Type: | Package |
Title: | Actuarial Functions for Non-Life Insurance Modelling |
Version: | 0.1.5 |
Author: | Yiannis Parizas [aut, cre] |
Maintainer: | Yiannis Parizas <yiannis.parizas@gmail.com> |
Description: | Assists actuaries and other insurance modellers in pricing, reserving and capital modelling for non-life insurance and reinsurance modelling. Provides functions that help model excess levels, capping and pure Incurred but not reported claims (pure IBNR). Includes capped mean, exposure curves and increased limit factor curves (ILFs) for LogNormal, Gamma, Pareto, Sliced LogNormal-Pareto and Sliced Gamma-Pareto distributions. Includes mean, probability density function (pdf), cumulative probability function (cdf) and inverse cumulative probability function for Sliced LogNormal-Pareto and Sliced Gamma-Pareto distributions. Includes calculating pure IBNR exposure with LogNormal and Gamma distribution for reporting delay. Includes three shiny tools, one to simulate insurance claims applying reinsurance structures, fit generalised linear models and fit claims frequency or severity distributions. Methods used in the package refer to Free for All by Yiannis Parizas (2023) https://www.theactuary.com/2023/03/02/free-all; Escaping the triangle by Yiannis Parizas (2019) https://www.theactuary.com/features/2019/06/2019/06/05/escaping-triangle; Take to excess by Yiannis Parizas (2019) https://www.theactuary.com/features/2019/03/2019/03/06/taken-excess. |
License: | GPL-3 |
Encoding: | UTF-8 |
Imports: | rmarkdown, shiny, shinybusy, future.apply, scales, future, methods, DBI, RMySQL, RODBC, RPostgreSQL, RSQLite, plotly, shinyjs, MASS, fitdistrplus, shinyWidgets, Pareto |
Suggests: | knitr, crch, testthat |
VignetteBuilder: | knitr |
RoxygenNote: | 7.2.3 |
NeedsCompilation: | no |
Packaged: | 2023-12-02 07:52:02 UTC; yiann |
Repository: | CRAN |
Date/Publication: | 2023-12-02 08:10:02 UTC |
Exposure Curve from a Gamma severity distribution
Description
Exposure Curve from a Gamma severity distribution
Usage
ExposureCurveGamma(x, shape, rate)
Arguments
x |
A positive real number - the claim amount where the exposure curve will be evaluated. |
shape |
A positive real number - the shape parameter of the Claim Severity's Gamma distribution. |
rate |
A positive real number - the rate parameter of the Claim Severity's Gamma distribution. |
Value
The value of the Exposure curve at x
with Claim Severity from a Gamma distribution with parameters shape
and rate
.
Examples
ExposureCurveGamma(700,1,0.0005)
ExposureCurveGamma(1000,1.5,0.0006)
Exposure Curve from LogNormal a severity distribution
Description
Exposure Curve from LogNormal a severity distribution
Usage
ExposureCurveLNorm(x, mu, sigma)
Arguments
x |
A positive real number - the claim amount where the exposure curve will be evaluated. |
mu |
A real number - the first parameter of the Claim Severity's LogNormal distribution. |
sigma |
A positive real number - the second parameter of the Claim Severity's LogNormal distribution. |
Value
The value of the Exposure curve at x
with Claim Severity from a LogNormal distribution with parameters mu
and sigma
.
Examples
ExposureCurveLNorm(2000,6,1.5)
ExposureCurveLNorm(1000,5,1.6)
Exposure Curve from a Pareto severity distribution
Description
Exposure Curve from a Pareto severity distribution
Usage
ExposureCurvePareto(x, scale, shape)
Arguments
x |
A positive real number - the claim amount where the exposure curve will be evaluated. |
scale |
A positive real number - the scale parameter of the Claim Severity's Pareto distribution. |
shape |
A positive real number - the shape parameter of the Claim Severity's Pareto distribution. |
Value
The value of the Exposure curve at x
with Claim Severity from a Pareto distribution with parameters scale
and shape
.
Examples
ExposureCurvePareto(700,500,1.2)
ExposureCurvePareto(20000,200,1.1)
Exposure Curve from a Sliced Gamma Pareto severity distribution
Description
Exposure Curve from a Sliced Gamma Pareto severity distribution
Usage
ExposureCurveSlicedGammaPareto(x, GShape, GRate, SlicePoint, PShape)
Arguments
x |
A positive real number - the claim amount where the exposure curve will be evaluated. |
GShape |
A positive real number - the shape parameter of the Claim Severity's Gamma distribution. |
GRate |
A positive real number - the rate parameter of the Claim Severity's Gamma distribution. |
SlicePoint |
A positive real number - the slice point and the scale parameter of the Claim Severity's Pareto distribution. |
PShape |
A positive real number - the shape parameter of the Claim Severity's Pareto distribution. |
Value
The value of the Exposure curve at x
with an attritional claim Gamma distribution with parameters GShape
and GRate
and a large claim Pareto distribution with parameters SlicePoint
and PShape
.
