Type: | Package |
Title: | Correcting AUC for Measurement Error |
Version: | 0.0.3 |
Date: | 2016-6-29 |
Author: | Bernard Rosner, Shelley Tworoger, Weiliang Qiu |
Maintainer: | Weiliang Qiu <stwxq@channing.harvard.edu> |
Depends: | R (≥ 3.1.0), stats |
Imports: | ICC, mnormt |
Description: | Correcting area under ROC (AUC) for measurement error based on probit-shift model. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: | no |
Packaged: | 2016-06-29 15:17:16 UTC; stwxq |
Repository: | CRAN |
Date/Publication: | 2016-06-29 23:22:20 |
Calculate AUC corrected for measurement error based on Reiser's (2000) method
Description
Calculate AUC corrected for measurement error based on Reiser's (2000) method.
Usage
AUCest.Reiser(
datFrame,
sidVar = "subjID",
obsVar = "y",
grpVar = "grp",
repVar = "myrep",
alpha = 0.05)
Arguments
datFrame |
a data frame with at least the following columns:
|
sidVar |
character. variable name for subject id in the data frame |
obsVar |
character. variable name for observations in the data frame |
grpVar |
character. variable name for group indictor in the data frame |
repVar |
character. variable name for replication indictor in the data frame |
alpha |
confidence interval level |
Value
A list of 4 elements
AUC.c |
AUC corrected for measurement error based on Reiser's (2000) method. |
sd.AUC.c |
standard error of the estimated AUC corrected for measurement error based on Reiser's (2000) method. |
AUC.c.low |
lower bound of the |
AUC.c.upp |
upper bound of the |
Author(s)
Bernard Rosner <stbar@channing.harvard.edu>, Shelley Tworoger <nhsst@channing.harvard.edu>, Weiliang Qiu <stwxq@channing.harvard.edu>
References
Rosner B, Tworoger S, Qiu W (2015) Correcting AUC for Measurement Error. J Biom Biostat 6:270. doi:10.4172/2155-6180.1000270
Examples
set.seed(1234567)
tt=genSimDataReiser(
nX = 100,
nY = 100,
sigma.X2 = 1,
mu.X = 0.25,
sigma.Y2 = 1,
mu.Y = 0,
sigma.epsilon2 = 0.5,
sigma.eta2 = 0.5)
print(dim(tt$datFrame))
print(tt$datFrame[1:2,1:3])
print(tt$theta2)
print(tt$mu.true)
print(tt$AUC.true)
res = AUCest.Reiser(
datFrame = tt$datFrame,
sidVar = "subjID",
obsVar = "y",
grpVar = "grp",
repVar = "myrep",
alpha = 0.05)
print(res)
Calculate AUC.c for measurement error based on probit-shift model
Description
Calculate AUC.c for measurement error based on probit-shift model.
Usage
AUCest.Rosner(
datFrame,
sidVar = "subjID",
obsVar = "y",
grpVar = "grp",
repVar = "myrep",
alpha = 0.05)
Arguments
datFrame |
a data frame with at least the following columns:
|
sidVar |
character. variable name for subject id in the data frame |
obsVar |
character. variable name for observations in the data frame |
grpVar |
character. variable name for group indictor in the data frame |
repVar |
character. variable name for replication indictor in the data frame |
alpha |
confidence interval level |
Value
A list of 9 elements:
AUC.obs |
AUC estimated based on the Mann-Whitney statistic. |
AUC.c |
AUC corrected for measurement error based on the probit-shift model. |
ICC.x |
intra-class correlation for cases. |
ICC.y |
intra-class correlation for controls |
mu.mle |
maximum likelihood estimate of |
AUC.obs.low |
lower bound of the |
AUC.obs.upp |
upper bound of the |
AUC.c.low |
lower bound of the |
AUC.c.upp |
upper bound of the |
Author(s)
Bernard Rosner <stbar@channing.harvard.edu>, Shelley Tworoger <nhsst@channing.harvard.edu>, Weiliang Qiu <stwxq@channing.harvard.edu>
References
Rosner B, Tworoger S, Qiu W (2015) Correcting AUC for Measurement Error. J Biom Biostat 6:270. doi:10.4172/2155-6180.1000270
Examples
set.seed(1234567)
tt=genSimDataModelIII(
nX = 100,
nY = 100,
mu = 0.25,
lambda = 0,
sigma.X2 = 1,
sigma.Y2 = 1,
sigma.e.X = 1,
sigma.e.Y = 1)
print(dim(tt$datFrame))
print(tt$datFrame[1:2,1:3])
print(tt$AUC.true)
res = AUCest.Rosner(
datFrame = tt$datFrame,
sidVar = "subjID",
obsVar = "y",
grpVar = "grp",
repVar = "myrep",
alpha = 0.05)
print(res)
Generate one simulated data set based on Model II in Rosner et al's (2015) manuscript
Description
Generate one simulated data set based on Model II in Rosner et al's (2015) manuscript.
