Type: | Package |
Title: | Data and Functions for Web-Based Analysis |
Version: | 0.1.5 |
Imports: | moonBook, ggplot2, shiny, stringr, sjlabelled, flextable, magrittr, rrtable, dplyr, tibble, purrr, rlang, tidyr, tidyselect, psych, grid, ztable, ggforce, scales, vcd |
URL: | https://github.com/cardiomoon/webr |
BugReports: | https://github.com/cardiomoon/webr/issues |
Description: | Several analysis-related functions for the book entitled "Web-based Analysis without R in Your Computer"(written in Korean, ISBN 978-89-5566-185-9) by Keon-Woong Moon. The main function plot.htest() shows the distribution of statistic for the object of class 'htest'. |
Depends: | R (≥ 2.10) |
License: | GPL-3 |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.0.2 |
VignetteBuilder: | knitr |
Suggests: | testthat, knitr, rmarkdown |
NeedsCompilation: | no |
Packaged: | 2020-01-26 13:59:13 UTC; cardiomoon |
Author: | Keon-Woong Moon [aut, cre], Tommaso Martino [ctb] |
Maintainer: | Keon-Woong Moon <cardiomoon@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2020-01-26 14:20:02 UTC |
Extract bivariate variables
Description
Extract bivariate variables
Usage
BiVar(df)
Arguments
df |
a data.frame |
Extract continuous variables
Description
Extract continuous variables
Usage
ContinuousVar(df)
Arguments
df |
a data.frame |
Extract categorical variables
Description
Extract categorical variables
Usage
GroupVar(df, max.ylev = 20)
Arguments
df |
a data.frame |
max.ylev |
maximal length of unique values of catergorical variables |
Draw a PieDonut plot
Description
Draw a PieDonut plot
Usage
PieDonut(
data,
mapping,
start = getOption("PieDonut.start", 0),
addPieLabel = TRUE,
addDonutLabel = TRUE,
showRatioDonut = TRUE,
showRatioPie = TRUE,
ratioByGroup = TRUE,
showRatioThreshold = getOption("PieDonut.showRatioThreshold", 0.02),
labelposition = getOption("PieDonut.labelposition", 2),
labelpositionThreshold = 0.1,
r0 = getOption("PieDonut.r0", 0.3),
r1 = getOption("PieDonut.r1", 1),
r2 = getOption("PieDonut.r2", 1.2),
explode = NULL,
selected = NULL,
explodePos = 0.1,
color = "white",
pieAlpha = 0.8,
donutAlpha = 1,
maxx = NULL,
showPieName = TRUE,
showDonutName = FALSE,
title = NULL,
pieLabelSize = 4,
donutLabelSize = 3,
titlesize = 5,
explodePie = TRUE,
explodeDonut = FALSE,
use.label = TRUE,
use.labels = TRUE,
family = getOption("PieDonut.family", "")
)
Arguments
data |
A data.frame |
mapping |
Set of aesthetic mappings created by aes or aes_. |
start |
offset of starting point from 12 o'clock in radians |
addPieLabel |
A logical value. If TRUE, labels are added to the Pies |
addDonutLabel |
A logical value. If TRUE, labels are added to the Donuts |
showRatioDonut |
A logical value. If TRUE, ratios are added to the DonutLabels |
showRatioPie |
A logical value. If TRUE, ratios are added to the PieLabels |
ratioByGroup |
A logical value. If TRUE, ratios ara calculated per group |
showRatioThreshold |
An integer. Threshold to show label as a ratio of total. default value is 0.02. |
labelposition |
A number indicating the label position |
labelpositionThreshold |
label position threshold. Default value is 0.1. |
r0 |
Integer. start point of pie |
r1 |
Integer. end point of pie |
r2 |
Integer. end point of donut |
explode |
pies to explode |
selected |
donuts to explode |
explodePos |
explode position |
color |
color |
pieAlpha |
transparency of pie |
donutAlpha |
transparency of pie |
maxx |
maximum position of plot |
showPieName |
logical. Whether or not show Pie Name |
showDonutName |
logical. Whether or not show Pie Name |
title |
title of plot |
pieLabelSize |
integer. Pie label size |
donutLabelSize |
integer. Donut label size |
titlesize |
integer. Title size |
explodePie |
Logical. Whether or not explode pies |
explodeDonut |
Logical. Whether or not explode donuts |
use.label |
Logical. Whether or not use column label in case of labelled data |
use.labels |
Logical. Whether or not use value labels in case of labelled data |
family |
font family |
Examples
require(moonBook)
require(ggplot2)
browser=c("MSIE","Firefox","Chrome","Safari","Opera")
share=c(50,21.9,10.8,6.5,1.8)
df=data.frame(browser,share)
PieDonut(df,aes(browser,count=share),r0=0.7,start=3*pi/2,labelpositionThreshold=0.1)
