Title: | Information-Theoretic Measures for Spatial Association |
Version: | 0.1.0 |
Description: | Leveraging information-theoretic measures like mutual information and v-measure to quantify spatial associations between patterns (Nowosad and Stepinski (2018) <doi:10.1080/13658816.2018.1511794>; Bai, H. et al. (2023) <doi:10.1080/24694452.2023.2223700>). |
License: | GPL-3 |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
URL: | https://stscl.github.io/itmsa/, https://github.com/stscl/itmsa |
BugReports: | https://github.com/stscl/itmsa/issues |
Depends: | R (≥ 4.1.0) |
LinkingTo: | Rcpp, RcppThread |
Imports: | dplyr, purrr, sdsfun (≥ 0.6.0), sf |
Suggests: | knitr, Rcpp, RcppThread, readr, rmarkdown, tibble |
VignetteBuilder: | knitr |
NeedsCompilation: | yes |
Packaged: | 2024-12-22 14:12:03 UTC; dell |
Author: | Wenbo Lv |
Maintainer: | Wenbo Lv <lyu.geosocial@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2024-12-23 11:30:01 UTC |
Information-Theoretic Measures for Spatial Association
Description
Information-Theoretic Measures for Spatial Association
Usage
itm(
formula,
data,
method = c("vm", "icm"),
beta = 1,
unit = c("e", "2", "10"),
seed = 42,
permutation_number = 999
)
Arguments
formula |
A formula. |
data |
A |
method |
(optional) whether |
beta |
(optional) The |
unit |
(optional) Logarithm base, default is |
seed |
(optional) Random number seed, default is |
permutation_number |
(optional) Number of Random Permutations, default is |
Value
A tibble
.
Examples
sim = readr::read_csv(system.file('extdata/sim.csv',package = 'itmsa'))
# Information-theoretical V-measure
itm(z1 ~ z2, data = sim, method = 'vm')
# Information Consistency-Based Measures
itm(z1 ~ z2, data = sim, method = 'icm')