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ABSTRACT
Commodity-based Linux HPC clusters dominate the scien-
tific computing landscape in both academia and industry
ranging from small research clusters to petascale supercom-
puters supporting thousands of users. To support broad
user communities and manage a user-friendly environment,
end-user sites must combine a range of low-level system soft-
ware with multiple compiler chains, support libraries, and
a suite of 3rd party applications. In addition, large sys-
tems require bare metal provisioning and a flexible software
management strategy to maintain consistency and upgrade-
ability across thousands of compute nodes. This report doc-
uments a Linux operating system framework, (LosF), which
has evolved over the last seven years to provide an integrated
strategy for the deployment of multiple HPC systems at the
Texas Advanced Computing Center. Documented within
this effort is the high-level cluster configuration options and
definitions, bare-metal provisioning, hierarchical HPC soft-
ware stack design, package-management, user environment
management tools, user account synchronization, and local
customization configurations.

1. INTRODUCTION
Commodity-based Linux clusters have arisen as the domi-

nant compute platform for high-performance, scientific com-
puting based on price-performance considerations, the con-
tinued maturity and adoption of the Linux operating sys-
tem, the availability of low-latency, high-speed interconnects
for clusters, and the rapid processor improvements brought
about by competition in the x86 processor segment. This
increased cluster deployment trend is seen over a range of
deployment sizes starting with small, individual researcher
clusters to very large-scale multi-user systems which domi-
nate the Top500 list that tracks LINPACK performance for
the world’s fastest supercomputers. Indeed, on the June
2011 list, 92% of the submissions are Linux based with 82%
of the submissions designated as clusters [20].

The Texas Advanced Computing Center (TACC) at The
University of Texas at Austin has a history of deploying
leading-edge Linux clusters to support thousands of researchers
from a diverse range of scientific disciplines. These include
both general-purpose supercomputers like Ranger [12] (de-
ployed in 2008 with 62K cores) and Lonestar [7] (deployed
in 2011 with 22K cores) along with specialized resources
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like the Longhorn remote visualization cluster [8] (deployed
in 2010 with 512 NVIDIA GPUs). Since these systems
support a wide range of users, it is paramount to design
and maintain a user-friendly environment which is flexible
enough to provide a range of necessary low-level HPC soft-
ware (e.g. InfiniBand drivers, multiple compiler chains and
MPI stacks, parallel file systems, custom Linux kernels) and
desired application support libraries (e.g. I/O, linear al-
gebra, FFT, performance profiling). In tandem, a unified
management strategy is required which can maintain con-
sistency and upgradability across thousands of individual
compute nodes and support servers with minimal system
administration overhead.

In this report, we outline the overall strategies adopted for
the deployment and management of production Linux clus-
ters at TACC based on the evolution over seven years to de-
vise a Linux operating system framework (LosF ) which pro-
vides a single, integrated approach for managing hierarchical
software stacks on multiple HPC and visualization resources.
The resulting approach is based on the combination of both
in-house developed software and available open-source tools.
Included in this discussion is the overall design/cluster man-
agement philosophy and high-level cluster configuration op-
tions (Section 2), the bare-metal provisioning strategy (Sec-
tion 3), the hierarchical HPC software stack design (Sec-
tion 4), a newly developed user-environment management
tool named Lmod (Section 5), and the package-management
system implementation and build system for various third
party packages installed on TACC resources (Section 6).

2. LINUX OPERATING SYSTEM FRAME-
WORK

While the majority of components required to deploy a
stable, secure, and mature HPC cluster of modest size are
readily available, in practice we see example clusters from
all sectors (academia, industry, and government) which suf-
fer from poor cluster management and misconfiguration. In
part, this is due to a lack of qualified professionals with the
expertise to sufficiently architect and debug the complex re-
quirements associated with HPC clusters that necessitate
the integration of software and hardware from a number of
different vendors. Clusters also require very pro-active patch
strategies in order to maintain security and take advantage
of performance gains garnered from a rapidly evolving list
of HPC software. While a number of open-source and com-
mercial toolkits exist to aid sites in performing bare-metal
provisioning to deploy an HPC system (e.g. Rocks [26], Os-
car [11], UniCluster [14], Bright Cluster Manager [1], and



others), the primary focus of many of these efforts is to
provide turn-key solutions during the hardware deployment
phase. Substantially less effort is given towards providing a
flexible management ecosystem over the 3-5 year lifespan of
typical HPC clusters, particularly in the open-source arena.
Consequently, this opens the door for mismanagement and
leads some frustrated users and institutions to assume that
clusters are not as reliable and productive as their “big-iron”
counterparts. In reality, of course, a properly configured and
managed cluster can in fact be very stable and provide sig-
nificant productivity to its users.

2.1 HPC Cluster Management Philosophy
The overall HPC cluster management philosophy and de-

velopment of LosF which has evolved over the last seven
years is premised on the following desired features and de-
sign criteria. In particular, we desire:

• a single, integrated management strategy which can
be applied to multiple systems, each with a range of
underlying support servers (e.g. compute nodes, login
nodes, resource managers, parallel filesystem servers)

• an end-to-end approach for system management rang-
ing from initial bare-metal provisioning through to clus-
ter retirement

• simple and customizable deployment tools which can
adapt to the needs of new vendor hardware offerings
quickly

• simple application and support library software state
synchronization mechanisms with low overhead; sup-
port for scalable syncing across thousands of servers;
an incremental sync mechanism is preferred over re-
peated bare-metal provisioning

• flexibility to easily customize provisioning mechanisms
• simple and scalable configuration/flat file controls
• traceability across cluster state changes (e.g. historical

records for configuration file changes)
• flexible user-environment management and software us-

age support
• minimal system administration overhead with suffi-

cient traceability and robustness for one or more ad-
ministrators to manage multiple large systems simul-
taneously

