duckspatial duckspatial website

CRAN status Lifecycle: experimental Codecov test coverage License: GPL v3 Project Status: Active – The project has reached a stable, usable state and is being actively developed.

duckspatial is an R package that simplifies the process of reading and writing vector spatial data (e.g., sf objects) in a DuckDB database. This package is designed for users working with geospatial data who want to leverage DuckDB’s fast analytical capabilities while maintaining compatibility with R’s spatial data ecosystem.

Installation

You can install the development version of duckspatial from GitHub with:

# install.packages("pak")
pak::pak("Cidree/duckspatial")

Example

This is a basic example which shows how to set up DuckDB for spatial data manipulation, and how to write/read vector data.

library(duckdb)
#> Warning: package 'duckdb' was built under R version 4.4.3
#> Cargando paquete requerido: DBI
library(duckspatial)
library(sf)
#> Linking to GEOS 3.12.2, GDAL 3.9.3, PROJ 9.4.1; sf_use_s2() is TRUE

First, we create a connection with a DuckDB database (in this case in memory database), and we make sure that the spatial extension is installed, and we load it:

## create connection
conn <- dbConnect(duckdb())

## install and load spatial extension
ddbs_install(conn)
#> ℹ spatial extension version <76dc6da> is already installed in this database
ddbs_load(conn)
#> ✔ Spatial extension loaded

Now we can get some data to insert into the database. We are creating 10,000,000 random points.

## create n points
n <- 10000000
random_points <- data.frame(
  id = 1:n,
  x = runif(n, min = -180, max = 180),  # Random longitude values
  y = runif(n, min = -90, max = 90)     # Random latitude values
)

## convert to sf
sf_points <- st_as_sf(random_points, coords = c("x", "y"), crs = 4326)

## view first rows
head(sf_points)
#> Simple feature collection with 6 features and 1 field
#> Geometry type: POINT
#> Dimension:     XY
#> Bounding box:  xmin: -138.0885 ymin: -83.68937 xmax: 127.3058 ymax: 65.52595
#> Geodetic CRS:  WGS 84
#>   id                    geometry
#> 1  1 POINT (-84.05372 -2.313132)
#> 2  2  POINT (19.89173 -83.68937)
#> 3  3  POINT (13.76448 -63.57522)
#> 4  4   POINT (127.3058 65.52595)
#> 5  5  POINT (-110.9474 40.40336)
#> 6  6 POINT (-138.0885 -71.29385)

Now we can insert the data into the database using the ddbs_write_vector() function. We use the proc.time() function to calculate how long does it take, and we can compare it with writing a shapefile with the write_sf() function:

## write data monitoring processing time
start_time <- proc.time()
ddbs_write_vector(conn, sf_points, "test_points")
#> ✔ Table test_points successfully imported
end_time <- proc.time()

## print elapsed time
elapsed_duckdb <- end_time["elapsed"] - start_time["elapsed"]
print(elapsed_duckdb)
#> elapsed 
#>    9.64
## write data monitoring processing time
start_time <- proc.time()
gpkg_file <- tempfile(fileext = ".gpkg")
write_sf(sf_points, gpkg_file)
end_time <- proc.time()

## print elapsed time
elapsed_gpkg <- end_time["elapsed"] - start_time["elapsed"]
print(elapsed_gpkg)
#> elapsed 
#>  115.25

In this case, we can see that DuckDB was 12 times faster. Now we will do the same exercise but reading the data back into R:

## write data monitoring processing time
start_time <- proc.time()
sf_points_ddbs <- ddbs_read_vector(conn, "test_points")
#> ✔ Table test_points successfully imported.
end_time <- proc.time()

## print elapsed time
elapsed_duckdb <- end_time["elapsed"] - start_time["elapsed"]
print(elapsed_duckdb)
#> elapsed 
#>   50.34
## write data monitoring processing time
start_time     <- proc.time()
sf_points_ddbs <- read_sf(gpkg_file)
end_time       <- proc.time()

## print elapsed time
elapsed_gpkg <- end_time["elapsed"] - start_time["elapsed"]
print(elapsed_gpkg)
#> elapsed 
#>   32.38

For reading, we get a factor of 0.6 times faster for DuckDB. Finally, don’t forget to disconnect from the database:

dbDisconnect(conn)