
Flow – a program to generate flowcharts in the LATEX

picture environment

Terry Brown

November 25, 1992 — September 22, 2005

Summary

Flow is a small program which parses the flowchart description explained in this document
and translates it to the LATEX picture environment.

Flow acts as a filter, so a typical execution would be...

flow <myprog.flo >myprog.pic

...where myprog.flo is a plain text file containing a description of a flowchart, and myprog.pic
will be a plain text file containing the body of a LATEX picture environment to draw the
flowchart. Alternatively

flow inputFile or flow inputFile outputFile

may be used. VMS users see notes at end.

myprog.pic could either be inserted into a picture environment in a LATEX file with a text
editor, or pulled in by the \input command as LATEX is run.

System requirements

Nothing in particular. Flow is in very plain C and should be portable to pretty much anything
without alteration. Check beginning of file for defines if it gives trouble.

Distribution and Bug Reports

Flow is free software covered by the GPL. See the file COPYING for details. Email to
terry_n_brown@yahoo.com with bug reports etc.

1

Flowchart description syntax

[indented text] indicates the command accepts zero or more line of text, these lines are
identified by indentation. All lines after the command starting with either a space or a tab
are assumed to be text for that command. The first line not starting with one of these
characters is assumed to be the next command. Distributed code / executeables are case
insensitive, but local compilations may vary.

The flowchart is always “going” either up, down, left or right. The initial direction is down.

The flowchart description file is terminated either by an invalid command, a blank line, or
the end of the file. Keywords are case sensitive.

The output from flow will appear inside a LATEX picture environment. The positioning of the
picture can be adjusted with the second pair as usual for the picture environment.

\unitlength should be set for use with the picture environment, all the examples in this
document use 2em (ie. put \setlength{\unitlength}{2em} at the top of the LATEX file).
Smaller values make the boxes tighter around the text, larger values make them more open.

The commands

% comment to end of line

If the first thing on a line is a ’%’ symbol the line is treated as a comment. Thanks to Joost
Bruynooghe for adding this command.

Box [x y]
[indented text]

Draws a text at the current position, including a line or arrow leading to it if appropriate. If
x and y are specified, the size of the box (in \unitlengths), and all subsequent boxes, is set
to these. The default size of a box is 4 by 2 \unitlengths.

Right

Box

This is

the first

box.

Box 8 1

And this is the second

This is
the first

box.
- And this is the second

2

Oval [x y]
[indented text]

Tilt [x y]
[indented text]

Text [x y]
[indented text]

Oval, Tilt and Text are identical to Box, except for the shape of the frame. (Text is an
invisible frame.)

Right

Oval

This is

an Oval

Tilt

And this

is a

Tilt

Text

And this

is a

Text'
&

$
%

This is
an Oval

-
And this

is a
Tilt

�
�
�
��

�
�
�
��

-
And this

is a
Text

Choice A B C D [x y]
[indented text]

Draws a choice diamond, with the corners labeled as illustrated by the left diamond in the
example. Periods (.) are not printed. The optional x an y parameters alter the size of the
choice. The default size is 4 by 4 \unitlenghs. Flow will report an error for non-square
choice boxes whose aspect ratio doesn’t match one of the line slopes supported by LATEX (-6
– 6 : -6 – 6, integers only).

Right

Choice A B C D

Label

any

corner

Choice Yes . No .

Normally

only two.

3

�
�

�
��

@
@

@
@@

�
�

�
��

@
@

@
@@

Label
any

corner

A

B C

D

-�
�

�
��

@
@

@
@@

�
�

�
��

@
@

@
@@

Normally
only two.

Yes

No

SetTrack none | arrow | line

Use arrows, lines, or nothing for drawing connections between boxes.

TxtPos P1 P2 [B [A]]

P1 is the LATEX position specification (eg. [c] or [l]) for the lines of text that makes up the
blocks of text in the boxes, P2 is the LATEX position specification for the whole block of text
within the box. B is the string (no white space) to be placed before each line of text, A is the
string to be placed after each line of text. The example shows the use of B to keep text off
the edge of the box.

