Package 'itrimhoch'

April 24, 2025

Type Package

Title Improved Trimmed Weighted Hochberg Procedures and Sample Size Optimization

Version 1.0.0

Description

The improved trimmed weighted Hochberg procedure provides increased statistical power and relaxes the dependence assumptions for familywise error rate control compared to the original weighted Hochberg procedure. This package computes the boundaries required for implementing the proposed methodology and includes sample size optimization methods. See Gou, J., Chang, Y., Li, T., and Zhang, F.(2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.

License GPL-3

Encoding UTF-8

Depends R (>= 4.2.0)

Imports mvtnorm (>= 1.2), stats (>= 4.0.0)

RoxygenNote 7.3.2.9000

NeedsCompilation no

Author Jiangtao Gou [aut, cre], Fengqing (Zoe) Zhang [aut], Yizhuo Chang [ctb], Tianqi Li [ctb]

Maintainer Jiangtao Gou <gouRpackage@gmail.com>

Repository CRAN

Date/Publication 2025-04-24 17:40:09 UTC

Contents

find_k_given_rho_target_mvtnorm	2
find_k_target_mvtnorm	3
find_rho_target_mvtnorm	4
iHpTarget1	4

iHpTarget1m	5
iHpTarget2	6
iHpTarget2m	7
interpolate_zero	8
itwcHochPower	9
optk	10
optrho	11
optsamplesize_iHp	12
optsamplesize_iHpm	13
optsamplesize_tHp	14
optsamplesize_wHolmpm	16
optsamplesize_wHp	17
tHpTarget1	18
tHpTarget2	19
typeIerror_Simes_mvtnorm	20
typeIerror_trimSimes_mvtnorm	21
wHolmTarget1	22
wHolmTarget1m	23
wHolmTarget2	24
wHolmTarget2m	25
wHpTarget1	26
wHpTarget2	
· ·	
	28

Index

find_k_given_rho_target_mvtnorm

Find the difference between the error rate when k and rho are both given and the prespecified alpha level

Description

Find the difference between the error rate when k and rho are both given and the prespecified alpha level

Usage

```
find_k_given_rho_target_mvtnorm(k, rho, alpha, alphavec = c(alpha/2, alpha/2))
```

Arguments

k	a pre-specified constant in the improved trimmed weighted Hochberg procedure
rho	the correlation coefficient between two test statistics
alpha	the significance level
alphavec	a numeric vector of two values representing the weighted significance levels assigned to the two hypotheses

Value

the difference between the error rate when k is specified and rho is optimal and the prespecified alpha level

Author(s)

Jiangtao Gou

References

Gou, J., Chang, Y., Li, T., and Zhang, F. (2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.

find_k_target_mvtnorm Find the difference between the error rate when k is specified and rho is optimal and the prespecified alpha level

Description

Find the difference between the error rate when k is specified and rho is optimal and the prespecified alpha level

Usage

```
find_k_target_mvtnorm(k, alpha, alphavec = c(alpha/2, alpha/2))
```

Arguments

k	a pre-specified constant in the improved trimmed weighted Hochberg procedure
alpha	the significance level
alphavec	a numeric vector of two values representing the weighted significance levels assigned to the two hypotheses

Value

the difference between the error rate when k is specified and rho is optimal and the prespecified alpha level

Author(s)

Jiangtao Gou

References

```
find_rho_target_mvtnorm
```

Find the partial derivative of the error rate with respect to the correlation coefficient rho when k and rho are given

Description

Find the partial derivative of the error rate with respect to the correlation coefficient rho when k and rho are given

Usage

```
find_rho_target_mvtnorm(rho, k, alpha, alphavec = c(alpha/2, alpha/2))
```

Arguments

rho	the correlation coefficient between two test statistics
k	a pre-specified constant in the improved trimmed weighted Hochberg procedure
alpha	the significance level
alphavec	a numeric vector of two values representing the weighted significance levels assigned to the two hypotheses

Value

the partial derivative of the error rate with respect to the correlation coefficient rho

Author(s)

