
ViewSys
David S. Warren

A View Maintenance System Library

Copyright 2016 David S. Warren, XSB, Inc.

i

Table of Contents

Summary . 1

view sys . 2
Overview . 2
The ViewSys Data Model . 2

View Framework Model . 2
View Instance Model . 4

Using ViewSys . 5
Ideas for Possible Future Extensions . 6
Usage and interface (view_sys) . 6
Documentation on exports (view_sys) . 6

Predicate Definition Index . 11

Operator Definition Index . 12

Concept Definition Index . 13

Global Index . 14

Summary 1

Summary

The ViewSys package supports workflows that can be structured as a DAG of view defi-
nitions. ViewSys allows a user to define such workflows and manage their execution and
maintenance. At this point it does not provide support for incremental view maintenance,
only full regeneration of views.

view sys 2

view sys

Overview

A View System supports a DAG of views. Most simply a view is a file that is generated by
a process applied to a set of input files. A view that has no inputs is called a ’base view’.

More precisely we can think of a view as a data source. Base views are data sources from
outside the system. A non-base view is a data source that is determined (and computed) by
its process applied to its input data sources. The process must be idempotent, so normally
it creates a new file (or table).

A view system workflow (ViewSys for short) describes the names of the views, their input
views, the command to be run to generate a view from its inputs, etc. A particular instance
of a ViewSys is determined by the specific external data sources associated with the base
views of the ViewSys. This is to support the situation in which the same workflow needs
to be applied to different sets of base views. It is useful to give names to such instances,
usually indicating the external source of the base data sources. Many view systems will
have only one instance.

Another useful component of a view system is what is called a consistency view. The
purpose of a consistency view is to check to see whether a regular view is ’consistent’. The
command for a consistency view should return non-zero if the view instance is not deemed
to be consistent.

The view system will run consistency views where applicable and will not use a view as
input to another view that it supports if it is deemed not consistemt. A single view may
have zero or more consistency views associated with it.

The ViewSys Data Model

A ViewSys workflow is described by a set of facts of the following predicates. Users should
put the appropriate facts for these predicates that define their view system into a file named
viewsys_view_info.P. (But see the split(N) option described below for an exception.)

View Framework Model

For each view (base or derived), there is a view/7 fact that describes it:

view(View,Type,ViewNameTemplate,StdoutFileTemplate,[InputViews],[Opts],ShCmd)
where:

• View is the name of the view;

• Type is file, dir(<FileNames>) (or maybe in the future db(...)?). It is ’file’ if the view
is stored in a file (that is generated by the ShCmd). It is ’dir(<FileNames>)’ if the view
is stored in multiple files in a directory. <FileNames> are the (relative) names of the
files that store the view in that directory (instance).

• ViewNameTemplate is the path template for where instance versions are stored. This
template string normally contains the pattern variable $INSTANCE$ which will be re-
placed by the instance name to obtain the filename (or directory name) of an instance
of this view. A file template may also contain user-defined pattern variables of the form

view sys 3

’$USERVARNAME$’ where USERVARNAME is any upper-case letter sequence (ex-
cept those reserved for viewsys system variables.) User-defined pattern variable values
are defined in facts of the form viewsys uservar(’$USERVARNAME$’,VarValueString).
When instantiated by an instance name and user-variable values, this will be the file-
name that contains the view contents, or a directory name that contains the files
containing the view contents.

• StdoutFileTemplate is the file name template for where to put the standard output
(stdout and stderr) of the execution of the shell command that generates instance
versions of this view. It normally contains the pattern variable $INSTANCE$ which
will be replaced by the instance name to obtain the stdout filename for the generation
of an instance of this view. This template is the empty string for base views.

• [InputViews] is a list of the names of views that this view directly depends on, i.e.,
the inputs needed to generate this view. This is an empty list for base views. Normally
these input view indicators are atoms for which there is another view/7 fact that
describes it. However, if that view generates a directory and the input to this view is
a file in that directory, then that filename should be put as an argument to the view
atom. E.g., if the view, m view, generates a directory and several files in it and this
view needs to use the file ’first file.P’ from that directory, then the input view indicator
in this list should be the term m view(’first file.P’).

