

If the next key/data pair of the database is a duplicate data record for the current key/data pair,
the cursor is moved to the next key/data pair of the database, and that pair is returned.

The Dbc: : get () method will return DB_NOTFOUND if DB_NEXT_DUP is set and the next key/data pair
of the database is not a duplicate data record for the current key/data pair.

DB_NEXT_NCDUP

If the cursor is not yet initialized, DB_NEXT_NODUP is identical to DB_FIRST. Otherwise, the cursor
is moved to the next non-duplicate key of the database, and that key/data pair is returned.

If the database is a Queue or Recno database, Dbc: : get () using the DB_NEXT_NODUP flag will ignore
any keys that exist but were never explicitly created by the application, or those that were created
and later deleted.

The Dbc: : get () method will return DB_NOTFOUND if DB_NEXT_NODUP is set and no non-duplicate
key/data pairs exist after the cursor position in the database.

« DB_PREV

4/12/2010

DB C++ APl Page 169

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Dbc::get()

If the cursor is not yet initialized, DB_PREYV is identical to DB_LAST. Otherwise, the cursor is moved
to the previous key/data pair of the database, and that pair is returned. In the presence of duplicate
key values, the value of the key may not change.

If the database is a Queue or Recno database, Dbc: : get () using the DB_PREV flag will skip any keys
that exist but were never explicitly created by the application, or those that were created and later
deleted.

The Dbc: : get () method will return DB_NOTFOUND if DB_PREV is set and the cursor is already on the
first record in the database.

DB_PREV_DUP

If the previous key/data pair of the database is a duplicate data record for the current key/data
pair, the cursor is moved to the previous key/data pair of the database, and that pair is returned.

The Dbc: : get () method will return DB_NOTFOUND if DB_PREV_DUP is set and the previous key/data
pair of the database is not a duplicate data record for the current key/data pair.

DB_PREV_NCDUP

If the cursor is not yet initialized, DB_PREV_NODUP is identical to DB_LAST. Otherwise, the cursor
is moved to the previous non-duplicate key of the database, and that key/data pair is returned.

If the database is a Queue or Recno database, Dbc: : get () using the DB_PREV_NODUP flag will ignore
any keys that exist but were never explicitly created by the application, or those that were created
and later deleted.

The Dbc: : get () method will return DB_NOTFOUND if DB_PREV_NODUP is set and no non-duplicate
key/data pairs exist before the cursor position in the database.

DB_SET

Move the cursor to the specified key/data pair of the database, and return the datum associated
with the given key.

The Dbc: : get () method will return DB_NOTFOUND if DB_SET is set and no matching keys are found.
The Doc: : get () method will return DB_KEYEMPTY if DB_SET is set and the database is a Queue or
Recno database, and the specified key exists, but was never explicitly created by the application or
was later deleted. In the presence of duplicate key values, Dbc: : get () will return the first data item
for the given key.

DB_SET_RANGE

Move the cursor to the specified key/data pair of the database. In the case of the Btree access
method, the key is returned as well as the data item and the returned key/data pair is the smallest
key greater than or equal to the specified key (as determined by the Btree comparison function),
permitting partial key matches and range searches.

In all other ways the behavior of this flag is the same as the DB_SET flag.

4/12/2010

DB C++ APl Page 170

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Dbc::get()

« DB_SET_RECNO

Move the cursor to the specific numbered record of the database, and return the associated key/data
pair. The data field of the specified key must be a pointer to a memory location from which a
db_recno_t may be read, as described in Dbt. This memory location will be read to determine the
record to be retrieved.

For DB_SET_RECNO to be specified, the underlying database must be of type Btree, and it must have
been created with the DB_RECNUM flag.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags parameter:

« DB | GNORE_LEASE

This flag is relevant only when using a replicated environment.

Return the data item irrespective of the state of master leases. The item will be returned under all
conditions: if master leases are not configured, if the request is made to a client, if the request is
made to a master with a valid lease, or if the request is made to a master without a valid lease.

DB_READ_COW TTED
Configure a transactional get operation to have degree 2 isolation (the read is not repeatable).
DB_READ_UNCOWM TTED

Database items read during a transactional call will have degree 1 isolation, including modified but
not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified when
the underlying database was opened.

DB_MULTI PLE
Return multiple data items in the data parameter.

In the case of Btree or Hash databases, duplicate data items for the current key, starting at the
current cursor position, are entered into the buffer. Subsequent calls with both the DB_NEXT_DUP
and DB_MULTIPLE flags specified will return additional duplicate data items associated with the
current key or DB_NOTFOUND if there are no additional duplicate data items to return. Subsequent
calls with both the DB_NEXT and DB_MULTIPLE flags specified will return additional duplicate data
items associated with the current key or if there are no additional duplicate data items will return
the next key and its data items or DB_NOTFOUND if there are no additional keys in the database.

In the case of Queue or Recno databases, data items starting at the current cursor position are
entered into the buffer. The record number of the first record will be returned in the key parameter.
The record number of each subsequent returned record must be calculated from this value. Subsequent
calls with the DB_MULTIPLE flag specified will return additional data items or DB_NOTFOUND if there
are no additional data items to return.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM). The buffer must be at least as large as the page size of the underlying database,
aligned for unsigned integer access, and be a multiple of 1024 bytes in size. If the buffer size is

4/12/2010

DB C++ APl Page 171

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Dbc::get()

insufficient, then upon return from the call the size field of the data parameter will have been set
to an estimated buffer size, and the error DB_BUFFER_SMALL is returned. (The size is an estimate
as the exact size needed may not be known until all entries are read. It is best to initially provide a
relatively large buffer, but applications should be prepared to resize the buffer as necessary and
repeatedly call the method.)

The multiple data items can be iterated over using the DbMultipleDatalterator class.