Jiangtao Gou

References

Gou, J., Chang, Y., Li, T., and Zhang, F. (2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.

iHpTarget1	Find the difference between the achieved power and the desired power for rejecting H1 using the improved trimmed or truncated weighted Hochberg procedure
	nochoerg procedure

Description

Find the difference between the achieved power and the desired power for rejecting H1 using the improved trimmed or truncated weighted Hochberg procedure

iHpTarget1m

Usage

iHpTarget1(n, alpha1, alpha, k, beta1, deltavec, rho)

Arguments

n	the sample size
alpha1	the weighted significance levels assigned to H1
alpha	the significance level
k	a pre-specified constant in the improved trimmed weighted Hochberg procedure
beta1	one minus the desired power for rejecting H1
deltavec	a numeric vector of two values representing the effect sizes for the two hypotheses
rho	the correlation coefficient between two test statistics

Value

the difference between the achieved power and the desired power for rejecting H1 using the improved trimmed or truncated weighted Hochberg procedure

Author(s)

Jiangtao Gou

References

Gou, J., Chang, Y., Li, T., and Zhang, F. (2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.

iHpTarget1m	Find the difference between the achieved power and the desired power
	for rejecting H1 using the improved trimmed or truncated weighted
	Hochberg procedure with allowance for different data maturities

Description

Find the difference between the achieved power and the desired power for rejecting H1 using the improved trimmed or truncated weighted Hochberg procedure with allowance for different data maturities

Usage

```
iHpTarget1m(n, alpha1, alpha, k, beta1, deltavec, rho, maturity)
```

Arguments

n	the sample size
alpha1	the weighted significance levels assigned to H1
alpha	the significance level
k	a pre-specified constant in the improved trimmed weighted Hochberg procedure
beta1	one minus the desired power for rejecting H1
deltavec	a numeric vector of two values representing the effect sizes for the two hypothe- ses
rho	the correlation coefficient between two test statistics
maturity	a numeric vector of two values representing the data maturities for the two hypotheses

Value

the difference between the achieved power and the desired power for rejecting H1

Author(s)

Jiangtao Gou

References

Gou, J., Chang, Y., Li, T., and Zhang, F. (2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.

iHpTarget2	Find the difference between the achieved power and the desired power for rejecting H2 using the improved trimmed or truncated weighted Hochberg procedure
	nochberg procedure

Description

Find the difference between the achieved power and the desired power for rejecting H2 using the improved trimmed or truncated weighted Hochberg procedure

Usage

iHpTarget2(n, alpha1, alpha, k, beta2, deltavec, rho)

iHpTarget2m

Arguments

n	the sample size
alpha1	the weighted significance levels assigned to H1
alpha	the significance level
k	a pre-specified constant in the improved trimmed weighted Hochberg procedure
beta2	one minus the desired power for rejecting H2
deltavec	a numeric vector of two values representing the effect sizes for the two hypothe- ses
rho	the correlation coefficient between two test statistics

Value

the difference between the achieved power and the desired power for rejecting H2 using the improved trimmed or truncated weighted Hochberg procedure

Author(s)

Jiangtao Gou

References

Gou, J., Chang, Y., Li, T., and Zhang, F. (2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.

iHpTarget2mFind the difference between the achieved power and the desired power
for rejecting H2 using the improved trimmed or truncated weighted
Hochberg procedure with allowance for different data maturities

Description

Find the difference between the achieved power and the desired power for rejecting H2 using the improved trimmed or truncated weighted Hochberg procedure with allowance for different data maturities

Usage

```
iHpTarget2m(n, alpha1, alpha, k, beta2, deltavec, rho, maturity)
```

Arguments

n	the sample size
alpha1	the weighted significance levels assigned to H1
alpha	the significance level
k	a pre-specified constant in the improved trimmed weighted Hochberg procedure
beta2	one minus the desired power for rejecting H2
deltavec	a numeric vector of two values representing the effect sizes for the two hypothe- ses
rho	the correlation coefficient between two test statistics
maturity	a numeric vector of two values representing the data maturities for the two hypotheses

