Type: Package
Title: Population Fisher Information Matrix
Version: 7.0
Date: 2025-07-02
Maintainer: Romain Leroux <romainlerouxPFIM@gmail.com>
NeedsCompilation: no
Description: Evaluate or optimize designs for nonlinear mixed effects models using the Fisher Information matrix. Methods used in the package refer to Mentré F, Mallet A, Baccar D (1997) <doi:10.1093/biomet/84.2.429>, Retout S, Comets E, Samson A, Mentré F (2007) <doi:10.1002/sim.2910>, Bazzoli C, Retout S, Mentré F (2009) <doi:10.1002/sim.3573>, Le Nagard H, Chao L, Tenaillon O (2011) <doi:10.1186/1471-2148-11-326>, Combes FP, Retout S, Frey N, Mentré F (2013) <doi:10.1007/s11095-013-1079-3> and Seurat J, Tang Y, Mentré F, Nguyen TT (2021) <doi:10.1016/j.cmpb.2021.106126>.
URL: http://www.pfim.biostat.fr/, https://github.com/packagePFIM
BugReports: https://github.com/packagePFIM/PFIM/issues
Depends: R (≥ 4.0.0)
License: GPL (≥ 3)
Encoding: UTF-8
VignetteBuilder: knitr
Imports: utils, inline, Deriv, methods, deSolve, purrr, stringr, S7, Matrix, ggplot2, Rcpp, RcppArmadillo, pracma, kableExtra, tibble, scales, knitr
Collate: 'Administration.R' 'AdministrationConstraints.R' 'Fim.R' 'PFIMProject.R' 'Optimization.R' 'PGBOAlgorithm.R' 'PSOAlgorithm.R' 'SimplexAlgorithm.R' 'FedorovWynnAlgorithm.R' 'MultiplicativeAlgorithm.R' 'Model.R' 'Arm.R' 'BayesianFim.R' 'ModelError.R' 'Combined1.R' 'Constant.R' 'Design.R' 'Distribution.R' 'Evaluation.R' 'IndividualFim.R' 'LibraryOfModels.R' 'LibraryOfPDModels.R' 'LibraryOfPKModels.R' 'LogNormal.R' 'ModelODE.R' 'ModelAnalytic.R' 'ModelInfusion.R' 'ModelAnalyticInfusion.R' 'ModelAnalyticInfusionSteadyState.R' 'ModelAnalyticSteadyState.R' 'ModelODEBolus.R' 'ModelODEDoseInEquations.R' 'ModelODEDoseNotInEquations.R' 'ModelODEInfusion.R' 'ModelODEInfusionDoseInEquation.R' 'ModelParameter.R' 'Normal.R' 'PFIM-package.R' 'PopulationFim.R' 'Proportional.R' 'SamplingTimeConstraints.R' 'SamplingTimes.R' 'zzz.R'
RoxygenNote: 7.3.2
Suggests: rmarkdown, testthat (≥ 3.0.0)
Packaged: 2025-07-02 10:19:20 UTC; MrLer
Author: Romain Leroux ORCID iD [aut, cre], France Mentré ORCID iD [aut], Jérémy Seurat ORCID iD [ctb]
Repository: CRAN
Date/Publication: 2025-07-02 12:10:05 UTC

Fisher Information matrix for design evaluation/optimization for nonlinear mixed effects models.

Description

Evaluate or optimize designs for nonlinear mixed effects models using the Fisher Information matrix. Methods used in the package refer to Mentré F, Mallet A, Baccar D (1997) doi:10.1093/biomet/84.2.429, Retout S, Comets E, Samson A, Mentré F (2007) doi:10.1002/sim.2910, Bazzoli C, Retout S, Mentré F (2009) doi:10.1002/sim.3573, Le Nagard H, Chao L, Tenaillon O (2011) doi:10.1186/1471-2148-11-326, Combes FP, Retout S, Frey N, Mentré F (2013) doi:10.1007/s11095-013-1079-3 and Seurat J, Tang Y, Mentré F, Nguyen TT (2021) doi:10.1016/j.cmpb.2021.106126.

Description

Nonlinear mixed effects models (NLMEM) are widely used in model-based drug development and use to analyze longitudinal data. The use of the "population" Fisher Information Matrix (FIM) is a good alternative to clinical trial simulation to optimize the design of these studies. The present version, **PFIM 7.0**, is an R package that uses the S4 object system for evaluating and/or optimizing population designs based on FIM in NLMEMs.

This version of **PFIM** now includes a library of models implemented also using the object oriented system S4 of R. This library contains two libraries of pharmacokinetic (PK) and/or pharmacodynamic (PD) models. The PK library includes model with different administration routes (bolus, infusion, first-order absorption), different number of compartments (from 1 to 3), and different types of eliminations (linear or Michaelis-Menten). The PD model library, contains direct immediate models (e.g. Emax and Imax) with various baseline models, and turnover response models. The PK/PD models are obtained with combination of the models from the PK and PD model libraries. **PFIM** handles both analytical and ODE models and offers the possibility to the user to define his/her own model(s). In **PFIM 7.0**, the FIM is evaluated by first order linearization of the model assuming a block diagonal FIM as in Mentré et al. (1997). The Bayesian FIM is also available to give shrinkage predictions (Combes et al., 2013). **PFIM 7.0** includes several algorithms to conduct design optimization based on the D-criterion, given design constraints: the simplex algorithm (Nelder-Mead) (Nelder & Mead, 1965), the multiplicative algorithm (Seurat et al., 2021), the Fedorov-Wynn algorithm (Fedorov, 1972), PSO (*Particle Swarm Optimization*) and PGBO (*Population Genetics Based Optimizer*) (Le Nagard et al., 2011).

Documentation

Documentation and user guide are available at http://www.pfim.biostat.fr/

Validation

**PFIM 7.0** also provides quality control with tests and validation using the evaluated FIM to assess the validity of the new version and its new features. Finally, **PFIM 7.0** displays all the results with both clear graphical form and a data summary, while ensuring their easy manipulation in R. The standard data visualization package ggplot2 for R is used to display all the results with clear graphical form (Wickham, 2016). A quality control using the D-criterion is also provided.

Organization of the source files in the '/R' folder

**PFIM 7.0** contains a hierarchy of S4 classes with corresponding methods and functions serving as constructors. All of the source code related to the specification of a certain class is contained in a file named '[Name_of_the_class]-Class.R'. These classes include:

1. all roxygen '@include' to insure the correctly generated collate for the DESCRIPTION file, 2. a description of purpose and slots of the class, 3. specification of an initialize method, 4. all getter and setter, respectively returning attributes of the object and associated objects.

Author(s)

Maintainer: Romain Leroux romainlerouxPFIM@gmail.com (ORCID)

Authors:

Other contributors:

References

Dumont C, Lestini G, Le Nagard H, Mentré F, Comets E, Nguyen TT, et al. PFIM 4.0, an extended R program for design evaluation and optimization in nonlinear mixed-effect models. Comput Methods Programs Biomed. 2018;156:217-29.

Chambers JM. Object-Oriented Programming, Functional Programming and R. Stat Sci. 2014;29:167-80.

Mentré F, Mallet A, Baccar D. Optimal Design in Random-Effects Regression Models. Biometrika. 1997;84:429-42.

Combes FP, Retout S, Frey N, Mentré F. Prediction of shrinkage of individual parameters using the Bayesian information matrix in nonlinear mixed effect models with evaluation in pharmacokinetics. Pharm Res. 2013;30:2355-67.

Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7:308-13.

Seurat J, Tang Y, Mentré F, Nguyen, TT. Finding optimal design in nonlinear mixed effect models using multiplicative algorithms. Computer Methods and Programs in Biomedicine, 2021.

Fedorov VV. Theory of Optimal Experiments. Academic Press, New York, 1972.

Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. Proc. of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, 4-6 October 1995, 39-43.

Le Nagard H, Chao L, Tenaillon O. The emergence of complexity and restricted pleiotropy in adapting networks. BMC Evol Biol. 2011;11:326.

Wickham H. ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, 2016.

See Also

Useful links:


Administration

Description

The class Administration represents the administration and stores information concerning the administration for the dosage regimen.

Usage

Administration(
  outcome = character(0),
  timeDose = numeric(0),
  dose = numeric(0),
  Tinf = numeric(0),
  tau = 0
)

Arguments

outcome

A string giving the outcome for the administration.

timeDose

A vector of double giving the time doses.

dose

A vector of double giving the doses.

Tinf

A vector of double giving the time for infusion Tinf.

tau

An integer giving the tau value for repeated dose or steady state.


AdministrationConstraints

Description

The class AdministrationConstraints represents the constraint of an input to the system. The class stores information concerning the constraints for the dosage regimen.

Usage

AdministrationConstraints(outcome = character(0), doses = list())

Arguments

outcome

A string giving the outcome for the administration.

doses

A vector of double giving the doses.


Arm

Description

The class Arm represents an arm and stores information concerning an arm.

Usage

Arm(
  name = character(0),
  size = numeric(0),
  administrations = list(),
  initialConditions = list(),
  samplingTimes = list(),
  administrationsConstraints = list(),
  samplingTimesConstraints = list(),
  evaluationModel = list(),
  evaluationGradients = list(),
  evaluationVariance = list(),
  evaluationFim = Fim()
)

Arguments

name

A string giving the name of the arm.

size

A integer giving the size of the arm.

administrations

A list giving the objects of class Administration that define the administrations of the arm.

initialConditions

A list giving the initial conditions for the ode model where the names are string that define the variable and their value are giving by double

samplingTimes

A list giving the objects of class SamplingTime that define the sampling time of the arm.

administrationsConstraints

A list giving the objects of class AdministrationsConstraints that define the administration constraints of the arm.

samplingTimesConstraints

A list giving the objects of class SamplingTimeConstraints that define the sampling time constraints of the arm.

evaluationModel

A list giving the evaluation of the responses of the arm.

evaluationGradients

A list giving the evaluation of the responses gradient of the arm.

evaluationVariance

A list giving the evaluation of the variance.

evaluationFim

A object of class Fim giving the Fisher Information Matrix.


BayesianFim

Description

The class BayesianFim represents and stores information for the Bayesian Fim.

Usage

BayesianFim(
  fisherMatrix = numeric(0),
  fixedEffects = numeric(0),
  varianceEffects = numeric(0),
  SEAndRSE = list(),
  condNumberFixedEffects = 0,
  condNumberVarianceEffects = 0,
  shrinkage = numeric(0)
)

Arguments

fisherMatrix

A matrix giving the numerical values of the Fim.

fixedEffects

A matrix giving the numerical values of the fixedEffects of the Fim.

varianceEffects

A matrix giving the numerical values of varianceEffects of the Fim.

