Type: | Package |
Title: | Scoring EQ-5d Descriptive System |
Version: | 0.7.2 |
Maintainer: | Sheeja Manchira Krishnan <sheejamk@gmail.com> |
Depends: | R (≥ 3.6) |
Description: | EQ-5D is a standard instrument (https://euroqol.org/eq-5d-instruments/) that measures the quality of life often used in clinical and economic evaluations of health care technologies. Both adult versions of EQ-5D (EQ-5D-3L and EQ-5D-5L) contain a descriptive system and visual analog scale. The descriptive system measures the patient's health in 5 dimensions: the 5L versions has 5 levels and 3L version has 3 levels. The descriptive system scores are usually converted to index values using country specific values sets (that incorporates the country preferences). This package allows the calculation of both descriptive system scores to the index value scores. The value sets for EQ-5D-3L are from the references mentioned in the website https://euroqol.org/eq-5d-instruments/eq-5d-3l-about/valuation/ The value sets for EQ-5D-3L for a total of 31 countries are used for the valuation (see the user guide for a complete list of references). The value sets for EQ-5D-5L are obtained from references mentioned in the https://euroqol.org/eq-5d-instruments/eq-5d-5l-about/valuation-standard-value-sets/ and other sources. The value sets for EQ-5D-5L for a total of 17 countries are used for the valuation (see the user guide for a complete list of references). The package can also be used to map 5L scores to 3L index values for 10 countries: Denmark, France, Germany, Japan, Netherlands, Spain, Thailand, UK, USA, and Zimbabwe. The value set and method for mapping are obtained from Van Hout et al (2012) <doi:10.1016/j.jval.2012.02.008>. |
License: | GPL-2 | GPL-3 [expanded from: GNU General Public License] |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.1.1 |
Imports: | testthat, utils |
Suggests: | knitr, rmarkdown, covr |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2021-10-06 10:52:48 UTC; sheej |
Author: | Sheeja Manchira Krishnan [aut, cre] |
Repository: | CRAN |
Date/Publication: | 2021-10-06 12:00:02 UTC |
Function to correct implausible ordering in Australian valueset for EQ-5D-3L
Description
Correcting the implausible ordering
Usage
.correctImplausibleOrdering(scores)
Arguments
scores |
, EQ-5D-3L scores as a number |
Value
the value that read from the stored dataframe
Examples
.correctImplausibleOrdering(11121)
EQ-5D-3L index values (for each set of response of 3L) for different countries
Description
EQ-5D-3L index values (for each set of response of 3L) for different countries
Usage
EQ5D3L_indexvalues.df
Format
A 243 by 38 dataframe
Note
: For testing purpose -not required by users
: VAS value for state 3333 was reported as -0.022, rather obtained -0.034 and needs to be checked with authors
: There were some implausible orderings and hard coded those only for Australian value sets
Source
Argentina: TTO - Appendix A in Augustovski et al (2009) <doi:10.1111/j.1524-4733.2008.00468.x>
Argentina: VAS - Appendix A in Augustovski et al (2009) <doi:10.1111/j.1524-4733.2008.00468.x>
Australia: Supplementary in Viney et al (2011) <doi:10.1016/j.jval.2011.04.009>
Belgium: VAS - Selected example page 209 in Cleemput et al (2010) <doi:10.1007/s10198-009-0167-0>
Brazil: Appendix 1 in Santos et al (2016) <doi:10.1177/0272989X15613521>
Canada: Supplementary material Table S2 in Bansback et al (2012) <https://doi.org/10.1371/journal.pone.0031115>
Chile: Table 4 page 1139 in Zarate et al (2011) <doi:10.1016/j.jval.2011.09.002