• to leverage open-source tools where possible

To fulfill these desires, LosF has been assembled using
a number of available open-source tools combined with in-
house developed software to provide a unifying cluster man-
agement system for all production clusters at TACC in or-
der to meet the outlined goals above. For the internally
developed tools, the efforts are primarily categorized into
two broad efforts. The first effort is focused on software
management and synchronization and serves as the unifying
mechanism for high-level cluster management integrating
provisioning and long-term software update/configuration
processes. The developed tools to support this cluster man-
agement effort are predominantly written in Perl and shell
scripts which provide familiar constructs for system admin-
istrators who are the primary consumers. The second devel-
opment effort is the introduction of a new user-environment
management tool (Lmod) which provides a convenient, hi-
erarchical approach for users to access local HPC software.
This tool is written in Lua and is discussed in detail begin-
ning in Section 5. In addition to these development efforts,

# $Id: config.machines 750 2011 -05 -03 12:06:13Z karl $

#----------------------------------------------------
# Cluster Definitions
#
# Define a name for each cluster you wish to manage.
#----------------------------------------------------

[Cluster -Names]

clusters = Longhorn Ranger Lonestar

#----------------------------------------------------
# Node Types/Cluster Config
#
# Delineate the domain name and different types of
# nodes in each cluster. Note that the software on
# each node type can be managed separately.
#
# Regular expression patterns can be used to map
# individual hostnames to a give node type.
#----------------------------------------------------

[Lonestar]

domainname = ls4|ls4.tacc.utexas.edu

master = master
nfs = home1|data1|exp1
admin = admin1
login = login [1-4]
oss = oss[1 -9]+
mds = mds[1-4]
bigmem = c300 -10[1 -5]
gpgpu = c300 -20[1 -8]
compute = c3[0 -4][0 -9] -[1 -3][0 -2][0 -9]
build = build
gridftp = gridftp [1-2]

Figure 1: Example portion of top-level LosF con-
fig file (config.machines) defining clusters and nodal
appliances.

a unified effort to build and maintain specialized 3rd party
packages in a hierarchical manner using the RPM package
management system is discussed in Section 6.

2.2 Cluster/Node Designations
Keeping with the desire to have simple configuration op-

tions, LosF adopts a keyword-driven input file to control
configuration options for one or more defined clusters. Sim-
ilar in style to other provisioning toolkits (e.g. Rocks),
LosF adopts an appliance based approach in which indi-
vidual servers are grouped together into appliance groups
which provide similar functionality and, therefore require
a similar set of base operating system (OS) packages, con-
figurations, and 3rd-party packages. In order to define in-
dividual clusters and appliance types which belong to each
cluster, a top-level configuration file is defined in which local
site administrators identify desired settings. As an example,
Figure 1 presents portions of the top-level configuration file
(config.machines) used at TACC which defines three individ-
ual production clusters (Longhorn, Ranger, and Lonestar).

From this example, we see that for each defined cluster, a
separate input block can be provided to define all the various
node types (or appliances) which are present in the clus-
ter. For the Lonestar cluster example shown in Figure 1,
there are eleven node types defined and the general form of
the definition is to supply a key = value pair where key is
the node type designation and value contains the individual
hostnames which belong to the named node type. Note that



for convenience, the configuration file parser supports reg-
ular expression syntax such that a range of hostnames can
be easily defined within a single node group. As an exam-
ple, the login node definition entry of login = login[1-4]

for the Lonestar cluster indicates that hosts login1, login2,
login3, and login4 are the only four hosts which are defined
as login nodes. Note that in practice, we choose locally to
define hostnames based on server functionality. For exam-
ple, nodes which are used to define object-storage servers
(oss) and and meta-data servers (mds) for Lustre parallel
file systems receive hostnames which reflect this functional-
ity (mds1, oss1, etc). In addition to defining desired node
types for each cluster, another necessary input is the net-
work domainname for each cluster. This is required to allow
LosF to differentiate between clusters and for the customiza-
tion of software packages and configurations on a per-cluster
basis.

2.3 Software/Configuration Synchronization
The cluster/node definitions outlined in the previous sec-

tion are used by LosF to organize which OS and 3rd-party
software packages are installed or are updated on individual
cluster hosts. As will be discussed further in Section 6, we
have adopted the RPM package management system as the
basis for all software installations. Note that the desired
RPMs to be installed on a node have the potential to come
from several distinct sources: (1) a released Linux distribu-
tion (e.g. RHEL or CentOS), (2) an external or mirrored
repository providing updates for Linux distribution pack-
ages, and (3) locally-built packages maintained by site staff
to provide the customized HPC environment required for a
diverse range of users. In addition to controlling specific
package installations, the cluster/node definitions are also
used by LosF to synchronize configuration files (or any other
desired ascii file) across all hosts.

The primary tool used to perform software and configu-
ration management is an LosF utility named update which
is responsible for bringing any cluster node into a known
software state and configuration. update can be executed
locally on an individual node or in parallel across an entire
cluster to verify the state of individual hosts and/or push
out configuration/package updates based on local adminis-
trator changes. Note that past experience deploying large
clusters has shown that incremental updates are more scal-
able than bare-metal reprovisioning of modified OS images
and hence update was designed to detect node status and
bring it to a known good state (including the addition and
removal of software) along with configuration file manage-
ment (including user credentials).

To configure various file synchronizations, LosF queries
an additional cluster-specific input file using the cluster def-
initions named in the global config.machines configuration.
An example portion of the input file for the Lonestar cluster
referenced previously is shown in Figure 2 which illustrates
representative files that are locally managed along with ex-
ample configuration syntax. In the first [ConfigFiles] sec-
tion, we see several examples of common files that system
administrators need to customize based on local hardware
configurations and desired user policies (e.g. fstab for con-
trolling locally mounted file systems, access.conf for defin-
ing login control policies, motd for customizing system-wide
announcements, etc). Synchronization for the named files
occurs via update by comparing the contents of the locally

# $Id: config.Lonestar 764 2011 -06 -24 17:12:07Z karl $

#-----------------------------------------------
# Configuration File Syncing
#-----------------------------------------------

[ConfigFiles]
/etc/motd = yes
/etc/fstab = yes
/etc/exports = yes
/etc/pam.d/sshd = yes
/etc/security/access.conf = yes
/etc/security/limits.conf = yes
/etc/sysconfig/network = partial
...

-----------------------------------------------
# Runlevel Services Syncing
#-----------------------------------------------

[Services]

xfs = off
autofs = off
ntpd = on
sendmail = off
cups = off
limic = on
...