• [Opts] is a list of options. The possible options are:

• split(N) where N is a positive integer. This tells viewsys to split the first in-
put view file into N subfiles; to run this command on each of those subfiles; and
to concatenate all the resulting subfiles back together to get the output file for
this view. Of course, this is only appropriate for view commands for which this
process gives the same answer as running it on the large unsplit file. When the
command satisfies this property, this option can allow the records in a large file to
be processed in parallel.

If this option is used, then the user should create a file named viewsys_view_

orig_info.P containing all these predicate definitions, and use expand_views/1 to
generate the appropriate viewsys_view_info.P file, which will drive the viewsys
processing.

• ShCmd is the shell command to execute to generate the view instance from its input
view instances. (Ignored for base views.) The shell command can be in one of two
forms:

1. a string containing metavariables of the form $INP1$, $INP2$, ..., and OUT,
which will be replaced by the filenames of the input view instance files/directories
and the output view instance file/directory, respectively; or

2. a string containing the metavariables $INPUTFILES$ and $OUTPUTFILE$,
which will be replaces with the sequence of input filenames and the output file-
name, respectively, where each filename is enclosed in double-quotes. This is often
appropreate for shell commands. If the shell string doesn’t contain any of the
metavariables, then it is treated as if it were: ’<ShCmd> $INPUTFILES$ $OUT-
PUTFILE$’.

User-defined syntactic variables can be used in filename templates and in shell command
templates to make it easier to define filenames and commands. The predicate viewsys_

view sys 4

uservar/2 is used to define user variables, and facts for this predicate should be placed in
the viewsys_view_info.P file. For example, assume the user adds the following facts to
that file:

viewsys_uservar(’$DATA_DIR$’,’C:/userfiles/project1/data’).

viewsys_uservar(’$SCRIPT_LIB$’,’c:/userfiles/project1/scripts’).

With these declarations in a viewsys_view_info.P file, a file template string could be
of the form ’$DATA DIR$/data file 13’, which after replacement of the syntactic variable
by its value would refer to the file named ’C:/userfiles/project1/data/data file 13’. A shell
command string could be ’sh $SCRIPT LIB$/script cc.sh’, which after replacements would
cause the command ’sh c:/userfiles/project1/scripts/script cc.sh’ to be run. User variables
are normally defined at the beginning of the view file and can be used to allow locations to
be easily changed. The value of a user variable may contain another user variable, but, of
course, cycles are not permitted.

For each consistency view, there is a consView/6 fact:

consView(ConsViewName, CheckedViewName, FileTemplate, StdoutFileTemplate, [In-
puts], ShCmd) where

• ConsViewName is the name of the consistency view.

• ViewName is the name of the view this view checks.

• FileTemplate is the template for the output file for this consistency check. This file
may be used to provide information as to why the consistency check failed (or passed.)

• StdoutFileTemplate is the template for the filename of stdout for an execution of this
script.

• [InputViews] is a list of parameter input views (maybe empty)

• ShCmd is the shell command the executes the consistency check. The inputs are the
the filename containing the view instance to be checked followd by the input view file
instances. The output is the output file instance. These parameters are processed
similarly to the processing for shell-commands for regular views.

View Instance Model

A ViewSys Instance is a particular instantiation of a ViewSys workflow that is identified
by a name, usually indicating the source of the base views. Of course, the files (directories)
that contain instances of views must all be distinct.

View instances are described by another set of facts, which are stored in a file named
viewsys_instance_info.P. Whereas the user is responsible for creating the viewsys_

view_info.P file, viewsys creates and maintains the viewsys_instance_info.P file in
response to viewsys commands entered by the user.

For each view instance (base or derived), there is a viewInst/5 fact:

viewInst(View,InstName,Status,Date,Began) where:

• View is the name of a view;

• InstName is the name of the instance;

• Status is the status of this view instance not_generated,
being_generated(ProcName), generated, generation_failed. (For base view in-
stances this is always generated.)

view sys 5

• Date is the date-time the view instance was generated. (Better? the filetime of the
base view last used to regenerate view instances. Not used for non-base views.)

• Began is the date-time at which the generation of this view began. (This is the same
as Date above for base view instances.) It is used to estimate how long it will take to
generate this view output given its inputs.