China: Supplementary materials Appendix 2 in Liu et al (2014) <doi:10.1016/j.jval.2014.05.007>
Denmark: TTO - Appendix in Wittrup-Jensen et al (2009) <doi:10.1177/1403494809105287>
Denmark: VAS - Table 2.3 page 14 in Szende et al (2014) <doi:10.1007/978-94-007-7596-1>
Europe: VAS - Table 2.3 page 14 in Szende et al (2014) <doi:10.1007/978-94-007-7596-1>
Finland: VAS - Table 2.3 page 14 in Szende et al (2014) <doi:10.1007/978-94-007-7596-1>
France: Selected example page 61 in Chevalier et al (2013) <doi:10.1007/s10198-011-0351-x>
Germany: TTO - Selected examples Table 6 page 130 in Greiner et al (2005) <doi:10.1007/s10198-004-0264-z>
Germany: VAS - Table 2.3 page 14 in Szende et al (2014) <doi:10.1007/978-94-007-7596-1>
Iran: Selected example page 173 in Goudarzi et al (2019) <doi:10.1016/j.vhri.2019.01.007>
Italy: Supplementary materials Appendix 2 in Scalone et al (2013) <http://dx.doi.org/10.1016/j.jval.2013.04.008>
Japan: Tsuchiya et al (2002) <https://doi.org/10.1002/hec.673>
Korea: Selected example page 1191 in Lee et al <doi:10.1111/j.1524-4733.2009.00579.x>
Malaysia: VAS - Supplementary material Appendix 3 in Yusof et al (2019) <doi:10.1016/j.jval.2011.11.024>
Netherlands: Lamers et al <doi:10.1002/hec.1124>
New Zealand: VAS - Selected examples Table 7 column 5 page 542 in Devlin et al <doi:10.1002/hec.741>
Poland: Table 6 page 294 in Golicki et al <https://doi.org/10.1111/j.1524-4733.2009.00596.x>
Portugal: Supplementary Material 1 in Ferreira et al <doi:10.1007/s11136-013-0448-z>
Slovenia: VAS - Table 2.3 page 14 in Szende et al (2014) <doi:10.1007/978-94-007-7596-1>
Singapore: Selected examples in Nan Luo et al <doi:10.1007/s40273-014-0142-1>
Spain: TTO- Badia et al (2001) <doi:10.1177/0272989X0102100102>
Spain: VAS - Table 2.3 page 14 in Szende et al (2014) <doi:10.1007/978-94-007-7596-1>
Sri Lanka: Selected example page 1789 in Kularatna et al (2015) <doi:10.1007/s11136-014-0906-2>
Sweden: Supplementary Table 3 in Burström et al (2014) <doi:10.1007/s11136-013-0496-4>
Taiwan: Table 3 page 703 in Lee et al (2013) <http://dx.doi.org/10.1016/j.jfma.2012.12.015> #'
Thailand: Tongsiri et al (2011) <doi:10.1016/j.jval.2011.06.005>
Trinidad and Tobago: Table 5 page 66 in Bailey et al (2016) <http://dx.doi.org/10.1016/j.vhri.2016.07.010>
UK : TTO - Selected examples Table 3 page 1105 in Dolan et al (1997) <http://dx.doi.org/10.1097/00005650-199711000-00002>
UK: VAS - Table 2.3 page 14 in Szende et al (2014) <doi:10.1007/978-94-007-7596-1>
USA: Appendix 1 page 218 in Shaw et al (2005) <doi:10.1097/00005650-200503000-00003>
Zimbabwe: Jelsma et al (2003) <https://doi.org/10.1186/1478-7954-1-11>
EQ-5D-3L tariffs using TTO for different countries
Description
EQ-5D-3L tariffs using TTO for different countries
Usage
EQ5D3L_tariffs_TTO.df
Format
A 38 by 28 dataframe
Source
Argentina: Table 3 column 5 page 560 in Augustovski et al (2009) <doi:10.1111/j.1524-4733.2008.00468.x>
Australia: Table 4 column 6 page 933 in Viney et al (2011) <doi:10.1016/j.jval.2011.04.009>
Brazil: Table 2 column 8 page 21 in Santos et al (2016) <doi:10.1177/0272989X15613521>
Canada: Table 4 column 2 page 8 in Bansback et al (2012) <https://doi.org/10.1371/journal.pone.0031115>
Chile: Table 2 column 5 page 1137 in Zarate et al (2011) <doi:10.1016/j.jval.2011.09.002
China: Table 4 column 4 page 603 in Liu et al (2014) <doi:10.1016/j.jval.2014.05.007>
Denmark: Table 4 column 2 page 463 in Wittrup-Jensen et al (2009) <doi:10.1177/1403494809105287>
France: Equation page 61 in Chevalier et al (2013) <doi:10.1007/s10198-011-0351-x>