Right

SetTrack arrow

TxtPos [l] [l]

Box 3.5 2

Needs some

space on the

left

TxtPos [l] [l] ~

Box

Left justified

text with

space

SetTrack line

TxtPos [c] [c]

Box

Centred

Text

SetTrack none

TxtPos [r] [r] ~ \hspace*{1ex}

Box

Right justified

Text

Needs some
space on the
left

-
Left justified
text with
space

Centred
Text

Right justified
Text

4

Tag

ToTag

Tag stores the location and size of the last object drawn on a stack, ToTag returns to that
position (removing the item from the stack). This is particularly useful with Choices, allow-
ing a second chain to be built from the diamond, but it can be used with any other item.
Flow will complain if it encounters more ToTags the Tags, but won’t mention Tags left on
the stack when it finishes.

Right 0

Choice . . N Y

Ready to

stop?

Tag

Choice . . Right Down

Go right

or Down?

Tag

Right 1

Box

To the

right

ToTag

Down

Box

Down here

ToTag

Down

Oval

STOP

-�
�

�
��

@
@

@
@@

�
�

�
��

@
@

@
@@

Ready to
stop?

N

Y

-�
�

�
��

@
@

@
@@

�
�

�
��

@
@

@
@@

Go right
or Down?

Right

Down

- To the
right

?

Down here

?'
&

$
%STOP

5

Up [d [*]]
Down [d [*]]
Left [d [*]]
Right [d [*]]

With or without the optional parameter, these command change the current direction of the
flowchart. With the optional parameter, they draw a line, if SetTrack is line or arrow, or
leave a gap, if SetTrack in none. The length of the line (or gap) is d. By default Boxes,
Ovals, Tilts and Texts are 4 units wide and 2 units high. A Choice is 4 by 4 units. The
arrows that connect things together are 1 unit. So a box drawn while the current direction
is down would occupy 2 + 1 = 3 vertical units.

To force the line to end in a arrow head, use the “*”, which must be separated from the “d”
by a space.

Right 1

Box

Flowing

along.

Right 1

Tag

Down 2

Left 6

Up 2 *

ToTag

Right 3

Down

Oval

STOP

- Flowing
along.6

?'
&

$
%STOP

Scale x y

Scale the next item by the specified values

Right

Oval

Normal

Oval

Scale 2 1

Box

A smaller oval is a better stop

Scale 0.5 0.5

6

Oval

STOP'
&

$
%

Normal
Oval

- A smaller oval is a better stop -
�� ��STOP

Skip x0 y0 x1 x1

x0 Horizontal separation between boxes, default 1 \unitlength
y0 Vertical separation between boxes, default 1 \unitlength
x1 Multiplier for Left and Right commands, default 1
y1 Multiplier for Up and Down commands, default 1

Skip 0 0 1 1

SetTrack none

Box

After this

Box

Box

Is another

with no

gap

SetTrack arrow

Right 5

Up 1 *

Left 1 *

Down 1 *

Right 1 *

Skip 0 0 3 3

Up 1 *

Left 1 *

Down 1 *

Right 1 *

After this
Box

Is another
with no

gap

6
�

?-

6
�

? -

7

VMS notes

I don’t know much VMS, but this is one way of getting it to work. Compile and link as
normal, then

flow :== $ 1DIA3: [brownt1.usr.flow]flow.exe

where the bit in the box is the name of the drive you’re working on, and [brownt1.usr.flow]
is the appropriate path. Then use the

flow infile outfile

form, as the redirection form doesn’t seem to work.

8

An example

The instructions that generated this flow chart are included in a commented section in
flowdoc.tex. Note the block of text is part of the picture environment (a Text).

Initialise
st

?�
�

�
�Begin

RootParse

?

Initialise
A & B

?
Call client

with A, B & st

?

�
�

�

@
@

@

�
�

�

@
@

@

Is B a
New-Root

Node?

Y

N

?

�
�

�

@
@

@

�
�

�

@
@

@

Is B a
Fungi

Node?

Y

N

?

�
�

�

@
@

@

�
�

�

@
@

@

Is B the
Current-End

Node?

N

Y

?�
�

�
�Return

6

Update

direction
data in st

6

A = B
B = B.next

-

- Adjust fungi

values in st

�

- Increment
st order

- Recursively

call RootParse
�
�
�

�
�
�- Decrement

st order

�

A and B are the node records at the
start and end of the internode being

processed. ‘st’ is a record containing

information about the current fungal

population, position in 3-space, root

order etc. It is cloned during the

recursive descent.

9