Figure 2: Example portion of LosF cluster-specific
input file (config.Lonestar) detailing configuration
file options.

installed file to a reference version which is managed by local
site administrators. Normally, the reference versions are de-
fined on a per node-type basis and are stored in a shared file
system accessible across the cluster. In these cases, reference
files are organized in the top-level LosF config directory as
follows:

$LOSF_CONFIG/const_files/[Cluster Name]/[Node Type]

As an example, to manage the access.conf file for login
nodes on our Lonestar cluster, we customize a reference file
at:

$LOSF_CONFIG/const_files/Lonestar/login/access.conf

and the contents of this reference file are updated and ver-
ified on each login node during an update process. Note
that if an administrator inadvertently modifies the contents
of a locally-installed file, the differences are cached during
the update process such that the modifications can be ex-
amined and applied to the production reference files during
a subsequent update process if desired. While this sync-
ing process provides a very convenient mechanism to ensure
consistency across a specific node type, our experience has
shown that in certain circumstances, additional control is re-
quired to fine-tune one or more hosts belonging to a defined
node group. For example in the Lonestar cluster configu-
ration, we recall that four login nodes are defined but it is
conceivable that a site might want to restrict login access to
one of these nodes (e.g. for staff use only). Other than the
login access differences, the nodes are to remain identical
and as opposed to requiring the definition of a new staff-
login node type, LosF allows administrators to override the
default node configuration with a host-specific reference file.
For this Lonestar example, if a login/access.conf.login4

file is defined, then update will synchronize this file on the
login4 host, while using the default login/access.conf as



NETWORKING=yes
NETWORKING_IPV6=yes
HOSTNAME=c399 -101. ls4.tacc.utexas.edu
#------------------------------------begin -sync -losf -
#
# LosF partially synced file - do not edit entries
# between the begin/end sync delimiters or you may
# lose the contents during the next synchronization
# process. Knock yourself out adding customizations
# to the rest of the file as anything outside of the
# delimited section will be preserved.
#
# $Id: network 606 2011 -01 -27 17:19:31Z karl $

GATEWAY =149.76.4.1
#--------------------------------------end -sync -losf -

Figure 3: Example network configuration file which
contains a partially synchronized file contents man-
aged by LosF .

the basis to synchronize all remaining login node hosts.
In addition to illustrating some example configuration file

paths, Figure 2 also indicates that two general synchroniza-
tion possibilities are supported. In particular, both full and
partial file synchronization can be configured. The full case
simply means that the entire contents of the named file are
to be managed by LosF . The partial designation indicates
that only a portion of the named file is to be synchronized.
This feature requires a begin/end delimiter (normally em-
bedded as comments within the particular configuration file
of interest) to be added within the synchronization file and
LosF will then verify consistency solely within the delimited
portion of the file allowing for non-common or host-specific
settings to be defined within the rest of the file. As an exam-
ple, Figure 3 shows the contents of a resulting /etc/syscon-

fig/network file that was generated for a specific compute
node on the Lonestar cluster. The top contents of this file
are created during the initial kickstart-provisioning mecha-
nism (discussed further in Section 3) and because the specific
hostname is embedded, the files cannot be identical across
all compute node types. However, they can all share the
same routing gateway and the partial synchronizing mech-
anism provides a customizable way to augment this file to
accommodate local network configurations.

Another configuration option highlighted in Figure 2 is the
capability to control various runtime services (controlled via
the [Services] section). At TACC, our underlying Linux
installations are derived from CentOS distributions which
are not tuned by default for HPC installations. Conse-
quently, we utilize this runlevel service configuration option
to disable non-necessary services which can impact appli-
cation performance (e.g. automounter, print daemons, X
font servers, etc.) and to enable HPC-specific services like
the LiMIC2 package which provides lightweight kernel-level
primitives to optimize MPI intra-node communication on
multi-core systems [25]. Note that several additional syn-
chronization input options exist but are not included in Fig-
ure 2 for brevity. These include options to synchronize file-
level permissions and to control the existence and mapping
of any symbolic file links on individual cluster servers.

In practice, to provide further traceability across the clus-
ter management system, we choose to keep all of the rele-
vant LosF input files and corresponding reference synchro-
nization files defined for each cluster node type under the
control of a software configuration management (SCM) sys-

tem. Locally, we use subversion for this purpose, a popular
open-source version control system, but this could easily be
substituted with other available SCMs. Consequently, trace-
ability across last edit and authorship is visible among the
various configuration file examples shown in in Figures 1-3.

In terms of software package synchronization, recall that
we utilize the RPM system to maintain all package revisions.
To support the maintenance of packages which fall out of the
purview of a Linux distro, update provides a mechanism to
synchronize 3rd party packages, custom kernels and GRUB
configurations on a per-cluster and per node-type basis. For
each cluster designation, an additional input file is allowed
(e.g. update.Lonestar) which provides the flexibility to de-
fine additional RPM packages to be installed, removed, or
upgraded across individual host resources. The hierarchical
approach adopted for the creation and maintenance of lo-
cal RPM packages is presented in more detail in Section 6,
but once created, the location of locally created RPM bina-
ries to be synchronized are exposed to LosF via an input
control. In practice, we maintain all local RPMs in one or
more shared-file systems, although the packages can also be
installed over the network using the http protocol.

Interestingly, the motivation to support RPM synchro-
nization from multiply defined shared-file systems locations
is based on scalability concerns and the availability of file
systems at different points during a node’s life cycle. For
example, once an HPC cluster has been provisioned it of-
ten includes a parallel filesystem to provide a scalable I/O
resource for end-user applications (e.g. Lustre or GPFS).
These filesystems are designed to support concurrent trans-
actions across hundreds or thousands of clients where a tra-
ditional single network file server running NFS would be
easily overwhelmed. Consequently, the parallel filesystems
can also be leveraged to support cluster-wide system updates
in a scalable fashion. In practice, we leverage this capabil-
ity extensively to update thousands of nodes simultaneously
when the parallel filesystems are available. When not avail-
able (e.g. during a bare-metal provisioning process), the
update mechanism can revert to performing synchronization
via a traditional filesystem.