The DB_MULTIPLE flag may only be used with the DB_CURRENT, DB_FIRST, DB_GET_BOTH,
DB_GET_BOTH_RANGE, DB_NEXT, DB_NEXT_DUP, DB_NEXT_NODUP, DB_SET, DB_SET_RANGE, and
DB_SET_RECNO options. The DB_MULTIPLE flag may not be used when accessing databases made
into secondary indices using the Db::associate() method.

o DB_MULTI PLE_KEY
Return multiple key and data pairs in the data parameter.

Key and data pairs, starting at the current cursor position, are entered into the buffer. Subsequent
calls with both the DB_NEXT and DB_MULTIPLE_KEY flags specified will return additional key and
data pairs or DB_NOTFOUND if there are no additional key and data items to return.

In the case of Btree or Hash databases, the multiple key and data pairs can be iterated over using
the DbMultipleKeyDatalterator class.

In the case of Queue or Recno databases, the multiple record number and data pairs can be iterated
over using the DbMultipleRecnoDatalterator class.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM). The buffer must be at least as large as the page size of the underlying database,
aligned for unsigned integer access, and be a multiple of 1024 bytes in size. If the buffer size is
insufficient, then upon return from the call the size field of the data parameter will have been set
to an estimated buffer size, and the error DB_BUFFER_SMALL is returned. (The size is an estimate
as the exact size needed may not be known until all entries are read. It is best to initially provide a
relatively large buffer, but applications should be prepared to resize the buffer as necessary and
repeatedly call the method.)

The DB_MULTIPLE_KEY flag may only be used with the DB_CURRENT, DB_FIRST, DB_GET_BOTH,
DB_GET_BOTH_RANGE, DB_NEXT, DB_NEXT_DUP, DB_NEXT_NODUP, DB_SET, DB_SET_RANGE, and
DB_SET_RECNO options. The DB_MULTIPLE_KEY flag may not be used when accessing databases made
into secondary indices using the Db::associate() method.

« DB_RWW

Acquire write locks instead of read locks when doing the read, if locking is configured. Setting this
flag can eliminate deadlock during a read-modify-write cycle by acquiring the write lock during the
read part of the cycle so that another thread of control acquiring a read lock for the same item, in
its own read-modify-write cycle, will not result in deadlock.

key

The key Dbt operated on.

4/12/2010 DB C++ APl Page 172

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Dbc::get()

Errors

pkey

The secondary index key Dbt operated on.

The Dbc: : get () method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DbMemoryException or DB_BUFFER_SMALL
The requested item could not be returned due to undersized buffer.

DbMemoryException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB_BUFFER_SMALL is returned.

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB _LOCK DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DB_REP_LEASE_EXPIRED

The operation failed because the site's replication master lease has expired.
DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB _REP_LQOCKQUT is returned.

4/12/2010

DB C++ APl Page 173

Dbc::get()

DB_SECONDARY_BAD
A secondary index references a nonexistent primary key.
EINVAL

If the DB_CURRENT, DB_NEXT_DUP or DB_PREV_DUP flags were specified and the cursor has not been
initialized; the Dbc: : pget () method was called with a cursor that does not refer to a secondary index;
or if an invalid flag value or parameter was specified.

Class
Dbc

See Also

Database Cursors and Related Methods

4/12/2010 DB C++ APl Page 174

Dbc::get_priority()

Dbc::get_priority()

#include <db_cxx. h>

int
Dbc::get_priority(DB_CACHE PRIORITY *priorityp);

The Dbc: :get_priority() method returns the cache priority for pages referenced by the Dbc handle.
The Dbc: :get_priority() method may be called at any time during the life of the application.

The Dbc:: get_priority() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priorityp

The Doc: : get _priority() method returns a reference to the cache priority for pages referenced by
the Dbc handle in priorityp.

Class

Dbc

See Also

Database Cursors and Related Methods

4/12/2010 DB C++ APl Page 175

Dbc::put()

Dbc::put()

#include <db_cxx. h>

int
Dbc: : put (Dbt *key, Dbt *data, u_int32_t flags);

The Dbc: : put () method stores key/data pairs into the database.

Unless otherwise specified, the Dbc: : put () method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

If Dbc: : put () fails for any reason, the state of the cursor will be unchanged. If Dbc: : put () succeeds
and an item is inserted into the database, the cursor is always positioned to refer to the newly inserted
item.

Parameters

data

The data Dbt operated on.

flags

The flags parameter must be set to one of the following values:
« DB AFTER

In the case of the Btree and Hash access methods, insert the data element as a duplicate element
of the key to which the cursor refers. The new element appears immediately after the current cursor
position. It is an error to specify DB_AFTER if the underlying Btree or Hash database is not configured
for unsorted duplicate data items. The key parameter is ignored.

In the case of the Recno access method, it is an error to specify DB_AFTER if the underlying Recno
database was not created with the DB_RENUMBER flag. If the DB_RENUMBER flag was specified, a
new key is created, all records after the inserted item are automatically renumbered, and the key
of the new record is returned in the structure to which the key parameter refers. The initial value
of the key parameter is ignored. See Db::open() for more information.

The DB_AFTER flag may not be specified to the Queue access method.

The Dbc: : put () method will return DB_NOTFOUND if the current cursor record has already been
deleted and the underlying access method is Hash.

« DB_BEFORE

In the case of the Btree and Hash access methods, insert the data element as a duplicate element
of the key to which the cursor refers. The new element appears immediately before the current
cursor position. It is an error to specify DB_AFTER if the underlying Btree or Hash database is not
configured for unsorted duplicate data items. The key parameter is ignored.

4/12/2010

DB C++ APl Page 176

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Dbc::put()

In the case of the Recno access method, it is an error to specify DB_BEFORE if the underlying Recno
database was not created with the DB_RENUMBER flag. If the DB_RENUMBER flag was specified, a
new key is created, the current record and all records after it are automatically renumbered, and
the key of the new record is returned in the structure to which the key parameter refers. The initial
value of the key parameter is ignored. See Db::open() for more information.

The DB_BEFORE flag may not be specified to the Queue access method.

