Type: | Package |
Title: | Multilevel Model Intraclass Correlation for Slope Heterogeneity |
Version: | 1.2.0 |
Description: | A function and vignettes for computing an intraclass correlation described in Aguinis & Culpepper (2015) <doi:10.1177/1094428114563618>. This package quantifies the share of variance in a dependent variable that is attributed to group heterogeneity in slopes. |
Depends: | R (≥ 3.4.0) |
Imports: | Rcpp, lme4, stats, methods |
LinkingTo: | Rcpp (≥ 1.0.0), RcppArmadillo (≥ 0.9.200) |
Suggests: | RLRsim, testthat, covr |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | https://github.com/tmsalab/iccbeta |
BugReports: | https://github.com/tmsalab/iccbeta/issues |
RoxygenNote: | 6.1.1 |
Encoding: | UTF-8 |
NeedsCompilation: | yes |
Packaged: | 2019-01-28 20:34:11 UTC; ronin |
Author: | Steven Andrew Culpepper
|
Maintainer: | Steven Andrew Culpepper <sculpepp@illinois.edu> |
Repository: | CRAN |
Date/Publication: | 2019-01-28 21:50:02 UTC |
iccbeta: Multilevel Model Intraclass Correlation for Slope Heterogeneity
Description
A function and vignettes for computing an intraclass correlation described in Aguinis & Culpepper (2015) <doi:10.1177/1094428114563618>. This package quantifies the share of variance in a dependent variable that is attributed to group heterogeneity in slopes.
Author(s)
Maintainer: Steven Andrew Culpepper sculpepp@illinois.edu (0000-0003-4226-6176) [copyright holder]
Authors:
Herman Aguinis haguinis@gwu.edu (0000-0002-3485-9484) [copyright holder]
References
Aguinis, H., & Culpepper, S.A. (2015). An expanded decision making procedure for examining cross-level interaction effects with multilevel modeling. Organizational Research Methods. Available at: http://www.hermanaguinis.com/pubs.html
See Also
Useful links:
Examples
## Not run:
if(requireNamespace("lme4") && requireNamespace("RLRsim")){
# Simulated Data Example
data(simICCdata)
library('lme4')
# computing icca
vy <- var(simICCdata$Y)
lmm0 <- lmer(Y ~ (1|l2id), data = simICCdata, REML = FALSE)
VarCorr(lmm0)$l2id[1,1]/vy
# Create simICCdata2
grp_means = aggregate(simICCdata[c('X1','X2')], simICCdata['l2id'],mean)
colnames(grp_means)[2:3] = c('m_X1','m_X2')
simICCdata2 = merge(simICCdata,grp_means,by='l2id')
# Estimating random slopes model
lmm1 <- lmer(Y ~ I(X1-m_X1) + I(X2-m_X2) + (I(X1-m_X1) + I(X2-m_X2) | l2id),
data = simICCdata2, REML = FALSE)
X <- model.matrix(lmm1)
p <- ncol(X)
T1 <- VarCorr(lmm1)$l2id[1:p, 1:p]
# computing iccb
# Notice '+1' because icc_beta assumes l2ids are from 1 to 30.
icc_beta(X, simICCdata2$l2id + 1, T1, vy)$rho_beta
# Hofmann 2000 Example
data(Hofmann)
library('lme4')
# Random-Intercepts Model
lmmHofmann0 <- lmer(helping ~ (1|id), data = Hofmann)
vy_Hofmann <- var(Hofmann[,'helping'])
# computing icca
VarCorr(lmmHofmann0)$id[1,1]/vy_Hofmann
# Estimating Group-Mean Centered Random Slopes Model, no level 2 variables
lmmHofmann1 <- lmer(helping ~ mood_grp_cent + (mood_grp_cent | id),
data = Hofmann, REML = FALSE)
X_Hofmann <- model.matrix(lmmHofmann1)
P <- ncol(X_Hofmann)
T1_Hofmann <- VarCorr(lmmHofmann1)$id[1:P, 1:P]
# computing iccb
icc_beta(X_Hofmann, Hofmann[,'id'], T1_Hofmann, vy_Hofmann)$rho_beta
# Performing LR test
library('RLRsim')
lmmHofmann1a <- lmer(helping ~ mood_grp_cent + (1 |id),
data = Hofmann, REML = FALSE)
obs.LRT <- 2*(logLik(lmmHofmann1) - logLik(lmmHofmann1a))[1]
X <- getME(lmmHofmann1,"X")
Z <- t(as.matrix(getME(lmmHofmann1,"Zt")))
sim.LRT <- LRTSim(X, Z, 0, diag(ncol(Z)))
(pval <- mean(sim.LRT > obs.LRT))
} else {
stop("Please install packages `RLRsim` and `lme4` to run the above example.")