PieDonut(df,aes(browser,count=share),r0=0.7,explode=5,start=3*pi/2)
PieDonut(mtcars,aes(gear,carb),start=3*pi/2,explode=3,explodeDonut=TRUE,maxx=1.7)
PieDonut(mtcars,aes(carb,gear),r0=0)
PieDonut(acs,aes(smoking,Dx),title="Distribution of smoking status by diagnosis")
PieDonut(acs,aes(Dx,smoking),ratioByGroup=FALSE,r0=0)
PieDonut(acs,aes(Dx,smoking),selected=c(1,3,5,7),explodeDonut=TRUE)
PieDonut(acs,aes(Dx,smoking),explode=1,selected=c(2,4,6,8),labelposition=0,explodeDonut=TRUE)
PieDonut(acs,aes(Dx,smoking),explode=1)
PieDonut(acs,aes(Dx,smoking),explode=1,explodeDonut=TRUE,labelposition=0)
PieDonut(acs,aes(Dx,smoking),explode=1,explodePie=FALSE,explodeDonut=TRUE,labelposition=0)
PieDonut(acs,aes(Dx,smoking),selected=c(2,5,8), explodeDonut=TRUE,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),r0=0.2,r1=0.9,r2=1.3,explode=1,start=pi/2,explodeDonut=TRUE)
PieDonut(acs,aes(Dx,smoking),r0=0.2,r1=0.9,r2=1.3,explode=1,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),explode=1,start=pi,explodeDonut=TRUE,labelposition=0)
require(dplyr)
df=mtcars %>% group_by(gear,carb) %>% summarize(n=n())
PieDonut(df,aes(pies=gear,donuts=carb,count=n),ratioByGroup=FALSE)
Cox-Stuart test for trend analysis The Cox-Stuart test is defined as a little powerful test (power equal to 0.78), but very robust for the trend analysis. It is therefore applicable to a wide variety of situations, to get an idea of the evolution of values obtained. The proposed method is based on the binomial distribution. This function was written by Tommaso Martino<todoslogos@gmail.com> (See 'References')
Description
Cox-Stuart test for trend analysis The Cox-Stuart test is defined as a little powerful test (power equal to 0.78), but very robust for the trend analysis. It is therefore applicable to a wide variety of situations, to get an idea of the evolution of values obtained. The proposed method is based on the binomial distribution. This function was written by Tommaso Martino<todoslogos@gmail.com> (See 'References')
Usage
cox.stuart.test(x)
Arguments
x |
A numeric vector |
Value
A list with class "htest"
References
Original code: http://statistic-on-air.blogspot.kr/2009/08/trend-analysis-with-cox-stuart-test-in.html
Examples
customers = c(5, 9, 12, 18, 17, 16, 19, 20, 4, 3, 18, 16, 17, 15, 14)
cox.stuart.test(customers)
Extract labels
Description
Extract labels
Usage
extractLabels(x)
Arguments
x |
a vector |
Make table summarizing frequency
Description
Make table summarizing frequency
Usage
freqSummary(x, digits = 1, lang = "en")
Arguments
x |
A vector |
digits |
integer indicating the number of decimal places |
lang |
Language. choices are one of c("en","kor") |
Examples
require(moonBook)
freqSummary(acs$Dx)
#freqSummary(acs$smoking,lang="kor")
Make flextable summarizing frequency
Description
Make flextable summarizing frequency
Usage
freqTable(
x,
digits = 1,
lang = getOption("freqTable.lang", "en"),
vanilla = FALSE,
...
)
Arguments
x |
A vector |
digits |
integer indicating the number of decimal places |
lang |
Language. choices are one of c("en","kor") |
vanilla |
Logical. Whether make vanilla table or not |
... |
Further arguments to paseed to the df2flextable function |
Value
An object of clss flextable
Examples
require(moonBook)
freqTable(acs$Dx)
#freqTable(acs$smoking,lang="kor",vanilla=TRUE,fontsize=12)
Make default palette
Description
Make default palette
Usage
gg_color_hue(n)
Arguments
n |
number of colors |
Select word
Description
Select word
Usage
langchoice1(id, lang = "en")
Arguments
id |
data id |
lang |
language. Possible choices are c("en","kor") |
Make subtitle
Description
Make subtitle
Usage
makeSub(x)
Arguments
x |
An object of class "htest" |
Make subcolors with main colors
Description
Make subcolors with main colors
Usage
makeSubColor(main, no = 3)
Arguments
main |
character. main colors |
no |
number of subcolors |
My chisquare test
Description
My chisquare test
Usage
mychisq.test(x)
Arguments
x |
a table |
Numerical Summary
Description
Numerical Summary
Usage
numSummary(x, ..., digits = 2, lang = "en")
numSummary1(x, ..., digits = 2, lang = "en")
numSummary2(x, ..., digits = 2, lang = "en")
Arguments
x |
A numeric vector or a data.frame or a grouped_df |
... |
further arguments to be passed |