The Doc: : put () method will return DB_NOTFOUND if the current cursor record has already been
deleted and the underlying access method is Hash.

« DB_CURRENT

Overwrite the data of the key/data pair to which the cursor refers with the specified data item. The
key parameter is ignored.

The Dbc: : put () method will return DB_NOTFOUND if the current cursor record has already been
deleted.

o DB_KEYFI RST
Insert the specified key/data pair into the database.

If the underlying database supports duplicate data items, and if the key already exists in the database
and a duplicate sort function has been specified, the inserted data item is added in its sorted location.
If the key already exists in the database and no duplicate sort function has been specified, the
inserted data item is added as the first of the data items for that key.

o DB_KEYLAST
Insert the specified key/data pair into the database.

If the underlying database supports duplicate data items, and if the key already exists in the database
and a duplicate sort function has been specified, the inserted data item is added in its sorted location.
If the key already exists in the database, and no duplicate sort function has been specified, the
inserted data item is added as the last of the data items for that key.

» DB_NCDUPDATA

In the case of the Btree and Hash access methods, insert the specified key/data pair into the database,
unless a key/data pair comparing equally to it already exists in the database. If a matching key/data
pair already exists in the database, DB_KEYEXIST is returned. The DB_NODUPDATA flag may only be
specified if the underlying database has been configured to support sorted duplicate data items.

The DB_NODUPDATA flag may not be specified to the Queue or Recno access methods.
key

The key Dbt operated on.

4/12/2010 DB C++ APl Page 177

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Dbc::put()

Errors

The Dbc: : put () method may fail and throw a DbException exception, encapsulating one of the following
non-zero errors, or return one of the following non-zero errors:

DB_KEYEXIST

An attempt was made to insert a duplicate key into a database not configured for duplicate data.
DB_FOREIGN_CONFLICT

A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for that record
does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 10) was declared for a foreign key database, and then subsequently a
record was deleted from the foreign key database without first removing it from the constrained
secondary database.

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB _LOCK DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DbLockNotGrantedException is thrown if your Berkeley DB API is configured to throw exceptions.
Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will throw a DbRepHandleDeadException (if your application
is configured to throw exceptions), or return DB_REP_HANDLE DEAD. The application will need to discard
the handle and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException is thrown if your Berkeley DB API is configured to throw exceptions. Otherwise,
DB _REP_LQOCKQUT is returned.

4/12/2010

DB C++ APl Page 178

Dbc::put()

EACCES
An attempt was made to modify a read-only database.
EINVAL

If the DB_AFTER, DB_BEFORE or DB_CURRENT flags were specified and the cursor has not been initialized;
the DB_AFTER or DB_BEFORE flags were specified and a duplicate sort function has been specified; the
DB_CURRENT flag was specified, a duplicate sort function has been specified, and the data item of the
referenced key/data pair does not compare equally to the data parameter; the DB_AFTER or DB_BEFORE
flags were specified, and the underlying access method is Queue; an attempt was made to add a record
to a fixed-length database that was too large to fit; an attempt was made to add a record to a secondary
index; or if an invalid flag value or parameter was specified.

EPERM

Write attempted on read-only cursor when the DB_INIT_CDB flag was specified to DbEnv::open().
Class

Dbc
See Also

Database Cursors and Related Methods

4/12/2010 DB C++ APl Page 179

Dbc::set_priority()

Dbc::set_priority()

#include <db_cxx. h>

int
Dbc::set_priority(DB_CACHE PRICRITY priority);

Set the cache priority for pages referenced by the Dbc handle.

The priority of a page biases the replacement algorithm to be more or less likely to discard a page
when space is needed in the buffer pool. The bias is temporary, and pages will eventually be discarded
if they are not referenced again. The Dbc::set _priority() method is only advisory, and does not
guarantee pages will be treated in a specific way.

The Doc: :set_priority() method may be called at any time during the life of the application.

The Dbc: : set_priority() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

Class

priority
The priority parameter must be set to one of the following values:
« DB_PRI ORI TY_VERY_LOW
The lowest priority: pages are the most likely to be discarded.
« DB PRICRI TY_LOW

The next lowest priority.

DB PRI ORI TY_DEFAULT
The default priority.
« DB PRIORI TY H GH

The next highest priority.

DB_PRI ORI TY_VERY_Hl GH

The highest priority: pages are the least likely to be discarded.

Dbc

4/12/2010

DB C++ APl Page 180

Dbc::set_priority()

See Also

Database Cursors and Related Methods

4/12/2010 DB C++ APl Page 181

Chapter 4. The Dbt Handle

#include <db_cxx. h>

class Dbt {

public:
Dbt (void *data, size t size);
Dot () ;

Dbt (const Dbt &);
Dbt &operator = (const Dbt &);
~Dbt () ;

voi d *get _data() const;
void set _data(void *);

u_int32_t get size() const;
void set_size(u_int32_t);

u_int32_t get_ulen() const;
void set_ulen(u_int32_t);

u_int32_t get dlen() const;
void set _dlen(u_int32_t);

u_int32_t get doff() const;
voi d set _doff(u_int32_t);

u_int32_t get flags() const;
void set _flags(u_int32_t);

DBT *Dbt::get DBT();

const DBT *Dbt::get_const_DBT() const;

static Dbt *Dbt::get Dbt (DBT *dbt);

static const Dbt *Dbt::get_const_Dbt(const DBT *dbt);
}i

The Dbt class is used to encode key and data items in a Berkeley DB database.

Storage and retrieval for the Db access methods are based on key/data pairs. Both key and data items
are represented by Dbt objects. Key and data byte strings may refer to strings of zero length up to
strings of essentially unlimited length. See Database limits for more information.

In the case when the flags structure element is set to 0, when the application is providing Berkeley DB
a key or data item to store into the database, Berkeley DB expects the data object to point to a byte
string of size bytes. When returning a key/data item to the application, Berkeley DB will store into
the data object a pointer to a byte string of size bytes, and the memory to which the pointer refers
will be allocated and managed by Berkeley DB. Note that using the default flags for returned Dbt s is
only compatible with single threaded usage of Berkeley DB.