For each consistency view instance, there is a consViewInst/5 fact:

consViewInst(ConsViewName, InstName, Status, Date, Began) where;

• ConsViewName is the name of the consistency view.

• Status is this consistency view, same as for viewInst status.

• Date is the date-time the check was generated.

• Began is the date-time at which the generation of this view began.

The ViewSys relations, view/7, consView/6, and viewOrig/7, are stored in the file
named viewsys_view_info.P. It is read for most commands, but not updated. (Only
expand_views/1 generates this file from the file namsd viewsys_view_orig_info.P.)
viewInst/5, and consViewInst/5 are stored in the file named viewsys_instance_info.P,
and the directory containing these files is explicitly provided to predicates that need to op-
erate on it. The contents of the files are Prolog terms in canonical form.

A lockfile (named lock_view in the viewsys directory) is obtained whenever these files
are read, and it is kept until reading and rewriting (if necessary) is completed.

Using ViewSys

The viewsys system is normally used as follows. The user creates a directory to hold the
viewsys information. She creates a file viewsys_view_info.P in this directory containing
the desired view/7, and consView/6 facts that describe the desired view system. Then the
user consults the viewsys.P package, and runs check_viewsys/1 to report any obvious in-
consistencies in the view system specified in the file viewsys_view_info.P. After the check
passes, if any views have the split(N) option, the user should copy the viewsys_view_

info.P file to a file named viewsys_orig_view_info.P and then run expand_views/1 to
generate the appropriate file viewsys_view_info.P to contain the views necessary to split,
execute and combine the results. This will overwrite the viewsys_view_info.P file. (From
then on, should the viewsys need to be modified, the user should edit the viewsys_orig_

view_info.P file, and rerun expand_views/1 to regenerate the viewsys_view_info.P file.)
The user will then run generate_view_instance/2 to generate an instance (or instances)
of the view system into the file viewsys_instance_info.P. After that the user will run
update_views/4 to run the workflow to generate all the view contents. Then the user
checks the generated logging to determine if there were any errors. If so, the user corrects
the programs (the viewsys specification, whatever), executes reset_failed/2 and reruns
update_views/4. The user can also use viewsys_status/1 to determine what the state of
the view system is, and to determine what needs to be fixed and what needs to be rerun.
If the execution of update_views/4 is aborted or somehow does not complete, the user
can run reset_unfinished/2 to reset the views that were in process, so that a subsequent
update_views/4 will try to recompute those unfinished computations.

view sys 6

Ideas for Possible Future Extensions

It may be useful to somehow associate or connect multiple view systems. This might support
a base view in one ViewSys that is defined in another ViewSys framework.

Perhaps we should support annotations/options to indicate how/when to delete versions
of intermediate views.

We might explore the integration of incrementally maintained views, by adding difference
files, and generating difference sets to be applied to the old view. This will probably initially
have to be constrained to views whose increments can be computed from the inserts/deletes
to a single input file.

Usage and interface (view_sys)
☛ ✟

• Exports:

− Predicates:

check_viewsys/1,
copy_required_files/2, delete_instance/2, expand_views/1, generate_

new_instance/2, generate_required_dirs/2, invalidate_all_instances/1,
invalidate_view_instances/2, logfile_

directory/2, logfile_file/2, print_viewsys/1, reset_failed/2, reset_

unfinished/2, set_viewsys_uservar/2, show_failed/2, update_instance/2,
update_views/4, viewsys_status/1, viewsys_status/2.

• Other modules used:

− Application modules:

assert, basics, file_io, machine, shell, standard, string, xsb_

configuration.

✡ ✠

Documentation on exports (view_sys)

[PREDICATE]check_viewsys/1:
check_viewsys(+ViewDir) checks the contents of the viewsys_view_info.P file of
the ViewDir viewsys directory for consistency and completeness.

