Type: | Package |
Title: | Using 'KEEL' in R Code |
Version: | 1.3.4 |
Depends: | R (≥ 3.4.0) |
Date: | 2023-09-07 |
Author: | Jose M. Moyano [aut, cre], Luciano Sanchez [aut], Oliver Sanchez [ctb], Jesus Alcala-Fernandez [ctb] |
Maintainer: | Jose M. Moyano <jmoyano1@us.es> |
Description: | 'KEEL' is a popular 'Java' software for a large number of different knowledge data discovery tasks. This package takes the advantages of 'KEEL' and R, allowing to use 'KEEL' algorithms in simple R code. The implemented R code layer between R and 'KEEL' makes easy both using 'KEEL' algorithms in R as implementing new algorithms for 'RKEEL' in a very simple way. It includes more than 100 algorithms for classification, regression, preprocess, association rules and imbalance learning, which allows a more complete experimentation process. For more information about 'KEEL', see http://www.keel.es/. |
SystemRequirements: | Java (>= 8) |
License: | GPL-2 | GPL-3 [expanded from: GPL] |
Imports: | R6, XML, doParallel, foreach, gdata, RKEELdata (≥ 1.0.5), pmml, arules, Matrix, rJava, openssl, downloader |
NeedsCompilation: | no |
Packaged: | 2023-09-14 06:35:59 UTC; jose |
Repository: | CRAN |
Date/Publication: | 2023-09-14 18:50:08 UTC |
ABB_IEP_FS KEEL Preprocess Algorithm
Description
ABB_IEP_FS Preprocess Algorithm from KEEL.
Usage
ABB_IEP_FS(train, test, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::ABB_IEP_FS(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
ANR_F KEEL Preprocess Algorithm
Description
ANR_F Preprocess Algorithm from KEEL.
Usage
ANR_F(train, test, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("zoo")
data_test <- RKEEL::loadKeelDataset("zoo")
#Create algorithm
algorithm <- RKEEL::ANR_F(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
ART_C KEEL Classification Algorithm
Description
ART_C Classification Algorithm from KEEL.
Usage
ART_C(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::ART_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
AdaBoostNC_C KEEL Classification Algorithm
Description
AdaBoostNC_C Classification Algorithm from KEEL.
Usage
AdaBoostNC_C(train, test, pruned, confidence, instancesPerLeaf,
numClassifiers, algorithm, trainMethod, lambda, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
pruned |
pruned. Default value = TRUE |
confidence |
confidence. Default value = 0.25 |
instancesPerLeaf |
instancesPerLeaf. Default value = 2 |
numClassifiers |
numClassifiers. Default value = 10 |
algorithm |
algorithm. Default value = "ADABOOST.NC" |
trainMethod |
trainMethod. Default value = "NORESAMPLING" |
lambda |
lambda. Default value = 2 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::AdaBoostNC_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
AdaBoost_I KEEL Imbalanced Classification Algorithm
Description
AdaBoost_I Imbalanced Classification Algorithm from KEEL.
Usage
AdaBoost_I(train, test, pruned, confidence, instancesPerLeaf,
numClassifiers, algorithm, trainMethod, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
pruned |
pruned. Default value = TRUE |
confidence |
confidence. Default value = 0.25 |
instancesPerLeaf |
instancesPerLeaf. Default value = 2 |
numClassifiers |
numClassifiers. Default value = 10 |
algorithm |
algorithm. Default value = "ADABOOST" |
trainMethod |
trainMethod. Default value = "NORESAMPLING" |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::AdaBoost_I(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Alatasetal_A KEEL Association Rules Algorithm
Description
Alatasetal_A Association Rules Algorithm from KEEL.
Usage
Alatasetal_A(dat, seed, NumberofEvaluations, InitialRandomChromosomes,
rDividingPoints, TournamentSize, ProbabilityofCrossover,
MinimumProbabilityofMutation, MaximumProbabilityofMutation,
ImportanceofRulesSupport, ImportanceofRulesConfidence,
ImportanceofNumberofInvolvedAttributes, ImportanceofIntervalsAmplitude,
ImportanceofNumberofRecordsAlreadyCovered, AmplitudeFactor)
Arguments
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofEvaluations |
NumberofEvaluations. Default value = 50000 |
InitialRandomChromosomes |
Initial Random Chromosomes. Default value = 12 |
rDividingPoints |
r-Dividing Points. Default value = 3 |
TournamentSize |
TournamentSize. Default value = 10 |
ProbabilityofCrossover |
Probability of Crossover. Default value = 0.7 |
MinimumProbabilityofMutation |
Minimum Probability of Mutation. Default value = 0.05 |
MaximumProbabilityofMutation |
Maximum Probability of Mutation. Default value = 0.9 |
ImportanceofRulesSupport |
Importance of Rules Support. Default value = 5 |
ImportanceofRulesConfidence |
Importance of Rules Confidence. Default value = 20 |
ImportanceofNumberofInvolvedAttributes |
Importance of Number of Involved Attributes. Default value = 0.05 |
ImportanceofIntervalsAmplitude |
Importance of Intervals Amplitude. Default value = 0.02 |
ImportanceofNumberofRecordsAlreadyCovered |
Importance of Number of Records Already Covered. Default value = 0.01 |
AmplitudeFactor |
Amplitude Factor. Default value = 2.0 |
Details
$run()
Run algorith
$showRules(numRules)
Show a number of rules. By default all rules.
$getInterestMeasures()
Return a data.frame with all interest measures of set rules.
$sortBy(interestMeasure)
Order set rules by interest measure.
$writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
Value
A arules class with the Association Rules for both dat
dataset.
Examples
#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")
#Create algorithm
algorithm <- RKEEL::Alatasetal_A(dat)
#Run algorithm
algorithm$run()
#Rules in format arules
algorithm$rules
#Show a number of rules
algorithm$showRules(2)
#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()
#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")
#Sort by interest measure lift
algorithm$sortBy("lift")
#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))
Alcalaetal_A KEEL Association Rules Algorithm
Description
Alcalaetal_A Association Rules Algorithm from KEEL.
Usage
Alcalaetal_A(dat, seed, NumberofEvaluations, PopulationSize, NumberofBitsperGene,
DecreasingFactorofLthresholdNOTUSED, FactorforParentCentricBLXCrossover,
NumberofFuzzyRegionsforNumericAttributes, UseMaxOperatorfor1FrequentItemsets,
MinimumSupport, MinimumConfidence)
Arguments
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofEvaluations |
Number of Evaluations. Default value = 10000 |
PopulationSize |
Population Size. Default value = 50 |
NumberofBitsperGene |
Number of Bits per Gene. Default value = 30 |
DecreasingFactorofLthresholdNOTUSED |
Decreasing Factor of Lthreshold NOT USED. Default value = 0.1 |
FactorforParentCentricBLXCrossover |
Factor for Parent Centric BLXCrossover. Default value = 1.0 |
NumberofFuzzyRegionsforNumericAttributes |
Number of Fuzzy Regions for Numeric Attributes. Default value = 3 |
UseMaxOperatorfor1FrequentItemsets |
Use Max Operator for 1 Frequent Itemsets. Default value = "false" |
MinimumSupport |
Minimum Support. Default value = 0.1 |
MinimumConfidence |
Minimum Confidence. Default value = 0.8 |
Details
$run()
Run algorith
$showRules(numRules)
Show a number of rules. By default all rules.
$getInterestMeasures()
Return a data.frame with all interest measures of set rules.
$sortBy(interestMeasure)
Order set rules by interest measure.
$writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
Value
A arules class with the Association Rules for both dat
dataset.
Examples
#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")
#Create algorithm
algorithm <- RKEEL::Alcalaetal_A(dat)
#Run algorithm
algorithm$run()
#Rules in format arules
algorithm$rules
#Show a number of rules
algorithm$showRules(2)
#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()
#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")
#Sort by interest measure lift
algorithm$sortBy("lift")
#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))
AllKNN_TSS KEEL Preprocess Algorithm
Description
AllKNN_TSS Preprocess Algorithm from KEEL.
Usage
AllKNN_TSS(train, test, k, distance)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 3 |
distance |
distance. Default value = "Euclidean" |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::AllKNN_TSS(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
AllPosible_MV KEEL Preprocess Algorithm
Description
AllPosible_MV Preprocess Algorithm from KEEL.
Usage
AllPosible_MV(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::AllPosible_MV(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
Apriori_A KEEL Association Rules Algorithm
Description
Apriori_A Association Rules Algorithm from KEEL.
Usage
Apriori_A(dat, NumberofPartitionsforNumericAttributes, MinimumSupport,
MinimumConfidence)
Arguments
dat |
Dataset as a data.frame object |
NumberofPartitionsforNumericAttributes |
Number of Partitions for Numeric Attributes. Default value = 4 |
MinimumSupport |
Minimum Support. Default value = 0.1 |
MinimumConfidence |
Minimum Confidence. Default value = 0.8 |
Details
$run()
Run algorith
$showRules(numRules)
Show a number of rules. By default all rules.
$getInterestMeasures()
Return a data.frame with all interest measures of set rules.
$sortBy(interestMeasure)
Order set rules by interest measure.
$writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
Value
A arules class with the Association Rules for both dat
dataset.
Examples
#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")
#Create algorithm
algorithm <- RKEEL::Apriori_A(dat)
#Run algorithm
algorithm$run()
#Rules in format arules
algorithm$rules
#Show a number of rules
algorithm$showRules(2)
#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()
#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")
#Sort by interest measure lift
algorithm$sortBy("lift")
#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))
Association Rules Algorithm
Description
Class inheriting of KeelAlgorithm, to common methods for all KEEL Association Rules Algorithms. The specific association rules algorithms must inherit of this class.
The run() method receives three parameters. The folderPath parameter indicates where to place the folder with the experiments if wanted. If it is not indicated, the folder is placen ind a temporary random directory and then removed. If indicated, the experiment folder is not removed. The expUniqueName parameter indicates the name of the experiment folder. If not indicated, it is a random name. If indicated, ensure that the name is unique in the previously indicated folder. The javaOptions parameter indicates, if wanted, extra parameters to the java command line, as for example the maximum memory allowed by java.
Associative Classification Algorithm
Description
Class inheriting of ClassificationAlgorithm, to common methods for Associative Classification Algorithms.
The run() method receives three parameters. The folderPath parameter indicates where to place the folder with the experiments if wanted. If it is not indicated, the folder is placen ind a temporary random directory and then removed. If indicated, the experiment folder is not removed. The expUniqueName parameter indicates the name of the experiment folder. If not indicated, it is a random name. If indicated, ensure that the name is unique in the previously indicated folder. The javaOptions parameter indicates, if wanted, extra parameters to the java command line, as for example the maximum memory allowed by java.
BNGE_C KEEL Classification Algorithm
Description
BNGE_C Classification Algorithm from KEEL.
Usage
BNGE_C(train, test, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::BNGE_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
BSE_C KEEL Classification Algorithm
Description
BSE_C Classification Algorithm from KEEL.
Usage
BSE_C(train, test, k, distance)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 1 |
distance |
distance. Default value = "Euclidean" |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::BSE_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Bayesian_D KEEL Preprocess Algorithm
Description
Bayesian_D Preprocess Algorithm from KEEL.