4/12/2010

DB C++ APl Page 182

../../programmer_reference/am_misc_dbsizes.html

Access to Dbt objects is not re-entrant. In particular, if multiple threads simultaneously access the
same Dbt object using Db API calls, the results are undefined, and may result in a crash. One easy way
to avoid problems is to use Dbt objects that are constructed as stack variables.

Each Dbt object has an associated DBT struct, which is used by the underlying implementation of Berkeley
DB and its C-language API. The Dbt :: get _DBT() method returns a pointer to this struct. Given a const
Dbt object, Dbt::get const DBT() returns a const pointer to the same struct.

Given a DBT struct, the Dbt:: get Dbt () method returns the corresponding Dbt object, if there is one.
If the DBT object was not associated with a Dbt (that is, it was not returned from a call to

Dbt : : get DBT()), then the result of Dbt::get Dbt () is undefined. Given a const DBT struct,

Dbt :: get _const Dbt () returns the associated const Dbt object, if there is one.

These methods may be useful for Berkeley DB applications including both C and C++ language software.
It should not be necessary to use these calls in a purely C++ application.

e Dbt::set_data(void *data)

Set the data array.

The dat a parameter is an array of bytes to be used to set the content for the Dbt .
o Dbt::get_data()

Return the data array.
o Dbt::set_size(u_int32_t size)

Sets the byte size of the data array, in bytes.
o Dbt::get_size()

Return the data array size.
e Dbt::set_ulen(u_int32_t val ue)

Set the byte size of the user-specified buffer.

Note that applications can determine the length of a record by setting the ul en field to 0 and checking
the return value in the size field. See the DB_DBT_USERMEMflag for more information.

« Dbt::get_ulen()
Return the length in bytes of the user-specified buffer.

Note that applications can determine the length of a record by setting the ul en field to 0 and checking
the return value in the size field. See the DB_DBT_USERMEMflag for more information.

e Dbt::set_dlen(u_int32_t dlen)

4/12/2010

DB C++ APl Page 183

Set the length of the partial record being read or written by the application, in bytes. See the
DB _DBT_PARTI AL flag for more information.

Dbt ::get_dlen()
Return the length of the partial record, in bytes.
Dbt::set_doff(u_int32_t val ue)

Sets the offset of the partial record being read or written by the application, in bytes. See the
DB DBT_PARTI AL flag for more information.

Dbt ::get _doff()

Return the offset of the partial record, in bytes.
Dobt::set_flags(u_int32_t flags)

Set the object flag value.

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

« DB_DBT_MALLCC

When this flag is set, Berkeley DB will allocate memory for the returned key or data item (using
malloc(3), or the user-specified malloc function), and return a pointer to it in the data field of
the key or data DBT structure. Because any allocated memory becomes the responsibility of the
calling application, the caller must determine whether memory was allocated using the returned
value of the data field.

It is an error to specify more than one of DB_DBT_MALLOC, DB _DBT REALLCC, and DB_DBT USERVEM
DB DBT REALLCC

When this flag is set Berkeley DB will allocate memory for the returned key or data item (using
realloc(3), or the user-specified realloc function), and return a pointer to it in the data field of
the key or data DBT structure. Because any allocated memory becomes the responsibility of the
calling application, the caller must determine whether memory was allocated using the returned
value of the data field.

It is an error to specify more than one of DB_DBT_MALLOC, DB DBT_REALLCC, and DB_DBT_USERVEM
DB_DBT_USERVEM

The data field of the key or data structure must refer to memory that is at least ulen bytes in
length. If the length of the requested item is less than or equal to that number of bytes, the item
is copied into the memory to which the data field refers. Otherwise, the size field is set to the
length needed for the requested item, and the error DB BUFFER SMALL is returned.

It is an error to specify more than one of DB_DBT_MALLQOC, DB_DBT_REALLCC, and DB_DBT_USERVEM

4/12/2010

DB C++ APl Page 184

If DB_DBT_MALLOC or DB_DBT_REALLCC is specified, Berkeley DB allocates a properly sized byte array
to contain the data. This can be convenient if you know little about the nature of the data, specifically
the size of data in the database. However, if your application makes repeated calls to retrieve keys
or data, you may notice increased garbage collection due to this allocation. If you know the maximum
size of data you are retrieving, you might decrease the memory burden and speed your application
by allocating your own byte array and using DB_DBT USERVEM Even if you don't know the maximum
size, you can use this option and reallocate your array whenever your retrieval API call returns an
DB BUFFER_SMALL error or throws an exception encapsulating an DB_BUFFER SMALL.

« DB_DBT_PARTI AL

Do partial retrieval or storage of an item. If the calling application is doing a get, the dlen bytes
starting doff bytes from the beginning of the retrieved data record are returned as if they comprised
the entire record. If any or all of the specified bytes do not exist in the record, the get is successful,
and any existing bytes are returned.

For example, if the data portion of a retrieved record was 100 bytes, and a partial retrieval was
done using a DBT having a dlen field of 20 and a doff field of 85, the get call would succeed, the
data field would refer to the last 15 bytes of the record, and the size field would be set to 15.

If the calling application is doing a put, the dlen bytes starting doff bytes from the beginning of
the specified key's data record are replaced by the data specified by the data and size structure
elements. If dlen is smaller than size the record will grow; if dlen is larger than size the record
will shrink. If the specified bytes do not exist, the record will be extended using nul bytes as
necessary, and the put call will succeed.

It is an error to attempt a partial put using the Db::put() method in a database that supports
duplicate records. Partial puts in databases supporting duplicate records must be done using a
Dbc::put() method.

It is an error to attempt a partial put with differing dlen and size values in Queue or Recno
databases with fixed-length records.