Value

the difference between the achieved power and the desired power for rejecting H2

Author(s)

Jiangtao Gou

References

Gou, J., Chang, Y., Li, T., and Zhang, F. (2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.

interpolate_zero Calculate the x-coordinates of a function where zero crossings occur

Description

Calculate the x-coordinates of a function where zero crossings occur

Usage

```
interpolate_zero(values, x = NULL)
```

Arguments

values	a numeric vector representing the function's output at specific points
x	Aa vector of x-coordinates corresponding to the values. If not provided, it de- faults to 1:length(values)

Value

the x-coordinates where zero crossings occur. If no crossings are found, it returns NA

itwcHochPower

Description

Power for rejecting H1 using various types of the Hochberg Procedure

Usage

```
itwcHochPower(n, alpha1, alpha, deltavec, rho, proctype = "i", k = 0)
```

Arguments

n	the sample size
alpha1	the weighted significance levels assigned to H1
alpha	the significance level
deltavec	a numeric vector of two values representing the effect sizes for the two hypothe- ses
rho	the correlation coefficient between two test statistics
proctype	the improved trimmed weighted Hochberg procedure is denoted by i, the trimmed weighted Hochberg procedure is denoted by t , the weighted Hochberg procedure is denoted by w, and the conservative weighted Hochberg procedure is denoted by c
k	a pre-specified constant in the improved trimmed weighted Hochberg procedure

Value

the power for rejecting H1 is denoted by pwr1, the power for rejecting H2 is denoted by pwr2, and the power for rejecting both H1 and H2 is denoted by pwr12

Author(s)

Jiangtao Gou

Fengqing Zhang

References

Examples

```
itwcHochPower(n = 100,
alpha1 = 0.0125, alpha = 0.025,
deltavec = c(0.2, 0.25), rho = 0.2,
proctype = "i", k = 0)
itwcHochPower(n = 100,
alpha1 = 0.0125, alpha = 0.025,
deltavec = c(0, 0), rho = 0,
proctype = "w", k = 0)
```

optk

The two-step algorithm to calculate the best k value for the improved trimmed Hochberg method to ensure that the maximum type I error rate reaches alpha exactly when rho is arbitrary

Description

The two-step algorithm to calculate the best k value for the improved trimmed Hochberg method to ensure that the maximum type I error rate reaches alpha exactly when rho is arbitrary

Usage

optk(alpha, alphavec = c(alpha/2, alpha/2))

Arguments

alpha	the significance level
alphavec	a numeric vector of two values representing the weighted significance levels assigned to the two hypotheses

Value

the best k value k_opt and the rho value that makes the type I error rate reaches the maximum value rho_opt

Author(s)

Jiangtao Gou Fengqing Zhang

References

Gou, J., Chang, Y., Li, T., and Zhang, F. (2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.

Examples

optk(alpha = 0.025)

10

optrho

Description

Calculate the rho value that reaches the maximum type I error rate in the improved trimmed Hochberg method when k value is given

Usage

optrho(k, alpha, alphavec = c(alpha/2, alpha/2))

Arguments

k	a pre-specified constant in the improved trimmed weighted Hochberg procedure
alpha	the significance level
alphavec	a numeric vector of two values representing the weighted significance levels assigned to the two hypotheses

Value

the rho value that makes the type I error rate reaches the maximum value rho_opt and the type I error rate error rate error rate

Author(s)

Jiangtao Gou

Fengqing Zhang

References

Gou, J., Chang, Y., Li, T., and Zhang, F. (2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.

