A3orouyos], PIqAH AIMIN
~ N\ A AN AAAAN NN ~AAAAAAAAAA~AANAAN
UV VYV VY Y U Y VY VY VY

AN AN~ ANAAAAAAAAAAAANAAANA AN
A e N el T T VA S R Vg i A V

AN ~NANAAANANANANAANAAANANN A
AV A VI A AT AV A A VIRV N anah YA T AV A WV
N~~~ "\ A—~A—AAANA N AN A
NV PNV VY NN Y NV N
VA S e A LA VAV A T A VA A VAL TS) VA e
N I VT P LdYYIN/ VN
AAAIA A~ AAAAA AN\ AN
WV IV LU L N\ NN N LN
PAANA ~ANA~NAAA~A AN AN A~
R VA WAVE AV A S g e i VA = VA T el SO L

Contents

Introduction

© 0 N0 01k Wi+

— =
- O

NN DN DNDN = H = = = = e
W= OO N Ok Wi

The language mix

Font Goodies

Grouping

The font name mess

The Bidi Dilemma

Deeply nested notes

Upto ConTgXt MkVI

Backend code

Callbacks

Building paragraphs

Tagged PDF

Including pages

Exporting XML

Optimizations again
Characters with special meanings
Weird examples

Glocal assignments

Handling math: A retrospective
Exporting math

E-books: Old wine in new bottles
Italic correction

Optical optimization

Updating the code base

Just in time

The team

17
33
45
55
59
69
75
83
93
99
115
121
131
141
155
159
165
173
191
205
213
221
247

263

Introduction

We're halfway the development of LuaTgX (mid 2009) and substantial parts
of CoNTgXt have been rewritten using a mixture of Lua and TigX. In another
document, “CoNTgXt MKII-MKIV, the history of LuaTgX 2006-2009”, we have
kept track of how both systems evolved so far!. Here we continue that story
which eventually will end with both systems being stable and more of less
complete in their basic features.

The title of this document needs some explanation, although the symbols on
the cover might give a clue already. In CoNTgXt MKIV, as it is now, we mix
several languages:

e good old TgX: here you will see {} all over the place

e fancy MetaPost: there we use quite some ()

e lean and mean Lua: both {} and () show up a lot there

e unreadable but handy xMmL: immediately recognizable by the use of <>

As we use all of them mixed, you can consider MkIV to be a hybrid system and
just as with hybrid cars, efficiency is part of the concept.

TX LUA
XML ﬂ ConTXt —-| PDF
MetaPost UTILITIES

In this graphic we've given Lua a somewhat different place than the other three
languages. First of all we have Lua inside TEX, which is kind of hidden, but at
the same time we can use Lua to provide whatever extra features we need, es-
pecially when we’ve reached the state where we can load libraries. In a similar
fashion we have utilities (now all written in Lua) that can manage your workflow
or aspects of a run (the mtxrun script plays a central role in this).

Parts of this have been published in usergroup magazines like the Maps, TucBoaT, and con-
ference proceedings of EUROTEX and TUG.

Introduction 3

The mentioned history document was (and still is) a rather good testcase for
LuaTEX and MKIV. We explore some new features and load a lot of fonts, some
really large. This document will also serve that purpose. This is one of the
reasons why we have turned on grid snapping (and occasionally some tracing).

Keeping track of the history of LuaTiX and MkIV in a document serves several
purposes. Of course it shows what has been done. It also serves as a reminder
of why it was done that way. As mentioned it serves as test, both in functionality
and performance, and as such it's always one of the first documents we run
after a change in the code. Most of all this document serves as an extension
to my limited memory. When I look at my source code I often can remember
when and why it was done that way at that time. However, writing it down
more explicitly helps me to remember more and might help users to get some
insight in the developments and decisions made.?