For example, if the data portion of a retrieved record was 100 bytes, and a partial put was done
using a DBT having a dlen field of 20, a doff field of 85, and a size field of 30, the resulting record
would be 115 bytes in length, where the last 30 bytes would be those specified by the put call.

« DB_DBT_APPMALLOC

After an application-supplied callback routine passed to either Db::associate() or
Db::set_append_recno() is executed, the data field of a DBT may refer to memory allocated with
malloc(3) or realloc(3). In that case, the callback sets the DB_DBT APPMALLQC flag in the DBT so
that Berkeley DB will call free(3) to deallocate the memory when it is no longer required.

« DB_DBT_MULTIPLE

Set in a secondary key creation callback routine passed to Db::associate() to indicate that multiple
secondary keys should be associated with the given primary key/data pair. If set, the size field
indicates the number of secondary keys and the data field refers to an array of that number of
DBT structures.

4/12/2010

DB C++ APl Page 185

The DB_DBT_APPMALLCC flag may be set on any of the DBT structures to indicate that their data
field needs to be freed.

4/12/2010 DB C++ APl Page 186

DBT and Bulk Operations

DBT and Bulk Operations

DBT and Bulk Operations

Description

DbMultiplelterator

Base class for bulk get retrieval

DbMultipleDatalterator

Bulk retrieval iterator for data items

DbMultipleKeyDatalterator

Bulk retrieval iterator for key/data pairs

DbMultipleRecnoDatalterator

Bulk retrieval iterator for record number / data
item pairs

DbMultipleBuilder

Base class for bulk buffer building

DbMultipleDataBuilder

Bulk buffer builder for data items

DbMultipleKeyDataBuilder

Bulk buffer builder for key/data pairs

DbMultipleRecnoDataBuilder

Bulk buffer builder for record number / data pairs

4/12/2010

DB C++ APl

Page 187

DbMultiplelterator

DbMultipleIterator

#include <db_cxx. h>

class DoMul tiplelterator
{h

The DbMul ti pl el terator class is a shared package-private base class for the three types of bulk-return
Iterator; it should never be instantiated directly, but it handles the functionality shared by its subclasses.

Class
DbMultiplelterator
See Also

DBT and Bulk Operations

4/12/2010 DB C++ APl Page 188

DbMultipleDatalterator

DbMultipleDatalterator

#include <db_cxx. h>

cl ass DobMul ti pl eDat al t er at or

{

public:
DoMul tipl eDatal terator(const Dbt &dbt);
bool next (Dbt &data);

¥

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the Db::get() or Dbc::get()
methods, the data Dbt returned by those interfaces will refer to a buffer that is filled with data. Access
to that data is through the classes.

The DoMul ti pl eDat al t erat or class is used to iterate through data returned using the DB_MULTIPLE flag
from a database belonging to any access method.

The constructor takes the The Dbt Handle returned by the call to Db::get() or Dbc::get() that used
the DB_MULTIPLE flag.

|:| All instances of the bulk retrieval classes may be used only once, and to traverse the bulk retrieval
buffer in the forward direction only. However, they are nondestructive, so multiple iterators can
be instantiated and used on the same returned data Dbt.
Parameters are:
o dbt

The dbt parameter is a data The Dbt Handle returned by the call to Db::get() or Dbc::get() that
used the DB_MULTIPLE flag.

DbMultipleDatalterator.next()

Class

The DoMul ti pl eDat al t erat or. next () method returns the next data item in the original bulk retrieval
buffer.

The DoMil ti pl eDat al t erat or. next () method method returns f al se if no more data are available, and
true otherwise.

Parameters are:
e data

The data parameter is a The Dbt Handle that will be filled in with a reference to a buffer, a size,
and an offset that together yield the next data item in the original bulk retrieval buffer.

DbMultiplelterator

4/12/2010

DB C++ APl Page 189

DbMultipleDatalterator

See Also

DBT and Bulk Operations

4/12/2010 DB C++ APl Page 190

DbMultipleKeyDatalterator

DbMultipleKeyDatalterator

#include <db_cxx. h>

class DoMul ti pl eKeyDat al t er at or

{

public:
DoMul ti pl eKeyDat al t erator(const Dbt &dbt);
bool next (Dbt &key, Dbt &data);

¥

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the Db::get() or Dbc::get()
methods, the data Dbt returned by those interfaces will refer to a buffer that is filled with data. Access
to that data is through these classes.

The DbMul ti pl eDat al t er at or class is used to iterate through data returned using the DB_MULTIPLE_KEY
flag from a database belonging to Btree or Hash access methods.

The constructor takes the The Dbt Handle returned by the call to Db::get() or Dbc::get() that used
the DB_MULTIPLE_KEY flag.

|:| All instances of the bulk retrieval classes may be used only once, and to traverse the bulk retrieval
buffer in the forward direction only. However, they are nondestructive, so multiple iterators can
be instantiated and used on the same returned data Dbt.
Parameters are:
o dbt

The dbt parameter is a data The Dbt Handle returned by the call to Db::get() or Dbc::get() that
used the DB_MULTIPLE_KEY flag.

DbMultipleKeyDatalterator.next()

The DbMil ti pl eKeyDat al t erat or. next () method returns the next data item in the original bulk retrieval
buffer.

The DoMul ti pl eKeyDat al t erat or. next () method method returns f al se if no more data are available,
and true otherwise.

Parameters are:
o key

The key parameter is a The Dbt Handle that will be filled in with a reference to a buffer, a size,
and an offset that together yield the next data item in the original bulk retrieval buffer.

o data

The data parameter is a The Dbt Handle that will be filled in with a reference to a buffer, a size,
and an offset that together yield the next data item in the original bulk retrieval buffer.

