
How Lmod Loads a Modulefile,
Part 1

Robert McLay

June. 7, 2022

Outline

I Talk: How Lmod finds a modulefile to load
I Next Time: Part 2: How Lmod actually evaluates a modulefile
I There is a surprising amount to talk about before the

modulefile gets evaluated.
I We will be talking about a user requested load.
I A module requested load is slightly different.

Lmod | June. 7, 2022 | 2

Outline (II)

I main(): How main() parses the command line
I Load_Usr(): Starts working your modules to load
I l_usrLoad(): Splits modules to loads or unloads
I MName Class: Maps module name to a filename
I mcp: Object to control kind of evaluation
I MasterControl:load(mA): We are loading a modulefile
I Master:load(mA): Where the heavy lifting is done
I loadModuleFile(): Where the modulefile is actually

evaluated

Lmod | June. 7, 2022 | 3

main(): parsing command line

I main() is located in lmod.in.lua (installed as lmod)
I The command is: module load foo
I To parse Lmod uses the 2nd argument w/o a minus: load
I Lmod searches lmodCmdA to map string to command

Lmod | June. 7, 2022 | 4

A side note on Lmod Coding
Conventions

I A variable w/ a trailing “A” means that an array
I A variable w/ a trailing “T” means that an table (or dictionary)
I A variable w/ a trailing “Tbl” means that an table (or dictionary)
I A routine with a l_name is a local function (file scope)
I Class Name are in CamelCase

Lmod | June. 7, 2022 | 5

lmodCmdA

local lmodCmdA = {
{cmd = 'add', min = 2, action = loadTbl },
{cmd = 'avail', min = 2, action = availTbl },
{cmd = 'isloaded', min = 3, action = isLoadedTbl },
{cmd = 'is_loaded', min = 4, action = isLoadedTbl },
{cmd = 'is-loaded', min = 4, action = isLoadedTbl },
{cmd = 'load', min = 2, action = loadTbl },
...

}
local loadTbl = { name = "load", cmd = Load_Usr }

I So “load” matches “load” with more than 2 chars

Lmod | June. 7, 2022 | 6

Going from lmodCmdA to Load_Usr()

I Sets cmdT to loadTbl
I Sets cmdName to cmdT.name (forces standard name not user

command name)
I cmdT.cmd(unpack(masterTbl.pargs)) ⇒ Load_Usr

Lmod | June. 7, 2022 | 7

Calling Load_Usr()

I All functions implementing user commands are in
src/cmdfunc.lua

function Load_Try(...)
dbg.start{"Load_Try(",concatTbl({...},", "),")"}
local check_must_load = false
local argA = pack(...)
l_usrLoad(argA, check_must_load)
dbg.fini("Load_Try")

end

function Load_Usr(...)
dbg.start{"Load_Usr(",concatTbl({...},", "),")"}
local check_must_load = true
local argA = pack(...)
l_usrLoad(argA, check_must_load)
dbg.fini("Load_Usr")

end

Lmod | June. 7, 2022 | 8

l_usrLoad(argA, check_must_load)

I Split argA into loads in lA, unloads in uA (-foo)
I Both uA and lA are an array of MName objects.
I unload modules in uA
I lA[#lA+1] =

MName:new("load",module_name)
I mcp:load_usr(lA)
I src: src/cmdfunc.lua

Lmod | June. 7, 2022 | 9

MName class: Module Name class

I Maps name (“foo” or “foo/1.1”) to filename
I There are two kinds of searching “load” or “mt”
I Load: must search file system.
I mt: filename is in moduletable
I Evaluation must be lazy or just-in-time
I Software hierarchy means that
I module load gcc mpich
I mpich might not be in $MODULEPATH until after gcc is loaded
I src: src/MName.lua

Lmod | June. 7, 2022 | 10

MName key concepts

I userName: name on the command line
I It might be gcc or gcc/9.3.0
I sn: the shortName or a name without a version
I fullName: The full name of the module (sn/version)
I Examples:

1. gcc/9.3.0 (sn: gcc, N/V)
2. gcc/x86_64/9.3.0 (sn: gcc, N/V/V)
3. compiler/gcc/9.3.0 (sn: compiler/gcc, C/N/V)
4. compiler/gcc/x86_64/9.3.0 (sn: compiler/gcc, N/V/V)

Lmod | June. 7, 2022 | 11

mcp and MasterControl class

I MasterControl class is what controls whether a ”load” in a
modulefile is a load or unload

I mcp is a global variable that is built to be in a mode() like load,
unload, spider, etc.

I We talked about this in an earlier presentation.

Lmod | June. 7, 2022 | 12

MasterControl:load(mA)

function M.load(self, mA)
local master = Master:singleton()
local a = master:load(mA)

if (not quiet()) then
self:registerAdminMsg(mA) -- nag msg registration.

end
return a

end

I MasterControl functions call Master Functions to do the work.
I src: src/MasterControl.lua

Lmod | June. 7, 2022 | 13

Master:load(mA)
function M.load(mA)

for i = 1, #mA do
repeat

mname = mA[i]
sn = mname:sn() -- shortName
fn = mname:fn() -- file name
-- if blank sn -> pushModule (might have to wait until
-- compiler or mpi is loaded.
-- and break (really continue)

if (mt:have(sn,"active)) then
-- Block 1: Check for previously loaded module with same sn

elseif (fn) then
-- Block 2: Load modulefile

-- Check for family stack (e.g. compiler, mpi etc)
if (mcp.processFamilyStack(fullName)) then

-- Suppose gcc is loaded and it was "replaced" by intel
-- unload gcc and reload intel

end
until true

end

-- Reload every module if change in MODULEPATH.

-- load any modules on module stack
end

I This is where the heavy lifting is done.
I src: src/Master.lua

Lmod | June. 7, 2022 | 14

Block 1: Check for previous loaded
module w/same sn

if (mt:have(sn,"active)) then
-- if disable_same_name_autoswap -> error out
-- Otherwise: unload previous module
local mcp_old = mcp
local mcp = MCP
unload_internal{MName:new("mt",sn)}
mname:reset() -- force a new lazyEval
local status = mcp:load_usr{mname}
mcp = mcp_old

I Here we guarantee the right mcp
I Unload the old module
I Recursively mcp:load_usrmname

Lmod | June. 7, 2022 | 15

Block 2: Load modulefile

elseif (fn) then
frameStk:push(mname)
mt = frameStk:mt()
mt:add(mname,"pending")
local status = loadModuleFile{file = fn, shell = shellNm,

mList = mList, reportErr = true}
frameStk:pop()
loaded = true

end

Lmod | June. 7, 2022 | 16

loadModuleFile(t)

I This is where Lmod handle either *.lua files or TCL Modulefiles
I Once either read in as a block (for *.lua) or converted (TCL

modulefile ⇒ Lua)
I src: src/loadModulefile.lua

-- Use the sandbox to evaluate modulefile text.
if (whole) then

status, msg = sandbox_run(whole)
else

status = nil
msg = "Empty or non-existent file"

end
-- report any errors

Lmod | June. 7, 2022 | 17

Next time

I What is a sandbox and how does it work?
I Why I want a sandbox?
I Next time handing control to modulefile

Lmod | June. 7, 2022 | 18

Conclusions

I It takes a lot to get to the point where Lmod is evaluating your
modulefile.

I Lmod uses several “classes” to manage the loading of a module
I Plus a couple of Design Patterns such as Singletons

Lmod | June. 7, 2022 | 19

Future Topics

I Next Meeting: July 5th 9:30 US Central (14:30 UTC)
I What happens from the loadModulefile(t).
I This is where Lmod hands off control to the user.

Lmod | June. 7, 2022 | 20