Usage
Bayesian_D(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::Bayesian_D(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
Bojarczuk_GP_C KEEL Classification Algorithm
Description
Bojarczuk_GP_C Classification Algorithm from KEEL.
Usage
Bojarczuk_GP_C(train, test, population_size, max_generations,
max_deriv_size, rec_prob, copy_prob, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
population_size |
population_size. Default value = 200 |
max_generations |
max_generations. Default value = 200 |
max_deriv_size |
max_deriv_size. Default value = 20 |
rec_prob |
rec_prob. Default value = 0.8 |
copy_prob |
copy_prob. Default value = 0.01 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::Bojarczuk_GP_C(data_train, data_test)
algorithm <- RKEEL::Bojarczuk_GP_C(data_train, data_test, population_size=5, max_generations=10)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
C45Binarization_C KEEL Classification Algorithm
Description
C45Binarization_C Classification Algorithm from KEEL.
Usage
C45Binarization_C(train, test, pruned, confidence, instancesPerLeaf,
binarization, scoreFunction, bts)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
pruned |
pruned. Default value = TRUE |
confidence |
confidence. Default value = 0.25 |
instancesPerLeaf |
instancesPerLeaf. Default value = 2 |
binarization |
binarization. Default value = "OVO" |
scoreFunction |
scoreFunction. Default value = "WEIGHTED" |
bts |
bts. Default value = 0.05 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::C45Binarization_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
C45Rules_C KEEL Classification Algorithm
Description
C45Rules_C Classification Algorithm from KEEL.
Usage
C45Rules_C(train, test, confidence, itemsetsPerLeaf, threshold,
seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
confidence |
confidence. Default value = 0.25 |
itemsetsPerLeaf |
itemsetsPerLeaf. Default value = 2 |
threshold |
threshold. Default value = 10 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::C45Rules_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
C45_C KEEL Classification Algorithm
Description
C45_C Classification Algorithm from KEEL.
Usage
C45_C(train, test, pruned, confidence, instancesPerLeaf)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
pruned |
pruned. Default value = TRUE |
confidence |
confidence. Default value = 0.25 |
instancesPerLeaf |
instancesPerLeaf. Default value = 2 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::C45_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
CART_C KEEL Classification Algorithm
Description
CART_C Classification Algorithm from KEEL.
Usage
CART_C(train, test, maxDepth)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
maxDepth |
k. Default value = 90 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::CART_C(data_train, data_test, maxDepth=3)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
CART_R KEEL Regression Algorithm
Description
CART_R Regression Algorithm from KEEL.
Usage
CART_R(train, test, maxDepth)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
maxDepth |
maxDepth. Default value = 90 |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::CART_R(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
CBA_C KEEL Associative Classification Algorithm
Description
CBA_C Associative Classification Algorithm from KEEL.
Usage
CBA_C(train, test, min_support, min_confidence, pruning, maxCandidates)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
min_support |
min_support. Default value = 0.01 |
min_confidence |
min_confidence. Default value = 0.5 |
pruning |
indicates wether pruning or not. Default value = TRUE |
maxCandidates |
maxCandidates; if 0, no limit. Default value = 80000 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data <- loadKeelDataset("breast")
#Create algorithm
algorithm <- RKEEL::CBA_C(data, data)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
CFAR_C KEEL Classification Algorithm
Description
CFAR_C Classification Algorithm from KEEL.
Usage
CFAR_C(train, test, min_support, min_confidence, threshold,
num_labels, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
min_support |
min_support. Default value = 0.1 |
min_confidence |
min_confidence. Default value = 0.85 |
threshold |
threshold. Default value = 0.15 |
num_labels |
num_labels. Default value = 5 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::CFAR_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
CFKNN_C KEEL Classification Algorithm
Description
CFKNN_C Classification Algorithm from KEEL.
Usage
CFKNN_C(train, test, k, alpha, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 3 |
alpha |
alpha. Default value = 0.6 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::CFKNN_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
CHC_C KEEL Classification Algorithm
Description
CHC_C Classification Algorithm from KEEL.
Usage
CHC_C(train, test, pop_size, evaluations, alfa, restart_change,
prob_restart, prob_diverge, k, distance, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
pop_size |
pop_size. Default value = 50 |
evaluations |
evaluations. Default value = 10000 |
alfa |
alfa. Default value = 0.5 |
restart_change |
restart_change. Default value = 0.35 |
prob_restart |
prob_restart. Default value = 0.25 |
prob_diverge |
prob_diverge. Default value = 0.05 |
k |
k. Default value = 1 |
distance |
distance. Default value = "Euclidean" |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::CHC_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
CMAR_C KEEL Associative Classification Algorithm
Description
CMAR_C Associative Classification Algorithm from KEEL.
Usage
CMAR_C(train, test, min_confidence, min_support, databaseCoverage)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
min_confidence |
min_confidence. Default value = 0.5 |
min_support |
min_support. Default value = 0.01 |
databaseCoverage |
databaseCoverage. Default value = 4 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data <- loadKeelDataset("breast")
#Create algorithm
algorithm <- RKEEL::CMAR_C(data, data)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
CNN_C KEEL Classification Algorithm
Description
CNN_C Classification Algorithm from KEEL.
Usage
CNN_C(train, test, k, distance, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 1 |
distance |
distance. Default value = "Euclidean" |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::CNN_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
CPAR_C KEEL Associative Classification Algorithm
Description
CPAR_C Associative Classification Algorithm from KEEL.
Usage
CPAR_C(train, test, delta, min_gain, alpha, rules_prediction)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
delta |
delta. Default value = 0.05 |
min_gain |
min_gain. Default value = 0.7 |
alpha |
alpha. Default value = 0.66 |
rules_prediction |
rules_prediction. Default value = 5 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data <- loadKeelDataset("breast")
#Create algorithm
algorithm <- RKEEL::CPAR_C(data, data)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
CPW_C KEEL Classification Algorithm
Description
CPW_C Classification Algorithm from KEEL.
Usage
CPW_C(train, test, beta, mu, ro, epsilon)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
beta |
beta. Default value = 8.0 |
mu |
mu. Default value = 0.001 |
ro |
ro. Default value = 0.001 |
epsilon |
epsilon. Default value = 0.001 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::CPW_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
CW_C KEEL Classification Algorithm
Description
CW_C Classification Algorithm from KEEL.
Usage
CW_C(train, test, beta, mu, epsilon)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
beta |
beta. Default value = 8.0 |
mu |
mu. Default value = 0.001 |
epsilon |
epsilon. Default value = 0.001 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::CW_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
C_SVM_C KEEL Classification Algorithm
Description
C_SVM_C Classification Algorithm from KEEL.
Usage
C_SVM_C(train, test, KernelType, C, eps, degree, gamma, coef0,
nu, p, shrinking, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
KernelType |
KernelType. Default value = "RBF" |
C |
C. Default value = 100.0 |
eps |
eps. Default value = 0.001 |
degree |
degree. Default value = 1 |
gamma |
gamma. Default value = 0.01 |
coef0 |
coef0. Default value = 0.0 |
nu |
nu. Default value = 0.1 |
p |
p. Default value = 1.0 |
shrinking |
shrinking. Default value = 1 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::C_SVM_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
CamNN_C KEEL Classification Algorithm
Description
CamNN_C Classification Algorithm from KEEL.
Usage
CamNN_C(train, test, k)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 1 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::CamNN_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
CenterNN_C KEEL Classification Algorithm
Description
CenterNN_C Classification Algorithm from KEEL.
Usage
CenterNN_C(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::CenterNN_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Classification Algorithm
Description
Class inheriting of KeelAlgorithm, to common methods for all KEEL Classification Algorithms. The specific classification algorithms must inherit of this class.
The run() method receives three parameters. The folderPath parameter indicates where to place the folder with the experiments if wanted. If it is not indicated, the folder is placen ind a temporary random directory and then removed. If indicated, the experiment folder is not removed. The expUniqueName parameter indicates the name of the experiment folder. If not indicated, it is a random name. If indicated, ensure that the name is unique in the previously indicated folder. The javaOptions parameter indicates, if wanted, extra parameters to the java command line, as for example the maximum memory allowed by java.
Classification Results
Description
Class to calculate and store some results for a ClassificationAlgorithm. It receives as parameter the prediction of a classification algorithm as a data.frame object.
CleanAttributes_TR KEEL Preprocess Algorithm
Description
CleanAttributes_TR Preprocess Algorithm from KEEL.
Usage
CleanAttributes_TR(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::CleanAttributes_TR(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
ClusterAnalysis_D KEEL Preprocess Algorithm
Description
ClusterAnalysis_D Preprocess Algorithm from KEEL.
Usage
ClusterAnalysis_D(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::ClusterAnalysis_D(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
DSM_C KEEL Classification Algorithm
Description
DSM_C Classification Algorithm from KEEL.
Usage
DSM_C(train, test, iterations, percentage, alpha_0, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
iterations |
iterations. Default value = 100 |
percentage |
percentage. Default value = 10 |
alpha_0 |
alpha_0. Default value = 0.1 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::DSM_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
DT_GA_C KEEL Classification Algorithm
Description
DT_GA_C Classification Algorithm from KEEL.
Usage
DT_GA_C(train, test, confidence, instancesPerLeaf,
geneticAlgorithmApproach, threshold, numGenerations,
popSize, crossoverProb, mutProb, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
confidence |
confidence. Default value = 0.25 |
instancesPerLeaf |
instancesPerLeaf. Default value = 2 |
geneticAlgorithmApproach |
geneticAlgorithmApproach. Default value = "GA-LARGE-SN" |
threshold |
threshold. Default value = 10 |
numGenerations |
numGenerations. Default value = 50 |
popSize |
popSize. Default value = 200 |
crossoverProb |
crossoverProb. Default value = 0.8 |
mutProb |
mutProb. Default value = 0.01 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::DT_GA_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
DecimalScaling_TR KEEL Preprocess Algorithm
Description
DecimalScaling_TR Preprocess Algorithm from KEEL.
Usage
DecimalScaling_TR(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::DecimalScaling_TR(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
DecrRBFN_C KEEL Classification Algorithm
Description
DecrRBFN_C Classification Algorithm from KEEL.
Usage
DecrRBFN_C(train, test, percent, num_neurons_ini, alfa, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
percent |
percent. Default value = 0.1 |
num_neurons_ini |
num_neurons_ini. Default value = 20 |
alfa |
alfa. Default value = 0.3 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::DecrRBFN_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Deeps_C KEEL Classification Algorithm
Description
Deeps_C Classification Algorithm from KEEL.
Usage
Deeps_C(train, test, beta)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
beta |
beta. Default value = 0.12 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::Deeps_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
EARMGA_A KEEL Association Rules Algorithm
Description
EARMGA_A Association Rules Algorithm from KEEL.