Germany: Table 4 column 2 page 129 in Greiner et al (2005) <doi:10.1007/s10198-004-0264-z>
Hungary: Table 2 column 11 page 1238 in Rencz et al (2020) <doi:10.1016/j.jval.2020.03.019>
Iran: Table 3 column 8 page 174 in Goudarzi et al (2019) <doi:10.1016/j.vhri.2019.01.007>
Italy: Table 4 column 5 page 820 in Scalone et al (2013) <http://dx.doi.org/10.1016/j.jval.2013.04.008>
Japan: Table 4 column 1 page 41 in Tsuchiya et al (2002) <https://doi.org/10.1002/hec.673>
South Korea: Table 3 column 4 page 1191 in Lee et al <doi:10.1111/j.1524-4733.2009.00579.x>
Malaysia: Table 4 column 5 page 588 in Aryani et al <doi:10.1016/j.jval.2011.11.024>
Netherlands: Table 5 column 3 page 1128 in Lamers et al <doi:10.1002/hec.1124>
Poland: Table 5 column 2 page 293 in Golicki et al <https://doi.org/10.1111/j.1524-4733.2009.00596.x>
Portugal: Table 4 column 6 page 418 in Ferreira et al <doi:10.1007/s11136-013-0448-z>
Singapore: Equation page 504 in Nan Luoß et al <doi:10.1007/s40273-014-0142-1>
Spain: Table 3 column 4 page 13 in Badia et al (2001) <doi:10.1177/0272989X0102100102>
Sri Lanka: Table 2 column 8 page 1791 in Kularatna et al (2015) <doi:10.1007/s11136-014-0906-2>
Sweden: Table 2 column 8 page 436 in Burström et al (2014) <doi:10.1007/s11136-013-0496-4>
Taiwan: Table 2 column 4 page 702 in Lee et al (2013) <http://dx.doi.org/10.1016/j.jfma.2012.12.015> #'
Thailand: Table 1 column 2 page 1144 (parameters like MO3 are calculated) Tongsiri et al (2011) <doi:10.1016/j.jval.2011.06.005>
Trinidad and Tobago: Table 4 page 65 in Bailey et al (2016) <http://dx.doi.org/10.1016/j.vhri.2016.07.010>
UK: Table 1 column 2 page 1103 in Dolan et al (1997) <http://dx.doi.org/10.1097/00005650-199711000-00002>
USA: Table 5 column 2 page 214 in Shaw et al (2005) <doi:10.1097/00005650-200503000-00003>
Zimbabwe: Table 5 column 3 page 7 in Jelsma et al (2003) <https://doi.org/10.1186/1478-7954-1-11>
EQ-5D-3L tariffs using VAS for different countries
Description
EQ-5D-3L tariffs using VAS for different countries
Usage
EQ5D3L_tariffs_VAS.df
Format
A 34 by 12 dataframe
Source
Argentina: Table 3 column 2 page 560 in Augustovski et al (2009) <doi:10.1111/j.1524-4733.2008.00468.x>
Belgium: Equation 2 page 208 in Cleemput et al (2010) <doi:10.1007/s10198-009-0167-0>
Denmark: Table 2.3 page 14 in Szende et al (2014) <doi:10.1007/978-94-007-7596-1>
Europe: Table 2.3 page 14 in Szende et al (2014) <doi:10.1007/978-94-007-7596-1>
Finland: Table 2.3 page 14 in Szende et al (2014) <doi:10.1007/978-94-007-7596-1>
Germany: Table 2.3 page 14 in Szende et al (2014) <doi:10.1007/978-94-007-7596-1>
Malaysia: Table 4 column 6 page S88 in Yusof et al (2019) <doi:10.1016/j.jval.2011.11.024>
New Zealand: Equation 2 page 541 in Devlin et al <doi:10.1002/hec.741>
Slovenia: Table 2.3 page 14 in Szende et al (2014) <doi:10.1007/978-94-007-7596-1>
Spain: Table 2.3 page 14 in Szende et al (2014) <doi:10.1007/978-94-007-7596-1> (this is not shown in euroqol website) Could not get Sweden VAS values
UK: Table 2.3 page 14 in Szende et al (2014) <doi:10.1007/978-94-007-7596-1>
EQ-5D-5L crosswalk value sets for 10 countries
Description
EQ-5D-5L crosswalk value sets for 10 countries
Usage
EQ5D5L_crosswalk_indexvalues.df
Format
A 3125 by 11 dataframe
Note
: For testing purpose -not required by users
Source
https://euroqol.org/eq-5d-instruments/eq-5d-5l-about/valuation-standard-value-sets/crosswalk-index-value-calculator/ (accessed on Aug 03,2019)
Van Hout et al (2012) <doi: 10.1016/j.jval.2012.02.008>.