Usage
genSimDataModelII(
nX,
nY,
mu,
lambda,
sigma.X2,
sigma.Y2,
sigma.e.X,
sigma.e.Y)
Arguments
nX |
integer. number of cases. |
nY |
integer. number of controls. |
mu |
difference of means between the case distribution and control distribution. |
lambda |
mean for controls. |
sigma.X2 |
variance of the true value for cases. |
sigma.Y2 |
variance of the true value for controls. |
sigma.e.X |
variance of the random error term for cases. |
sigma.e.Y |
variance of the random error term for controls. |
Details
The Model II in Rosner et al.'s (2005) manuscript:
X_{ik, obs}=X_{i,true}+\epsilon_{ik},\\
\log\left(X_{i, true}\right) \sim N\left(\lambda+\mu, \sigma_X^2\right),\\
\epsilon_{ik} \sim N\left(0, \sigma_{\epsilon}^2\right),\\
i=1,\ldots, n_X, k=1, 2
Y_{jl, obs}=Y_{j,true}+\xi_{jl},\\
\log\left(Y_{j, true}\right) \sim N\left(\lambda, \sigma_Y^2\right),\\
\xi_{jl} \sim N(0, \sigma_{\eta}^2),\\
j=1,\ldots, n_Y, l=1, 2
Value
A list of 2 elements:
datFrame |
A data frame with 4 elements:
|
AUC.true |
true AUC value |
Author(s)
Bernard Rosner <stbar@channing.harvard.edu>, Shelley Tworoger <nhsst@channing.harvard.edu>, Weiliang Qiu <stwxq@channing.harvard.edu>
References
Rosner B, Tworoger S, Qiu W (2015) Correcting AUC for Measurement Error. J Biom Biostat 6:270. doi:10.4172/2155-6180.1000270
Examples
set.seed(1234567)
tt=genSimDataModelII(
nX = 100,
nY = 100,
mu = 0.25,
lambda = 0,
sigma.X2 = 1,
sigma.Y2 = 1,
sigma.e.X = 1,
sigma.e.Y = 1)
print(dim(tt$datFrame))
print(tt$datFrame[1:2,1:3])
print(tt$AUC.true)
Generate one simulated data set based on Model III in Rosner et al's (2015) manuscript
Description
Generate one simulated data set based on Model III in Rosner et al's (2015) manuscript.