Usage
EARMGA_A(dat, seed, FixedLengthofAssociationRules, PopulationSize,
TotalNumberofEvaluations, DifferenceBoundaryNOTUSED, ProbabilityofSelection,
ProbabilityofCrossover, ProbabilityofMutation,
NumberofPartitionsforNumericAttributes)
Arguments
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
FixedLengthofAssociationRules |
Fixed Length of Association Rules. Default value = 2 |
PopulationSize |
PopulationSize. Default value = 100 |
TotalNumberofEvaluations |
Total Number of Evaluations. Default value = 50000 |
DifferenceBoundaryNOTUSED |
Difference Boundary NOT USED. Default value = 0.01 |
ProbabilityofSelection |
Probability of Selection. Default value = 0.75 |
ProbabilityofCrossover |
Probability of Crossover. Default value = 0.7 |
ProbabilityofMutation |
Probability of Mutation. Default value = 0.1 |
NumberofPartitionsforNumericAttributes |
Number of Partitions for Numeric Attributes. Default value = 4 |
Details
$run()
Run algorith
$showRules(numRules)
Show a number of rules. By default all rules.
$getInterestMeasures()
Return a data.frame with all interest measures of set rules.
$sortBy(interestMeasure)
Order set rules by interest measure.
$writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
Value
A arules class with the Association Rules for both dat
dataset.
Examples
#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")
#Create algorithm
algorithm <- RKEEL::EARMGA_A(dat)
#Run algorithm
algorithm$run()
#Rules in format arules
algorithm$rules
#Show a number of rules
algorithm$showRules(2)
#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()
#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")
#Sort by interest measure lift
algorithm$sortBy("lift")
#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))
EPSILON_SVR_R KEEL Regression Algorithm
Description
EPSILON_SVR_R Regression Algorithm from KEEL.
Usage
EPSILON_SVR_R(train, test, KernelType, C, eps, degree, gamma,
coef0, nu, p, shrinking, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
KernelType |
KernelType. Default value = "RBF" |
C |
C. Default value = 100.0 |
eps |
eps. Default value = 0.001 |
degree |
degree. Default value = 3 |
gamma |
gamma. Default value = 0.01 |
coef0 |
coef0. Default value = 0.0 |
nu |
nu. Default value = 0.5 |
p |
p. Default value = 1.0 |
shrinking |
shrinking. Default value = 0 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::EPSILON_SVR_R(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Eclat_A KEEL Association Rules Algorithm
Description
Eclat_A Association Rules Algorithm from KEEL.
Usage
Eclat_A(dat, NumberofPartitionsforNumericAttributes, MinimumSupport,
MinimumConfidence)
Arguments
dat |
Dataset as a data.frame object |
NumberofPartitionsforNumericAttributes |
Number of Partitions for Numeric Attributes. Default value = 4 |
MinimumSupport |
Minimum Support. Default value = 0.1 |
MinimumConfidence |
Minimum Confidence. Default value = 0.8 |
Details
$run()
Run algorith
$showRules(numRules)
Show a number of rules. By default all rules.
$getInterestMeasures()
Return a data.frame with all interest measures of set rules.
$sortBy(interestMeasure)
Order set rules by interest measure.
$writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
Value
A arules class with the Association Rules for both dat
dataset.
Examples
#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")
#Create algorithm
algorithm <- RKEEL::Eclat_A(dat)
#Run algorithm
algorithm$run()
#Rules in format arules
algorithm$rules
#Show a number of rules
algorithm$showRules(2)
#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()
#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")
#Sort by interest measure lift
algorithm$sortBy("lift")
#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))
FCRA_C KEEL Classification Algorithm
Description
FCRA_C Classification Algorithm from KEEL.
Usage
FCRA_C(train, test, generations, pop_size, length_S_C, WCAR,
WV, crossover_prob, mut_prob, n1, n2, max_iter,
linguistic_values, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
generations |
generations. Default value = 50 |
pop_size |
pop_size. Default value = 30 |
length_S_C |
length_S_C. Default value = 10 |
WCAR |
WCAR. Default value = 10.0 |
WV |
WV. Default value = 1.0 |
crossover_prob |
crossover_prob. Default value = 1.0 |
mut_prob |
mut_prob. Default value = 0.01 |
n1 |
n1. Default value = 0.001 |
n2 |
n2. Default value = 0.1 |
max_iter |
max_iter. Default value = 100 |
linguistic_values |
linguistic_values. Default value = 5 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::FCRA_C(data_train, data_test, generations=10, pop_size=10)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
FPgrowth_A KEEL Association Rules Algorithm
Description
FPgrowth_A Association Rules Algorithm from KEEL.
Usage
FPgrowth_A(dat, NumberofPartitionsforNumericAttributes, MinimumSupport,
MinimumConfidence)
Arguments
dat |
Dataset as a data.frame object |
NumberofPartitionsforNumericAttributes |
Number of Partitions for Numeric Attributes. Default value = 4 |
MinimumSupport |
Minimum Support. Default value = 0.1 |
MinimumConfidence |
MinimumConfidence. Default value = 0.8 |
Details
$run()
Run algorith
$showRules(numRules)
Show a number of rules. By default all rules.
$getInterestMeasures()
Return a data.frame with all interest measures of set rules.
$sortBy(interestMeasure)
Order set rules by interest measure.
$writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
Value
A arules class with the Association Rules for both dat
dataset.
Examples
#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")
#Create algorithm
algorithm <- RKEEL::FPgrowth_A(dat)
#Run algorithm
algorithm$run()
#Rules in format arules
algorithm$rules
#Show a number of rules
algorithm$showRules(2)
#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()
#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")
#Sort by interest measure lift
algorithm$sortBy("lift")
#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))
FRNN_C KEEL Classification Algorithm
Description
FRNN_C Classification Algorithm from KEEL.
Usage
FRNN_C(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::FRNN_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
FRSBM_R KEEL Regression Algorithm
Description
FRSBM_R Regression Algorithm from KEEL.
Usage
FRSBM_R(train, test, numrules, sigma, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numrules |
numrules. Default value = 1 |
sigma |
sigma. Default value = 0.0001 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::FRSBM_R(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
FURIA_C KEEL Classification Algorithm
Description
FURIA_C Classification Algorithm from KEEL.
Usage
FURIA_C(train, test, optimizations, folds, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
optimizations |
optimizations. Default value = 2 |
folds |
folds. Default value = 3 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::FURIA_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Falco_GP_C KEEL Classification Algorithm
Description
Falco_GP_C Classification Algorithm from KEEL.
Usage
Falco_GP_C(train, test, population_size, max_generations,
max_deriv_size, rec_prob, mut_prob, copy_prob, alpha, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
population_size |
population_size. Default value = 200 |
max_generations |
max_generations. Default value = 200 |
max_deriv_size |
max_deriv_size. Default value = 20 |
rec_prob |
rec_prob. Default value = 0.8 |
mut_prob |
mut_prob. Default value = 0.1 |
copy_prob |
copy_prob. Default value = 0.01 |
alpha |
alpha. Default value = 0.9 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::Falco_GP_C(data_train, data_test)
algorithm <- RKEEL::Falco_GP_C(data_train, data_test, population_size = 5, max_generations = 10)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
FuzzyApriori_A KEEL Association Rules Algorithm
Description
FuzzyApriori_A Association Rules Algorithm from KEEL.
Usage
FuzzyApriori_A(dat, NumberofPartitionsforNumericAttributes,
UseMaxOperatorfor1FrequentItemsets, MinimumSupport, MinimumConfidence)
Arguments
dat |
Dataset as a data.frame object |
NumberofPartitionsforNumericAttributes |
Number of Partitions for Numeric Attributes. Default value = 4 |
UseMaxOperatorfor1FrequentItemsets |
Use Max Operator for 1 Frequent Itemsets. Default value = "false" |
MinimumSupport |
Minimum Support. Default value = 0.1 |
MinimumConfidence |
Minimum Confidence. Default value = 0.8 |
Details
$run()
Run algorith
$showRules(numRules)
Show a number of rules. By default all rules.
$getInterestMeasures()
Return a data.frame with all interest measures of set rules.
$sortBy(interestMeasure)
Order set rules by interest measure.
$writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
Value
A arules class with the Association Rules for both dat
dataset.
Examples
#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")
#Create algorithm
algorithm <- RKEEL::FuzzyApriori_A(dat)
#Run algorithm
algorithm$run()
#Rules in format arules
algorithm$rules
#Show a number of rules
algorithm$showRules(2)
#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()
#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")
#Sort by interest measure lift
algorithm$sortBy("lift")
#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))
FuzzyFARCHD_C KEEL Classification Algorithm
Description
FuzzyFARCHD_C Classification Algorithm from KEEL.
Usage
FuzzyFARCHD_C(train, test, linguistic_values, min_support,
max_confidence, depth_max, K, max_evaluations, pop_size,
alpha, bits_per_gen, inference_type, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
linguistic_values |
linguistic_values. Default value = 5 |
min_support |
min_support. Default value = 0.05 |
max_confidence |
max_confidence. Default value = 0.8 |
depth_max |
depth_max. Default value = 3 |
K |
K. Default value = 2 |
max_evaluations |
max_evaluations. Default value = 15000 |
pop_size |
pop_size. Default value = 50 |
alpha |
alpha. Default value = 0.15 |
bits_per_gen |
bits_per_gen. Default value = 30 |
inference_type |
inference_type. Default value = 1 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::FuzzyFARCHD_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
FuzzyKNN_C KEEL Classification Algorithm
Description
FuzzyKNN_C Classification Algorithm from KEEL.
Usage
FuzzyKNN_C(train, test, k, M, initialization, init_k)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 3 |
M |
M. Default value = 2.0 |
initialization |
initialization. Default value = "CRISP" |
init_k |
init_k. Default value = 3 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::FuzzyKNN_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
FuzzyNPC_C KEEL Classification Algorithm
Description
FuzzyNPC_C Classification Algorithm from KEEL.
Usage
FuzzyNPC_C(train, test, M)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
M |
M. Default value = 2.0 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::FuzzyNPC_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
GANN_C KEEL Classification Algorithm
Description
GANN_C Classification Algorithm from KEEL.
Usage
GANN_C(train, test, hidden_layers, hidden_nodes, transfer, eta,
alpha, lambda, test_data, validation_data, cross_validation,
BP_cycles, improve, tipify_inputs, save_all, elite,
num_individuals, w_range, connectivity, P_bp, P_param,
P_struct, max_generations, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
hidden_layers. Default value = 2 | |
hidden_nodes. Default value = 15 | |
transfer |
transfer. Default value = "Htan" |
eta |
eta. Default value = 0.15 |
alpha |
alpha. Default value = 0.1 |
lambda |
lambda. Default value = 0.0 |
test_data |
test_data. Default value = TRUE |
validation_data |
validation_data. Default value = FALSE |
cross_validation |
cross_validation. Default value = FALSE |
BP_cycles |
BP_cycles. Default value = 10000 |
improve |
improve. Default value = 0.01 |
tipify_inputs |
tipify_inputs. Default value = TRUE |
save_all |
save_all. Default value = FALSE |
elite |
elite. Default value = 0.1 |
num_individuals |
num_individuals. Default value = 100 |
w_range |
w_range. Default value = 5.0 |
connectivity |
connectivity. Default value = 0.5 |
P_bp |
P_bp. Default value = 0.25 |
P_param |
P_param. Default value = 0.1 |
P_struct |
P_struct. Default value = 0.1 |
max_generations |
max_generations. Default value = 100 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::GANN_C(data_train, data_test, hidden_layers=1,
hidden_nodes=5, max_generations=5)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
GAR_A KEEL Association Rules Algorithm
Description
GAR_A Association Rules Algorithm from KEEL.