[PREDICATE]copy_required_files/2:
This predicate can be used (perhaps with configuration help from generate_

required_dirs/2) to copy and deploy view systems and the files they need to run.
This predicate is not needed for normal execution of view systems.

copy_required_files(+VSDir,+FromToSubs) uses the viewsys_required_file/1

facts in the viewsys_view_info.P file in the VSDir viewsys directory to copy
all directories (and files) in those facts. FromToSubs are terms of the form
s(USERVAR,FROMVAL,TOVAL), where USERVAR is a variable in the file templates in
the viewsys_required_file/1 facts. A recusrive cp shell command will be gener-
ated and executed for each template in viewsys_required_file/1, the source file

view sys 7

being the template with USERVAR replaced by FROMVAL and the target file being the
template with USERVAR replaced by TOVAL.

All necessary intermediate directories will be automatically created.

E.g.,
copy_required_files(’.’,[s(’DIR’,’C:/XSBSYS/XSBLIB’,’C:/XSBSYS/XSBTEST/XSBLIB’)]).

would copy all files/directories indicated in the viewsys_required_file/1 facts in
the local viewsys_view_info.P file from under C:/XSB/XSBLIB to a (possibly) new
directory C:/XSBSYS/XSBTEST/XSBLIB (assuming all file templates were rooted with
DIR.)

[PREDICATE]delete_instance/2:
delete_instance(+ViewSys,+VInst) removes an entire instance from the view sys-
tem. Any files of view contents that have been generated remain; only information
concerning this instance in the viewsys_instance_info.P file is removed, so these
view instances are no longer maintained.

[PREDICATE]expand_views/1:
expand_views(+ViewSys) processes view/7 definitions that have a split(N) option,
generates the necessary new view/7 facts to do the split, component processing, and
rejoin. It overwrites the viewsys view info.P file, putting the original view/7 facts
into viewOrig/7 facts. This must be called (if necessary) when creating a new viewsys
system and before calling generate view instance/2.

[PREDICATE]generate_new_instance/2:
generate_new_instance(+ViewSys,+VInst) creates a brand new instance of the
view system ViewSys named VInst. It generates new viewInst/5 facts for every view
(base and derived) according to the file templates defined in the baseView/4, and
view/7 facts of the ViewSys. VInst may be a list of instance names, in which case
initial instances are created for each one.

[PREDICATE]generate_required_dirs/2:
This predicate can be used to help the user generate viewsys_required_file/1 facts
that may help in configuration and deployment of view systems. It is not needed to
create and run normal view systems, only help configure the viewsys view info.P file
to support using copy_required_files/2 to move them for deployment, when that
is necessary.

generate_required_dirs(+SubstList,+LogFiles) takes an XSB LOGFILE (or
list of XSB LOGFILEs), normally generated by running a step in the view sys-
tem, and generates (to userout) viewsys required file/1 facts. These can be edited
and the copied into the viewsys view info.P file to document what directories
(XSB code and general data files) are required for running this view system. The
viewsys required file/1 facts are used by copy required files/2 to generate a new set
of files that can run the view system.

view sys 8

SubstList is a list of substitutions of the form s(VarString,RootDir) that are
applied to generalize each directory name. For example if we have a large library
file structure, in subdirectories of C:/XSBSYS/XSBLIB, the many loaded files (in an
XSB_LOGFILE) will start with this prefix, for example, C:/XSBSYS/XSBLIB/apps/app_
1/proc_code.xwam. By using the substitution, s(’DIR’,’C:/XSBCVS/XSBLIB’),
that file name will be abstracted to: ’DIR/apps/app_1’ in the viewsys_required_
file/1 fact. Then copy_required_files/2 can replace this variable DIR with
different roots to determine the source and target of the copying.

LogFiles is an XSB_LOGFILE, that is generated by running xsb and initially calling
machine:stat set flag(99,1). This will generate a file named XSB_LOGFILE.txt (in the
current directory) that contains the names of all files loaded during that execution
of xsb. (If the flag is set to {tt}K > 1, then the name of the generated file will be
XSB_LOGFILE_<K>.txt where <K> is the number K.)

So, for example, after running three steps in a workflow, setting flag 99 to 2, 3, and
4 for each step respectively, one could execute:

| ?- generate_required_dirs([s(’DIR’,’C:/XSBCVS/XSBLIB’)],

[’XSB_LOGFILE_2.txt’,

’XSB_LOGFILE_3.txt’,

’XSB_LOGFILE_4.txt’]).

which would print out facts for all directories for files in those LOGFILEs, each with
the root directory abstracted.