A couple of new features were added to LuaTgX in 2010 but the years 2011
and 2012 were mostly spent on fixing issues and reaching a stable state. In
parallel parts of ConNTEXT were rewritten using Lua and new possibilities have
been explored. Indeed LuaTgX had become pretty stable, especially because
we used it in production. There are still a lot of things on the agenda but
with LuaTEgX 0.75 we have reached yet another milestone: integration of Lua
5.2, exploration of LuaJIT, and the move forward to a version of MetaPost that
supports doubles as numeric type. Luigi Scarso and I also started the SwigLib
project that will make the use of external libraries more easy.

Of course, although I wrote most of the text, this document is as much a re-
flection of what Taco Hoekwater and Hartmut Henkel come up with, but all
errors you find here are definitely mine. Some chapters have been published
in TucBoar, the Maps and other usergroup journals. Some chapters have be-
come manuals, like the one on spreadsheets. I also owe thanks to the ConNTXT
community and those active on the mailing list: it's a real pleasure to see how
fast new features are picked up and how willing to test users are when new
betas show up.

Hans Hagen, Hasselt NL,
September 2009 — December 2012

http://www.luatex.org
http://www.pragma-ade.com

I read a lot and regret that I forget most of what I read so fast. I might as well forget what I
wrote so have some patience with me as I repeat myself occasionally.

4 Introduction

1 The language mix

During the third ConTEgXt conference that ran in parallel to EurdlgX 2009
in The Hague we had several sessions where MkIV was discussed and a few
upcoming features were demonstrated. The next sections summarize some
of that. It's hard to predict the future, especially because new possibilities
show up once LuaTiEX is opened up more, so remarks about the future are not
definitive.

1.1 TgX

From now on, if I refer to TgX in the perspective of LuaTgX I mean “Good Old
TEX”, the language as well as the functionality. Although LuaTgX provides
a couple of extensions it remains pretty close to compatible to its ancestor,
certainly from the perspective of the end user.

As most CoNTgXt users code their documents in the TgX language, this will
remain the focus of MkIV. After all, there is no real reason to abandon it.
However, although CoNTgXt already stimulates users to use structure where
possible and not to use low level TgX commands in the document source, we
will add a few more structural variants. For instance, we already introduced
\startchapter and \startitem in addition to \chapter and \item.

We even go further, by using key/value pairs for defining section titles, book-
marks, running headers, references, bookmarks and list entries at the start
of a chapter. And, as we carry around much more information in the (for TgX
so typical) auxiliary data files, we provide extensive control over rendering the
numbers of these elements when they are recalled (like in tables of contents).
So, if you really want to use different texts for all references to a chapter header,
it can be done:

\startchapter
[label=emcsquare,
title={About $e=mc"2$},
bookmark={einstein},
list={About $e=mc”2$ (Einstein)},
reference={$e=mc”"2%$}1]

. content ...

\stopchapter

The language mix 5

Under the hood, the MKIV code base is becoming quite a mix and once we have
a more clear picture of where we're heading, it might become even more of a
hybrid. Already for some time most of the font handling is done by Lua, and
a bit more logic and management might move to Lua as well. However, as we
want to be downward compatible we cannot go as far as we want (yet). This
might change as soon as more of the primitives have associated Lua functions.
Even then it will be a trade off: calling Lua takes some time and it might not
pay off at all.

Some of the more tricky components, like vertical spacing, grid snapping, bal-
ancing columns, etc. are already in the process of being Luafied and their hy-
brid form might turn into complete Lua driven solutions eventually. Again, the
compatibility issue forces us to follow a stepwise approach, but at the cost of
(quite some) extra development time. But whatever happens, the TgX input
language as well as machinery will be there.

1.2 MetaPost

I never regret integrating MetaPost support in CoNTgXT and a dream came
true when mpLIB became part of LuaTiEX. Apart from a few minor changes in
the way text integrates into MetaPost graphics the user interface in MkIV is
the same as in MKII. Insofar as Lua is involved, this is hidden from the user.
We use Lua for managing runs and conversion of the result to ppr. Currently
generating MetaPost code by Lua is limited to assisting in the typesetting of
chemical structure formulas which is now part of the core.