Examples
ExposureCurveSlicedGammaPareto(3000,1,0.0005,1000,1.2)
ExposureCurveSlicedGammaPareto(1000,1.1,0.0006,2000,1.6)
ExposureCurveSlicedGammaPareto(2000,1.2,0.0004,3000,1.4)
Exposure Curve from a Sliced LogNormal Pareto severity distribution
Description
Exposure Curve from a Sliced LogNormal Pareto severity distribution
Usage
ExposureCurveSlicedLNormPareto(x, mu, sigma, SlicePoint, shape)
Arguments
x |
A positive real number - the claim amount where the exposure curve will be evaluated. |
mu |
A real number - the first parameter of the attritional Claim Severity's LogNormal distribution. |
sigma |
A positive real number - the second parameter of the attritional Claim Severity's LogNormal distribution. |
SlicePoint |
A positive real number - the slice point and the scale parameter of the tail Claim Severity's Pareto distribution. |
shape |
A positive real number - the shape parameter of the tail Claim Severity's Pareto distribution. |
Value
The value of the Exposure curve at x
with an attritional claim LogNormal distribution with parameters mu
and sigma
and a large claim Pareto distribution with parameters SlicePoint
and shape
.
Examples
ExposureCurveSlicedLNormPareto(1200,6,1.5,1000,1.2)
ExposureCurveSlicedLNormPareto(4000,7,1.6,3000,1.4)
Server function for the GLM Fitting tool application
Description
Server function for the GLM Fitting tool application
Usage
GLMFittingToolServer(input, output, session)
Arguments
input |
Input for the server function. |
output |
Output for the server function. |
session |
Session for the server function. |
Value
Returns server rendering for the shiny application.
UI file for the Shiny glm fitting tool
Description
UI file for the Shiny glm fitting tool
Usage
GLMFittingToolUI
Format
An object of class shiny.tag.list
(inherits from list
) of length 4.
Value
Returns the UI code for the shiny application.
Gamma capped mean
Description
Gamma capped mean
Usage
GammaCappedMean(cap, shape, rate)
Arguments
cap |
A positive real number - the claim severity cap. |
shape |
A positive real number - the shape parameter of the Claim Severity's Gamma distribution. |
rate |
A positive real number - the rate parameter of the Claim Severity's Gamma distribution. |
Value
The mean of the claim severity capped at cap
with a Gamma distribution with parameters shape
and rate
.
Examples
GammaCappedMean(700,1,0.0005)
GammaCappedMean(1000,1.5,0.0006)
Lower incomplete gamma function
Description
Lower incomplete gamma function
Usage
IGamma(a, x)
Arguments
a |
A positive real number. |
x |
A positive real number. |
Value
The value of the lower incomplete gamma function at x
with shape parameter a
.
Examples
IGamma(1,1)
IGamma(0.1,2)
Increased Limit Factor Curve from a Gamma severity distribution
Description
Increased Limit Factor Curve from a Gamma severity distribution
Usage
ILFGamma(xLow, xHigh, shape, rate)
Arguments
xLow |
A positive real number - the claim amount where the Increased Limit Factor Curve will be evaluated from. |
xHigh |
A positive real number - the claim amount where the Increased Limit Factor Curve will be evaluated to. |
shape |
A positive real number - the shape parameter of the Claim Severity's Gamma distribution. |
rate |
A positive real number - the rate parameter of the Claim Severity's Gamma distribution. |
Value
The value of the Increased Limit Factor curve from xLow
to xHigh
with Claim Severity from a Gamma distribution with parameters shape
and rate
.
Examples
ILFGamma(1000,700,1,0.0005)
ILFGamma(1200,1000,1.5,0.0006)
Increased Limit Factor Curve from a LogNormal severity distribution
Description
Increased Limit Factor Curve from a LogNormal severity distribution
Usage
ILFLNorm(xLow, xHigh, mu, sigma)
Arguments
xLow |
A positive real number - the claim amount where the Increased Limit Factor Curve will be evaluated from. |
xHigh |
A positive real number - the claim amount where the Increased Limit Factor Curve will be evaluated to. |
mu |
A real number - the first parameter of the Claim Severity's LogNormal distribution. |
sigma |
A positive real number - the second parameter of the Claim Severity's LogNormal distribution. |
Value
The value of the Increased Limit Factor curve from xLow
to xHigh
with Claim Severity from a LogNormal distribution with parameters mu
and sigma
.