SEAndRSE

A data frame giving the value of the SE and RSE.

condNumberFixedEffects

The conditional number of the fixedEffects of the Fim.

condNumberVarianceEffects

The conditional number of the varianceEffects of the Fim.

shrinkage

A vector giving the shrinkage values.


Combined1

Description

The class Combined1 represents and stores information for the error model Combined1.

Usage

Combined1(
  output = character(0),
  equation = expression(sigmaInter + sigmaSlope * output),
  derivatives = list(),
  sigmaInter = 0,
  sigmaSlope = 0,
  sigmaInterFixed = FALSE,
  sigmaSlopeFixed = FALSE,
  cError = 1
)

Arguments

output

A string giving the model error output.

equation

A expression giving the model error equation.

derivatives

A list giving the derivatives of the model error equation.

sigmaInter

A double giving the sigma inter.

sigmaSlope

A double giving the sigma slope

sigmaInterFixed

A Boolean giving if the sigma inter is fixed or not. - not in the v7.0

sigmaSlopeFixed

A Boolean giving if the sigma slope is fixed or not. - not in the v7.0

cError

A integer giving the power parameter.


Constant

Description

The class Constant represents and stores information for the error model Constant.

Usage

Constant(
  output = character(0),
  equation = expression(sigmaInter),
  derivatives = list(),
  sigmaInter = 0,
  sigmaSlope = 0,
  sigmaInterFixed = FALSE,
  sigmaSlopeFixed = FALSE,
  cError = 1
)

Arguments

output

A string giving the model error output.

equation

A expression giving the model error equation.

derivatives

A list giving the derivatives of the model error equation.

sigmaInter

A double giving the sigma inter.

sigmaSlope

A double giving the sigma slope

sigmaInterFixed

A boolean giving if the sigma inter is fixed or not.

sigmaSlopeFixed

A boolean giving if the sigma slope is fixed or not.

cError

A integer giving the power parameter.


Dcriterion: get the D-criterion of the Fim.

Description

Dcriterion: get the D-criterion of the Fim.

Arguments

Fim

A object Fim giving the Fim.

Value

A double giving the D-criterion of the Fim.


Design

Description

The class Design represents and stores information for the Design.

Usage

Design(
  name = character(0),
  size = 0,
  arms = list(),
  evaluationArms = list(),
  numberOfArms = 0,
  fim = Fim()
)

Arguments

name

A string giving the name of the design.

size

A integer giving the size of the design.

arms

A list giving the arms of the design.

evaluationArms

A list giving the valuation of the arms of the design.

numberOfArms

A integer giving the number of arms.

fim

A object Fim giving the Fim of the design.

Details

Design


Distribution

Description

The class Distribution represents and stores information for the parameter distribution.

Usage

Distribution(name = character(0), mu = 0, omega = 0)

Arguments

name

A string giving the name of the distribution.

mu

A double giving the mean mu.

omega

A double giving omega.


Evaluation

Description

The class Evaluation represents and stores information for the evaluation of a design

Usage

Evaluation(
  evaluationDesign = list(),
  name = character(0),
  modelParameters = list(),
  modelEquations = list(),
  modelFromLibrary = list(),
  modelError = list(),
  designs = list(),
  outputs = list(),
  fimType = character(0),
  odeSolverParameters = list()
)

Arguments

evaluationDesign

A list giving the evaluation of the design.

name

A string giving the name of the design evaluation.

modelParameters

A list giving the model parameters.

modelEquations

A list giving the model equations.

modelFromLibrary

A list giving the model equations from the library of model.

modelError

A list giving the model error.

designs

A list giving the designs to be evaluated.

outputs

A list giving the model outputs.

fimType

A string giving the type of Fim being evaluated.

odeSolverParameters

A list giving the atol and rtol parameters for the ode solver.


FedorovWynnAlgorithm

Description

The class FedorovWynnAlgorithm implements the FedorovWynn algorithm.

Usage

FedorovWynnAlgorithm(
  name = character(0),
  modelEquations = list(),
  modelFromLibrary = list(),
  modelParameters = list(),
  modelError = list(),
  optimizer = character(0),
  optimizerParameters = list(),
  outputs = list(),
  designs = list(),
  fimType = character(0),
  fim = Fim(),
  odeSolverParameters = list(),
  optimisationDesign = list(),
  optimisationAlgorithmOutputs = list(),
  elementaryProtocols = list(),
  numberOfSubjects = 0,
  proportionsOfSubjects = 0,
  showProcess = FALSE,
  FedorovWynnAlgorithmOutputs = list()
)

Arguments

name

A string giving the name of the design evaluation.

modelEquations

A list giving the model equations.

modelFromLibrary

A list giving the model equations from the library of model.

modelParameters

A list giving the model parameters.

modelError

A list giving the model error.

optimizer

A string giving the name of the optimization algorithm being used.

optimizerParameters

A list giving the parameters of the optimization algorithm.

outputs

A list giving the model outputs.

designs

A list giving the designs to be evaluated.

fimType

A string giving the type of Fim being evaluated.

fim

A object Fim giving the Fim.

odeSolverParameters

A list giving the atol and rtol parameters for the ode solver.

optimisationDesign

A list giving the evaluation of initial and optimal design.

optimisationAlgorithmOutputs

A list giving the outputs of the optimization process.

elementaryProtocols

List of elementary protocols

numberOfSubjects

Numeric vector specifying number of subjects

proportionsOfSubjects

Numeric vector of subject proportions

showProcess

Logical indicating whether to show process

FedorovWynnAlgorithmOutputs

A list giving the output of the optimization algorithm.


Fedorov-Wynn algorithm in Rcpp.

Description

Run the FedorovWynnAlgorithm in Rcpp

Usage

FedorovWynnAlgorithm_Rcpp(
  protocols_input,
  ndimen_input,
  nbprot_input,
  numprot_input,
  freq_input,
  nbdata_input,
  vectps_input,
  fisher_input,
  nok_input,
  protdep_input,
  freqdep_input
)

Arguments

protocols_input

parameter protocols_input

ndimen_input

parameter ndimen_input

nbprot_input

parameter nbprot_input

numprot_input

parameter numprot_input

freq_input

parameter freq_input

nbdata_input

parameter nbdata_input

vectps_input

parameter vectps_input

fisher_input

parameter fisher_input

nok_input

parameter nok_input

protdep_input

parameter protdep_input

freqdep_input

parameter freqdep_input

Value

A list giving the results of the outputs of the FedorovWynn algorithm.


Fim

Description

The class Fim represents and stores information for the Fim.

Usage

Fim(
  fisherMatrix = numeric(0),
  fixedEffects = numeric(0),
  varianceEffects = numeric(0),
  SEAndRSE = list(),
  condNumberFixedEffects = 0,
  condNumberVarianceEffects = 0,
  shrinkage = numeric(0)
)

Arguments

fisherMatrix

A matrix giving the numerical values of the Fim.

fixedEffects

A matrix giving the numerical values of the fixedEffects of the Fim.

varianceEffects

A matrix giving the numerical values of varianceEffects of the Fim.

SEAndRSE

A data frame giving the value of the SE and RSE.

condNumberFixedEffects

The conditional number of the fixedEffects of the Fim.

condNumberVarianceEffects

The conditional number of the varianceEffects of the Fim.

shrinkage

A vector giving the shrinkage values.


IndividualFim

Description

The class IndividualFim represents and stores information for the IndividualFim.

Usage

IndividualFim(
  fisherMatrix = numeric(0),
  fixedEffects = numeric(0),
  varianceEffects = numeric(0),
  SEAndRSE = list(),
  condNumberFixedEffects = 0,
  condNumberVarianceEffects = 0,
  shrinkage = numeric(0)
)

Arguments

fisherMatrix

A matrix giving the numerical values of the Fim.

fixedEffects

A matrix giving the numerical values of the fixedEffects of the Fim.

varianceEffects

A matrix giving the numerical values of varianceEffects of the Fim.

SEAndRSE

A data frame giving the value of the SE and RSE.

condNumberFixedEffects

The conditional number of the fixedEffects of the Fim.

condNumberVarianceEffects

The conditional number of the varianceEffects of the Fim.

shrinkage

A vector giving the shrinkage values.


LibraryOfModels

Description

The class LibraryOfModels represents and stores information for the LibraryOfModels.

Usage

LibraryOfModels(models = list())

Arguments

models

A list giving all the PK and PD models.


LibraryOfPDModels

Description

The class LibraryOfPDModels represents and stores information for the LibraryOfPDModels.

Usage

LibraryOfPDModels

Format

An object of class PFIM::LibraryOfPDModels (inherits from PFIM::LibraryOfModels, S7_object) of length 1.


LibraryOfPKModels

Description

The class LibraryOfPKModels represents and stores information for the LibraryOfPKModels.

Usage

LibraryOfPKModels

Format

An object of class PFIM::LibraryOfPKModels (inherits from PFIM::LibraryOfModels, S7_object) of length 1.


Model Linear2BolusSingleDose_ClQV1V2

Description

Model Linear2BolusSingleDose_ClQV1V2

Usage

Linear2BolusSingleDose_ClQV1V2()

Model Linear2BolusSingleDose_kk12k21V

Description

Model Linear2BolusSingleDose_kk12k21V

Usage

Linear2BolusSingleDose_kk12k21V()

Model Linear2BolusSteadyState_ClQV1V2tau

Description

Model Linear2BolusSteadyState_ClQV1V2tau

Usage

Linear2BolusSteadyState_ClQV1V2tau()

Model Linear2BolusSteadyState_kk12k21Vtau

Description

Model Linear2BolusSteadyState_kk12k21Vtau

Usage

Linear2BolusSteadyState_kk12k21Vtau()

Model Linear2FirstOrderSingleDose_kaClQV1V2

Description

Model Linear2FirstOrderSingleDose_kaClQV1V2

Usage

Linear2FirstOrderSingleDose_kaClQV1V2()

Model Linear2FirstOrderSingleDose_kakk12k21V

Description

Model Linear2FirstOrderSingleDose_kakk12k21V

Usage

Linear2FirstOrderSingleDose_kakk12k21V()

Model Linear2FirstOrderSteadyState_kaClQV1V2tau

Description

Model Linear2FirstOrderSteadyState_kaClQV1V2tau

Usage

Linear2FirstOrderSteadyState_kaClQV1V2tau()

Model Linear2FirstOrderSteadyState_kakk12k21Vtau

Description

Model Linear2FirstOrderSteadyState_kakk12k21Vtau

Usage

Linear2FirstOrderSteadyState_kakk12k21Vtau()

Model Linear2InfusionSingleDose_ClQV1V2

Description

Model Linear2InfusionSingleDose_ClQV1V2

Usage

Linear2InfusionSingleDose_ClQV1V2()

Model Linear2InfusionSingleDose_kk12k21V

Description

Model Linear2InfusionSingleDose_kk12k21V

Usage

Linear2InfusionSingleDose_kk12k21V()

Model Linear2InfusionSteadyState_ClQV1V2tau

Description

Model Linear2InfusionSteadyState_ClQV1V2tau

Usage

Linear2InfusionSteadyState_ClQV1V2tau()

Model Linear2InfusionSteadyState_kk12k21Vtau

Description

Model Linear2InfusionSteadyState_kk12k21Vtau

Usage

Linear2InfusionSteadyState_kk12k21Vtau()

LogNormal

Description

The class LogNormal implements the LogNormal distribution.