When defining graphics we use the MetaPost language and not some TiX-like
variant of it. Information can be passed to MetaPost using special macros
(like \MPcolor), but most relevant status information is passed automatically

anyway.

You should not be surprised if at some point we can request information from
TEX directly, because after all this information is accessible. Think of some-
thingw := texdimen(0) ; being expanded at the MetaPost end instead of w :=
\the\dimen® ; being passed to MetaPost from the TX end.

1.3 LUA

What will the user see of Lua? First of all he or she can use this scripting
language to generate content. But when making a format or by looking at the
statistics printed at the end of a run, it will be clear that Lua is used all over
the place.

6 The language mix

So how about Lua as a replacement for the TEX input language? Actually, it is
already possible to make such “CoNTgXt Lua Documents” using MkIV’s built
in functions. Each CoNTgXt command is also available as a Lua function.

\startluacode
context.bTABLE {
framecolor = "blue",
align= "middle",
style = "type",
offset=".5ex",
}
for i=1,10 do
context.bTR()
for i=1,20 do
local r= math.random(99)
if r < 50 then
context.bTD {
background = "color",
backgroundcolor = "blue"
}
context(context.white("%#21",r))
else
context.bTD()
context ("%s#21i",r)
end
context.eTD()
end
context.eTR()
end
context.eTABLE()
\stopluacode

Of course it helps if you know CoNTgXT a bit. For instance we can as well say:

if r < 50 then
context.bTD {

background = "color",
backgroundcolor = "blue",
foregroundcolor = "white",
}
else
context.bTD()
end

context ("%#21",r)

The language mix 7

context.eTD()

And, knowing Lua helps as well, since the following is more efficient:

\startluacode

local colored = {
background = "color",
backgroundcolor = "blue",
foregroundcolor = "white",

}

local basespec = {
framecolor = "blue",

align= "middle",
style = "type",
offset=".5ex",
}
local bTR, eTR context.bTR, context.eTR
local bTD, eTD context.bTD, context.eTD
context.bTABLE (basespec)
for i=1,10 do
bTR()
for i=1,20 do
local r= math.random(99)
bTD((r < 50 and colored) or nil)
context("%s#2i",r)
eTD()
end
eTR()
end
context.eTABLE()
\stopluacode

Since in practice the speedup is negligible and the memory footprint is about
the same, such optimization seldom make sense.

At some point this interface will be extended, for instance when we can use
TEX’s main (scanning, parsing and processing) loop as a so-called coroutine
and when we have opened up more of TigX’s internals. Of course, instead of
putting this in your TgX source, you can as well keep the code at the Lua end.

The script that manages a ConNTgXt run (also called context) will process files

with the cld suffix automatically. You can also force processing as Lua with
the flag --forcecld.® The mtxrun script also recognizes cld files and delegate

8 The language mix

Figure 1.1 The result of the shown
Lua code.

the call to the context script.
context yourfile.cld

But will this replace TgX as an input language? This is quite unlikely because
coding documents in TgX is so convenient and there is not much to gain here.
Of course in a pure Lua based workflow (for instance publishing information
from databases) it would be nice to code in Lua, but even then it's mostly
syntactic sugar, as TgX has to do the job anyway. However, eventually we will
have a quite mature Lua counterpart.

1.4 XML

This is not so much a programming language but more a method of tagging
your document content (or data). As structure is rather dominant in xmr, it is
quite handy for situations where we need different output formats and multiple
tools need to process the same data. It's also a standard, although this does
not mean that all documents you see are properly structured. This in turn
means that we need some manipulative power in CoNTgXT, and that happens
to be easier to do in MkIV than in MKII.

In CoNTgXT we have been supporting xmL for a long time, and in MkIV we made
the switch from stream based to tree based processing. The current implemen-
tation is mostly driven by what has been possible so far but as LuaTigX becomes
more mature, bits and pieces will be reimplemented (or at least cleaned up and
brought up to date with developments in LUATEX).