Examples

optrho(k = 2/3, alpha = 0.025)

optsamplesize_iHp

Description

Compute the optimal sample size for the improved trimmed weighted Hochberg procedure

Usage

```
optsamplesize_iHp(
  alpha,
  k,
  betavec,
  deltavec,
  rho,
  ninterval = c(2, 2000),
  alphalist = seq(from = 0, to = alpha, by = 0.005)
)
```

Arguments

alpha	the significance level
k	a pre-specified constant in the improved trimmed weighted Hochberg procedure
betavec	a numeric vector of two values, including one minus the desired power for rejecting H1 and one minus the desired power for rejecting H2
deltavec	a numeric vector of two values representing the effect sizes for the two hypothe- ses
rho	the correlation coefficient between two test statistics
ninterval	a vector containing the end-points of the interval to be searched for optimal sample size
alphalist	a vector of discrete alpha values

Value

the overall optimal sample size for the improved trimmed weighted Hochberg procedure

Author(s)

Jiangtao Gou Fengqing Zhang

References

optsamplesize_iHpm

Examples

```
rrr <- 2 # Allocation ratio
alpha <- 0.025
k <- 2/3
ninterval <- c(2, 1000)
betavec <- c(0.05, 0.15)
rho <- 0.3
psivec <- c(0.67, 0.73)
thetavec <- log(psivec)
deltavec <- (-thetavec)*sqrt(rrr)/(1+rrr)
result <- optsamplesize_iHp(alpha = alpha, k = k,
betavec = betavec, deltavec = deltavec,
rho = rho, ninterval = ninterval)
result$nopt
```

optsamplesize_iHpm	Compute the optimal sample size for the improved trimmed weighted
	Hochberg procedure with allowance for different data maturities

Description

Compute the optimal sample size for the improved trimmed weighted Hochberg procedure with allowance for different data maturities

Usage

```
optsamplesize_iHpm(
  alpha,
  k,
  betavec,
  deltavec,
  rho,
  maturity,
  ninterval = c(2, 2000),
  alphalist = seq(from = 0, to = alpha, by = 0.005)
)
```

Arguments

alpha	the significance level
k	a pre-specified constant in the improved trimmed weighted Hochberg procedure
betavec	a numeric vector of two values, including one minus the desired power for rejecting H1 and one minus the desired power for rejecting H2
deltavec	a numeric vector of two values representing the effect sizes for the two hypotheses
rho	the correlation coefficient between two test statistics

maturity	a numeric vector of two values representing the data maturities for the two hypotheses
ninterval	a vector containing the end-points of the interval to be searched for optimal sample size
alphalist	a vector of discrete alpha values

Value

the overall optimal sample size for the improved trimmed weighted Hochberg procedure with allowance for different data maturities

Author(s)

Jiangtao Gou

Fengqing Zhang

References

Gou, J., Chang, Y., Li, T., and Zhang, F. (2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.

Examples

```
rrr <- 2
alpha <- 0.025
k <- 0.6761
ninterval <- c(2, 1000)
betavec <- c(0.10, 0.10)
rho <- 0.4
maturity <- c(0.65, 0.70)
psivec <- c(0.67, 0.73)
thetavec <- log(psivec)
deltavec <- (-thetavec)*sqrt(rrr)/(1+rrr)
result <- optsamplesize_iHpm(alpha = alpha, k = k,
betavec = betavec, deltavec = deltavec,
rho = rho, maturity = maturity,
ninterval = ninterval)
result$nopt</pre>
```

optsamplesize_tHp	Compute the optimal sample size for the weighted trimmed or trun-
	cated Hochberg procedure

Description

Compute the optimal sample size for the weighted trimmed or truncated Hochberg procedure

optsamplesize_tHp

Usage

```
optsamplesize_tHp(
  alpha,
  betavec,
  deltavec,
  rho,
  ninterval = c(2, 2000),
  alphalist = seq(from = 0, to = alpha, by = 0.005)
)
```

Arguments

alpha	the significance level
betavec	a numeric vector of two values, including one minus the desired power for rejecting H1 and one minus the desired power for rejecting H2
deltavec	a numeric vector of two values representing the effect sizes for the two hypotheses
rho	the correlation coefficient between two test statistics
ninterval	a vector containing the end-points of the interval to be searched for optimal sample size
alphalist	a vector of discrete alpha values

Value

the overall optimal sample size for the weighted trimmed or truncated Hochberg procedure

Author(s)

Jiangtao Gou Fengqing Zhang

References

Gou, J., Chang, Y., Li, T., and Zhang, F. (2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.