[PREDICATE]invalidate_all_instances/1:
invalidate_all_instances(+ViewSys) invalidates all views, so a subsequent invo-
cation of update_views/4 would recompute them all.

[PREDICATE]invalidate_view_instances/2:
invalidate_view_instances(+ViewSys,+ViewInstList) invalidates a set of view
instances indicated by ViewInstList. If ViewInstList is the atom ’all’, this
invalidates all instances (exactly as invalidate_all_instances/1) does.) If
ViewInstList is a list of terms of the form View:VInst then these indicated view
instances (and all views that depend on them) will be invalidated. If ViewInstList
is the atom ’filetime’, then the times of the instance files will be used to invalidate
view instances where the filetime of some view instance input file is later than the
filetime of the view instance output file. Note this does not account for the time it
takes to run the shell command that generates the view output, so for it to work, no
view instance input file should be changed while a view instance is in the process of
being generated.

This predicate can be used if a base instance file is replaced with a new instance. It
can be used if the contents of a view instance are found not to be correct, and the
generating process has been modified to fix it.

[PREDICATE]print_viewsys/1:
print_viewsys(+ViewDir) prints an indented hierarchy of the view definitions.

view sys 9

[PREDICATE]reset_failed/2:
reset_failed(+ViewSys,+VInst) resets view instances with name VInst that had
failed, i.e., that are marked as generation_failed. Their status will be reset to
not_generated, so after this, the next applicable call to update_views/4 will try to
regenerate the view. If VInst is ’all’, then views of all instances will be reset.

[PREDICATE]reset_unfinished/2:
reset_unfinished(+ViewSys,+ProcName) resets view instances that are unfinished
due to some abort, i.e., that are marked as being_generated(ProcName) after the
view_update process named ProcName is no longer running scripts to generate view
instances. This should only be called when the ProcName view_update process is not
running. The statuses of these view instances will be reset to not_generated. After
this, the next applicable update_views/4 will try to recreate these view instances.

[PREDICATE]set_viewsys_uservar/2:
No further documentation available for this predicate.

[PREDICATE]show_failed/2:
show_failed(+VSDir,+VInst) displays each failed view instance and consistency
view instance, with file information to help a user track down why the generation, or
check, of the view failed.

[PREDICATE]update_instance/2:
update_instance(+ViewSys,+VInst) updates an instance of the view system
ViewSys named VInst. It is similar to generate_new_instance/2 but doesn’t change
existing instance records. It generates a new viewInst/5 (or consViewInst/5) fact
for every view (base and derived) that doesn’t already exist in the viewsys_instance_
info.P file. It doesn’t change instances that already exisit, thus preserving their
statuses and process times.

[PREDICATE]update_views/4:
update_views(+ViewSys, +ViewInstList, +ProcName, +NProcs) is the predicate
that runs the shell commands of view instances to create view instance contents.
It ensures that most recent versions of the view instances in ViewInstList (and
all instances required for those views, recursively) are up to date by executing
the commands as necessary. A view instance is represented in this list by a term
View:InstName. If ViewInstList is the atom ’all’, all view instances will be pro-
cessed. This predicate will determine what computations can be done concurrently
and will use up to NProcs concurrent processes (using spawn process on the cur-
rent machine) to compute them. ProcName is a user-provided process namde that
used to identify this (perhaps very long-running) process; it is used to indicate, in
Ststus=being_updated(ProcName) that a view instance is in the process of being
computing by this update views invocation. reset_unfinished/2 uses the name to

view sys 10

identify the view instances that a particular invocation of this process is responsible
for.

[PREDICATE]viewsys_status/1:
viewsys_status(+ViewDir) prints out the status of the view system indicated in
ViewDir for all the options in viewsys_status/2.

[PREDICATE]viewsys_status/2:
viewsys_status(+ViewDir,+Option) prints out a particular list of view instance
statuses as indicated by the value of option as follows:

active: View instances currently in the process of being generated.

roots: Root View instances and their current statuses. A root view instance is
one that no other view depends on.

failed: View instances whose generation has failed

waiting: View instances whose computations are waiting until views they depend
on are successfully update.

checks waiting:
View instances that are waiting for consistency checks to be executed.

checks failed:
View instances whose checks have executed and failed.

