Package ‘quickSentiment’

February 15, 2026

Title A Fast and Flexible Pipeline for Text Classification
Version 0.2.0

Description
A high-level wrapper that simplifies text classification into three streamlined steps: preprocessing,
model training, and prediction.
It unifies the interface for multiple algorithms (including 'glmnet’,
'ranger’, and 'xgboost') and vectorization methods (Bag-of-Words, Term Frequency-
Inverse Document Frequency (TF-IDF)),
allowing users to go from raw text to a trained sentiment model in two function
calls. The resulting model artifact automatically handles preprocessing for
new datasets in the third step, ensuring consistent prediction pipelines.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2

Imports quanteda, stopwords, foreach, stringr, textstem, glmnet,
ranger, xgboost, naivebayes, caret, Matrix, magrittr,
doParallel

VignetteBuilder knitr

Suggests knitr, rmarkdown, spelling

Language en-US

NeedsCompilation no

Author Alabhya Dahal [aut, cre]

Maintainer Alabhya Dahal <alabhya.dahal@gmail.com>
Repository CRAN

Date/Publication 2026-02-15 05:10:02 UTC

Contents
BOW _test e e e 2
BOW _train e 3
logit_model 4

2 BOW __test
nb_model L e 5
pipeline L e e e 5
prediction e e e e e e 7
PIE_PIOCESS . o o v v v v e 8
rf model 9
xgb_model e e e 10

Index 12

BOW_test Transform New Text into a Document-Feature Matrix
Description

This function takes a character vector of new documents and transforms it into a DFM that has the
exact same features as a pre-fitted training DFM, ensuring consistency for prediction.

Usage

BOW_test(doc, fit)

Arguments
doc A character vector of new documents to be processed.
fit A fitted BoW object returned by BOW_train().

Value

A quanteda dfm aligned to the training features.

Examples
train_txt <- c("apple orange banana”, "apple apple”)
fit <- BOW_train(train_txt, weighting_scheme = "bow")
new_txt <- c("”banana pear"”, "orange apple")

test_dfm <- BOW_test(new_txt, fit)
test_dfm

BOW __train 3

BOW_train Train a Bag-of-Words Model

Description

Train a Bag-of~-Words Model

Usage

BOW_train(doc, weighting_scheme = "bow”, ngram_size = 1)
Arguments

doc A character vector of documents to be processed.

weighting_scheme
A string specifying the weighting to apply. Defaults to "bag_of_words”.

e "bag_of_words" (Alias: "bow") - Standard count of words.

e "term_frequency"” (Alias: "tf") - Normalized counts (frequency relative
to document length).

o "tfidf"” (Alias: "tf-idf") - Term Frequency-Inverse Document Frequency.
e "binary"” - Presence/Absence (1/0).

ngram_size An integer specifying the maximum n-gram size. For example, ‘ngram_size = 1°
will create unigrams only; ‘ngram_size = 2° will create unigrams and bigrams.
Defaults to 1.

Value
An object of class "qs_bow_fit" containing:
» dfm_template: a quanteda dfm template

* weighting_scheme: the weighting used

* ngram_size: the n-gram size used

®

Examples

txt <- c("text one”, "text two text")
fit <- BOW_train(txt, weighting_scheme = "bow")
fit$dfm_template

4 logit_model

logit_model Train a Regularized Logistic Regression Model using glmnet

Description

This function trains a logistic regression model using Lasso regularization via the glmnet package.
It uses cross-validation to automatically find the optimal regularization strength (lambda).

Usage

logit_model(
train_vectorized,
Y,
test_vectorized,
parallel = FALSE,
tune = FALSE

Arguments

train_vectorized
The training feature matrix (e.g., a ‘dfm‘ from quanteda). This should be a
sparse matrix.
Y The response variable for the training set. Should be a factor for classification.
test_vectorized
The test feature matrix, which must have the same features as ‘train_vectorized®.

parallel Logical
tune Logical
Value

A list containing two elements:

pred A vector of class predictions for the test set.
model The final, trained ‘cv.glmnet‘ model object.
Examples

Create dummy vectorized data

train_matrix <- matrix(runif(100), nrow = 10)

test_matrix <- matrix(runif(50), nrow = 5)

y_train <- factor(sample(c("P", "N"), 10, replace = TRUE))