Usage

LogNormal(name = character(0), mu = 0, omega = 0)

Arguments

name

A string giving the name of the distribution.

mu

A double giving the mean mu.

omega

A double giving omega.


Model

Description

The class Model represents and stores information for a model.

Usage

Model(
  name = character(0),
  modelParameters = list(),
  samplings = numeric(0),
  modelEquations = list(),
  wrapper = function() NULL,
  outputFormula = list(),
  outputNames = character(0),
  variableNames = character(0),
  outcomesWithAdministration = character(0),
  outcomesWithNoAdministration = character(0),
  modelError = list(),
  odeSolverParameters = list(),
  parametersForComputingGradient = list(),
  initialConditions = numeric(0),
  functionArguments = character(0),
  functionArgumentsSymbol = list()
)

Arguments

name

Character vector specifying the model name

modelParameters

List of model parameters

samplings

Numeric vector of sampling times

modelEquations

List containing the model equations

wrapper

Function wrapper for the model (default: function () NULL)

outputFormula

List of output formulas

outputNames

Character vector of output names

variableNames

Character vector of variable names

outcomesWithAdministration

Character vector of outcomes with administration

outcomesWithNoAdministration

Character vector of outcomes without administration

modelError

List defining the error model

odeSolverParameters

List of ODE solver parameters

parametersForComputingGradient

List of parameters for gradient computation

initialConditions

Numeric vector of initial conditions

functionArguments

Character vector of function arguments

functionArgumentsSymbol

List of function argument symbols


ModelAnalytic

Description

The class ModelAnalytic is used to defined an analytic model.

Usage

ModelAnalytic(
  name = character(0),
  modelParameters = list(),
  samplings = numeric(0),
  modelEquations = list(),
  wrapper = function() NULL,
  outputFormula = list(),
  outputNames = character(0),
  variableNames = character(0),
  outcomesWithAdministration = character(0),
  outcomesWithNoAdministration = character(0),
  modelError = list(),
  odeSolverParameters = list(),
  parametersForComputingGradient = list(),
  initialConditions = numeric(0),
  functionArguments = character(0),
  functionArgumentsSymbol = list(),
  wrapperModelAnalytic = list(),
  functionArgumentsModelAnalytic = list(),
  functionArgumentsSymbolModelAnalytic = list(),
  solverInputs = list()
)

Arguments

name

Character vector specifying the model name

modelParameters

List of model parameters

samplings

Numeric vector of sampling times

modelEquations

List containing the model equations

wrapper

Function wrapper for the model (default: function () NULL)

outputFormula

List of output formulas

outputNames

Character vector of output names

variableNames

Character vector of variable names

outcomesWithAdministration

Character vector of outcomes with administration

outcomesWithNoAdministration

Character vector of outcomes without administration

modelError

List defining the error model

odeSolverParameters

List of ODE solver parameters

parametersForComputingGradient

List of parameters for gradient computation

initialConditions

Numeric vector of initial conditions

functionArguments

Character vector of function arguments

functionArgumentsSymbol

List of function argument symbols

wrapperModelAnalytic

Wrapper for the ode solver.

functionArgumentsModelAnalytic

A list giving the functionArguments of the wrapper for the analytic model.

functionArgumentsSymbolModelAnalytic

A list giving the functionArgumentsSymbol of the wrapper for the analytic model

solverInputs

A list giving the solver inputs.


ModelAnalyticInfusion

Description

The class ModelAnalyticInfusion is used to defined an analytic model in infusion.

Usage

ModelAnalyticInfusion(
  name = character(0),
  modelParameters = list(),
  samplings = numeric(0),
  modelEquations = list(),
  wrapper = function() NULL,
  outputFormula = list(),
  outputNames = character(0),
  variableNames = character(0),
  outcomesWithAdministration = character(0),
  outcomesWithNoAdministration = character(0),
  modelError = list(),
  odeSolverParameters = list(),
  parametersForComputingGradient = list(),
  initialConditions = numeric(0),
  functionArguments = character(0),
  functionArgumentsSymbol = list(),
  wrapperModelAnalyticInfusion = list(),
  functionArgumentsModelAnalyticInfusion = list(),
  functionArgumentsSymbolModelAnalyticInfusion = list(),
  solverInputs = list()
)

Arguments

name

Character vector specifying the model name

modelParameters

List of model parameters

samplings

Numeric vector of sampling times

modelEquations

List containing the model equations

wrapper

Function wrapper for the model (default: function () NULL)

outputFormula

List of output formulas

outputNames

Character vector of output names

variableNames

Character vector of variable names

outcomesWithAdministration

Character vector of outcomes with administration

outcomesWithNoAdministration

Character vector of outcomes without administration

modelError

List defining the error model

odeSolverParameters

List of ODE solver parameters

parametersForComputingGradient

List of parameters for gradient computation

initialConditions

Numeric vector of initial conditions

functionArguments

Character vector of function arguments

functionArgumentsSymbol

List of function argument symbols

wrapperModelAnalyticInfusion

Wrapper for the ode solver.

functionArgumentsModelAnalyticInfusion

A list giving the functionArguments of the wrapper for the analytic model in infusion.

functionArgumentsSymbolModelAnalyticInfusion

A list giving the functionArgumentsSymbol of the wrapper for the analytic model in infusion.

solverInputs

A list giving the solver inputs.


ModelAnalyticInfusionSteadyState

Description

The class ModelAnalyticInfusionSteadyState is used to defined an analytic model in infusion steady state.

Usage

ModelAnalyticInfusionSteadyState(
  name = character(0),
  modelParameters = list(),
  samplings = numeric(0),
  modelEquations = list(),
  wrapper = function() NULL,
  outputFormula = list(),
  outputNames = character(0),
  variableNames = character(0),
  outcomesWithAdministration = character(0),
  outcomesWithNoAdministration = character(0),
  modelError = list(),
  odeSolverParameters = list(),
  parametersForComputingGradient = list(),
  initialConditions = numeric(0),
  functionArguments = character(0),
  functionArgumentsSymbol = list(),
  wrapperModelAnalyticInfusion = list(),
  functionArgumentsModelAnalyticInfusion = list(),
  functionArgumentsSymbolModelAnalyticInfusion = list(),
  solverInputs = list()
)

Arguments

name

Character vector specifying the model name

modelParameters

List of model parameters

samplings

Numeric vector of sampling times

modelEquations

List containing the model equations

wrapper

Function wrapper for the model (default: function () NULL)

outputFormula

List of output formulas

outputNames

Character vector of output names

variableNames

Character vector of variable names

outcomesWithAdministration

Character vector of outcomes with administration

outcomesWithNoAdministration

Character vector of outcomes without administration

modelError

List defining the error model

odeSolverParameters

List of ODE solver parameters

parametersForComputingGradient

List of parameters for gradient computation

initialConditions

Numeric vector of initial conditions

functionArguments

Character vector of function arguments

functionArgumentsSymbol

List of function argument symbols

wrapperModelAnalyticInfusion

Wrapper for the ode solver.

functionArgumentsModelAnalyticInfusion

A list giving the functionArguments of the wrapper for the analytic model in infusion.

functionArgumentsSymbolModelAnalyticInfusion

A list giving the functionArgumentsSymbol of the wrapper for the analytic model in infusion.

solverInputs

A list giving the solver inputs.

Details

ModelAnalyticInfusionSteadyState


ModelAnalyticSteadyState

Description

The class ModelAnalyticSteadyState is used to defined an analytic model in steady state.

Usage

ModelAnalyticSteadyState(
  name = character(0),
  modelParameters = list(),
  samplings = numeric(0),
  modelEquations = list(),
  wrapper = function() NULL,
  outputFormula = list(),
  outputNames = character(0),
  variableNames = character(0),
  outcomesWithAdministration = character(0),
  outcomesWithNoAdministration = character(0),
  modelError = list(),
  odeSolverParameters = list(),
  parametersForComputingGradient = list(),
  initialConditions = numeric(0),
  functionArguments = character(0),
  functionArgumentsSymbol = list(),
  wrapperModelAnalytic = list(),
  functionArgumentsModelAnalytic = list(),
  functionArgumentsSymbolModelAnalytic = list(),
  solverInputs = list()
)

Arguments

name

Character vector specifying the model name

modelParameters

List of model parameters

samplings

Numeric vector of sampling times

modelEquations

List containing the model equations

wrapper

Function wrapper for the model (default: function () NULL)

outputFormula

List of output formulas

outputNames

Character vector of output names

variableNames

Character vector of variable names

outcomesWithAdministration

Character vector of outcomes with administration

outcomesWithNoAdministration

Character vector of outcomes without administration

modelError

List defining the error model

odeSolverParameters

List of ODE solver parameters

parametersForComputingGradient

List of parameters for gradient computation

initialConditions

Numeric vector of initial conditions

functionArguments

Character vector of function arguments

functionArgumentsSymbol

List of function argument symbols

wrapperModelAnalytic

Wrapper for the ode solver.

functionArgumentsModelAnalytic

A list giving the functionArguments of the wrapper for the analytic model in steady state.

functionArgumentsSymbolModelAnalytic

A list giving the functionArgumentsSymbol of the wrapper for the analytic model in steady state.

solverInputs

A list giving the solver inputs.

Details

ModelAnalyticSteadyState


ModelError

Description

The class ModelError is used to defined a model error.

