Title: | An API Client for Australian Weather and Climate Data Resources |
Version: | 2.0.1 |
Description: | Provides automated downloading, parsing and formatting of weather data for Australia through API endpoints provided by the Department of Primary Industries and Regional Development ('DPIRD') of Western Australia and by the Science and Technology Division of the Queensland Government's Department of Environment and Science ('DES'). As well as the Bureau of Meteorology ('BOM') of the Australian government precis and coastal forecasts, and downloading and importing radar and satellite imagery files. 'DPIRD' weather data are accessed through public 'APIs' provided by 'DPIRD', https://www.agric.wa.gov.au/weather-api-20, providing access to weather station data from the 'DPIRD' weather station network. Australia-wide weather data are based on data from the Australian Bureau of Meteorology ('BOM') data and accessed through 'SILO' (Scientific Information for Land Owners) Jeffrey et al. (2001) <doi:10.1016/S1364-8152(01)00008-1>. 'DPIRD' data are made available under a Creative Commons Attribution 3.0 Licence (CC BY 3.0 AU) license https://creativecommons.org/licenses/by/3.0/au/deed.en. SILO data are released under a Creative Commons Attribution 4.0 International licence (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/. 'BOM' data are (c) Australian Government Bureau of Meteorology and released under a Creative Commons (CC) Attribution 3.0 licence or Public Access Licence ('PAL') as appropriate, see http://www.bom.gov.au/other/copyright.shtml for further details. |
License: | GPL (≥ 3) |
URL: | https://github.com/ropensci/weatherOz/, https://docs.ropensci.org/weatherOz/ |
BugReports: | https://github.com/ropensci/weatherOz/issues |
Depends: | R (≥ 4.1.0) |
Imports: | apsimx, clock, crayon, crul, curl, data.table (≥ 1.1.5), foreign, grDevices, jsonlite, knitr, lubridate, magick, methods, sf, stars, stats, terra, utils, xml2 |
Suggests: | covr, dplyr, ggplot2, ggthemes, grid, gridExtra, mailR, mapproj, maps, rmarkdown, roxyglobals, spelling, testthat (≥ 3.0.0), usethis, vcr (≥ 0.6.0), vdiffr, withr |
VignetteBuilder: | knitr |
Config/roxyglobals/filename: | globals.R |
Config/roxyglobals/unique: | FALSE |
Config/testthat/edition: | 3 |
Config/testthat/parallel: | true |
Encoding: | UTF-8 |
Language: | en-US |
LazyData: | true |
RoxygenNote: | 7.3.2 |
X-schema.org-applicationCategory: | Tools |
X-schema.org-isPartOf: | https://ropensci.org |
X-schema.org-keywords: | dpird, bom, meteorological-data, weather-forecast, australia, weather, weather-data, meteorology, western-australia, australia-bureau-of-meteorology, western-australia-agriculture, australia-agriculture, australia-climate, australia-weather |
NeedsCompilation: | no |
Packaged: | 2025-04-16 03:11:12 UTC; dpird-mac |
Author: | Rodrigo Pires |
Maintainer: | Rodrigo Pires <rodrigo.pires@dpird.wa.gov.au> |
Repository: | CRAN |
Date/Publication: | 2025-04-16 04:50:02 UTC |
weatherOz: An API Client for Australian Weather and Climate Data Resources
Description
Provides automated downloading, parsing and formatting of weather data for Australia through API endpoints provided by the Department of Primary Industries and Regional Development ('DPIRD') of Western Australia and by the Science and Technology Division of the Queensland Government's Department of Environment and Science ('DES'). As well as the Bureau of Meteorology ('BOM') of the Australian government precis and coastal forecasts, and downloading and importing radar and satellite imagery files. 'DPIRD' weather data are accessed through public 'APIs' provided by 'DPIRD', https://www.agric.wa.gov.au/weather-api-20, providing access to weather station data from the 'DPIRD' weather station network. Australia-wide weather data are based on data from the Australian Bureau of Meteorology ('BOM') data and accessed through 'SILO' (Scientific Information for Land Owners) Jeffrey et al. (2001) doi:10.1016/S1364-8152(01)00008-1. 'DPIRD' data are made available under a Creative Commons Attribution 3.0 Licence (CC BY 3.0 AU) license https://creativecommons.org/licenses/by/3.0/au/deed.en. SILO data are released under a Creative Commons Attribution 4.0 International licence (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/. 'BOM' data are (c) Australian Government Bureau of Meteorology and released under a Creative Commons (CC) Attribution 3.0 licence or Public Access Licence ('PAL') as appropriate, see http://www.bom.gov.au/other/copyright.shtml for further details.
Author(s)
Maintainer: Rodrigo Pires rodrigo.pires@dpird.wa.gov.au (ORCID)
Authors:
Anna Hepworth anna.hepworth@gmail.com (ORCID)
Rebecca O'Leary bec.oleary@curtin.edu.au
Jonathan Carroll rpkg@jcarroll.com.au (ORCID)
James Goldie me@jamesgoldie.dev (ORCID)
Dean Marchiori deanmarchiori@gmail.com (ORCID)
Paul Melloy paul@melloy.com.au (ORCID)
Mark Padgham mark.padgham@email.com (ORCID)
Hugh Parsonage hugh.parsonage@gmail.com (ORCID)
Adam H. Sparks adamhsparks@gmail.com (ORCID)
Other contributors:
Keith Pembleton keith.pembleton@unisq.edu.au (ORCID) (Contributed code and ideas for original 'bomrang' package that was used in the creation of 'weatherOz'.) [contributor]
Maëlle Salmon maelle.salmon@yahoo.se (ORCID) (Contributed to debugging a nasty little bug with CI where timezones caused tests to fail due to 'vcr' not recognising the URL when run outside of Australia/Perth TZ! Suggested the use of 'withr::local_timzeone()', see <https://github.com/ropensci/weatherOz/commit/b052bf91973b8d7e147a39e8938405a64622634b>.) [contributor]
Max Moldovan max.moldovan@adelaide.edu.au (ORCID) (Contributed valuable feedback on package usage leading to improvements in the package structure and functionality.) [contributor]
Jimmy Ng jimmy.ng@dpird.wa.gov.au [contributor]
Steve Collins steve.collins@dpird.wa.gov.au (Designed the hex logo for 'weatherOz' hex logo.) [contributor]
Laurens Geffert laurensgeffert@gmail.com [reviewer]
Sam Rogers sam.rogers@adelaide.edu.au [reviewer]
Western Australia Agriculture Authority (WAAA) [copyright holder]
Curtin University [copyright holder]
See Also
Useful links:
Report bugs at https://github.com/ropensci/weatherOz/issues
A List of DPIRD Extreme Weather Data Values
Description
A vector object containing 57 items representing valid values to supply
to get_dpird_extremes()
's values argument taken from the
documentation for the DPIRD Weather 2.0 API.
Usage
dpird_extreme_weather_values
Format
A vector object of 57 items.
Source
https://www.agric.wa.gov.au/weather-api-20
See Also
Other DPIRD:
dpird_minute_values
,
dpird_summary_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_stations_metadata()
Other data:
dpird_minute_values
,
dpird_summary_values
,
silo_daily_values
A List of DPIRD Minute Weather Data Values
Description
A vector object containing 12 items representing valid values to supply
to get_dpird_minute()
's values argument taken from the
documentation for the DPIRD Weather 2.0 API.
Usage
dpird_minute_values
Format
A vector object of 12 items.
Source
https://www.agric.wa.gov.au/weather-api-20
See Also
Other DPIRD:
dpird_extreme_weather_values
,
dpird_summary_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_stations_metadata()
Other data:
dpird_extreme_weather_values
,
dpird_summary_values
,
silo_daily_values
A List of DPIRD Summary Weather Data Values
Description
A vector object containing 75 items representing valid values to supply
to get_dpird_summary()
's values argument taken from the
documentation for the DPIRD Weather 2.0 API.
Usage
dpird_summary_values
Format
A vector object of 75 items.
Source
https://www.agric.wa.gov.au/weather-api-20
See Also
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_stations_metadata()
Other data:
dpird_extreme_weather_values
,
dpird_minute_values
,
silo_daily_values
Find the Nearest Town With a BOM Forecast
Description
For a given latitude
and longitude
, find the nearest town that the
BOM provides a forecast for.
Usage
find_forecast_towns(longitude = 149.2, latitude = -35.3, distance_km = 100)
Arguments
longitude |
A |
latitude |
A |
distance_km |
A |
Value
A data.table::data.table()
of all forecast towns (in this package) sorted by
distance from latitude and longitude, ascending.