One could argue that it makes more sense to use xsLt for converting xmL into
something TgX, but in most of the cases that I have to deal with much effort
goes into mapping structure onto a given layout specification. Adding a bit of
xML to TgX mapping to that directly is quite convenient. The total amount of
code is probably smaller and it saves a processing step.

3 Similar methods exist for processing xmL files.

The language mix 9

We’re mostly dealing with education-related documents and these tend to have
a more complex structure than the final typeset result shows. Also, readability
of code is not served with such a split as most mappings look messy anyway
(or evolve that way) due to the way the content is organized or elements get
abused.

There is a dedicated manual for dealing with xmL in MkIV, so we only show a
simple example here. The documents to be processed are loaded in memory
and serialized using setups that are associated to elements. We keep track of
documents and nodes in a way that permits multipass data handling (rather
usual in TgX). Say that we have a document that contains questions. The
following definitions will flush the (root element) questions:

\startxmlsetups xml:mysetups
\xmlsetsetup{#1}{questions}{xml:questions}
\stopxmlsetups
\xmlregistersetup{xml:mysetups}
\startxmlsetups xml:questions
\xmlflush{#1}
\stopxmlsetups
\xmlprocessfile{main}{somefile.xml1}{}
Here the #1 represents the current xmL element. Of course we need more as-
sociations in order to get something meaningful. If we just serialize then we
have mappings like:

\xmlsetsetup{#1}{question|answer}{xml:*}

So, questions and answers are mapped onto their own setup which flushes
them, probably with some numbering done at the spot.

In this mechanism Lua is sort of invisible but quite busy as it is responsible
for loading, filtering, accessing and serializing the tree. In this case TigX and
Lua hand over control in rapid succession.

You can hook in your own functions, like:

\xmlfilter{#1}{(wording|feedback]|choice)/function(cleanup)}

In this case the function cleanup is applied to elements with names that match

10 The language mix

one of the three given.*

Of course, once you start mixing in Lua in this way, you need to know how we
deal with xmL at the Lua end. The following function show how we calculate
scores:

\startluacode
function xml.functions.totalscore(root)
local n =0
for e in xml.collected(root,"/outcome") do
if xml.filter(e,"action[text()="'add']") then
local m = xml.filter(e,"xml:///score/text()")
n =n + (tonumber(m or 0) or 0)
end
end
tex.write(n)
end
\stopluacode

You can either use such a function in a filter or just use it as a TigX macro:

\startxmlsetups xml:question
\blank
\xmlfirst{#1}{wording}
\startitemize
\xmlfilter{#1}{/answer/choice/command(xml:answer:choice)}
\stopitemize
\endgraf
score: \xmlfunction{#1}{totalscore}
\blank
\stopxmlsetups

\startxmlsetups xml:answer:choice
\startitem
\xmUflush{#1}
\stopitem
\stopxmlsetups

The filter variant is like this:

This example is inspired by one of our projects where the cleanup involves sanitizing (highly
invalid) HTML data that is embedded as a CDATA stream, a trick to prevent the xmL file to be
invalid.

The language mix 11

\xmlfilter{#1}{./function('totalscore')}

So you can take your choice and make your source look more xMmL-ish, Lua-like
or TgX-wise. A careful reader might have noticed the peculiar xml:// in the
function code. When used inside MKIV, the serializer defaults to TgX so results
are piped back into TgX. This prefix forced the regular serializer which keeps
the result at the Lua end.

Currently some of the xMmL related modules, like MATHML and handling of ta-
bles, are really a mix of TigX code and Lua calls, but it makes sense to move
them completely to Lua. One reason is that their input (formulas and table
content) is restricted to non-TgX anyway. On the other hand, in order to be
able to share the implementation with TgX input, it also makes sense to stick
to some hybrid approach. In any case, more of the calculations and logic will
move to Lua, while TEX will deal with the content.