Examples

```
psivec <- c(0.76, 0.72)
thetavec <- log(psivec)
deltavec <- (-thetavec)/2
result <- optsamplesize_tHp(alpha = 0.05, betavec = c(0.20, 0.10),
deltavec = deltavec , rho = -0.1)
result$nopt</pre>
```

optsamplesize_wHolmpm Compute the optimal sample size for the weighted Holm procedure with allowance for different data maturities

Description

Compute the optimal sample size for the weighted Holm procedure with allowance for different data maturities

Usage

```
optsamplesize_wHolmpm(
    alpha,
    betavec,
    deltavec,
    rho,
    maturity,
    ninterval = c(2, 2000),
    alphalist = seq(from = 0, to = alpha, by = 0.005)
)
```

Arguments

alpha	the significance level
betavec	a numeric vector of two values, including one minus the desired power for rejecting H1 and one minus the desired power for rejecting H2
deltavec	a numeric vector of two values representing the effect sizes for the two hypothe- ses
rho	the correlation coefficient between two test statistics
maturity	a numeric vector of two values representing the data maturities for the two hypotheses
ninterval	a vector containing the end-points of the interval to be searched for optimal sample size
alphalist	a vector of discrete alpha values

Value

the overall optimal sample size for the weighted Holm procedure with allowance for different data maturities

Author(s)

Jiangtao Gou Fengqing Zhang

optsamplesize_wHp

References

Gou, J., Chang, Y., Li, T., and Zhang, F. (2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.

Examples

```
rrr <- 2
alpha <- 0.025
k <- 0.6761
ninterval <- c(2, 1000)
betavec <- c(0.05, 0.15)
rho <- 0.4
maturity <- c(0.65, 0.70)
psivec <- c(0.67, 0.73)
thetavec <- log(psivec)
deltavec <- (-thetavec)*sqrt(rrr)/(1+rrr)
result <- optsamplesize_wHolmpm(alpha = alpha, betavec = betavec,
deltavec = deltavec , rho = rho,
maturity = maturity, ninterval = ninterval)
result$nopt</pre>
```

optsamplesize_wHp Compute the optimal sample size for the weighted Hochberg procedure

Description

Compute the optimal sample size for the weighted Hochberg procedure

Usage

```
optsamplesize_wHp(
  alpha,
  betavec,
  deltavec,
  rho,
  ninterval = c(2, 2000),
  alphalist = seq(from = 0, to = alpha, by = 0.005)
)
```

Arguments

alpha	the significance level
betavec	a numeric vector of two values, including one minus the desired power for rejecting H1 and one minus the desired power for rejecting H2
deltavec	a numeric vector of two values representing the effect sizes for the two hypothe- ses
rho	the correlation coefficient between two test statistics

a vector containing the end-points of the interval to be searched for optimal sample size
a vector of discrete alpha values

Value

the overall optimal sample size for the weighted Hochberg procedure

Author(s)

Jiangtao Gou

Fengqing Zhang

References

Gou, J., Chang, Y., Li, T., and Zhang, F. (2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.

Examples

```
psivec <- c(0.76, 0.72)
thetavec <- log(psivec)
deltavec <- (-thetavec)/2
result <- optsamplesize_wHp(alpha = 0.05, betavec = c(0.20, 0.10),
deltavec = deltavec , rho = -0.1)
result$nopt</pre>
```

tHpTarget1	Find the difference between the achieved power and the desired power for rejecting H1 using the weighted trimmed or truncated Hochberg procedure

Description

Find the difference between the achieved power and the desired power for rejecting H1 using the weighted trimmed or truncated Hochberg procedure

Usage

```
tHpTarget1(n, alpha1, alpha, beta1, deltavec, rho)
```

Arguments

n	the sample size
alpha1	the weighted significance levels assigned to H1
alpha	the significance level
beta1	one minus the desired power for rejecting H1

tHpTarget2

rho

Value

the difference between the achieved power and the desired power for rejecting H1 using the weighted trimmed or truncated Hochberg procedure