Author(s)
Hugh Parsonage, hugh.parsonage@gmail.com, and James Goldie, me@jamesgoldie.dev, and Adam H. Sparks, adamhsparks@gmail.com
See Also
Other BOM:
get_ag_bulletin()
,
get_available_imagery()
,
get_available_radar()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other metadata:
find_nearby_stations()
,
find_stations_in()
,
get_available_imagery()
,
get_available_radar()
,
get_dpird_availability()
,
get_stations_metadata()
Examples
# find forecast towns near Esperance, WA
find_forecast_towns(longitude = 121.8913, latitude = -33.8614)
Find the Nearest Weather Stations to a Given Geographic Point or Known Station
Description
Find nearby weather stations given geographic coordinates or a station code for both of the DPIRD and SILO weather station networks. Either a combination of latitude and longitude or station_code must be provided. A DPIRD API key is only necessary to search for stations in the DPIRD network. If you are not interested in DPIRD stations in Western Australia, you may use this function to query only SILO stations for all of Australia without using a key.
Usage
find_nearby_stations(
longitude = NULL,
latitude = NULL,
station_code = NULL,
distance_km = 100,
api_key = NULL,
which_api = "silo",
include_closed = FALSE
)
Arguments
longitude |
A |
latitude |
A |
station_code |
A |
distance_km |
A |
api_key |
A |
which_api |
A |
include_closed |
A |
Value
A data.table::data.table()
with station_code
, station_name
,
latitude
, longitude
, elev_m
, state
, owner
, and distance
.
Data are sorted by increasing distance from station or location of
interest.
Note
You can request your own API key from DPIRD for free by filling out the form found at https://www.agric.wa.gov.au/web-apis.
Author(s)
Rodrigo Pires, rodrigo.pires@dpird.wa.gov.au, and Adam H. Sparks, adamhsparks@gmail.com
See Also
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_stations_metadata()
Other SILO:
find_stations_in()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_stations_metadata()
,
silo_daily_values
Other metadata:
find_forecast_towns()
,
find_stations_in()
,
get_available_imagery()
,
get_available_radar()
,
get_dpird_availability()
,
get_stations_metadata()
Examples
## Not run:
# Note that queries to the DPIRD API require you to have your own API key.
# Query WA only stations and return DPIRD's stations nearest to the
# Northam, WA station, "NO", returning stations with 50 km of this station
wa_stn <- find_nearby_stations(
station_code = "NO",
distance_km = 50,
api_key = "your_api_key",
which_api = "dpird"
)
# Query stations nearest DPIRD's Northam, WA station, "NO" and return both
# DPIRD and SILO/BOM stations within 50 km of this station.
wa_stn <- find_nearby_stations(
station_code = "NO",
distance_km = 50,
api_key = "your_api_key",
which_api = "all"
)
# Query Wagga Wagga BOM station finding stations within 200 km of it, note
# that it is not necessary to provide an `api_key` for SILO queries of
# nearby stations.
wagga_stn <- find_nearby_stations(
latitude = -35.1583,
longitude = 147.4575,
distance_km = 200,
which_api = "silo"
)
## End(Not run)
Find Stations Within a Geospatially Defined Geographic Area of Interest
Description
Given an sf polygon or a bounding box as a vector with the minimum and maximum longitude and latitude values, find DPIRD or BOM stations in the SILO network that fall within that defined area or the station nearest the centroid of the area of interest.
Usage
find_stations_in(
x,
centroid = FALSE,
api_key = NULL,
which_api = "all",
include_closed = FALSE,
crs = "EPSG:7844"
)
Arguments
x |
One of two types of object:
|
centroid |
|
api_key |
A |
which_api |
A |
include_closed |
A |
crs |
A |
Value
a data.table object of weather station(s) within the defined area of interest in an unprojected format, EPSG:4326, WGS 84 – WGS84 - World Geodetic System 1984, used in GPS format.
See Also
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
,
find_nearby_stations()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_stations_metadata()
Other SILO:
find_nearby_stations()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_stations_metadata()
,
silo_daily_values
Other metadata:
find_forecast_towns()
,
find_nearby_stations()
,
get_available_imagery()
,
get_available_radar()
,
get_dpird_availability()
,
get_stations_metadata()
Examples
# using a (generous) bounding box for Melbourne, Vic using only the SILO API
# for BOM stations, so no API key is needed.
bbox <- find_stations_in(
x = c(144.470215, -38.160476, 145.612793, -37.622934),
which_api = "SILO",
include_closed = TRUE
)
bbox
# Use the same bounding box but only find a single station nearest
# the centroid using only the SILO API for BOM stations
centroid <- find_stations_in(
x = c(144.470215, -38.160476, 145.612793, -37.622934),
which_api = "SILO",
include_closed = TRUE,
centroid = TRUE
)
centroid
# Use the `south_west_agricultural_region` data to fetch stations only in the
# south-western portion of WA and plot it with {ggplot2} showing open/closed
# stations just to be sure they're inside the area of interest.
# As this is in WA, we can use the DPIRD network, so we need our API key.
# Using the `south_west_agricultural_region` {sf} object provided.
sw_wa <- find_stations_in(
x = south_west_agricultural_region,
api_key = "your_api_key",
include_closed = TRUE
)
sw_wa
Get a BOM Agriculture Bulletin
Description
Defunct: This function is defunct as of version 2.0.0 because the underlying BOM agricultural forecast bulletin service is no longer available.
Usage
get_ag_bulletin(state = "AUS")
Arguments
state |
Australian state or territory as full name or postal code.
Fuzzy string matching via |
Details
Fetch the BOM agricultural bulletin information for a specified station or stations.
Allowed state and territory postal codes, only one state per request or all using 'AUS'.
- AUS
Australia, returns forecast for all states, NT and ACT
- ACT
Australian Capital Territory (will return NSW)
- NSW
New South Wales
- NT
Northern Territory
- QLD
Queensland
- SA
South Australia
- TAS
Tasmania
- VIC
Victoria
- WA
Western Australia
Value
A data frame as a weatherOz_tbl
object (inherits and is fully compatible
with data.table::data.table()
) of Australia BOM
agricultural bulletin information.
Note
Data and Information Use Please note the copyright notice and disclaimer, http://www.bom.gov.au/other/copyright.shtml related to the use of this information. Users of this information are deemed to have read and accepted the conditions described therein.
Author(s)
Adam H. Sparks, adamhsparks@gmail.com, and Paul Melloy, paul@melloy.com.au
References
Agricultural observations are retrieved from the Australian Bureau of
Meteorology (BOM) Weather Data Services Agriculture Bulletins,
http://www.bom.gov.au/catalogue/observations/about-agricultural.shtml.
And also,
Australian Bureau of Meteorology (BOM)) Weather Data Services
Observation of Rainfall,
http://www.bom.gov.au/climate/how/observations/rain-measure.shtml.
Station location and other metadata are sourced from the Australian Bureau of
Meteorology (BOM) webpage, Bureau of Meteorology Site Numbers:
http://www.bom.gov.au/climate/cdo/about/site-num.shtml.
See Also
Other BOM:
find_forecast_towns()
,
get_available_imagery()
,
get_available_radar()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other data fetching:
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
Examples
get_ag_bulletin(state = "QLD")
Get a List of Available BOM Satellite Imagery
Description
Fetch a listing of BOM GeoTIFF satellite imagery from
ftp://ftp.bom.gov.au/anon/gen/gms/ to determine which files are
currently available for download. Files are available at ten minute update
frequency with a 24-hour delete time. It is useful to know the most recent
files available and then specify in the get_satellite_imagery()
function. Ported from bomrang.
Usage
get_available_imagery(product_id = "all")
Arguments
product_id |
|
Details
Valid BOM satellite Product IDs for GeoTIFF files include:
- IDE00420
AHI cloud cover only 2km FD GEOS GIS
- IDE00421
AHI IR (Ch13) greyscale 2km FD GEOS GIS
- IDE00422
AHI VIS (Ch3) greyscale 2km FD GEOS GIS
- IDE00423
AHI IR (Ch13) Zehr 2km FD GEOS GIS
- IDE00425
AHI VIS (true colour) / IR (Ch13 greyscale) composite 1km FD GEOS GIS
- IDE00426
AHI VIS (true colour) / IR (Ch13 greyscale) composite 2km FD GEOS GIS
- IDE00427
AHI WV (Ch8) 2km FD GEOS GIS
- IDE00430
AHI cloud cover only 2km AUS equirect. GIS
- IDE00431
AHI IR (Ch13) greyscale 2km AUS equirect. GIS
- IDE00432
AHI VIS (Ch3) greyscale 2km AUS equirect. GIS
- IDE00433
AHI IR (Ch13) Zehr 2km AUS equirect. GIS
- IDE00435
AHI VIS (true colour) / IR (Ch13 greyscale) composite 1km AUS equirect. GIS
- IDE00436
AHI VIS (true colour) / IR (Ch13 greyscale) composite 2km AUS equirect. GIS
- IDE00437
AHI WV (Ch8) 2km AUS equirect. GIS
- IDE00439
AHI VIS (Ch3) greyscale 0.5km AUS equirect. GIS
Value
A vector
of all available files for the requested Product ID(s).