A final responsibility for update is the verification of in-
stalled Linux OS updates which are released incrementally
by distro providers. As we are primarily CentOS/RHEL
based, we adopt the standard yum tool to perform distro-
provided OS updates based on local repository mirrors in
order to keep systems patched with community releases.

3. BARE-METAL PROVISIONING
An important consideration in the overall management of

any production cluster is the choice of provisioning mecha-
nism used to deploy OS images and ideally, customized 3rd

party packages starting from bare-metal. Obviously at the
scale required to support thousands of servers, the method
must be automated and sufficiently scalable to perform mul-
tiple installations simultaneously. In previous deployments,
we have utilized the NPACI ROCKs toolkit to perform pro-
visioning which is based on a modified kickstart mechanism
to deploy custom images over PXE from a defined master
server. In more recent deployments, we have abandoned
this approach in favor of Cobbler [2], an alternative open-
source package designed for rapid setup of network installa-
tion environments. Both of these toolkits have similar man-
agement utility functionalities which allow administrators



to add/delete node definitions and assign network settings,
along with providing server-side software support to extend
DHCP, DNS, and TFTP services to registered hosts in order
to support kickstart provisioning use PXE.

Unlike ROCKS, Cobbler does not provide the direct OS
images that are to be provisioned and is designed as a light
weight application with simple configuration mechanisms to
provide very flexible customization options. Consequently,
Cobbler-based provisioning begins first by importing a de-
sired Linux distribution and then exposes simple command-
line tools to define kickstart rules to be used during pro-
visioning. After importing one or more distribution im-
ages, the next requirement is to define relevant kickstart files
which control the base OS installation choices. An attractive
feature of this approach is that site administrators have con-
venient control over the kickstart files in order to customize
installations for alternate hardware configurations, disk par-
titioning schemes, raid configurations, and more. Another
particularly attractive feature of Cobbler is the ability to
simply define snippets which are common blocks of code that
can be run at pre-configured times during the provisioning
process. This allows Cobbler to be trivially integrated with
LosF in that a snippet can simply instantiate update during
the bare-metal provisioning process. Consequently, newly
provisioned nodes automatically receive the latest software
stack revision along with all desired configuration file set-
tings.

Given the scale of large HPC systems which can easily
grow to a hundred or more compute racks, provisioning the
entire system at once is normally not required. However,
support is desired to install significant portions of a sys-
tem simultaneously and Cobbler’s PXE-based provisioning
mechanism has been shown to be sufficient for large-scale
HPC systems. As an example of the provisioning times en-
countered using Cobbler within LosF during TACC’s most
recent Lonestar deployment, the wall clock time required to
provision 8 racks (or 384 servers) simultaneously was ap-
proximately 30 minutes. Note that a non-trivial portion
of this deployment measurement includes the time to com-
plete BIOS initialization, memory scanning, and Linux ker-
nel boots into the final desired node configuration.

4. HPC SOFTWARE HIERARCHY
Users of HPC resources demand the highest levels of per-

formance. Additionally, they often work with specialized
software applications with particular software requirements.
As a result, it is necessary for a resource provider to support
a number of different compilers, MPI distributions, support
libraries, and community applications. Due to the difference
in C and Fortran function calling conventions and incompat-
ibilities between C++ ABIs, it is necessary to build a matrix
of supported software. Applications that link with pre-built
libraries must generally use the same compiler toolset as
that used for the library itself. This leads to a combina-
torial increase in deployed packages and libraries. For each
supported compiler, there must be a build of each supported
serial library and MPI stack, and under each compiler/MPI
combination, there must be a build of each supported par-
allel library.

In addition, software packages are updated regularly to
provide access to new versions containing bug fixes and new
features. With each new version added, there is often the
requirement to support the older versions as well in order to

maintain continuity for the existing user community. In light
of these considerations, maintaining the entire HPC software
stack for a production resource is a challenging problem.

4.1 Directory Structure for
Local Software

In order to clearly separate and maintain the numerous
versions of libraries and applications on the HPC resources
at TACC, we place all local software in a directory structure
relative to a single top-level path, usually /opt/apps. Our
naming scheme is as follows:

1. Applications are stored as /opt/apps/

Application Name/Application Version.
For example, the software version control program git

version 1.7 would be located in
/opt/apps/git/1.7.

2. Compiler-dependent libraries are stored under a com-
piler and version directory
/opt/apps/Compiler-version/Package Name/
Package Version.
For example, the C++ boost library version 1.3 built
with gcc version 4.2 would be found under /opt/app-

s/gcc4_2/boost/1.3.

3. Compiler- and MPI-dependent parallel libraries must
be stored with both compiler and MPI directory en-
coding /opt/apps/Compiler-version/MPI-version/
Package Name/Package Version.
For example, the parallel solver package PETSc 3.1
built with gcc version 4.2 and the MPI stack mvapich

version 1.2 would be found under
/opt/apps/gcc4_2/mvapich1_2/petsc/3.1

It is clear from this layout that each new version of a pack-
age has a unique place in our optional software directory tree
with no chance of collision between versions. For each com-
piler version there can be multiple versions of each library.
For the parallel libraries, there is a multiplicative effect; i.e.,
for two compilers and three MPI stacks there could be up
to six versions of a given library. This directory structure
makes it straightforward to support multiple compilers with
multiple, dependent MPI implementations simultaneously.

4.2 Environment Modules
Given the large number of installed optional software pack-

ages, there is a clear need for a software system that sup-
ports the discovery of such packages and management of the
shell environment enabling their use. Environment Mod-
ules [17,22,23] are a long-standing solution to this problem.
Under the Environment Modules system, users are presented
with the module command for finding available packages on
the system and for importing them into their UNIX shell en-
vironments. The Environment Modules system uses a collec-
tion of “module files” to maintain the necessary path, library
path, usage instructions, and other information associated
with each package.

A user wishing to use a particular package “loads” a mod-
ule file through the module command. The module file con-
tains commands that can load other modules or change the
user’s environment such as adding a directory to the user’s
PATH or LD_LIBRARY_PATH or setting other shell environment
variables. If a user “unloads” a loaded module then all the



additions to the user’s shell environment are reversed. All
previously added directories are removed from the user’s
PATH, and the other shell variables are unset. For each pack-
age installed on the system, there is an associated module
file. Additionally, the module command translates the mod-
ule file directives to be appropriate for the user’s chosen
UNIX shell.