Usage

ModelError(
  output = "output",
  equation = expression(),
  derivatives = list(),
  sigmaInter = 0.1,
  sigmaSlope = 0,
  sigmaInterFixed = FALSE,
  sigmaSlopeFixed = FALSE,
  cError = 1
)

Arguments

output

A string giving the model error output.

equation

A expression giving the model error equation.

derivatives

A list giving the derivatives of the model error equation.

sigmaInter

A double giving the sigma inter.

sigmaSlope

A double giving the sigma slope

sigmaInterFixed

A boolean giving if the sigma inter is fixed or not. - not in the v7.0

sigmaSlopeFixed

A boolean giving if the sigma slope is fixed or not. - not in the v7.0

cError

A integer giving the power parameter.

Details

ModelError


ModelInfusion

Description

The class ModelInfusion is used to defined a model in infusion.

Usage

ModelInfusion(
  name = character(0),
  modelParameters = list(),
  samplings = numeric(0),
  modelEquations = list(),
  wrapper = function() NULL,
  outputFormula = list(),
  outputNames = character(0),
  variableNames = character(0),
  outcomesWithAdministration = character(0),
  outcomesWithNoAdministration = character(0),
  modelError = list(),
  odeSolverParameters = list(),
  parametersForComputingGradient = list(),
  initialConditions = numeric(0),
  functionArguments = character(0),
  functionArgumentsSymbol = list()
)

Arguments

name

Character vector specifying the model name

modelParameters

List of model parameters

samplings

Numeric vector of sampling times

modelEquations

List containing the model equations

wrapper

Function wrapper for the model (default: function () NULL)

outputFormula

List of output formulas

outputNames

Character vector of output names

variableNames

Character vector of variable names

outcomesWithAdministration

Character vector of outcomes with administration

outcomesWithNoAdministration

Character vector of outcomes without administration

modelError

List defining the error model

odeSolverParameters

List of ODE solver parameters

parametersForComputingGradient

List of parameters for gradient computation

initialConditions

Numeric vector of initial conditions

functionArguments

Character vector of function arguments

functionArgumentsSymbol

List of function argument symbols


ModelODE

Description

The class ModelODE is used to defined a ode model.

Usage

ModelODE(
  name = character(0),
  modelParameters = list(),
  samplings = numeric(0),
  modelEquations = list(),
  wrapper = function() NULL,
  outputFormula = list(),
  outputNames = character(0),
  variableNames = character(0),
  outcomesWithAdministration = character(0),
  outcomesWithNoAdministration = character(0),
  modelError = list(),
  odeSolverParameters = list(),
  parametersForComputingGradient = list(),
  initialConditions = numeric(0),
  functionArguments = character(0),
  functionArgumentsSymbol = list()
)

Arguments

name

Character vector specifying the model name

modelParameters

List of model parameters

samplings

Numeric vector of sampling times

modelEquations

List containing the model equations

wrapper

Function wrapper for the model (default: function () NULL)

outputFormula

List of output formulas

outputNames

Character vector of output names

variableNames

Character vector of variable names

outcomesWithAdministration

Character vector of outcomes with administration

outcomesWithNoAdministration

Character vector of outcomes without administration

modelError

List defining the error model

odeSolverParameters

List of ODE solver parameters

parametersForComputingGradient

List of parameters for gradient computation

initialConditions

Numeric vector of initial conditions

functionArguments

Character vector of function arguments

functionArgumentsSymbol

List of function argument symbols


ModelODEBolus

Description

The class ModelODEBolus is used to defined a model ode admin bolus.

Usage

ModelODEBolus(
  name = character(0),
  modelParameters = list(),
  samplings = numeric(0),
  modelEquations = list(),
  wrapper = function() NULL,
  outputFormula = list(),
  outputNames = character(0),
  variableNames = character(0),
  outcomesWithAdministration = character(0),
  outcomesWithNoAdministration = character(0),
  modelError = list(),
  odeSolverParameters = list(),
  parametersForComputingGradient = list(),
  initialConditions = numeric(0),
  functionArguments = character(0),
  functionArgumentsSymbol = list(),
  modelODE = function() NULL,
  doseEvent = list(),
  solverInputs = list()
)

Arguments

name

Character vector specifying the model name

modelParameters

List of model parameters

samplings

Numeric vector of sampling times

modelEquations

List containing the model equations

wrapper

Function wrapper for the model (default: function () NULL)

outputFormula

List of output formulas

outputNames

Character vector of output names

variableNames

Character vector of variable names

outcomesWithAdministration

Character vector of outcomes with administration

outcomesWithNoAdministration

Character vector of outcomes without administration

modelError

List defining the error model

odeSolverParameters

List of ODE solver parameters

parametersForComputingGradient

List of parameters for gradient computation

initialConditions

Numeric vector of initial conditions

functionArguments

Character vector of function arguments

functionArgumentsSymbol

List of function argument symbols

modelODE

An object modelODE.

doseEvent

A dataframge given the doseEvent for the ode solver.

solverInputs

A list giving the solver inputs.


ModelODEDoseNotInEquations

Description

The class ModelODEDoseNotInEquations is used to defined a ModelODEDoseNotInEquations

Usage

ModelODEDoseInEquations(
  name = character(0),
  modelParameters = list(),
  samplings = numeric(0),
  modelEquations = list(),
  wrapper = function() NULL,
  outputFormula = list(),
  outputNames = character(0),
  variableNames = character(0),
  outcomesWithAdministration = character(0),
  outcomesWithNoAdministration = character(0),
  modelError = list(),
  odeSolverParameters = list(),
  parametersForComputingGradient = list(),
  initialConditions = numeric(0),
  functionArguments = character(0),
  functionArgumentsSymbol = list(),
  modelODEDoseInEquations = function() NULL,
  solverInputs = list()
)

Arguments

name

Character vector specifying the model name

modelParameters

List of model parameters

samplings

Numeric vector of sampling times

modelEquations

List containing the model equations

wrapper

Function wrapper for the model (default: function () NULL)

outputFormula

List of output formulas

outputNames

Character vector of output names

variableNames

Character vector of variable names

outcomesWithAdministration

Character vector of outcomes with administration

outcomesWithNoAdministration

Character vector of outcomes without administration

modelError

List defining the error model

odeSolverParameters

List of ODE solver parameters

parametersForComputingGradient

List of parameters for gradient computation

initialConditions

Numeric vector of initial conditions

functionArguments

Character vector of function arguments

functionArgumentsSymbol

List of function argument symbols

modelODEDoseInEquations

An object modelODEDoseInEquations.

solverInputs

A list giving the solver inputs.


ModelODEDoseNotInEquations

Description

The class ModelODEDoseNotInEquations is used to defined a ModelODEDoseNotInEquations

Usage

ModelODEDoseNotInEquations(
  name = character(0),
  modelParameters = list(),
  samplings = numeric(0),
  modelEquations = list(),
  wrapper = function() NULL,
  outputFormula = list(),
  outputNames = character(0),
  variableNames = character(0),
  outcomesWithAdministration = character(0),
  outcomesWithNoAdministration = character(0),
  modelError = list(),
  odeSolverParameters = list(),
  parametersForComputingGradient = list(),
  initialConditions = numeric(0),
  functionArguments = character(0),
  functionArgumentsSymbol = list(),
  modelODE = function() NULL,
  doseEvent = list(),
  solverInputs = list()
)

Arguments

name

Character vector specifying the model name

modelParameters

List of model parameters

samplings

Numeric vector of sampling times

modelEquations

List containing the model equations

wrapper

Function wrapper for the model (default: function () NULL)

outputFormula

List of output formulas

outputNames

Character vector of output names

variableNames

Character vector of variable names

outcomesWithAdministration

Character vector of outcomes with administration

outcomesWithNoAdministration

Character vector of outcomes without administration

modelError

List defining the error model

odeSolverParameters

List of ODE solver parameters

parametersForComputingGradient

List of parameters for gradient computation

initialConditions

Numeric vector of initial conditions

functionArguments

Character vector of function arguments

functionArgumentsSymbol

List of function argument symbols

modelODE

An object modelODE.

doseEvent

A dataframge given the doseEvent for the ode solver.

solverInputs

A list giving the solver inputs.


ModelODEInfusion

Description

The class ModelODEInfusion is used to defined a model ModelODEInfusion.

Usage

ModelODEInfusion(
  name = character(0),
  modelParameters = list(),
  samplings = numeric(0),
  modelEquations = list(),
  wrapper = function() NULL,
  outputFormula = list(),
  outputNames = character(0),
  variableNames = character(0),
  outcomesWithAdministration = character(0),
  outcomesWithNoAdministration = character(0),
  modelError = list(),
  odeSolverParameters = list(),
  parametersForComputingGradient = list(),
  initialConditions = numeric(0),
  functionArguments = character(0),
  functionArgumentsSymbol = list()
)

Arguments

name

Character vector specifying the model name

modelParameters

List of model parameters

samplings

Numeric vector of sampling times

modelEquations

List containing the model equations

wrapper

Function wrapper for the model (default: function () NULL)

outputFormula

List of output formulas

outputNames

Character vector of output names

variableNames

Character vector of variable names

outcomesWithAdministration

Character vector of outcomes with administration

outcomesWithNoAdministration

Character vector of outcomes without administration

modelError

List defining the error model

odeSolverParameters

List of ODE solver parameters

parametersForComputingGradient

List of parameters for gradient computation

initialConditions

Numeric vector of initial conditions

functionArguments

Character vector of function arguments

functionArgumentsSymbol

List of function argument symbols


ModelODEInfusionDoseInEquation

Description

The class ModelODEInfusionDoseInEquation is used to defined a ModelODEInfusionDoseInEquation

Usage

ModelODEInfusionDoseInEquation(
  name = character(0),
  modelParameters = list(),
  samplings = numeric(0),
  modelEquations = list(),
  wrapper = function() NULL,
  outputFormula = list(),
  outputNames = character(0),
  variableNames = character(0),
  outcomesWithAdministration = character(0),
  outcomesWithNoAdministration = character(0),
  modelError = list(),
  odeSolverParameters = list(),
  parametersForComputingGradient = list(),
  initialConditions = numeric(0),
  functionArguments = character(0),
  functionArgumentsSymbol = list(),
  modelODE = function() NULL,
  wrapperModelInfusion = list(),
  solverInputs = list()
)

Arguments

name

Character vector specifying the model name

modelParameters

List of model parameters

samplings

Numeric vector of sampling times

modelEquations

List containing the model equations

wrapper

Function wrapper for the model (default: function () NULL)

outputFormula

List of output formulas

outputNames

Character vector of output names

variableNames

Character vector of variable names

outcomesWithAdministration

Character vector of outcomes with administration

outcomesWithNoAdministration

Character vector of outcomes without administration

modelError

List defining the error model

odeSolverParameters

List of ODE solver parameters

parametersForComputingGradient

List of parameters for gradient computation

initialConditions

Numeric vector of initial conditions

functionArguments

Character vector of function arguments

functionArgumentsSymbol

List of function argument symbols

modelODE

An object modelODE.

wrapperModelInfusion

Wrapper for solver.

solverInputs

A list giving the solver inputs.