4/12/2010

DB C++ APl Page 191

DbMultipleKeyDatalterator

Class
DbMultiplelterator
See Also

DBT and Bulk Operations

4/12/2010 DB C++ APl Page 192

DbMultipleRecnoDatalterator

DbMultipleRecnhoDatalterator

#include <db_cxx. h>

cl ass DbMul ti pl eRecnoDat al t er at or

{

public:
DoMul ti pl eRecnoDat al t erat or (const Dbt &dbt) ;
bool next(db_recno_t &key, Dbt &data);

¥

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the Db::get() or Dbc::get()
methods, the data Dbt returned by those interfaces will refer to a buffer that is filled with data. Access
to that data is through these classes.

The DbMul ti pl eDat al t er at or class is used to iterate through data returned using the DB_MULTIPLE_KEY
flag from a database belonging to Queue or Recno access methods.

The constructor takes the The Dbt Handle returned by the call to Db::get() or Dbc::get() that used
the DB_MULTIPLE_KEY flag.

|:| All instances of the bulk retrieval classes may be used only once, and to traverse the bulk retrieval
buffer in the forward direction only. However, they are nondestructive, so multiple iterators can
be instantiated and used on the same returned data Dbt.
Parameters are:
o dbt

The dbt parameter is a data The Dbt Handle returned by the call to Db::get() or Dbc::get() that
used the DB_MULTIPLE_KEY flag.

DbMultipleRecnoDatalterator.next()

The DoMul ti pl eRecnoDat al t erat or. next () method returns the next data item in the original bulk
retrieval buffer.

The DbMul ti pl eRecnoDat al t er at or. next () method method returns f al se if no more data are available,
and true otherwise.

Parameters are:
o key

The key parameter is a The Dbt Handle that will be filled in with a reference to a buffer, a size,
and an offset that together yield the next data item in the original bulk retrieval buffer.

o data

The data parameter is a The Dbt Handle that will be filled in with a reference to a buffer, a size,
and an offset that together yield the next data item in the original bulk retrieval buffer.

4/12/2010

DB C++ APl Page 193

DbMultipleRecnoDatalterator

Class
DbMultiplelterator
See Also

DBT and Bulk Operations

4/12/2010 DB C++ APl Page 194

DbMultipleBuilder

DbMultipleBuilder

#include <db_cxx. h>

class DoMul ti pl eBui | der
{h

The DbMil ti pl eBui | der class is a shared package-private base class for the three types of bulk buffer
builders; it should never be instantiated directly, but it handles the functionality shared by its subclasses.

Class
Dbt
See Also

DBT and Bulk Operations

4/12/2010 DB C++ APl Page 195

DbMultipleDataBuilder

DbMultipleDataBuilder

#include <db_cxx. h>

cl ass DbMul ti pl eDat aBui | der

{
public:
DoMul ti pl eDat aBui | der (Dbt &dbt) ;
bool append(void *dbuf, size_ t dlen);
bool reserve(void *&ddest, size t dlen);
¥

This class builds a bulk buffer for use when the DB_MULTIPLE flag is specified to either the Db::put()
or Db::del() methods. The buffer in the Dbt passed to the constructor is filled by calls to
DbMultipleDataBuilder.append() or DbMultipleDataBuilder.reserve().

The constructor takes a The Dbt Handle that must be configured to contain a buffer managed by the
application, with the ul en field set to the size of the buffer.

|:| All instances of the bulk retrieval classes may be used only once, and to build the bulk buffer in
the forward direction only.

Parameters are:

« dbt

The dbt parameter is a The Dbt Handle that must already be configured to contain a buffer managed
by the application, with the ul en field set to the size of the buffer, which must be a multiple of 4.

DbMultipleDataBuilder.append()
The DbMil ti pl eDat aBui | der. append() method copies a data item to the end of the buffer.

The DbMil ti pl eDat aBui | der. append() method returns f al se if the data does not fit in the buffer and
true otherwise.

Parameters are:
« dbuf

A pointer to the data to be copied into the bulk buffer.
o dlen

The number of bytes to be copied.

4/12/2010 DB C++ APl Page 196

DbMultipleDataBuilder

DbMultipleDataBuilder.reserve()
The DbMul ti pl eDat aBui | der. reserve() method reserves space for the next data item in the bulk buffer.
Unlike the append(), no data is actually copied into the bulk buffer by reserve() : copying the data is
the responsibility of the application.

The DbMil ti pl eDat aBui | der. reserve() method returns f al se if the data does not fit in the buffer and
true otherwise.

Parameters are:

o ddest

Set to a pointer to the position in the bulk buffer reserved for the data item, if enough space is
available.

« dlen
The number of bytes to reserve.
Class
Dbt
See Also

DBT and Bulk Operations

4/12/2010 DB C++ APl Page 197

DbMultipleKeyDataBuilder

DbMultipleKeyDataBuilder

#include <db_cxx. h>

cl ass DbMuil ti pl eKeyDat aBui | der

{
public:

DoMul ti pl eKeyDat aBui | der (Dbt &dbt) ;

bool append(void *kbuf, size t klen, void *dbuf, size t dlen);

bool reserve(void *&dest, size t klen, void *&ldest, size t dlen);
¥

This class builds a bulk buffer for use when the DB_MULTIPLE_KEY flag is specified to either the Db::put()
or Db::del() methods with the btree or hash access methods. The buffer in the Dbt passed to the
constructor is filled by calls to DbMultipleKeyDataBuilder.append() or
DbMultipleKeyDataBuilder.reserve().

The constructor takes a The Dbt Handle that must be configured to contain a buffer managed by the
application, with the ul en field set to the size of the buffer.

|:| All instances of the bulk retrieval classes may be used only once, and to build the bulk buffer in
the forward direction only.

Parameters are:

« dbt

The dbt parameter is a The Dbt Handle that must already be configured to contain a buffer managed
by the application, with the ul en field set to the size of the buffer, which must be a multiple of 4.

DbMultipleKeyDataBuilder.append()

The DbMil ti pl eKeyDat aBui | der. append() method copies a key/data pair to the end of the buffer.

The DbMul ti pl eKeyDat aBui | der. append() method returns f al se if the key/data pair does not fit in the
buffer and true otherwise.