Usage
genSimDataModelIII(
nX,
nY,
mu,
lambda,
sigma.X2,
sigma.Y2,
sigma.e.X,
sigma.e.Y)
Arguments
nX |
integer. number of cases. |
nY |
integer. number of controls. |
mu |
difference of means between the case distribution and control distribution. |
lambda |
mean for controls. |
sigma.X2 |
variance of the true value for cases. |
sigma.Y2 |
variance of the true value for controls. |
sigma.e.X |
variance of the random error term for cases. |
sigma.e.Y |
variance of the random error term for controls. |
Details
The Model III in Rosner et al.'s (2005) manuscript:
X_{ik, obs}=X_{i,true}+\epsilon_{ik},\\
\log\left(X_{i, true}\right) \sim N\left(\lambda+\mu, \sigma_X^2\right),\\
\log\left(\epsilon_{ik}\right) \sim N\left(0, \sigma_{\epsilon}^2\right),\\
i=1,\ldots, n_X, k=1, 2
Y_{jl, obs}=Y_{j,true}+\xi_{jl},\\
\log\left(Y_{j, true}\right) \sim N\left(\lambda, \sigma_Y^2\right),\\
\log\left(\xi_{jl}\right) \sim N(0, \sigma_{\eta}^2),\\
j=1,\ldots, n_Y, l=1, 2
Value
A list of 2 elements:
datFrame |
A data frame with 4 elements:
|
AUC.true |
true AUC value |
Author(s)
Bernard Rosner <stbar@channing.harvard.edu>, Shelley Tworoger <nhsst@channing.harvard.edu>, Weiliang Qiu <stwxq@channing.harvard.edu>
References
Rosner B, Tworoger S, Qiu W (2015) Correcting AUC for Measurement Error. J Biom Biostat 6:270. doi:10.4172/2155-6180.1000270
Examples
set.seed(1234567)
tt=genSimDataModelIII(
nX = 100,
nY = 100,
mu = 0.25,
lambda = 0,
sigma.X2 = 1,
sigma.Y2 = 1,
sigma.e.X = 1,
sigma.e.Y = 1)
print(dim(tt$datFrame))
print(tt$datFrame[1:2,1:3])
print(tt$AUC.true)
Generate one simulated data set based on Reiser's (2000) model
Description
Generate one simulated data set based on Reiser's (2000) model. The true AUC will also be calculated.
Usage
genSimDataReiser(
nX = 100,
nY = 100,
sigma.X2 = 1,
mu.X = 0.25,
sigma.Y2 = 1,
mu.Y = 0,
sigma.epsilon2 = 0.5,
sigma.eta2 = 0.5)
Arguments
nX |
integer. number of cases. |
nY |
integer. number of controls. |
sigma.X2 |
variance of the true value for cases. |
mu.X |
mean of the true value for cases. |
sigma.Y2 |
variance of the true value for controls. |
mu.Y |
mean of the true value for controls. |
sigma.epsilon2 |
variance of the random error term for cases. |
sigma.eta2 |
variance of the random error term for controls. |
Details
Reiser's (2000) measurement error model is:
X_{ik, obs}=X_{i,true}+\epsilon_{ik},\\
X_{i, true} \sim N\left(\mu_X, \sigma_X^2\right),\\
\epsilon_{ik} \sim N\left(0, \sigma_{\epsilon}^2\right),\\
i=1,\ldots, n_X, k=1, 2
Y_{jl, obs}=Y_{j,true}+\xi_{jl},\\
Y_{j, true} \sim N\left(\mu_Y, \sigma_Y^2\right),\\
\xi_{jl} \sim N(0, \sigma_{\eta}^2),\\
j=1,\ldots, n_Y, l=1, 2
Value
A list of 4 elements:
datFrame |
A data frame with 4 elements:
|
theta2 |
|
mu.true |
|
AUC.true |
true AUC value |
Author(s)
Bernard Rosner <stbar@channing.harvard.edu>, Shelley Tworoger <nhsst@channing.harvard.edu>, Weiliang Qiu <stwxq@channing.harvard.edu>
References
Rosner B, Tworoger S, Qiu W (2015) Correcting AUC for Measurement Error. J Biom Biostat 6:270. doi:10.4172/2155-6180.1000270
Examples
set.seed(1234567)
tt=genSimDataReiser(
nX = 100,
nY = 100,
sigma.X2 = 1,
mu.X = 0.25,
sigma.Y2 = 1,
mu.Y = 0,
sigma.epsilon2 = 0.5,
sigma.eta2 = 0.5)
print(dim(tt$datFrame))
print(tt$datFrame[1:2,1:3])
print(tt$theta2)
print(tt$mu.true)
print(tt$AUC.true)