Examples
ILFLNorm(1000,2000,6,1.5)
ILFLNorm(1000,1500,5,1.6)
Increased Limit Factor Curve from a Pareto severity distribution
Description
Increased Limit Factor Curve from a Pareto severity distribution
Usage
ILFPareto(xLow, xHigh, scale, shape)
Arguments
xLow |
A positive real number - the claim amount where the Increased Limit Factor Curve will be evaluated from. |
xHigh |
A positive real number - the claim amount where the Increased Limit Factor Curve will be evaluated to. |
scale |
A positive real number - the scale parameter of the Claim Severity's Pareto distribution. |
shape |
A positive real number - the shape parameter of the Claim Severity's Pareto distribution. |
Value
The value of the Increased Limit Factor curve from xLow
to xHigh
with Claim Severity from a Pareto distribution with parameters scale
and shape
.
Examples
ILFPareto(700,1200,500,1.2)
ILFPareto(1200,20000,200,1.1)
Increased Limit Factor Curve from a Sliced Gamma Pareto severity distribution
Description
Increased Limit Factor Curve from a Sliced Gamma Pareto severity distribution
Usage
ILFSlicedGammaPareto(xLow, xHigh, GShape, GRate, SlicePoint, PShape)
Arguments
xLow |
A positive real number - the claim amount where the Limit Factor Curve will be evaluated from. |
xHigh |
A positive real number - the claim amount where the Limit Factor Curve will be evaluated to. |
GShape |
A positive real number - the shape parameter of the attritional Claim Severity's Gamma distribution. |
GRate |
A positive real number - the rate parameter of the attritional Claim Severity's Gamma distribution. |
SlicePoint |
A positive real number - the slice point and the scale parameter of the tail Claim Severity's Pareto distribution. |
PShape |
A positive real number - the shape parameter of the tail Claim Severity's Pareto distribution. |
Value
The value of the Increased Limit Factor curve from xLow
to xHigh
with an attritional claim Gamma distribution with parameters GShape
and GRate
and a large claim Pareto distribution with parameters SlicePoint
and PShape
.
Examples
ILFSlicedGammaPareto(2000,3000,1,0.0005,1000,1.2)
ILFSlicedGammaPareto(800,1000,1.1,0.0006,2000,1.6)
ILFSlicedGammaPareto(1200,2000,1.2,0.0004,3000,1.4)
Increased Limit Factor Curve from a Sliced LogNormal Pareto severity distribution
Description
Increased Limit Factor Curve from a Sliced LogNormal Pareto severity distribution
Usage
ILFSlicedLNormPareto(xLow, xHigh, mu, sigma, SlicePoint, shape)
Arguments
xLow |
A positive real number - the claim amount where the Limit Factor Curve will be evaluated from. |
xHigh |
A positive real number - the claim amount where the Limit Factor Curve will be evaluated to. |
mu |
A real number - the first parameter of the attritional Claim Severity's LogNormal distribution. |
sigma |
A positive real number - the second parameter of the attritional Claim Severity's LogNormal distribution. |
SlicePoint |
A positive real number - the slice point and the scale parameter of the tail Claim Severity's Pareto distribution. |
shape |
A positive real number - the shape parameter of the tail Claim Severity's Pareto distribution. |
Value
The value of the Increased Limit Factor curve from xLow
to xHigh
with an attritional claim LogNormal distribution with parameters mu
and sigma
and a large claim Pareto distribution with parameters SlicePoint
and shape
.
Examples
ILFSlicedLNormPareto(800,1200,6,1.5,1000,1.2)
ILFSlicedLNormPareto(2000,4000,7,1.6,3000,1.4)
Lognormal capped mean
Description
Lognormal capped mean
Usage
LNormCappedMean(cap, mu, sigma)
Arguments
cap |
A positive real number - the claim severity cap. |
mu |
A real number - the first parameter of the Claim Severity's LogNormal distribution. |
sigma |
A positive real number - the second parameter of the Claim Severity's LogNormal distribution. |
Value
The mean of the claim severity capped at cap
with a LogNormal distribution with parameters mu
and sigma
.
Examples
LNormCappedMean(2000,6,1.5)
LNormCappedMean(1000,5,1.6)
NetSimR: A non-life insurance package for computating various statistics.