Author(s)
Adam H. Sparks, adamhsparks@gmail.com
References
Australian Bureau of Meteorology (BOM) high-definition satellite images http://www.bom.gov.au/australia/satellite/index.shtml
See Also
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_radar()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other metadata:
find_forecast_towns()
,
find_nearby_stations()
,
find_stations_in()
,
get_available_radar()
,
get_dpird_availability()
,
get_stations_metadata()
Examples
# Check availability of AHI VIS (true colour) / IR (Ch13 greyscale) composite
# 1km FD GEOS GIS images
imagery <- get_available_imagery(product_id = "IDE00425")
imagery
Get a List of Available BOM Radar Imagery
Description
Fetch a listing of available BOM radar imagery from ftp://ftp.bom.gov.au/anon/gen/radar/ to determine which files are currently available for download. The files available are the most recent radar imagery for each location, which are updated approximately every 6 to 10 minutes by the BOM. Ported from bomrang.
Usage
get_available_radar(radar_id = "all")
Arguments
radar_id |
|
Details
Valid BOM radar ID for each location required.
Value
A data.table::data.table()
of all selected radar locations with
location information and product_ids.
Author(s)
Dean Marchiori, deanmarchiori@gmail.com, and Adam H. Sparks, adamhsparks@gmail.com
References
Australian Bureau of Meteorology (BOM) radar image http://www.bom.gov.au/australia/radar/.
See Also
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_imagery()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other metadata:
find_forecast_towns()
,
find_nearby_stations()
,
find_stations_in()
,
get_available_imagery()
,
get_dpird_availability()
,
get_stations_metadata()
Examples
# Check availability radar imagery for Wollongong (radar_id = 3)
imagery <- get_available_radar(radar_id = 3)
imagery
Get a BOM Coastal Waters Forecast
Description
Fetch the BOM daily Coastal Waters Forecast for a specified state or region.
Usage
get_coastal_forecast(state = "AUS")
Arguments
state |
Australian state or territory as full name or postal code.
Fuzzy string matching via |
Details
Allowed state and territory postal codes, only one state per request or all using 'AUS':
- AUS
Australia, returns forecast for all states, NT and ACT
- ACT
Australian Capital Territory (will return NSW)
- NSW
New South Wales
- NT
Northern Territory
- QLD
Queensland
- SA
South Australia
- TAS
Tasmania
- VIC
Victoria
- WA
Western Australia
Value
A data.table::data.table()
of an Australia BOM Coastal Waters
Forecast.
Author(s)
Dean Marchiori, deanmarchiori@gmail.com, and Paul Melloy, paul@melloy.com.au
References
Forecast data come from Australian Bureau of Meteorology (BOM) Weather Data
Services
http://www.bom.gov.au/catalogue/data-feeds.shtml.
And also,
Location data and other metadata come from the BOM anonymous
FTP server with spatial data
ftp://ftp.bom.gov.au/anon/home/adfd/spatial/, specifically the
DBF file portion of a shapefile,
ftp://ftp.bom.gov.au/anon/home/adfd/spatial/IDM00003.dbf.
See Also
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_imagery()
,
get_available_radar()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other data fetching:
get_ag_bulletin()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
Examples
get_coastal_forecast(state = "NSW")
Get DataDrill Weather Data From SILO
Description
Fetch nicely formatted weather data from the SILO API of spatially interpolated weather data (DataDrill). The daily climate surfaces have been derived either by splining or kriging the observational data. The returned values contain “source” columns, which denote how the observations were derived. The grid spans 112° to 154°, -10° to -44° with resolution 0.05° latitude by 0.05° longitude (approximately 5 km × 5 km).
Usage
get_data_drill(
longitude,
latitude,
start_date,
end_date = Sys.Date(),
values = "all",
api_key = get_key(service = "SILO")
)
Arguments
longitude |
A single |
latitude |
A single |
start_date |
A |
end_date |
A |
values |
A |
api_key |
A |
Value
a data.table::data.table()
with the weather data queried with
the weather variables in alphabetical order. The first eight columns will
always be:
-
longitude
, -
latitude
, -
elev_m
(elevation in metres), -
date
(ISO8601 format, YYYYMMDD), -
year
, -
month
, -
day
, -
extracted
(the date on which the query was made)
Column Name Details
Column names are converted from the default returns of the API to be
snake_case formatted and where appropriate, the names of the values that
are analogous between SILO and DPIRD data are named
using the same name for ease of interoperability, e.g., using
rbind()
to create a data.table
that contains data from both APIs.
Available Values
- all
Which will return all of the following values
- rain (mm)
Rainfall
- max_temp (degrees C)
Maximum temperature
- min_temp (degrees C)
Minimum temperature
- vp (hPa)
Vapour pressure
- vp_deficit (hPa)
Vapour pressure deficit
- evap_pan (mm)
Class A pan evaporation
- evap_syn (mm)
Synthetic estimate1
- evap_comb (mm)
Combination (synthetic estimate pre-1970, class A pan 1970 onwards)
- evap_morton_lake (mm)
Morton's shallow lake evaporation
- radiation (Mj/m2)
Solar exposure, consisting of both direct and diffuse components
- rh_tmax (%)
Relative humidity at the time of maximum temperature
- rh_tmin (%)
Relative humidity at the time of minimum temperature
- et_short_crop (mm)
-
FAO564
short crop
- et_tall_crop (mm)
-
ASCE5
tall crop6
- et_morton_actual (mm)
Morton's areal actual evapotranspiration
- et_morton_potential (mm)
Morton's point potential evapotranspiration
- et_morton_wet (mm)
Morton's wet-environment areal potential evapotranspiration over land
- mslp (hPa)
Mean sea level pressure
Value information
Solar radiation: total incoming downward shortwave radiation on a horizontal surface, derived from estimates of cloud oktas and sunshine duration3.
Relative humidity: calculated using the vapour pressure measured at 9am, and the saturation vapour pressure computed using either the maximum or minimum temperature6.
Evaporation and evapotranspiration: an overview of the variables provided by SILO is available here, https://data.longpaddock.qld.gov.au/static/publications/Evapotranspiration_overview.pdf.
Data codes
Data codes Where possible (depending on the file format), the data are supplied with codes indicating how each datum was obtained.
- 0
Official observation as supplied by the Bureau of Meteorology
- 15
Deaccumulated rainfall (original observation was recorded over a period exceeding the standard 24 hour observation period)
- 25
Interpolated from daily observations for that date
- 26
Synthetic Class A pan evaporation, calculated from temperatures, radiation and vapour pressure
- 35
Interpolated from daily observations using an anomaly interpolation method
- 75
Interpolated from the long term averages of daily observations for that day of year
Author(s)
Rodrigo Pires, rodrigo.pires@dpird.wa.gov.au, and Adam H. Sparks, adamhsparks@gmail.com
References
Rayner, D. (2005). Australian synthetic daily Class A pan evaporation. Technical Report December 2005, Queensland Department of Natural Resources and Mines, Indooroopilly, Qld., Australia, 40 pp.
Morton, F. I. (1983). Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology, Journal of Hydrology, Volume 66, 1-76.
Zajaczkowski, J., Wong, K., & Carter, J. (2013). Improved historical solar radiation gridded data for Australia, Environmental Modelling & Software, Volume 49, 64–77. DOI: doi:10.1016/j.envsoft.2013.06.013.
Food and Agriculture Organization of the United Nations, Irrigation and drainage paper 56: Crop evapotranspiration - Guidelines for computing crop water requirements, 1998.
ASCE’s Standardized Reference Evapotranspiration Equation, proceedings of the National Irrigation Symposium, Phoenix, Arizona, 2000.
For further details refer to Jeffrey, S.J., Carter, J.O., Moodie, K.B. and Beswick, A.R. (2001). Using spatial interpolation to construct a comprehensive archive of Australian climate data, Environmental Modelling and Software, Volume 16/4, 309-330. DOI: doi:10.1016/S1364-8152(01)00008-1.