Usage
GAR_A(dat, seed, NumberofItemsets, TotalNumberofEvaluations, PopulationSize,
ProbabilityofSelection, ProbabilityofCrossover, ProbabilityofMutation,
ImportanceofNumberofRecordsAlreadyCovered, ImportanceofIntervalsAmplitude,
ImportanceofNumberofInvolvedAttributes, AmplitudeFactor, MinimumSupport,
MinimumConfidence)
Arguments
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofItemsets |
Number of Itemsets. Default value = 100 |
TotalNumberofEvaluations |
Total Number of Evaluations. Default value = 50000 |
PopulationSize |
Population Size. Default value = 100 |
ProbabilityofSelection |
Probability of Selection. Default value = 0.25 |
ProbabilityofCrossover |
Probability of Crossover. Default value = 0.7 |
ProbabilityofMutation |
Probability of Mutation. Default value = 0.1 |
ImportanceofNumberofRecordsAlreadyCovered |
Importance of Number of Records Already Covered. Default value = 0.4 |
ImportanceofIntervalsAmplitude |
Importance of Intervals Amplitude. Default value = 0.7 |
ImportanceofNumberofInvolvedAttributes |
Importance of Number of Involved Attributes. Default value = 0.5 |
AmplitudeFactor |
Amplitude Factor. Default value = 2.0 |
MinimumSupport |
Minimum Support. Default value = 0.1 |
MinimumConfidence |
Minimum Confidence. Default value = 0.8 |
Details
$run()
Run algorith
$showRules(numRules)
Show a number of rules. By default all rules.
$getInterestMeasures()
Return a data.frame with all interest measures of set rules.
$sortBy(interestMeasure)
Order set rules by interest measure.
$writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
Value
A arules class with the Association Rules for both dat
dataset.
Examples
#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("glass")
#Create algorithm
algorithm <- RKEEL::GAR_A(dat)
#Run algorithm
algorithm$run()
#Rules in format arules
algorithm$rules
#Show a number of rules
algorithm$showRules(2)
#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()
#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")
#Sort by interest measure lift
algorithm$sortBy("lift")
#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))
GENAR_A KEEL Association Rules Algorithm
Description
GENAR_A Association Rules Algorithm from KEEL.
Usage
GENAR_A(dat, seed, NumberofAssociationRules, TotalNumberofEvaluations,
PopulationSize, ProbabilityofSelection, ProbabilityofMutation,
PenalizationFactor, AmplitudeFactor)
Arguments
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofAssociationRules |
Number of Association Rules. Default value = 30 |
TotalNumberofEvaluations |
Total Number of Evaluations. Default value = 50000 |
PopulationSize |
Population Size. Default value = 100 |
ProbabilityofSelection |
Probability of Selection. Default value = 0.25 |
ProbabilityofMutation |
Probability of Mutation. Default value = 0.1 |
PenalizationFactor |
Penalization Factor. Default value = 0.7 |
AmplitudeFactor |
Amplitude Factor. Default value = 2.0 |
Details
$run()
Run algorith
$showRules(numRules)
Show a number of rules. By default all rules.
$getInterestMeasures()
Return a data.frame with all interest measures of set rules.
$sortBy(interestMeasure)
Order set rules by interest measure.
$writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
Value
A arules class with the Association Rules for both dat
dataset.
Examples
#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("glass")
#Create algorithm
algorithm <- RKEEL::GENAR_A(dat)
#Run algorithm
algorithm$run()
#Rules in format arules
algorithm$rules
#Show a number of rules
algorithm$showRules(2)
#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()
#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")
#Sort by interest measure lift
algorithm$sortBy("lift")
#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))
GFS_AdaBoost_C KEEL Classification Algorithm
Description
GFS_AdaBoost_C Classification Algorithm from KEEL.
Usage
GFS_AdaBoost_C(train, test, numLabels, numRules, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numLabels |
numLabels. Default value = 3 |
numRules |
numRules. Default value = 8 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::GFS_AdaBoost_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
GFS_GP_R KEEL Regression Algorithm
Description
GFS_GP_R Regression Algorithm from KEEL.
Usage
GFS_GP_R(train, test, numLabels, numRules, popSize, numisland,
steady, numIter, tourSize, mutProb, aplMut, probMigra,
probOptimLocal, numOptimLocal, idOptimLocal, nichinggap,
maxindniche, probintraniche, probcrossga, probmutaga,
lenchaingap, maxtreeheight, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numLabels |
numLabels. Default value = 3 |
numRules |
numRules. Default value = 8 |
popSize |
popSize. Default value = 30 |
numisland |
numisland. Default value = 2 |
steady |
steady. Default value = 1 |
numIter |
numIter. Default value = 100 |
tourSize |
tourSize. Default value = 4 |
mutProb |
mutProb. Default value = 0.01 |
aplMut |
aplMut. Default value = 0.1 |
probMigra |
probMigra. Default value = 0.001 |
probOptimLocal |
probOptimLocal. Default value = 0.00 |
numOptimLocal |
numOptimLocal. Default value = 0 |
idOptimLocal |
idOptimLocal. Default value = 0 |
nichinggap |
nichinggap. Default value = 0 |
maxindniche |
maxindniche. Default value = 8 |
probintraniche |
probintraniche. Default value = 0.75 |
probcrossga |
probcrossga. Default value = 0.5 |
probmutaga |
probmutaga. Default value = 0.5 |
lenchaingap |
lenchaingap. Default value = 10 |
maxtreeheight |
maxtreeheight. Default value = 8 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::GFS_GP_R(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
GFS_GSP_R KEEL Regression Algorithm
Description
GFS_GSP_R Regression Algorithm from KEEL.
Usage
GFS_GSP_R(train, test, numLabels, numRules, deltafitsap,
p0sap, p1sap, amplMut, nsubsap, probOptimLocal,
numOptimLocal, idOptimLocal, probcrossga, probmutaga,
lenchaingap, maxtreeheight, numItera, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numLabels |
numLabels. Default value = 3 |
numRules |
numRules. Default value = 8 |
deltafitsap |
deltafitsap. Default value = 0.5 |
p0sap |
p0sap. Default value = 0.5 |
p1sap |
p1sap. Default value = 0.5 |
amplMut |
amplMut. Default value = 0.1 |
nsubsap |
nsubsap. Default value = 10 |
probOptimLocal |
probOptimLocal. Default value = 0.00 |
numOptimLocal |
numOptimLocal. Default value = 0 |
idOptimLocal |
idOptimLocal. Default value = 0 |
probcrossga |
probcrossga. Default value = 0.5 |
probmutaga |
probmutaga. Default value = 0.5 |
lenchaingap |
lenchaingap. Default value = 10 |
maxtreeheight |
maxtreeheight. Default value = 8 |
numItera |
numItera. Default value = 10000 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::GFS_GSP_R(data_train, data_test)
algorithm <- RKEEL::GFS_GSP_R(data_train, data_test, numRules=2, numItera=10, maxtreeheight=2)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
GFS_LogitBoost_C KEEL Classification Algorithm
Description
GFS_LogitBoost_C Classification Algorithm from KEEL.
Usage
GFS_LogitBoost_C(train, test, numLabels, numRules, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numLabels |
numLabels. Default value = 3 |
numRules |
numRules. Default value = 25 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::GFS_LogitBoost_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
GFS_RB_MF_R KEEL Regression Algorithm
Description
GFS_RB_MF_R Regression Algorithm from KEEL.
Usage
GFS_RB_MF_R(train, test, numLabels, popSize, generations,
crossProb, mutProb, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numLabels |
numLabels. Default value = 3 |
popSize |
popSize. Default value = 50 |
generations |
generations. Default value = 100 |
crossProb |
crossProb. Default value = 0.9 |
mutProb |
mutProb. Default value = 0.1 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::GFS_RB_MF_R(data_train, data_test)
algorithm <- RKEEL::GFS_RB_MF_R(data_train, data_test, popSize = 5, generations = 10)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
GeneticFuzzyAprioriDC_A KEEL Association Rules Algorithm
Description
GeneticFuzzyAprioriDC_A Association Rules Algorithm from KEEL.
Usage
GeneticFuzzyAprioriDC_A(dat, seed, NumberofEvaluations, PopulationSize,
ProbabilityofMutation, ProbabilityofCrossover, ParameterdforMMACrossover,
NumberofFuzzyRegionsforNumericAttributes, UseMaxOperatorfor1FrequentItemsets,
MinimumSupport, MinimumConfidence)
Arguments
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofEvaluations |
Number of Evaluations. Default value = 10000 |
PopulationSize |
Population Size. Default value = 50 |
ProbabilityofMutation |
Probability of Mutation. Default value = 0.01 |
ProbabilityofCrossover |
Probability of Crossover. Default value = 0.8 |
ParameterdforMMACrossover |
Parameterd for MMA Crossover. Default value = 0.35 |
NumberofFuzzyRegionsforNumericAttributes |
Number of Fuzzy Regions for Numeric Attributes. Default value = 3 |
UseMaxOperatorfor1FrequentItemsets |
Use Max Operator for 1 Frequent Itemsets. Default value = "false" |
MinimumSupport |
Minimum Support. Default value = 0.1 |
MinimumConfidence |
Minimum Confidence. Default value = 0.8 |
Details
$run()
Run algorith
$showRules(numRules)
Show a number of rules. By default all rules.
$getInterestMeasures()
Return a data.frame with all interest measures of set rules.
$sortBy(interestMeasure)
Order set rules by interest measure.
$writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
Value
A arules class with the Association Rules for both dat
dataset.
Examples
#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")
#Create algorithm
algorithm <- RKEEL::GeneticFuzzyAprioriDC_A(dat)
#Run algorithm
algorithm$run()
#Rules in format arules
algorithm$rules
#Show a number of rules
algorithm$showRules(2)
#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()
#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")
#Sort by interest measure lift
algorithm$sortBy("lift")
#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))
GeneticFuzzyApriori_A KEEL Association Rules Algorithm
Description
GeneticFuzzyApriori_A Association Rules Algorithm from KEEL.
Usage
GeneticFuzzyApriori_A(dat, seed, NumberofEvaluations, PopulationSize,
ProbabilityofMutation, ProbabilityofCrossover, ParameterdforMMACrossover,
NumberofFuzzyRegionsforNumericAttributes, UseMaxOperatorfor1FrequentItemsets,
MinimumSupport, MinimumConfidence)
Arguments
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofEvaluations |
Number of Evaluations. Default value = 10000 |
PopulationSize |
Population Size. Default value = 50 |
ProbabilityofMutation |
Probability of Mutation. Default value = 0.01 |
ProbabilityofCrossover |
Probability of Crossover. Default value = 0.8 |
ParameterdforMMACrossover |
Parameterd for MMA Crossover. Default value = 0.35 |
NumberofFuzzyRegionsforNumericAttributes |
Number of Fuzzy Regions for Numeric Attributes. Default value = 3 |
UseMaxOperatorfor1FrequentItemsets |
Use Max Operator for 1 Frequent Itemsets. Default value = "false" |
MinimumSupport |
Minimum Support. Default value = 0.1 |
MinimumConfidence |
Minimum Confidence. Default value = 0.8 |
Details
$run()
Run algorith
$showRules(numRules)
Show a number of rules. By default all rules.