Description
The NetSimR package provides three categories of functions:
Capped means, Exposure and ILF curve from various severity distributions
Pure IBNR and UPR earned periods
Sliced distributions
NetSimR mean functions
SlicedGammaParetoMean
SlicedLNormParetoMean
NetSimR capped mean functions
GammaCappedMean
LNormCappedMean
ParetoCappedMean
SlicedGammaParetoCappedMean
SlicedLNormParetoCappedMean
NetSimR exposure curve functions
ExposureCurveGamma
ExposureCurveLNorm
ExposureCurvePareto
ExposureCurveSlicedGammaPareto
ExposureCurveSlicedLNormPareto
NetSimR ILF curve functions
ILFGamma
ILFLNorm
ILFPareto
ILFSlicedGammaPareto
ILFSlicedLNormPareto
NetSimR pure IBNR functions
NetSimR Sliced distribution functions
dSlicedGammaPareto
dSlicedLNormPareto
pSlicedGammaPareto
pSlicedLNormPareto
qSlicedGammaPareto
qSlicedLNormPareto
Pareto capped mean
Description
Pareto capped mean
Usage
ParetoCappedMean(cap, scale, shape)
Arguments
cap |
A positive real number - the claim severity cap. |
scale |
A positive real number - the scale parameter of the Claim Severity's Pareto distribution. |
shape |
A positive real number - the shape parameter of the Claim Severity's Pareto distribution. |
Value
The mean of the claim severity capped at cap
with a Pareto distribution with parameters scale
and shape
.
Examples
ParetoCappedMean(600,200,1.2)
ParetoCappedMean(800,100,1)
ParetoCappedMean(1000,500,0.8)
Pareto capped mean intermediary calculation
Description
Pareto capped mean intermediary calculation
Usage
ParetoCappedMeanCalc(cap, scale, shape)
Arguments
cap |
A positive real number - the claim severity cap. |
scale |
A positive real number - the scale parameter of the Claim Severity's Pareto distribution. |
shape |
A positive real number - the shape parameter of the Claim Severity's Pareto distribution. |
Value
An interim calculation for the mean of the claim severity capped at cap
with a Pareto distribution with parameters scale
and shape
.
Examples
ParetoCappedMeanCalc(800,100,1.1)
ParetoCappedMeanCalc(1000,500,0.9)
Pure IBNR exposure from a Gamma reporting delay distribution
Description
Pure IBNR exposure from a Gamma reporting delay distribution
Usage
PureIBNRGamma(IncDate, ExpDate, ValDate, shape, rate)
Arguments
IncDate |
A date - the inception date of the period. |
ExpDate |
A date - the expiry date of the period. Must be greater than inception date. |
ValDate |
A date - the valuation date. |
shape |
A positive real number - the shape parameter of the reporing delay's Gamma distribution. |
rate |
A positive real number - the rate parameter of the reporing delay's Gamma distribution. |
Value
Unearned and Pure IBNR exposure in days and as a percentage of the period's duration, where the reporting delay has a Gamma distribution with parameters shape
and rate
.
Examples
Dates = data.frame(
inceptionDate = c("01/01/2006", "01/07/2006", "01/01/2007")
,expiryDate = c("31/12/2006", "30/06/2007", "31/12/2007")
)
Dates$inceptionDate<-as.POSIXct(Dates$inceptionDate, format="%d/%m/%Y")
Dates$expiryDate<-as.POSIXct(Dates$expiryDate, format="%d/%m/%Y")
ValuationDate<-as.POSIXct("30/10/2007", format="%d/%m/%Y")
PureIBNRGamma(Dates$inceptionDate,Dates$expiryDate,ValuationDate,7,0.15)
Pure IBNR exposure from a LogNormal reporting delay distribution
Description
Pure IBNR exposure from a LogNormal reporting delay distribution
Usage
PureIBNRLNorm(IncDate, ExpDate, ValDate, mu, sigma)
Arguments
IncDate |
A date - the inception date of the period. |
ExpDate |
A date - the expiry date of the period. Must be greater than inception date. |
ValDate |
A date - the valuation date. |
mu |
A real number - the first parameter of the reporing delay's LogNormal distribution. |
sigma |
A positive real number - the second parameter of the reporing delay's LogNormal distribution. |
Value
Unearned and Pure IBNR exposure in days and as a percentage of the period's duration, where the reporting delay has a LogNormal distribution with parameters mu
and sigma
.