ModelParameter

Description

The class ModelParameter is used to defined the model parameters.

Usage

ModelParameter(
  name = character(0),
  distribution = Distribution(),
  fixedMu = FALSE,
  fixedOmega = FALSE
)

Arguments

name

A string giving the name of the parameter.

distribution

A string giving the distribution of the parameter.

fixedMu

A Boolean setting TRUE/FALSE if the mu is estimated or not.

fixedOmega

A Boolean setting TRUE/FALSE if the omega is estimated or not.

Details

ModelParameter


MultiplicativeAlgorithm

Description

The class MultiplicativeAlgorithm implements the multiplicative algorithm.

Usage

MultiplicativeAlgorithm(
  name = character(0),
  modelEquations = list(),
  modelFromLibrary = list(),
  modelParameters = list(),
  modelError = list(),
  optimizer = character(0),
  optimizerParameters = list(),
  outputs = list(),
  designs = list(),
  fimType = character(0),
  fim = Fim(),
  odeSolverParameters = list(),
  optimisationDesign = list(),
  optimisationAlgorithmOutputs = list(),
  lambda = 0,
  delta = 0,
  numberOfIterations = 0,
  weightThreshold = 0,
  showProcess = FALSE,
  multiplicativeAlgorithmOutputs = list()
)

Arguments

name

A string giving the name of the design evaluation.

modelEquations

A list giving the model equations.

modelFromLibrary

A list giving the model equations from the library of model.

modelParameters

A list giving the model parameters.

modelError

A list giving the model error.

optimizer

A string giving the name of the optimization algorithm being used.

optimizerParameters

A list giving the parameters of the optimization algorithm.

outputs

A list giving the model outputs.

designs

A list giving the designs to be evaluated.

fimType

A string giving the type of Fim being evaluated.

fim

A object Fim giving the Fim.

odeSolverParameters

A list giving the atol and rtol parameters for the ode solver.

optimisationDesign

A list giving the evaluation of initial and optimal design.

optimisationAlgorithmOutputs

A list giving the outputs of the optimization process.

lambda

A numeric giving the parameter lambda.

delta

A numeric giving the parameter delta

numberOfIterations

A numeric giving the number of iterations.

weightThreshold

A numeric giving the weight threshold.

showProcess

A Boolean for displaying the process or not.

multiplicativeAlgorithmOutputs

A list giving the output of the optimization algorithm.


Function MultiplicativeAlgorithm_Rcpp

Description

Run the MultiplicativeAlgorithm_Rcpp in Rcpp.

Usage

MultiplicativeAlgorithm_Rcpp(
  fisherMatrices_input,
  numberOfFisherMatrices_input,
  weights_input,
  numberOfParameters_input,
  dim_input,
  lambda_input,
  delta_input,
  iterationInit_input
)

Arguments

fisherMatrices_input

The parameter fotfisherMatrices_input.

numberOfFisherMatrices_input

The parameter numberOfFisherMatrices_input.

weights_input

The parameter weights_input.

numberOfParameters_input

The parameter numberOfParameters_input.

dim_input

The parameter dim_input.

lambda_input

The parameter lambda_input.

delta_input

The parameter delta_input.

iterationInit_input

The parameter iterationInit_input.

Value

The list output with the outputs of the MultiplicativeAlgorithm_Rcpp.


Normal

Description

The class Normal implements the Normal distribution.

Usage

Normal(name = character(0), mu = 0, omega = 0)

Arguments

name

A string giving the name of the distribution.

mu

A double giving the mean mu.

omega

A double giving omega.


Optimization

Description

The class Optimization implements the Optimization.

Usage

Optimization(
  name = character(0),
  modelEquations = list(),
  modelFromLibrary = list(),
  modelParameters = list(),
  modelError = list(),
  optimizer = character(0),
  optimizerParameters = list(),
  outputs = list(),
  designs = list(),
  fimType = character(0),
  fim = Fim(),
  odeSolverParameters = list(),
  optimisationDesign = list(),
  optimisationAlgorithmOutputs = list()
)

Arguments

name

A string giving the name of the design evaluation.

modelEquations

A list giving the model equations.

modelFromLibrary

A list giving the model equations from the library of model.

modelParameters

A list giving the model parameters.

modelError

A list giving the model error.

optimizer

A string giving the name of the optimization algorithm being used.

optimizerParameters

A list giving the parameters of the optimization algorithm.

outputs

A list giving the model outputs.

designs

A list giving the designs to be evaluated.

fimType

A string giving the type of Fim being evaluated.

fim

A object Fim giving the Fim.

odeSolverParameters

A list giving the atol and rtol parameters for the ode solver.

optimisationDesign

A list giving the evaluation of initial and optimal design.

optimisationAlgorithmOutputs

A list giving the outputs of the optimization process.


PFIMProject

Description

The class PFIMProject implements the PFIM project.

Usage

PFIMProject(
  name = character(0),
  modelEquations = list(),
  modelFromLibrary = list(),
  modelParameters = list(),
  modelError = list(),
  optimizer = character(0),
  optimizerParameters = list(),
  outputs = list(),
  designs = list(),
  fimType = character(0),
  fim = Fim(),
  odeSolverParameters = list()
)

Arguments

name

A string giving the name of the design evaluation.

modelEquations

A list giving the model equations.

modelFromLibrary

A list giving the model equations from the library of model.

modelParameters

A list giving the model parameters.

modelError

A list giving the model error.

optimizer

A string giving the name of the optimization algorithm being used.

optimizerParameters

A list giving the parameters of the optimization algorithm.

outputs

A list giving the model outputs.

designs

A list giving the designs to be evaluated.

fimType

A string giving the type of Fim being evaluated.

fim

A object Fim giving the Fim.

odeSolverParameters

A list giving the atol and rtol parameters for the ode solver.


PGBOAlgorithm

Description

The class PGBOAlgorithm implements the PGBO algorithm.

Usage

PGBOAlgorithm(
  name = character(0),
  modelEquations = list(),
  modelFromLibrary = list(),
  modelParameters = list(),
  modelError = list(),
  optimizer = character(0),
  optimizerParameters = list(),
  outputs = list(),
  designs = list(),
  fimType = character(0),
  fim = Fim(),
  odeSolverParameters = list(),
  optimisationDesign = list(),
  optimisationAlgorithmOutputs = list(),
  N = numeric(0),
  muteEffect = numeric(0),
  maxIteration = numeric(0),
  purgeIteration = numeric(0),
  seed = numeric(0),
  showProcess = FALSE
)

Arguments

name

A string giving the name of the design evaluation.

modelEquations

A list giving the model equations.

modelFromLibrary

A list giving the model equations from the library of model.

modelParameters

A list giving the model parameters.

modelError

A list giving the model error.

optimizer

A string giving the name of the optimization algorithm being used.

optimizerParameters

A list giving the parameters of the optimization algorithm.

outputs

A list giving the model outputs.

designs

A list giving the designs to be evaluated.

fimType

A string giving the type of Fim being evaluated.

fim

A object Fim giving the Fim.

odeSolverParameters

A list giving the atol and rtol parameters for the ode solver.

optimisationDesign

A list giving the evaluation of initial and optimal design.

optimisationAlgorithmOutputs

A list giving the outputs of the optimization process.

N

A numeric giving the parameter N.

muteEffect

A numeric giving the parameter muteEffect.

maxIteration

A numeric giving the parameter maxIteration.

purgeIteration

A numeric giving the parameter purgeIteration.

seed

A numeric giving the parameter seed.

showProcess

A Boolean giving showProcess.


PSOAlgorithm

Description

The class PSOAlgorithm implements the PSO algorithm.

Usage

PSOAlgorithm(
  name = character(0),
  modelEquations = list(),
  modelFromLibrary = list(),
  modelParameters = list(),
  modelError = list(),
  optimizer = character(0),
  optimizerParameters = list(),
  outputs = list(),
  designs = list(),
  fimType = character(0),
  fim = Fim(),
  odeSolverParameters = list(),
  optimisationDesign = list(),
  optimisationAlgorithmOutputs = list(),
  maxIteration = numeric(0),
  populationSize = numeric(0),
  seed = numeric(0),
  personalLearningCoefficient = numeric(0),
  globalLearningCoefficient = numeric(0),
  showProcess = FALSE
)

Arguments

name

A string giving the name of the design evaluation.

modelEquations

A list giving the model equations.

modelFromLibrary

A list giving the model equations from the library of model.

modelParameters

A list giving the model parameters.

modelError

A list giving the model error.

optimizer

A string giving the name of the optimization algorithm being used.

optimizerParameters

A list giving the parameters of the optimization algorithm.

outputs

A list giving the model outputs.

designs

A list giving the designs to be evaluated.

fimType

A string giving the type of Fim being evaluated.

fim

A object Fim giving the Fim.

odeSolverParameters

A list giving the atol and rtol parameters for the ode solver.

optimisationDesign

A list giving the evaluation of initial and optimal design.

optimisationAlgorithmOutputs

A list giving the outputs of the optimization process.

maxIteration

A numeric giving the maxIteration.

populationSize

A numeric giving the populationSize.

seed

A numeric giving the seed.

personalLearningCoefficient

A numeric giving the personalLearningCoefficient.

globalLearningCoefficient

A numeric giving the globalLearningCoefficient.

showProcess

A Boolean giving the showProcess.


PopulationFim

Description

The class PopulationFim represents and stores information for the PopulationFim.

Usage

PopulationFim(
  fisherMatrix = numeric(0),
  fixedEffects = numeric(0),
  varianceEffects = numeric(0),
  SEAndRSE = list(),
  condNumberFixedEffects = 0,
  condNumberVarianceEffects = 0,
  shrinkage = numeric(0)
)

Arguments

fisherMatrix

A matrix giving the numerical values of the Fim.

fixedEffects

A matrix giving the numerical values of the fixedEffects of the Fim.

varianceEffects

A matrix giving the numerical values of varianceEffects of the Fim.