}
## End(Not run)
A multilevel dataset from Hofmann, Griffin, and Gavin (2000).
Description
A multilevel dataset from Hofmann, Griffin, and Gavin (2000).
Usage
Hofmann
Format
A data frame with 1,000 observations and 7 variables.
id
a numeric vector of group ids.
helping
a numeric vector of the helping outcome variable construct.
mood
a level 1 mood predictor.
mood_grp_mn
a level 2 variable of the group mean of mood.
cohesion
a level 2 covariate measuring cohesion.
mood_grp_cent
group-mean centered mood predictor.
mood_grd_cent
grand-mean centered mood predictor.
Source
Hofmann, D.A., Griffin, M.A., & Gavin, M.B. (2000). The application of hierarchical linear modeling to management research. In K.J. Klein, & S.W.J. Kozlowski (Eds.), Multilevel theory, research, and methods in organizations: Foundations, extensions, and new directions (pp. 467-511). Hoboken, NJ: Jossey-Bass.
References
Aguinis, H., & Culpepper, S.A. (2015). An expanded decision making procedure for examining cross-level interaction effects with multilevel modeling. Organizational Research Methods. Available at: http://hermanaguinis.com/pubs.html
See Also
lmer
, model.matrix
,
VarCorr
, LRTSim
,
simICCdata
Examples
## Not run:
if(requireNamespace("lme4") && requireNamespace("RLRsim")){
data(Hofmann)
library("lme4")
# Random-Intercepts Model
lmmHofmann0 = lmer(helping ~ (1|id), data = Hofmann)
vy_Hofmann = var(Hofmann[,'helping'])
# Computing icca
VarCorr(lmmHofmann0)$id[1,1]/vy_Hofmann
# Estimating Group-Mean Centered Random Slopes Model, no level 2 variables
lmmHofmann1 <- lmer(helping ~ mood_grp_cent + (mood_grp_cent |id),
data = Hofmann, REML = FALSE)
X_Hofmann = model.matrix(lmmHofmann1)
P = ncol(X_Hofmann)
T1_Hofmann = VarCorr(lmmHofmann1)$id[1:P,1:P]
# Computing iccb
icc_beta(X_Hofmann, Hofmann[,'id'], T1_Hofmann, vy_Hofmann)$rho_beta
# Performing LR test
# Need to install 'RLRsim' package
library("RLRsim")
lmmHofmann1a <- lmer(helping ~ mood_grp_cent + (1 | id),
data = Hofmann, REML = FALSE)
obs.LRT <- 2*(logLik(lmmHofmann1) - logLik(lmmHofmann1a))[1]
X <- getME(lmmHofmann1,"X")
Z <- t(as.matrix(getME(lmmHofmann1,"Zt")))
sim.LRT <- LRTSim(X, Z, 0, diag(ncol(Z)))
(pval <- mean(sim.LRT > obs.LRT))
} else {
stop("Please install packages `RLRsim` and `lme4` to run the above example.")
}
## End(Not run)
Intraclass correlation used to assess variability of lower-order relationships across higher-order processes/units.
Description
A function and vignettes for computing the intraclass correlation described in Aguinis & Culpepper (2015). iccbeta quantifies the share of variance in an outcome variable that is attributed to heterogeneity in slopes due to higher-order processes/units.
Usage
icc_beta(x, ...)
## S3 method for class 'lmerMod'
icc_beta(x, ...)
## Default S3 method:
icc_beta(x, l2id, T, vy, ...)
Arguments
x |
A |
... |
Additional parameters... |
l2id |
A |
T |
A |
vy |
The variance of the outcome variable. |
Value
A list
with:
-
J
-
means
-
XcpXc
-
Nj
-
rho_beta
Author(s)
Steven Andrew Culpepper
References
Aguinis, H., & Culpepper, S.A. (2015). An expanded decision making procedure for examining cross-level interaction effects with multilevel modeling. Organizational Research Methods. Available at: http://hermanaguinis.com/pubs.html
See Also
lme4::lmer()
, model.matrix()
,
lme4::VarCorr()
, RLRsim::LRTSim()
,
iccbeta::Hofmann, and iccbeta::simICCdata
Examples
## Not run:
if(requireNamespace("lme4") && requireNamespace("RLRsim")){
## Example 1: Simulated Data Example from Aguinis & Culpepper (2015) ----
data(simICCdata)
library("lme4")
# Computing icca
vy <- var(simICCdata$Y)
lmm0 <- lmer(Y ~ (1 | l2id), data = simICCdata, REML = FALSE)
VarCorr(lmm0)$l2id[1, 1]/vy
# Create simICCdata2
grp_means = aggregate(simICCdata[c('X1', 'X2')], simICCdata['l2id'], mean)
colnames(grp_means)[2:3] = c('m_X1', 'm_X2')
simICCdata2 = merge(simICCdata, grp_means, by='l2id')
# Estimating random slopes model
lmm1 <- lmer(Y ~ I(X1 - m_X1) + I(X2 - m_X2) +
(I(X1 - m_X1) + I(X2 - m_X2) | l2id),
data = simICCdata2, REML = FALSE)
## iccbeta calculation on `lmer` object
icc_beta(lmm1)