Author(s)

Jiangtao Gou

References

Gou, J., Chang, Y., Li, T., and Zhang, F. (2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.

tHpTarget2	Find the difference between the achieved power and the desired power
	for rejecting H2 using the weighted trimmed or truncated Hochberg
	procedure

Description

Find the difference between the achieved power and the desired power for rejecting H2 using the weighted trimmed or truncated Hochberg procedure

Usage

tHpTarget2(n, alpha1, alpha, beta2, deltavec, rho)

Arguments

n	the sample size
alpha1	the weighted significance levels assigned to H1
alpha	the significance level
beta2	one minus the desired power for rejecting H2
deltavec	a numeric vector of two values representing the effect sizes for the two hypotheses
rho	the correlation coefficient between two test statistics

Value

the difference between the achieved power and the desired power for rejecting H2 using the weighted trimmed or truncated Hochberg procedure

Author(s)

Jiangtao Gou

References

Gou, J., Chang, Y., Li, T., and Zhang, F. (2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.

typeIerror_Simes_mvtnorm

Calculate the type I error rate of the weighted Simes test

Description

Calculate the type I error rate of the weighted Simes test

Usage

```
typeIerror_Simes_mvtnorm(
   rho,
   adjFct = 0,
   alpha,
   alphavec = c(alpha/2, alpha/2)
)
```

Arguments

rho	the correlation coefficient between two test statistics
adjFct	a pre-specified constant in the improved weighted Hochberg procedure, called the adjustment factor or k value
alpha	the significance level
alphavec	a numeric vector of two values representing the weighted significance levels assigned to the two hypotheses

Value

the type I error rate

Author(s)

Jiangtao Gou

References

typeIerror_trimSimes_mvtnorm

Examples

```
typeIerror_trimSimes_mvtnorm(rho = 0, adjFct = 0, alpha = 0.05)
```

typeIerror_trimSimes_mvtnorm

Calculate the type I error rate of the trimmed weighted Simes test

Description

Calculate the type I error rate of the trimmed weighted Simes test

Usage

```
typeIerror_trimSimes_mvtnorm(
  rho,
  adjFct,
  alpha,
  alphavec = c(alpha/2, alpha/2)
)
```

Arguments

rho	the correlation coefficient between two test statistics
adjFct	a pre-specified constant in the improved trimmed weighted Hochberg procedure, called the adjustment factor or k value
alpha	the significance level
alphavec	a numeric vector of two values representing the weighted significance levels assigned to the two hypotheses

Value

the type I error rate

Author(s)

Jiangtao Gou

References

Gou, J., Chang, Y., Li, T., and Zhang, F. (2025). Improved trimmed weighted Hochberg procedures with two endpoints and sample size optimization. Technical Report.

Examples

```
typeIerror_trimSimes_mvtnorm(rho = 0, adjFct = 0, alpha = 0.05)
```

wHolmTarget1

Description

Find the difference between the achieved power and the desired power for rejecting H1 using the weighted Holm procedure

Usage

wHolmTarget1(n, alpha1, alpha, beta1, deltavec, rho)

Arguments

n	the sample size
alpha1	the weighted significance levels assigned to H1
alpha	the significance level
beta1	one minus the desired power for rejecting H1
deltavec	a numeric vector of two values representing the effect sizes for the two hypotheses
rho	the correlation coefficient between two test statistics

Value

the difference between the achieved power and the desired power for rejecting H1

Author(s)

Jiangtao Gou

References

wHolmTarget1m	Find the difference between the achieved power and the desired power for rejecting H1 using the weighted Holm procedure with allowance
	for different data maturities

Description

Find the difference between the achieved power and the desired power for rejecting H1 using the weighted Holm procedure with allowance for different data maturities