SEAndRSE

A data frame giving the value of the SE and RSE.

condNumberFixedEffects

The conditional number of the fixedEffects of the Fim.

condNumberVarianceEffects

The conditional number of the varianceEffects of the Fim.

shrinkage

A vector giving the shrinkage values.


Proportional

Description

The class Proportional is used to defined a model error.

Usage

Proportional(
  output = character(0),
  equation = expression(sigmaSlope),
  derivatives = list(),
  sigmaInter = 0,
  sigmaSlope = 0,
  sigmaInterFixed = FALSE,
  sigmaSlopeFixed = FALSE,
  cError = 1
)

Arguments

output

A string giving the model error output.

equation

A expression giving the model error equation.

derivatives

A list giving the derivatives of the model error equation.

sigmaInter

A double giving the sigma inter.

sigmaSlope

A double giving the sigma slope

sigmaInterFixed

A Boolean giving if the sigma inter is fixed or not. - not in the v7.0

sigmaSlopeFixed

A Boolean giving if the sigma slope is fixed or not. - not in the v7.0

cError

A integer giving the power parameter.


Generate optimization report

Description

Generate optimization report

Report: generate the report.

Arguments

optimization

An Optimization object.

pfimproject

A object PFIMProject giving the Evaluation or Optimization.

outputPath

A string giving the path where the output are saved.

outputFile

A string giving the name of the output file.

plotOptions

A list giving the plot options.

Value

Generated report.

The html report of the design evaluation or optimization.


SamplingTimeConstraints

Description

The class "SamplingTimeConstraints" implements the constraints for the sampling times.

Usage

SamplingTimeConstraints(
  outcome = character(0),
  initialSamplings = 0,
  fixedTimes = 0,
  numberOfsamplingsOptimisable = 0,
  samplingsWindows = list(),
  numberOfTimesByWindows = 0,
  minSampling = 0
)

Arguments

outcome

A string giving the outcome.

initialSamplings

A vector of numeric giving the initialSamplings.

fixedTimes

A vector of numeric giving the fixedTimes.

numberOfsamplingsOptimisable

A vector of numeric giving the numberOfsamplingsOptimisable.

samplingsWindows

A vector of numeric giving the samplingsWindows.

numberOfTimesByWindows

A vector of numeric giving the numberOfTimesByWindows.

minSampling

A vector of numeric giving the minSampling.


SamplingTimes

Description

The class SamplingTimes is used to defined SamplingTimes.

Usage

SamplingTimes(outcome = character(0), samplings = numeric(0))

Arguments

outcome

A string giving the outcome.

samplings

A vector of numeric giving the samplings.


SimplexAlgorithm

Description

The class SimplexAlgorithm implements the Simplex algorithm.

Usage

SimplexAlgorithm(
  name = character(0),
  modelEquations = list(),
  modelFromLibrary = list(),
  modelParameters = list(),
  modelError = list(),
  optimizer = character(0),
  optimizerParameters = list(),
  outputs = list(),
  designs = list(),
  fimType = character(0),
  fim = Fim(),
  odeSolverParameters = list(),
  optimisationDesign = list(),
  optimisationAlgorithmOutputs = list(),
  pctInitialSimplexBuilding = numeric(0),
  maxIteration = numeric(0),
  seed = numeric(0),
  tolerance = numeric(0),
  showProcess = FALSE
)

Arguments

name

A string giving the name of the design evaluation.

modelEquations

A list giving the model equations.

modelFromLibrary

A list giving the model equations from the library of model.

modelParameters

A list giving the model parameters.

modelError

A list giving the model error.

optimizer

A string giving the name of the optimization algorithm being used.

optimizerParameters

A list giving the parameters of the optimization algorithm.

outputs

A list giving the model outputs.

designs

A list giving the designs to be evaluated.

fimType

A string giving the type of Fim being evaluated.

fim

A object Fim giving the Fim.

odeSolverParameters

A list giving the atol and rtol parameters for the ode solver.

optimisationDesign

A list giving the evaluation of initial and optimal design.

optimisationAlgorithmOutputs

A list giving the outputs of the optimization process.

pctInitialSimplexBuilding

A numeric giving the pctInitialSimplexBuilding.

maxIteration

A numeric giving the maxIteration.

seed

A numeric giving the seed.

tolerance

A numeric giving the tolerance.

showProcess

A Boolean giving the showProcess.


adjustGradient: adjust the gradient for the log normal distribution.

Description

adjustGradient: adjust the gradient for the log normal distribution.

Arguments

distribution

An object Distribution giving the distribution.

gradient

The gradient of the model responses.

Value

The adjusted gradient of the model responses.


getArmAdministration: get the administration parameters of an arm.

Description

getArmAdministration: get the administration parameters of an arm.

Arguments

arm

A object of class Arm giving the arm.

Value

A list giving the administration parameters of an arm.


checkSamplingTimeConstraintsForMetaheuristic

Description

checkSamplingTimeConstraintsForMetaheuristic

Arguments

samplingTimesConstraints

An object SamplingTimeConstraints.

arm

An object Arm.

newSamplings

A vector of numeric for the new samplings.

outcome

A string giving the outcome.

Value

A boolean TRUE/FALSE, with a message error if FALSE.


checkValiditySamplingConstraint: check if the constraints used for the design optimization are valid.

Description

checkValiditySamplingConstraint: check if the constraints used for the design optimization are valid.

Arguments

design

An object Design giving the design.

Value

A boolean TRUE / FALSE, if FALSE it also gives an error message.


computeVMat

Description

computeVMat

Usage

computeVMat(varParam1, varParam2, invCholV)

Arguments

varParam1

varParam1

varParam2

varParam2

invCholV

invCholV

Value

VMat


constraintsTableForReport: table of the PGBOAlgorithm constraints for the report.

Description

constraintsTableForReport: table of the PGBOAlgorithm constraints for the report.

constraintsTableForReport: table of the PSOAlgorithm constraints for the report.

constraintsTableForReport: table of the SimplexAlgorithm constraints for the report.

constraintsTableForReport

constraintsTableForReport: table of the MultiplicativeAlgorithm constraints for the report.

Arguments

optimizationAlgorithm

A object MultiplicativeAlgorithm.

arms

List of the arms.

Value

The table for the constraints in the arms.

The table for the constraints in the arms.

The table for the constraints in the arms.

armsConstraintsTable

The table for the constraints in the arms.


convertPKModelAnalyticToPKModelODE: conversion from analytic to ode

Description

convertPKModelAnalyticToPKModelODE: conversion from analytic to ode

convertPKModelAnalyticToPKModelODE: conversion from analytic to ode

convertPKModelAnalyticToPKModelODE: conversion from analytic infusion to ode

Arguments

pkModel

An object of class ModelAnalyticInfusion that defines the model.


define the type of Fisher information matrix: population, individual or Bayesian

Description

define the type of Fisher information matrix: population, individual or Bayesian

Arguments

pfimproject

An object PFIMProject.

Value

An object Fim.


defineModelAdministration: define the administration

Description

defineModelAdministration: define the administration

defineModelAdministration: define the administration

defineModelAdministration: define the administration

defineModelAdministration: define the administration

defineModelAdministration: define the administration

defineModelAdministration: define the administration

defineModelAdministration: define the administration

Arguments

model

An object of class ModelODEInfusionDoseInEquation that defines the model.

arm

An object of class Arm that defines the arm.

Value

The model with samplings, solverInputs

The model with samplings, solverInputs

The model with samplings, solverInputs

The model with updated slots.

The model with samplings, solverInputs

The model with samplings, solverInputs

The model with updated slots.


defineModelEquationsFromLibraryOfModel: define the model equations giving the models in the library of models.

Description

defineModelEquationsFromLibraryOfModel: define the model equations giving the models in the library of models.

Arguments

pfimproject

An object PFIMProject giving the evaluation to be run.

Value

A list giving the model equations.


defineModelType: define the class of the model to be evaluated.

Description

defineModelType: define the class of the model to be evaluated.

Arguments

pfimproject

An object PFIMProject giving the evaluation to be run.

Value

An object Model giving the model to be evaluated with its modelParameters, odeSolverParameters, modelError, modelEquations.


defineModelWrapper: define the model wrapper for the ode solver

Description

defineModelWrapper: define the model wrapper for the ode solver

defineModelWrapper: define the model wrapper for the ode solver

defineModelWrapper: define the model wrapper for the ode solver

defineModelWrapper: define the model wrapper for the ode solver

defineModelWrapper: define the model wrapper for the ode solver

defineModelWrapper: define the model wrapper for the ode solver

defineModelWrapper: define the model wrapper for the ode solver

defineModelWrapper: define the model wrapper for the ode solver

Arguments

model

An object of class ModelODEInfusionDoseInEquation that defines the model.

evaluation

An object of class Evaluation that defines the evaluation

Value

The model with wrapperModelAnalytic, functionArgumentsModelAnalytic, functionArgumentsSymbolModelAnalytic, outputNames, outcomesWithAdministration

The model with wrapperModelAnalyticInfusion, functionArgumentsModelAnalyticInfusion, functionArgumentsSymbolModelAnalyticInfusion, outputNames, outcomesWithAdministration

The model with wrapperModelAnalyticInfusion, functionArgumentsModelAnalyticInfusion, functionArgumentsSymbolModelAnalyticInfusion, outputNames, outcomesWithAdministration

The model with wrapperModelAnalytic, functionArgumentsModelAnalytic, functionArgumentsSymbolModelAnalytic, outputNames, outcomesWithAdministration

The model with updated slots.

The model with the updated slots.

The model with the updated slots.

The model with updated slots.


Define optimization algorithm

Description

Define optimization algorithm

Arguments

optimization

An Optimization object.

Value

An optimization algorithm.


definePKModel: define a PK model from library of model

Description

definePKModel: define a PK model from library of model

definePKModel ModelAnalyticInfusion

definePKModel

definePKModel

definePKModel: define PK model ode bolus

definePKModel: define a PK model from library of model

definePKModel: define a PK model from library of model

definePKModel: define PK model ode bolus

Arguments

pkModel

An object of class ModelODEInfusionDoseInEquation that defines the PK model.

pfimproject

An object of class PFIMProject that defines the pfimproject.


definePKPDModel: define a PKPD model from library of model

Description

definePKPDModel: define a PKPD model from library of model

definePKPDModel: define a PKPD model from library of model

definePKPDModel ModelAnalyticInfusion, ModelAnalytic

definePKPDModel ModelAnalyticInfusion, ModelODE

definePKPDModel

definePKPDModel

definePKPDModel

definePKPDModel: define a PKPD model from library of model

Arguments

pkModel

An object of class ModelODE that defines the PD model.

pfimproject

An object of class PFIMProject that defines the pfimproject.


evaluateArm: evaluation of the model with the arm parameters.