See Also
Other SILO:
find_nearby_stations()
,
find_stations_in()
,
get_data_drill_apsim()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_stations_metadata()
,
silo_daily_values
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
Examples
## Not run:
# requires an API key as your email address
# Source data from latitude and longitude coordinates (gridded data) for
# max and minimum temperature and rainfall for Southwood, QLD.
wd <- get_data_drill(
latitude = -27.85,
longitude = 150.05,
start_date = "20221001",
end_date = "20221201",
values = c("max_temp", "min_temp", "rain"),
api_key = "your_api_key"
)
## End(Not run)
Get DataDrill Weather Data in the APSIM Format From SILO
Description
Fetch APSIM .met file formatted weather data from the weather data from the SILO API of spatially interpolated weather data (DataDrill). The daily climate surfaces have been derived either by splining or kriging the observational data. The returned values contain “source” columns, which denote how the observations were derived. The grid spans 112° to 154°, -10° to -44° with resolution 0.05° latitude by 0.05° longitude (approximately 5 km × 5 km).
Usage
get_data_drill_apsim(
longitude,
latitude,
start_date,
end_date = Sys.Date(),
api_key = get_key(service = "SILO")
)
Arguments
longitude |
A single |
latitude |
A single |
start_date |
A |
end_date |
A |
api_key |
A |
Details
Note that when saving, comments from SILO will be included, but these will
not be printed as a part of the resulting met
object in your R session.
Value
An apsimx object of class ‘met’ with attributes.
Included Values
- rain (mm)
Rainfall
- maxt (degrees C)
Maximum temperature
- mint (degrees C)
Minimum temperature
- vp (hPa)
Vapour pressure
- evap_pan (mm)
Class A pan evaporation
- radiation (Mj/m1)
Solar exposure, consisting of both direct and diffuse components
Value information
Solar radiation: total incoming downward shortwave radiation on a horizontal surface, derived from estimates of cloud oktas and sunshine duration2.
Evaporation and evapotranspiration: an overview of the variables provided by SILO is available here, https://data.longpaddock.qld.gov.au/static/publications/Evapotranspiration_overview.pdf.
Data codes
Where the source code is a 6 digit string comprising the source code for the 6 variables. The single digit code for each variable is:
- 0
an actual observation;
- 1
an actual observation from a composite station;
- 2
a value interpolated from daily observations;
- 3
a value interpolated from daily observations using the anomaly interpolation method for CLIMARC data;
- 6
a synthetic pan value; or
- 7
an interpolated long term average.
Saving objects
To save “met” objects the apsimx::write_apsim_met()
is reexported.
Note that when saving, comments from SILO will be included, but these will
not be printed as a part of the resulting met
object in your R session.
Author(s)
Rodrigo Pires, rodrigo.pires@dpird.wa.gov.au, and Adam Sparks, adamhsparks@gmail.com
References
Rayner, D. (2005). Australian synthetic daily Class A pan evaporation. Technical Report December 2005, Queensland Department of Natural Resources and Mines, Indooroopilly, Qld., Australia, 40 pp.
Morton, F. I. (1983). Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology, Journal of Hydrology, Volume 66, 1-76.
See Also
Other SILO:
find_nearby_stations()
,
find_stations_in()
,
get_data_drill()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_stations_metadata()
,
silo_daily_values
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
Other APSIM:
get_dpird_apsim()
,
get_patched_point_apsim()
,
reexports
Examples
## Not run:
# requires an API key as your email address
# Source data from latitude and longitude coordinates (gridded data) for
# max and minimum temperature and rainfall for Southwood, QLD.
wd <- get_data_drill_apsim(
latitude = -27.85,
longitude = 150.05,
start_date = "20220101",
end_date = "20221231",
api_key = "your_api_key"
)
## End(Not run)
Get DPIRD Summary Weather Data in the APSIM Format From the Weather 2.0 API
Description
Automates the retrieval and conversion of summary data from the DPIRD Weather 2.0 API to an APSIM .met file formatted weather data object.
Usage
get_dpird_apsim(
station_code,
start_date,
end_date = Sys.Date(),
api_key = get_key(service = "DPIRD")
)
Arguments
station_code |
A |
start_date |
A |
end_date |
A |
api_key |
A |
Value
An apsimx object of class ‘met’ with attributes.
Saving objects
To save “met” objects the apsimx::write_apsim_met()
is reexported.
Note that when saving, comments from SILO will be included, but these will
not be printed as a part of the resulting met
object in your R session.
Author(s)
Adam H. Sparks, adamhsparks@gmail.com
See Also
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_stations_metadata()
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
Other APSIM:
get_data_drill_apsim()
,
get_patched_point_apsim()
,
reexports
Examples
## Not run:
# Get an APSIM format object for Binnu
# Note that you need to supply your own API key
wd <- get_dpird_apsim(
station_code = "BI",
start_date = "20220101",
end_date = "20221231",
api_key = "your_api_key"
)
## End(Not run)
Get the Availability for DPIRD Weather Stations
Description
Fetch the availability metadata of weather stations in the DPIRD weather station network from the Weather 2.0 API.
Usage
get_dpird_availability(
station_code = NULL,
start_date = NULL,
end_date = NULL,
values = "availability",
api_key = get_key(service = "DPIRD")
)
Arguments
station_code |
A |
start_date |
A |
end_date |
A |
values |
A |
api_key |
A |
Value
a data.table::data.table()
with station_code
and the requested
metadata.
Available Values
availability (which will return all of the following values),
availabilityCurrentHour,
availabilityLast7DaysSince9AM,
availabilityLast7DaysSince12AM,
availabilityLast14DaysSince9AM,
availabilityLast14DaysSince12AM,
availabilityLast24Hours,
availabilityMonthToDateSince12AM,
availabilityMonthToDateTo9AM,
availabilitySince9AM,
availabilitySince12AM,
availabilityTo9AM,
availabilityYearToDateSince12AM, and
availabilityYearToDateTo9AM
Author(s)
Adam H. Sparks, adamhsparks@gmail.com
See Also
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_stations_metadata()
Other metadata:
find_forecast_towns()
,
find_nearby_stations()
,
find_stations_in()
,
get_available_imagery()
,
get_available_radar()
,
get_stations_metadata()
Examples
## Not run:
# Note that you need to supply your own API key
# Here we check the up time for the current year for Westonia
WS001 <- get_dpird_availability(station_code = "WS001",
api_key = "your_api_key")
# Here we check the up time for 2017 for Binnu
BN <- get_dpird_availability(
station_code = "BI",
start_date = "20170101",
end_date = "20171231",
api_key = "your_api_key"
)
## End(Not run)
Get DPIRD Extreme Weather Event Summaries
Description
Fetch nicely formatted individual extreme weather summaries from the DPIRD Weather 2.0 API.
Usage
get_dpird_extremes(
station_code,
values = "all",
api_key = get_key(service = "DPIRD")
)
Arguments
station_code |
A |
values |
A |
api_key |
A |
Value
a data.table::data.table()
of one row with station_code
,
station_name
, latitude
, longitude
, date_time
of the query and the
extreme weather information according to the value(s) selected.
Available Values
all (which will return all of the following values),
erosionCondition,
erosionConditionLast7Days,
erosionConditionLast7DaysDays,
erosionConditionLast7DaysMinutes,
erosionConditionLast14Days,
erosionConditionLast14DaysDays,
erosionConditionLast14DaysMinutes,
erosionConditionMonthToDate,
erosionConditionMonthToDateDays,
erosionConditionMonthToDateMinutes,
erosionConditionMonthToDateStartTime,
erosionConditionSince12AM,
erosionConditionSince12AMMinutes,
erosionConditionSince12AMStartTime,
erosionConditionYearToDate,
erosionConditionYearToDateDays,
erosionConditionYearToDateMinutes,
erosionConditionYearToDateStartTime,
frostCondition,
frostConditionLast7Days,
frostConditionLast7DaysDays,
frostConditionLast7DaysMinutes,
frostConditionLast14Days,
frostConditionLast14DaysDays,
frostConditionLast14DaysMinutes,
frostConditionMonthToDate,
frostConditionMonthToDateDays,
frostConditionMonthToDateMinutes,
frostConditionMonthToDateStartTime,
frostConditionSince9AM,
frostConditionSince9AMMinutes,
frostConditionSince9AMStartTime,
frostConditionTo9AM,
frostConditionTo9AMMinutes,
frostConditionTo9AMStartTime,
frostConditionYearToDate,
frostConditionYearToDate,
frostConditionYearToDateMinutes,
frostConditionYearToDateStartTime,
heatCondition,
heatConditionLast7Days,
heatConditionLast7DaysDays,
heatConditionLast7DaysMinutes,
heatConditionLast14Days,
heatConditionLast14DaysDays,
heatConditionLast14DaysMinutes,
heatConditionMonthToDate,
heatConditionMonthToDateDays,
heatConditionMonthToDateMinutes,
heatConditionMonthToDateStartTime,
heatConditionSince12AM,
heatConditionSince12AMMinutes,
heatConditionSince12AMStartTime,
heatConditionYearToDate,
heatConditionYearToDateDays,
heatConditionYearToDateMinutes, and
heatConditionYearToDateStartTime
Author(s)
Rodrigo Pires, rodrigo.pires@dpird.wa.gov.au, and Adam Sparks, adamhsparks@gmail.com
See Also
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_stations_metadata()
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
Examples
## Not run:
# Query Bonnie Rock station for wind erosion and heat extreme events
# Note that you need to supply your own API key
xtreme <- get_dpird_extremes(
station_code = "BR",
values = c("erosionCondition",
"heatCondition"),
api_key = "your_api_key"
)
## End(Not run)
Get DPIRD Weather Data by the Minute
Description
Fetch nicely formatted minute weather station data from the DPIRD Weather 2.0 API for a maximum 24-hour period.