Examples
Dates = data.frame(
inceptionDate = c("01/01/2006", "01/07/2006", "01/01/2007")
,expiryDate = c("31/12/2006", "30/06/2007", "31/12/2007")
)
Dates$inceptionDate<-as.POSIXct(Dates$inceptionDate, format="%d/%m/%Y")
Dates$expiryDate<-as.POSIXct(Dates$expiryDate, format="%d/%m/%Y")
ValuationDate<-as.POSIXct("30/10/2007", format="%d/%m/%Y")
PureIBNRLNorm(Dates$inceptionDate,Dates$expiryDate,ValuationDate,4,1.5)
Sliced Gamma Pareto capped mean
Description
Sliced Gamma Pareto capped mean
Usage
SlicedGammaParetoCappedMean(cap, GShape, GRate, SlicePoint, PShape)
Arguments
cap |
A positive real number - the claim severity cap. |
GShape |
A positive real number - the shape parameter of the attritional Claim Severity's Gamma distribution. |
GRate |
A positive real number - the rate parameter of the attritional Claim Severity's Gamma distribution. |
SlicePoint |
A positive real number - the slice point and the scale parameter of the tail Claim Severity's Pareto distribution. |
PShape |
A positive real number - the shape parameter of the tail Claim Severity's Pareto distribution. |
Value
The mean of the claim severity capped at cap
with an attritional claim Gamma distribution with parameters GShape
and GRate
and a large claim Pareto distribution with parameters SlicePoint
and PShape
.
Examples
SlicedGammaParetoCappedMean(3000,1,0.0005,1000,1.2)
SlicedGammaParetoCappedMean(1000,1.1,0.0006,2000,1.6)
SlicedGammaParetoCappedMean(2000,1.2,0.0004,3000,1.4)
Sliced Gamma Pareto mean
Description
Sliced Gamma Pareto mean
Usage
SlicedGammaParetoMean(GShape, GRate, SlicePoint, PShape)
Arguments
GShape |
A positive real number - the shape parameter of the attritional Claim Severity's Gamma distribution. |
GRate |
A positive real number - the rate parameter of the attritional Claim Severity's Gamma distribution. |
SlicePoint |
A positive real number - the slice point and the scale parameter of the tail Claim Severity's Pareto distribution. |
PShape |
A positive real number - the Shape parameter of the tail Claim Severity's Pareto distribution. |
Value
The mean of the claim severity with an attritional claim Gamma distribution with parameters GShape
and GRate
and a large claim Pareto distribution with parameters SlicePoint
and PShape
.
Examples
SlicedGammaParetoMean(1,0.0005,1000,1.2)
SlicedGammaParetoMean(1.1,0.0006,2000,1.6)
SlicedGammaParetoMean(1.2,0.0004,3000,1.4)
Sliced LogNormal Pareto capped mean
Description
Sliced LogNormal Pareto capped mean
Usage
SlicedLNormParetoCappedMean(cap, mu, sigma, SlicePoint, shape)
Arguments
cap |
A positive real number - the claim severity cap. |
mu |
A real number - the first parameter of the attritional Claim Severity's LogNormal distribution. |
sigma |
A positive real number - the second parameter of the attritional Claim Severity's LogNormal distribution. |
SlicePoint |
A positive real number - the slice point and the scale parameter of the tail Claim Severity's Pareto distribution. |
shape |
A positive real number - the shape parameter of the tail Claim Severity's Pareto distribution. |
Value
The mean of the claim severity capped at cap
with an attritional claim LogNormal distribution with parameters mu
and sigma
and a large claim Pareto distribution with parameters SlicePoint
and shape
.
Examples
SlicedLNormParetoCappedMean(1200,6,1.5,1000,1.2)
SlicedLNormParetoCappedMean(2500,6.5,1.4,2000,1.6)
SlicedLNormParetoCappedMean(4000,7,1.6,3000,1.4)
Sliced LogNormal Pareto mean
Description
Sliced LogNormal Pareto mean
Usage
SlicedLNormParetoMean(mu, sigma, SlicePoint, shape)
Arguments
mu |
A real number - the first parameter of the attritional Claim Severity's LogNormal distribution. |
sigma |
A positive real number - the second parameter of the attritional Claim Severity's LogNormal distribution. |
SlicePoint |
A positive real number - the slice point and the scale parameter of the tail Claim Severity's Pareto distribution. |
shape |
A positive real number - the shape parameter of the tail Claim Severity's Pareto distribution. |
Value
The mean of the claim severity with an attritional claim LogNormal distribution with parameters mu
and sigma
and a large claim Pareto distribution with parameters SlicePoint
and shape
.
Examples
SlicedLNormParetoMean(6,1.5,1000,1.2)
SlicedLNormParetoMean(6.5,1.4,2000,1.6)
SlicedLNormParetoMean(7,1.6,3000,1.4)
Apply a deductible and limit to claims
Description
Apply a deductible and limit to claims
Usage
apply_deductible_limit(
gross_claims_data,
reinsurance_structure,
deductible,
limit
)
Arguments
gross_claims_data |
A vector of Claims. |
reinsurance_structure |
The chosen reinsurance structure. Options are: 'No Reinsurance Structure', 'Unlimited Layer', 'Limited Layer', 'Exclude Layer'. |
deductible |
The deductible of the reinsurance structure. |
limit |
The limit of the reinsurance structure. |
Value
The ceded claims for the structure, with the chosen deductible and limit.