Parameters are:
 kbuf
A pointer to the key to be copied into the bulk buffer.
» klen
The number of bytes of the key to be copied.
o dbuf

A pointer to the data item to be copied into the bulk buffer.

4/12/2010

DB C++ APl Page 198

DbMultipleKeyDataBuilder

« dlen
The number of bytes of the data item to be copied.
DbMultipleKeyDataBuilder.reserve()

The DbMil ti pl eKeyDat aBui | der. reserve() method reserves space for the next key/data pair in the
bulk buffer. Unlike the append(), no data is actually copied into the bulk buffer by reserve() : copying
the data is the responsibility of the application.

The DbMil ti pl eKeyDat aBui | der. reserve() method returns f al se if the data does not fit in the buffer
and true otherwise.

Parameters are:
o kdest

Set to a pointer to the position in the bulk buffer reserved for the key, if enough space is available.
« klen

The number of bytes to reserve for the key.
« ddest

Set to a pointer to the position in the bulk buffer reserved for the data item, if enough space is
available.

« dlen
The number of bytes to reserve for the data item.
Class
DbMultipleBuilder
See Also

DBT and Bulk Operations

4/12/2010 DB C++ APl Page 199

DbMultipleRecnoDataBuilder

DbMultipleRecnhoDataBuilder

#include <db_cxx. h>

cl ass DoMul ti pl eRecnoDat aBui | der

{
public:
DoMul ti pl eRecnoDat aBui | der (Dbt &dbt) ;
bool append(db_recno_t recno, void *dbuf, size t dlen);
bool reserve(db_recno_t recno, void *&ldest, size t dlen);
b

This class builds a bulk buffer for use when the DB_MULTIPLE_KEY flag is specified to either the Db::put()
or Db::del() methods with the recno or queue access methods, or for the key when the DB_MULTIPLE
flag is used. The buffer in the Dbt passed to the constructor is filled by calls to
DbMultipleRecnoDataBuilder.append() or DbMultipleRecnoDataBuilder.reserve().

The constructor takes a The Dbt Handle that must be configured to contain a buffer managed by the
application, with the ul en field set to the size of the buffer.

|:| All instances of the bulk retrieval classes may be used only once, and to build the bulk buffer in
the forward direction only.

Parameters are:

« dbt

The dbt parameter is a The Dbt Handle that must already be configured to contain a buffer managed
by the application, with the ul en field set to the size of the buffer, which must be a multiple of 4.

bool append(db_recno_t recno, void *dbuf, size_t dlen);

DbMultipleRecnoDataBuilder.append()

The DbMil ti pl eRecnoDat aBui | der. append() method copies a record number / data pair to the end of
the buffer.

The DbMil ti pl eRecnoDat aBui | der. append() method returns f al se if the record number / data pair
does not fit in the buffer and true otherwise.

Parameters are:
e recno

The record number to append.
o dbuf

A pointer to the data item to be copied into the bulk buffer.

4/12/2010

DB C++ APl Page 200

DbMultipleRecnoDataBuilder

« dlen
The number of bytes of the data item to be copied.
DbMultipleRecnoDataBuilder.reserve()

The DoMul ti pl eRecnoDat aBui | der. reserve() method reserves space for the next record number / data
pair in the bulk buffer. The record number is appended, but unlike the append(), the data is not copied
into the bulk buffer by reserve() : copying the data is the responsibility of the application.

The DbMil ti pl eRecnoDat aBui | der. reserve() method returns f al se if the record does not fit in the
buffer and t r ue otherwise.

Parameters are:
e recno
The record number to append.

o ddest

Set to a pointer to the position in the bulk buffer reserved for the data item, if enough space is
available.

o dlen
The number of bytes to reserve for the data item.
Class
DbMultipleBuilder
See Also

DBT and Bulk Operations

4/12/2010 DB C++ APl Page 201

Chapter 5. The DbEnv Handle

The DbEnv object is the handle for a Berkeley DB environment — a collection including support for some
or all of caching, locking, logging and transaction subsystems, as well as databases and log files. Methods
of the DbEnv handle are used to configure the environment as well as to operate on subsystems and
databases in the environment.

DbEnv handles are opened using the DbEnv::open() method.
When you are done using your environment, close it using the DbEnv::close() method. Before closing

your environment, make sure all open database handles are closed first. See the Db::close() method
for more information.

4/12/2010

DB C++ APl Page 202

Database Environments and Related
Methods

Database Environments and Related Methods

Database Environment Operations

Description

Db::get_env()

Return the Db's underlying DbEnv handle

DbEnv::close()

Close an environment

DbEnv Create an environment handle

DbEnv::dbremove() Remove a database

DbEnv::dbrename() Rename a database

DbEnv::err() Error message

DbEnv::failchk() Check for thread failure

DbEnv::fileid_reset() Reset database file IDs

DbEnv::get_home() Return environment's home directory

DbEnv::get_open_flags() Return flags with which the environment was
opened

DbEnv::lsn_reset() Reset database file LSNs

DbEnv::open() Open an environment

DbEnv::remove() Remove an environment

DbEnv::stat_print() Environment statistics

DbEnv::strerror() Error strings

DbEnv::version() Return version information

Environment Configuration

DbEnv::add_data_dir() add an environment data directory
DbEnv::set_alloc() Set local space allocation functions
DbEnv::set_app_dispatch() Configure application recovery callback
DbEnv::set_data_dir(), DbEnv::get_data_dirs() Set/get the environment data directory
DbEnv::set_create_dir(), DbEnv::get_create_dir() |add an environment data directory
DbEnv::set_encrypt(), DbEnv::get_encrypt_flags()|Set/get the environment cryptographic key
DbEnv::set_event_notify() Set event notification callback
DbEnv::set_errcall() Set error message callbacks
DbEnv::set_errfile(), DbEnv::get_errfile() Set/get error message FILE
DbEnv::set_error_stream() Set C++ ostream used for error messages
DbEnv::set_errpfx(), DbEnv::get_errpfx() Set/get error message prefix
DbEnv::set_feedback() Set feedback callback

