
How TCL break, puts & help
messages are handled by Lmod

Robert McLay

January 10, 2023

Outline

I Review of how TCL modulefiles are evaluated
I How .version and .modulerc file are evaluated
I Support for bare TCL break (LmodBreak())
I Support for TCL’s puts
I Capturing help message from TCL modulefiles

Lmod | January 10, 2023 | 2

How Lmod handles TCL modulefiles

I Use tcl2lua.tcl to read the modulefile.
I It evaluates all pure TCL code
I It outputs Lua strings for all module commands (setenv, etc)
I Lmod evalutes Lua output from tcl2lua.tcl
I Means that all TCL if stmts are evaluated by tcl2lua.tcl

Lmod | January 10, 2023 | 3

How Lmod handles TCL modulefiles
(II)

I Remember that tcl2lua.tcl is a separate code written in TCL
I It doesn’t have access to the internal Lmod structures
I There is only a command-line interface between the two

programs.

Lmod | January 10, 2023 | 4

When things go awry

I Suppose you have TCL modules Centos and B
Centos::

#%Module
setenv SYSTEM_NAME Centos

And B::

#%Module
module load Centos

if { $env(SYSTEM_NAME) == "Centos" } {
do something

}

Lmod | January 10, 2023 | 5

Converting the TCL B into Lua

load("Centos")
LmodError("can't read ënv(SYSTEM_NAME):̈ no such variable")

I Trouble: the TCL load command⇒ load("Centos")
I Cannot get the TCL load command to be evaluated before the

TCL if block

Lmod | January 10, 2023 | 6

How .version & .modulerc are eval’ed

I Lmod uses the RC2lua.tcl script to convert to Lua
I It only knows module-version, module-alias, …
I It doesn’t know about setenv
I I don’t know what setenv means here

Lmod | January 10, 2023 | 7

How Lmod implements TCL break

set a 10
while {$a < 20 } {

puts "value of a: $a"
incr acl2
if { $a > 15} {

break
}

}

I Normal use: exit from loop.
I A bare TCL break is normally an error
I Lmod (and Tmod) stops evaluating current module.
I Lmod keeps all previous module evaluations intact
I Lmod continues evaluating after break
I Not sure what Tmod3 and Tmod do w.r.t. break

Lmod | January 10, 2023 | 8

Examples

I module load A B brkModule D
I modules A and B are still loaded
I brkModule is essentially ignored
I D is loaded.
I module load A B errModule D
I Lmod internally loads A & B
I Loading errModule fails
I No new modules loaded.

Lmod | January 10, 2023 | 9

How Lmod supports break

I Special code in tcl2lua.tcl to handle a bare break
I Lmod has to recover from a rejected modulefile

Lmod | January 10, 2023 | 10

How tcl2lua.tcl handles bare break
set errorVal [interp eval $child {

set returnVal 0
...
set sourceFailed [catch {source $ModulesCurrentModulefile } errorMsg]
if { $g_help ...} {

...
}
if {$sourceFailed} {
if { $sourceFailed == 3 || $errorMsg == invoked "break" outside of a loop} {

set returnVal 1
myBreak # output "LmodBreak into Global
showResults # Write output
return $returnVal # return with error status

}
reportError $errorMsg # output error message
set returnVal 1 # return with error status

}
showResults # Write output for normal translation
return $returnVal # return with OK status

}]

I A bare break is an error in TCL
I tcl2lua.tcl captures that
I generates ”LmodBreak()”

Lmod | January 10, 2023 | 11

How Lmod handles LmodBreak()

I Lmod maintains a stack of module “states”
I It is called “FrameStk“
I It contains:

1. VarT: new env vars values
2. ModuleTable: The currently loaded modules
3. mname: Current module object to be loaded.

I Support for FrameStk was added with Lmod 7 rewrite
I Correct support for Break was added in 8.7+

Lmod | January 10, 2023 | 12

FrameStk action during module loads

I Each module load creates a new FrameStk entry
I Currently loaded module succeeds⇒ overwrites previous entry
I Break causes the current entry to be thrown away

Lmod | January 10, 2023 | 13

Another Break example

$ cat StdEnv.lua
load("A")
load("B")
load("BRK")
load("D")

$ ml StdEnv; ml
Currently loaded modules:

1) A 2) B 3) D

I The contents of the BRK module are ignored

Lmod | January 10, 2023 | 14

Handling TCL puts

I TCL puts⇒ calls myPuts thru child interpreter
I puts and myPuts takes upto 3 arguments
I It took years to get this correct
I myPuts write to a global array in tcl2lua.tcl
I the showResults sends it to stdout for lua to evaluate
I Message sent to stderr use LmodMsgRaw() function

Lmod | January 10, 2023 | 15

myPuts arguments

I puts can only have 1 to 3 arguments
I puts <-nonewline> <channel> msg
I puts msg⇒ writes to stdout (at end)
I puts stdout msg⇒ writes to stdout (at end)
I puts stderr msg ⇒ writes to stderr
I puts prestdout msg⇒ writes to stdout but at the beginning of

output

Lmod | January 10, 2023 | 16

Handling TCL help messages

proc ModulesHelp
puts stderr "The TACC Amber installation ..."

Lmod wants:
help ([===[The TACC Amber installation ...]===])

I Converting TCL help message was tricky
I tcl2lua.tcl has to capture the output when executing

ModulesHelp
I myPuts has a special mode when running ModulesHelp

Lmod | January 10, 2023 | 17

if { $g_help && [info procs "ModulesHelp"] == "ModulesHelp" } {
set start "help(\[===\["
set end "\]===\])"
setPutMode "inHelp"
myPuts stdout $start
catch ModulesHelp errMsg
myPuts stdout $end
setPutMode "normal"

}

I in “inHelp” mode output to stderr is written to stdout

Lmod | January 10, 2023 | 18

Help Conversion Example

help([===[
The TACC Amber installation only includes the parallel Sander/pmemd modules.
The Amber modulefile defines the following environment variables: ...

Version 9
]===])

I This way help message work the same with Lua and TCL
modulefiles

Lmod | January 10, 2023 | 19

Conclusions

I TCL to Lua conversion works well
I But it is NOT perfect.
I TCL Break, puts and help message required special foo

Lmod | January 10, 2023 | 20

Next Time

I How to use check_module_tree_syntax

Lmod | January 10, 2023 | 21

Future Topics

I I am on vacation (a.k.a holiday) in early February
I Next Meeting will be Feb 14th

Lmod | January 10, 2023 | 22

