Type: | Package |
Title: | Empirical Bayes Estimation of Dynamic Bayesian Networks |
Version: | 1.2.8 |
Date: | 2023-09-04 |
Author: | Andrea Rau <andrea.rau@inra.fr> |
Maintainer: | Andrea Rau <andrea.rau@inra.fr> |
Depends: | R (≥ 4.1.0), igraph |
Imports: | graphics, stats, methods |
Suggests: | GeneNet |
Description: | Infer the adjacency matrix of a network from time course data using an empirical Bayes estimation procedure based on Dynamic Bayesian Networks. |
License: | GPL (≥ 3) |
URL: | https://github.com/andreamrau/ebdbNet |
LazyLoad: | yes |
NeedsCompilation: | yes |
Packaged: | 2023-09-04 14:18:44 UTC; araul |
Repository: | CRAN |
Date/Publication: | 2023-09-04 15:10:02 UTC |
Empirical Bayes Dynamic Bayesian Network (EBDBN) Inference
Description
This package is used to infer the adjacency matrix of a network from time course data using an empirical Bayes estimation procedure based on Dynamic Bayesian Networks.
Details
Posterior distributions (mean and variance) of network parameters are estimated using time-course
data based on a linear feedback state space model that allows for a set of hidden states to be incorporated.
The algorithm is composed of three principal parts: choice of hidden state dimension
(see hankel
), estimation of hidden states via the Kalman filter and smoother, and calculation of
posterior distributions based on the empirical Bayes estimation of hyperparameters in a hierarchical
Bayesian framework (see ebdbn
).
Author(s)
Andrea Rau
Maintainer: Andrea Rau <andrea.rau AT inra.fr>
References
Andrea Rau, Florence Jaffrezic, Jean-Louis Foulley, and R. W. Doerge (2010). An Empirical Bayesian Method for Estimating Biological Networks from Temporal Microarray Data. Statistical Applications in Genetics and Molecular Biology 9. Article 9.
Examples
library(ebdbNet)
library(GeneNet) ## Load GeneNet package to use T-cell activation data
tmp <- runif(1) ## Initialize random number generator
set.seed(4568818) ## Set seed
## Load T-cell activation data
data(tcell)
tc44 <- combine.longitudinal(tcell.10, tcell.34)
## Put data into correct format for algorithm
## (List, with one matrix per replicate (P rows and T columns)
tcell.dat <- dataFormat(tc44)
## Use only subset of T-cell data for faster example
R <- 20 ## 20 replicates
P <- 10 ## 10 genes
tcell.sub.dat <- vector("list", R)
rep.sample <- sample(1:44, R)
for(r in 1:R) {
tcell.sub.dat[[r]] <- tcell.dat[[rep.sample[r]]][sample(1:58, P),]
}
####################################################
# Run EBDBN (no hidden states) with feedback loops
####################################################
## Choose alternative value of K using hankel if hidden states to be estimated
## K <- hankel(tcell.sub.dat, lag = 1)$dim
## Run algorithm (feedback network, no hidden states)
net <- ebdbn(y = tcell.sub.dat, K = 0, input = "feedback", conv.1 = 0.01,
conv.2 = 0.01, conv.3 = 0.001, verbose = TRUE)
## Visualize results: in this example, mostly feedback loops
## plot(net, sig.level = 0.5)
Calculate the Approximate Area Under the Curve (AUC)
Description
Returns the approximate Area Under the Curve (AUC) of a Receiver Operating Characteristic (ROC) curve.
Usage
calcAUC(sens, cspec)
Arguments
sens |
Vector of sensitivity values, calculated for varying thresholds |
cspec |
Vector of complementary specificity values, calculated for the same varying thresholds as |
Details
Let TP, FP, TN, and FN represent the number of true positives, false positives, true negatives and false negatives of inferred network edges, respectively. Sensitivity is defined as
\frac{TP}{TP + FN}
and complementary specificity is defined as
\frac{TN}{TN + FP}
Note that sens
and cspc
should be in the same order with respect to the threshold value
so that their elements correspond. That is, if the first element of sens
was calculated at a
threshold value of 0.01 and the second at a threshold value of 0.02, then the first element of cpsec
should be also be calculated at a threshold value of 0.01 and the second at a threshold value of 0.02, and
so on. The AUC is approximated using the trapezoid method, and can take real values between 0 and 1. An
AUC of 0.5 indicates a classifier with random performance, and an AUC of 1 indicates a classifer with
perfect performance.