EQ-5D-5L index values
Description
EQ-5D-5L index values
Usage
EQ5D5L_indexvalues.df
Format
A 3125 by 22 dataframe
Note
: For testing purpose -not required by users
Source
Canada: Selected example Table A3 in Xie et al (2016) <doi:10.1097/MLR.0000000000000447>
China: Supplementary Material 1 in Luo et al (2017) <doi:10.1016/j.jval.2016.11.016>
England: Selected example Table 3 page 18 and supporting information in Devlin et al (2018) <doi:10.1002/hec.3564>
Ethopia: Table 3 column 8 page 12 and supporting information in Welie et al (2019) <doi:10.1016/j.vhri.2019.08.475>
France: Table 3 column 2-6 page 12 and supporting information in Andrade et al (2020) <doi::10.1007/s40273-019-00876-4>
Germany: Supplementary Material 1 in Ludwig et al (2018) <doi:10.1007/s40273-018-0615-8>
Hong Kong: Selected examples Table 3 page 244 in Wong et al (2018) <doi:10.1007/s40271-017-0278-0>
Indonesia: Selected examples page 1162 in Purba et al (2017) <doi:10.1007/s40273-017-0538-9>
Ireland: Selected example Table 2 page 1348 in Hobbins et al (2016) <doi:10.1007/s40273-018-0690-x>
Japan: Shiroiwa, et al (2016) <doi:10.1016/j.jval.2016.03.1834>
Korea: Selected example page 1848 in Kim et al (2016) <doi:10.1007/s11136-015-1205-2>
Malaysia: Shafie et al (2019) <doi:10.1007/s40273-018-0758-7>
Netherlands: Versteegh et al (2016) <doi:10.1016/j.jval.2016.01.003>
Poland: Supplementary Material 3 in Golicki et al <doi:10.1007/s40273-019-00811-7>
Portugal: Ferreira1 et al (2014) <doi:10.1007/s11136-019-02226-5>
Spain: Selected examples in Table 1 in Ramos-Goñiet et al (2018) <https://doi.org/10.1016/j.jval.2017.10.023>
Taiwan: Table 3 page 10 in Lin et al (2018) <https://doi.org/10.1371/journal.pone.0209344>
Thailand: Pattanaphesaj et al (2018) <doi:10.1080/14737167.2018>
Uruguay: Augustovski et al (2016) <doi:10.1007/s11136-015-1086-4>
USA: Pickard et al (2019) <doi:10.1016/j.jval.2019.02.009>
Vietnam: Mai et al (2020) <doi:10.1007/s11136-020-02469-7>
EQ-5D-5L tariffs for different countries
Description
EQ-5D-5L tariffs for different countries
Usage
EQ5D5L_tariffs.df
Format
A 34 by 22 data frame
Source
Canada: Table 2 column 5 page 103 in Xie et al (2016) <doi:10.1097/MLR.0000000000000447>
China: Table 4 column 4 page 667 in Luo et al (2017) <doi:10.1016/j.jval.2016.11.016>
England: Table 2 column 2 page 17 in Devlin et al (2018) <doi:10.1002/hec.3564>
Ethiopia: Table 3 column 8 page 12 in Welie et al (2019) <doi:10.1016/j.vhri.2019.08.475>
France: Table 3 column 2-6 page 12 in Andrade et al (2019) <doi::10.1007/s40273-019-00876-4>
Germany: Table column 9 page 670 in Ludwig et al (2018) <doi:10.1007/s40273-018-0615-8>
Hong Kong: Table 3 column 8 page 244 in Wong et al (2018) <doi:10.1007/s40271-017-0278-0>
Hungary: Table 3 column 14 page 1241 in Rencz et al (2020) <doi:10.1016/j.jval.2020.03.019>
Indonesia: Table 3 column 8 page 1162 in Purba et al (2017) <doi:10.1007/s40273-017-0538-9>
Ireland: Table 2 column 2 page 1348 in Hobbins et al (2016) <doi:10.1007/s40273-018-0690-x>
Japan: Table 2 column 7 page 651 in Shiroiwa, et al (2016) <doi:10.1016/j.jval.2016.03.1834>
Korea: Table 5 column 6 page 1851 in Kim et al (2016) <doi:10.1007/s11136-015-1205-2>
