
A gallery of dtx files

Will Robertson

August 6, 2007

1 Introduction

This work is a collection of files that demonstrate simple things that are possible
with the flexible and under-appreciated docstrip file format. It is intended
as a companion to Scott Pakin’s excellent and influential ‘dtxtut’ example of
producing LaTeX packages in this way.

2 Files in the gallery

The dtx examples in this gallery are listed below in approximate order of both
relevance and complexity.

single-source.dtx
This is an example of both the .sty and .ins files being extracted from the
.dtx file. This allows maintenance of a single source file but still produces a
‘standard-behaviour’ dtx/ins pair for upload to ctan.

conditional-code.dtx
This example shows conditional extraction of code into multiple files, al-
lowing the easy generation of ‘debug’ versions of package, for example.

rearrange.dtx
This example demonstrates how source code may be written and docu-
mented in a different logical order than in which it is required to execute.

This can be useful, for example, when default values are provided at the
last stage of the package loading, but you wish to describe them first in the
main body of the (non-technical) documentation.

dtxgallery.dtx
This very document is an example of a dtx file that is itself the compi-
lation of multiple, external, dtx files. It is useful for generating a single
documentation file for a large software collection (e.g., the Latex sources
themselves).

1



3 How to use this gallery

It will be clearest to now stop reading this document and take a look at the
individual dtx files (and their compiled pdf files) mentioned above. The rest of
this file contains a compilation of the dtx files in the gallery, which is an example
in itself. Read about it later on in File IV on page 6.

4 Interlude: eliminating guards

While I’m in a position to comment on some things, I may as well put in a few
tips that I use when writing dtx files.

‘Guards’ are what delimit code sections in dtx files. Many packages will have
no need for anything fancy in this regard, and it will be quite common to see
things like:

% ...
% \begin{macrocode}
%<*package>
〈The entire, commented, package code〉
%</package>
% \end{macrocode}
% ...

with other guards used to section off things like the driver code in the beginning
and possibly other bits and pieces. In such cases, it is not necessary to include
the guards in the typeset documentation (if we’re trying to make things as simple
as possible for the reader), so I like to write instead:

% ...
% \iffalse
%<*package>
% \fi
% \begin{macrocode}
〈The entire, commented, package code〉
% \end{macrocode}
% \iffalse
%</package>
% \fi
% ...

This is also useful when logical part/section markup is used to separate the files
in the dtx anyway.

2



file i — extracting the ins file from the dtx

5 The documented source code

1 〈∗package〉
2 \NeedsTeXFormat{LaTeX2e}
3 \ProvidesPackage{single-source}[2005/07/15 v0.1 dtx: single-source]
4 \def\mymacro{hello :)}
5 〈/package〉

6 The contents of single-source.sty

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{single-source}[2005/07/15 v0.1 dtx: single-source]
\def\mymacro{hello :)}

7 The contents of single-source.ins

\input docstrip.tex
\keepsilent\askforoverwritefalse
\nopreamble\nopostamble
\generate{\file{\jobname.sty}{\from{\jobname.dtx}{package}

\from{\jobname.dtx}{defaults}}}
\endbatchfile

8 The contents of single-source-readme.txt

-----------------
single-source.dtx

This is an example of everything
being extracted from the .dtx file.
-----------------

3



file ii — conditionally extracting code

9 Conditional inclusion of code

From previous examples the %<*guard>. . . %</guard> syntax should be a little
familiar. This example demonstrates conditional extraction of such elements in
the source document into multiple files. This technique makes it easy, say, to
maintain a ‘debug’ version of a package without polluting the public source with
code for testing.

1 〈A〉 code in ‘A’
2 〈B〉 code in ‘B’
3 〈!A〉 code not in ‘A’
4 〈!B〉 code not in ‘B’
5 〈A & B〉 code in ‘A’ and ‘B’
6 〈A | B〉 code in ‘A’ or ‘B’
7 〈(A | B)&!(A & B)〉 code in ‘A’ xor ‘B’

Note the change in the typeset source when guards are nested:
(this is equivalent to %<A&B>)

8 〈∗A〉
9 〈B〉 ‘B’ nested inside ‘A’

10 〈/A〉

10 Verbatim files that are produced

10.1 Generated from ‘A’

code in ‘A’
code not in ‘B’
code in ‘A’ or ‘B’
code in ‘A’ xor ‘B’

10.2 Generated from ‘B’

code in ‘B’
code not in ‘A’
code in ‘A’ or ‘B’
code in ‘A’ xor ‘B’

10.3 Generated from ‘A’ and ‘B’

code in ‘A’
code in ‘B’
code in ‘A’ and ‘B’
code in ‘A’ or ‘B’
‘B’ nested inside ‘A’

4



file iii — rearranging the code from logical to linear

11 Example of re-arranging docstrip source

This is a test to show it’s working: \test→ “1”

12 Documented code

This is ‘defaults’ code that the user might want to see:
1 〈∗defaults〉
2 \mytest{1}
3 〈/defaults〉

And this is the internal code that the user doesn’t care so much about:
4 〈∗package〉
5 \ProvidesPackage{rearrange}[2005/07/15 v0.1 docstrip: rearranging]
6 \def\mytest#1{\def\test{‘‘#1’’}}
7 〈/package〉

13 Verbatim files that are produced

13.1 rearrange.sty

\ProvidesPackage{rearrange}[2005/07/15 v0.1 docstrip: rearranging]
\def\mytest#1{\def\test{‘‘#1’’}}
\mytest{1}

13.2 rearrange.ins

\input docstrip.tex
\keepsilent\askforoverwritefalse
\nopreamble\nopostamble
\generate{\file{\jobname.sty}{\from{\jobname.dtx}{package}

\from{\jobname.dtx}{defaults}}}
\endbatchfile

5



file iv — the dtx gallery

This very file, dtxgallery.dtx, is an example of a dtx file that contains no code
of its own but which loads other dtx files.

Note that code could be included in this file like any other dtx file and typeset
along with the following examples, but I’ve chosen to strip this particular dtx file
as far back as possible simply to demonstrate that I can. Therefore, it generates
no files, and provides no code. It simply documents other dtx files.

Note that this file draws into relief the difference between the two locations
that ‘documentation sources’ can be placed in a dtx file:

example.dtx
% \iffalse
% ...
%<*driver>
\documentclass{ltxdoc}
...
\begin{document}
〈Documentation source — specific〉
\DocInput{example.dtx}

\end{document}
%</driver>
% \fi
% 〈Documentation source — general〉
% ...

The ‘specific’ documentation source is used when compiling only that dtx

file, whereas only the ‘general’ documentation source appears when input via
\DocInclude. In the case of a compilation of dtx files (which is what the docu-
ment you’re reading demonstrates), \DocInclude is referring to the hypothetical
example.dtx in a completely different file, so the specific part of the code is
invisible.

Therefore, it is a good idea to define formatting and document metadata (such
as \title and \maketitle) in the ‘specific’ location, and include only the body
of the documentation in the ‘general’ area.

This file is an example of how formatting code in the ‘specific’ area here
changes the fonts and layout used only in the dtx gallery itself.

6