## Manual specification of iccbeta
# Extract components from model.
X <- model.matrix(lmm1)
p <- ncol(X)
T1 <- VarCorr(lmm1)$l2id[1:p,1:p]
# Note: vy was computed under "icca"
# Computing iccb
# Notice '+1' because icc_beta assumes l2ids are from 1 to 30.
icc_beta(X, simICCdata2$l2id + 1, T1, vy)$rho_beta
## Example 2: Hofmann et al. (2000) ----
data(Hofmann)
library("lme4")
# Random-Intercepts Model
lmmHofmann0 = lmer(helping ~ (1|id), data = Hofmann)
vy_Hofmann = var(Hofmann[,'helping'])
# Computing icca
VarCorr(lmmHofmann0)$id[1,1]/vy_Hofmann
# Estimating Group-Mean Centered Random Slopes Model, no level 2 variables
lmmHofmann1 <- lmer(helping ~ mood_grp_cent + (mood_grp_cent |id),
data = Hofmann, REML = FALSE)
## Automatic calculation of iccbeta using the lmer model
amod = icc_beta(lmmHofmann1)
## Manual calculation of iccbeta
X_Hofmann <- model.matrix(lmmHofmann1)
P <- ncol(X_Hofmann)
T1_Hofmann <- VarCorr(lmmHofmann1)$id[1:P,1:P]
# Computing iccb
bmod = icc_beta(X_Hofmann, Hofmann[,'id'], T1_Hofmann, vy_Hofmann)$rho_beta
# Performing LR test
library("RLRsim")
lmmHofmann1a <- lmer(helping ~ mood_grp_cent + (1 |id),
data = Hofmann, REML = FALSE)
obs.LRT <- 2*(logLik(lmmHofmann1) - logLik(lmmHofmann1a))[1]
X <- getME(lmmHofmann1,"X")
Z <- t(as.matrix(getME(lmmHofmann1,"Zt")))
sim.LRT <- LRTSim(X, Z, 0, diag(ncol(Z)))
(pval <- mean(sim.LRT > obs.LRT))
} else {
stop("Please install packages `RLRsim` and `lme4` to run the above example.")
}
## End(Not run)
Simulated data example from Aguinis and Culpepper (2015).
Description
A simulated data example from Aguinis and Culpepper (2015) to demonstrate
the icc_beta
function for computing the proportion of variance
in the outcome variable that is attributed to heterogeneity in slopes due to
higher-order processes/units.
Usage
simICCdata
Format
A data frame with 900 observations (i.e., 30 observations nested within 30 groups) on the following 6 variables.
l1id
A within group ID variable.
l2id
A group ID variable.
one
A column of 1's for the intercept.
X1
A simulated level 1 predictor.
X2
A simulated level 1 predictor.
Y
A simulated outcome variable.
Details
See Aguinis and Culpepper (2015) for the model used to simulate the dataset.
Source
Aguinis, H., & Culpepper, S.A. (2015). An expanded decision making procedure for examining cross-level interaction effects with multilevel modeling. Organizational Research Methods. Available at: http://www.hermanaguinis.com/pubs.html
See Also
lmer
, model.matrix
,
VarCorr
, LRTSim
,
Hofmann
Examples
## Not run:
data(simICCdata)
if(requireNamespace("lme4")){
library("lme4")
# computing icca
vy <- var(simICCdata$Y)
lmm0 <- lmer(Y ~ (1|l2id), data = simICCdata, REML = FALSE)
VarCorr(lmm0)$l2id[1,1]/vy
# Create simICCdata2
grp_means = aggregate(simICCdata[c('X1','X2')], simICCdata['l2id'],mean)
colnames(grp_means)[2:3] = c('m_X1','m_X2')
simICCdata2 = merge(simICCdata, grp_means, by='l2id')
# Estimating random slopes model
lmm1 <- lmer(Y ~ I(X1-m_X1) + I(X2-m_X2) + (I(X1-m_X1) + I(X2-m_X2) | l2id),
data = simICCdata2, REML = FALSE)
X <- model.matrix(lmm1)
p <- ncol(X)
T1 <- VarCorr(lmm1) $l2id[1:p,1:p]
# computing iccb
# Notice '+1' because icc_beta assumes l2ids are from 1 to 30.
icc_beta(X, simICCdata2$l2id+1, T1, vy)$rho_beta
} else {
stop("Please install `lme4` to run the above example.")
}
## End(Not run)