Another important feature of the module system is that
a package can be referenced via a name and version, which
allows users access to more than one version of a package.
If users load a package by name without the version then
they get the default as specified by the systems administra-
tors. Alternatively, a user may select a particular version by
issuing “module load Foo/1.1” to load version 1.1 whereas
“module load Foo” will load the default, say version 1.0.
Letting users control what software they use and optionally,
which version, is key to providing a friendly and flexible
environment. Users who want the latest beta version of a
package can be accommodated while also maintaining older,
potentially more stable revisions.

Module files typically add to the user’s PATH and define
other necessary environment variables. At TACC, our li-
brary module files also provide a standardized naming scheme
for environment variables which name the header file and li-
brary directories. For the FFTW2 package, for example,
we provide the environment variables TACC_FFTW2_INC to
point to the header file directory and TACC_FFTW2_LIB for
the library directory. In this way users’ build tools can use
these variables instead of hard-coding the paths to partic-
ular a version of the library. This approach is particularly
advantageous for end users so they can access new software
updates easily within their build system.

The module system was first described in 1991 [22] and
in subsequent papers [23, 27]. There is also a website for
the TCL-based version of Environment Modules [17]. Many
users of HPC systems were first exposed to modules in the
mid-1990s on Cray systems that used them [23]. Note that
the module system available from [17] has all of the features
that are described above, however, it does not have built-in
support for managing the hierarchical software matrix across
compilers, MPI stacks, and other parallel libraries described
previously.

4.3 Module Hierarchy
With a large matrix of compilers, MPI stacks, and package

versions available, the choices facing system administrators
for the deployment of module files are important. Consider
the following example system which has two compilers in-
stalled, GCC (version 4.5) [5] and Intel (version 11.1) [13]
two MPI implementations MVAPICH (version 1.2) [10] and
OpenMPI (version 1.5) [18], and a user community that
desires the parallel linear algebra library PETSc (version
4.1) [16]. There will be four different versions of the PETSc
installation for the four different pairings of compilers and
MPI stacks. One strategy is to have a flat naming scheme
for the four module files for PETSc:

1. PETSc-4.1-mvapich-1.2-gcc-4.5

2. PETSc-4.1-mvapich-1.2-intel-11.1

3. PETSc-4.1-openmpi-1.5-gcc-4.5

4. PETSc-4.1-openmpi-1.5-intel-11.1

Unfortunately, there are specific potential problems with
adopting a flat scheme. Users are always presented with the

four versions of the PETSc module files required to support
the four compiler/MPI combinations. If another version of
PETSc is added (say, PETSc v4.2), there will be four new
module files added to the list. If we were to add in all the
packages that an HPC system provides, it would be difficult
for users to find the packages they wish to use. For example,
there are more than 700 modules supported on Ranger at
TACC. Furthermore, the onus for ensuring package compat-
ibility is placed directly on the user.

In order to partially mitigate this problem, we have cre-
ated a hierarchy of environment module files. Our strategy is
to place the module files along side the package installations
themselves and to use the MODULEPATH environment variable
to ensure that only appropriate module files are visible to
users while keeping incompatible files hidden.

The module command reads an environment variable MOD-
ULEPATH which specifies a colon-separated list of directories
containing module files. Users can only load module files
that are in their MODULEPATH. Initially on our systems the
MODULEPATH only contains /opt/apps/modulefiles. When
a compiler module is loaded, the module system prepends
a directory to MODULEPATH that contains the module files
for packages built with that particular compiler. For exam-
ple, if the intel/11.1 module is loaded, the module system
would prepend /opt/apps/intel11_1/modulefiles to MOD-

ULEPATH.
At this point, the user will then be able to see packages

built with the Intel 11.1 compiler. More importantly for
a parallel computing environment, this will also make visi-
ble all of the MPI stacks built against the Intel 11.1 com-
piler (e.g. MVAPICH2 1.6 and OpenMPI 1.5 above). If the
user then loads the mvapich2/1.6 module, /opt/apps/in-
tel11_1/mvapich2_1_6/modulefiles will be prepended to
MODULEPATH, and parallel libraries based on MVAPICH2 1.6
and Intel 11.1 will then be available.

At this point, only one PETSc module appears in the
users list of available modules instead of the 4 modules in
the previous flat module scheme. By only making appropri-
ate modules visible, users cannot load a mismatched module
at the outset when setting up their environments. However,
without further improvements to the module system, it is
still possible for a user to leave the wrong module in their en-
vironment when switching between compilers or MPI stacks.

5. Lmod: A NEW ENVIRONMENT MOD-
ULE SYSTEM

At TACC, we originally deployed the TCL-C module sys-
tem [17] using the hierarchical module directory structure
described in the previous section. The above layout of mod-
ule files works well for users until they try to change compil-
ers or MPI stacks. Without some support from the module
system, users can easily find themselves with mismatched
modules. For example, if a user starts with the Intel com-
piler and related MVAPICH modules loaded, and swaps the
Intel compiler module for the GCC compiler module, the
compiler and MPI environment will be mismatched. To ad-
dress this problem, a new implementation of the module
system, Lmod [6], was developed and made available as an
open source project under the MIT license.

The name Lmod was chosen because this tool for manag-
ing users’ environment is a complete rewrite of the module
system using a language call Lua [9,24]. Lua is a simple yet



powerful scripting language. Among Lua’s many strengths
are two features found useful here. The first is that func-
tions are first class objects which means that functions can
be handled like variables. This greatly simplifies the code for
loading and unloading of module files. The second feature
is that the main Lua data structure is a table which stores
both array elements and hash tables in a clear way. Lmod

supports reading of TCL module files from the TCL-C mod-
ule system, so there is no immediate need for administrators
to translate the module files into Lua when migrating from
TCL-C modules to Lmod.
Lmod has several key improvements over other module sys-

tem. First, Lmod tracks changes to MODULEPATH. When it
changes state, Lmod unloads any modules which are no longer
in the MODULEPATH. It then tries to reload any modulefiles it
can with the new MODULEPATH. Any modules that can not be
loaded are saved in an inactive state. Turning back to the ex-
ample from the previous section, PETSc version 4.1 may not
be available with the GCC 4.5 compiler and the OpenMPI
version 1.5 MPI stack. However, when MODULEPATH changes
again, Lmod tries to reload the inactive modules. When Lmod

cannot reload a previously loaded module, it warns the user
that this step was unsuccessful.