Examples
apply_deductible_limit(c(100, 50, 20), 'Limited Layer', 40, 20)
apply_deductible_limit(c(100, 50, 20), 'Limited Layer', 10, 30)
Apply severity cap function
Description
Apply severity cap function
Usage
apply_severity_cap(claims, severity_cap_boolean, severity_cap_amount)
Arguments
claims |
A vector of Claims. |
severity_cap_boolean |
A variable that if true, the function will cap the claims, otherwise will just return them. |
severity_cap_amount |
The claim cap value. |
Value
If severity_cap_boolean
is true, then will return the minimum of severity_cap_amount
or claims
otherwise will return claims
. The operation is vectorised.
The probability density function (pdf) of a Sliced Gamma Pareto severity distribution
Description
The probability density function (pdf) of a Sliced Gamma Pareto severity distribution
Usage
dSlicedGammaPareto(x, GShape, GRate, SlicePoint, PShape)
Arguments
x |
A positive real number - the claim amount where the probability density function (pdf) will be evaluated. |
GShape |
A positive real number - the shape parameter of the attritional Claim Severity's Gamma distribution. |
GRate |
A positive real number - the rate parameter of the attritional Claim Severity's Gamma distribution. |
SlicePoint |
A positive real number - the slice point and the scale parameter of the tail Claim Severity's Pareto distribution. |
PShape |
A positive real number - the shape parameter of the tail Claim Severity's Pareto distribution. |
Value
The value of the probability density function (pdf) at x
with an attritional claim Gamma distribution with parameters GShape
and GRate
and a large claim Pareto distribution with parameters SlicePoint
and PShape
.
Examples
dSlicedGammaPareto(3000,1,0.0005,1000,1.2)
dSlicedGammaPareto(1000,1.1,0.0006,2000,1.6)
dSlicedGammaPareto(2000,1.2,0.0004,3000,1.4)
The probability density function (pdf) of a Sliced LogNormal Pareto severity distribution
Description
The probability density function (pdf) of a Sliced LogNormal Pareto severity distribution
Usage
dSlicedLNormPareto(x, mu, sigma, SlicePoint, shape)
Arguments
x |
A positive real number - the claim amount where the probability density function (pdf) will be evaluated. |
mu |
A real number - the first parameter of the attritional Claim Severity's LogNormal distribution. |
sigma |
A positive real number - the second parameter of the attritional Claim Severity's LogNormal distribution. |
SlicePoint |
A positive real number - the slice point and the scale parameter of the Claim Severity's Pareto distribution. |
shape |
A positive real number - the shape parameter of the Claim Severity's Pareto distribution. |
Value
The value of the probability density function (pdf) at x
with an attritional claim LogNormal distribution with parameters mu
and sigma
and a large claim Pareto distribution with parameters SlicePoint
and shape
.
Examples
dSlicedLNormPareto(1200,6,1.5,1000,1.2)
dSlicedLNormPareto(4000,7,1.6,3000,1.4)
The class of the distribution objects
Description
The class of the distribution objects
Server function for the Distribution Fitting tool application
Description
Server function for the Distribution Fitting tool application
Usage
distribution_fitting_tool_Server(input, output, session)
Arguments
input |
Input for the server function. |
output |
Output for the server function. |
session |
Session for the server function. |
Value
Returns server rendering for the shiny application.
UI file for the Shiny glm fitting tool
Description
UI file for the Shiny glm fitting tool
Usage
distribution_fitting_tool_UI
Format
An object of class shiny.tag.list
(inherits from list
) of length 4.
Value
Returns the UI code for the shiny application.
Error function
Description
Error function
Usage
erf(x)
Arguments
x |
A real number. |
Value
The value of the error function at x
.
Examples
erf(0.1)
erf(0.5)
A vector with the frequency distribution objects
Description
A vector with the frequency distribution objects
Usage
freq_dist_options
Format
An object of class list
of length 4.
Value
The frequency distribution objects.
A data frame with the frequency distribution parameter placeholders
Description
A data frame with the frequency distribution parameter placeholders
Usage
freq_dist_parameter_placeholders
Format
An object of class data.frame
with 2 rows and 2 columns.
Value
The frequency distribution parameter placeholders.
Parameter to set the maximum number of pareto slices
Description
Parameter to set the maximum number of pareto slices
Usage
max_number_of_pareto_slices
Format
An object of class numeric
of length 1.
Value
The the maximum number of Pareto Slices.