Usage
get_dpird_minute(
station_code,
start_date_time = lubridate::now() - lubridate::hours(24L),
minutes = 1440L,
values = "all",
api_key = get_key(service = "DPIRD")
)
Arguments
station_code |
A |
start_date_time |
A |
minutes |
An |
values |
A |
api_key |
A |
Value
a data.table::data.table()
with station_code
and the date interval
queried together with the requested weather variables.
Available Values
all (which will return all of the following values),
airTemperature,
dateTime,
dewPoint,
rainfall,
relativeHumidity,
soilTemperature,
solarIrradiance,
wetBulb,
wind,
windAvgSpeed,
windMaxSpeed, and
windMinSpeed
Note
Please note this function converts date-time columns from Coordinated Universal Time ‘UTC’ returned by the API to Australian Western Standard Time ‘AWST’.
Author(s)
Adam H. Sparks, adamhsparks@gmail.com
See Also
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_summaries()
,
get_stations_metadata()
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
Examples
## Not run:
# Note that you need to supply your own API key
get_dpird_minute(
station_code = "SP",
start_date_time = "2023-02-01 13:00:00",
minutes = 1440,
values = c("airTemperature",
"solarIrradiance",
"wind"),
api_key = "your_api_key"
)
## End(Not run)
Get DPIRD Weather Data in Summarised Formats
Description
Fetch nicely formatted individual station weather summaries from the DPIRD Weather 2.0 API.
Usage
get_dpird_summaries(
station_code,
start_date,
end_date = Sys.Date(),
interval = c("daily", "15min", "30min", "hourly", "monthly", "yearly"),
values = "all",
api_key = get_key(service = "DPIRD")
)
Arguments
station_code |
A |
start_date |
A |
end_date |
A |
interval |
A |
values |
A |
api_key |
A |
Value
a data.table::data.table()
with station_code
and the date
interval queried together with the requested weather variables in
alphabetical order. The first ten columns will always be:
-
station_code
, -
station_name
, -
longitude
, -
latitude
, -
year
, -
month
, -
day
, -
hour
, -
minute
, and ifmonth
or finer is present, -
date
(a combination of year, month, day, hour, minute as appropriate).
Start Dates
The earliest available data start from August of 2000 for Vasse, “VA”.
Column Name Details
Column names are converted from the default returns of the API to
be snake_case formatted and where appropriate, the names of the values
that are analogous between SILO and DPIRD data are
named using the same name for ease of interoperability, e.g., using
rbind()
to create a data.table
that contains data from both APIs.
However, use with caution and don't mix datasets of different time-steps,
i.e., this function gets many summary values not just “daily”
time-step data. The functions that access the SILO
API only provide access to daily data, so don't mix (sub)hourly,
monthly or yearly data from DPIRD with SILO.
Available Values
all (which will return all of the following values),
airTemperature,
airTemperatureAvg,
airTemperatureMax,
airTemperatureMaxTime,
airTemperatureMin,
airTemperatureMinTime,
apparentAirTemperature,
apparentAirTemperatureAvg,
apparentAirTemperatureMax,
apparentAirTemperatureMaxTime,
apparentAirTemperatureMin,
apparentAirTemperatureMinTime,
barometricPressure,
barometricPressureAvg,
barometricPressureMax,
barometricPressureMaxTime,
barometricPressureMin,
barometricPressureMinTime,
battery,
batteryMinVoltage,
batteryMinVoltageDateTime,
chillHours,
deltaT,
deltaTAvg,
deltaTMax,
deltaTMaxTime,
deltaTMin,
deltaTMinTime,
dewPoint,
dewPointAvg,
dewPointMax,
dewPointMaxTime,
dewPointMin,
dewPointMinTime,
erosionCondition,
erosionConditionMinutes,
erosionConditionStartTime,
errors,
etoShortCrop,
etoTallCrop,
evapotranspiration,
evapotranspirationShortCrop,
evapotranspirationTallCrop,
frostCondition,
frostConditionMinutes,
frostConditionStartTime,
heatCondition,
heatConditionMinutes,
heatConditionStartTime,
observations,
observationsCount,
observationsPercentage,
panEvaporation,
panEvaporation12AM,
rainfall,
relativeHumidity,
relativeHumidityAvg,
relativeHumidityMax,
relativeHumidityMaxTime,
relativeHumidityMin,
relativeHumidityMinTime,
richardsonUnits,
soilTemperature,
soilTemperatureAvg,
soilTemperatureMax,
soilTemperatureMaxTime,
soilTemperatureMin,
soilTemperatureMinTime,
solarExposure,
wetBulb,
wetBulbAvg,
wetBulbMax,
wetBulbMaxTime,
wetBulbMin,
wetBulbMinTime,
wind,
windAvgSpeed, and
windMaxSpeed
Note
Please note this function converts date-time columns from Coordinated Universal Time ‘UTC’ to Australian Western Standard Time ‘AWST’.
Author(s)
Adam H. Sparks, adamhsparks@gmail.com, and Rodrigo Pires, rodrigo.pires@dpird.wa.gov.au
See Also
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_stations_metadata()
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
Examples
## Not run:
# Note that you need to supply your own API key
# Use default for end date (current system date) to get rainfall
wd <- get_dpird_summaries(
station_code = "CL001",
start_date = "20171028",
api_key = "your_api_key",
interval = "yearly",
values = "rainfall"
)
# Only for wind and erosion conditions for daily time interval
wd <- get_dpird_summaries(
station_code = "BI",
start_date = "20220501",
end_date = "20220502",
api_key = "your_api_key",
interval = "daily",
values = c(
"wind",
"erosionCondition",
"erosionConditionMinutes",
"erosionConditionStartTime"
)
)
## End(Not run)
Get or Set Up API Keys
Description
Checks first to get key from your .Rprofile or .Renviron (or similar) file. If it's not found, then it suggests setting it up. Can be used to check that your key that R is using is the key that you wish to be using or for guidance in setting up the keys.
Usage
get_key(service = c("DPIRD", "SILO"))
Arguments
service |
(character) The API host, either “DPIRD” or “SILO”. |
Details
The suggestion is to use your .Renviron to set up the API keys. However, if you regularly interact with the APIs outside of R using some other language you may wish to set these up in your .bashrc, .zshrc, or config.fish for cross-language use.
Value
A string value with either a DPIRD Weather 2.0 API or SILO API key value.
Examples
## Not run:
get_key(service = "DPIRD")
get_key(service = "SILO")
## End(Not run)
Get PatchedPoint Weather Data From SILO
Description
Fetch nicely formatted weather data from the SILO API derived from the BOM station observations (PatchedPoint) data.
Usage
get_patched_point(
station_code,
start_date,
end_date = Sys.Date(),
values = "all",
api_key = get_key(service = "SILO")
)
Arguments
station_code |
A |
start_date |
A |
end_date |
A |
values |
A |
api_key |
A |
Value
a data.table::data.table()
with the weather data queried with the
weather variables in alphabetical order. The first eight columns will
always be:
-
station_code
, -
station_name
, -
longitude
, -
latitude
, -
elev_m
(elevation in metres), -
date
(ISO8601 format, "YYYYMMDD"), -
year
, -
month
, -
day
, -
extracted
(the date on which the query was made)
Column Name Details
Column names are converted from the default returns of the API to be
snake_case formatted and where appropriate, the names of the values that
are analogous between SILO and DPIRD data are named
using the same name for ease of interoperability, e.g., using
rbind()
to create a data.table
that contains data from both APIs.
The SILO documentation provides the following information for the PatchedPoint data.