Description

evaluateArm: evaluation of the model with the arm parameters.

Arguments

arm

A object of class Arm giving the arm.

model

A object of class Model giving the model.

fim

A object of class Fim giving the fim.

Value

The object arm with the slots evaluationModel, evaluationGradients, evaluationVariance and evaluationFim.


evaluateDesign: evaluation of a design.

Description

evaluateDesign: evaluation of a design.

Arguments

design

An object Design giving the design.

model

An object Model giving the model.

fim

An object Fim giving the Fim.

Value

The object Design with its evaluation results.


evaluateErrorModelDerivatives; evaluate the derivatives of the model error.

Description

evaluateErrorModelDerivatives; evaluate the derivatives of the model error.

Arguments

modelError

An object ModelError that defines the model error.

evaluationModel

A dataframe giving the outputs for the model evaluation.

Value

The matrices sigmaDerivatives and errorVariance.


evaluateFim: evaluation of the Fim

Description

evaluateFim: evaluation of the Fim

evaluateFim: evaluation of the Fim

evaluateFim: evaluation of the Fim

Arguments

fim

An object PopulationFim giving the Fim.

model

An object Model giving the model.

arm

An object Arm giving the arm.

Value

The object Fim with the fisherMatrix and the shrinkage.

The object IndividualFim with the fisherMatrix and the shrinkage.

The object IndividualFim with the fisherMatrix and the shrinkage.


evaluateInitialConditions: evaluate the initial conditions.

Description

evaluateInitialConditions: evaluate the initial conditions.

evaluateInitialConditions: evaluate the initial conditions.

evaluateInitialConditions: evaluate the initial conditions.

Arguments

arm

A object of class Arm giving the arm.

model

A object of class ModelODEInfusion giving the model.

doseEvent

A data frame giving the dose event for the ode solver.

Value

A list giving the evaluated initial conditions.


evaluateModel: evaluate the model

Description

evaluateModel: evaluate the model

evaluateModel: evaluate the ModelAnalyticInfusion

evaluateModel: evaluate the ModelAnalyticInfusion

evaluateModel: evaluate the ModelAnalyticInfusion

evaluateModel

evaluateModel

evaluateModel: evaluate the model

evaluateModel: evaluate the model

evaluateModel

Arguments

arm

A object of class Arm giving the arm.

model

A object of class ModelODEInfusionDoseInEquation giving the model.

Value

A list of dataframes that contains the results for the evaluation of the model.

A list of dataframes that contains the results for the evaluation of the model.

A list of dataframes that contains the results for the evaluation of the model.

A list of dataframes that contains the results for the evaluation of the model.

A list of dataframes that contains the evaluation of the model.

A data frame giving the output of the model evaluation.

A list of dataframes that contains the results for the evaluation of the model.

A list of dataframes that contains the results for the evaluation of the model.

A data frame giving the output of the model evaluation.


evaluateModelGradient: evaluate the gradient of the model

Description

evaluateModelGradient: evaluate the gradient of the model

Arguments

model

An object Model that defines the model.

arm

A object Arm giving the arm

Value

A data frame that contains the gradient of the model.


evaluateModelVariance: evaluate the variance of the model

Description

evaluateModelVariance: evaluate the variance of the model

Arguments

model

A object Model giving the model.

arm

A object Arm giving the arm

Value

A list giving errorVariance and sigmaDerivatives.


evaluateVarianceFIM: evaluate the variance

Description

evaluateVarianceFIM: evaluate the variance

evaluateVarianceFIM: evaluate the variance

evaluateVarianceFIM: evaluate the variance

Arguments

arm

A object of class Arm giving the arm.

model

A object of class Model giving the model.

fim

A object of class PopulationFim giving the Fim.

Value

The matrices MFbeta and V.

The matrices MFbeta and V.

The matrices MFVar and V.


finiteDifferenceHessian: compute the Hessian

Description

finiteDifferenceHessian: compute the Hessian

Arguments

model

A object Model giving the model.

Value

The model with the slots parametersForComputingGradient with XcolsInv, shifted, frac.


Compute the fisher.simplex

Description

Compute the fisher.simplex

Arguments

simplex

A list giving the parameters of the simplex.

optimizationObject

An object Optimization.

outcomes

A vector giving the outcomes of the arms.

Value

A list giving the results of the optimization.


Compute the fun.amoeba

Description

Compute the fun.amoeba

Usage

fun.amoeba(p, y, ftol, itmax, funk, outcomes, data, showProcess)

Arguments

p

parameter p

y

parameter y

ftol

parameter ftol

itmax

parameter itmax

funk

parameter funk

outcomes

The model outcomes.

data

parameter data

showProcess

Boolean.

Value

fun.amoeba


generateDosesCombination: generate the combination for the doses.

Description

generateDosesCombination: generate the combination for the doses.

Arguments

design

An object Design giving the design.

Value

dosesForFIMs, numberOfDoses used in the design optimization.


Generate FIMs from constraints

Description

Generate FIMs from constraints

Arguments

optimization

An Optimization object.

Value

A list containing FIMs from constraints.


generateReportEvaluation: generate the report for the model evaluation.

Description

generateReportEvaluation: generate the report for the model evaluation.

generateReportEvaluation: generate the report for the model evaluation.

generateReportEvaluation: generate the report for the model evaluation.

Arguments

fim

An object PopulationFim giving the Fim.

tablesForReport

The output list giving by the method tablesForReport.

Value

The html report for the design evaluation.

The html report for the model evaluation.

The html report for the model evaluation.


generateReportOptimization: generate the report for the design optimization.

Description

generateReportOptimization: generate the report for the design optimization.

generateReportOptimization: generate the report for the design optimization.

generateReportOptimization: generate the report for the design optimization.

generateReportOptimization: generate the report for the design optimization.

generateReportOptimization: generate the report for the design optimization.

generateReportOptimization: generate the report for the design optimization.

generateReportOptimization: generate the report for the design optimization.

generateReportOptimization: generate the report for the design optimization.

generateReportOptimization: generate the report for the design optimization.

generateReportOptimization: generate the report for the design optimization.

generateReportOptimization: generate the report for the design optimization.

generateReportOptimization: generate the report for the design optimization.

Arguments

fim

An object PopulationFim giving the Fim.

optimizationAlgorithm

An object PGBOAlgorithm giving the PGBOAlgorithm

tablesForReport

The output list giving by the method tablesForReport.

Value

The html report for the design optimization.

The html report for the design optimization.

The html report.

The html report.

The html report.

The html report.

The html report.

The html report.

The html report.

The html report.

The html report.

The html report.


generateSamplingTimesCombination: generate the combination for the samplings.

Description

generateSamplingTimesCombination: generate the combination for the samplings.

Arguments

design

An object Design giving the design.

Value

samplingTimesCombinations used in the design optimization.


generateSamplingsFromSamplingConstraints

Description

generateSamplingsFromSamplingConstraints

Arguments

samplingTimeConstraints

An object SamplingTimeConstraints

Value

A list intervalsConstraints.


getArmConstraints: get the administration and sampling time constraints for the MultiplicativeAlgorithm.

Description

getArmConstraints: get the administration and sampling time constraints for the MultiplicativeAlgorithm.

getArmConstraints: get the administration and sampling time constraints for the FedorovWynnAlgorithm.

getArmConstraints: get the administration and sampling time constraints for the SimplexAlgorithm.

getArmConstraints: get the administration and sampling time constraints for the PSOAlgorithm.

getArmConstraints: get the administration and sampling time constraints for the PGBOAlgorithm.

Arguments

arm

A object of class Arm giving the arm.

optimizationAlgorithm

A object of class Optimization giving the optimization algorithm.

Value

A list giving the administration and sampling time constraints for the MultiplicativeAlgorithm.

A list giving the administration and sampling time constraints for the FedorovWynnAlgorithm.

A list giving the administration and sampling time constraints for the SimplexAlgorithm.

A list giving the administration and sampling time constraints for the PSOAlgorithm.

A list giving the administration and sampling time constraints for the PGBOAlgorithm.


getArmData: extract arm data for The Report

Description

getArmData: extract arm data for The Report

Arguments

arm

A object of class Arm giving the arm.

Value

A list giving the name, Number of subjects, Outcome, Dose and Sampling times of the arm.


getCorrelationMatrix : get the correlation matrix

Description

getCorrelationMatrix : get the correlation matrix

getCorrelationMatrix : get the correlation matrix

Arguments

pfimproject

A object PFIMProject giving the Evaluation.

Value

The correlation matrix

The Dcriterion


getDcriterion : get the Dcriterion

Description

getDcriterion : get the Dcriterion

getDcriterion : get the Dcriterion

Arguments

pfimproject

A object PFIMProject giving the Evaluation.

Value

The Dcriterion of the FIM.

The Dcriterion


getDeterminant: get the determinant

Description

getDeterminant: get the determinant

getDeterminant: get the determinant

Arguments

pfimproject

A object PFIMProject giving the Evaluation.

Value

The determinant of the FIM.

The determinant


getFim: get the Fisher matrix.

Description

getFim: get the Fisher matrix.

Arguments

evaluation

An object Evaluation giving the evaluation to be run.

Value

The matrices fisherMatrix, fixedEffects, varianceEffects.


getFisherMatrix: display the Fisher matrix components

Description

getFisherMatrix: display the Fisher matrix components

getFisherMatrix: display the Fisher matrix components

Arguments

evaluation

An object Evaluation giving the evaluation to be run.

Value

The matrices fisherMatrix, fixedEffects, varianceEffects.

The matrices fisherMatrix, fixedEffects, varianceEffects.


getListLastName: routine to get the names of last element of a nested list.

Description

getListLastName: routine to get the names of last element of a nested list.

Usage

getListLastName(list)

Arguments

list

The list to be used.

Value

The names of last element.


getModelErrorData: get the parameters sigma slope and sigma inter (used for the report).

Description

getModelErrorData: get the parameters sigma slope and sigma inter (used for the report).

Arguments

modelError

An object ModelError that defines the model error.

Value

A list of dataframe with outcome, type of model error and sigma slope and inter.


getModelParametersData: get model parameters data for report.

Description

getModelParametersData: get model parameters data for report.