$getInterestMeasures()
Return a data.frame with all interest measures of set rules.
$sortBy(interestMeasure)
Order set rules by interest measure.
$writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
Value
A arules class with the Association Rules for both dat
dataset.
Examples
#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")
#Create algorithm
algorithm <- RKEEL::GeneticFuzzyApriori_A(dat)
#Run algorithm
algorithm$run()
#Rules in format arules
algorithm$rules
#Show a number of rules
algorithm$showRules(2)
#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()
#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")
#Sort by interest measure lift
algorithm$sortBy("lift")
#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))
ID3_C KEEL Classification Algorithm
Description
ID3_C Classification Algorithm from KEEL.
Usage
ID3_C(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::ID3_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
ID3_D KEEL Preprocess Algorithm
Description
ID3_D Preprocess Algorithm from KEEL.
Usage
ID3_D(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::ID3_D(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
IF_KNN_C KEEL Classification Algorithm
Description
IF_KNN_C Classification Algorithm from KEEL.
Usage
IF_KNN_C(train, test, K, mA, vA, mR, vR, k)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
K |
K. Default value = 3 |
mA |
mA. Default value = 0.6 |
vA |
vA. Default value = 0.4 |
mR |
mR. Default value = 0.3 |
vR |
vR. Default value = 0.7 |
k |
k. Default value = 5 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::IF_KNN_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Ignore_MV KEEL Preprocess Algorithm
Description
Ignore_MV Preprocess Algorithm from KEEL.
Usage
Ignore_MV(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::Ignore_MV(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
ImbalancedClassification Algorithm
Description
Class inheriting of ClassificationAlgorithm, to common methods for all KEEL Imbalanced Classification Algorithms. The specific imbalanced-classification algorithms must inherit of this class.
IncrRBFN_C KEEL Classification Algorithm
Description
IncrRBFN_C Classification Algorithm from KEEL.
Usage
IncrRBFN_C(train, test, epsilon, alfa, delta, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
epsilon |
epsilon. Default value = 0.1 |
alfa |
alfa. Default value = 0.3 |
delta |
delta. Default value = 0.5 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::IncrRBFN_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
IterativePartitioningFilter_F KEEL Preprocess Algorithm
Description
IterativePartitioningFilter_F Preprocess Algorithm from KEEL.
Usage
IterativePartitioningFilter_F(train, test, numPartitions,
filterType, confidence, itemsetsPerLeaf, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numPartitions |
numPartitions. Default value = 5 |
filterType |
filterType. Default value = "consensus" |
confidence |
confidence. Default value = 0.25 |
itemsetsPerLeaf |
itemsetsPerLeaf. Default value = 2 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::IterativePartitioningFilter_F(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
JFKNN_C KEEL Classification Algorithm
Description
JFKNN_C Classification Algorithm from KEEL.
Usage
JFKNN_C(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::JFKNN_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
KMeans_MV KEEL Preprocess Algorithm
Description
KMeans_MV Preprocess Algorithm from KEEL.
Usage
KMeans_MV(train, test, k, error, iterations, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 10 |
error |
error. Default value = 100 |
iterations |
iterations. Default value = 100 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::KMeans_MV(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
KNN-C KEEL Classification Algorithm
Description
KNN-C Classification Algorithm from KEEL.
Usage
KNN_C(train, test, k, distance)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
Number of neighbors |
distance |
Distance function |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::KNN_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
KNN_MV KEEL Preprocess Algorithm
Description
KNN_MV Preprocess Algorithm from KEEL.
Usage
KNN_MV(train, test, k)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 10 |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::KNN_MV(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
KSNN_C KEEL Classification Algorithm
Description
KSNN_C Classification Algorithm from KEEL.
Usage
KSNN_C(train, test, k)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 1 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::KSNN_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
KStar_C KEEL Classification Algorithm
Description
KStar_C Classification Algorithm from KEEL.
Usage
KStar_C(train, test, selection_method, blend, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
selection_method |
selection_method. Default value = "Fixed" |
blend |
blend. Default value = 0.2 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::KStar_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Keel Algorithm
Description
Principal class for implementing KEEL Algorithms. The distinct types of algorithms must inherit of this class.
Kernel_C KEEL Classification Algorithm
Description
Kernel_C Classification Algorithm from KEEL.
Usage
Kernel_C(train, test, sigma, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
sigma |
sigma. Default value = 0.01 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::Kernel_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
LDA_C KEEL Classification Algorithm
Description
LDA_C Classification Algorithm from KEEL.
Usage
LDA_C(train, test, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::LDA_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
LVF_IEP_FS KEEL Preprocess Algorithm
Description
LVF_IEP_FS Preprocess Algorithm from KEEL.
Usage
LVF_IEP_FS(train, test, paramKNN, maxLoops, inconAllow, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
paramKNN |
paramKNN. Default value = 1 |
maxLoops |
maxLoops. Default value = 770 |
inconAllow |
inconAllow. Default value = 0 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::LVF_IEP_FS(data_train, data_test)
algorithm <- RKEEL::LVF_IEP_FS(data_train, data_test, maxLoops = 30,
inconAllow=2)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
LinearLMS_C KEEL Classification Algorithm
Description
LinearLMS_C Classification Algorithm from KEEL.
Usage
LinearLMS_C(train, test, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::LinearLMS_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
LinearLMS_R KEEL Regression Algorithm
Description
LinearLMS_R Regression Algorithm from KEEL.
Usage
LinearLMS_R(train, test, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::LinearLMS_R(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Logistic_C KEEL Classification Algorithm
Description
Logistic_C Classification Algorithm from KEEL.
Usage
Logistic_C(train, test, ridge, maxIter)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
ridge |
ridge. Default value = 1e-8 |
maxIter |
maxIter. Default value = -1 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::Logistic_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
M5Rules_R KEEL Regression Algorithm
Description
M5Rules_R Regression Algorithm from KEEL.
Usage
M5Rules_R(train, test, pruningFactor, heuristic)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
pruningFactor |
pruningFactor. Default value = 2 |
heuristic |
heuristic. Default value = "Coverage" |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::M5Rules_R(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
M5_R KEEL Regression Algorithm
Description
M5_R Regression Algorithm from KEEL.
Usage
M5_R(train, test, type, pruningFactor, unsmoothed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
type |
type. Default value = "m" |
pruningFactor |
pruningFactor. Default value = 2 |
unsmoothed |
unsmoothed. Default value = TRUE |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::M5_R(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
MLP_BP_C KEEL Classification Algorithm
Description
MLP_BP_C Classification Algorithm from KEEL.
Usage
MLP_BP_C(train, test, hidden_layers, hidden_nodes, transfer,
eta, alpha, lambda, test_data, validation_data,
cross_validation, cycles, improve, tipify_inputs,
save_all, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
hidden_layers. Default value = 2 | |
hidden_nodes. Default value = 15 | |
transfer |
transfer. Default value = "Htan" |
eta |
eta. Default value = 0.15 |
alpha |
alpha. Default value = 0.1 |
lambda |
lambda. Default value = 0.0 |
test_data |
test_data. Default value = TRUE |
validation_data |
validation_data. Default value = FALSE |
cross_validation |
cross_validation. Default value = FALSE |
cycles |
cycles. Default value = 10000 |
improve |
improve. Default value = 0.01 |
tipify_inputs |
tipify_inputs. Default value = TRUE |
save_all |
save_all. Default value = FALSE |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::MLP_BP_C(data_train, data_test, )
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
MLP_BP_R KEEL Regression Algorithm
Description
MLP_BP_R Regression Algorithm from KEEL.
Usage
MLP_BP_R(train, test, hidden_layers, hidden_nodes, transfer,
eta, alpha, lambda, test_data, validation_data,
cross_validation, cycles, improve, tipify_inputs,
save_all, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
hidden_layers. Default value = 2 | |
hidden_nodes. Default value = 15 | |
transfer |
transfer. Default value = "Htan" |
eta |
eta. Default value = 0.15 |
alpha |
alpha. Default value = 0.1 |
lambda |
lambda. Default value = 0.0 |
test_data |
test_data. Default value = TRUE |
validation_data |
validation_data. Default value = FALSE |
cross_validation |
cross_validation. Default value = FALSE |
cycles |
cycles. Default value = 10000 |
improve |
improve. Default value = 0.01 |
tipify_inputs |
tipify_inputs. Default value = TRUE |
save_all |
save_all. Default value = FALSE |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::MLP_BP_R(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
MODENAR_A KEEL Association Rules Algorithm
Description
MODENAR_A Association Rules Algorithm from KEEL.
Usage
MODENAR_A(dat, seed, PopulationSize, NumberofEvaluations, CrossoverrateCR,
Thresholdforthenumberofnondominatedsolutions,
Thefactorofamplitudeforeachattributeofthedataset, WeightforSupport,
WeightforConfidence, WeightforComprehensibility,
WeightforAmplitudeoftheIntervals)
Arguments
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
PopulationSize |
Population Size. Default value = 100 |
NumberofEvaluations |
Number of Evaluations. Default value = 50000 |
CrossoverrateCR |
Crossover rate CR. Default value = 0.3 |
Thresholdforthenumberofnondominatedsolutions |
Threshold for the number of non-dominated solutions. Default value = 60 |
Thefactorofamplitudeforeachattributeofthedataset |
The factor of amplitude for each attribute of the dataset. Default value = 2 |
WeightforSupport |
Weight for Support. Default value = 0.8 |
WeightforConfidence |
Weight for Confidence. Default value = 0.2 |
WeightforComprehensibility |
Weight for Comprehensibility. Default value = 0.1 |
WeightforAmplitudeoftheIntervals |
Weight for Amplitude of the Intervals. Default value = 0.4 |
Details
$run()
Run algorith
$showRules(numRules)
Show a number of rules. By default all rules.
$getInterestMeasures()
Return a data.frame with all interest measures of set rules.
$sortBy(interestMeasure)
Order set rules by interest measure.
$writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
Value
A arules class with the Association Rules for both dat
dataset.
Examples
#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")
#Create algorithm
algorithm <- RKEEL::MODENAR_A(dat)
#Run algorithm
algorithm$run()
#Rules in format arules
algorithm$rules
#Show a number of rules
algorithm$showRules(2)
#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()
#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")
#Sort by interest measure lift
algorithm$sortBy("lift")
#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))
MOEA_Ghosh_A KEEL Association Rules Algorithm
Description
MOEA_Ghosh_A Association Rules Algorithm from KEEL.
Usage
MOEA_Ghosh_A(dat, seed, NumberofObjetives, NumberofEvaluations, PopulationSize,
PointCrossover, ProbabilityofCrossover, ProbabilityofMutation,
Thefactorofamplitudeforeachattributeofthedataset)
Arguments
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofObjetives |
Number of Objetives. Default value = 3 |
NumberofEvaluations |
Number of Evaluations. Default value = 50000 |
PopulationSize |
Population Size. Default value = 100 |
PointCrossover |
Point Crossover. Default value = 2 |
ProbabilityofCrossover |
Probability of Crossover. Default value = 0.8 |
ProbabilityofMutation |
Probability of Mutation. Default value = 0.02 |
Thefactorofamplitudeforeachattributeofthedataset |
The factor of amplitude for each attribute of the dataset. Default value = 2.0 |
Details
$run()
Run algorith
$showRules(numRules)
Show a number of rules. By default all rules.