Value
AUC of the ROC curve
Author(s)
Andrea Rau
Examples
library(ebdbNet)
tmp <- runif(1) ## Initialize random number generator
## Generate artificial values for sensitivity and complementary specificity.
fn <- function(x) {return(-1/(x^7)+1)}
set.seed(1459)
sens <- c(fn(seq(1, 2.7, length = 100)),1) ## Sensitivity
cspec <- seq(0, 1, by = 0.01) ## Complementary specificity
## Calculate the AUC of the ROC curve
AUC <- calcAUC(sens, cspec) ## AUC of this ROC curve is 0.9030868
Calculate Sensitivity and Specificity of a Network
Description
Function to calculate the true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) of an estimated network, given the structure of the true network.
Usage
calcSensSpec(trueMatrix, estMatrix)
Arguments
trueMatrix |
Posterior mean or adjacency matrix of the true network |
estMatrix |
Posterior mean or adjacency matrix of the estimated network |
Details
The matrices trueMatrix
and estMatrix
must be of the same dimension.
Value
TP |
Number of true positives |
FP |
Number of false positives |
FN |
Number of false negatives |
TN |
Number of true negatives |
Author(s)
Andrea Rau
See Also
Examples
library(ebdbNet)
tmp <- runif(1) ## Initialize random number generator
set.seed(16933) ## Set seed
P <- 10 ## 10 genes
## Create artificial true D matrix
Dtrue <- matrix(0, nrow = P, ncol = P)
index <- expand.grid(seq(1:P),seq(1:P))
selected.index <- sample(seq(1:(P*P)), ceiling(0.25 * P * P))
selected.edges <- index[selected.index,]
for(edge in 1:ceiling(0.25 * P * P)) {
tmp <- runif(1)
if(tmp > 0.5) {
Dtrue[selected.edges[edge,1], selected.edges[edge,2]] <-
runif(1, min = 0.2, max = 1)
}
else {
Dtrue[selected.edges[edge,1], selected.edges[edge,2]] <-
runif(1, min = -1, max = -0.2)
}
}
## Create artificial estimated D matrix
Dest <- matrix(0, nrow = P, ncol = P)
index <- expand.grid(seq(1:P),seq(1:P))
selected.index <- sample(seq(1:(P*P)), ceiling(0.25 * P * P))
selected.edges <- index[selected.index,]
for(edge in 1:ceiling(0.25 * P * P)) {
tmp <- runif(1)
if(tmp > 0.5) {
Dest[selected.edges[edge,1], selected.edges[edge,2]] <-
runif(1, min = 0.2, max = 1)
}
else {
Dest[selected.edges[edge,1], selected.edges[edge,2]] <-
runif(1, min = -1, max = -0.2)
}
}
check <- calcSensSpec(Dtrue, Dest)
check$TP ## 5 True Positives
check$FP ## 20 False Positives
check$TN ## 55 True Negatives
check$FN ## 20 False Negatives
Change the Format of Longitudinal Data to be Compatible with EBDBN
Description
This function changes the format of longitudinal data to be compatible with the format required by the EBDBN, namely a list (of length R) of PxT matrices, where R, P, and T are the number of replicates, genes, and time points, respectively.
Usage
dataFormat(longitudinal.data)
Arguments
longitudinal.data |
Data in the longitudinal format |
Details
The argument refers to the general data structure of the 'longitudinal' package.
Value
List of length R of PxT matrices, suitable to be used in the EBDBN algorithm.
Author(s)
Andrea Rau
Examples
library(ebdbNet)
library(GeneNet) ## Load GeneNet package to use T-cell activation data
data(tcell) ## Load T-cell activation data
tc44 <- combine.longitudinal(tcell.10, tcell.34)
## Put data into correct format for algorithm
tcell.dat <- dataFormat(tc44)
Empirical Bayes Dynamic Bayesian Network (EBDBN) Estimation
Description
A function to infer the posterior mean and variance of network parameters using an empirical Bayes estimation procedure for a Dynamic Bayesian Network (DBN).