DbEnv::set_flags(), DbEnv::get_flags() Environment configuration
DbEnv::set_intermediate_dir_mode(), Set/get intermediate directory creation mode
DbEnv::get_intermediate_dir_mode()

DB C++ APl

Page 203

Database Environments and Related
Methods

Database Environment Operations

Description

DbEnv::set_isalive() Set thread is-alive callback
DbEnv::set_message_stream() Set C++ ostream used for informational messages
DbEnv::set_msgcall() Set informational message callback
DbEnv::set_msgfile(), DbEnv::get_msgfile() Set/get informational message FILE
DbEnv::set_shm_key(), DbEnv::get_shm_key() Set/get system memory shared segment ID
DbEnv::set_thread_count(), Set/get approximate thread count
DbEnv::get_thread_count()

DbEnv::set_thread_id() Set thread of control ID function
DbEnv::set_thread_id_string() Set thread of control ID format function
DbEnv::set_timeout(), DbEnv::get_timeout() Set/get lock and transaction timeout
DbEnv::set_tmp_dir(), DbEnv::get_tmp_dir() Set/get the environment temporary file directory
DbEnv::set_verbose(), DbEnv::get_verbose() Set/get verbose messages
DbEnv::set_cachesize(), DbEnv::get_cachesize() |Set/get the environment cache size

4/12/2010

DB C++ APl

Page 204

Db::get_env()

Db::get_env()

#include <db_cxx. h>

DbEnv *
Db: : get _env();

The Db: : get_env() method returns the handle for the database environment underlying the database.
The Db:: get _env() method may be called at any time during the life of the application.

Class
Db

See Also

Database and Related Methods

4/12/2010 DB C++ APl Page 205

DbEnv::add_data_dir()

DbEnv::add_data_dir()

#include <db_cxx. h>

int
DbEnv: : add_data_dir(const char *dir);

Add the path of a directory to be used as the location of the access method database files. Paths
specified to the Db::open() function will be searched relative to this path. Paths set using this method
are additive, and specifying more than one will result in each specified directory being searched for
database files.

If no database directories are specified, database files must be nhamed either by absolute paths or
relative to the environment home directory. See Berkeley DB File Naming for more information.

The database environment's data directories may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "add_data_dir", one or more
whitespace characters, and the directory name.

The DbEnv: : add_dat a_di r () method configures operations performed using the specified DbEnv handle,
not all operations performed on the underlying database environment.

The DbEnv: : add_dat a_di r () method may not be called after the DbEnv::open() method is called. If the
database environment already exists when DbEnv::open() is called, the information specified to
DbEnv: : add_data_di r () must be consistent with the existing environment or corruption can occur.

The DbEnv; : add_dat a_dir() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

Errors

Class

dir
The dir parameter is a directory to be used as a location for database files.

When using a Unicode build on Windows (the default), this argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

The DbEnv: : add_data_dir() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() was called; or if an invalid flag value or parameter was
specified.

DbEnv

4/12/2010

DB C++ APl Page 206

../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DbEnv::add_data_dir()

See Also

Database Environments and Related Methods

4/12/2010 DB C++ APl Page 207

DbEnv::close()

DbEnv::close()

#include <db_cxx. h>
DbEnv: :close(u_int32_t flags);

The DbEnv: : cl ose() method closes the Berkeley DB environment, freeing any allocated resources and
closing any underlying subsystems.

The DbEnv handle should not be closed while any other handle that refers to it is not yet closed; for
example, database environment handles must not be closed while database handles remain open, or
transactions in the environment have not yet been committed or aborted. Specifically, this includes
the Db, Dbc, DbTxn, DbLogc and DbMpoolFile handles.

Where the environment was initialized with the DB_INIT_LOCK flag, calling DbEnv: : cl ose() does not
release any locks still held by the closing process, providing functionality for long-lived locks. Processes
that want to have all their locks released can do so by issuing the appropriate DbEnv::lock_vec() call.

Where the environment was initialized with the DB_INIT_MPOOL flag, calling DbEnv: : cl ose() implies
calls to DbMpoolFile::close() for any remaining open files in the memory pool that were returned to

this process by calls to DbMpoolFile::open(). It does not imply a call to DbMpoolFile::sync() for those
files.

Where the environment was initialized with the DB_INIT_TXN flag, calling DbEnv: : cl ose() aborts any
unresolved transactions. Applications should not depend on this behavior for transactions involving
Berkeley DB databases; all such transactions should be explicitly resolved. The problem with depending
on this semantic is that aborting an unresolved transaction involving database operations requires a
database handle. Because the database handles should have been closed before calling DoEnv: : ¢l ose(),
it will not be possible to abort the transaction, and recovery will have to be run on the Berkeley DB
environment before further operations are done.

Where log cursors were created using the DbEnv::log_cursor() method, calling DbEnv: : cl ose() does
not imply closing those cursors.

In multithreaded applications, only a single thread may call the DbEnv: : cl ose() method.

After DbEnv: : cl ose() has been called, regardless of its return, the Berkeley DB environment handle
may not be accessed again.

The DbEnv: : cl ose() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
flags

The flags parameter is currently unused, and must be set to 0.

4/12/2010 DB C++ APl Page 208

DbEnv::close()

Class

DbEnv

See Also

Database Environments and Related Methods

4/12/2010 DB C++ APl Page 209

DbEnv

DbEnv

#include <db_cxx. h>

class DbEnv {

public:
DbEnv(u_int32 flags);
~DbEnv();

DB _ENV *DbEnv::get DB ENV();

const DB ENV *DbEnv::get _const DB ENV() const;

static DbEnv *DbEnv::get DbEnv(DB _ENV *dbenv);

static const DbEnv *DbEnv::get const DbEnv(const DB ENV