Type: | Package |
Title: | The Three Parameter Weibull Distribution |
Version: | 0.1.0 |
Maintainer: | Atchanut Rattanalertnusorn <atchanut_r@rmutt.ac.th> |
Description: | Density, distribution function, the quantile function, random generation function, and maximum likelihood estimation. |
License: | GPL-3 |
Language: | en-US |
Encoding: | UTF-8 |
RoxygenNote: | 7.1.2 |
Imports: | graphics, stats |
Suggests: | testthat (≥ 3.0.0) |
Config/testthat/edition: | 3 |
NeedsCompilation: | no |
Packaged: | 2024-05-09 02:36:30 UTC; COM |
Author: | Atchanut Rattanalertnusorn [aut, cre] |
Repository: | CRAN |
Date/Publication: | 2024-05-10 13:50:02 UTC |
Distribution function plot of the three-parameter Weibull distribution
Description
Distribution function plot of the three-parameter Weibull distribution with specified shape
, scale
and location
.
Usage
cdfplot(x, shape, scale, location)
Arguments
x |
vector of quantiles |
shape |
shape parameter ( |
scale |
scale parameter ( |
location |
location parameter ( |
Value
Distribution function plot of the three-parameter Weibull distribution.
References
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.
Examples
x <- rtpwb(100,1.5,2,1)
cdfplot(x,1.5,2,1)
Maximum likelihood estimation (MLE) for the three-parameter Weibull distribution.
Description
This function for estimating parameter of the three-parameter Weibull distribution.
Usage
mlewb(x, shape, scale, location)
Arguments
x |
vector of quantiles. |
shape |
shape parameter, where |
scale |
scale parameter, where |
location |
location parameter, where |
Value
the estimated shape, scale and location values of the three-parameter Weibull distribution.
Note
the result of this function may produce a Warning message, but not effect to the estimated parameter.
References
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.
Examples
x<- rtpwb(1000,2,3,1) #n=1000 large sample
mlewb(x,2,3,1)
x<- rtpwb(50,2,3,1) #n=50 medium sample
mlewb(x,2,3,1)
x<- rtpwb(10,2,3,1) #n=10 small sample
mlewb(x,2,3,1)
Probability density function plot of the three-parameter Weibull distribution
Description
Probability density function plot of the three-parameter Weibull distribution with specified shape
, scale
and location
.
Usage
pdfplot(x, shape, scale, location)
Arguments
x |
vector of quantiles |
shape |
shape parameter ( |
scale |
scale parameter ( |
location |
location parameter ( |
Value
Probability density function plot of the three-parameter Weibull distribution.
References
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.
Examples
x <- rtpwb(100,1.5,2,1)
pdfplot(x,1.5,2,1)
The three-parameter Weibull distribution(tpwb)
Description
Density, distribution function, quantile function, and random generation function
for the three-parameter Weibull distribution with shape
, scale
and location
Usage
dtpwb(x, shape, scale, location = 1, log = FALSE)
ptpwb(q, shape, scale, location = 1, lower.tail = TRUE, log.p = FALSE)
qtpwb(p, shape, scale, location = 1, lower.tail = TRUE, log.p = FALSE)
rtpwb(n, shape, scale, location = 1)
Arguments
x , q |
vector of quantiles. |
shape |
shape parameter, where |
scale |
scale parameter, where |
location |
location parameter, where |
log , log.p |
logical; (default = |
lower.tail |
logical; if |
p |
vector of probabilities |
n |
number of observations. If |
Value
dtpwb
gives the density,
ptpwb
gives the distribution function,
qtpwb
gives the quantile function,
and rtpwb
generates random samples.
Note
If location parameter, \delta = 0
, it reduced to the two-parameter Weibull distribution.
References
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.
Examples
x <- rtpwb(20,1.5,3,1)
dtpwb(x,1.5,3,1)
dtpwb(x,1.5,3,1,log=TRUE)
q <- rtpwb(20,1.5,3,1)
ptpwb(q,1.5,3,1 )
ptpwb(q,1.5,3,1, lower.tail = FALSE)
q <- rtpwb(20,1.5,3,1); q
p<- ptpwb(q,1.5,3,1 ); p
qtpwb(p,1.5,3,1)
rtpwb(5, 1.5, 3, 0) # the same as rweibull(5,1.5,3)
rtpwb(25,0.5, 2, 1)