A somewhat strange animal here is xsL-Fo. We do support it, but the MKII
implementation was always somewhat limited and the code was quite complex.
So, this needs a proper rewrite in MkIV, which will happen indeed. It's mostly a
nice exercise of hybrid technology but until now I never really needed it. Other
bits and pieces of the current xmL goodies might also get an upgrade.

There is already a bunch of functions and macros to filter and manipulate xmL
content and currently the code involved is being cleaned up. What direction
we go also depends on users’ demands. So, with respect to XML you can expect

more support, a better integration and an upgrade of some supported xmL
related standards.

1.5 Tools

Some of the tools that ship with ConTEXT are also examples of hybrid usage.
Take this:

mtxrun --script server --auto

On my machine this reports:

MTXrun | running at port: 31415

MTXrun | document root: c:/data/develop/context/lua

MTXrun | main index file: unknown

MTXrun | scripts subpath: c:/data/develop/context/Llua

MTXrun | context services: http://localhost:31415/mtx-server-ctx-startup.lua

12 The language mix

The mtxrun script is a Lua script that acts as a controller for other scripts, in
this case mtx-server.lua that is part of the regular distribution. As we use
LuaTgX as a Lua interpreter and since LuaTigX has a socket library built in, it
can act as a web server, limited but quite right for our purpose.®

The web page that pops up when you enter the given address lets you currently
choose between the CoNTEXT help system and a font testing tool. In figure 1.2
you seen an example of what the font testing tool does.

ConTeXt Font Tester: Zapfino Extra LT Pro (zapfinoextraltpro.otf)

Figure 1.2 An example of using the font tester.

Here we have LuaTgX running a simple web server but it’s not aware of having
TigX on board. When you click on one of the buttons at the bottom of the screen,
the server will load and execute a script related to the request and in this case
that script will create a TgX file and call LuaTEX with CoNTgXT to process that
file. The result is piped back to the browser.

You can use this tool to investigate fonts (their bad and good habits) as well as
to test the currently available OpPENTYPE functionality in MkIV (bugs as well as
goodies).

So again we have a hybrid usage although in this case the user is not confronted
with Lua and/or TgX at all. The same is true for the other goodie, shown
in figure 1.3. Actually, such a goodie has always been part of the CoNTEXT

5 This application is not intentional but just a side effect.

The language mix 13

distribution but it has been rewritten in Lua.

french

german

italian

persian

romanian

source: core-rul.tex mode: lua mode

Figure 1.3 An example of a help screen for a command.

The CoNTgXrt user interface is defined in an xmL file, and this file is used for sev-
eral purposes: initializing the user interfaces at format generation time, type-
setting the formal command references (for all relevant interface languages),
for the wiki, and for the mentioned help goodie.

Using the mix of languages permits us to provide convenient processing of
documents that otherwise would demand more from the user than it does now.
For instance, imagine that we want to process a series of documents in the so-
called Epub format. Such a document is a zipped file that has a description
and resources. As the content of this archive is prescribed it's quite easy to
process it:

context --ctx=x-epub.ctx yourfile.epub

This is equivalent to:

texlua mtxrun.lua --script context --ctx=x-epub.ctx yourfile.epub

So, here we have LuaTgX running a script that itself (locates and) runs a script
context. That script loads a CoNTgXrt job description file (with suffix ctx). This

file tells what styles to load and might have additional directives but none of
that has to bother the end user. In the automatically loaded style we take care

14 The language mix

of reading the xmL files from the zipped file and eventually map the embedded
HTML like files onto style elements and produce a ppr file. So, we have Lua
managing a run and MkIV managing with help of Lua reading from zip files and
converting xmL into something that TgX is happy with. As there is no standard
with respect to the content itself, i.e. the rendering is driven by whatever kind
of structure is used and whatever the css file is able to map it onto, in practice
we need an additional style for this class of documents. But anyway it's a good
example of integration.