Run model
model_results <- logit_model(train_matrix, y_train, test_matrix)
print(model_results$pred)

nb_model 5

nb_model Train a Naive Bayes Model

Description

Train a Naive Bayes Model

Usage

nb_model (train_vectorized, Y, test_vectorized, parallel = FALSE, tune = FALSE)

Arguments

train_vectorized
The training feature matrix (e.g., a ‘dfm‘ from quanteda). This should be a
sparse matrix.
Y The response variable for the training set. Should be a factor for classification.
test_vectorized
The test feature matrix, which must have the same features as ‘train_vectorized®

parallel Logical
tune Logical. If TRUE, tests different Laplace smoothing values.
Examples

#Create dummy vectorized data

train_matrix <- matrix(runif(100), nrow = 10)

test_matrix <- matrix(runif(50), nrow = 5)
colnames(train_matrix) <- paste@("word”, 1:10)
colnames(test_matrix) <- paste@("word”, 1:10)

y_train <- factor(sample(c("P", "N"), 10, replace = TRUE))

Run model

model_results <- nb_model(train_matrix, y_train, test_matrix)
print(model_results$pred)

pipeline Run a Full Text Classification Pipeline on Preprocessed Text

Description

This function takes a data frame with pre-cleaned text and handles the data splitting, vectorization,
model training, and evaluation.

6 pipeline

Usage

pipeline(
vect_method,
model_name,
df,
text_column_name,
sentiment_column_name,
n_gram = 1,
tune = FALSE,
parallel = FALSE,
stratify = TRUE

)
Arguments

vect_method A string specifying the vectorization method. Defaults to "bag_of_words".
e "bag_of_words" (Alias: "bow") - Standard count of words.
e "term_frequency” (Alias: "tf") - Normalized counts.
o "tfidf" (Alias: "tf-idf") - Term Frequency-Inverse Document Frequency.
e "binary" - Presence/Absence (1/0).

model_name A string specifying the model to train. Defaults to "logistic_regression”.
¢ "random_forest” (Alias: "rf")
e "xgboost"” (Alias: "xgb")
e "logistic_regression” (Alias: "logit”, "glm")

df The input data frame.

text_column_name

The name of the column containing the **preprocessed** text.
sentiment_column_name

The name of the column containing the original target labels (e.g., ratings).

n_gram The n-gram size to use for BoW/TF-IDF. Defaults to 1.
tune Logical. If TRUE, the pipeline will perform hyperparameter tuning for the se-
lected model. Defaults to FALSE. [NEW]
parallel If TRUE, runs model training in parallel. Default FALSE.
stratify If TRUE, use stratified split by sentiment. Default TRUE.
Value

A list containing the trained model object, the DFM template, class levels, and a comprehensive
evaluation report.

Examples

df <- data.frame(
text = c("good product”, "excellent”, "loved it", "great quality”,
"bad service”, "terrible”, "hated it", "awful experience”,

prediction 7

"not good”, "very bad"”, "fantastic”, "wonderful”),
y = c("P", "P", "PM, "PM N N, N, N, "N, "N, "M "pM)
)
outl <- pipeline("bow”, "logistic_regression”, df, "text”, "y")

out2 <- pipeline("tfidf", "rf", df, "text”, "y") # 'rf' automatically converts to 'random_forest'

prediction Predict Sentiment on New Data Using a Saved Pipeline Artifact

Description

This is a generic prediction function that handles different model types and ensures consistent pre-
processing and vectorization for new, unseen text.

Usage

prediction(pipeline_object, df, text_column)

Arguments

pipeline_object
A list object returned by the main ‘pipeline()‘ function. It must contain the
trained model, DFM template, preprocessing function, and n-gram settings.

df A data frame containing the new data.
text_column A string specifying the column name of the text to predict.
Value

A vector of class predictions for the new data.

Examples

if (exists("my_artifacts”)) {
preds <- prediction(my_artifacts, c(”"cleaned text one"”, "cleaned text two"))

}

pre_process

pre_process

Preprocess a Vector of Text Documents

Description

This function provides a comprehensive and configurable pipeline for cleaning raw text data. It han-
dles a variety of common preprocessing steps including removing URLs and HTML, lowercasing,

stopword removal, and lemmatization.