$getInterestMeasures()
Return a data.frame with all interest measures of set rules.
$sortBy(interestMeasure)
Order set rules by interest measure.
$writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
Value
A arules class with the Association Rules for both dat
dataset.
Examples
#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")
#Create algorithm
algorithm <- RKEEL::MOEA_Ghosh_A(dat)
#Run algorithm
algorithm$run()
#Rules in format arules
algorithm$rules
#Show a number of rules
algorithm$showRules(2)
#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()
#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")
#Sort by interest measure lift
algorithm$sortBy("lift")
#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))
MOPNAR_A KEEL Association Rules Algorithm
Description
MOPNAR_A Association Rules Algorithm from KEEL.
Usage
MOPNAR_A(dat, seed, objetives, evaluations, parameter, weightNeighborhood,
wrobabilitySolutionsNeighborhood, maxSolutions, probabilityMutation,
amplitude, threshold)
Arguments
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
objetives |
objetives. Default value = 3 |
evaluations |
evaluations. Default value = 50000 |
parameter |
parameter. Default value = 13 |
weightNeighborhood |
weightNeighborhood. Default value = 10 |
wrobabilitySolutionsNeighborhood |
wrobabilitySolutionsNeighborhood. Default value = 0.9 |
maxSolutions |
maxSolutions. Default value = 2 |
probabilityMutation |
probabilityMutation. Default value = 0.1 |
amplitude |
amplitude. Default value = 2.0 |
threshold |
threshold. Default value = 5.0 |
Details
$run()
Run algorith
$showRules(numRules)
Show a number of rules. By default all rules.
$getInterestMeasures()
Return a data.frame with all interest measures of set rules.
$sortBy(interestMeasure)
Order set rules by interest measure.
$writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
Value
A arules class with the Association Rules for both dat
dataset.
Examples
#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")
#Create algorithm
algorithm <- RKEEL::MOPNAR_A(dat)
#Run algorithm
algorithm$run()
#Rules in format arules
algorithm$rules
#Show a number of rules
algorithm$showRules(2)
#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()
#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")
#Sort by interest measure lift
algorithm$sortBy("lift")
#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))
MinMax_TR KEEL Preprocess Algorithm
Description
MinMax_TR Preprocess Algorithm from KEEL.
Usage
MinMax_TR(train, test, newMin, newMax)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
newMin |
newMin. Default value = 0.0 |
newMax |
newMax. Default value = 1.0 |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::MinMax_TR(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
ModelCS_TSS KEEL Preprocess Algorithm
Description
ModelCS_TSS Preprocess Algorithm from KEEL.
Usage
ModelCS_TSS(train, test, k, distance)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 3 |
distance |
distance. Default value = "Euclidean" |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::ModelCS_TSS(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
MostCommon_MV KEEL Preprocess Algorithm
Description
MostCommon_MV Preprocess Algorithm from KEEL.
Usage
MostCommon_MV(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::MostCommon_MV(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
NB_C KEEL Classification Algorithm
Description
NB_C Classification Algorithm from KEEL.
Usage
NB_C(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::NB_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
NICGAR_A KEEL Association Rules Algorithm
Description
NICGAR_A Association Rules Algorithm from KEEL.
Usage
NICGAR_A(dat, seed, NumberofEvaluations, PopulationSize, ProbabilityofMutation,
Thefactorofamplitudeforeachattributeofthedataset, NichingThreshold,
QualityThreshold, PercentUpdate)
Arguments
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofEvaluations |
Number of Evaluations. Default value = 1286082570 |
PopulationSize |
Population Size. Default value = 1286082570 |
ProbabilityofMutation |
Probability of Mutation. Default value = 1286082570 |
Thefactorofamplitudeforeachattributeofthedataset |
The factor of amplitude for each attribute of the dataset. Default value = 1286082570 |
NichingThreshold |
Niching Threshold. Default value = 1286082570 |
QualityThreshold |
Quality Threshold. Default value = 1286082570 |
PercentUpdate |
Percent Update. Default value = 1286082570 |
Details
$run()
Run algorith
$showRules(numRules)
Show a number of rules. By default all rules.
$getInterestMeasures()
Return a data.frame with all interest measures of set rules.
$sortBy(interestMeasure)
Order set rules by interest measure.
$writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
Value
A arules class with the Association Rules for both dat
dataset.
Examples
#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")
#Create algorithm
algorithm <- RKEEL::NICGAR_A(dat)
#Run algorithm
algorithm$run()
#Rules in format arules
algorithm$rules
#Show a number of rules
algorithm$showRules(2)
#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()
#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")
#Sort by interest measure lift
algorithm$sortBy("lift")
#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))
NM_C KEEL Classification Algorithm
Description
NM_C Classification Algorithm from KEEL.
Usage
NM_C(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::NM_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
NNEP_C KEEL Classification Algorithm
Description
NNEP_C Classification Algorithm from KEEL.
Usage
NNEP_C(train, test, hidden_nodes, transfer, generations, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
hidden_nodes. Default value = 4 | |
transfer |
transfer. Default value = "Product_Unit" |
generations |
generations. Default value = 200 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::NNEP_C(data_train, data_test)
algorithm <- RKEEL::NNEP_C(data_train, data_test, generations = 5)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
NU_SVM_C KEEL Classification Algorithm
Description
NU_SVM_C Classification Algorithm from KEEL.
Usage
NU_SVM_C(train, test, KernelType, C, eps, degree, gamma, coef0,
nu, p, shrinking, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
KernelType |
KernelType. Default value = 1 |
C |
C. Default value = "RBF" |
eps |
eps. Default value = 1000.0 |
degree |
degree. Default value = 0.001 |
gamma |
gamma. Default value = 10 |
coef0 |
coef0. Default value = 0.01 |
nu |
nu. Default value = 0.1 |
p |
p. Default value = 1.0 |
shrinking |
shrinking. Default value = 1 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::NU_SVM_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
NU_SVR_R KEEL Regression Algorithm
Description
NU_SVR_R Regression Algorithm from KEEL.
Usage
NU_SVR_R(train, test, KernelType, C, eps, degree, gamma,
coef0, nu, p, shrinking, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
KernelType |
KernelType. Default value = ? |
C |
C. Default value = ? |
eps |
eps. Default value = ? |
degree |
degree. Default value = ? |
gamma |
gamma. Default value = ? |
coef0 |
coef0. Default value = ? |
nu |
nu. Default value = ? |
p |
p. Default value = ? |
shrinking |
shrinking. Default value = ? |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::NU_SVR_R(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Nominal2Binary_TR KEEL Preprocess Algorithm
Description
Nominal2Binary_TR Preprocess Algorithm from KEEL.
Usage
Nominal2Binary_TR(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::Nominal2Binary_TR(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
PART_C KEEL Classification Algorithm
Description
PART_C Classification Algorithm from KEEL.
Usage
PART_C(train, test, confidence, itemsetsPerLeaf)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
confidence |
confidence. Default value = 0.25 |
itemsetsPerLeaf |
itemsetsPerLeaf. Default value = 2 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::PART_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
PDFC_C KEEL Classification Algorithm
Description
PDFC_C Classification Algorithm from KEEL.
Usage
PDFC_C(train, test, C, d, tolerance, epsilon, PDRFtype,
nominal_to_binary, preprocess_type, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
C |
C. Default value = 100.0 |
d |
d. Default value = 0.25 |
tolerance |
tolerance. Default value = 0.001 |
epsilon |
epsilon. Default value = 1.0E-12 |
PDRFtype |
PDRFtype. Default value = "Gaussian |
nominal_to_binary |
nominal_to_binary. Default value = TRUE |
preprocess_type |
preprocess_type. Default value = "Normalize" |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::PDFC_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
PFKNN_C KEEL Classification Algorithm
Description
PFKNN_C Classification Algorithm from KEEL.
Usage
PFKNN_C(train, test, k, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 3 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::PFKNN_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
PNN_C KEEL Classification Algorithm
Description
PNN_C Classification Algorithm from KEEL.
Usage
PNN_C(train, test, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::PNN_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
POP_TSS KEEL Preprocess Algorithm
Description
POP_TSS Preprocess Algorithm from KEEL.
Usage
POP_TSS(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::POP_TSS(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
PRISM_C KEEL Classification Algorithm
Description
PRISM_C Classification Algorithm from KEEL.
Usage
PRISM_C(train, test, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::PRISM_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
PSO_ACO_C KEEL Classification Algorithm
Description
PSO_ACO_C Classification Algorithm from KEEL.
Usage
PSO_ACO_C(train, test, max_uncovered_samples, min_saples_by_rule,
max_iterations_without_converge, enviromentSize, numParticles,
x, c1, c2, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
max_uncovered_samples |
max_uncovered_samples. Default value = 20 |
min_saples_by_rule |
min_saples_by_rule. Default value = 2 |
max_iterations_without_converge |
max_iterations_without_converge. Default value = 100 |
enviromentSize |
enviromentSize. Default value = 3 |
numParticles |
numParticles. Default value = 100 |
x |
x. Default value = 0.72984 |
c1 |
c1. Default value = 2.05 |
c2 |
c2. Default value = 2.05 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::PSO_ACO_C(data_train, data_test,
max_iterations_without_converge=2, numParticles=5)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
PSRCG_TSS KEEL Preprocess Algorithm
Description
PSRCG_TSS Preprocess Algorithm from KEEL.
Usage
PSRCG_TSS(train, test, distance)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
distance |
distance. Default value = "Euclidean" |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::PSRCG_TSS(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
PUBLIC_C KEEL Classification Algorithm
Description
PUBLIC_C Classification Algorithm from KEEL.
Usage
PUBLIC_C(train, test, nodesBetweenPrune, estimateToPrune)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
nodesBetweenPrune |
nodesBetweenPrune. Default value = 25 |
estimateToPrune |
estimateToPrune. Default value = "PUBLIC(1)" |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::PUBLIC_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
PW_C KEEL Classification Algorithm
Description
PW_C Classification Algorithm from KEEL.
Usage
PW_C(train, test, beta, ro, epsilon)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
beta |
beta. Default value = 8.0 |
ro |
ro. Default value = 0.001 |
epsilon |
epsilon. Default value = 0.001 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::PW_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
PolQuadraticLMS_C KEEL Classification Algorithm
Description
PolQuadraticLMS_C Classification Algorithm from KEEL.
Usage
PolQuadraticLMS_C(train, test, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::PolQuadraticLMS_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
PolQuadraticLMS_R KEEL Regression Algorithm
Description
PolQuadraticLMS_R Regression Algorithm from KEEL.
Usage
PolQuadraticLMS_R(train, test, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::PolQuadraticLMS_R(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Preprocess Algorithm
Description
Class inheriting of KeelAlgorithm, to common methods for all KEEL Preprocess Algorithms. The specific preprocessing algorithms must inherit of this class.