Arguments

modelParameter

An object if class Model giving the model.

Value

A data frame with the data of all the parameters.


getRSE: get the RSE

Description

getRSE: get the RSE

getRSE: get the RSE

Arguments

pfimproject

A object PFIMProject giving the Evaluation.

Value

The RSE of the parameters.

The RSE


getSE: get the SE

Description

getSE: get the SE

getSE: get the SE

Arguments

pfimproject

A object PFIMProject giving the Evaluation.

Value

The SE of the parameters.

The SE.


getSamplingData: extract sampling times and max sampling time used for plot.

Description

getSamplingData: extract sampling times and max sampling time used for plot.

Arguments

arm

A object of class Arm giving the arm.

Value

A list giving the samplingTimes object, the vector samplings and the double samplingMax.


getShrinkage: get the shrinkage

Description

getShrinkage: get the shrinkage

getShrinkage: get the shrinkage

Arguments

pfimproject

A object PFIMProject giving the Evaluation.

Value

The shrinkage of the FIM.

The shrinkage


Optimization PGBOAlgorithm

Description

Optimization PGBOAlgorithm

Optimization PSOAlgorithm

Optimization SimplexAlgorithm

Optimization FedorovWynnAlgorithm

Optimization MultiplicativeAlgorithm

Arguments

optimizationObject

A object Optimization.

optimizationAlgorithm

A object MultiplicativeAlgorithm.

Value

The object optimizationObject with the slots updated.

The object optimizationObject with the slots updated.

The object optimizationObject with the slots updated.

The object optimizationObject with the slots updated.

The object optimizationObject with the slots updated.


plotEvaluation: plots for the evaluation of the model responses.

Description

plotEvaluation: plots for the evaluation of the model responses.

Arguments

pfimproject

A object PFIMProject.

plotOptions

A list giving the plot options.

Value

All the plots for the evaluation of the model responses.


plotEvaluationResults: process for the evaluation of the responses.

Description

plotEvaluationResults: process for the evaluation of the responses.

Arguments

arm

A object of class Arm giving the arm.

evaluationModel

A list giving the evaluation of the model.

outputNames

A list of string giving the output of the evaluation of the model.

samplingData

A list giving the sampling data from the method getSamplingData.

unitXAxis

A list giving the unit of the x-axis.

unitYAxis

A list giving the unit of the y-axis.

designName

A string giving the design name.

Value

A list giving the plot of the evaluation of the model responses.


plotEvaluationSI: process for the evaluation of the gradient of the responses.

Description

plotEvaluationSI: process for the evaluation of the gradient of the responses.

Arguments

arm

A object of class Arm giving the arm.

evaluationModelGradient

A list giving the evaluation of the gradient of the model responses.

parametersNames

A vector of string giving the parameter names?

outputNames

A list of string giving the name of the outputs.

samplingData

A list giving the sampling data from the method getSamplingData.

unitXAxis

A list giving the unit of the x-axis.

unitYAxis

A list giving the unit of the y-axis.

designName

A string giving the design name.

Value

A list giving the plot of the evaluation of gradient of the model responses.


Plot frequencies for the FedorovWynn algorithm

Description

Plot frequencies for the FedorovWynn algorithm

Arguments

optimization

An Optimization object.

Value

Graph of the optimal frequencies.


plotFrequenciesFedorovWynnAlgorithm

Description

plotFrequenciesFedorovWynnAlgorithm

Arguments

optimization

optimization

optimizationAlgorithm

optimizationAlgorithm

Value

plotFrequenciesFedorovWynnAlgorithm


Plot relative standard errors

Description

Plot relative standard errors

plotRSE: bar plot of the RSE.

Arguments

optimization

An Optimization object.

pfimproject

A object PFIMProject giving the Evaluation.

Value

Graph of relative standard errors

The bar plot of the RSE.


plotRSEFIM: barplot for the RSE

Description

plotRSEFIM: barplot for the RSE

plotRSEFIM: barplot for the RSE

plotRSEFIM: barplot for the RSE

Arguments

fim

An object PopulationFim giving the Fim.

evaluation

An object Evaluation giving the evaluation of the model.

Value

The bar plot of the RSE.

The bar plot of the RSE.

The bar plot of the RSE.


Plot standard errors

Description

Plot standard errors

plotSE: bar plot of the SE.

Arguments

optimization

An Optimization object.

pfimproject

A object PFIMProject giving the Evaluation.

Value

Graph of standard errors

The bar plot of the SE.


plotSEFIM: barplot for the SE

Description

plotSEFIM: barplot for the SE

plotSEFIM: barplot for the SE

plotSEFIM: barplot for the SE

Arguments

fim

An object PopulationFim giving the Fim.

evaluation

An object Evaluation giving the evaluation of the model.

Value

The bar plot of the SE.

The bar plot of the SE.

The bar plot of the SE.


Plot sensitivity indices.

Description

Plot sensitivity indices.

plotSensitivityIndices: plots for the evaluation of the gradient of the model responses.

Arguments

optimization

An Optimization object.

pfimproject

A object PFIMProject giving the Evaluation.

plotOptions

A list giving the plot options.

Value

Graph of sensitivity indices.

All the plots for the evaluation of the gradient of the model responses.


plotShrinkage: plot the shrinkage values.

Description

plotShrinkage: plot the shrinkage values.

Arguments

fim

An object BayesianFim giving the Fim.

evaluation

An object Evaluation giving the evaluation of the model.

Value

The bar plot of the shrinkage.


Plot weights for the multiplicative algorithm

Description

Plot weights for the multiplicative algorithm

Arguments

optimization

An Optimization object.

Value

Plot of weights


plotWeightsMultiplicativeAlgorithm: plot the optimal weight.

Description

plotWeightsMultiplicativeAlgorithm: plot the optimal weight.

Arguments

optimization

A object Optimization.

optimizationAlgorithm

A object MultiplicativeAlgorithm.

Value

The graph plotWeight.


processArmEvaluationResults: process for the evaluation of an arm.

Description

processArmEvaluationResults: process for the evaluation of an arm.

Arguments

arm

A object of class Arm giving the arm.

model

A object of class Model giving the model.

fim

A object of class Fim giving the fim.

designName

A string giving the name of the design.

plotOptions

A list giving the plot options.

Value

A list of ggplot object giving the plot of the responses ans the gradient responses of the the model.


processArmEvaluationSI: process for the evaluation of the gradient of the responses.

Description

processArmEvaluationSI: process for the evaluation of the gradient of the responses.

Arguments

arm

A object of class Arm giving the arm.

model

A object of class Model giving the model.

fim

A object of class Fim giving the fim.

designName

A string giving the name of the design.

Value

A list giving the ggplot object of the plots of the gradient.


replaceVariablesLibraryOfModels: replace variable in the LibraryOfModels

Description

replaceVariablesLibraryOfModels: replace variable in the LibraryOfModels

Usage

replaceVariablesLibraryOfModels(text, old, new)

Arguments

text

the text

old

old string

new

new string

Value

text with new string


Run optimization

Description

Run optimization

run: run the evaluation of a design.

Arguments

optimization

An Optimization object.

pfimproject

A object PFIMProject giving the Evaluation.

Value

The optimization design results.

The object Evaluation giving the design evaluation.


setEvaluationFim: set the Fim results.

Description

setEvaluationFim: set the Fim results.

setEvaluationFim: set the Fim results.

setEvaluationFim: set the Fim results.

Arguments

fim

An object PopulationFim giving the Fim.

evaluation

An object Evaluation giving the evaluation of the model.

Value

The object Fim with its fisherMatrix, fixedEffects, shrinkage, condNumberFixedEffects, SEAndRSE.

The object IndividualFim with its fisherMatrix, fixedEffects, shrinkage, condNumberFixedEffects, SEAndRSE.

The object PopulationFim with its fisherMatrix, fixedEffects, shrinkage, condNumberFixedEffects, SEAndRSE.


setOptimalArms: set the optimal arms of an optimization algorithm.

Description

setOptimalArms: set the optimal arms of an optimization algorithm.

setOptimalArms: set the optimal arms of an optimization algorithm.

setOptimalArms: set the optimal arms of an optimization algorithm.

setOptimalArms: set the optimal arms of an optimization algorithm.

setOptimalArms: set the optimal arms of an optimization algorithm.

setOptimalArms: set the optimal arms of an optimization algorithm.

Arguments

fim

An object PopulationFim giving the Fim.

optimizationAlgorithm

An object FedorovWynnAlgorithm giving the optimization algorithm.

Value

The optimal arms.

The optimal arms.

The list optimalArms.

The list optimalArms.

The list optimalArms.

The list optimalArms.


setSamplingConstraintForOptimization: set the sampling time constraints for an arm for the design optimization.

Description

setSamplingConstraintForOptimization: set the sampling time constraints for an arm for the design optimization.

Arguments

design

An object Design giving the design.

Value

The arm with the sampling time constraint for the design optimization.


Show optimization results

Description

Show optimization results

show: show the evaluation in the R console.

Arguments

optimization

An Optimization object.

pfimproject

A object PFIMProject giving the Evaluation.

Value

Prints results to console.

The show of the evaluation of the design.


showFIM: show the Fim in the R console.

Description

showFIM: show the Fim in the R console.

showFIM: show the Fim in the R console.

showFIM: show the Fim in the R console.

Arguments

fim

An object IndividualFim giving the Fim.

Value

The fisherMatrix, fixedEffects, Determinant, condition numbers and D-criterion, Shrinkage and Parameters estimation

The fisherMatrix, fixedEffects, Determinant, condition numbers and D-criterion, Shrinkage and Parameters estimation

The fisherMatrix, fixedEffects, Determinant, condition numbers and D-criterion, Shrinkage and Parameters estimation


tablesForReport: generate the table for the report.

Description

tablesForReport: generate the table for the report.

tablesForReport: generate the table for the report.

tablesForReport: generate the table for the report.

Arguments

fim

An object PopulationFim giving the Fim.

evaluation

An object Evaluation giving the evaluation of the model.

Value

fixedEffectsTable, FIMCriteriaTable, SEAndRSETable.

fixedEffectsTable, FIMCriteriaTable, SEAndRSETable.

fixedEffectsTable, FIMCriteriaTable, SEAndRSETable.


updateSamplingTimes: update sampling times for plotting used for plot

Description

updateSamplingTimes: update sampling times for plotting used for plot

Arguments

arm

A object of class Arm giving the arm.

samplingData

The list giving as output in the method getSamplingData.

Value

The updated sampling times.