Usage

pre_process(

doc_vector,
remove_brackets = TRUE,
remove_urls = TRUE,
remove_html = TRUE,
remove_nums = TRUE,
remove_emojis_flag = TRUE,
to_lowercase = TRUE,
remove_punct = TRUE,
remove_stop_words = TRUE,
lemmatize = TRUE

Arguments

doc_vector

remove_brackets

remove_urls
remove_html

remove_nums

A character vector where each element is a document.

A logical value indicating whether to remove text in square brackets.

remove_emojis_flag

to_lowercase

remove_punct

A logical value indicating whether to remove common emojis.

remove_stop_words

lemmatize

Value

A character vector of the cleaned and preprocessed text.

A logical value indicating whether to remove English stopwords.

A logical value indicating whether to remove HTML tags.

A logical value indicating whether to remove numbers.

A logical value indicating whether to convert text to lowercase.

A logical value indicating whether to remove punctuation.

A logical value indicating whether to remove URLs and email addresses.

A logical value indicating whether to lemmatize words to their dictionary form.

1f_model 9

Examples

raw_text <- c(
"This is a test! Visit https://example.com”,
"Email me at test.user@example.org [important]”

)

Basic preprocessing with defaults
clean_text <- pre_process(raw_text)
print(clean_text)

Keep punctuation and stopwords
clean_text_no_stop <- pre_process(
raw_text,
remove_stop_words = FALSE,
remove_punct = FALSE

)

print(clean_text_no_stop)

rf_model functions/random_forest_fast.R Train a Random Forest Model using
Ranger

Description

This function trains a Random Forest model using the high-performance ranger package. It handles
the necessary conversion from a sparse DFM to a dense matrix and corrects for column name
inconsistencies.

Usage

rf_model(train_vectorized, Y, test_vectorized, parallel = FALSE, tune = FALSE)

Arguments
train_vectorized
The training feature matrix (e.g., a ‘dfm‘ from quanteda).
Y The response variable for the training set. Should be a factor.

test_vectorized
The test feature matrix, which must have the same features as ‘train_vectorized®.

parallel Logical
tune Logical
Value

A list containing two elements:

pred A vector of class predictions for the test set.

model The final, trained ‘ranger‘ model object.

10 xgb_model

Examples

Create dummy vectorized data

train_matrix <- matrix(runif(100), nrow = 10)

test_matrix <- matrix(runif(50), nrow = 5)

y_train <- factor(sample(c("P", "N"), 10, replace = TRUE))

Run model
model_results <- rf_model(train_matrix, y_train, test_matrix)
print(model_results$pred)

xgb_model Train a Gradient Boosting Model using XGBoost

Description

This function trains a model using the xgboost package. It is highly efficient and natively supports
sparse matrices, making it ideal for text data. It automatically handles both binary and multi-class
classification problems.

Usage

xgb_model(train_vectorized, Y, test_vectorized, parallel = FALSE, tune = FALSE)

Arguments

train_vectorized
The training feature matrix (e.g., a ‘dfm‘ from quanteda).
Y The response variable for the training set. Should be a factor.

test_vectorized
The test feature matrix, which must have the same features as ‘train_vectorized‘.

parallel Logical
tune Logical
Value

A list containing two elements:

pred A vector of class predictions for the test set.

model The final, trained ‘xgb.Booster‘ model object.

xgb_model

Examples

Create dummy vectorized data

train_matrix <- matrix(runif(100), nrow = 10)

test_matrix <- matrix(runif(5@), nrow = 5)

y_train <- factor(sample(c("P", "N"), 10, replace = TRUE))

Run model

model_results <- xgb_model(train_matrix, y_train, test_matrix)
print(model_results$pred)

11

Index

BOW_test, 2
BOW_train, 3

logit_model, 4
nb_model, 5
pipeline, 5
pre_process, 8
prediction, 7

rf_model, 9

xgb_model, 10

12

	BOW_test
	BOW_train
	logit_model
	nb_model
	pipeline
	prediction
	pre_process
	rf_model
	xgb_model
	Index