These data are a continuous daily time series of data at either recording stations or grid points across Australia:
-
Data at station locations consists of observational records which have been supplemented by interpolated estimates when observed data are missing. Datasets are available at approximately 8,000 Bureau of Meteorology recording stations around Australia.
-
Data at grid points consists entirely of interpolated estimates. The data are taken from the SILO gridded datasets and are available at any pixel on a 0.05° × 0.05° grid over the land area of Australia (including some islands).
Available Values
- all
Which will return all of the following values
- rain (mm)
Rainfall
- max_temp (degrees C)
Maximum temperature
- min_temp (degrees C)
Minimum temperature
- vp (hPa)
Vapour pressure
- vp_deficit (hPa)
Vapour pressure deficit
- evap_pan (mm)
Class A pan evaporation
- evap_syn (mm)
Synthetic estimate1
- evap_comb (mm)
Combination (synthetic estimate pre-1970, class A pan 1970 onwards)
- evap_morton_lake (mm)
Morton's shallow lake evaporation
- radiation (Mj/m2)
Solar exposure, consisting of both direct and diffuse components
- rh_tmax (%)
Relative humidity at the time of maximum temperature
- rh_tmin (%)
Relative humidity at the time of minimum temperature
- et_short_crop (mm)
-
FAO564
short crop
- et_tall_crop (mm)
-
ASCE5
tall crop6
- et_morton_actual (mm)
Morton's areal actual evapotranspiration
- et_morton_potential (mm)
Morton's point potential evapotranspiration
- et_morton_wet (mm)
Morton's wet-environment areal potential evapotranspiration over land
- mslp (hPa)
Mean sea level pressure
Value information
Solar radiation: total incoming downward shortwave radiation on a horizontal surface, derived from estimates of cloud oktas and sunshine duration3.
Relative humidity: calculated using the vapour pressure measured at 9am, and the saturation vapour pressure computed using either the maximum or minimum temperature6.
Evaporation and evapotranspiration: an overview of the variables provided by SILO is available here, https://data.longpaddock.qld.gov.au/static/publications/Evapotranspiration_overview.pdf.
Data codes
The data are supplied with codes indicating how each datum was obtained.
- 0
Official observation as supplied by the Bureau of Meteorology
- 15
Deaccumulated rainfall (original observation was recorded over a period exceeding the standard 24 hour observation period).
- 25
Interpolated from daily observations for that date.
- 26
Synthetic Class A pan evaporation, calculated from temperatures, radiation and vapour pressure.
- 35
Interpolated from daily observations using an anomaly interpolation method.
- 75
Interpolated from the long term averages of daily observations for that day of year.
Author(s)
Rodrigo Pires, rodrigo.pires@dpird.wa.gov.au, and Adam Sparks, adamhsparks@gmail.com
References
Rayner, D. (2005). Australian synthetic daily Class A pan evaporation. Technical Report December 2005, Queensland Department of Natural Resources and Mines, Indooroopilly, Qld., Australia, 40 pp.
Morton, F. I. (1983). Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology, Journal of Hydrology, Volume 66, 1-76.
Zajaczkowski, J., Wong, K., & Carter, J. (2013). Improved historical solar radiation gridded data for Australia, Environmental Modelling & Software, Volume 49, 64–77. DOI: doi:10.1016/j.envsoft.2013.06.013.
Food and Agriculture Organization of the United Nations, Irrigation and drainage paper 56: Crop evapotranspiration - Guidelines for computing crop water requirements, 1998.
ASCE’s Standardized Reference Evapotranspiration Equation, proceedings of the National Irrigation Symposium, Phoenix, Arizona, 2000.
For further details refer to Jeffrey, S.J., Carter, J.O., Moodie, K.B. and Beswick, A.R. (2001). Using spatial interpolation to construct a comprehensive archive of Australian climate data, Environmental Modelling and Software, Volume 16/4, 309-330. DOI: doi:10.1016/S1364-8152(01)00008-1.
See Also
Other SILO:
find_nearby_stations()
,
find_stations_in()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_patched_point_apsim()
,
get_stations_metadata()
,
silo_daily_values
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
Examples
## Not run:
# requires an API key as your email address
# Source observation data for station Wongan Hills station, WA (008137)
wd <- get_patched_point(station_code = "008137",
start_date = "2021-06-01",
end_date = "2021-07-01",
values = "all",
api_key = "your_api_key")
## End(Not run)
Get PatchedPoint Weather Data in the APSIM Format From SILO
Description
Fetch APSIM .met file formatted weather data from the SILO API derived from the BOM station observations (PatchedPoint) data.
Usage
get_patched_point_apsim(
station_code,
start_date,
end_date = Sys.Date(),
api_key = get_key(service = "SILO")
)
Arguments
station_code |
A |
start_date |
A |
end_date |
A |
api_key |
A |
Details
The SILO documentation provides the following information for the PatchedPoint data.
These data are a continuous daily time series of data at either recording stations or grid points across Australia:
-
Data at station locations consists of observational records which have been supplemented by interpolated estimates when observed data are missing. Datasets are available at approximately 8,000 Bureau of Meteorology recording stations around Australia.
-
Data at grid points consists entirely of interpolated estimates. The data are taken from the SILO gridded datasets and are available at any pixel on a 0.05° × 0.05° grid over the land area of Australia (including some islands).
Value
An apsimx object of class ‘met’ with attributes.
Included Values
- rain (mm)
Rainfall
- maxt (degrees C)
Maximum temperature
- mint (degrees C)
Minimum temperature
- vp (hPa)
Vapour pressure
- evap_pan (mm)
Class A pan evaporation
- radiation (Mj/m1)
Solar exposure, consisting of both direct and diffuse components
Value information
Solar radiation: total incoming downward shortwave radiation on a horizontal surface, derived from estimates of cloud oktas and sunshine duration2.
Evaporation and evapotranspiration: an overview of the variables provided by SILO is available here, https://data.longpaddock.qld.gov.au/static/publications/Evapotranspiration_overview.pdf.
Data codes
Where the source code is a 6 digit string comprising the source code for the 6 variables. The single digit code for each variable is:
- 0
an actual observation;
- 1
an actual observation from a composite station;
- 2
a value interpolated from daily observations;
- 3
a value interpolated from daily observations using the anomaly interpolation method for CLIMARC data;
- 6
a synthetic pan value; or
- 7
an interpolated long term average.
Saving objects
To save “met” objects the apsimx::write_apsim_met()
is reexported.
Note that when saving, comments from SILO will be included, but these will
not be printed as a part of the resulting met
object in your R session.
Author(s)
Rodrigo Pires, rodrigo.pires@dpird.wa.gov.au, and Adam Sparks, adamhsparks@gmail.com
References
Rayner, D. (2005). Australian synthetic daily Class A pan evaporation. Technical Report December 2005, Queensland Department of Natural Resources and Mines, Indooroopilly, Qld., Australia, 40 pp.
Morton, F. I. (1983). Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology, Journal of Hydrology, Volume 66, 1-76.
See Also
Other SILO:
find_nearby_stations()
,
find_stations_in()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_patched_point()
,
get_stations_metadata()
,
silo_daily_values
Other APSIM:
get_data_drill_apsim()
,
get_dpird_apsim()
,
reexports
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
Examples
## Not run:
# requires an API key as your email address
# Source observation data for Wongan Hills station, WA (008137)
wd <- get_patched_point_apsim(
station_code = "008137",
start_date = "20220101",
end_date = "20221231",
api_key = "your_api_key"
)
## End(Not run)
Get a BOM Daily Précis Forecast
Description
Fetch nicely formatted daily précis forecast from the BOM, which contains seven-day town forecasts for a specified state or territory. Ported from bomrang.
Usage
get_precis_forecast(state = "AUS")
Arguments
state |
Australian state or territory as full name or postal code.
Fuzzy string matching via |
Details
Allowed state and territory postal codes, only one state per request or all using 'AUS'.
- AUS
Australia, returns forecast for all states, NT and ACT
- ACT
Australian Capital Territory (will return NSW)
- NSW
New South Wales
- NT
Northern Territory
- QLD
Queensland
- SA
South Australia
- TAS
Tasmania
- VIC
Victoria
- WA
Western Australia
Value
A data.table::data.table()
of an Australia BOM précis seven day
forecasts for BOM selected towns.
Author(s)
Adam H. Sparks, adamhsparks@gmail.com, Keith Pembleton, keith.pembleton@usq.edu.au, and Paul Melloy, paul@melloy.com.au
References
Forecast data come from Australian Bureau of Meteorology (BOM)
Weather Data Services
http://www.bom.gov.au/catalogue/data-feeds.shtml
Location data and other metadata for towns come from the BOM
anonymous FTP server with spatial data
ftp://ftp.bom.gov.au/anon/home/adfd/spatial/, specifically the
DBF file portion of a shapefile,
ftp://ftp.bom.gov.au/anon/home/adfd/spatial/IDM00013.dbf.