The run() method receives three parameters. The folderPath parameter indicates where to place the folder with the experiments if wanted. If it is not indicated, the folder is placen ind a temporary random directory and then removed. If indicated, the experiment folder is not removed. The expUniqueName parameter indicates the name of the experiment folder. If not indicated, it is a random name. If indicated, ensure that the name is unique in the previously indicated folder. The javaOptions parameter indicates, if wanted, extra parameters to the java command line, as for example the maximum memory allowed by java.
Proportional_D KEEL Preprocess Algorithm
Description
Proportional_D Preprocess Algorithm from KEEL.
Usage
Proportional_D(train, test, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::Proportional_D(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
QAR_CIP_NSGAII_A KEEL Association Rules Algorithm
Description
QAR_CIP_NSGAII_A Association Rules Algorithm from KEEL.
Usage
QAR_CIP_NSGAII_A(dat, seed, NumberofObjetives, NumberofEvaluations,
PopulationSize, ProbabilityofMutation,
Thefactorofamplitudeforeachattributeofthedataset, Differencethreshold)
Arguments
dat |
Dataset as a data.frame object |
seed |
seed. Default value = 1286082570 |
NumberofObjetives |
Number of Objetives. Default value = 3 |
NumberofEvaluations |
Number of Evaluations. Default value = 50000 |
PopulationSize |
Population Size. Default value = 100 |
ProbabilityofMutation |
Probability of Mutation. Default value = 0.1 |
Thefactorofamplitudeforeachattributeofthedataset |
The factor of amplitude for each attribute of the dataset. Default value = 2.0 |
Differencethreshold |
Difference threshold. Default value = 5.0 |
Details
$run()
Run algorith
$showRules(numRules)
Show a number of rules. By default all rules.
$getInterestMeasures()
Return a data.frame with all interest measures of set rules.
$sortBy(interestMeasure)
Order set rules by interest measure.
$writeCSV(fileName, sep)
Create CSV file with set rules. Default fileName="rules" sep=","
$writePMML(fileName)
Create PMML file with set rules. Default fileName="rules"
$addInterestMeasure(name, colName)
Add interest measures to set rules. Some interest measures supported:
"allConfidence" (Omiencinski, 2003)
"crossSupportRatio", cross-support ratio (Xiong et al., 2003)
"lift", interest factor (Brin et al. 1997)
"support", supp (Agrawal et al., 1996)
"addedValue", added Value, AV, Pavillon index, centered confidence (Tan et al., 2002)
"chiSquared", X^2 (Liu et al., 1999)
"certainty", certainty factor, CF, Loevinger (Berzal et al., 2002)
"collectiveStrength"
"confidence", conf (Agrawal et al., 1996)
"conviction" (Brin et al. 1997)
"cosine" (Tan et al., 2004)
"coverage", cover, LHS-support
"confirmedConfidence", descriptive confirmed confidence (Kodratoff, 1999)
"casualConfidence", casual confidence (Kodratoff, 1999)
"casualSupport", casual support (Kodratoff, 1999)
"counterexample", example and counterexample rate
"descriptiveConfirm", descriptive-confirm (Kodratoff, 1999)
"doc", difference of confidence (Hofmann and Wilhelm, 2001)
"fishersExactTest", Fisher's exact test (Hahsler and Hornik, 2007)
"gini", Gini index (Tan et al., 2004)
"hyperLift" (Hahsler and Hornik, 2007)
"hyperConfidence" (Hahsler and Hornik, 2007)
"imbalance", imbalance ratio, IR (Wu, Chen and Han, 2010)
"implicationIndex", implication index (Gras, 1996)
"improvement" (Bayardo et al., 2000)
"jaccard", Jaccard coefficient (Tan and Kumar, 2000)
"jMeasure", J-measure, J (Smyth and Goodman, 1991)
"kappa" (Tan and Kumar, 2000)
"klosgen", Klosgen (Tan and Kumar, 2000)
"kulczynski" (Wu, Chen and Han, 2007; Kulczynski, 1927)
"lambda", Goodman-Kruskal lambda, predictive association (Tan and Kumar, 2000)
"laplace", L (Tan and Kumar 2000)
"leastContradiction", least contradiction (Aze and Kodratoff, 2004
"lerman", Lerman similarity (Lerman, 1981)
"leverage", PS (Piatetsky-Shapiro 1991)
"mutualInformation", uncertainty, M (Tan et al., 2002)
"oddsRatio", odds ratio alpha (Tan et al., 2004)
"phi", correlation coefficient phi (Tan et al. 2004)
"ralambrodrainy", Ralambrodrainy Measure (Ralambrodrainy, 1991)
"RLD", relative linkage disequilibrium (Kenett and Salini, 2008)
"sebag", Sebag measure (Sebag and Schoenauer, 1988)
"support", supp (Agrawal et al., 1996)
"varyingLiaison", varying rates liaison (Bernard and Charron, 1996)
"yuleQ", Yule's Q (Tan and Kumar, 2000)
"yuleY", Yule's Y (Tan and Kumar, 2000)
For more information see ?arules::interestMeasure
Value
A arules class with the Association Rules for both dat
dataset.
Examples
#Load KEEL dataset
dat<-RKEEL::loadKeelDataset("car")
#Create algorithm
algorithm <- RKEEL::QAR_CIP_NSGAII_A(dat)
#Run algorithm
algorithm$run()
#Rules in format arules
algorithm$rules
#Show a number of rules
algorithm$showRules(2)
#Return a data.frame with all interest measures of set rules
algorithm$getInterestMeasures()
#Add interst measure YuleY to set rules
algorithm$addInterestMeasure("YuleY","yulesY")
#Sort by interest measure lift
algorithm$sortBy("lift")
#Save rules in CSV file
algorithm$writeCSV(paste0(tempdir(), "/myrules"))
QDA_C KEEL Classification Algorithm
Description
QDA_C Classification Algorithm from KEEL.
Usage
QDA_C(train, test, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::QDA_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
RBFN_C KEEL Classification Algorithm
Description
RBFN_C Classification Algorithm from KEEL.
Usage
RBFN_C(train, test, neurons, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
neurons |
neurons. Default value = 50 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::RBFN_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
RBFN_R KEEL Regression Algorithm
Description
RBFN_R Regression Algorithm from KEEL.
Usage
RBFN_R(train, test, neurons, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
neurons |
neurons. Default value = 50 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::RBFN_R(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
RISE_C KEEL Classification Algorithm
Description
RISE_C Classification Algorithm from KEEL.
Usage
RISE_C(train, test, Q, S)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Q |
Q. Default value = 1 |
S |
S. Default value = 2 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::RISE_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Regression Algorithm
Description
Class inheriting of KeelAlgorithm, to common methods for all KEEL Regression Algorithms. The specific regression algorithms must inherit of this class.
The run() method receives three parameters. The folderPath parameter indicates where to place the folder with the experiments if wanted. If it is not indicated, the folder is placen ind a temporary random directory and then removed. If indicated, the experiment folder is not removed. The expUniqueName parameter indicates the name of the experiment folder. If not indicated, it is a random name. If indicated, ensure that the name is unique in the previously indicated folder. The javaOptions parameter indicates, if wanted, extra parameters to the java command line, as for example the maximum memory allowed by java.
Regression Results
Description
Class to calculate and store some results for a RegressionAlgorithm. It receives as parameter the prediction of a regression algorithm as a data.frame object.
Relief_FS KEEL Preprocess Algorithm
Description
Relief_FS Preprocess Algorithm from KEEL.
Usage
Relief_FS(train, test, paramKNN, relevanceThreshold,
numInstancesSampled, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
paramKNN |
paramKNN. Default value = 1 |
relevanceThreshold |
relevanceThreshold. Default value = 0.20 |
numInstancesSampled |
numInstancesSampled. Default value = 1000 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::Relief_FS(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
Ripper_C KEEL Classification Algorithm
Description
Ripper_C Classification Algorithm from KEEL.
Usage
Ripper_C(train, test, grow_pct, k, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
grow_pct |
grow_pct. Default value = 0.66 |
k |
k. Default value = 2 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::Ripper_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
SFS_IEP_FS KEEL Preprocess Algorithm
Description
SFS_IEP_FS Preprocess Algorithm from KEEL.
Usage
SFS_IEP_FS(train, test, threshold, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
threshold |
threshold. Default value = 0.005 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::SFS_IEP_FS(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
SGA_C KEEL Classification Algorithm
Description
SGA_C Classification Algorithm from KEEL.
Usage
SGA_C(train, test, mut_prob_1to0, mut_prob_0to1, cross_prob,
pop_size, evaluations, alfa, selection_type, k,
distance, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
mut_prob_1to0 |
mut_prob_1to0. Default value = 0.01 |
mut_prob_0to1 |
mut_prob_0to1. Default value = 0.001 |
cross_prob |
cross_prob. Default value = 1 |
pop_size |
pop_size. Default value = 50 |
evaluations |
evaluations. Default value = 10000 |
alfa |
alfa. Default value = 0.5 |
selection_type |
selection_type. Default value = "orden_based" |
k |
k. Default value = 1 |
distance |
distance. Default value = "Euclidean" |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::SGA_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
SMO_C KEEL Classification Algorithm
Description
SMO_C Classification Algorithm from KEEL.
Usage
SMO_C(train, test, C, toleranceParameter, epsilon,
RBFKernel_gamma, normalized_PolyKernel_exponent,
normalized_PolyKernel_useLowerOrder, PukKernel_omega,
PukKernel_sigma, StringKernel_lambda,
StringKernel_subsequenceLength,
StringKernel_maxSubsequenceLength, StringKernel_normalize,
StringKernel_pruning, KernelType, FitLogisticModels,
ConvertNominalAttributesToBinary, PreprocessType, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
C |
C. Default value = 1.0 |
toleranceParameter |
toleranceParameter. Default value = 0.001 |
epsilon |
epsilon. Default value = 1.0e-12 |
RBFKernel_gamma |
RBFKernel_gamma. Default value = 0.01 |
normalized_PolyKernel_exponent |
normalized_PolyKernel_exponent. Default value = 1 |
normalized_PolyKernel_useLowerOrder |
normalized_PolyKernel_useLowerOrder. Default value = FALSE |
PukKernel_omega |
PukKernel_omega. Default value = 1.0 |
PukKernel_sigma |
PukKernel_sigma. Default value = 1.0 |
StringKernel_lambda |
StringKernel_lambda. Default value = 0.5 |
StringKernel_subsequenceLength |
StringKernel_subsequenceLength. Default value = 3 |
StringKernel_maxSubsequenceLength |
StringKernel_maxSubsequenceLength. Default value = 9 |
StringKernel_normalize |
StringKernel_normalize. Default value = FALSE |
StringKernel_pruning |
StringKernel_pruning. Default value = "None" |
KernelType |
KernelType. Default value = "PolyKernel" |
FitLogisticModels |
FitLogisticModels. Default value = FALSE |
ConvertNominalAttributesToBinary |
ConvertNominalAttributesToBinary. Default value = TRUE |
PreprocessType |
PreprocessType. Default value = "Normalize" |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::SMO_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
SSGA_Integer_knn_FS KEEL Preprocess Algorithm
Description
SSGA_Integer_knn_FS Preprocess Algorithm from KEEL.