Now when a user changes compiler and/or MPI stacks,
the dependent modules change automatically. It is all han-
dled internally by Lmod through the tracking of the state of
MODULEPATH.

5.1 Important Lmod: Features
Lmod provides several important features that protect users

from making potential mistakes. The most important fea-
ture is reloading the dependent modules when their depen-
dencies are changed. Another important feature is that users
cannot load two versions of the same module.
Lmod maintains several important pieces of state infor-

mation about a user’s current shell environment, including:
which modules are active or inactive and where their associ-
ated module files are located in the filesystem. This data is
stored in a single Lua table across several environment vari-
ables. In ASCII form, this string contains single and double
quotes and can be quite long, typically between 4000 and
6000 characters long. The length will depend on how many
modules the user has loaded. To avoid shell limitations on
environment variable length, and to simplify the manage-
ment of shell quoting rules, we convert the long ASCII text
string into a uuencoded [3] string which contains no special
characters and then split that string into a series of environ-
ment variables each 512 bytes long. Every time the module
command is run, it reads the uuencoded chunks from the en-
vironment variables, concatenates them, and uudecodes the
full string back to an ASCII text version of the table that
can be easily evaluated by Lua. This extra state information
stored by Lmod is used to support the automatic loading and
unloading of modules when the MODULEPATH changes.

In order to protect users from inappropriate loading of
similar modules, Lmod prevents users from loading two ver-
sions of the same module. If a user tries to load one version of
a module and then another, the first module is unloaded and
the second module is loaded in its place. For example, exe-
cuting module load Foo/1.1; module load Foo/1.2 loads
package Foo version 1.1, then Foo v1.1 is unloaded, and Foo

version 1.2 is loaded. Additionally, we have extended the
module file language to include a new command: family.

This command takes a single string as an argument, and
Lmod prevents more than one module from the same fam-
ily from being loaded at the same time. For example, all
TACC compiler module files have set their family to “com-
piler”, and all the MPI module files set the family name
“MPI”. Users with one compiler module already loaded will
see an error message when they try to load a second com-
piler without unloading the first. This is similarly true when
users attempt to load a second MPI module file. For the very
small percentage of users who need multiple modules from
the same family loaded at the same time, they may set the
LMOD_EXPERT environment variable to bypass this restriction.

The use of a hierarchy does simplify users search for mod-
ules to load as they only see modules that are appropriate
for their current compiler-MPI pairing. This is important on
Ranger where we have over 700 total module files. The list-
ing of available modules contains less than 300 entries which
can be listed in columns that fit into one or two screen out-
puts. This makes for easy scanning of available modules.

Due to the potential for explosive growth in the num-
ber of packages built and installed on TACC systems, not
all packages are supported under every compiler and MPI
combination. Additionally, the “module avail” command
only finds modules available under the current MODULEPATH,
which is volatile under the module hierarchy described above
and likely to change with a user’s changing module environ-
ment. These two factors conspire to make it difficult for
users to discover all of the packages available system-wide.
Therefore, we have added an additional module command,
“module spider” that searches all parts of the module hier-
archy for available module files. Because providing detailed
information about each package would generate many pages
of output, this command has three modes. The first,“module
spider”, with no additional arguments, provides a concise
list of modules and a short description of each package. In
the second mode “module spider modulename”, lists all the
versions of all module files that match modulename. Finally
“module spider module/version” gives all the information
that the module file has and lists what compiler and MPI
stack that will provide that version. Both commands take
simple regular expressions to aid in locating desired mod-
ules.

TACC provides users with a default shell environment
that includes a minimum set of modules to get users started.
Many users will want other modules loaded as well every
time they log in. The first option is place module commands
in their shell start-up files (e.g. ∼/.bashrc, ∼/.cshrc). There
are however some issues with this method that will be dis-
cussed in the next section.
Lmod also provides a second option. Users can log in and

issue module commands to load and unload module files to
build their desired environment. Once satisfied with the
list of modules loaded, they can issue “module setdefault

default” which caches the current module state into a file
in ∼/.lmod.d/. This default state will loaded instead of
the standard list of modules at login. Additionally, users
can create other named lists of modules to be loaded. Only
the default list will be loaded during login but users can
create other lists via“module setdefault foo”and load that
named set with “module getdefault foo”.



5.2 Shell Startup Issues
Working with shell startup mechanisms presents two par-

ticular difficulties. The first is primarily a problem specific
to HPC systems. Users who place module commands in
their startup files can cause problems on parallel filesystems
when their jobs are run on a large number of processors due
to excessive file operations on their home directories dur-
ing the SSH phase of MPI job startup. Users may wish to
place module command in their ∼/.bashrc or ∼/.cshrc

files, knowing that when setup correctly, those files will be
sourced in interactive and login shells. Care must be taken
if users run on a large number of processor cores where each
core invokes a shell and each shell is trying to read through
module files. As a result, we recommend that users utilize
the setdefault technique or that they wrap their module
commands in their startup files. The relevant syntax for
bash users at TACC is as follows:

if [ -z "$_BASHRC" -a "$ENVIRONMENT" != BATCH ]; then
export _BASHRC="read"
module load git fftw2

fi

On our systems we set the variable ENVIRONMENT to BATCH

on the compute nodes. Since the environment variables of
the user’s submission shell are propagated to the compute
nodes in their jobs, modules loaded in the submission envi-
ronment will also be present in their batch job shell environ-
ment.

The second issue relates to the bash shell. Bash may or
may not source a system bashrc file during an interactive
non-login shell startup. We want the module command to
be available for interactive as well as login shells so we have
rebuilt bash to always read a system bashrc. When sourced,
it loads our initial startup scripts that are in /etc/pro-

file.d/*.sh. This is where the module command is de-
fined and where we provide an initial set of modules to load.
In order for the setdefault command to work, the system
startup scripts issue:

module getdefault default || module load TACC

This way the user’s default is loaded if it exists, otherwise
the system defaults stored in the TACC module file are loaded.