1.6 The future

Apart from these language related issues, what more is on the agenda? To
mention a few integration related thoughts:

e At some point I want to explore the possibility to limit processing to just
one run, for instance by doing trial runs without outputting anything but
still collecting multipass information. This might save some runtime in
demanding workflows especially when we keep extensive font loading and
image handling in mind.

e Related to this is the ability to run MkIV as a service but that demands
that we can reset the state of LuaTiEX and actually it might not be worth
the trouble at all given faster processors and disks. Also, it might not save
much runtime on larger jobs.

e More interesting can be to continue experimenting with isolating parts of
CoNTgXrt in such a way that one can construct a specialized subset of func-
tionality. Of course the main body of code will always be loaded as one
needs basic typesetting anyway.

Of course we keep improving existing mechanisms and improve solutions using
a mix of TgX and Lua, using each language (and system) for what it can do best.

The language mix 15

16 The language mix

2 Font Goodies

2.1 Introduction

The Oriental TgX project is one of the first and more ambitious users of LUATEX.
A major undertaking in this project is the making of a rather full features
and complex font for typesetting Arabic. As the following text will show some
Arabic, you might get the impression that I'm an expert but be warned that
I'm far from that. But as Idris compensates this quite well the team has a lot
of fun in figuring out how to achieve our goals using OpPENTYPE technology in
combination with LuaTgX and MKIV. A nice side effect of this is that we end up
with some neat tricks in the CoNTEXT core.

Before we come to some of these goodies, an example of Arabic is given that
relates quite well to the project. It was first used at the eurdligX 2009 meeting.
Take the following 6 shapes:

JJ\QL“g'
1T w a t 1 kh

With these we can make the name LuaTgX and as we use a nice script we can
forget about the lowered E. Putting these characters in sequence is not enough
as Arabic typesetting has to mimick the subtle aspects of scribes.

In Latin scripts we have mostly one-to-one and many-to-one substitutions. Th-
ese can happen in sequence which in in practice boils down to multiple passes
over the stream of characters. In this process sometimes surrounding char-
acters (or shapes) play a role, for instance ligatures are not always wanted
and their coming into existence might depend on neighbouring characters. In
some cases glyphs have to be (re)positioned relative to each other. While in
Latin scripts the number of substitutions and positioning is not that large but
in advanced Arabic fonts it can be pretty extensive.

With OpeNTYPE we have some machinery available, so we try to put as much
logic in the font as possible. However, in addition we have some dedicated
optimizing routines. The whole process is split into a couple if stages.

The so called First-Order Analysis puts a given character into isolated, initial,
middle, or final state. Next, the Second-Order Analysis looks at the charac-
ters and relates this state to what characters precede or succeed it. Based on
that state we do character substitutions. There can be multiple analysis and

Font Goodies 17

replacements in sequence. We can do some simple aesthetic stretching and
additional related replacements. We need to attach identity marks and vowels
in proper but nice looking places. In most cases we're then done. Contrary to
other fonts we don’t use many ligatures but compose characters.

The previous steps already give reasonable results and implementing it also
nicely went along with the development of LuaTgX and CoNTgXT MKIV. Cur-
rently we're working on extending and perfecting the font to support what
we call Third-Order Contextual Analysis. This boils down to an interplay be-
tween the paragraph builder and additional font features. In order to get pleas-
ing spacing we apply further substitutions, this time with wider or narrower
shapes. When this is done we need to reattach identity marks and vowels.
Optionally we can apply Hz like stretching as a finishing touch but so far we
didn’t follow that route yet.

So, let’'s see how we can typeset the word LuaTgX in Arabic using some of these
techniques.