Malaysia: Table 2 column 9 page 720 in Shafie et al (2019) <doi:10.1007/s40273-018-0758-7>
Netherlands: Table 4 column 8 page 350 in Versteegh et al (2016) <doi:10.1016/j.jval.2016.01.003>
Poland: Table 2 column 7 in Golicki et al <doi:10.1007/s40273-019-00811-7>
Portugal: Table 3 column 4 in Ferreira1 et al (2014) <doi:10.1007/s11136-019-02226-5>
Spain: Table 1 column 9 page 5 in Ramos-Goñiet et al (2018) <https://doi.org/10.1016/j.jval.2017.10.023>
Taiwan: Table 2 column 4 page 9 in Lin et al (2018) <https://doi.org/10.1371/journal.pone.0209344>
Thailand: Table 3 column 6 page 4 in Pattanaphesaj et al (2018) <doi:10.1080/14737167.2018>
Uruguay: Table 2.3 column 5 page 29 in Augustovski et al (2016) <doi:10.1007/s11136-015-1086-4>
USA: Table 2 column 2 page 939 in Pickard et al (2019) <doi:10.1016/j.jval.2019.02.009>
Vietnam: Table 3 column 5 in Mai et al (2020) <doi:10.1007/s11136-020-02469-7>
Probability matrix for the cross walk
Description
Probability matrix for the cross walk
Usage
Probability_matrix_crosswalk.df
Format
A dataframe with 3124 rows and 243 columns
Source
https://euroqol.org/wp-content/uploads/2018/02/EQ-5D-5L_Crosswalk_model_and__methodology2.pdf
Van Hout et al (2012) <doi: 10.1016/j.jval.2012.02.008>.
Function to check the given column exists
Description
Function to check the given column exists
Usage
check_column_exist(column_name, data)
Arguments
column_name |
a column name |
data |
data frame |
Value
0 if success -1 if failure
Examples
check_column_exist("age", data.frame(
age = rep(20, 4), sex = rep("male", 4),
stringsAsFactors = FALSE
))
Function to check the EQ-5D-3L scores
Description
Function to check the EQ-5D-3L scores
Usage
check_scores_3L(dimen, dimen2 = NA, dimen3 = NA, dimen4 = NA, dimen5 = NA)
Arguments
dimen |
a must input,response for EQ-5D-3L mobility or the 5 digit response, or the vector of responses, e.g. 11111, c(1, 1, 1, 1, 1) or 1 |
dimen2 |
response for EQ-5D-3L self care, or NA if the responses are given as dimensions |
dimen3 |
response for EQ-5D-3L usual activities,or NA if the responses are given as dimensions |
dimen4 |
response for EQ-5D-3L pain/discomfort, or NA if the responses are given as dimensions |
dimen5 |
response for EQ-5D-3L anxiety/depression, or NA if the responses are given as dimensions |
Examples
check_scores_3L(c(1, 2, 3, 3, 3))
check_scores_3L(1, 2, 3, 3, 3)
check_scores_3L(1, 2, 3, 2, 3)
check_scores_3L(12323)
Function to check the EQ-5D-5L scores
Description
Function to check the EQ-5D-5L scores
Usage
check_scores_5L(dimen, dimen2 = NA, dimen3 = NA, dimen4 = NA, dimen5 = NA)
Arguments
dimen |
a must input,response for EQ-5D-3L mobility or the 5 digit response, or the vector of responses, e.g. 11111, c(1,1,1,1,1) or 1 |
dimen2 |
response for EQ-5D-5L self care, or NA if the responses are given as dimensions |
dimen3 |
response for EQ-5D-5L usual activities,or NA if the responses are given as dimensions |
dimen4 |
response for EQ-5D-5L pain/discomfort, or NA if the responses are given as dimensions |
dimen5 |
response for EQ-5D-5L anxiety/depression, or NA if the responses are given as dimensions |
Examples