This predicate can be called in one shell when update_views/4 is running in another
shell. This allows the user to monitor the status a long-running invocation of update_
views/4.

[PREDICATE]logfile_directory/2:
No further documentation available for this predicate.

[PREDICATE]logfile_file/2:
No further documentation available for this predicate.

Predicate Definition Index 11

Predicate Definition Index

C
check_viewsys/1 . 6
copy_required_files/2 . 6

D
delete_instance/2 . 7

E
expand_views/1 . 7

G
generate_new_instance/2 . 7
generate_required_dirs/2 . 7

I
invalidate_all_instances/1 8
invalidate_view_instances/2 8

L
logfile_directory/2 . 10

logfile_file/2 . 10

P
print_viewsys/1 . 8

R
reset_failed/2 . 9
reset_unfinished/2 . 9

S
set_viewsys_uservar/2 . 9
show_failed/2 . 9

U
update_instance/2 . 9
update_views/4 . 9

V
viewsys_status/1 . 10
viewsys_status/2 . 10

Operator Definition Index 12

Operator Definition Index

(Index is empty)

Concept Definition Index 13

Concept Definition Index

(Index is empty)

Global Index 14

Global Index

This is a global index containing pointers to places where concepts, predicates, modes,
properties, types, applications, etc., are referred to in the text of the document. Note that

Global Index 15

due to limitations of the info format unfortunately only the first reference will appear in
online versions of the document.

A
assert . 6

B
basics . 6

C
C:/XSBSYS/XSBLIB . 8
C:/XSBSYS/XSBLIB/apps/app_1/proc_code.xwam

. 8
C:/XSBSYS/XSBTEST/XSBLIB . 7
check_viewsys(+ViewDir) . 6
check_viewsys/1 . 5, 6
consView/6 . 5
consViewInst/5 . 5, 9
copy_required_files(+VSDir,+FromToSubs) . . . 6
copy_required_files/2 6, 7, 8

D
delete_instance(+ViewSys,+VInst) 7
delete_instance/2 . 6, 7

E
expand_views(+ViewSys) . 7
expand_views/1 . 3, 5, 6, 7

F
file_io . 6

G
generate_new_instance(+ViewSys,+VInst) 7
generate_new_instance/2 6, 7, 9
generate_required_

dirs(+SubstList,+LogFiles) 7
generate_required_dirs/2 6, 7
generate_view_instance/2 . 5

I
invalidate_all_instances(+ViewSys) 8
invalidate_all_instances/1 6, 8
invalidate_all_instances/1) 8
invalidate_view_

instances(+ViewSys,+ViewInstList) 8
invalidate_view_instances/2 6, 8

L
lock_view . 5
logfile_directory/2 . 6, 10

logfile_file/2 . 6, 10

M
machine . 6

P
print_viewsys(+ViewDir) . 8
print_viewsys/1 . 6, 8

R
reset_failed(+ViewSys,+VInst) 9
reset_failed/2 . 5, 6, 9
reset_unfinished(+ViewSys,+ProcName) 9
reset_unfinished/2 . 5, 6, 9

S
set_viewsys_uservar/2 . 6, 9
shell . 6
show_failed(+VSDir,+VInst) 9
show_failed/2 . 6, 9
standard . 6
string . 6

U
update_instance(+ViewSys,+VInst) 9
update_instance/2 . 6, 9
update_views(+ViewSys, +ViewInstList,

+ProcName, +NProcs) . 9
update_views/4 . 5, 6, 8, 9, 10

V
view/7 . 3, 5
viewInst/5 . 5, 9
viewOrig/7 . 5
viewsys_instance_info.P 4, 5, 7, 9
viewsys_orig_view_info.P . 5
viewsys_required_file/1 6, 7, 8
viewsys_status(+ViewDir) 10
viewsys_status(+ViewDir,+Option) 10
viewsys_status/1 . 5, 6, 10
viewsys_status/2 . 6, 10
viewsys_uservar/2 . 3
viewsys_view_info.P 2, 3, 4, 5, 6, 7
viewsys_view_orig_info.P 3, 5

X
xsb_configuration . 6
XSB_LOGFILE . 8
XSB_LOGFILE.txt . 8