See Also
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_imagery()
,
get_available_radar()
,
get_coastal_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_radar_imagery()
,
get_satellite_imagery()
Examples
# get the short forecast for Western Australia
get_precis_forecast(state = "WA")
Get BOM Radar Imagery
Description
Fetch BOM radar imagery from ftp://ftp.bom.gov.au/anon/gen/radar/
and return a magick image object. Files available are the
most recent radar snapshot which are updated approximately every 6 to 10
minutes. It is suggested to check file availability first by using
get_available_radar()
.
Usage
get_radar_imagery(product_id, path = NULL, download_only = FALSE)
Arguments
product_id |
|
path |
|
download_only |
|
Details
Valid BOM Radar Product IDs for radar imagery
can be obtained from get_available_radar()
.
Value
A magick object of the most recent radar image snapshot
published by the BOM. If download_only = TRUE
there will be
a NULL
return value with the download path printed in the console as a
message.
Author(s)
Dean Marchiori, deanmarchiori@gmail.com
References
Australian Bureau of Meteorology (BOM) radar images
http://www.bom.gov.au/australia/radar/
See Also
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_imagery()
,
get_available_radar()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_satellite_imagery()
Examples
# Fetch most recent radar image for Wollongong 256km radar
imagery <- get_radar_imagery(product_id = "IDR032")
imagery
Get BOM Satellite Imagery
Description
Fetch BOM satellite GeoTIFF imagery from
ftp://ftp.bom.gov.au/anon/gen/gms/ and return a terra
SpatRaster
S4 class (see [terra::rast()]
) or stars S3 stars
object of GeoTIFF files. Files are available at ten minutes update
frequency with a 24-hour delete time. It is suggested to check file
availability first by using get_available_imagery()
. Ported from
bomrang with modifications.
Usage
get_satellite_imagery(product_id, scans = 1, compat = "terra")
Arguments
product_id |
|
scans |
|
compat |
|
Details
Valid BOM satellite Product IDs for use with product_id include:
- IDE00420
AHI cloud cover only 2km FD GEOS GIS
- IDE00421
AHI IR (Ch13) greyscale 2km FD GEOS GIS
- IDE00422
AHI VIS (Ch3) greyscale 2km FD GEOS GIS
- IDE00423
AHI IR (Ch13) Zehr 2km FD GEOS GIS
- IDE00425
AHI VIS (true colour) / IR (Ch13 greyscale) composite 1km FD GEOS GIS
- IDE00426
AHI VIS (true colour) / IR (Ch13 greyscale) composite 2km FD GEOS GIS
- IDE00427
AHI WV (Ch8) 2km FD GEOS GIS
- IDE00430
AHI cloud cover only 2km AUS equirect. GIS
- IDE00431
AHI IR (Ch13) greyscale 2km AUS equirect. GIS
- IDE00432
AHI VIS (Ch3) greyscale 2km AUS equirect. GIS
- IDE00433
AHI IR (Ch13) Zehr 2km AUS equirect. GIS
- IDE00435
AHI VIS (true colour) / IR (Ch13 greyscale) composite 1km AUS equirect. GIS
- IDE00436
AHI VIS (true colour) / IR (Ch13 greyscale) composite 2km AUS equirect. GIS
- IDE00437
AHI WV (Ch8) 2km AUS equirect. GIS
- IDE00439
AHI VIS (Ch3) greyscale 0.5km AUS equirect. GIS
Value
A terra SpatRaster
S4 class (see [terra::rast()]
) or
stars S3 stars
class object as selected by the user by
specifying compat
of GeoTIFF images with layers named by BOM
product ID, timestamp and band.
Note
The original bomrang version of this function supported local file caching using hoardr. This version does not support this functionality any longer due to issues with CRAN and hoardr.
Author(s)
Adam H. Sparks, adamhsparks@gmail.com
References
Australian Bureau of Meteorology (BOM) high-definition satellite
images
http://www.bom.gov.au/australia/satellite/index.shtml.
See Also
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_imagery()
,
get_available_radar()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_radar_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other data fetching:
get_ag_bulletin()
,
get_coastal_forecast()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_precis_forecast()
,
get_radar_imagery()
Examples
# Fetch AHI VIS (true colour) / IR (Ch13 greyscale) composite 1km FD
# GEOS GIS {terra} `SpatRaster`` object for most recent single scan
available
imagery <- get_satellite_imagery(product_id = "IDE00425", scans = 1)
plot(imagery)
# Get a list of available image files and use that to specify files for
# download, downloading the two most recent files available
avail <- get_available_imagery(product_id = "IDE00425")
imagery <- get_satellite_imagery(product_id = avail, scans = 2)
plot(imagery)
Get Weather Station Metadata for Both DPIRD and SILO Weather Stations
Description
Download the latest station locations and metadata for stations in the SILO and DPIRD networks. For BOM stations that exist in SILO, but lack metadata from BOM, the rows will exist to indicate that the station is in the SILO data set, but there is no corresponding BOM metadata available.
Usage
get_stations_metadata(
station_code = NULL,
station_name = NULL,
which_api = "all",
api_key = NULL,
include_closed = FALSE,
rich = FALSE
)
Arguments
station_code |
An optional value that should be provided as a single
|
station_name |
An optional value that should be provided as either a
single |
which_api |
A |
api_key |
A |
include_closed |
A |
rich |
A |
Value
A data.table::data.table()
of BOM weather stations'
metadata for stations available from SILO and weather stations'
metadata for stations available from DPIRD's Weather 2.0
API with the following columns sorted by state
and
station_name
.
station_code: | Unique station code. factor |
station_name: | Unique station name. character |
start: | Date observations start. date |
end: | Date observations end. date |
latitude: | Latitude in decimal degrees. numeric |
longitude: | Longitude in decimal degrees. numeric |
state: | State in which the station is located. character |
elev_m: | Station elevation in metres. numeric |
source: | Organisation responsible for the data or station
maintenance. character |
include_closed: | Station include_closed, one of ‘open’ or
‘closed’. character |
wmo: | World Meteorological Organisation, (WMO), number
if applicable. numeric |
rich values | |
capabilities: | a list of the station's capabilities (data that it
records). character |
probe_height: | temperature probe height in metres. double |
rain_gauge_height | rain gauge height in metres. double |
wind_probe_heights: | wind probe heights always 3 metres, although
some have 10 metre probes. integer |
Note
For stations in the SILO API, BOM does
not report the exact date on which stations opened or closed, only the
year. Therefore the start
and end
columns will indicate January 1 of
the year that a station opened or closed, whereas stations in the
DPIRD network have the date to the day. For BOM
stations that are closed for the current year, this indicates that the
station closed sometime during the current year prior to the request being
made. NA
in the current year indicates a station is still open.
There are discrepancies between the BOM's official station metadata, e.g. longitude and latitude values and SILO metadata. In these cases, the BOM metadata is used as it is considered to be the authority on the stations' locations.
The station names are returned by both APIs in full caps. For purposes of cleaner graphs and maps where these data may be sued, this function converts them to proper name formats/title case with the first letter of every word capitalised excepting words like “at” or “on” and keeps acronyms like “AWS” or “PIRSA” or state abbreviations in the station names as all caps.
Author(s)
Adam H. Sparks, adamhsparks@gmail.com
References
Station location and other metadata are sourced from the Australian Bureau of
Meteorology (BOM) webpage, Bureau of Meteorology Site Numbers:
http://www.bom.gov.au/climate/cdo/about/site-num.shtml and
http://www.bom.gov.au/climate/data/lists_by_element/stations.txt and the
DPIRD Weather 2.0 API.
See Also
Other DPIRD:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
,
find_nearby_stations()
,
find_stations_in()
,
get_dpird_apsim()
,
get_dpird_availability()
,
get_dpird_extremes()
,
get_dpird_minute()
,
get_dpird_summaries()
Other SILO:
find_nearby_stations()
,
find_stations_in()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_patched_point()
,
get_patched_point_apsim()
,
silo_daily_values
Other metadata:
find_forecast_towns()
,
find_nearby_stations()
,
find_stations_in()
,
get_available_imagery()
,
get_available_radar()
,
get_dpird_availability()
Examples
## Not run:
# fetch metadata for all stations available in {weatherOz}
get_stations_metadata(api_key = "your_api_key")
## End(Not run)
Parse BOM Agriculture Bulletin XML Files
Description
Defunct: This function is defunct as of version 2.0.0 because the underlying BOM agricultural forecast bulletin service is no longer available.