"

2
no order (khitaw [u]]) CL;Q\)J

A2

first order C:s \‘}5
A2

second order c:.} \jj
w 2

second order (Jiim-stacking) é \jj
w 2

minimal stretching .é) \jJ
A2

maximal stretching (level 3) .é) ‘ g 5

18 Font Goodies

w 2
chopped letter khaa (for e.g. underlining) ﬁ’ \‘)j

As said, this font is quite complex in the sense that it has many features and
associated lookups. In addition to the usual features we have stylistic and jus-
tification variants. As these are not standardized (after all, each font can have
its own look and feel and associated treatments) we store some information in
the goodies files that ship with this font.

feature meaning
js01 Raawide
js02 Yaawide
js03 Kaafwide

js04 Nuunwide
js05 Kaafwide Nuunwide Siinwide Baawide
js06 final Haa wide

js07 thin Miim

js08 short Miim

js09 wide Siin

js10 thuluth-style initial Haa, final Miim, MRw mf
jsll level-1 stretching

js12 level-2 stretching

js13 level-3 stretching

jsl4a final Alif

js15 hooked final Alif

jsl6 aesthetic medial Faa/Qaaf

jsl7 fancy isol Haa after Daal, Raa, and Waaw

js18 Laamwide, alternate substitution

js19 level-4 stretching, only siin and Hhaa for basmalah
js20 level-5 stretching, only siin and Hhaa for basmalah

js21 Haa.final alt2
ss01 Allah, Muhammad
$s02 ss01 + Allah final

ss03 level-1 stack over Jiim, initial entry only

ss04 level-1 stack over Jiim, initial/medial entry

ss05 multi-level Jiim stacking, initial/medial entry

ss06 aesthetic Faa/Qaaf for FJ mm, FJ mf connection

ss07 initial-entry stacking over Haa

5508 initial/medial stacking over Haa, minus HM mf strings
ss09 initial/medial Haa stacking plus HM mf strings

5510 basic dipped Miim, initial-entry B S-stack over Miim

ssll full dipped Miim, initial-entry B S-stack over Miim

Font Goodies 19

ssl2
ssl3
ssl4
ssl5
ss16
ssl7
5518
ss19
5520
ss21
5522
ss23
ss24
ss25
Ss26
ss27
ss28
ss29
ss30
ss31
ss32
ss33
ss34
ss35
ss36
ss37
5538
ss39
ss40
ss41l
5542
ss43
ss44
ss45
ss46
ss47
ss48
ss49
ss50
ss51
5552
ss53
ss54
ss55

XBM im initial-medial entry B S-stack over Miim
full initial-medial entry B S-stacked Miim
initial entry, stacked Laam on Miim

full stacked Laam-on-Miim

initial entry, stacked Ayn-on-Miim

full stacked Ayn-on-Miim

LMJ im already contained in ss03--05, may remove
LM im

KLM m, sloped Miim

KLM i mm/LM mm, sloped Miim

filled sloped Miim

LM mm, non-sloped Miim

BR i mf, BN i mf

basic LH im might merge with ss24

full Yaa.final special strings: BY if, BY mf, LY mf
basic thin Miim.final

full thin Miim.final to be moved to jsnn
basic short Miim.final

full short Miim.final to be moved to jsnn
basic Raa.final strings: JR and SR

basic Raa.final strings: JR, SR, and BR
TtR to be moved to jsnn

AyR style also available in jsnn

full Kaaf contexts

full Laam contexts

Miim-Miim contexts

basic dipped Haa, B SH mm

full dipped Haa, B.S LH i mm Mf

aesthetic dipped medial Haa

high and low Baa strings

diagonal entry

initial alternates

hooked final alif

BMA f

BM mm alt, for JBM combinations
Shaddah-<kasrah> combo

Auto-sukuun

No vowels

Shaddah/MaaddahHamzah only

No Skuun

No Waslah

No Waslah

chopped finals

idgham-tanwin

20 Font Goodies

It is highly unlikely that a user will remember all these features, which is why
there will be a bunch of predefined combinations. These are internalized as

follows:

featureset
default

maximal stretching

medium stretching

minimal stretching

definitions

analyze=true anum=true calt=true ccmp=true
curs=true fina=true init=true jsl6=true
kern=true language=dflt mark=true medi=true
mkmk=true mode=node number=108 rlig=true
salt=true script=arab ssOQl=true ss03=true
ss@7=true ssl@=true ssl2=true ssl5=true
sslo=true ssl19=true ss24=true ss25=true
ss26=true ss27=true ss3l=true ss34=true
ss35=true ss36=true ss37=true ss38=true
ssd4l=true ss42=true ss43=true ss55=true
analyze=true anum=true calt=true ccmp=true
curs=true fina=true init=true js05=true
js09=true jsl3=true jsl6=true kern=true
language=dflt mark=true medi=true mkmk=true
mode=node number=112 rlig=true salt=true
script=arab ss0l=true ss03=true ss@7=true
sslO=true ssl2=true ssl5=true ssl6=true
ssl9=true ss24=true ss25=true ss26=true
ss27=true ss3l=true ss34=true ss35=true
ss3b=true ss37=true ss38=true ss4l=true
ssd42=true ss43=true ss55=true

analyze=true anum=true calt=true ccmp=true
curs=true fina=true init=true js05=true
jsl2=true jsl6=true kern=true language=dflt
mark=true medi=true mkmk=true mode=node
number=113 rlig=true salt=true script=arab
ssOl=true ss03=true ssO7=true sslO=true
ssl2=true ssl5=true ssl6=true ssl9=true
ss24=true ss25=true ss26=true ss27=true
ss31l=true ss34=true ss35=true ss36=true
ss37=true ss38=true ss4l=true ss42=true
ss43=true ss55=true

analyze=true anum=true calt=true ccmp=true
curs=true fina=true init=true js03=true
jsll=true jsl6=true kern=true language=dflt
mark=true medi=true mkmk=true mode=node
number=110 rlig=true salt=true script=arab
ssOl=true ss03=true ssO7=true sslO=true
ssl2=true ssl5=true ssl6=true ssl9=true

Font Goodies

21

ss24=true ss25=true ss26=true ss27=true
ss31l=true ss34=true ss35=true ss36=true
ss37=true ss38=true ss4l=true ss42=true
ss43=true ss55=true

shrink analyze=true anum=true calt=true ccmp=true
curs=true fina=true flts=true init=true
jsle=true jsl7=true kern=true language=dflt
mark=true medi=true mkmk=true mode=node
number=111 rlig=true salt=true script=arab
ssOl=true ss03=true ss05=true ss06=true
ss@7=true ss09=true sslO=true ssll=true
ssl2=true ssl5=true ssl6=true ssl9=true
ss24=true ss25=true ss26=true ss27=true
ss3l=true ss34=true ss35=true ss36=true
ss37=true ss38=true ssd4l=true ss42=true
ss43=true ss55=true

wide all analyze=true anum=true calt=true ccmp=true
curs=true fina=true init=true js05=true
js09=true jsll=true jsl2=true jsl3=true
jslée=true kern=true 1language=dflt mark=true
medi=true mkmk=true mode=node number=109
rlig=true salt=true script=arab ss0l=true
ssO03=true ssO7=true sslO=true ssl2=true
sslb=true ssl6=true ss19=true ss24=true
ss25=true ss26=true ss27=true ss3l=true
ss34=true ss35=true ss36=true ss37=true
ss38=true ssd4l=true ss42=true ss43=true
ss55=true

2.2 Color

One of the objectives of the oriental TigX project is to bring color to typeset
Arabic. When Idris started making samples with much manual intervention it
was about time to figure out if it could be supported by a bit of Lua code.

As the colorization concerns classes of glyphs (like vowels) this is something
that can best be done after all esthetics have been sorted out. Because things
like coloring are not part of font technology and because we don’t want to mis-
use the OpPENTYPE feature mechanisms for that, the solution lays in an extra
file that describes these goodies.

2