
The complicated story about
TCL break

Robert McLay

May. 3, 2022

Outline

I Let’s talk about TCL break (and LmodBreak)
I Lmod didn’t really support TCL break at all until Lmod 8.6

(really Lmod 8.7)
I Years ago mailing list question: support for break
I Lmod 6 and below could not support break
I Why?

Lmod | May. 3, 2022 | 2

Reminder: How Lmod works

I In order to have a command effect the current shell
I A simple module command for bash is given below
I The $LMOD_CMD command generate shell commands as text
I The eval ”…” evaluate the text to change the current shell
I For the rest of this talk: focus on what $LMOD_CMD produces

module () { eval "$($LMOD_CMD bash "$@")"; }

Lmod | May. 3, 2022 | 3

Reminder: How Lmod TCL processing
works

I Internally Lmod knows when a file is a TCL modulefile
I No *.lua extension ⇒ TCL modulefile
I The program tcl2lua.tcl is called to process the tcl
I It converts TCL modulefile into Lua with Lmod module

commands

setenv FOO bar ⇒ setenv("FOO","bar")
prepend-path PATH /prgm/bin ⇒ prepend_path("PATH","/prgm/bin")
break ⇒ LmodBreak() -- Only for bare breaks

Lmod | May. 3, 2022 | 4

TCL Break

for {set i 0} {$i < 5} {incr i} {
puts stderr "$i"
if { $i == 3 } {

break # This breaks out of the loop
}

}
break # This causes the modulefile

to stop being processed.

Lmod | May. 3, 2022 | 5

Why was TCL break such a problem
for Lmod?

I TCL break stops processing the current module
I It ignores any changes in a module that has a break
I But it keeps all other modules loaded.
I module load A B C D
I Where C has a break
I Then A B are loaded but C and D are not.

Lmod | May. 3, 2022 | 6

LmodError is different

I module load A B C D
I Where C has an LmodError()
I No modules are loaded.

Lmod | May. 3, 2022 | 7

Lmod waits to produce output

I When loading several modules, Lmod waits
I All module actions are completed internally
I Then Lmod generates shell command output.
I Lmod 6 and earlier wouldn’t know what changes to ignore

when processing a break.
I Lmod produces either an error or environment changes not

both.

Lmod | May. 3, 2022 | 8

Lmod 7+ was a complete re-write of
Lmod

I It was needed to support Name/Version/Version (N/V/V)
modulefiles

I Before Lmod only supported N/V or C/N/V
I Lmod 7+ now has a FrameStk (AKA the stack-frame)
I The FrameStk contains a stack of the environment var table

(varT) and the module table (mt)

Lmod | May. 3, 2022 | 9

FrameStk: varT and mt

I The table varT contains key-value pairs that represent the new
env. var values

I The table mt is the module table containing the currently
loaded modules among other things

I The Module Table is stored in the environment via
$_ModuleTable001_ etc.

Lmod | May. 3, 2022 | 10

assignment versus deepcopy() in Lua

a = {}
a[1] = "foo"
b = a
b[1] = "bar"
print(a[1]) -> ``bar'' not ``foo''

I Lua tries to be efficent
I It just copies reference
I As shown above.
I Lmod provides deepcopy() function.
I This creates a new table

Lmod | May. 3, 2022 | 11

FrameStk

I Before each module: Deep Copy copies the previous varT and
mt to top of FrameStk.

I Each evaluation of modulefile is updated on the top of the
FrameStk

I When the current modulefile evaluation is completed
I The FrameStk is pop’ed
I The previous stack values are replaced with current

Lmod | May. 3, 2022 | 12

FrameStk implications

I Cannot trust local values of mt
I Lmod constantly has to refresh mt:
I mt = frameStk:mt()
I Because a module load might have updated it.

Lmod | May. 3, 2022 | 13

LmodBreak or TCL break

I If LmodBreak() is called, the current module changes are
ignored

I LmodBreak() causes the previous values to be current
I FrameStk:pop() pops the stack.
I The FrameStk code is shown below:

function M.LmodBreak(self)
local stack = self.__stack
local count = self.__count
stack[count].mt = deepcopy(stack[count-1].mt)
stack[count].varT = deepcopy(stack[count-1].varT)

end

function M.pop(self)
local stack = self.__stack
local count = self.__count
stack[count-1].mt = stack[count].mt
stack[count-1].varT = stack[count].varT
stack[count] = nil
self.__count = count - 1

end

Lmod | May. 3, 2022 | 14

Support for TCL break

I Lmod 8.6+ added support LmodBreak()
I Lmod 8.6+ added support a bare TCL break
I Lmod 8.7+ added support for regular break and bare break

Lmod | May. 3, 2022 | 15

TCL Break strangeness

for {set i 0} {$i < 5} {incr i} {
puts stderr "$i"
if { $i == 3 } {

break # This breaks out of the loop
}

}
break # This causes the modulefile

to stop being processed.

I TCL treats a bare break as an error
I Tmod 3, 4 and 5 catch the error
I Lmod 8.7+ now catch the error too!

Lmod | May. 3, 2022 | 16

To support regular and bare break in
TCL in tcl2lua.tcl
set sourceFailed [catch {source $ModulesCurrentModulefile } errorMsg] # (1)
set returnval 0
if { $g_help && [info procs "ModulesHelp"] == "ModulesHelp" } {

handle module help
...

}
if {$sourceFailed} {

if { $sourceFailed == 3 || $errorMsg == {invoked "break" outside of a loop}} {
set returnVal 1
myBreak
showResults
return $returnVal

}
reportError $errorMsg
set returnVal 1

}
showResults
return $returnVal

I line 1 evaluate the TCL modulefile
I $sourceFailed will be non-zero for TCL errors
I $sourceFailed == 3 means a bare break has been found.

Lmod | May. 3, 2022 | 17

What happens when?

% cat C.lua
load("X","Y")
LmodBreak()

% module load A B C D
% module list
Currently Loaded Modules:

1) A 2) B

I Module A and B are loaded internally
I When loading C, modules X and Y are loaded internally
I When LmodBreak() is encounter, processing of C stops
I Also the effects of X and Y are ignored.

Lmod | May. 3, 2022 | 18

Lmod 8.6.15 could create an endless
loop

% cat foo3/1.0
#%Module
catch {set foo $env(FOO)}
if { [info exists foo] } {

puts stderr "already set"
break

}
setenv FOO "just me"

% module load foo3/1.0; module load foo3/1.0
already set
already set
...continues until crtl+C ...

I Loading foo3/1.0 twice causes an endless loop
I Why?
I The second load forces foo3/1.0 to unload (which it can’t)
I Lmod then tries to re-load foo3/1.0 which causes the unload

etc.

Lmod | May. 3, 2022 | 19

LmodBreak() is a no-op on unload

I A bare TCL break becomes an LmodBreak() when translated.
I LmodBreak() does nothing during unload.
I This prevents the endless loop shown above. (Lmod 8.7+)

Lmod | May. 3, 2022 | 20

Conclusions

I Implementing break is trickier then you might think.
I Lmod now can support bare breaks finally in Lmod 8.7
I The FrameStk is the price to be paid to support break.

Lmod | May. 3, 2022 | 21

Future Topics

I Next Meeting: June 7th 9:30 US Central (14:30 UTC)
I Show how Lmod processes a module load command, stepping

through the codebase.
I Suggestions?

Lmod | May. 3, 2022 | 22