Bash is also different from other shells such as Tcsh and
Zsh in that there are no system startup files read during the
startup of a bash shell script. Instead the value of BASH_ENV
is used as a file to be sourced. In our case, we have it point
to the file which defines the module command. We define
BASH_ENV for all the shells we support. This way any user
executing a bash shell script will have the module command
defined in their bash script, an important consideration for
jobs running under a batch scheduling environment.

5.3 Recording Software Usage with Lmod
Another attractive benefit of Lmod is the ability to track

loaded modules during a shell logout. This provides usage
information to help prioritize our support efforts by delin-
eating between frequently used packages versus those with
little or no usage. Also, in some cases a new package is in-
stalled that duplicates the functionality of an old package,
but includes new features or enhanced performance. Having
access to historical usage data allows us to quickly identify
which users might be interested in trying the new package.

...
%define APPS /opt/apps
%define MODULES modulefiles
%include compiler -defines.inc
%include mpi -defines.inc
%define INSTALL_DIR %{APPS }/%{ comp_fam_ver }/

%{ mpi_fam_ver }/%{ name }/%{ version}
%define MODULE_DIR %{APPS }/%{ comp_fam_ver }/

%{ mpi_fam_ver }/%{ MODULES }/%{ name}
...

Figure 4: Inclusion of parameter variable checking
in FFTW2 RPM spec file.

6. PACKAGE MANAGERS
TACC systems use the RedHat-derived CentOS Linux dis-

tribution for their underlying operating systems, so it was a
natural choice to leverage the existing RPM [4,21] environ-
ment to handle specialized HPC software built and installed
by TACC. The use of a package manager provides us with
several benefits.

• It simplifies installation of software on the nodes.
• It captures institutional knowledge on how to build

and rebuild packages allowing multiple staff members
to maintain a particular package.

• The specification file contains the instructions to build
the software and it also generates the associated envi-
ronment module file.

• When the software is installed via LosF , the new mod-
ule file is installed simultaneously. This means that
users can access this software immediately with no
manual intervention by a system administrator required
to describe the software.

• Removing the RPM package file removes all the soft-
ware and the module file that accesses it. No user can
“load” a module file for non-existent software because
both have been removed.

RPMs are created through a plain-text specification file
(i.e. the “RPM spec file”) which describes what source files
to use, how to unpackage and build them (if necessary),
what files to include in the final RPM, and where to install
those files. For each optional software library or application
TACC installs, we create a single, parameterized RPM spec
file which is used to generate carefully named and crafted
RPMs for each compiler-MPI pair we support. The compiler
and MPI implementation names and versions are encoded
into the name of the RPM in order to make these RPMs
distinct within the RPM database.

A full sample RPM spec for the FFTW2 library [15] file
is shown in Figure 11.There are several important additions
to a typical RPM spec file layout that we include to al-
low it to be used to generate multiple differently-named
RPMs for each compiler-MPI pair. Note that RPM spec
files are compiled into binary RPM files with the rpmbuild
command. Usually this is done by specifying rpmbuild -
bb fftw2.spec, but in order to pass the compiler and MPI
parameters into the compilation environment, the local soft-
ware maintainer(s) must define two additional parameters,
using the -D command-line option, e.g.:

rpmbuild -bb -D ’is_intel11 1’ -D ’is_mvapich2 1’
fftw2.spec

These variables are utilized via two include files we em-
bed into each spec file: compiler-defines.inc and mpi-

defines.inc, see Figure 4 for an example. These in turn are



used to define the RPM spec file variables, INSTALL_DIR and
MODULE_DIR which control the installation and module file
paths and the name of the eventual RPM. Sample contents
for these files can be found in Figures 5 and 6. In this ex-
ample, we demonstrate cases covering use of compilers from
the Intel 11.x [13], PGI 10.x [19], and GCC 4.4.x [5] families,
and either MVAPICH2 1.6 [10] or OpenMPI 1.3.3 [18].

% define comp_fam error

% if "%{ is_intel11 }" == "1"
% define comp_fam intel
% define comp_fam_ver intel11_1
% define comp_fam_name Intel

% endif

% if "%{ is_pgi10 }" == "1"
% define comp_fam pgi
% define comp_fam_ver pgi10
% define comp_fam_name PGI

% endif

% if "%{ is_gcc44 }" == "1"
% define comp_fam gcc
% define comp_fam_ver gcc4_4
% define comp_fam_name GNU

% endif

% if "%{ comp_fam }" == "error"
% {error: Compiler not defined}
exit

% endif

Figure 5: compiler-defines.inc

% define mpi_fam error

% if "%{ is_mvapich2 }" == "1"
% define mpi_fam mvapich2
% define mpi_fam_ver mvapich2_1_6

% endif

% if "%{ is_openmpi }" == "1"
% define mpi_fam openmpi
% define mpi_fam_ver openmpi_1_3_3

% endif

% if "%{ mpi_fam }" == "error"
% {error: MPI not defined}
exit

% endif

Figure 6: mpi-defines.inc

Next, as shown in Figure 11, the %package and %descrip-

tion macros are called with the optional naming argument
(-n) to tell RPM to generate an alternately named file.
Then, the build process begins. Here, as shown in Fig-
ure 11, compiler-load.inc and mpi-load.inc are included
to setup the correct compiler and MPI environment for the
build. Based on the defined compiler and MPI, the cor-
rect environment modules are loaded, and the traditional
autotools-style compiler variables are set (.e.g. CC, CXX,

FC, etc).
After these variables are set, the MPI compiler variables

can also be set and the configure script run. In this case,
the INSTALL_DIR RPM variable created above is used to set
the autotools prefix. After FFTW2 is configured, the rest
of the build process is conducted.

Figure 9 shows how in the %install macro section of the
spec file, we construct the contents of the FFTW2 envi-
ronment module file–in this case written in Lua. This step
leverages both the MODULE_DIR and INSTALL_DIR RPM vari-

...
%package -n %{name}-%{ comp_fam_ver}-

%{ mpi_fam_ver}
Summary: FFTW 2.x local binary install
Group: System Environment/Base
%description
%description -n %{name}-%{ comp_fam_ver}-

%{ mpi_fam_ver}
FFTW2 RPM
...