check_scores_5L(c(1, 2, 3, 5, 3))
check_scores_5L(1, 2, 3, 4, 3)
check_scores_5L(12323)
Function to convert a number to individual digits
Description
Function to convert a number to individual digits
Usage
convert_number_to_digits(this_number)
Arguments
this_number |
a number |
Value
digits
Examples
convert_number_to_digits(234)
Function to return descriptive statistics, sum, no of observations, mean, mode. median, range, standard deviation and standard error
Description
Function to return descriptive statistics, sum, no of observations, mean, mode. median, range, standard deviation and standard error
Usage
descriptive_stat_data_column(colum, column_name, nrcode = NA)
Arguments
colum |
column |
column_name |
the column name |
nrcode |
non response code corresponding to the column |
Value
the descriptive statistics for success , -1 for failure
Examples
descriptive_stat_data_column(c(1, 2, 3, 4, NA), "scores", NA)
Function to return the column number for a given column name (from list of possible column names that may have used) in a data frame
Description
Function to return the column number for a given column name (from list of possible column names that may have used) in a data frame
Usage
get_colno_existing_colnames(column_names, data)
Arguments
column_names |
column names in a data frame |
data |
a data frame |
Value
the column number
Examples
get_colno_existing_colnames(c("age"), data.frame(age = rep(20, 4),
gender = rep("male", 4)))
Function to return the column number for column name
Description
Function to return the column number for column name
Usage
get_column_no_colnames(data, column_name)
Arguments
data |
a data frame |
column_name |
column names of the data frame |
Value
column number, if success -1, if failure
Examples
get_column_no_colnames(data.frame(age = rep(20, 4),
sex = rep("male", 4)), "sex")
Function to return frequency table
Description
Function to return frequency table
Usage
get_frequency_table(v)
Arguments
v |
a vector |
Value
frequency table
Examples
get_frequency_table(c(1, 1, 1, 12, 2))
Function to return mode
Description
Function to return mode
Usage
get_mode_for_vec(v)
Arguments
v |
a vector |
Value
mode if success -1 for failure
Examples
get_mode_for_vec(c(1, 1, 2, 3))
Function to map EQ-5D-5L scores to EQ-5D-3L index values as per the specific country and group by gender and age
Description
Function to map EQ-5D-5L scores to EQ-5D-3L index values
Usage
map_5Lto3L(
eq5dresponse_data,
mobility,
self_care,
usual_activities,
pain_discomfort,
anxiety,
country = "UK",
method = "CW",
groupby = NULL,
agelimit = NULL
)
Arguments
eq5dresponse_data |
the data containing eq5d5L responses |
mobility |
column name for EQ-5D-5L mobility |
self_care |
column name for response for EQ-5D-5L self care |
usual_activities |
column name for response for EQ-5D-5L usual activities |
pain_discomfort |
column name for response for EQ-5D-5L pain/discomfort |
anxiety |
column name for response for EQ-5D-5L anxiety/depression |
country |
country of interest, by default is UK, if groupby has to specify the country should be specified |
method |
CW cross walk |
groupby |
male or female -grouping by gender, default NULL |