Usage
ebdbn(y, K, input = "feedback", conv.1 = .15, conv.2 = .05, conv.3 = .01, verbose = TRUE,
max.iter = 100, max.subiter = 200)
Arguments
y |
A list of R (PxT) matrices of observed time course profiles (P genes, T time points) |
K |
Number of hidden states |
input |
"feedback" for feedback loop networks, or a list of R (MxT) matrices of input profiles |
conv.1 |
Value of convergence criterion 1 |
conv.2 |
Value of convergence criterion 2 |
conv.3 |
Value of convergence criterion 3 |
verbose |
Verbose output |
max.iter |
Maximum overall iterations (default value is 100) |
max.subiter |
Maximum iterations for hyperparameter updates (default value is 200) |
Details
An object of class ebdbNet
.
This function infers the parameters of a network, based on the state space model
x_t = Ax_{t-1} + Bu_t + w_t
y_t = Cx_t + Du_t + z_t
where x_t
represents the expression of K hidden states at time t
,
y_t
represents the expression of P observed states (e.g., genes) at time
t
, u_t
represents the values of M inputs at time t
,
w_t \sim MVN(0,I)
, and z_t \sim MVN(0,V^{-1})
,
with V = diag(v_1, \ldots, v_P)
. Note that the
dimensions of the matrices A
, B
, C
, and D
are (KxK),
(KxM), (PxK), and (PxM), respectively. When a network is estimated with
feedback rather than inputs (input
= "feedback"), the state
space model is
x_t = Ax_{t-1} + By_{t-1} + w_t
y_t = Cx_t + Dy_{t-1} + z_t
The parameters of greatest interest are typically
contained in the matrix D
, which encodes the direct interactions among
observed variables from one time to the next (in the case of feedback loops),
or the direct interactions between inputs and observed variables at each time point
(in the case of inputs).
The value of K is chosen prior to running the algorithm by using hankel
.
The hidden states are estimated using the classic Kalman filter. Posterior distributions
of A
, B
, C
, and D
are estimated using an empirical
Bayes procedure based on a hierarchical Bayesian structure defined over the
parameter set. Namely, if a_{(j)}
, b_{(j)}
,
c_{(j)}
, d_{(j)}
, denote vectors made up of the
rows of matrices A
, B
, C
, and D
respectively, then
a_{(j)} \vert \alpha \sim N(0, diag(\alpha)^{-1})
b_{(j)} \vert \beta \sim N(0, diag(\beta)^{-1})
c_{(j)} \vert \gamma \sim N(0, diag(\gamma)^{-1})
d_{(j)} \vert \delta \sim N(0, diag(\delta)^{-1})
where \alpha = (\alpha_1, ..., \alpha_K)
,
\beta = (\beta_1, ..., \beta_M)
,
\gamma = (\gamma_1, ..., \gamma_K)
,
and \delta = (\delta_1, ..., \delta_M)
. An EM-like algorithm
is used to estimate the hyperparameters in an iterative
procedure conditioned on current estimates of the hidden states.
conv.1
, conv.2
, and conv.3
correspond to convergence
criteria \Delta_1
, \Delta_2
, and
\Delta_3
in the reference below, respectively. After
terminating the algorithm, the z-scores of the D
matrix is
calculated, which in turn determines the presence or absence of edges in the network.
See the reference below for additional details about the implementation of the algorithm.
Value
APost |
Posterior mean of matrix |
BPost |
Posterior mean of matrix |
CPost |
Posterior mean of matrix |
DPost |
Posterior mean of matrix |
CvarPost |
Posterior variance of matrix C |
DvarPost |
Posterior variance of matrix D |
xPost |
Posterior mean of hidden states x |
alphaEst |
Estimated value of |
betaEst |
Estimated value of |
gammaEst |
Estimated value of |
deltaEst |
Estimated value of |
vEst |
Estimated value of precisions |
muEst |
Estimated value of |
sigmaEst |
Estimated value of |
alliterations |
Total number of iterations run |
z |
Z-statistics calculated from the posterior distribution of matrix D |
type |
Either "input" or "feedback", as specified by the user |
Author(s)
Andrea Rau
References
Andrea Rau, Florence Jaffrezic, Jean-Louis Foulley, and R. W. Doerge (2010). An Empirical Bayesian Method for Estimating Biological Networks from Temporal Microarray Data. Statistical Applications in Genetics and Molecular Biology 9. Article 9.