The cumulative density function (cdf) of a Sliced Gamma-Pareto severity distribution
Description
The cumulative density function (cdf) of a Sliced Gamma-Pareto severity distribution
Usage
pSlicedGammaPareto(x, GShape, GRate, SlicePoint, PShape)
Arguments
x |
A positive real number - the claim amount where the cumulative density function (cdf) will be evaluated. |
GShape |
A positive real number - the shape parameter of the attritional Claim Severity's Gamma distribution. |
GRate |
A positive real number - the rate parameter of the attritional Claim Severity's Gamma distribution. |
SlicePoint |
A positive real number - the slice point and the scale parameter of the tail Claim Severity's Pareto distribution. |
PShape |
A positive real number - the shape parameter of the tail Claim Severity's Pareto distribution. |
Value
The value of the cumulative density function (cdf) at x
with an attritional claim Gamma distribution with parameters GShape
and GRate
and a large claim Pareto distribution with parameters SlicePoint
and PShape
.
Examples
pSlicedGammaPareto(3000,1,0.0005,1000,1.2)
pSlicedGammaPareto(1000,1.1,0.0006,2000,1.6)
pSlicedGammaPareto(2000,1.2,0.0004,3000,1.4)
The cumulative density function (cdf) of a Sliced LogNormal Pareto severity distribution
Description
The cumulative density function (cdf) of a Sliced LogNormal Pareto severity distribution
Usage
pSlicedLNormPareto(x, mu, sigma, SlicePoint, shape)
Arguments
x |
A positive real number - the claim amount where the cumulative density function (cdf) will be evaluated. |
mu |
A real number - the first parameter of the attritional Claim Severity's LogNormal distribution. |
sigma |
A positive real number - the second parameter of the attritional Claim Severity's LogNormal distribution. |
SlicePoint |
A positive real number - the slice point and the scale parameter of the tail Claim Severity's Pareto distribution. |
shape |
A positive real number - the shape parameter of the tail Claim Severity's Pareto distribution. |
Value
The value of the cumulative density function (cdf) at x
with an attritional claim LogNormal distribution with parameters mu
and sigma
and a large claim Pareto distribution with parameters SlicePoint
and shape
.
Examples
pSlicedLNormPareto(1200,6,1.5,1000,1.2)
pSlicedLNormPareto(4000,7,1.6,3000,1.4)
The inverse cumulative density function of a Sliced Gamma Pareto severity distribution
Description
The inverse cumulative density function of a Sliced Gamma Pareto severity distribution
Usage
qSlicedGammaPareto(q, GShape, GRate, SlicePoint, PShape)
Arguments
q |
A real number between 0 and 1 - the probability where the inverse cumulative density function will be evaluated. |
GShape |
A positive real number - the shape parameter of the attritional Claim Severity's Gamma distribution. |
GRate |
A positive real number - the rate parameter of the attritional Claim Severity's Gamma distribution. |
SlicePoint |
A positive real number - the slice point and the scale parameter of the tail Claim Severity's Pareto distribution. |
PShape |
A positive real number - the shape parameter of the tail Claim Severity's Pareto distribution. |
Value
The value of the inverse cumulative density function at q
with an attritional claim Gamma distribution with parameters GShape
and GRate
and a large claim Pareto distribution with parameters SlicePoint
and PShape
.
Examples
qSlicedGammaPareto(0.5,1,0.0005,1000,1.2)
qSlicedGammaPareto(0.2,1.1,0.0006,2000,1.6)
qSlicedGammaPareto(0.8,1.2,0.0004,3000,1.4)
The inverse cumulative density function of a Sliced LogNormal Pareto severity distribution
Description
The inverse cumulative density function of a Sliced LogNormal Pareto severity distribution
Usage
qSlicedLNormPareto(q, mu, sigma, SlicePoint, shape)
Arguments
q |
A real number between 0 and 1 - the probability where the inverse cumulative density function will be evaluated. |
mu |
A real number - the first parameter of the attritional Claim Severity's LogNormal distribution. |
sigma |
A positive real number - the second parameter of the attritional Claim Severity's LogNormal distribution. |
SlicePoint |
A positive real number - the slice point and the scale parameter of the tail Claim Severity's Pareto distribution. |
shape |
A positive real number - the shape parameter of the tail Claim Severity's Pareto distribution. |
Value
The value of the inverse cumulative density function at q
with an attritional claim LogNormal distribution with parameters mu
and sigma
and a large claim Pareto distribution with parameters SlicePoint
and shape
.
Examples
qSlicedLNormPareto(0.5,6,1.5,1000,1.2)
qSlicedLNormPareto(0.7,7,1.6,3000,1.4)
A vector with the reinsurance structure options
Description
A vector with the reinsurance structure options
Usage
reinsurance_structures_options
Format
An object of class character
of length 4.