agelimit |
vector of ages to show upper and lower limits |
Value
index value if success, negative values for failure
Examples
map_5Lto3L(data.frame(
mo = c(1), sc = c(4), ua = c(4), pd = c(3),
ad = c(3)
), "mo", "sc", "ua", "pd", "ad")
Function to map EQ-5D-5L descriptive system to 3L index value
Description
Function to map EQ-5D-5L descriptive system to 3L index value (ref:Van Hout et al 2012 and code inspired from https://github.com/brechtdv/eq5d-mapping)
Usage
map_5Lto3L_Ind(
country = "UK",
method = "CW",
dimen,
dimen2 = NA,
dimen3 = NA,
dimen4 = NA,
dimen5 = NA
)
Arguments
country |
default is "UK" |
method |
CW cross walk |
dimen |
response for EQ-5D-5L mobility or the 5 digit response, or the vector of responses, e.g. 11111, c(1,1,1,1,1) or 1 |
dimen2 |
response for EQ-5D-5L self care, or NA if the responses are given as dimen |
dimen3 |
response for EQ-5D-5L usual activities,or NA if the responses are given as dimen |
dimen4 |
response for EQ-5D-5L pain/discomfort, or NA if the responses are given as dimen |
dimen5 |
response for EQ-5D-5L anxiety/depression, or NA if the responses are given as dimen |
Value
index value of EQ-5D-3L, -1 if any error
Examples
map_5Lto3L_Ind("UK", "CW", 11125)
map_5Lto3L_Ind("UK", "CW", c(1, 1, 1, 2, 5))
map_5Lto3L_Ind("UK", "CW", 1, 1, 1, 2, 5)
Function to add an underscore for texts with spaces in between
Description
Function to add an underscore for texts with spaces in between
Usage
replace_space_underscore(this_string)
Arguments
this_string |
a string |
Value
string where the spaces replaced by "_"
Examples
replace_space_underscore("Sri Lanka")
Function to check the gender column and age column subset based on the values in it have used) in a data frame
Description
Function to check the gender column and age column subset based on the values in it have used) in a data frame
Usage
subset_gender_age_to_group(data, gender, agelimit)
Arguments
data |
a data frame |
gender |
groupby gender either male or female expected |
agelimit |
list of ages e.g. c(10,20) |
Value
the column number
Examples
subset_gender_age_to_group(data.frame(age = rep(20, 4), gender =
rep("male", 4)), "male", c(10, 70))
Function to check format of a numeric column when the values are not bounded
Description
Function to check format of a numeric column when the values are not bounded
Usage
test_data_num_norange(vec, nrcode = NA)
Arguments
vec |
a column vector |
nrcode |
non response code corresponding to the column |
Value
0, if success -1, if failure
Examples
test_data_num_norange(c(1, 2, 3, 4, -99), -99)
Function to throw error on invalid directory or file or if the file is not readable
Description
Function to throw error on invalid directory or file or if the file is not readable
Usage
test_file_exist_read(filename)
Arguments
filename |
name of a file or directory |
Value
0 if success, non zero negative values if failure
Examples
test_file_exist_read(system.file("extdata", "blank.txt",
package = "valueEQ5D"))
Function to value EQ-5D-3L columns to index values for any country and group by gender and age
Description
Main function to value EQ-5D-5L descriptive system to 5L index values.