See Also
hankel
, calcSensSpec
, plot.ebdbNet
Examples
library(ebdbNet)
tmp <- runif(1) ## Initialize random number generator
set.seed(125214) ## Save seed
## Simulate data
R <- 5
T <- 10
P <- 10
simData <- simulateVAR(R, T, P, v = rep(10, P), perc = 0.10)
Dtrue <- simData$Dtrue
y <- simData$y
## Simulate 8 inputs
u <- vector("list", R)
M <- 8
for(r in 1:R) {
u[[r]] <- matrix(rnorm(M*T), nrow = M, ncol = T)
}
####################################################
## Run EB-DBN without hidden states
####################################################
## Choose alternative value of K using hankel if hidden states are to be estimated
## K <- hankel(y)$dim
## Run algorithm
net <- ebdbn(y = y, K = 0, input = u, conv.1 = 0.15, conv.2 = 0.10, conv.3 = 0.10,
verbose = TRUE)
## Visualize results
## Note: no edges here, which is unsurprising as inputs were randomly simulated
## (in input networks, edges only go from inputs to genes)
## plot(net, sig.level = 0.95)
Internal functions for Empirical Bayes Dynamic Bayesian Network (EBDBN) Estimation
Description
Internal functions for the ebdbNet package.
Usage
sumFunc(x, cutoff)
fdbkFunc(y)
Arguments
x |
Vector of singular values from singular value decomposition of block-Hankel matrix |
cutoff |
Value to determine cutoff to be considered for singular values (e.g., 0.90) |
y |
A list of R (PxT) matrices of observed time course profiles |
Author(s)
Andrea Rau
See Also
Perform Singular Value Decomposition of Block-Hankel Matrix
Description
This function constructs a block-Hankel matrix based on time-course data, performs the subsequent singular value decomposition (SVD) on this matrix, and returns the number of large singular values as defined by a user-supplied cutoff criterion.
Usage
hankel(y, lag, cutoff, type)
Arguments
y |
A list of R (PxT) matrices of observed time course profiles |
lag |
Maximum relevant time lag to be used in constructing the block-Hankel matrix |
cutoff |
Cutoff to be used, determined by desired percent of total variance explained |
type |
Method to combine results across replicates ("median" or "mean") |
Details
Constructs the block-Hankel matrix H
of autocovariances of time series observations is constructed
(see references for additional information), where the maximum relevant time lag must be specified
as lag
. In the context of gene networks, this corresponds to the maximum relevant biological time
lag between a gene and its regulators. This quantity is experiment-specific, but will generally be
small for gene expression studies (on the order of 1, 2, or 3).
The singular value decomposition of H
is performed, and the singular values are ordered by size
and scaled by the largest singular value. Note that if there are T time points in the data, only the
first (T - 1) singular values will be non-zero.
To choose the number of large singular values, we wish to find the point at which the inclusion of
an additional singular value does not increase the amount of explained variation enough to justify
its inclusion (similar to choosing the number of components in a Principal Components Analysis).
The user-supplied value of cutoff
gives the desired percent of variance explained by the first set
of K principal components. The algorithm returns the value of K, which may subsequently be used
as the dimension of the hidden state in ebdbn
.
The argument 'type' takes the value of "median" or "mean", and is used to determine how results from replicated experiments are combined (i.e., median or mean of the per-replicate final hidden state dimension).
Value
svs |
Vector of singular values of the block-Hankel matrix |
dim |
Number of large singular values, as determined by the user-supplied cutoff |
Author(s)
Andrea Rau
References
Masanao Aoki and Arthur Havenner (1991). State space modeling of multiple time series. Econometric Reviews 10(1), 1-59.