Figure 7: Package and Description macros in
FFTW2 RPM spec file.

...
%build
%include compiler -load.inc
%include mpi -load.inc
...

Figure 8: Build macro in the FFTW2 RPM spec
file.

ables to create the module file in the correct place and set
the TACC_* environment variables correctly.

...
%install
## Module for fftw2
mkdir -p $RPM_BUILD_ROOT /%{ MODULE_DIR}
cat > $RPM_BUILD_ROOT /%{ MODULE_DIR }/%{ version }.lua \

<< ’EOF ’
local help_message = [[
The FFTW2 modulefile defines the following variables:
TACC_FFTW2_DIR , TACC_FFTW2_LIB , and TACC_FFTW2_INC
for the location of the FFTW %{ version} distribution ,
libraries , and include files , respectively.

To use the FFTW library , compile your code with:
-I$TACC_FFTW2_INC

and add the following options to the link step:
-L$TACC_FFTW2_LIB -lfftw

Version %{ version}
]]
help(help_message ,"\n")
local fftw_dir ="%{ INSTALL_DIR }"
setenv (" TACC_FFTW2_DIR",fftw_dir)
setenv (" TACC_FFTW2_LIB",pathJoin(fftw_dir ,"lib"))
setenv (" TACC_FFTW2_INC",pathJoin(fftw_dir ," include "))
EOF
...

Figure 9: Install macro in the FFTW2 RPM spec
file.

In the final RPM macro section, as shown in Figure 11,
%files, the name of the RPM file to create and the files
to collect are described. The final RPM will be named
%{name}-%{comp_fam_ver}-%{mpi_fam_ver}-%{version}-

%{release}.rpm, or fftw2-intel11-mvapich2_1_6-2.1.5-

1.rpm in this example. Running the full combination of
three compilers and two MPI stacks would lead to six RPM
files to install for this version of FFTW2. Depending on
demand and disk space for installation, not all six of these
combinations may be deployed on resources at TACC, but
they are all accommodated from a single spec file.

7. CONCLUSIONS
This report highlights some of the techniques used to per-

form large-scale Linux HPC cluster management which have
evolved over the past seven years at the Texas Advanced
Computing Center. Included in the discussion is an overview



...
%files -n %{name}-%{ comp_fam_ver }-%{ mpi_fam_ver}
%defattr (755,root ,install)
%{ INSTALL_DIR}
%{ MODULE_DIR}
...

Figure 10: Files macro in the FFTW2 RPM spec
file.

of LosF which is used to provide a single, integrated ap-
proach for managing hierarchical software stacks on multi-
ple HPC and visualization resources. Also included is the
motivation for the newly developed Lmod user environment
management system which provides a systematic way to ex-
pose a hierarchical HPC user stack to system users while
also allowing local administrators to track software pack-
age usage. Finally, the approach taken to manage the build
process and life-cycle of 3rd party packages using the RPM
package management system was described including rele-
vant spec file examples which illustrate package generation
for multiple compiler and MPI tool-chains.
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%% FFTW2 SPEC File
Summary: FFTW2
Name: fftw2
Version: 2.1.5
Release: 1
License: GPL
Vendor: www.fftw.org
Group: System Environment/Base
Source: fftw -%{ version }.tar.gz
Packager: nobody@example.com
Buildroot: /var/tmp/%{ name}-%{ version}-buildroot

%define APPS /opt/apps
%define MODULES modulefiles
%include compiler -defines.inc
%include mpi -defines.inc
%define INSTALL_DIR %{APPS }/%{ comp_fam_ver }/

%{ mpi_fam_ver }/%{ name }/%{ version}
%define MODULE_DIR %{APPS }/%{ comp_fam_ver }/

%{ mpi_fam_ver }/%{ MODULES }/%{ name}

%package -n %{name}-%{ comp_fam_ver }-%{ mpi_fam_ver}
Summary: FFTW 2.x local binary install
Group: System Environment/Base
%description
%description -n %{name}-%{ comp_fam_ver }-%{ mpi_fam_ver}
FFTW2 RPM

%prep
rm -rf $RPM_BUILD_ROOT
mkdir -p $RPM_BUILD_ROOT /%{ INSTALL_DIR}
%setup -n fftw -%{ version}

%build
%include compiler -load.inc
%include mpi -load.inc
export MPICC=‘which mpicc || /bin/true ‘
export MPIF77=‘which mpif77 || /bin/true ‘
./ configure CFLAGS="-O2 " FFLAGS="-O2" --enable -mpi \

--prefix =%{ INSTALL_DIR} --enable -threads
make DESTDIR=$RPM_BUILD_ROOT install
make clean

%install
## Module for fftw2
mkdir -p $RPM_BUILD_ROOT /%{ MODULE_DIR}
cat > $RPM_BUILD_ROOT /%{ MODULE_DIR }/%{ version }.lua \

<< ’EOF ’
local help_message = [[
The FFTW2 modulefile defines the following variables:
TACC_FFTW2_DIR , TACC_FFTW2_LIB , and TACC_FFTW2_INC
for the location of the FFTW %{ version} distribution ,
libraries , and include files , respectively.

To use the FFTW library , compile your code with:
-I$TACC_FFTW2_INC

and add the following options to the link step:
-L$TACC_FFTW2_LIB -lfftw

Version %{ version}
]]
help(help_message ,"\n")
local fftw_dir ="%{ INSTALL_DIR }"
setenv (" TACC_FFTW2_DIR",fftw_dir)
setenv (" TACC_FFTW2_LIB",pathJoin(fftw_dir ,"lib"))
setenv (" TACC_FFTW2_INC",pathJoin(fftw_dir ," include "))
EOF

cat > $RPM_BUILD_ROOT /%{ MODULE_DIR }/\
.version .%{ version} << ’EOF ’

#% Module3 .1.1########################################
set ModulesVersion "%{ version }"
EOF

%files -n %{name}-%{ comp_fam_ver }-%{ mpi_fam_ver}
%defattr (755,root ,install)
%{ INSTALL_DIR}
%{ MODULE_DIR}

Figure 11: FFTW 2 RPM spec file (fftw2.spec)
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