Usage

```
wHolmTarget1m(n, alpha1, alpha, beta1, deltavec, rho, maturity)
```

Arguments

n	the sample size
alpha1	the weighted significance levels assigned to H1
alpha	the significance level
beta1	one minus the desired power for rejecting H1
deltavec	a numeric vector of two values representing the effect sizes for the two hypothe- ses
rho	the correlation coefficient between two test statistics
maturity	a numeric vector of two values representing the data maturities for the two hypotheses

Value

the difference between the achieved power and the desired power for rejecting H1

Author(s)

Jiangtao Gou

References

wHolmTarget2

Description

Find the difference between the achieved power and the desired power for rejecting H2 using the weighted Holm procedure

Usage

wHolmTarget2(n, alpha1, alpha, beta2, deltavec, rho)

Arguments

n	the sample size
alpha1	the weighted significance levels assigned to H1
alpha	the significance level
beta2	one minus the desired power for rejecting H2
deltavec	a numeric vector of two values representing the effect sizes for the two hypotheses
rho	the correlation coefficient between two test statistics

Value

the difference between the achieved power and the desired power for rejecting H2

Author(s)

Jiangtao Gou

References

Find the difference between the achieved power and the desired power for rejecting H2 using the weighted Holm procedure with allowance for different data maturities

Description

Find the difference between the achieved power and the desired power for rejecting H2 using the weighted Holm procedure with allowance for different data maturities

Usage

```
wHolmTarget2m(n, alpha1, alpha, beta2, deltavec, rho, maturity)
```

Arguments

n	the sample size
alpha1	the weighted significance levels assigned to H1
alpha	the significance level
beta2	one minus the desired power for rejecting H2
deltavec	a numeric vector of two values representing the effect sizes for the two hypothe- ses
rho	the correlation coefficient between two test statistics
maturity	a numeric vector of two values representing the data maturities for the two hypotheses

Value

the difference between the achieved power and the desired power for rejecting H2

Author(s)

Jiangtao Gou

References

wHpTarget1

Description

Find the difference between the achieved power and the desired power for rejecting H1 using the weighted Hochberg procedure

Usage

wHpTarget1(n, alpha1, alpha, beta1, deltavec, rho)

Arguments

n	the sample size
alpha1	the weighted significance levels assigned to H1
alpha	the significance level
beta1	one minus the desired power for rejecting H1
deltavec	a numeric vector of two values representing the effect sizes for the two hypotheses
rho	the correlation coefficient between two test statistics

Value

the difference between the achieved power and the desired power for rejecting H1 using the weighted Hochberg procedure

Author(s)

Jiangtao Gou

References

wHpTarget2

Find the difference between the achieved power and the desired power for rejecting H2 using the weighted Hochberg procedure

Description

Find the difference between the achieved power and the desired power for rejecting H2 using the weighted Hochberg procedure

Usage

wHpTarget2(n, alpha1, alpha, beta2, deltavec, rho)

Arguments

n	the sample size
alpha1	the weighted significance levels assigned to H1
alpha	the significance level
beta2	one minus the desired power for rejecting H2
deltavec	a numeric vector of two values representing the effect sizes for the two hypotheses
rho	the correlation coefficient between two test statistics

Value

the difference between the achieved power and the desired power for rejecting H2 using the weighted Hochberg procedure

Author(s)

Jiangtao Gou

References

Index

```
find_k_given_rho_target_mvtnorm, 2
find_k_target_mvtnorm, 3
find_rho_target_mvtnorm, 4
iHpTarget1,4
iHpTarget1m, 5
iHpTarget2,6
iHpTarget2m,7
interpolate_zero, 8
itwcHochPower, 9
optk, 10
optrho, 11
optsamplesize_iHp, 12
optsamplesize_iHpm, 13
optsamplesize_tHp, 14
optsamplesize_wHolmpm, 16
optsamplesize_wHp, 17
tHpTarget1, 18
tHpTarget2, 19
typeIerror_Simes_mvtnorm, 20
typeIerror_trimSimes_mvtnorm, 21
wHolmTarget1, 22
wHolmTarget1m, 23
wHolmTarget2, 24
wHolmTarget2m, 25
wHpTarget1, 26
wHpTarget2, 27
```