Martina Bremer (2006). Identifying regulated genes through the correlation structure of time dependent microarray data. Ph. D. thesis, Purdue University.
Andrea Rau, Florence Jaffrezic, Jean-Louis Foulley, and R. W. Doerge (2010). An Empirical Bayesian Method for Estimating Biological Networks from Temporal Microarray Data. Statistical Applications in Genetics and Molecular Biology 9. Article 9.
Examples
library(ebdbNet)
tmp <- runif(1) ## Initialize random number generator
set.seed(125214) ## Save seed
## Simulate data
y <- simulateVAR(R = 5, T = 10, P = 10, v = rep(10, 10), perc = 0.10)$y
## Determine the number of hidden states to be estimated (with lag = 1)
K <- hankel(y, lag = 1, cutoff = 0.90, type = "median")$dim
## K = 5
Visualize EBDBN network
Description
A function to visualize graph estimated using the Empirical Bayes Dynamic Bayesian Network (EBDBN) algorithm.
Usage
## S3 method for class 'ebdbNet'
plot(x, sig.level, interactive = FALSE, clarify = "TRUE",
layout = layout.fruchterman.reingold, ...)
Arguments
x |
An object of class |
sig.level |
Desired significance level (between 0 and 1) for edges in network |
interactive |
If TRUE, interactive plotting through tkplot |
clarify |
If TRUE, unconnected nodes should be removed from the plot |
layout |
Layout parameter for graphing network using igraph0 |
... |
Additional arguments (mainly useful for plotting) |
Details
For input networks, the default colors for nodes representing inputs and genes are green and blue, respectively. For feedback networks, the default color for all nodes is blue.
The interactive plotting option should only be used for relatively small networks (less than about 100 nodes).
Author(s)
Andrea Rau
References
Andrea Rau, Florence Jaffrezic, Jean-Louis Foulley, and R. W. Doerge (2010). An Empirical Bayesian Method for Estimating Biological Networks from Temporal Microarray Data. Statistical Applications in Genetics and Molecular Biology 9. Article 9.
See Also
Examples
library(ebdbNet)
tmp <- runif(1) ## Initialize random number generator
set.seed(125214) ## Save seed
## Simulate data
R <- 5
T <- 10
P <- 10
simData <- simulateVAR(R, T, P, v = rep(10, P), perc = 0.10)
Dtrue <- simData$Dtrue
y <- simData$y
## Simulate 8 inputs
u <- vector("list", R)
M <- 8
for(r in 1:R) {
u[[r]] <- matrix(rnorm(M*T), nrow = M, ncol = T)
}
####################################################
## Run EB-DBN without hidden states
####################################################
## Choose alternative value of K using hankel if hidden states are to be estimated
## K <- hankel(y)$dim
## Run algorithm
## net <- ebdbn(y = y, K = 0, input = u, conv.1 = 0.15, conv.2 = 0.10, conv.3 = 0.10,
## verbose = TRUE)
## Visualize results
## plot(net, sig.level = 0.95)
Simulate Simple Autoregressive Process
Description
Function to simulate a simple autoregressive process based on a network adjacency matrix with a given percentage of non-zero elements.
Usage
simulateVAR(R, T, P, v, perc)
Arguments
R |
Number of replicates |
T |
Number of time points |
P |
Number of observations (genes) |
v |
(Px1) vector of gene precisions |
perc |
Percent of non-zero edges in adjacency matrix |
Details
Data are simulated with R replicates, T time points, and P genes, based on a first-order autoregressive process with Gaussian noise. The user can specify the percentage of non-zero edges to be randomly selected in the adjacency matrix.
Value
Dtrue |
Adjacency matrix used to generate data (i.e., the true network) |
y |
Simulated data |
Author(s)
Andrea Rau
See Also
Examples
library(ebdbNet)
tmp <- runif(1) ## Initialize random number generator
set.seed(125214) ## Save seed
## Simulate data
simData <- simulateVAR(R = 5, T = 10, P = 10, v = rep(10, 10), perc = 0.10)
Dtrue <- simData$Dtrue
y <- simData$y