digits |
integer indicating the number of decimal places |
lang |
Language. choices are one of c("en","kor") |
Functions
-
numSummary1
: Numerical Summary of a data.frame or a vector -
numSummary2
: Numerical Summary of a grouped_df
Examples
require(moonBook)
require(magrittr)
require(dplyr)
require(rrtable)
require(webr)
require(tibble)
numSummary(acs)
numSummary(acs$age)
numSummary(acs,age,EF)
acs %>% group_by(sex) %>% numSummary(age,BMI)
acs %>% group_by(sex) %>% select(age) %>% numSummary
acs %>% group_by(sex) %>% select(age,EF) %>% numSummary
acs %>% group_by(sex,Dx) %>% select(age,EF) %>% numSummary
acs %>% group_by(sex,Dx) %>% select(age) %>% numSummary
#acs %>% group_by(sex,Dx) %>% numSummary(age,EF,lang="kor")
Make a table showing numerical summary
Description
Make a table showing numerical summary
Usage
numSummaryTable(
x,
...,
lang = getOption("numSummaryTable.lang", "en"),
vanilla = FALSE,
add.rownames = NULL
)
Arguments
x |
A grouped_df or a data.frame or a vector |
... |
further argument to be passed |
lang |
Language. choices are one of c("en","kor") |
vanilla |
Logical. Whether make vanilla table or not |
add.rownames |
Logical. Whether or not add rownames |
Examples
require(moonBook)
require(dplyr)
numSummaryTable(acs)
numSummaryTable(acs$age)
acs %>% group_by(sex) %>% select(age) %>% numSummaryTable
acs %>% group_by(sex) %>% select(age,EF) %>% numSummaryTable
acs %>% group_by(sex,Dx) %>% select(age,EF) %>% numSummaryTable(vanilla=FALSE)
acs %>% group_by(sex,Dx) %>% numSummaryTable(age,EF,add.rownames=FALSE)
Plotting distribution of statistic for object "htest"
Description
Plotting distribution of statistic for object "htest"
Usage
## S3 method for class 'htest'
plot(x, ...)
Arguments
x |
object of class "htest" |
... |
further arguments to ggplot |
Value
a ggplot or NULL
Examples
require(moonBook)
require(webr)
## chi-square test
x=chisq.test(table(mtcars$am,mtcars$cyl))
plot(x)
#Welch Two Sample t-test
x=t.test(mpg~am,data=mtcars)
plot(x)
x=t.test(BMI~sex,data=acs)
plot(x)
# F test to compare two variances
x=var.test(age~sex,data=acs,alternative="less")
plot(x)
# Paired t-test
x=t.test(iris$Sepal.Length,iris$Sepal.Width,paired=TRUE)
plot(x)
# One sample t-test
plot(t.test(acs$age,mu=63))
# Two sample t-test
x=t.test(age~sex, data=acs,conf.level=0.99,alternative="greater",var.equal=TRUE)
plot(x)
Renew dictionary Renew dictionary
Description
Renew dictionary Renew dictionary
Usage
renew_dic()
Runs test for randomness
Description
Runs test for randomness
Usage
runs.test(
y,
plot.it = FALSE,
alternative = c("two.sided", "positive.correlated", "negative.correlated")
)
Arguments
y |
A vector |
plot.it |
A logical. whether or not draw a plot |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
Value
A list with class "htest" containing the following components: statistic,p-value,method and data.name
Examples
y=c(1,2,2,1,1,2,1,2)
runs.test(y)
y=c("A","B","B","A","A","B","A","B")
runs.test(y,alternative="p")
Make transparent theme
Description
Make transparent theme
Usage
transparent(size = 0)
Arguments
size |
border size. default value is 0 |
Make a chisquare result table
Description
Make a chisquare result table
Usage
x2Table(
data,
x,
y,
margin = 1,
show.percent = TRUE,
show.label = TRUE,
show.stat = TRUE,
vanilla = FALSE,
fontsize = 12,
...
)
Arguments
data |
A data.frame |
x |
a column name |
y |
a column name |
margin |
numeric If 1 row percent, if 2 col percent |
show.percent |
logical |
show.label |
logical |
show.stat |
logical |
vanilla |
logical whether or not make vanilla table |
fontsize |
A numeric |
... |
Further arguments to be passed to df2flextable() |
Examples
require(moonBook)
x2Table(acs,sex,DM)
Extract x2 statistical result
Description
Extract x2 statistical result
Usage
x2result(x)
Arguments
x |
a table |
Summarize chisquare result
Description
Summarize chisquare result
Usage
x2summary(
data = NULL,
x = NULL,
y = NULL,
a,
b,
margin = 1,
show.percent = TRUE,
show.label = TRUE
)
Arguments
data |
A data.frame |
x |
a column name |
y |
a column name |
a |
a vector |
b |
a vector |
margin |
numeric If 1 row percent, if 2 col percent |
show.percent |
logical |
show.label |
logical |
Examples
require(moonBook)
x2summary(acs,sex,DM)