Usage
value_3L(
eq5dresponse_data,
mo,
sc,
ua,
pd,
ad,
country,
method,
groupby,
agelimit
)
Arguments
eq5dresponse_data |
the data containing eq5d responses |
mo |
column name for EQ-5D-3L mobility |
sc |
column name for response for EQ-5D-3L self care |
ua |
column name for response for EQ-5D-3L usual activities |
pd |
column name for response for EQ-5D-3L pain/discomfort |
ad |
column name for response for EQ-5D-3L anxiety/depression |
country |
country of interest, by default is UK, if groupby has to specify the country should be specified |
method |
Either "TTO" or "VAS" |
groupby |
male or female -grouping by gender, default NULL |
agelimit |
vector of ages to show upper and lower limits |
Value
the descriptive statistics of index values, frequency table and the modified data where the last column will be the index values data<-data.frame(age=c(10,20),sex=c("M","F"),mo=c(1,2),sc=c(1,2),ua=c(3,4), pd=c(3,1),ad=c(3,1)) value_3L(data, "mo", "sc","ua", "pd", "ad","UK","TTO",NULL,c(10,70))
Function to value EQ-5D-3L scores for various countries
Description
Function to value EQ-5D-3L scores for various countries
Usage
value_3L_Ind(
country,
method,
dimen,
dimen2 = NA,
dimen3 = NA,
dimen4 = NA,
dimen5 = NA
)
Arguments
country |
a country name from the list Belgium,Brazil,Canada,Chile, Denmark,Europe,Finland,France,Germany,Italy,Japan,Korea,Netherlands, NewZealand,Poland,Portugal,Slovenia,Spain,Taiwan,Thailand,UK,USA,and Zimbabwe |
method |
method name either TTO or VAS |
dimen |
a must input,response for EQ-5D-5L mobility or the 5 digit response, or the vector of responses, e.g. 11111, c(1,1,1,1,1) or 1 |
dimen2 |
response for EQ-5D-3L self care, or NA if the responses are given as dimen |
dimen3 |
response for EQ-5D-3L usual activities,or NA if the responses are given as dimen |
dimen4 |
response for EQ-5D-3L pain/discomfort, or NA if the responses are given as dimen |
dimen5 |
response for EQ-5D-3L anxiety/depression, or NA if the responses are given as dimen |
Value
index value based if success, negative values for failure
Examples
value_3L_Ind("UK", "TTO", 23131)
value_3L_Ind("Spain", "TTO", 2, 3, 1, 3, 1)
value_3L_Ind("Denmark", "VAS", c(1, 2, 3, 1, 3))
Function to value EQ-5D-5L scores for any country and group by gender and age
Description
Function to value EQ-5D-5L descriptive system to index value.
Usage
value_5L(
eq5dresponse_data,
mo,
sc,
ua,
pd,
ad,
country = "England",
groupby = NULL,
agelimit = NULL
)
Arguments
eq5dresponse_data |
the data containing eq5d responses |
mo |
column name for EQ-5D-5L mobility |
sc |
column name for response for EQ-5D-5L self care |
ua |
column name for response for EQ-5D-5L usual activities |
pd |
column name for response for EQ-5D-5L pain/discomfort |
ad |
column name for response for EQ-5D-5L anxiety/depression |
country |
country of interest, by default is England |
groupby |
male or female -grouping by gender, default NULL |
agelimit |
vector of ages to show upper and lower limits, default NULL |
Value
index value if success, negative values for failure
Examples
data <- data.frame(
age = c(10, 20), sex = c("M", "F"),
mo = c(1, 2), sc = c(1, 2), ua = c(3, 4), pd = c(3, 4), ad = c(3, 4)
)
value_5L(data, "mo", "sc", "ua", "pd", "ad", "England", NULL, c(10, 70))
Function to value EQ-5D-5L scores for various countries
Description
Function to value EQ-5D-5L scores for various countries
Usage
value_5L_Ind(
country,
dimen,
dimen2 = NA,
dimen3 = NA,
dimen4 = NA,
dimen5 = NA
)
Arguments
country |
a country name from the list Canada,China,England, Germany,HongKong,Indonesia,Ireland,Japan,Korea,Malaysia,Netherlands, Poland,Spain,Taiwan,Thailand,and Uruguay |
dimen |
a must input,response for EQ-5D-5L mobility or the 5 digit response, or the vector of responses, e.g. 11111, c(1,1,1,1,1) or 1 |
dimen2 |
response for EQ-5D-5L self care, or NA if the responses are given as dimen |
dimen3 |
response for EQ-5D-5L usual activities,or NA if the responses are given as dimen |
dimen4 |
response for EQ-5D-5L pain/discomfort, or NA if the responses are given as dimen |
dimen5 |
response for EQ-5D-5L anxiety/depression, or NA if the responses are given as dimen |
Value
index values if success, negative values if failure
Examples
value_5L_Ind("England", 23434)
value_5L_Ind("China", 2, 3, 4, 3, 4)
value_5L_Ind("Poland", c(1, 2, 3, 4, 3))