Value
The reinsurance structure options
Random Pareto generator
Description
Random Pareto generator
Usage
rpareto(n, alpha, x_m)
Arguments
n |
Number of values to generate. |
alpha |
A positive real number. Alpha parameter of the Pareto distribution. |
x_m |
A positive real number. The minimum value for the Pareto distribution. |
Value
A vector of n
random Pareto variables with parameters alpha
and x_m
.
A function to run the glm fitting tool application
Description
A function to run the glm fitting tool application
Usage
run_shiny_distribution_fitting_tool()
Value
Opens the glm fitting tool application
A function to run the glm fitting tool application
Description
A function to run the glm fitting tool application
Usage
run_shiny_glm_fitting_tool()
Value
Opens the glm fitting tool application
A function to run the shiny simulator application
Description
A function to run the shiny simulator application
Usage
run_shiny_simulator()
Value
Opens the shiny simulator application
A vector with the severity distribution objects
Description
A vector with the severity distribution objects
Usage
sev_dist_options
Format
An object of class list
of length 6.
Value
The severity distribution objects.
A data frame with the severity distribution parameter placeholders
Description
A data frame with the severity distribution parameter placeholders
Usage
sev_dist_parameter_placeholders
Format
An object of class data.frame
with 2 rows and 2 columns.
Value
The severity distribution parameter placeholders.
Server function for the Shiny Simulator application
Description
Server function for the Shiny Simulator application
Usage
shiny_simulator_server(input, output, session)
Arguments
input |
Input for the server function. |
output |
Output for the server function. |
session |
Session for the server function. |
Value
Returns server rendering for the shiny application.
UI file for the Shiny GLM Fitting Tool
Description
UI file for the Shiny GLM Fitting Tool
Usage
shiny_simulator_ui
Format
An object of class shiny.tag.list
(inherits from list
) of length 4.
Value
Returns the UI code for the shiny application.
A function to simulate frequency - severity of insurance claims. The function applies severity cap, reinsurance structure for each and every loss claim, reinsurance structure for each and aggregate claims. The function allows for piecewise pareto slices.
Description
A function to simulate frequency - severity of insurance claims. The function applies severity cap, reinsurance structure for each and every loss claim, reinsurance structure for each and aggregate claims. The function allows for piecewise pareto slices.
Usage
simulate_function(
numOfSimulations,
freq_params,
sev_params,
seedSetBinary,
seedValue,
freqDistr,
sevDistr,
paretoSlice,
pareto_slice_times,
slice_pareto_alphas,
slice_pareto_x_ms,
sevCapBinary,
sev_cap_amount,
reinsuranceStructureEEL,
reinsurance_structure_eel_dedctible_amount,
reinsurance_structure_eel_limit_amount,
reinsuranceStructureAL,
reinsurance_structure_al_dedctible_amount,
reinsurance_structure_al_limit_amount,
reinsuranceStructureLimitedReinstatements,
reinsuranceStructureReinstatementLimit,
multiprocessing
)
Arguments
numOfSimulations |
The number of simulations to run. |
freq_params |
A vector of the frequency distribution parameters. |
sev_params |
A vector of the severity distribution parameters. |
seedSetBinary |
True if there is a fixed seed, otherwise false. |
seedValue |
The seed value. |
freqDistr |
The frequency distribution. Options are as per the freq_dist_options. |
sevDistr |
The severity distribution. Options are as per the sev_dist_options. |
paretoSlice |
True if there is Pareto slicing. |
pareto_slice_times |
The number of Pareto slices. |
slice_pareto_alphas |
A vector of Pareto slices' aphla parameters. |
slice_pareto_x_ms |
A vector of Pareto slices' x_m parameters. |
sevCapBinary |
True if there is a severity cap. |
sev_cap_amount |
The severity cap amount. |
reinsuranceStructureEEL |
The chosen reinsurance structure for each and every loss claim. |
reinsurance_structure_eel_dedctible_amount |
The deductible for each and every loss reinsurance structure. |
reinsurance_structure_eel_limit_amount |
The limit for each and every loss reinsurance structure. |
reinsuranceStructureAL |
The chosen reinsurance structure for aggregate claims. |
reinsurance_structure_al_dedctible_amount |
The deductible for aggregate reinsurance structure. |
reinsurance_structure_al_limit_amount |
The limit for aggregate reinsurance structure. |
reinsuranceStructureLimitedReinstatements |
True if there is a limit in reinstatements, otherwise false. |
reinsuranceStructureReinstatementLimit |
The reinstatement limit. |
multiprocessing |
True if multiprocessing is used, otherwise false. |
Value
A data frame with claims counts, ceded claims and the number of reinstatements used.