Usage
SSGA_Integer_knn_FS(train, test, paramKNN, nEval, pop_size,
numFeatures, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
paramKNN |
paramKNN. Default value = 1 |
nEval |
nEval. Default value = 5000 |
pop_size |
pop_size. Default value = 100 |
numFeatures |
numFeatures. Default value = 3 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::SSGA_Integer_knn_FS(data_train, data_test)
algorithm <- RKEEL::SSGA_Integer_knn_FS(data_train, data_test, nEval = 10, pop_size = 10)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
SaturationFilter_F KEEL Preprocess Algorithm
Description
SaturationFilter_F Preprocess Algorithm from KEEL.
Usage
SaturationFilter_F(train, test, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::SaturationFilter_F(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
Shrink_C KEEL Classification Algorithm
Description
Shrink_C Classification Algorithm from KEEL.
Usage
Shrink_C(train, test, k, distance)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 1 |
distance |
distance. Default value = "Euclidean" |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::Shrink_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Slipper_C KEEL Classification Algorithm
Description
Slipper_C Classification Algorithm from KEEL.
Usage
Slipper_C(train, test, grow_pct, numBoosting, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
grow_pct |
grow_pct. Default value = 0.66 |
numBoosting |
numBoosting. Default value = 100 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::Slipper_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Tan_GP_C KEEL Classification Algorithm
Description
Tan_GP_C Classification Algorithm from KEEL.
Usage
Tan_GP_C(train, test, population_size, max_generations,
max_deriv_size, rec_prob, mut_prob, copy_prob, w1, w2,
elitist_prob, support, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
population_size |
population_size. Default value = 150 |
max_generations |
max_generations. Default value = 100 |
max_deriv_size |
max_deriv_size. Default value = 20 |
rec_prob |
rec_prob. Default value = 0.8 |
mut_prob |
mut_prob. Default value = 0.1 |
copy_prob |
copy_prob. Default value = 0.01 |
w1 |
w1. Default value = 0.7 |
w2 |
w2. Default value = 0.8 |
elitist_prob |
elitist_prob. Default value = 0.06 |
support |
support. Default value = 0.03 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::Tan_GP_C(data_train, data_test)
algorithm <- RKEEL::Tan_GP_C(data_train, data_test, population_size = 5, max_generations = 10)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Thrift_R KEEL Regression Algorithm
Description
Thrift_R Regression Algorithm from KEEL.
Usage
Thrift_R(train, test, numLabels, popSize, evaluations,
crossProb, mutProb, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numLabels |
numLabels. Default value = 3 |
popSize |
popSize. Default value = 61 |
evaluations |
evaluations. Default value = 10000 |
crossProb |
crossProb. Default value = 0.6 |
mutProb |
mutProb. Default value = 0.1 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::Thrift_R(data_train, data_test)
algorithm <- RKEEL::Thrift_R(data_train, data_test, popSize = 5, evaluations = 10)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
UniformFrequency_D KEEL Preprocess Algorithm
Description
UniformFrequency_D Preprocess Algorithm from KEEL.
Usage
UniformFrequency_D(train, test, numIntervals, seed)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numIntervals |
numIntervals. Default value = 10 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::UniformFrequency_D(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
UniformWidth_D KEEL Preprocess Algorithm
Description
UniformWidth_D Preprocess Algorithm from KEEL.
Usage
UniformWidth_D(train, test, numIntervals)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numIntervals |
numIntervals. Default value = 10 |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::UniformWidth_D(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
VWFuzzyKNN_C KEEL Classification Algorithm
Description
VWFuzzyKNN_C Classification Algorithm from KEEL.
Usage
VWFuzzyKNN_C(train, test, k, init_k)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
k |
k. Default value = 3 |
init_k |
init_k. Default value = 3 |
Value
A data.frame with the actual and predicted classes for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::VWFuzzyKNN_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
WM_R KEEL Regression Algorithm
Description
WM_R Regression Algorithm from KEEL.
Usage
WM_R(train, test, numlabels, KB)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numlabels |
numlabels. Default value = 5 |
KB |
KB. Default value = FALSE |
Value
A data.frame with the actual and predicted values for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::WM_R(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
ZScore_TR KEEL Preprocess Algorithm
Description
ZScore_TR Preprocess Algorithm from KEEL.
Usage
ZScore_TR(train, test)
Arguments
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
Value
A data.frame with the preprocessed data for both train
and test
datasets.
Examples
data_train <- RKEEL::loadKeelDataset("car_train")
data_test <- RKEEL::loadKeelDataset("car_test")
#Create algorithm
algorithm <- RKEEL::ZScore_TR(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$preprocessed_test
Download file from a mirror
Description
Downloads a file from a given mirror and checks its md5 sum. The file is stored in a given path
Usage
downloadFromMirror(mirror, file_path, md5_sum)
Arguments
mirror |
URL from which to download the file. |
file_path |
Path or folder where the downloaded file will be stored. |
md5_sum |
md5 checksum string corresponding to the file to download. The method will check that the downloaded file checksum and the md5_sum parameter match. |
Value
Returns 1 if the download was successful and -1 otherwise.
Examples
# Download RKEELjars file
dCode = RKEEL::downloadFromMirror("https://personal.us.es/jmoyano1/RKEELjars_1.1.zip",
downloadedJarFile, md5_sum)
# Check if the download was successful
if(dCode<0){
print('There was an error during the download.')
}
Get attribute lines from data.frames
Description
Method for getting the attribute lines from data.frame objects
Usage
getAttributeLinesFromDataframes(trainData, testData)
Arguments
trainData |
Train dataset as data.frame |
testData |
Test dataset as data.frame |
Value
Returns a list with the attribute names and types
Examples
iris_train <- RKEEL::loadKeelDataset("iris_train")
iris_test <- RKEEL::loadKeelDataset("iris_test")
attributeLines <- getAttributeLinesFromDataframes(iris_train, iris_test)
Get jar executable files Path
Description
Method for knowing the KEEL .jar files path.
Usage
getExePath()
Value
Returns a string with the path of the KEEL .jar files.
Examples
getExePath()
Get a list with all RKEEL algorithm jars
Description
Method that returns a list with the jar names from RKEEL
Usage
getJarList()
Value
Returns a list with the jar names from RKEEL.
Examples
getJarList()
Get RunKeel.jar Path
Description
Method for knowing the RunKeel.jar path.
Usage
getJarPath()
Value
Returns a string with the RunKeel.jar path.
Examples
getJarPath()
Has Continuous Data
Description
Method for check if a dataset has continuous data
Usage
hasContinuousData(data)
Arguments
data |
Dataset as data.frame |
Value
Returns TRUE if the dataset has continuous data and FALSE if it has not.
Examples
iris <- RKEEL::loadKeelDataset("iris")
hasContinuousData(iris)
Has Missing Values
Description
Method for check if a dataset has missing values
Usage
hasMissingValues(data)
Arguments
data |
Dataset as data.frame |
Value
Returns TRUE if the dataset has missing values and FALSE if it has not.
Examples
iris <- RKEEL::loadKeelDataset("iris")
hasMissingValues(iris)
Is Multi-class
Description
Method for check if a dataset is multi-class
Usage
isMultiClass(data)
Arguments
data |
Dataset as data.frame |
Value
Returns TRUE if the dataset is multi-class and FALSE if it is not.
Examples
iris <- RKEEL::loadKeelDataset("iris")
isMultiClass(iris)
Load KEEL Dataset
Description
Loads a dataset of the KEEL datasets repository.
The included datasets names are available at the getKeelDatasetList
method of RKEELdata.
Usage
loadKeelDataset(dataName)
Arguments
dataName |
String with the correct data name of one of the KEEL datasets |
Value
Returns a data.frame with the KEEL dataset.
Examples
RKEEL::loadKeelDataset("iris")
Read keel dataset
Description
Method for read datasets in .dat KEEL format
Usage
read.keel(file)
Arguments
file |
File containing the dataset to be read. It must be in KEEL .dat format. |
Value
Returns a data.frame object with the dataset
Run Cross-Validation
Description
Run a cross-validation experiment
Usage
runCV(algorithm, dataset, numFolds, cores)
Arguments
algorithm |
Algorithm to be executed in the CV. It must has the parameters to be used in the executions. |
dataset |
Dataset to perform the CV. It is divided in numFolds disjoint partitions and in each iteration, one is used for test and the rest for train. |
numFolds |
Number of folds for the cross-validation procedure. |
cores |
Number of cores to execute in parallel. If it is missed, default value is 1 (sequential execution). |
Value
Returns a list with the mean results of the numFolds executions.
Examples
#Load datasets
iris <- RKEEL::loadKeelDataset("iris")
#Create algorithm
learner_C45_C <- RKEEL::C45_C(iris, iris)
#Perform 5-folds CV
results <- RKEEL::runCV(learner_C45_C, iris, 5)
Run Parallel
Description
Run a set of RKEEL algorithms in parallel
Usage
runParallel(algorithmList, cores)
Arguments
algorithmList |
List of RKEEL Algorithms to be executed |
cores |
Number of cores to execute in parallel. If it is not specified, it detects the cores automatically and execute the experiment in all of them |
Value
Returns a list with the executed algorithms
Examples
#Load datasets
iris_train <- RKEEL::loadKeelDataset("iris_train")
iris_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithms
learner_C45_C <- RKEEL::C45_C(iris_train, iris_test)
learner_KNN_C <- RKEEL::KNN_C(iris_train, iris_test)
learner_Logistic_C <- RKEEL::Logistic_C(iris_train, iris_test)
learner_LDA_C <- RKEEL::LDA_C(iris_train, iris_test)
#Create list
algorithms <- list(learner_C45_C, learner_KNN_C, learner_Logistic_C,
learner_LDA_C)
#Run algorithms in parallel in two cores
par <- RKEEL::runParallel(algorithms, 2)
Run Sequential
Description
Run a set of RKEEL algorithms in sequential.
Usage
runSequential(algorithmList)
Arguments
algorithmList |
List of RKEEL Algorithms to be executed |
Value
Returns a list with the executed algorithms
Examples
#Load datasets
iris_train <- RKEEL::loadKeelDataset("iris_train")
iris_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithms
learner_C45_C <- RKEEL::C45_C(iris_train, iris_test)
learner_KNN_C <- RKEEL::KNN_C(iris_train, iris_test)
learner_Logistic_C <- RKEEL::Logistic_C(iris_train, iris_test)
learner_LDA_C <- RKEEL::LDA_C(iris_train, iris_test)
#Create list
algorithms <- list(learner_C45_C, learner_KNN_C, learner_Logistic_C,
learner_LDA_C)
#Run algorithms
seq <- RKEEL::runSequential(algorithms)
Write .dat from data.frame
Description
Method for writing a .dat dataset file in KEEL format given a data.frame dataset
Usage
writeDatFromDataframe(data, fileName)
Arguments
data |
data.frame dataset |
fileName |
String with the file name to store the dataset |
Examples
data(iris)
writeDatFromDataframe(iris, paste0(tempdir(), "/iris.dat"))
Write .dat from data.frames
Description
Method for writing both train and test .dat dataset files in KEEL format.
Usage
writeDatFromDataframes(trainData, testData,
trainFileName, testFileName)
Arguments
trainData |
Train data as data.frame object |
testData |
Test data as data.frame object |
trainFileName |
String with the file name to store the train dataset |
testFileName |
String with the file name to store the test dataset |