Usage
parse_ag_bulletin(state, filepath)
Arguments
state |
Required value of an Australian state or territory as full name
or postal code. Fuzzy string matching via |
filepath |
A string providing the directory location of the précis file(s) to parse. See Details for more. |
Details
Parse local BOM agriculture bulletin XML file(s) for a specified state or territory or all Australia. Ported from bomrang.
Allowed state and territory postal codes, only one state per request
or all using AUS
.
- AUS
Australia, returns forecast for all states, NT and ACT
- ACT
Australian Capital Territory (will return NSW)
- NSW
New South Wales
- NT
Northern Territory
- QLD
Queensland
- SA
South Australia
- TAS
Tasmania
- VIC
Victoria
- WA
Western Australia
The filepath argument will only accept a directory where files
are located for parsing. DO NOT supply the full path including the file
name. This function will only parse the requested state or all of
Australia in the same fashion as get_precis_forecast()
, provided that the
files are all present in the directory.
Value
A data.table::data.table()
of Australia BOM agricultural
bulletin information.
Author(s)
Adam H. Sparks, adamhsparks@gmail.com, and Paul Melloy, paul@melloy.com.au
References
Agricultural observations are retrieved from the Australian Bureau of
Meteorology (BOM) Weather Data Services Agriculture Bulletins,
http://www.bom.gov.au/catalogue/observations/about-agricultural.shtml.
and
Australian Bureau of Meteorology (BOM)) Weather Data Services
Observation of Rainfall,
http://www.bom.gov.au/climate/how/observations/rain-measure.shtml.
Station location and other metadata are sourced from the Australian Bureau of
Meteorology (BOM) webpage, Bureau of Meteorology Site Numbers:
http://www.bom.gov.au/climate/cdo/about/site-num.shtml.
See Also
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_imagery()
,
get_available_radar()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_coastal_forecast()
,
parse_precis_forecast()
Other parse:
parse_coastal_forecast()
,
parse_precis_forecast()
Examples
# parse the ag bulletin for Western Australia
# download to tempfile() using basename() to keep original name
utils::download.file(url = "ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ60604.xml",
destfile = file.path(tempdir(),
basename("ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ60604.xml")),
mode = "wb")
parse_ag_bulletin(state = "QLD", filepath = tempdir())
Parse BOM Coastal Waters Forecast XML Files
Description
Parse local BOM daily coastal waters forecast XML file(s) for a specified state or territory or all of Australia.
Usage
parse_coastal_forecast(state, filepath)
Arguments
state |
Required value of an Australian state or territory as full name
or postal code. Fuzzy string matching via |
filepath |
A string providing the directory location of the coastal forecast file(s) to parse. See Details for more. |
Details
Allowed state and territory postal codes, only one state per request
or all using AUS
.
- AUS
Australia, returns forecast for all states, NT and ACT
- ACT
Australian Capital Territory (will return NSW)
- NSW
New South Wales
- NT
Northern Territory
- QLD
Queensland
- SA
South Australia
- TAS
Tasmania
- VIC
Victoria
- WA
Western Australia
The filepath argument will only accept a directory where files
are located for parsing. DO NOT supply the full path including the file
name. This function will only parse the requested state or all of
Australia in the same fashion as get_coastal_forecast()
, provided that
the files are all present in the directory.
Value
A data.table::data.table()
of an Australia BOM Coastal Waters
Forecast.
Author(s)
Dean Marchiori, deanmarchiori@gmail.com, and Paul Melloy, paul@melloy.com.au
References
Forecast data come from Australian Bureau of Meteorology (BOM) Weather Data
Services
http://www.bom.gov.au/catalogue/data-feeds.shtml.
Location data and other metadata come from the BOM anonymous
FTP server with spatial data
ftp://ftp.bom.gov.au/anon/home/adfd/spatial/, specifically the
DBF file portion of a shapefile,
ftp://ftp.bom.gov.au/anon/home/adfd/spatial/IDM00003.dbf.
See Also
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_imagery()
,
get_available_radar()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_precis_forecast()
Other parse:
parse_ag_bulletin()
,
parse_precis_forecast()
Examples
# parse the coastal forecast for Queensland
#download to tempfile() using basename() to keep original name
utils::download.file(url = "ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ11290.xml",
destfile = file.path(tempdir(),
basename("ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ11290.xml")),
mode = "wb")
parse_coastal_forecast(state = "QLD", filepath = tempdir())
Parse BOM Précis Forecast XML Files
Description
Parse local BOM daily précis forecast XML file(s) of the seven-day town forecasts for a specified state or territory or all Australia. Ported from bomrang.
Usage
parse_precis_forecast(state, filepath)
Arguments
state |
Required value of an Australian state or territory as full name
or postal code. Fuzzy string matching via |
filepath |
A string providing the directory location of the précis file(s) to parse. See Details for more. |
Details
Allowed state and territory postal codes, only one state per request or all using 'AUS'.
- ACT
Australian Capital Territory (will return NSW)
- NSW
New South Wales
- NT
Northern Territory
- QLD
Queensland
- SA
South Australia
- TAS
Tasmania
- VIC
Victoria
- WA
Western Australia
- AUS
Australia, returns forecast for all states, NT and ACT
The filepath argument will only accept a directory where files
are located for parsing. DO NOT supply the full path including the file
name. This function will only parse the requested state or all of
Australia in the same fashion as get_precis_forecast()
, provided that the
files are all present in the directory.
Value
A data.table::data.table()
of Australia BOM précis seven-day
forecasts for BOM selected towns.
Author(s)
Adam H. Sparks, adamhsparks@gmail.com, and Keith Pembleton, keith.pembleton@usq.edu.au, and Paul Melloy, paul@melloy.com.au
References
Forecast data come from Australian Bureau of Meteorology (BOM)
Weather Data Services
http://www.bom.gov.au/catalogue/data-feeds.shtml
Location data and other metadata for towns come from
the BOM anonymous FTP server with spatial data
ftp://ftp.bom.gov.au/anon/home/adfd/spatial/, specifically the
DBF file portion of a shapefile,
ftp://ftp.bom.gov.au/anon/home/adfd/spatial/IDM00013.dbf
See Also
Other BOM:
find_forecast_towns()
,
get_ag_bulletin()
,
get_available_imagery()
,
get_available_radar()
,
get_coastal_forecast()
,
get_precis_forecast()
,
get_radar_imagery()
,
get_satellite_imagery()
,
parse_ag_bulletin()
,
parse_coastal_forecast()
Other parse:
parse_ag_bulletin()
,
parse_coastal_forecast()
Examples
# parse the short forecast for Western Australia
# download to tempfile() using basename() to keep original name
utils::download.file(url = "ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ11295.xml",
destfile = file.path(tempdir(),
basename("ftp://ftp.bom.gov.au/anon/gen/fwo/IDQ11295.xml")),
mode = "wb")
parse_precis_forecast(state = "QLD", filepath = tempdir())
Objects exported from other packages
Description
These objects are imported from other packages. Follow the links below to see their documentation.
- apsimx
- terra
See Also
Other APSIM:
get_data_drill_apsim()
,
get_dpird_apsim()
,
get_patched_point_apsim()
A List of SILO Daily Weather Values
Description
A vector object containing 18 items representing valid values to supply
to get_patched_point()
and get_data_drill()
's values argument
taken from the documentation for the SILO API.
Usage
silo_daily_values
Format
A vector object of 57 items.
Source
https://www.longpaddock.qld.gov.au/silo/about/climate-variables/
See Also
Other SILO:
find_nearby_stations()
,
find_stations_in()
,
get_data_drill()
,
get_data_drill_apsim()
,
get_patched_point()
,
get_patched_point_apsim()
,
get_stations_metadata()
Other data:
dpird_extreme_weather_values
,
dpird_minute_values
,
dpird_summary_values
Western Australia Southwest Agriculture Region Geospatial Polygon
Description
An sf object of the the WA South West Agricultural Region.
Usage
south_west_agricultural_region
Format
An sf::sf()
polygon object
Details
The zone managed for intensive agricultural activities in South-Western Australia. Also known as the South West Agricultural Area or Clearing Line. This zone defines the easternmost extent of land cleared for agricultural purposes.
Base data sets
Western Australian Land Information Authority - Captured from photographic interpretation of best available orthophotography at date of capture, dates range between 2007 and 2010.
Scale of capture
1:20,000
Coordinate Reference System
EPSG:4326 - WGS 84 – WGS84 - World Geodetic System 1984, used in GPS https://epsg.io/4326
Source
Western Australia Department of Primary Industries and Regional Development under a Creative Commons Attribution 4.0 Licence